KR102286833B1 - PHEV charging system and its control method - Google Patents

PHEV charging system and its control method Download PDF

Info

Publication number
KR102286833B1
KR102286833B1 KR1020150046629A KR20150046629A KR102286833B1 KR 102286833 B1 KR102286833 B1 KR 102286833B1 KR 1020150046629 A KR1020150046629 A KR 1020150046629A KR 20150046629 A KR20150046629 A KR 20150046629A KR 102286833 B1 KR102286833 B1 KR 102286833B1
Authority
KR
South Korea
Prior art keywords
charging
ldc
auxiliary battery
battery
high voltage
Prior art date
Application number
KR1020150046629A
Other languages
Korean (ko)
Other versions
KR20160118472A (en
Inventor
유상훈
류창렬
이장효
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020150046629A priority Critical patent/KR102286833B1/en
Publication of KR20160118472A publication Critical patent/KR20160118472A/en
Application granted granted Critical
Publication of KR102286833B1 publication Critical patent/KR102286833B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 PHEV의 고전압배터리 충전에 관한 것으로, EVSE의 충전케이블에 연결되어 전원을 공급받는 OBC와; 상기 OBC로부터 충전이 이루어지는 고전압배터리와; 상기 OBC와 고전압배터리 사이에 구비된 J/B에 연결되어 보조배터리를 충전하는 LDC와; 상기 LDC에 의해 충전이 이루어지는 보조배터리를 포함하며, 상기 보조배터리와 LDC 사이에 구비되며, 보조배터리(250)의 SOC 모니터링 하여 LDC(240)의 출력을 가변시키는 IBS를 더 포함하는 PHEV의 충전 시스템을 제공한다.
또한, EVSE와 연결된 OBC를 통해 PHEV의 고전압배터리에 완속 충전을 시작하는 단계와; 상기 고전압배터리의 충전시작과 동시에, LDC의 고출력으로 보조배터리의 충전을 제어하는 단계와; IBS를 통해 상기 보조배터리의 SOC를 모니터링 하는 단계와; 상기 IBS의 신호에 따라 상기 보조배터리의 SOC의 충분 상태를 판단하여 LDC의 저출력으로 보조배터리의 충전을 제어하는 단계와; 상기 고전압배터리의 SOC가 충분하면, EVSE와 OBC의 연결을 해제하여 충전을 종료하는 단계를 포함하는 PHEV의 충전 제어방법을 제공한다.
상기한 구성의 본 발명을 제공함으로써, PHEV 충전 중 보조배터리를 저출력으로 충전할 수 있어 전장부하의 전력 손실을 최소화할 수 있으며, 이에 따라 상대적으로 고전압배터리의 충전효율을 극대화함에 따라 전비성능이 향상되는 것은 물론, 소비자로 하여금 차량 구매욕구를 충족하는 효과를 기대할 수 있다.
The present invention relates to charging a high voltage battery of a PHEV, comprising: an OBC connected to a charging cable of the EVSE to receive power; a high voltage battery charged from the OBC; an LDC connected to the J/B provided between the OBC and the high voltage battery to charge the auxiliary battery; PHEV charging system including an auxiliary battery charged by the LDC, provided between the auxiliary battery and the LDC, and further comprising an IBS for monitoring the SOC of the auxiliary battery 250 to vary the output of the LDC 240 provides
In addition, starting the slow charging of the high voltage battery of the PHEV through the OBC connected to the EVSE; simultaneously with the start of charging of the high voltage battery, controlling the charging of the auxiliary battery with the high output of the LDC; monitoring the SOC of the auxiliary battery through the IBS; controlling the charging of the auxiliary battery with the low output of the LDC by determining the sufficient state of the SOC of the auxiliary battery according to the signal of the IBS; When the SOC of the high voltage battery is sufficient, the charging control method of the PHEV includes disconnecting the EVSE and the OBC to terminate charging.
By providing the present invention having the above configuration, it is possible to charge the auxiliary battery with a low output during charging of the PHEV, thereby minimizing the power loss of the electric load, and thus, the fuel efficiency is improved by maximizing the charging efficiency of the relatively high voltage battery. Of course, it is possible to expect the effect of satisfying consumers' desire to purchase a vehicle.

Description

PHEV의 충전 시스템 및 그 제어방법{PHEV charging system and its control method}PHEV charging system and its control method {PHEV charging system and its control method}

본 발명은 PHEV의 고전압배터리 충전에 관한 것으로, 보다 구체적으로는 PHEV의 충전 중 전장부하의 전력 손실을 최소화하여 고전압배터리 충전효율을 최적화하는 PHEV의 충전 시스템 및 그 제어방법에 관한 것이다.The present invention relates to charging a high voltage battery of a PHEV, and more particularly, to a charging system for a PHEV that optimizes charging efficiency of a high voltage battery by minimizing power loss in an electric load during charging of the PHEV, and a method for controlling the same.

일반적으로, 차량의 전기장치로는 엔진전기장치(시동장치, 점화장치, 충전장치)와 등화장치가 구성되어 있으며, 최근에는 차량이 보다 전자제어화 됨에 따라 샤시전기장치를 포함하여 대부분의 시스템들이 전기전자화 되고 있는 추세이다.In general, the electric device of a vehicle consists of an engine electric device (starter, ignition device, charging device) and a light device. There is a trend towards electrification.

이때, 차량에 설치되는 램프, 오디오, 히터, 에어컨 등의 각종 전장품들의 경우 차량의 정지 시에는 배터리로부터 전원을 공급받고, 주행 시에는 발전기로부터 전원을 공급받도록 되어 있으며, 통상의 전원 전압으로는 14V계 전원 시스템의 발전용량이 사용되고 있다.At this time, in the case of various electric components such as lamps, audio, heaters, and air conditioners installed in the vehicle, power is supplied from the battery when the vehicle is stopped, and power is supplied from the generator when driving, and the normal power voltage is 14V. The power generation capacity of the system power system is used.

한편, 최근에 정보기술산업의 발달과 더불어 차량의 편의성 증대를 목적으로 하는 다양한 신기술들이 차량에 접목되고 있으며, 앞으로도 현 차량 시스템을 최대한 이용할 수 있는 신기술의 개발이 계속될 전망이다.Meanwhile, along with the recent development of the information technology industry, various new technologies for the purpose of increasing vehicle convenience are being grafted onto vehicles, and it is expected that the development of new technologies that can utilize the current vehicle system to the maximum will continue.

이에 따라, 하이브리드차량(HEV), 연료전지차량(EV), 플러그인하이브리드차량(PHEV) 등의 환경차량(전기자동차)은 12V 배터리(보조배터리)의 충전 및 12V 전장부하에 전력을 공급하는 LDC(low DC-DC converter, 저전압 전력 변환기)가 설치되는 것이 보편적이다.Accordingly, environmental vehicles (electric vehicles) such as hybrid vehicles (HEVs), fuel cell vehicles (EVs), and plug-in hybrid vehicles (PHEVs) charge the 12V battery (auxiliary battery) and LDC ( It is common for low DC-DC converters, low voltage power converters) to be installed.

즉, 기존 가솔린차량의 발전기 역할을 수행하는 LDC는 고전압배터리(메인배터리)의 고전압을 감압시켜 12V 전압을 출력 공급하며, 고전압배터리 혹은 구동모터에 의한 회생에너지의 고전압(DC)을 12V의 저전압(DC)로 변환시켜 보조배터리를 충전시키거나 전장부하에 공급한다.In other words, the LDC, which plays the role of a generator of an existing gasoline vehicle, reduces the high voltage of the high voltage battery (main battery) and outputs 12V voltage, and converts the high voltage (DC) of the regenerative energy by the high voltage battery or the driving motor to a low voltage of 12V ( DC) to charge the auxiliary battery or supply it to the electric load.

상기한 차량 중 PHEV는 고전압배터리의 충전 용량을 늘려 HEV에 비해 장거리 EV모드 주행이 가능하다.Among the above vehicles, the PHEV increases the charging capacity of the high-voltage battery to enable long-distance EV mode driving compared to the HEV.

즉, 가솔린 차량에서 연료를 주입하고, 주행거리와 연료량으로 연비를 계산하듯 PHEV는 고전압배터리를 충전하여 주행거리와 전기에너지로 전비(소모전기당 주행거리)를 계산한다.(연비 : mpg, 전비 : mpge)In other words, just as a gasoline vehicle injects fuel and calculates fuel efficiency by mileage and fuel quantity, PHEV charges a high-voltage battery and calculates fuel efficiency (mileage per electricity consumption) using mileage and electric energy. mpge)

상기한 전비에는 고전압배터리 충전효율이 반영되는데, 이 고전압배터리 충전효율이 1% 개선되면 이에 상응하여 PHEV의 전비 또한 1% 향상 된다.The high-voltage battery charging efficiency is reflected in the above-described fuel efficiency. If the high-voltage battery charging efficiency is improved by 1%, the fuel efficiency of the PHEV is also improved by 1% correspondingly.

따라서, 고전압배터리 충전효율의 최적화는 PHEV 전비 개발에 있어서 매우 중요한 요소이며, 고전압배터리 충전효율 개선을 위해 H/W 및 S/W 부문에서 다양한 연구가 진행 중이다.Therefore, optimization of high-voltage battery charging efficiency is a very important factor in the development of PHEV fuel efficiency, and various studies are underway in H/W and S/W fields to improve high-voltage battery charging efficiency.

그러나, 현재 PHEV의 고전압배터리 충전 중 LDC 전압을 14.7V의 고정전압으로 보조배터리 SOC(state of charge, 충전 상태)나 차량 환경에 상관없이 출력 전압 및 전류가 일정하게 유지되므로 불필요하게 에너지를 더 소비하는 문제점이 있어 이를 제어로 개선할 필요가 있다.However, the LDC voltage is set to 14.7V during charging of the current PHEV high-voltage battery, and the output voltage and current are kept constant regardless of the auxiliary battery's state of charge (SOC) or vehicle environment, so it consumes more energy unnecessarily. There is a problem that needs to be improved through control.

즉, 도 1에 도시된 바와 같이, 보조배터리 SOC가 92%로 충분히 충전된 상태임에도 9800sec동안 보조배터리 충전을 위해 1.3A 수준의 전류가 소모되었으며, LDC 출력 또한 370w 수준으로 과 소모되는 문제점이 있다.That is, as shown in FIG. 1, even though the auxiliary battery SOC is sufficiently charged at 92%, a current of 1.3A is consumed for charging the auxiliary battery for 9800 sec, and the LDC output is also excessively consumed at the level of 370w. .

KRUS 2014-00843692014-0084369 AA KRUS 2013-00819732013-0081973 AA KRUS 2012-01063792012-0106379 AA

상기와 같은 문제점을 해결하기 위하여 본 발명은 PHEV의 충전 중 IBS(Intelligent Battery Sensor, 지능형 배터리 센서)를 활용하여 보조배터리의 SOC를 토대로 LDC의 출력을 가변시켜 전장부하의 전력 손실을 최소화함에 따라 상대적으로 고전압배터리의 충전효율을 극대화할 수 있는 PHEV의 충전 시스템 및 그 제어방법을 제공하는데 목적이 있다.In order to solve the above problems, the present invention utilizes IBS (Intelligent Battery Sensor) during charging of the PHEV to vary the output of the LDC based on the SOC of the auxiliary battery to minimize the power loss of the electric load. An object of the present invention is to provide a PHEV charging system and a control method therefor that can maximize the charging efficiency of a high voltage battery.

상기한 목적을 달성하기 위하여 본 발명은 EVSE(Electric Vehicle Supply Equipment, 전기 자동차 전원공급장치)의 충전케이블에 연결되어 전원을 공급받는 OBC(On borad charger, 차량 내장형 충전기)와; 상기 OBC로부터 충전이 이루어지는 고전압배터리와; 상기 OBC와 고전압배터리 사이에 구비된 J/B(Junction Box, 전기 배선함)에 연결되어 보조배터리를 충전하는 LDC와; 상기 LDC에 의해 충전이 이루어지는 보조배터리를 포함하며, 상기 보조배터리와 LDC 사이에 구비되며, 보조배터리의 SOC 모니터링 하여 LDC의 출력을 가변시키는 IBS를 더 포함하는 PHEV의 충전 시스템을 제공한다.In order to achieve the above object, the present invention provides an on borad charger (OBC) connected to a charging cable of an EVSE (Electric Vehicle Supply Equipment, electric vehicle power supply) to receive power; a high voltage battery charged from the OBC; an LDC connected to a J/B (Junction Box, an electric junction box) provided between the OBC and the high voltage battery to charge the auxiliary battery; It provides a charging system for a PHEV, including an auxiliary battery charged by the LDC, provided between the auxiliary battery and the LDC, and further comprising an IBS for monitoring the SOC of the auxiliary battery to vary the output of the LDC.

또한, EVSE와 연결된 OBC를 통해 PHEV의 고전압배터리에 완속 충전을 시작하는 단계와; 상기 고전압배터리의 충전시작과 동시에, LDC의 고출력으로 보조배터리의 충전을 제어하는 단계와; IBS를 통해 상기 보조배터리의 SOC를 모니터링 하는 단계와; 상기 IBS의 신호에 따라 상기 보조배터리의 SOC의 충분 상태를 판단하여 LDC의 저출력으로 보조배터리의 충전을 제어하는 단계와; 상기 고전압배터리의 SOC가 충분하면, EVSE와 OBC의 연결을 해제하여 충전을 종료하는 단계를 포함하는 PHEV의 충전 제어방법을 제공한다.In addition, starting the slow charging of the high voltage battery of the PHEV through the OBC connected to the EVSE; simultaneously with the start of charging of the high voltage battery, controlling the charging of the auxiliary battery with the high output of the LDC; monitoring the SOC of the auxiliary battery through the IBS; controlling the charging of the auxiliary battery with the low output of the LDC by determining the sufficient state of the SOC of the auxiliary battery according to the signal of the IBS; When the SOC of the high voltage battery is sufficient, the charging control method of the PHEV includes disconnecting the EVSE and the OBC to terminate charging.

상기와 같이 구성된 본 발명을 제공함으로써, PHEV 충전 중 보조배터리를 저출력으로 충전할 수 있어 전장부하의 전력 손실을 최소화할 수 있으며, 이에 따라 상대적으로 고전압배터리의 충전효율을 극대화함에 따라 전비성능이 향상되는 것은 물론, 소비자로 하여금 차량 구매욕구를 충족하는 효과를 기대할 수 있다.By providing the present invention configured as described above, it is possible to charge the auxiliary battery with low output during charging of the PHEV, thereby minimizing the power loss of the electric load, and thus, the fuel efficiency is improved by maximizing the charging efficiency of the relatively high voltage battery. Of course, it is possible to expect the effect of satisfying consumers' desire to purchase a vehicle.

도 1은 종래 PHEV에서 고전압배터리 충전 중 LDC 출력 전압 및 전류 소모를 나타내는 그래프.
도 2는 본 발명에 따라 LDC 가변전압제어를 통해 고전압배터리 충전 개략도.
도 3은 본 발명에 따른 PHEV의 충전 시스템 및 그 제어방법을 통해 고전압배터리 충전 중 LDC 출력 전압 및 전류 소모를 나타내는 그래프.
1 is a graph showing an LDC output voltage and current consumption during charging of a high voltage battery in a conventional PHEV.
2 is a schematic diagram of charging a high voltage battery through LDC variable voltage control according to the present invention.
3 is a graph showing the LDC output voltage and current consumption during charging of a high voltage battery through the charging system of the PHEV and the control method thereof according to the present invention.

이하, 본 발명에 대하여 동일한 기술분야에 속하는 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부도면을 참조하여 바람직한 실시예를 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the same technical field can easily carry out the present invention.

본 발명은 고전압배터리(220)의 충전 중 보조배터리(250)의 충전 상태 및 온도 조건 등의 SOC에 따라 LDC(240)의 출력을 가변제어 하여 전장부하 손실을 최소화하고, 고전압배터리(220)의 충전효율을 증대하기 위한 것이다.The present invention variably controls the output of the LDC 240 according to the SOC such as the charging state and temperature conditions of the auxiliary battery 250 during charging of the high voltage battery 220 to minimize the electric load loss, and This is to increase charging efficiency.

도 2의 개략도와 같이, 본 발명에 따른 PHEV의 충전 시스템은 EVSE(100)의 충전케이블(110)에 연결되어 전원을 공급받는 OBC(210)와, 상기 OBC(210)로부터 충전이 이루어지는 고전압배터리(220)가 PHEV(200)의 내에 구비된다.As shown in the schematic diagram of FIG. 2 , the charging system of the PHEV according to the present invention includes an OBC 210 connected to the charging cable 110 of the EVSE 100 to receive power, and a high voltage battery charged from the OBC 210 . 220 is provided in the PHEV 200 .

여기서, 상기 OBC(210)와 고전압배터리(220) 사이에는 J/B(230)가 구비되고, 이 J/B(230)를 통해 LDC(240)로 일부 전원이 공급되며, 이 LDC(240)를 통해 고전압DC에서 저전압DC으로 변환되어 보조배터리(250)를 충전하는 구조를 포함한다.Here, a J/B 230 is provided between the OBC 210 and the high voltage battery 220 , and some power is supplied to the LDC 240 through the J/B 230 , and the LDC 240 . It includes a structure for charging the auxiliary battery 250 by converting from high voltage DC to low voltage DC through.

이때, 상기 보조배터리(250)와 LDC(240) 사이에는 보조배터리(250)의 SOC 모니터링 하여 LDC(240)의 출력을 가변시키는 IBS(260)를 더 포함한다.At this time, between the auxiliary battery 250 and the LDC 240 further includes an IBS 260 for varying the output of the LDC 240 by monitoring the SOC of the auxiliary battery 250 .

이와 같이, PHEV의 충전 시스템에 구비된 IBS(260)를 통해 상기 보조배터리(250)의 SOC를 모니터링 하되, 일정 시간 동안 보조배터리(250)의 SOC 변화량과 충전량을 감지하여 LDC(240)의 출력을 고출력에서 저출력으로 하향 가변시켜 불필요한 전장부하 소모량을 감소시킨다.In this way, the SOC of the auxiliary battery 250 is monitored through the IBS 260 provided in the charging system of the PHEV, and the SOC change amount and the charge amount of the auxiliary battery 250 are detected for a certain period of time, and the output of the LDC 240 is performed. Reduces unnecessary electrical load consumption by lowering from high output to low output.

따라서, 보조배터리(250) 측으로 공급되는 전원이 소폭 줄어들고 상대적으로 고전압배터리(220) 측으로 OBC(210)의 공급 전원이 소폭 상승하여 고전압배터리(220)의 충전 효율을 상승된다.Accordingly, the power supplied to the auxiliary battery 250 is slightly reduced and the power supplied to the OBC 210 to the relatively high voltage battery 220 is slightly increased, thereby increasing the charging efficiency of the high voltage battery 220 .

여기서, 고전압배터리(220)의 충전효율은 EVSE(100)에서 OBC(210)로 공급되는 전력 값을 J/B(230)에서 분배되어 고전압배터리(220)로 공급되는 전력 값으로 나눈 결과이다.Here, the charging efficiency of the high voltage battery 220 is a result of dividing the power value supplied from the EVSE 100 to the OBC 210 by the power value distributed from the J/B 230 and supplied to the high voltage battery 220 .

한편, 상기한 구조의 PHEV의 충전 시스템을 통해 고전압배터리(220)를 충전하는 PHEV의 충전 제어 방법으로는 도 3에 도시된 그래프에 도시된 바, EVSE(100)와 연결된 OBC(210)를 통해 PHEV(200)의 고전압배터리(220)에 완속 충전을 우선적으로 시작한다.(S100)On the other hand, as a charging control method of a PHEV for charging the high voltage battery 220 through the charging system of the PHEV having the above structure, as shown in the graph shown in FIG. 3 , through the OBC 210 connected to the EVSE 100 . Slow charging of the high voltage battery 220 of the PHEV 200 is preferentially started (S100).

그리고, 상기 고전압배터리(220)의 충전시작과 동시에, LDC(240)의 고출력으로 보조배터리(250)의 충전을 제어한다.(S200)And, at the same time as the charging of the high voltage battery 220 is started, the charging of the auxiliary battery 250 is controlled by the high output of the LDC 240 (S200).

이때, 상기 LDC(240)의 고출력은 종래와 동일하게 출력 전압 14.7V와, 출력 전류 23A와, 출력 파워 370W로 출력되어 보조배터리(250)와 전장품으로 공급된다.At this time, the high output of the LDC 240 is output as an output voltage of 14.7V, an output current of 23A, and an output power of 370W as in the prior art, and is supplied to the auxiliary battery 250 and electrical equipment.

여기서, 상기 IBS(260)를 통해 상기 보조배터리(250)의 SOC를 모니터링 한다.(S300)Here, the SOC of the auxiliary battery 250 is monitored through the IBS 260 (S300).

그리고, 상기 IBS(260)의 신호에 따라 상기 보조배터리(250)의 SOC의 충분 상태가 되는 경우 LDC(240)를 저출력으로 보조배터리(250)의 충전을 제어한다.(S400)And, when the SOC of the auxiliary battery 250 is in a sufficient state according to the signal of the IBS 260, the LDC 240 controls the charging of the auxiliary battery 250 with a low output. (S400)

여기서, IBS(260)를 통해 상기 보조배터리(250)의 SOC를 모니터링 하여 LDC(240) 충전 전압 가변으로 전장 에너지 소모를 감소시켜 연비 향상을 위한 제어한다.Here, the SOC of the auxiliary battery 250 is monitored through the IBS 260 and the electric field energy consumption is reduced by varying the charging voltage of the LDC 240 to improve fuel efficiency.

이때, LDC(240)의 충전 제어 전략은 보조배터리(250)에 고출력으로 SOC를 충분하게 충전 제어 하는 고출력구간과 LDC(240)의 최소출력으로 연비를 최소화하는 SOC를 유지하는 저출력구간으로 구분되어 진다.At this time, the charging control strategy of the LDC 240 is divided into a high output section for sufficiently charging and controlling the SOC with high output to the auxiliary battery 250 and a low output section for maintaining the SOC to minimize fuel efficiency with the minimum output of the LDC 240. lose

즉, 고전압배터리(220)의 충전 시작(S100) 시 LDC(240)의 고출력구간(S200)일 정시간 유지하다가 IBS(260)를 통해 SOC가 충분한 것을 감지하여 LDC(240)가 고출력에서 저출력으로 가변 된다.(S300)That is, when the charging of the high voltage battery 220 starts (S100), the high output section (S200) of the LDC 240 is maintained for a certain period of time, and SOC is detected through the IBS 260 to be sufficient, and the LDC 240 is switched from high output to low output. Variable. (S300)

이후, LDC(240)의 저출력으로 보조배터리(250)를 충전한다.(S400)Thereafter, the auxiliary battery 250 is charged with the low output of the LDC 240 (S400).

이때, 상기 보조배터리(250)는 저출력으로 충전됨에 따라 LDC(240)를 통해 보조배터리(250)로 충전되어야 할 일부 에너지를 고전압배터리(220)에 충전시킬 수 있으므로 그 충전 효율을 극대화 할 수 있다.At this time, as the auxiliary battery 250 is charged at a low output, some energy to be charged in the auxiliary battery 250 through the LDC 240 can be charged to the high voltage battery 220, so that the charging efficiency can be maximized. .

마지막으로, 상기 고전압배터리(220)의 SOC가 충분하거나 해당 충전 시간이 도달하였을 경우 EVSE(100)로부터 OBC(210)의 연결을 해제하여 충전을 종료한다. (S500)Finally, when the SOC of the high voltage battery 220 is sufficient or the corresponding charging time has arrived, the OBC 210 is disconnected from the EVSE 100 to end charging. (S500)

상기 고전압배터리(220)의 충전량은 92% 이상이며, 완충 시간을 대략 9800s로 그 이상의 충전 시간의 의미가 없다.The amount of charge of the high voltage battery 220 is 92% or more, and the charging time is about 9800s, so there is no meaning of charging time longer than that.

한편, 상기 IBS(260)를 통해 상기 보조배터리(250)의 SOC를 모니터링 하여 LDC(240)의 출력을 가변 하는 단계(S300)에서 일정 시간 동안 보조배터리(250)의 SOC 변화량이 일정 수준 이하이고, 보조배터리(250)의 SOC가 일정 수준 이상인 것을 만족할 경우, 상기 LDC(240)의 출력을 고출력에서 저출력으로 변경하는 것이 바람직하다.On the other hand, in the step (S300) of monitoring the SOC of the auxiliary battery 250 through the IBS 260 to vary the output of the LDC 240, the amount of change in the SOC of the auxiliary battery 250 for a certain period of time is below a certain level and , when it is satisfied that the SOC of the auxiliary battery 250 is above a certain level, it is preferable to change the output of the LDC 240 from high output to low output.

이때, 보조배터리(250)의 SOC 변화량이 일정 수준 이하인 것은 상기 보조배터리(250)의 충전량이 92 ~ 96%의 범위 내에서 변화하는 정도를 말하며, 보조배터리(250)의 SOC가 이정 수준 이상인 것은 보조배터리(250)의 충전량이 92% 이상인 것을 말한다.At this time, when the amount of change in the SOC of the auxiliary battery 250 is less than a certain level, it refers to the degree to which the charge amount of the auxiliary battery 250 changes within the range of 92 to 96%, and the SOC of the auxiliary battery 250 is above a certain level. It means that the charge amount of the auxiliary battery 250 is 92% or more.

그리고, 상기 보조배터리(250)의 SOC를 모니터링 하여 LDC(240)의 출력을 가변 하는 단계(S300)에서 일정 시간은 상기 LDC()의 가변 시점을 기준으로 전,후 1000s 동안의 시간을 말한다.And, in the step (S300) of monitoring the SOC of the auxiliary battery 250 to vary the output of the LDC 240, the predetermined time refers to the time for 1000s before and after the variable time of the LDC().

이는 고출력구간에서 보조배터리(250) SOC를 IBS(260)로 모니터링 할 때, 아래 조건을 만족하여야 LDC(240)의 출력을 가변 시킨다.This changes the output of the LDC 240 when the SOC of the auxiliary battery 250 is monitored by the IBS 260 in the high output section, when the following conditions are satisfied.

1. 일정 시간 동안 보조배터리(250) SOC의 변화량을 일정하게 유지하게 되는 경우 보조배터리(250)의 SOC가 최대인 것으로 판단되어 LDC(240)의 출력이 고출력에서 저출력으로 가변 된다.1. When the amount of change in the SOC of the auxiliary battery 250 is kept constant for a certain period of time, it is determined that the SOC of the auxiliary battery 250 is the maximum, and the output of the LDC 240 is changed from high output to low output.

2. 보조배터리(250)의 SOC가 일정 수준 이상인 경우로 보조배터리(250)의 완충상태를 말하며 이때, 불필요하게 소모되는 LDC(240)의 출력을 줄여 저출력으로 가변 된다.2. When the SOC of the auxiliary battery 250 is above a certain level, it refers to a fully charged state of the auxiliary battery 250. At this time, the output of the LDC 240 that is unnecessarily consumed is reduced to change to a low output.

한편, 상기 보조배터리(250)를 저출력으로 충전하기 위한 LDC(240)의 출력 전압은 12.7V이고, 출력 파워는 310 ~ 330W이며, 출력 전류는 21 ~ 23A로 이루어지는 것으로 최소한 전장부하의 운용 용량만큼 출력되는 것이 바람직하다.On the other hand, the output voltage of the LDC 240 for charging the auxiliary battery 250 at a low output is 12.7V, the output power is 310 ~ 330W, and the output current is 21 ~ 23A, at least as much as the operating capacity of the electric load. output is preferred.

상기와 같이 구성된 본 발명을 제공함으로써, PHEV 충전 중 보조배터리를 저출력으로 충전할 수 있어 전장부하의 전력 손실을 최소화할 수 있으며, 이에 따라 상대적으로 고전압배터리의 충전효율을 극대화함에 따라 전비성능이 향상되는 것은 물론, 소비자로 하여금 차량 구매욕구를 충족하는 효과를 기대할 수 있다.
By providing the present invention configured as described above, it is possible to charge the auxiliary battery with low output during charging of the PHEV, thereby minimizing the power loss of the electric load, and thus, the fuel efficiency is improved by maximizing the charging efficiency of the relatively high voltage battery. Of course, it is possible to expect the effect of satisfying the desire of consumers to purchase a vehicle.

이상에 설명한 본 명세서 및 청구범위에 사용되는 용어 및 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims described above should not be construed as being limited to conventional or dictionary meanings, and the present inventors have adequately defined the concept of terms to describe their invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined in

따라서, 본 명세서에 기재된 도면 및 실시 예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the configurations shown in the drawings and embodiments described in this specification are only one of the most preferred embodiments of the present invention, and do not represent all the technical spirit of the present invention, so they can be substituted at the time of the present application. It should be understood that there may be various equivalents and variations that exist.

100: EVSE 110: 충전케이블
200: PHEV 210: OBC
220: 고전압배터리 230: J/B
240: LDC 250: 보조배터리
260: IBS
S100: 고전압배터리 충전시작단계
S200: LDC 고출력 제어단계
S300: 보조배터리의 SOC 충분 상태 판단단계
S400: LDC 저출력 제어단계
S500: 고전압배터리 충전종료단계
100: EVSE 110: charging cable
200: PHEV 210: OBC
220: high voltage battery 230: J/B
240: LDC 250: auxiliary battery
260: IBS
S100: High voltage battery charging start stage
S200: LDC high output control stage
S300: SOC sufficient state judgment step of the auxiliary battery
S400: LDC low power control stage
S500: High voltage battery charging end stage

Claims (5)

삭제delete EVSE(100)와 연결된 OBC(210)를 통해 PHEV(200)의 고전압배터리(220)에 완속 충전을 시작하는 단계(S100)와;
상기 고전압배터리(220)의 충전시작과 동시에, LDC(240)의 고출력으로 보조배터리(250)의 충전을 제어하는 단계(S200)와;
IBS(260)를 통해 상기 보조배터리(250)의 SOC를 모니터링 하는 단계(S300)와;
상기 IBS(260)의 신호에 따라 상기 보조배터리(250)의 SOC의 충분 상태를 판단하여 LDC(240)의 저출력으로 보조배터리(250)의 충전을 제어하는 단계(S400)와;
상기 고전압배터리(220)의 SOC가 충분하면, EVSE(100)와 OBC(210)의 연결을 해제하여 충전을 종료하는 단계(S500)를 포함하는 것을 특징으로 하는 PHEV의 충전 제어방법.
starting the slow charging of the high voltage battery 220 of the PHEV 200 through the OBC 210 connected to the EVSE 100 (S100);
simultaneously with the start of charging of the high voltage battery 220, controlling the charging of the auxiliary battery 250 with the high output of the LDC 240 (S200);
Monitoring the SOC of the auxiliary battery 250 through the IBS (260) (S300) and;
controlling the charging of the auxiliary battery 250 with the low output of the LDC 240 by determining the sufficient state of the SOC of the auxiliary battery 250 according to the signal of the IBS 260 (S400);
and when the SOC of the high voltage battery 220 is sufficient, disconnecting the EVSE 100 and the OBC 210 to terminate charging (S500).
청구항 2에 있어서,
상기 IBS(260)를 통해 일정 시간 동안 보조배터리(250)의 SOC 변화량이 일정 수준 이하인 것을 만족하는 경우 상기 LDC(240)의 출력을 고출력에서 저출력으로 변경하는 것을 특징으로 하는 PHEV의 충전 제어방법.
3. The method according to claim 2,
The charging control method of a PHEV, characterized in that the output of the LDC (240) is changed from a high output to a low output when it is satisfied that the amount of change in the SOC of the auxiliary battery (250) for a certain period of time through the IBS (260) is less than or equal to a certain level.
청구항 2에 있어서,
상기 IBS(260)를 통해 일정 시간 동안 보조배터리(250)의 SOC 가 일정 수준 이상인 것을 만족할 경우 상기 LDC(240)의 출력을 고출력에서 저출력으로 변경하는 것을 특징으로 하는 PHEV의 충전 제어방법.
3. The method according to claim 2,
The charging control method of a PHEV, characterized in that the output of the LDC (240) is changed from a high output to a low output when it is satisfied that the SOC of the auxiliary battery (250) is higher than or equal to a certain level for a predetermined time through the IBS (260).
청구항 2에 있어서,
상기 보조배터리(250)를 저출력으로 충전하기 위한 LDC(240)의 출력 전압은 12.7V이고, 출력 파워는 310 ~ 330W이며, 출력 전류는 21 ~ 23A로 이루어지는 것을 특징으로 하는 PHEV의 충전 제어방법.
3. The method according to claim 2,
The output voltage of the LDC (240) for charging the auxiliary battery (250) at a low output is 12.7V, the output power is 310 ~ 330W, and the output current is 21 ~ 23A The charging control method of the PHEV, characterized in that consisting of.
KR1020150046629A 2015-04-02 2015-04-02 PHEV charging system and its control method KR102286833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150046629A KR102286833B1 (en) 2015-04-02 2015-04-02 PHEV charging system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150046629A KR102286833B1 (en) 2015-04-02 2015-04-02 PHEV charging system and its control method

Publications (2)

Publication Number Publication Date
KR20160118472A KR20160118472A (en) 2016-10-12
KR102286833B1 true KR102286833B1 (en) 2021-08-05

Family

ID=57173370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150046629A KR102286833B1 (en) 2015-04-02 2015-04-02 PHEV charging system and its control method

Country Status (1)

Country Link
KR (1) KR102286833B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102435344B1 (en) * 2017-07-13 2022-08-23 현대자동차주식회사 Battery system of eco-friendly vehicle and method for controlling the same
CN113682183B (en) * 2021-09-29 2023-07-21 国网山东省电力公司泗水县供电公司 Intelligent electric automobile charging system based on SCADA system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213503A (en) * 2009-03-11 2010-09-24 Omron Corp Power supply apparatus and method
JP2014143817A (en) 2013-01-23 2014-08-07 Toyota Motor Corp Vehicular power system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229441B1 (en) 2011-03-18 2013-02-06 주식회사 만도 Apparatus for charging battery
KR101299109B1 (en) 2012-01-10 2013-08-28 주식회사 만도 System for controlling a battery charger for electric vehicle and the method thereof
KR101428293B1 (en) * 2012-12-18 2014-08-07 현대자동차주식회사 Sub battery charge method of electric vehicle
KR101489226B1 (en) 2012-12-21 2015-02-06 주식회사 만도 An all in one onboard battery charger for electric vehicle, electric vehicle having the function of the charge, and the system and method for controlling a battery charger for electric vehicle including the on board battery charger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213503A (en) * 2009-03-11 2010-09-24 Omron Corp Power supply apparatus and method
JP2014143817A (en) 2013-01-23 2014-08-07 Toyota Motor Corp Vehicular power system

Also Published As

Publication number Publication date
KR20160118472A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
US11697352B2 (en) Method and apparatus for charging multiple energy storage devices
JP6130634B2 (en) Apparatus and method for charging an electric vehicle
US8829722B2 (en) Apparatus and method for rapidly charging an electric vehicle
US8378623B2 (en) Apparatus and method for charging an electric vehicle
US7973424B2 (en) Method and apparatus for producing tractive effort with interface to other apparatus
US9013168B2 (en) System for transferring energy from an energy source and method of making same
KR101449266B1 (en) Control method of Low DC/DC Converter for electric vehicle, and Low DC/DC Converter control system using the same
CN110014935B (en) Method for charging a battery of an electric vehicle
US7687934B2 (en) System and method for managing energy use in an electric vehicle
KR101500080B1 (en) Method for controlling LDC in regenerative braking of eco-friendly vehicle
CN103568855A (en) Active control system for low dc/dc converter in an electric vehicle
JP2008168894A (en) Power supply system for hybrid electric vehicle and operation method of same
JPWO2010061465A1 (en) Vehicle charging system
CN102386666A (en) System for recharging plug-in hybrid vehicle and control method for the same
JP5510259B2 (en) Vehicle power control device
KR102286833B1 (en) PHEV charging system and its control method
KR20160126338A (en) System and Method for controlling output voltage of Low Voltage DC-DC Converter
CN114389323A (en) Method for reducing the total power consumption of a parked vehicle
CA2772998A1 (en) Power supply system for a non-contact electromagnetic inductive charging type electric vehicle
DE De's Theoretical Models of Advanced and Next-Generation Battery Electric Vehicle Power-Train System: A Theoretical Approach for Self-Charging Battery Electric Vehicle (for Four Wheelers) with the Extended Range (Nearly Unlimited), after a Single Charge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant