KR102289065B1 - Magnetic navigation system and method for controlling micro robot using the system - Google Patents
Magnetic navigation system and method for controlling micro robot using the system Download PDFInfo
- Publication number
- KR102289065B1 KR102289065B1 KR1020190090842A KR20190090842A KR102289065B1 KR 102289065 B1 KR102289065 B1 KR 102289065B1 KR 1020190090842 A KR1020190090842 A KR 1020190090842A KR 20190090842 A KR20190090842 A KR 20190090842A KR 102289065 B1 KR102289065 B1 KR 102289065B1
- Authority
- KR
- South Korea
- Prior art keywords
- magnetic field
- field generator
- back yoke
- magnetic
- core
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/72—Micromanipulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0127—Magnetic means; Magnetic markers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J7/00—Micromanipulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00225—Systems for controlling multiple different instruments, e.g. microsurgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00345—Micromachines, nanomachines, microsystems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00778—Operations on blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/303—Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
- A61B2034/731—Arrangement of the coils or magnets
- A61B2034/732—Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M2025/0166—Sensors, electrodes or the like for guiding the catheter to a target zone, e.g. image guided or magnetically guided
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Robotics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mechanical Engineering (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
자기 구동시스템이 개시된다. 자기 구동시스템은 제1자기장 생성부; 작동영역을 사이에 두고 상기 제1자기장 생성부와 마주 배치되는 제2자기장 생성부; 및 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 이동 모듈을 포함한다.A magnetic drive system is disclosed. The magnetic drive system includes a first magnetic field generator; a second magnetic field generator disposed to face the first magnetic field generator with an operation region interposed therebetween; and a moving module for moving the first magnetic field generator and the second magnetic field generator.
Description
본 발명은 자기 구동시스템 및 이를 이용한 마이크로 로봇 제어 방법에 관련된 것으로, 보다 상세하게는 마그네틱 로봇의 움직임을 제어할 수 있는 자기 구동시스템에 관한 것이다.The present invention relates to a magnetic drive system and a microrobot control method using the same, and more particularly, to a magnetic drive system capable of controlling the movement of a magnetic robot.
내부에 자석이 장착된 마그네틱 로봇은 자기 구동 시스템이 생성하는 외부 자기장에 의해 자기토크와 자기력을 받아 구동하게 되며, 원격으로 정밀제어가 가능하여 많은 부위에 적용 및 연구개발이 진행되고 있다. 대표적으로 소화기계에 적용된 자기 구동형 캡슐형 내시경, 심장 부정맥 치료에 적용된 마그네틱 카테터 등이 있으며, 이 외에도 폐색성 혈관 치료를 위한 혈관치료용 마그네틱 로봇, 안구 내 약물전달을 위한 마이크로 로봇, 조직 내 표적 약물전달을 위한 자기 나노 입자 등이 있다.A magnetic robot equipped with a magnet inside is driven by receiving magnetic torque and magnetic force by the external magnetic field generated by the magnetic drive system. Representative examples include magnetically driven capsule endoscopes applied to the digestive system, magnetic catheters applied to cardiac arrhythmias, etc. In addition, magnetic robots for vascular therapy for occlusive vascular treatment, micro-robots for intraocular drug delivery, and intra-tissue targets and magnetic nanoparticles for drug delivery.
이와 같이 마그네틱 로봇이 적용되는 인체 부위 및 병변부의 위치는 매우 다양하다. 이러한 마그네틱 로봇의 구동 및 제어의 핵심은 외부 자기장을 생성하는 자기 구동시스템이다. 그러나 기존의 자기 구동 시스템들은 자기장을 생성하는 전자석의 위치 및 배치형태가 고정되어 있어 병변부의 위치 및 특성을 고려하지 못해 비효율적으로 자기장을 생성 및 제어하였다. 또한 자기 구동 시스템이 매우 무겁고 큰 부피를 가져 보관 및 배치에 있어 큰 제약이 있다. 이러한 자기장 구동 시스템의 한계는 마그네틱 로봇이 적용 가능한 질환 및 생성 가능한 운동 등의 한계로 이어진다.As described above, the position of the body part and the lesion part to which the magnetic robot is applied is very diverse. The core of driving and controlling such a magnetic robot is a magnetic drive system that generates an external magnetic field. However, the existing magnetic drive systems inefficiently generate and control the magnetic field because the position and arrangement of the electromagnets that generate the magnetic field are fixed, so the position and characteristics of the lesion cannot be considered. In addition, the magnetic drive system is very heavy and has a large volume, which places great restrictions on storage and placement. The limitations of such a magnetic field drive system lead to limitations such as diseases applicable to magnetic robots and possible movements.
본 발명은 병변부에 따라 작동 영역의 위치 및 크기를 최적화할 수 있는 자기 구동시스템을 제공한다.The present invention provides a magnetic drive system capable of optimizing the position and size of an operating area according to a lesion area.
또한, 본 발명은 신체에 밀착되어 마이크로 로봇의 움직임을 추적할 수 있는 자기 구동시스템을 제공한다.In addition, the present invention provides a magnetic drive system capable of tracking the movement of the micro-robot by being in close contact with the body.
또한, 본 발명은 자기 구동 시스템을 이용하여 마이크로 로봇의 움직임을 추적 및 제어할 수 있는 마이크로 로봇 제어 방법을 제공한다.In addition, the present invention provides a micro-robot control method capable of tracking and controlling the movement of the micro-robot using a magnetic drive system.
본 발명에 따른 자기 구동시스템은 제1자기장 생성부; 작동영역을 사이에 두고 상기 제1자기장 생성부와 마주 배치되는 제2자기장 생성부; 및 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 이동 모듈을 포함한다.A magnetic drive system according to the present invention includes a first magnetic field generator; a second magnetic field generator disposed to face the first magnetic field generator with an operation region interposed therebetween; and a moving module for moving the first magnetic field generator and the second magnetic field generator.
또한, 상기 제1자기장 생성부는, 링 형상의 제1백요크; 상기 제1백요크에 결합하는 제1코어; 및 상기 제1코어에 권선되는 제1코일을 포함하고, 상기 제2자기장 생성부는, 링 형상의 제2백요크; 상기 제2백요크에 결합하는 제2코어; 및 상기 제2코어에 권선되는 제2코일을 포함한다.In addition, the first magnetic field generating unit, a ring-shaped first back yoke; a first core coupled to the first back yoke; and a first coil wound around the first core, wherein the second magnetic field generator includes: a ring-shaped second back yoke; a second core coupled to the second back yoke; and a second coil wound around the second core.
또한, 상기 이동 모듈은 상기 제1백요크의 중심축과 상기 제2백요크의 중심축이 동일 선상에 위치하도록 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시킬 수 있다.Also, the moving module may move the first magnetic field generator and the second magnetic field generator so that a central axis of the first back yoke and a central axis of the second back yoke are positioned on the same line.
또한, 상기 이동 모듈은 상기 중심축 방향으로 상기 제1백요크와 상기 제2백요크의 사이 거리를 조절할 수 있다.In addition, the moving module may adjust a distance between the first back yoke and the second back yoke in the central axis direction.
또한, 상기 이동 모듈은 지지 축을 갖는 바디; 상기 지지 축에 결합하고, 상기 지지 축을 중심으로 회전가능한 회전 아암; 상기 회전 아암의 선단에 각각 장착되고, 제1축을 중심으로 회전 가능한 한 쌍의 연결 아암; 어느 하나의 상기 연결 아암의 선단에 장착되고, 상기 연결 아암에 대해 상기 제1축과 나란한 제2축을 중심으로 회동가능하며, 상기 제1백요크를 지지하는 제1지지 아암; 및 다른 하나의 상기 연결 아암의 선단에 장착되고, 상기 연결 아암에 대해 상기 제1축과 나란한 제3축을 중심으로 회동가능하며, 상기 제2백요크를 지지하는 제2지지 아암을 포함할 수 있다.In addition, the moving module may include a body having a support shaft; a rotary arm coupled to the support shaft and rotatable about the support shaft; a pair of connecting arms respectively mounted on the front end of the rotary arm and rotatable about a first axis; a first support arm mounted on a front end of one of the connecting arms, rotatable with respect to the connecting arm about a second axis parallel to the first axis, and supporting the first back yoke; and a second support arm mounted on the other end of the connecting arm, rotatable with respect to the connecting arm about a third axis parallel to the first axis, and supporting the second back yoke. .
또한, 상기 회전 아암은, 상기 지지 축과 결합하는 제1영역; 및 상기 제1영역과 상기 연결 아암들을 연결하며, 상기 회전 아암의 길이방향과 나란한 제2축을 중심으로 상기 제1영역에 대해 회전가능한 제2영역을 포함할 수 있다.In addition, the rotary arm may include a first region coupled to the support shaft; and a second region that connects the first region and the connection arms and is rotatable with respect to the first region about a second axis parallel to the longitudinal direction of the rotating arm.
또한, 상기 작동 영역에 형성된 자기장과, 상기 제1코어, 상기 제1백요크, 상기 제1지지 아암, 상기 한 쌍의 지지 아암, 상기 제2지지 아암, 상기 제2백요크, 상기 제2코어에 형성된 자기장은 폐자기 회로를 형성할 수 있다.In addition, the magnetic field formed in the operation region, the first core, the first back yoke, the first support arm, the pair of support arms, the second support arm, the second back yoke, the second core The magnetic field formed in the can form a closed magnetic circuit.
또한, 상기 제1백요크와 상기 제2백요크는 동일한 외경을 가질 수 있다.Also, the first back yoke and the second back yoke may have the same outer diameter.
또한, 상기 제1백요크는 상기 제2백요크보다 큰 외경을 가지고, 상기 제2백요크보다 큰 단면적을 가지며, 상기 제1코어는 상기 제2코어보다 큰 단면적을 가질 수 있다.In addition, the first back yoke may have a larger outer diameter than the second back yoke, a cross-sectional area larger than that of the second back yoke, and the first core may have a larger cross-sectional area than the second core.
또한, 상기 작동영역 내에 위치한 타겟의 위치 정보를 얻고, 상기 제1백요크의 중심축과 상기 제2백요크의 중심축이 상기 타겟과 동일 선상에 위치하도록 상기 이동 모듈을 제어하는 제어부를 더 포함할 수 있다.In addition, it obtains the location information of the target located in the operation area, further comprising a control unit for controlling the moving module so that the central axis of the first back yoke and the central axis of the second back yoke are located on the same line with the target can do.
또한, 상기 제1백요크는 상기 제1코어와 핀 결합하고, 상기 제2백요크는 상기 제2코어와 핀 결합하고, 상기 제1백요크 및 상기 제2백요크는 각각 상기 핀을 중심으로 회동 가능할 수 있다.In addition, the first back yoke is pin-coupled to the first core, the second back yoke is pin-coupled to the second core, and the first back yoke and the second back yoke are each pin-coupled to the pin. may be able to rotate.
본 발명에 자기 구동시스템을 이용한 따른 마이크로 로봇 제어 방법은 영상 촬영부에서 촬영된 영상 정보릍 통해 병변부까지의 마이크로 로봇의 이동 경로를 계획하는 단계; 상기 마이크로 로봇이 위치하는 영역을 사이에 두고 자기 구동 시스템의 제1자기장 생성부와 제2자기장 생성부를 마주 배치시키고, 상기 제1자기장 생성부와 상기 제2자기장 생성부의 사이 공간에 작동 영역을 생성하는 자기 구동 시스템 배치단계; 및 상기 작동 영역이 상기 마이크로 로봇의 이동 경로를 따라 움직이도록 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 원격 시술단계를 포함할 수 있다.According to the present invention, a micro-robot control method using a magnetic drive system includes: planning a movement path of the micro-robot to a lesion area through only image information captured by an image capturing unit; The first magnetic field generating unit and the second magnetic field generating unit of the magnetic drive system are disposed to face each other with the area in which the microrobot is located, and an operation area is created in the space between the first magnetic field generating unit and the second magnetic field generating unit a magnetic drive system arrangement step; and a remote operation step of moving the first magnetic field generator and the second magnetic field generator so that the operation area moves along the movement path of the micro-robot.
또한, 상기 제1자기장 생성부는, 링 형상의 제1백요크; 상기 제1백요크에 결합하는 제1코어; 및 상기 제1코어에 권선되는 제1코일을 포함하고, 상기 제2자기장 생성부는, 링 형상의 제2백요크; 상기 제2백요크에 결합하는 제2코어; 및 상기 제2코어에 권선되는 제2코일을 포함하며, 상기 원격 시술단계는 상기 제1백요크와 상기 제2백요크의 중심축이 상기 마이크로 로봇의 위치와 일치하도록 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시킬 수 있다.In addition, the first magnetic field generating unit, a ring-shaped first back yoke; a first core coupled to the first back yoke; and a first coil wound around the first core, wherein the second magnetic field generator includes: a ring-shaped second back yoke; a second core coupled to the second back yoke; and a second coil wound around the second core, wherein the remote treatment step includes: the first magnetic field generator and the first magnetic field generator so that the central axes of the first and second back yokes coincide with the positions of the micro-robot. The second magnetic field generator may be moved.
또한, 상기 원격 시술단계는, 상기 제1자기장 생성부와 상기 제2자기장 생성부를 지면과 나란한 XY평면상에서 스윙 이동시킬 수 있다.In addition, in the remote treatment step, the first magnetic field generating unit and the second magnetic field generating unit may swing and move on the XY plane parallel to the ground.
또한, 상기 원격 시술단계는, 상기 제1자기장 생성부와 상기 제2자기장 생성부를 지면에 수직한 Z축방향으로 개별적으로 이동시킬 수 있다.In addition, in the remote treatment step, the first magnetic field generating unit and the second magnetic field generating unit may be individually moved in the Z-axis direction perpendicular to the ground.
본 발명에 의하면, 제1자기장 생성부와 제2자기장 생성부가 병변부를 사이에 두고 작동 영역을 생성하고, 이동 모듈에 의해 제1자기장 생성부와 제2자기장 생성부의 사이 거리가 조절되므로, 병변부에 최적화된 작동 영역을 생성할 수 있다.According to the present invention, since the first magnetic field generating unit and the second magnetic field generating unit generate an operating region with the lesion part interposed therebetween, and the distance between the first magnetic field generating unit and the second magnetic field generating unit is adjusted by the moving module, the lesion part is formed. It is possible to create an operating area that is optimized for
또한, 본 발명에 의하면, 이동 모듈의 구동으로 제1자기장 생성부와 제2자기장 생성부가 신체에 밀착되고, 마이크로 로봇의 움직임을 따라 제1자기장 생성부와 제2자기장 생성부가 이동되므로, 마이크로 로봇의 움직임을 추적하며 작동 영역을 이동할 수 있다.In addition, according to the present invention, since the first magnetic field generator and the second magnetic field generator are in close contact with the body by the driving of the moving module, and the first magnetic field generator and the second magnetic field generator are moved according to the movement of the microrobot, the micro robot It can move the operating area by tracking the movement of
또한, 본 발명에 의하면, 마이크로 로봇의 이동 경로를 따라 작동영역이 움직이므로 마이크로 로봇을 실시간으로 연속적으로 제어할 수 있다.In addition, according to the present invention, since the operating area moves along the movement path of the micro-robot, it is possible to continuously control the micro-robot in real time.
도 1은 본 발명의 제1실시 예에 따른 자기 구동시스템을 나타내는 사시도이다.
도 2는 도 1의 자기 구동 시스템을 나타내는 정면도이다.
도 3은 제1자기장 생성부와 제2자기장 생성부의 사이 거리에 따라 생성되는 작동 영역의 크기와 자기장의 세기 분포를 나타내는 도면이다.
도 4 및 도 5는 제1자기장 생성부와 제2자기장 생성부가 마이크로 로봇을 제어하는 과정을 나타내는 도면이다.
도 6 내지 도 8은 제1자기장 생성부와 제2자기장 생성부의 움직임을 나타내는 도면이다.
도 9는 본 발명의 제2실시 예에 따른 자기 구동시스템을 나타내는 정면도이다.
도 10은 본 발명의 제3실시 예에 따른 제1자기장 생성부와 제2자기장 생성부를 나타내는 단면도이다.
도 11은 본 발명의 제4실시 예에 따른 제1자기장 생성부와 제2자기장 생성부를 나타내는 사시도이다.
도 12는 본 발명의 실시 예에 따른 자기 구동시스템을 이용하여 혈관중재시술을 수행하는 과정을 나타내는 순서도이다.1 is a perspective view showing a magnetic drive system according to a first embodiment of the present invention.
FIG. 2 is a front view illustrating the magnetic drive system of FIG. 1 .
3 is a diagram illustrating a size distribution of a magnetic field and a size of an operation region generated according to a distance between a first magnetic field generator and a second magnetic field generator;
4 and 5 are diagrams illustrating a process in which the first magnetic field generator and the second magnetic field generator control the micro-robot.
6 to 8 are diagrams illustrating movements of the first magnetic field generator and the second magnetic field generator.
9 is a front view showing a magnetic drive system according to a second embodiment of the present invention.
10 is a cross-sectional view illustrating a first magnetic field generator and a second magnetic field generator according to a third embodiment of the present invention.
11 is a perspective view illustrating a first magnetic field generator and a second magnetic field generator according to a fourth embodiment of the present invention.
12 is a flowchart illustrating a process of performing a vascular intervention using a magnetic drive system according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content may be thorough and complete, and the spirit of the present invention may be sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In this specification, when a component is referred to as being on another component, it means that it may be directly formed on the other component or a third component may be interposed therebetween. In addition, in the drawings, thicknesses of films and regions are exaggerated for effective description of technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, third, etc. are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Accordingly, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes a complementary embodiment thereof. In addition, in the present specification, 'and/or' is used to mean including at least one of the elements listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다. In the specification, the singular expression includes the plural expression unless the context clearly dictates otherwise. In addition, terms such as "comprise" or "have" are intended to designate that a feature, number, step, element, or a combination thereof described in the specification is present, and one or more other features, numbers, steps, configuration It should not be construed as excluding the possibility of the presence or addition of elements or combinations thereof. Also, in the present specification, the term “connection” is used to include both indirectly connecting a plurality of components and directly connecting a plurality of components.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 제1실시 예에 따른 자기 구동시스템을 나타내는 사시도이고, 도 2는 도 1의 자기 구동 시스템을 나타내는 정면도이다.1 is a perspective view illustrating a magnetic drive system according to a first embodiment of the present invention, and FIG. 2 is a front view illustrating the magnetic drive system of FIG. 1 .
도 1 및 도 2를 참조하면, 자기 구동시스템(10)은 제1자기장 생성부(100), 제2자기장 생성부(200), 이동 모듈(300), 그리고 제어부(미도시)를 포함한다.1 and 2 , the
제1자기장 생성부(100)와 제2자기장 생성부(200)는 작동 영역(T)을 사이에 두고 마주 배치되며, 작동 영역(T)에 자기장을 생성한다.The first
이동 모듈(300)은 제1자기장 생성부(100)와 제2자기장 생성부(200)를 지지 및 이동시킨다. 이동 모듈(300)은 작동 영역(T) 내에 위치하는 타겟을 따라 제1자기장 생성부(100)와 제2자기장 생성부(200)를 이동시킨다.The moving
제어부는 이동 모듈(300)의 움직임을 제어한다.The controller controls the movement of the
제1자기장 생성부(100)는 제1백요크(110), 제1코어(120), 그리고 제1코일(130)을 포함한다.The first
제1백요크(110)는 링 형상을 가지며, 상·하면이 개방된 내측 공간이 형성된다. 제1백요크(110)는 원형 또는 다각형의 링 형상을 가질 수 있다. 제1백요크(110)는 자성 재질로 제공될 수 있다. 제1백요크(110)는 상기 내측 공간의 중심에 위치한 중심축이 지면에 수직하도록 배치될 수 있다.The
제1코어(120)는 제1백요크(110)에 지지된다. 제1코어(120)는 자성 재질로 제공될 수 있다. 제1코어(120)는 원기둥 또는 다각기둥 형상을 가지며, 제1백요크(110)의 중심축(C1)을 향해 소정 각도로 경사지게 배치될 수 있다. 제1코어(120)는 적어도 2개 이상 제공된다. 실시 예에 의하면, 제1코어(120)는 4개가 제공된다. 제1코어(120)는 제1백요크(110)를 둘레를 따라 등간격으로 배치될 수 있다. 제1코어(120)들은 그 끝단이 작동영역을 향할 수 있다.The
제1코일(130)은 제1코어(120)들에 각각 권선된다. 제1코일(130)은 전류 인가로 자기장을 생성한다.The
제2자기장 생성부(200)는 제2백요크(210), 제2코어(220), 그리고 제2코일(230)을 포함한다.The second
제2백요크(210)는 제1백요크(110)와 동일한 형상을 가질 수 있다. 제2백요크(210)는 제1백요크(110)와 소정 거리 이격하여 제1백요크(110)와 마주 배치된다. 제2백요크(210)는 내측 공간에 위치한 중심축(C2)이 제1백요크(110)의 중심축(C1)과 동일 선상에 위치한다.The
제2코어(220)는 제2백요크(210)에 지지된다. 제2코어(220)는 자성 재질로 제공될 수 있다. 제2코어(220)는 제1코어(120)와 동일한 형상을 가지며, 제2백요크(210)의 중심축(C2)을 향해 소정 각도로 경사지게 배치될 수 있다. 제2코어(220)는 제1코어(120)와 동일한 개수로 제공된다. 제2코어(220)는 제2백요크(210)의 둘레를 따라 등간격으로 배치될 수 있다. 제2코어(220)들은 제1코어(120)들과 일대일로 마주 배치될 수 있다.The
제2코일(230)은 제2코어(220)들에 각각 권선된다. 제1코일(230)은 전류 인가로 자기장을 생성한다.The
이동 모듈(300)은 바디(310), 회전 아암(320), 한 쌍의 연결 아암(330, 340), 제1지지 아암(350), 그리고 제2지지 아암(360)을 포함한다.The moving
바디(310)는 이동 모듈(300)의 몸체로서, 내부에 각종 전장부품이 장착된다. 바디(310)의 바닥면에는 복수 개의 바퀴(311)가 장착되어 이동을 용이하게 할 수 있다. 바디(310)의 상면에는 지지 축(312)이 제공된다. 지지 축(312)은 Z축 방향으로 소정 높이로 제공된다.The
회전 아암(320)은 후단이 지지 축(312)에 장착되며, 지지 축(312)을 중심으로 회전 가능하다.The
연결 아암(330, 340)은 한 쌍 제공되며, 각각의 후단이 회전 아암(320)의 선단에 결합한다. 연결 아암(330, 340)은 Z축에 수직한 제1축(X1)을 중심으로 회전 아암(320)에 대해 회전가능하다. 한 쌍의 연결 아암(330, 340)은 개별적으로 회전 아암(320)에 대해 회전가능하다. 연결 아암(330, 340)의 회전 각도에 따라, 연결 아암(330, 340)의 사이각이 변경될 수 있다.A pair of connecting
제1지지 아암(350)은 일 단이 어느 하나의 연결 아암(330)의 선단에 결합한다. 제1지지 아암(350)은 제1축(X1)과 나란한 제2축(X2)을 중심으로 연결 아암(330)에 대해 상대 회전가능하다. 제1지지 아암(350)의 타 단에는 제1백요크(110)가 결합한다. 제1지지 아암(350)의 타단은 제1백요크(110)가 제1축(X1)과 나란한 축(X4)을 중심으로 회동 가능하도록 제1백요크(110)와 결합한다.One end of the
제2지지 아암(360)은 일 단이 다른 하나의 연결 아암(340)의 선단과 결합한다. 제2지지 아암(360)은 제1축(X1)과 나란한 제3축(X3)을 중심으로 연결 아암(320)에 대해 상대 회전가능하다. 제2지지 아암(360)의 타단에는 제2백요크(210)가 결합한다. 제2지지 아암(360)의 타단은 제2백요크(210)가 제1축(X1)과 나란한 축(X5)을 중심으로 회동 가능하도록 제2백요크(210)와 결합한다.The
상술한 이동 모듈(300)의 구동으로, 제1자기장 생성부(100)와 제2자기장 생성부(200)의 이동이 가능하다, 구체적으로, 회전 아암(320)이 Z축을 중심으로 회전하는 경우, 제1자기장 생성부(100)와 제2자기장 생성부(200)는 지면과 나란한 XY평면상에서 횡방향으로 선회할 수 있다. 그리고 제1축(X1)을 중심으로 연결 아암(330, 340)을 회전시키고, 제2축(X2)을 중심으로 제1지지 아암(350)을 회전시키고, 제3축(X3)을 중심으로 제2지지 아암(340)을 회전시킴으로써, 제1 및 제2백요크(110, 210)의 중심 축(C1, C2) 방향으로 제1자기장 생성부(100)와 제2자기장 생성부(200)의 사이 거리를 조절할 수 있다. 이 경우, 제1백요크(110)와 제2백요크(210)는 그 중심축(C1, C2)이 동일 선상에 위치하도록 이동될 수 있다. 제1자기장 생성부(100)와 제2자기장 생성부(200)의 사이 거리에 따라 작동 영역(T)의 크기 및 작동 영역(T) 내의 자기장의 세기가 조절될 수 있다.By driving the above-described moving
도 3은 제1자기장 생성부와 제2자기장 생성부의 사이 거리에 따라 생성되는 작동 영역의 크기와 자기장의 세기 분포를 나타내는 도면이다.3 is a diagram illustrating a size distribution of a magnetic field and a size of an operation region generated according to a distance between a first magnetic field generator and a second magnetic field generator;
도 3의 (A)를 참조하면, 제1자기장 생성부(100)와 제2자기장 생성부(200)의 사이 거리가 멀어지면 작동 영역(T)이 커지고 낮은 세기의 자기장이 생성됨을 알 수 있다. 반면 (B)를 참조하면, 제1자기장 생성부(100)와 제2자기장 생성부(200)의 사이 거리가 가까워지면 작동 영역(T)이 작아지고 높은 세기의 자기장이 생성됨을 알 수 있다Referring to FIG. 3A , it can be seen that when the distance between the first
이동 모듈(300)의 한 쌍의 연결 아암(330, 340), 제1지지 아암(350), 그리고 제2지지 아암(360)은 자성 재질로 제공될 수 있다. 제1코일(130)에 생성된 자기장은 제1백요크(110), 제1지지 아암(350), 연결 아암(330, 340), 그리고 제2지지 아암(360)을 따라 흐른다. 이에 의해 작동 영역(T)에 형성된 자기장, 제1코어(120), 제1백요크(110), 제1지지 아암(350), 연결 아암(330, 340), 제2지지 아암(360), 제2백요크(210), 그리고 제2코어(220)에 형성된 자기장은 폐자기 회로(Closed magnetic circuit)를 형성한다. 폐자기 회로는 작동 영역(T) 내에 생성되는 자기장의 세기를 증가시킬 수 있다.The pair of connecting
제어부는 타겟의 제어에 필요한 최소한의 작동 영역(T)에 자기장이 생성되도록 이동 모듈(300)을 제어할 수 있다. 또한 제어부는 작동 영역(T) 내 타겟의 움직임에 따라 제1자기장 생성부(100)와 제2자기장 생성부(200)가 상기 타겟을 추적하도록 이동 모듈(300)을 제어할 수 있다. 타겟은 신체 내에 위치하는 마이크로 로봇일 수 있다. 마이크로 로봇은 혈관, 담관, 기관, 식도, 요도 등 신체 관상 조직 내에 위치하며, 상기 자기장 생성부(100, 200)에서 생성된 자기장에 의해 관상 조직 내에서 이동할 수 있다. 마이크로 로봇은 제1 및 제2자기장 생성부(100, 200)에 생성된 자기장에 의해 제어 가능한 적어도 하나 이상의 영구자석을 포함할 수 있다.The controller may control the
도 4 및 도 5는 제1자기장 생성부와 제2자기장 생성부가 마이크로 로봇을 제어하는 과정을 나타내는 도면이고, 도 6 내지 도 8은 제1자기장 생성부와 제2자기장 생성부의 움직임을 나타내는 도면이다.4 and 5 are diagrams illustrating a process in which the first magnetic field generator and the second magnetic field generator control the micro-robot, and FIGS. 6 to 8 are views illustrating the movement of the first magnetic field generator and the second magnetic field generator. .
먼저 도 4 및 도 5를 참조하면, 환자(P)가 침대(20)에 누운 상태에서 자기 구동시스템(10)과 C-arm 영상 촬영부(400)가 위치한다. 제1자기장 생성부(100)와 제2자기장 생성부(200)는 C-arm 영상 촬영부(400)의 X선 조사부(410)와 X선 수신부(420) 사이에 위치한다. 제1자기장 생성부(100)는 침대(20) 상부에 위치하고, 제2자기장 생성부(200)는 침대(20) 하부에 위치한다. X선 조사부(410), 제1백요커(110)의 중심축(C1), 제2백요커(210)의 중심축(C2), 그리고 X선 수신부(420)는 일렬 정렬된다. First, referring to FIGS. 4 and 5 , the
X 선 조사부(410)에서 조사된 X선은 제1백요(110)커의 내측 공간과 제2백요커(210)의 내측 공간으로 투과되어 X선 수신부(420)에 전달된다. C-arm 영상 촬영부(400)는 X선 영상을 디스플레이부(500)에 전달한다. X선 영상에는 마이크로 로봇이 표시된다. 그리고 X선 영상에는 백요커(110, 210)와 코어(120. 220)들이 함께 표시될 수 있다.X-rays irradiated from the
도 6을 참조하면, 제어부는 연결 아암(330, 340)과 지지 아암(350, 360)을 회동시켜 제1자기장 생성부(100)와 제2자기장 생성부(200)를 환자 신체(P)에 밀착시킨다. 이에 의해 작동 영역(T)은 환자 신체(P) 내 마이크로 로봇이 위치하는 영역으로 최소화되며, 고밀도의 자기장으로 마이크로 로봇의 이동을 제어할 수 있다.Referring to FIG. 6 , the controller rotates the connecting
도 7을 참조하면, 제어부는 마이크로 로봇의 움직임에 따라 연결 아암(330, 340)과 지지 아암(350, 360)을 회동시켜 제1자기장 생성부(100)와 제2자기장 생성부(200)를 XY평면상에서 직선 이동시킬 수 있다.Referring to FIG. 7 , the control unit rotates the connecting
도 8을 참조하면, 제어부는 마이크로 로봇의 움직임에 따라 회전 아암(320)을 회전시키고, 연결 아암(330, 340)과 지지 아암(350, 360)을 구동시켜 제1자기장 생성부(100)와 제2자기장 생성부(200)가 마이크로 로봇의 움직임을 추적할 수 있다. Referring to FIG. 8 , the control unit rotates the
본 발명에서는 제1자기장 생성부(100)와 제2자기장 생성부(200)가 X선 조사부(410)와 X선 수신부(420) 사이 공간에 위치하고, 제1백요커(110)의 내측 공간과 제2백요커(210)의 내측 공간으로 X선이 투과하므로, C-arm 영상촬영부(400)와의 간섭이 최소화될 수 있다. 이에 의해 제1자기장 생성부(100)와 제2자기장 생성부(200)는 실시간으로 그리고 연속적으로 마이크로 로봇의 움직임을 추적할 수 있다.In the present invention, the first magnetic
도 9는 본 발명의 제2실시 예에 따른 자기 구동시스템을 나타내는 정면도이다.9 is a front view showing a magnetic drive system according to a second embodiment of the present invention.
도 9를 참조하면, 자기 구동 시스템(10)은 회전 아암(320)이 그 길이방향을 축(Y1)으로 회전가능하도록 제공된다. 구체적으로 회전 아암(320)은 제1영역(321)과 제2영역(322)을 포함한다. 제1영역(321)은 지지 축(312)을 중심으로 회전가능하도록 지지 축(312)에 결합한다. 제2영역(322)은 제1영역(321)과 연결 아암(330, 340)을 연결한다. 제2영역(322)은 회전 아암(320)의 길이 방향을 축(Y1)으로 제1영역(321)에 대해 회전 가능하도록 제1영역(321)과 결합하다. 제2영역(322)의 회전 각도에 따라 제1백요크(110)와 제2백요크(210)의 기울기가 달라진다. 제1백요크(110)와 제2백요크(210)의 중심축(C1, C2)이 지면에 수직하게 배치되는 각도를 0°라 할 경우, 제2영역(322)이 90° 회전하면 제1백요크(110)와 제2백요크(210)의 중심축(C1, C2)이 지면과 나란하게 배치되고, 제2영역(321)이 180° 회전하면 제1백요크(110)와 제2백요크(210)의 위치가 반전된다.Referring to FIG. 9 , the
자기 구동 시스템(10)은 마이크로 로봇이 위치하는 신체 부위와 C-arm 영상 촬영부(400)의 배치에 따라 제1백요크(110)와 제2백요크(210)의 배치각도를 다양하게 변경할 수 있다.The
도 10은 본 발명의 제3실시 예에 따른 제1자기장 생성부와 제2자기장 생성부를 나타내는 단면도이다.10 is a cross-sectional view illustrating a first magnetic field generator and a second magnetic field generator according to a third embodiment of the present invention.
도 10을 참조하면, 제1백요크(110)는 제2백요크(210)보다 큰 외경(d1)을 가지고, 제2백요크(210)보다 큰 단면적을 갖는다. 그리고 제1코어(120)는 제2코어(220)보다 큰 단면적을 갖는다. 이에 의해 제1자기장 생성부(100)에서는 제2자기장 생성부(200)보다 높은 세기의 자기장이 생성될 수 있다. 제1자기장 생성부(100)가 환자 신체(P)로부터 멀어지더라도 작동 영역(T)에 충분한 세기의 자기장을 생성할 수 있다. Referring to FIG. 10 , the
또한 침대(20)로 인해 작동 영역(T)에 생성되는 자기장 세기가 감소되는 경우, 제1자기장 생성부(100)가 침대(20) 하부에 제2자기장 생성부(200)가 침대(20) 상부에 위치할 수 있다. 제1자기상 생성부(100)에서 생성된 높은 세기의 자기장이 작동 영역(T)에 효과적으로 전달될 수 있다.In addition, when the magnetic field strength generated in the operation region T is reduced due to the
도 11은 본 발명의 제4실시 예에 따른 제1자기장 생성부와 제2자기장 생성부를 나타내는 사시도이다.11 is a perspective view illustrating a first magnetic field generator and a second magnetic field generator according to a fourth embodiment of the present invention.
도 11을 참조하면, 제1코어(120)는 제1백요크(110)와 핀(111) 결합하고, 제2코어(220)는 제2백요크(210)와 핀(211) 결합한다. 제1코어(120)들과 제2코어(220)들는 각각 핀(111, 211)을 중심으로 회동 가능하다. 제1코어(120)들과 제2코어(220)들의 회동 각도에 따라 작동 영역(T)의 크기 및 자기장의 세기가 조절될 수 있다.Referring to FIG. 11 , the
도 12는 본 발명의 실시 예에 따른 자기 구동시스템을 이용하여 혈관중재시술을 수행하는 과정을 나타내는 순서도이다.12 is a flowchart illustrating a process of performing a vascular intervention using a magnetic drive system according to an embodiment of the present invention.
도 12를 참조하면, 혈관중재시술은 시술계획을 위한 촬영단계(S10), 마그네틱 로봇 삽입단계(S20), 자기 구동시스템 배치단계(S30), 그리고 원격 시술단계(S40)를 포함한다.Referring to FIG. 12 , the vascular intervention includes a photographing step (S10) for planning a procedure, a magnetic robot insertion step (S20), a magnetic drive system arrangement step (S30), and a remote treatment step (S40).
시술계획을 위한 촬영단계(S10)는 영상 촬영부(400)를 통해 단층 또는 3차원 혈관 투시영상을 촬영하고, 마그네틱 로봇이 이동하게 될 병변부까지의 경로를 계획한다. 실시 예에 의하면, 영상 촬영부(400)는 C-arm 영상 촬영부가 사용될 수 있다.In the imaging step (S10) for the procedure planning, a tomographic or 3D vascular fluoroscopy image is taken through the
마그네틱 로봇 삽입단계(S20)는 시스(sheath)를 이용하여 신체 내부에 마그네틱 로봇을 삽입한다.In the magnetic robot insertion step ( S20 ), the magnetic robot is inserted into the body using a sheath.
자기 구동시스템 배치단계(S30)는 병변부의 경로, 마그네틱 로봇의 위치, 영상 촬영부(400)의 배치를 고려하여 도 1 내지 도 11에서 설명한 어느 하나의 자기 구동시스템(10)을 배치한다. 구체적으로, 자기 구동시스템 배치단계(S30)는 마이크로 로봇이 위치하는 영역을 사이에 두고 자기 구동 시스템(10)의 제1자기장 생성부(100)와 제2자기장 생성부(200)를 마주 배치시킨다. 그리고 제1자기장 생성부(100)와 제2자기장 생성부(200)의 사이 공간에 작동 영역(T)을 생성한다.In the magnetic drive system arrangement step ( S30 ), any one of the
원격 시술단계(S40)는 의료진이 별도의 분리된 공간에서 자기 구동시스템(10)을 제어하고, 마이크로 로봇을 통해 시술을 수행한다. 원격 시술단계(S40)는 작동 영역(T)이 마이크로 로봇의 이동 경로를 따라 움직이도록 제1자기장 생성부(100)와 제2자기장 생성부(200)를 이동시킨다. 원격 시술단계(S40)는 제1백요크(110)와 상기 제2백요크(210)의 중심축이 마이크로 로봇의 위치와 일치하도록 제1자기장 생성부(100)와 제2자기장 생성부(200)를 이동시킬 수 있다. 원격 시술단계(S40)는 제1자기장 생성부(100)와 제2자기장 생성부(200)를 지면과 나란한 XY평면상에서 스윙 이동시킬 수 있다. 원격 시술단계(S40)는 제1자기장 생성부(100)와 제2자기장 생성부(200)를 지면에 수직한 Z축방향으로 개별적으로 이동시킬 수 있다.In the remote treatment step (S40), the medical staff controls the
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although the present invention has been described in detail using preferred embodiments, the scope of the present invention is not limited to specific embodiments and should be construed according to the appended claims. In addition, those skilled in the art will understand that many modifications and variations are possible without departing from the scope of the present invention.
10: 자기 구동시스템
100: 제1자기장 생성부
110: 제1백요크
120: 제1코어
130: 제1코일
200: 제2자기장 생성부
210: 제2백요크
220: 제2코어
230: 제2코일
300: 이동 모듈
310: 바디
320: 회전 아암
330, 340: 연결 아암
350: 제1지지 아암
360: 제2지지 아암10: magnetic drive system
100: first magnetic field generator
110: first back yoke
120: first core
130: first coil
200: second magnetic field generator
210: second back yoke
220: second core
230: second coil
300: move module
310: body
320: rotating arm
330, 340: connecting arm
350: first support arm
360: second support arm
Claims (15)
작동영역을 사이에 두고 상기 제1자기장 생성부와 마주 배치되는 제2자기장 생성부; 및
상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 이동 모듈을 포함하고,
상기 이동 모듈은
지지 축을 갖는 바디;
상기 지지 축에 결합하고, 상기 지지 축을 중심으로 회전가능한 회전 아암;
상기 회전 아암의 선단에 각각 장착되고, 제1축을 중심으로 회전 가능한 한 쌍의 연결 아암;
어느 하나의 상기 연결 아암의 선단에 장착되고, 상기 연결 아암에 대해 상기 제1축과 나란한 제2축을 중심으로 회동가능하며, 상기 제1자기장 생성부를 지지하는 제1지지 아암; 및
다른 하나의 상기 연결 아암의 선단에 장착되고, 상기 연결 아암에 대해 상기 제1축과 나란한 제3축을 중심으로 회동가능하며, 상기 제2자기장 생성부를 지지하는 제2지지 아암을 포함하는 자기 구동시스템.a first magnetic field generator;
a second magnetic field generator disposed to face the first magnetic field generator with an operation region interposed therebetween; and
and a moving module for moving the first magnetic field generator and the second magnetic field generator,
The mobile module
a body having a support shaft;
a rotary arm coupled to the support shaft and rotatable about the support shaft;
a pair of connecting arms respectively mounted on the front end of the rotary arm and rotatable about a first axis;
a first support arm mounted on a distal end of one of the connecting arms, rotatable with respect to the connecting arm about a second axis parallel to the first axis, and supporting the first magnetic field generator; and
A magnetic drive system including a second support arm mounted on the tip of the other connecting arm, rotatable with respect to the connecting arm about a third axis parallel to the first axis, and supporting the second magnetic field generator; .
상기 제1자기장 생성부는,
링 형상의 제1백요크;
상기 제1백요크에 결합하는 제1코어; 및
상기 제1코어에 권선되는 제1코일을 포함하고,
상기 제2자기장 생성부는,
링 형상의 제2백요크;
상기 제2백요크에 결합하는 제2코어; 및
상기 제2코어에 권선되는 제2코일을 포함하는 자기 구동시스템.According to claim 1,
The first magnetic field generator,
a ring-shaped first back yoke;
a first core coupled to the first back yoke; and
a first coil wound around the first core;
The second magnetic field generator,
a ring-shaped second back yoke;
a second core coupled to the second back yoke; and
and a second coil wound around the second core.
상기 이동 모듈은
상기 제1백요크의 중심축과 상기 제2백요크의 중심축이 동일 선상에 위치하도록 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 자기 구동 시스템.3. The method of claim 2,
The mobile module
A magnetic driving system for moving the first magnetic field generator and the second magnetic field generator so that a central axis of the first back yoke and a central axis of the second back yoke are positioned on the same line.
상기 이동 모듈은
상기 중심축 방향으로 상기 제1백요크와 상기 제2백요크의 사이 거리를 조절하는 자기 구동시스템.3. The method of claim 2,
The mobile module
A magnetic drive system for adjusting a distance between the first back yoke and the second back yoke in the central axis direction.
상기 회전 아암은,
상기 지지 축과 결합하는 제1영역; 및
상기 제1영역과 상기 연결 아암들을 연결하며, 상기 회전 아암의 길이방향과 나란한 제2축을 중심으로 상기 제1영역에 대해 회전가능한 제2영역을 포함하는 자기 구동시스템.The method of claim 1,
The rotary arm is
a first region coupled to the support shaft; and
and a second region connecting the first region and the connecting arms and rotatable with respect to the first region about a second axis parallel to a longitudinal direction of the rotating arm.
상기 작동 영역에 형성된 자기장과, 상기 제1코어, 상기 제1백요크, 상기 제1지지 아암, 상기 한 쌍의 지지 아암, 상기 제2지지 아암, 상기 제2백요크, 상기 제2코어에 형성된 자기장은 폐자기 회로를 형성하는 자기 구동시스템.3. The method of claim 2,
A magnetic field formed in the working region; A magnetic drive system in which the magnetic field forms a closed magnetic circuit.
상기 제1백요크와 상기 제2백요크는 동일한 외경을 갖는 자기 구동시스템.3. The method of claim 2,
The first back yoke and the second back yoke have the same outer diameter.
상기 제1백요크는 상기 제2백요크보다 큰 외경을 가지고, 상기 제2백요크보다 큰 단면적을 가지며,
상기 제1코어는 상기 제2코어보다 큰 단면적을 갖는 자기 구동시스템.3. The method of claim 2,
The first back yoke has an outer diameter greater than that of the second back yoke, and has a cross-sectional area greater than that of the second back yoke,
The first core has a larger cross-sectional area than the second core.
상기 작동영역 내에 위치한 타겟의 위치 정보를 얻고, 상기 제1백요크의 중심축과 상기 제2백요크의 중심축이 상기 타겟과 동일 선상에 위치하도록 상기 이동 모듈을 제어하는 제어부를 더 포함하는 자기 구동시스템.3. The method of claim 2,
Magnetic field further comprising a control unit for obtaining position information of a target located in the operation area and controlling the moving module so that a central axis of the first back yoke and a central axis of the second back yoke are located on the same line with the target drive system.
상기 제1백요크는 상기 제1코어와 핀 결합하고,
상기 제2백요크는 상기 제2코어와 핀 결합하고,
상기 제1백요크 및 상기 제2백요크는 각각 상기 핀을 중심으로 회동가능한 자기 구동시스템.3. The method of claim 2,
The first back yoke is pin-coupled to the first core,
The second back yoke is pin-coupled to the second core,
The first back yoke and the second back yoke are each rotatable about the pin.
상기 마이크로 로봇이 위치하는 영역을 사이에 두고 자기 구동 시스템의 제1자기장 생성부와 제2자기장 생성부를 마주 배치시키고, 상기 제1자기장 생성부와 상기 제2자기장 생성부의 사이 공간에 작동 영역을 생성하는 자기 구동 시스템 배치단계; 및
이동 모듈을 제어하여 상기 작동 영역이 상기 마이크로 로봇의 이동 경로를 따라 움직이도록 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 단계를 포함하며.
상기 이동 모듈은
지지 축을 갖는 바디;
상기 지지 축에 결합하고, 상기 지지 축을 중심으로 회전가능한 회전 아암;
상기 회전 아암의 선단에 각각 장착되고, 제1축을 중심으로 회전 가능한 한 쌍의 연결 아암;
어느 하나의 상기 연결 아암의 선단에 장착되고, 상기 연결 아암에 대해 상기 제1축과 나란한 제2축을 중심으로 회동가능하며, 상기 제1자기장 생성부를 지지하는 제1지지 아암; 및
다른 하나의 상기 연결 아암의 선단에 장착되고, 상기 연결 아암에 대해 상기 제1축과 나란한 제3축을 중심으로 회동가능하며, 상기 제2자기장 생성부를 지지하는 제2지지 아암을 포함하는 자기 구동시스템을 이용한 마이크로 로봇 제어 방법.planning a movement path of the micro-robot to the lesion area through only the image information captured by the image capturing unit;
The first magnetic field generating unit and the second magnetic field generating unit of the magnetic drive system are disposed facing each other with the area in which the microrobot is located, and an operating area is created in a space between the first magnetic field generating unit and the second magnetic field generating unit a magnetic drive system arrangement step; and
and controlling a movement module to move the first magnetic field generator and the second magnetic field generator so that the operation area moves along a movement path of the micro-robot.
The mobile module
a body having a support shaft;
a rotary arm coupled to the support shaft and rotatable about the support shaft;
a pair of connecting arms respectively mounted on the front end of the rotary arm and rotatable about a first axis;
a first support arm mounted on a distal end of one of the connecting arms, rotatable with respect to the connecting arm about a second axis parallel to the first axis, and supporting the first magnetic field generator; and
A magnetic drive system including a second support arm mounted on the tip of the other connecting arm, rotatable with respect to the connecting arm about a third axis parallel to the first axis, and supporting the second magnetic field generator; A micro-robot control method using
상기 제1자기장 생성부는,
링 형상의 제1백요크;
상기 제1백요크에 결합하는 제1코어; 및
상기 제1코어에 권선되는 제1코일을 포함하고,
상기 제2자기장 생성부는,
링 형상의 제2백요크;
상기 제2백요크에 결합하는 제2코어; 및
상기 제2코어에 권선되는 제2코일을 포함하며,
상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 단계는,
상기 제1백요크와 상기 제2백요크의 중심축이 상기 마이크로 로봇의 위치와 일치하도록 상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 자기 구동시스템을 이용한 마이크로 로봇 제어 방법.
13. The method of claim 12,
The first magnetic field generator,
a ring-shaped first back yoke;
a first core coupled to the first back yoke; and
a first coil wound around the first core;
The second magnetic field generator,
a ring-shaped second back yoke;
a second core coupled to the second back yoke; and
a second coil wound around the second core;
The step of moving the first magnetic field generator and the second magnetic field generator comprises:
A microrobot control method using a magnetic drive system for moving the first magnetic field generator and the second magnetic field generator so that the central axes of the first back yoke and the second back yoke coincide with the positions of the micro robot.
상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 단계는,
상기 제1자기장 생성부와 상기 제2자기장 생성부를 지면과 나란한 XY평면상에서 스윙 이동시키는 자기 구동시스템을 이용한 마이크로 로봇 제어 방법.13. The method of claim 12,
The step of moving the first magnetic field generator and the second magnetic field generator comprises:
A microrobot control method using a magnetic drive system for swinging and moving the first magnetic field generator and the second magnetic field generator on an XY plane parallel to the ground.
상기 제1자기장 생성부와 상기 제2자기장 생성부를 이동시키는 단계는,
상기 제1자기장 생성부와 상기 제2자기장 생성부를 지면에 수직한 Z축방향으로 개별적으로 이동시키는 자기 구동시스템을 이용한 마이크로 로봇 제어 방법.13. The method of claim 12,
The step of moving the first magnetic field generator and the second magnetic field generator comprises:
A microrobot control method using a magnetic drive system for individually moving the first magnetic field generator and the second magnetic field generator in a Z-axis direction perpendicular to the ground.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190090842A KR102289065B1 (en) | 2019-07-26 | 2019-07-26 | Magnetic navigation system and method for controlling micro robot using the system |
PCT/KR2020/009482 WO2021020784A1 (en) | 2019-07-26 | 2020-07-17 | Magnetic drive system and microrobot control method using same |
EP20848499.8A EP4005519A4 (en) | 2019-07-26 | 2020-07-17 | Magnetic drive system and microrobot control method using same |
US17/629,953 US20220249186A1 (en) | 2019-07-26 | 2020-07-17 | Magnetic drive system and microrobot control method using same |
CN202080053663.3A CN114222651B (en) | 2019-07-26 | 2020-07-17 | Magnetic force driving system and micro-robot control method using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190090842A KR102289065B1 (en) | 2019-07-26 | 2019-07-26 | Magnetic navigation system and method for controlling micro robot using the system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210013478A KR20210013478A (en) | 2021-02-04 |
KR102289065B1 true KR102289065B1 (en) | 2021-08-13 |
Family
ID=74558633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190090842A KR102289065B1 (en) | 2019-07-26 | 2019-07-26 | Magnetic navigation system and method for controlling micro robot using the system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102289065B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102436113B1 (en) | 2021-11-02 | 2022-08-25 | 주식회사 아임시스템 | Magnetic field generator for precision procedure |
WO2023043279A1 (en) * | 2021-09-16 | 2023-03-23 | 한양대학교 산학협력단 | Magnetic field generation module |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102697834B1 (en) * | 2021-07-02 | 2024-08-21 | 한양대학교 산학협력단 | Magnetic field generating module and magnetic field generating apparatus including the module |
KR102665851B1 (en) * | 2021-10-22 | 2024-05-10 | 한양대학교 산학협력단 | Apparatus for controlling magnetic field |
WO2023153696A1 (en) * | 2022-02-09 | 2023-08-17 | 재단법인 한국마이크로의료로봇연구원 | Active tumor embolization device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070016006A1 (en) | 2005-05-27 | 2007-01-18 | Yehoshua Shachar | Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging |
CN203244366U (en) | 2013-03-29 | 2013-10-23 | 哈尔滨工业大学深圳研究生院 | Magnetic control active type capsule endoscope motion control system based on flexible robot |
KR101647020B1 (en) | 2015-03-12 | 2016-08-11 | 전남대학교산학협력단 | Electromagnetic based actuation device with adjustable movement of coil-module |
KR101740553B1 (en) * | 2016-03-14 | 2017-05-26 | 재단법인대구경북과학기술원 | Magnetic field precise control system with x-ray apparatus |
JP6351756B2 (en) | 2014-12-18 | 2018-07-04 | 株式会社パイオラックス | Capsule endoscopy device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100540758B1 (en) * | 2003-06-17 | 2006-01-10 | 한국과학기술연구원 | Capsule type robot system |
KR101983789B1 (en) * | 2017-05-26 | 2019-09-03 | 재단법인대구경북과학기술원 | System for controlling microrobot combined with vision system |
-
2019
- 2019-07-26 KR KR1020190090842A patent/KR102289065B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070016006A1 (en) | 2005-05-27 | 2007-01-18 | Yehoshua Shachar | Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging |
CN203244366U (en) | 2013-03-29 | 2013-10-23 | 哈尔滨工业大学深圳研究生院 | Magnetic control active type capsule endoscope motion control system based on flexible robot |
JP6351756B2 (en) | 2014-12-18 | 2018-07-04 | 株式会社パイオラックス | Capsule endoscopy device |
KR101647020B1 (en) | 2015-03-12 | 2016-08-11 | 전남대학교산학협력단 | Electromagnetic based actuation device with adjustable movement of coil-module |
KR101740553B1 (en) * | 2016-03-14 | 2017-05-26 | 재단법인대구경북과학기술원 | Magnetic field precise control system with x-ray apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023043279A1 (en) * | 2021-09-16 | 2023-03-23 | 한양대학교 산학협력단 | Magnetic field generation module |
KR102436113B1 (en) | 2021-11-02 | 2022-08-25 | 주식회사 아임시스템 | Magnetic field generator for precision procedure |
Also Published As
Publication number | Publication date |
---|---|
KR20210013478A (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102289065B1 (en) | Magnetic navigation system and method for controlling micro robot using the system | |
KR102194582B1 (en) | Controllable surgical robot system | |
US6630879B1 (en) | Efficient magnet system for magnetically-assisted surgery | |
Yang et al. | Deltamag: An electromagnetic manipulation system with parallel mobile coils | |
KR102274982B1 (en) | A Guide-Wired Helical Microrobot for Mechanical Thrombectomy | |
CN114222651B (en) | Magnetic force driving system and micro-robot control method using same | |
JP6646766B2 (en) | End effector with line laser | |
KR101983789B1 (en) | System for controlling microrobot combined with vision system | |
JP7232050B2 (en) | Image-guided robotic system for tumor aspiration | |
WO2009145405A1 (en) | Microrobot for intravascular therapy and microrobot system using it | |
KR101389439B1 (en) | Micro-robot system | |
JP2005161052A (en) | Device for orienting magnetic element in patient's body | |
JP6445593B2 (en) | Control of X-ray system operation and image acquisition for 3D / 4D aligned rendering of the targeted anatomy | |
KR102314636B1 (en) | Electromagnetic drive system for micro robot | |
KR102436113B1 (en) | Magnetic field generator for precision procedure | |
JP6295463B2 (en) | Collimator device and radiation therapy system using the same | |
KR20220072075A (en) | Magnetic field therapy apparatus | |
KR102665851B1 (en) | Apparatus for controlling magnetic field | |
US20220395335A1 (en) | Endoscopic magnetic guidance system and methods | |
WO2022264013A1 (en) | Endoscopic magnetic guidance system and methods | |
Guo et al. | Surgical Robotics | |
CN118871053A (en) | Magnetic micro robot | |
KR20220004420A (en) | Magnetic navigation system | |
KR20200069430A (en) | Magnetic-acoustic system for steering micro-robot and method of steering micro-robot using the same | |
Vigaru | IMAGE-GUIDED ROBOTIC UROLOGIC INTERVENTIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |