KR102283099B1 - Method for manufacturing brick using mine drainage sludge - Google Patents

Method for manufacturing brick using mine drainage sludge Download PDF

Info

Publication number
KR102283099B1
KR102283099B1 KR1020200164248A KR20200164248A KR102283099B1 KR 102283099 B1 KR102283099 B1 KR 102283099B1 KR 1020200164248 A KR1020200164248 A KR 1020200164248A KR 20200164248 A KR20200164248 A KR 20200164248A KR 102283099 B1 KR102283099 B1 KR 102283099B1
Authority
KR
South Korea
Prior art keywords
sludge
mine drainage
mixture
brick
drainage sludge
Prior art date
Application number
KR1020200164248A
Other languages
Korean (ko)
Inventor
이승철
이상환
최창진
정이석
최창철
Original Assignee
한국광해관리공단
(주)엠제이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광해관리공단, (주)엠제이테크 filed Critical 한국광해관리공단
Priority to KR1020200164248A priority Critical patent/KR102283099B1/en
Application granted granted Critical
Publication of KR102283099B1 publication Critical patent/KR102283099B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The present invention relates to a method for manufacturing bricks using mine drainage sludge. The method for manufacturing bricks using mine drainage sludge according to the present invention includes the steps of: (a) drying the mine drainage sludge; (b) mixing the dried sludge with pumice stone and cement to form a mixture; (c) adding water to the mixture; (d) compressing and molding the mixture to which water is added to manufacture a brick molded body; and (e) drying the brick molded body.

Description

광산배수 슬러지를 이용한 벽돌 제조방법{Method for manufacturing brick using mine drainage sludge}{Method for manufacturing brick using mine drainage sludge}

본 발명은 폐기물을 재활용하는 기술에 관한 것으로서, 특히 광산배수를 정화처리하는 과정에서 발생하는 슬러지를 이용하여 벽돌을 제조하는 방법에 관한 것이다. The present invention relates to a technology for recycling waste, and more particularly, to a method for manufacturing bricks using sludge generated in the process of purifying mine drainage.

휴,폐광된 광산의 갱도로부터 배출되는 광산배수는 산성을 띠며 중금속의 농도가 높아 정화처리가 요구된다. 정화처리는 적극적 처리법(active treatment)과 소극적 처리법(passive treatment)으로 나뉘어진다. 적극적 처리법은 중화제를 이용한 pH조절, 이온교환과 흡착, 응집, 여과 등을 이용하며, 역삼투압법, 이온교환법, 전기투석법 등이 있다. 소극적 처리법으로는 ALDs(anoxic limestone drains), OLD(oxic limestone drains) 등의 석회석을 이용한 중화 처리방식과 호기성 및 혐기성 인공 소택지, 그리고 이들을 발전시킨 형태의 SAPS(successive alkalinity-producing systems) 또는 RAPS 등이 있다.Mine wastewater discharged from the mine shafts of abandoned and abandoned mines is acidic and has a high concentration of heavy metals, so purification treatment is required. Purification treatment is divided into active treatment and passive treatment. Active treatment methods include pH control using a neutralizing agent, ion exchange, adsorption, coagulation, filtration, and the like, and include reverse osmosis, ion exchange, and electrodialysis. As a passive treatment method, neutralization treatment using limestone such as ALDs (anoxic limestone drains) and OLD (oxic limestone drains), aerobic and anaerobic artificial marshes, and SAPS (successive alkalinity-producing systems) or RAPS, etc. there is.

국내에서는 SAPS를 이용한 소극적 처리를 주로 사용한다. 최근에는 소극적 처리법에 중화제를 투입하는 수준에서 적극적 처리 개념을 도입한 세미액티브(semi-active) 방식이 점차 확대 적용되고 있으며, 오염부하가 높은 광산배수에는 적극적 처리법(active treatment)이 지속적으로 증가하는 추세이다.In Korea, passive processing using SAPS is mainly used. Recently, the semi-active method, which introduced the concept of active treatment at the level of adding a neutralizing agent to the passive treatment method, is gradually being applied, and active treatment is continuously increasing for mine drainage with a high pollution load. is the trend

정화처리는 여러 공정을 거치게 되는데, 그 중 하나의 공정은 광산배수 내의 금속을 산화 및 침전시켜 제거하는 것이다. 이를 위하여 대부분의 처리시설에는 침전조가 마련된다. 도 1에는 침전조의 실제 사진이 나타나 있다. 광산배수는 침전조에서 일정 시간 체류하게 되고, 광산배수 내에 녹아 있던 금속이온들은 산화물 및 수산화물 형태로 침전조에 침전된다. 또한 광산배수와 함께 이동한 토사 성분들도 침전조에 함께 침전되어 슬러지를 형성한다. The purification treatment goes through several processes, one of which is to oxidize and precipitate metals in the mine drainage to remove them. For this purpose, most treatment facilities are provided with sedimentation tanks. 1 shows an actual photograph of the settling tank. The photo-acid drainage stays in the sedimentation tank for a certain period of time, and the metal ions dissolved in the acid-acid drainage are precipitated in the sedimentation tank in the form of oxides and hydroxides. In addition, the soil components that have moved along with the mine drainage are also precipitated in the sedimentation tank to form sludge.

침전조에서는 자중에 의해 고액분리가 이루어져 하부에는 슬러지가 쌓이고, 상부에는 물이 부유하게 된다. 슬러지는 펌핑해서 탈수과정을 거쳐 배출하게 되는데, 일부 시멘트의 보조재로 재활용하지만 대부분 매립하여 처리하고 있다. 매립 자체가 환경적으로 부담일 뿐만 아니라, 매립공간의 부족으로 매립비용도 점차 증가되고 있다는 문제점이 있다. In the sedimentation tank, solid-liquid separation is performed by its own weight, so that sludge is accumulated at the bottom and water floats at the top. Sludge is pumped and discharged through a dewatering process. Some are recycled as auxiliary materials for cement, but most are disposed of in landfills. There is a problem that reclamation itself is not only an environmental burden, but also the cost of reclamation is gradually increasing due to the lack of a landfill space.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 광산배수 슬러지를 벽돌의 재료로 재활용하기 위한 방법을 제공하는데 그 목적이 있다. The present invention is to solve the above problems, and an object of the present invention is to provide a method for recycling the mine drainage sludge as a material for bricks.

한편, 본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 것이다.On the other hand, other objects not specified in the present invention will be additionally considered within the range that can be easily inferred from the following detailed description and effects thereof.

상기 목적을 달성하기 위한 본 발명에 따른 광산배수 슬러지를 이용한 벽돌 제조방법은 (a)광산배수 슬러지를 건조하는 단계; (b)건조된 슬러지에 경석과 시멘트를 혼합하여 혼합물을 형성하는 단계; (c)상기 혼합물에 물을 첨가하는 단계; (d)물이 첨가된 상기 혼합물을 압축 및 성형하여 벽돌 성형체를 제조하는 단계; 및 (e)상기 벽돌 성형체를 건조하는 단계; 를 포함하는 것에 특징이 있다. Brick manufacturing method using the mine drainage sludge according to the present invention for achieving the above object comprises the steps of: (a) drying the mine drainage sludge; (b) mixing the dried sludge with pumice and cement to form a mixture; (c) adding water to the mixture; (d) preparing a brick molded body by compressing and molding the mixture to which water is added; and (e) drying the brick molded body; It is characterized by including

본 발명에 따르면, 상기 광산배수 슬러지는 함수율이 20~30% 범위로 형성될 때까지 건조한다. According to the present invention, the mine drainage sludge is dried until the moisture content is formed in the range of 20 to 30%.

본 발명의 일 예에서, 상기 혼합물은, 광산배수 슬러지 30~50중량%, 경석 20~30중량%, 시멘트 30~40중량%의 범위로 배합할 수 있다. 상기 혼합물에 첨가하는 물은 전체에서 5~15중량% 범위이다. In one example of the present invention, the mixture may be formulated in the range of 30-50 wt% of acid mine drainage sludge, 20-30 wt% of pumice, and 30-40 wt% of cement. The water added to the mixture ranges from 5 to 15% by weight in total.

본 발명의 일 예에서, 체거름을 통해 상기 광산배수 슬러지와 경석의 입도는 5mm(4mesh) 이하로 형성하는 것이 바람직하다. In one example of the present invention, the particle size of the mine drainage sludge and the pumice stone through the sieve is preferably formed to be 5mm (4mesh) or less.

한편, 본 발명의 다른 예에서는 (a)광산배수 슬러지를 건조하는 단계; (b)건조된 슬러지에 경석과 시멘트를 혼합하여 혼합물을 형성하는 단계; (c)상기 혼합물에 물과 유기결합재를 첨가하는 단계; (d)상기 혼합물을 압축 및 성형하여 벽돌 성형체를 제조하는 단계; (e)상기 벽돌 성형체를 1100~1300℃로 가열 소성하는 단계; 및 (f)소성된 상기 벽돌 성형체를 냉각시키는 단계;를 포함하는 것에 특징이 있다.On the other hand, in another example of the present invention (a) drying the mine drainage sludge; (b) mixing the dried sludge with pumice and cement to form a mixture; (c) adding water and an organic binder to the mixture; (d) preparing a brick molded body by compressing and molding the mixture; (e) heating and calcining the brick molded body at 1100-1300°C; and (f) cooling the fired brick compact.

본 발명에 따른 벽돌은 광산배수 슬러지를 이용한 것으로서 폐기 처분해야 하는 부산물을 재활용함으로써 친환경적일 뿐만 아니라, 벽돌 제조의 경제성도 향상시킨다는 이점이 있다. The brick according to the present invention has the advantage of being eco-friendly as well as improving the economic feasibility of manufacturing bricks by recycling by-products that must be disposed of as using mine drainage sludge.

무엇보다도 본 발명에 의해 만들어진 벽돌은 압축강도 및 흡수율 측면에서 KS 기준을 훨씬 상회하는 물성을 나타내어 건축물에 적용할 수 있을 것으로 기대한다. Above all, it is expected that the bricks made by the present invention can be applied to buildings by exhibiting physical properties that far exceed the KS standards in terms of compressive strength and water absorption.

한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.On the other hand, even if it is an effect not explicitly mentioned herein, it is added that the effects described in the following specification expected by the technical features of the present invention and their potential effects are treated as described in the specification of the present invention.

도 1은 광산배수 처리시설의 침전조의 실제 사진이다.
도 2a 및 도 2b는 각각 본 발명의 일 예에 따른 광산배수 슬러지를 이용한 벽돌 제조방법의 개략적 흐름도이다.
도 3은 본 발명에 의해 제조된 벽돌의 실제 사진이다.
도 4는 본 발명에 의해 제조된 벽돌의 표면 전자현미경 사진이다.
도 5는 본 발명에 의해 제조된 벽돌의 파단면 전자현미경 사진이다.
도 6은 본 발명에 의해 제조된 벽돌의 압축강도 시험성적서이다.
도 7은 본 발명에 의해 제조된 벽돌의 흡수율 시험성적서이다.
※ 첨부된 도면은 본 발명의 기술사상에 대한 이해를 위하여 참조로서 예시된 것임을 밝히며, 그것에 의해 본 발명의 권리범위가 제한되지는 아니한다.
1 is an actual photograph of a sedimentation tank of a mine drainage treatment facility.
2a and 2b are schematic flowcharts of a brick manufacturing method using the mine drainage sludge according to an example of the present invention, respectively.
3 is an actual photograph of a brick manufactured by the present invention.
Figure 4 is a surface electron micrograph of the brick manufactured by the present invention.
5 is a cross-sectional electron micrograph of the brick manufactured by the present invention.
6 is a compressive strength test report of the brick manufactured by the present invention.
7 is a water absorption test report of the brick manufactured by the present invention.
※ It is revealed that the accompanying drawings are exemplified as a reference for understanding the technical idea of the present invention, and the scope of the present invention is not limited thereby.

본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다.In the description of the present invention, if it is determined that the subject matter of the present invention may be unnecessarily obscured as it is obvious to those skilled in the art with respect to related known functions, the detailed description will be omitted.

이하, 첨부된 도면을 참고하여, 본 발명의 일 예에 따른 광산배수 슬러지를 이용한 벽돌 제조방법에 대하여 더욱 상세히 설명하기로 한다. Hereinafter, with reference to the accompanying drawings, the brick manufacturing method using the mine drainage sludge according to an example of the present invention will be described in more detail.

도 2a 및 도 2b는 각각 본 발명의 일 예에 따른 광산배수 슬러지를 이용한 벽돌 제조방법의 개략적 흐름도이다. 2a and 2b are schematic flowcharts of a brick manufacturing method using the mine drainage sludge according to an example of the present invention, respectively.

본 발명에서 재활용하는 대상은 광산배수 정화처리시설로부터 발생하는 슬러지이다. 광산배수 정화처리시설은 매우 다양하며, 본 발명의 재료가 되는 슬러지는 적극적 처리법, 소극적 처리법 및 세미 액티브 방식의 처리법 등 처리 방식과 무관하게 정화처리시설로부터 발생하는 모든 슬러지를 사용할 수 있다. 즉 정화처리시설의 처리 방식 자체가 중요한 것은 아니며, 오히려 슬러지의 성상이 중요하다. The object to be recycled in the present invention is sludge generated from a mine drainage purification treatment facility. Mine wastewater purification and treatment facilities are very diverse, and the sludge used as the material of the present invention can use all sludge generated from the purification treatment facility regardless of treatment methods such as active treatment, passive treatment, and semi-active treatment. That is, the treatment method of the purification treatment facility itself is not important, but rather the property of the sludge.

본 발명의 대상이 되는 광산배수 슬러지는 금속을 주성분으로 하며, 특히 철(주로 철수산화물)의 함량이 40중량%를 넘는다. 예컨대 본 실시예에서 사용하는 슬러지는 Fe 51.2%, Ca 22.7%, Al 8.7%, Mg 6.9%를 주요성분으로 포함하고, 잔부는 10wt% 이하로 Mn, Cu 및 기타 불순물을 포함한다. The mine drainage sludge subject to the present invention has a metal as a main component, and in particular, the content of iron (mainly iron hydroxide) exceeds 40% by weight. For example, the sludge used in this embodiment contains Fe 51.2%, Ca 22.7%, Al 8.7%, and Mg 6.9% as main components, and the balance contains Mn, Cu and other impurities in an amount of 10 wt% or less.

광산배수 슬러지는 대부분 침전조의 하부에 쌓여 있는 것을 펌핑하여 탈수과정을 거친 슬러지의 함수율이 80% 이상으로 매우 높다. Most of the mine drainage sludge is pumped from what is accumulated in the lower part of the settling tank.

이에 본 발명에서는 먼저 슬러지를 탈수 및 건조시켜 함수율을 저하시킨다. 본 예에서 슬러지의 함수율이 20~30%(중량%)로 될 때까지 건조과정을 지속한다. 건조과정은 자연건조 시키거나, 열풍 교반장치를 이용하며 건조 후 슬러지의 함수율은 무척 중요한데, 함수율이 30%를 초과하면 슬러지가 덩어리화 되어 굳어져 균질한 혼합이 어려워진다. 반대로 함수율이 20% 미만이면 혼합과정에서 적절한 응집을 위한 물 공급량이 많아짐에 따라 다시 덩어리화 될 수 있다. 또한 함수율이 낮으면 미세분진에 의한 2차환경 문제가 발생하는 바 바람직하지 않다. Accordingly, in the present invention, the water content is lowered by first dewatering and drying the sludge. In this example, the drying process is continued until the moisture content of the sludge is 20-30% (wt%). The drying process is either natural drying or using a hot air agitator, and the moisture content of the sludge after drying is very important. Conversely, if the moisture content is less than 20%, the amount of water supplied for proper agglomeration increases during the mixing process, and thus it may re-agglomerate. In addition, when the moisture content is low, it is not preferable because secondary environmental problems caused by fine dust occur.

건조후에는 슬러지, 경석 및 시멘트를 혼합하여 혼합물을 형성한다. After drying, the sludge, pumice and cement are mixed to form a mixture.

본 예에서 혼합물의 배합 비율은 슬러지 30~50중량%, 경석 20~30중량%, 시멘트 30~40중량%의 범위이다. 보다 구체적으로 본 예에서는 슬러지 45중량%, 경석 20중량%, 시멘트 35중량%를 사용하였다. In this example, the blending ratio of the mixture is in the range of 30 to 50% by weight of sludge, 20 to 30% by weight of pumice, and 30 to 40% by weight of cement. More specifically, in this example, 45% by weight of sludge, 20% by weight of pumice, and 35% by weight of cement were used.

본 예에서 사용하는 경석은 광산에서 테일링하는 과정에서 발생하는 미분 또는 자갈로서 일반적인 시멘트의 원료성분과 매우 유사하다. 본 예에서 사용하는 경석은 Fe 60.4%, Al 23.6%, Ca 7.3%, Mg 5.6%를 주요 성분으로 포함하고 잔부 3wt% 이하의 Mn, Cu 및 기타 불순물을 포함하며 기공이 발달되어 있다. 시멘트는 보통 포틀랜드 시멘트를 사용한다. The pumice stone used in this example is fine powder or gravel generated during tailing in a mine, and is very similar to the raw material of general cement. The pumice stone used in this example contains Fe 60.4%, Al 23.6%, Ca 7.3%, and Mg 5.6% as main components, and the remaining 3wt% or less of Mn, Cu and other impurities, and pores are developed. Cement is usually Portland cement.

경석은 최종 제조되는 벽돌의 기본 매트릭스를 형성하며 시멘트는 경석 입자들을 일체화하는 바인더로 기능하며, 슬러지와 마찬가지로 경석의 기공에 충진된다. 슬러지는 경석에 비하여 훨씬 작은 입자들로 형성되는 것이 일반적이다. 광산배수 슬러지는 경석에 발달되어 있는 기공에 충진되어 최종 제조되는 벽돌을 밀실하게 하여 기계적 강도를 향상시킨다. Pumice forms the basic matrix of the final manufactured brick, and cement functions as a binder to unite the pumice particles, and, like sludge, it fills the pores of the pumice stone. Sludge is generally formed into much smaller particles than pumice. The mine drainage sludge is filled in the pores developed in the pumice stone to seal the finally manufactured bricks, thereby improving the mechanical strength.

슬러지를 위의 범위보다 더 많이 사용하게 되면 경석의 함량이 적어지므로 벽돌의 기계적 강도 발현에 바람직하지 않고 성형체의 강도가 저하되며 벽돌 성형시 형태 안정성이 저하된다. 반대로 슬러지의 함량이 위 범위 미만이면 경석의 기공을 충진하는데 부족하기 때문에 마찬가지로 기계적 강도 발현에 바람직하지 않다. If the sludge is used more than the above range, the content of pumice is reduced, which is not desirable for the expression of mechanical strength of bricks, the strength of the molded body is reduced, and the shape stability during brick molding is reduced. Conversely, if the content of sludge is less than the above range, it is not desirable for mechanical strength expression because it is insufficient to fill the pores of the pumice stone.

상기한 바와 같이 슬러지, 경석 및 시멘트를 혼합한 후에는 이들을 분쇄 및 체거름하여 입도를 조절한다. 물론 슬러지와 경석은 미리 분쇄 및 체거름한 후에 다른 재료들과 혼합할 수도 있으며, 본 예와 같이 혼합물을 만든 후에 분쇄 및 체거름을 수행해도 된다. 4mesh의 체를 이용하여 혼합물을 걸러서 입도 5mm 이하의 것만 사용한다. 슬러지는 입도가 매우 작기 때문에 체거름을 하는 가장 큰 이유는 경석의 입도를 조정하기 위함이다. 경석의 입도를 크게 만들면 비표면적이 오히려 작아지고 외부로 노출되는 기공도 제한되므로 슬러지에 의한 충진도 적어지는 바 기계적 강도 향상에 한계가 있다. 또한 입도가 고르지 못하면 물 흡수량이 증가하기 때문에 벽돌의 품질이 저한된다. 이에 본 예에서는 경석을 포함한 혼합물의 입도를 5mm 이하로 조정하여 사용한다. After mixing the sludge, pumice stone and cement as described above, they are pulverized and sieved to control the particle size. Of course, the sludge and pumice stone may be mixed with other materials after grinding and sieving in advance, and grinding and sieving may be performed after making the mixture as in this example. Filter the mixture using a 4 mesh sieve and use only those with a particle size of 5 mm or less. Since sludge has a very small particle size, the main reason for sieving is to adjust the particle size of pumice. If the particle size of the pumice stone is made larger, the specific surface area becomes rather small and the pores exposed to the outside are limited, so the filling by the sludge is also reduced, and there is a limit in improving the mechanical strength. In addition, if the particle size is not uniform, the quality of the brick is deteriorated because water absorption increases. Therefore, in this example, the particle size of the mixture including pumice is adjusted to 5 mm or less.

혼합물이 완성된 후에는 물을 첨가하여 반죽 형태로 만들어 벽돌 성형을 준비한다. 물은 첨가한 후를 기준으로 전체에서 10중량% 수준으로 배합한다. 물을 통해 반죽 상태가 되면 가압 성형틀에 위 혼합물을 넣고 가압 성형하여 벽돌 형태로 만든다. 공기 중에서 성형체를 건조시켜 최종적으로 벽돌이 완성된다. 대략 양생은 7일 이상으로 한다. After the mixture is complete, add water to form a dough, and prepare bricks. Water is formulated at a level of 10% by weight in total based on after addition. When it is kneaded through water, the above mixture is put into a press mold and press-molded to form a brick. By drying the molded body in the air, the brick is finally completed. Curing is approximately 7 days or more.

도 3은 최종 완성된 벽돌의 실제 사진이며, 도 4는 본 발명에 의해 제조된 벽돌의 표면 전자현미경 사진이고, 도 5는 본 발명에 의해 제조된 벽돌의 파단면 전자현미경 사진이다. 도 4 및 도 5의 전자 현미경 사진을 참고하면, 벽돌의 표면 및 파단면에 기공이 없이 밀실하게 재료가 충진되어 있는 것을 확인할 수 있다. 3 is an actual photograph of the finally completed brick, FIG. 4 is a surface electron micrograph of the brick manufactured by the present invention, and FIG. 5 is a cross-sectional electron microscope photograph of the brick manufactured by the present invention. Referring to the electron micrographs of FIGS. 4 and 5 , it can be seen that the material is tightly filled without pores on the surface and fracture surfaces of the bricks.

한편, 벽돌의 사용용도에 따라 경도를 증가시키기 위해서는 도 2b의 실시예와 같이 소성 과정이 추가적으로 필요하다. 즉 혼합물이 완성된 후에 물과 유기결합제(ex:점토질 계열 결합재)를 첨가하여 반죽 형태로 만들어 벽돌 성형을 준비하고 가압 성형틀에 위 혼합물을 넣고 가압 성형하여 벽돌 형태로 만든다. 그 후에는 분당 5℃이하로 서서히 승온시키고 1100℃~1300℃의 온도에서 0.5~1시간 소성시킨 후 공냉을 시키면 벽돌이 완성된다.Meanwhile, in order to increase the hardness according to the intended use of the brick, a firing process is additionally required as in the embodiment of FIG. 2B . That is, after the mixture is completed, water and an organic binder (ex: clay-based binder) are added to form a dough, prepare bricks, put the mixture in a press mold, and press mold to make bricks. After that, the temperature is gradually raised to below 5°C per minute, calcined at a temperature of 1100°C to 1300°C for 0.5 to 1 hour, and then air-cooled to complete the bricks.

이하, 본 발명에 따라 벽돌을 제조하여 물성을 실험하였다. Hereinafter, bricks were manufactured according to the present invention and physical properties were tested.

원재료인 광산배수 슬러지는 강원도 태백시의 함태수질정화시설에서 발생한 것을 사용하였다. 슬러지는 함수율 80% 전후로 점토성분과 유사하게 서로 뭉쳐져 있는 상태에서 기계적 장치와 바람을 이용하여 건조시켜 함수율을 20∼30%의 상태로 만든다. 경석은 4mesh이하의 입자크기로 가공된 것을 준비시킨다. 슬러지 45wt%, 경석 20wt%, 시멘트 35wt%의 비율로 혼합하여 혼합물을 만든 후, 약 10wt% 물을 첨가하여 반죽 상태로 만든다. 이후 15MPa의 압력으로 일축 가압 성형한 후 건조시켜 성형체를 제조하였다. 이 때 성형체의 크기는 250×100×150mm이다. 제조된 성형체는 10일 양생시킨 후 공냉하여도 3의 사진과 같이 최종적으로 벽돌을 제조하였다. The raw material, mine drainage sludge, was generated at the Hamtae water purification facility in Taebaek-si, Gangwon-do. The sludge has a moisture content of about 80%, and is dried using a mechanical device and wind in a state of agglomeration similar to the clay component, and the moisture content is made into a state of 20-30%. Prepare pumice that has been processed to a particle size of 4 mesh or less. After making a mixture by mixing 45wt% of sludge, 20wt% of pumice, and 35wt% of cement, add about 10wt% of water to make a dough. After uniaxial pressure molding at a pressure of 15 MPa and dried, a molded article was prepared. At this time, the size of the molded body is 250 × 100 × 150 mm. After curing the molded article for 10 days, it was air-cooled, and finally bricks were manufactured as shown in the photo of FIG. 3 .

이렇게 만들어진 벽돌에 대하여 벽돌의 물성으로 요구되는 압축강도와 흡수율에 대하여 KS 기준에 따라 실험하였다. For the bricks made in this way, the compressive strength and water absorption required for the physical properties of the bricks were tested according to the KS standard.

- 압축강도- Compressive strength

벽돌에 대하여, 한국산업표준 KS L 8510에서 규정하고 명시된 시험방법에 따라 압축강도를 시험하였다. 압축강도는 C=W/A(N/㎟)으로 구할 수 있으며, C는 압축강도(N/㎟), 가압전단면적(㎟), W는 최대하중(N)을 각각 의미한다. 시험체는 가압 양면을 시험체 벽돌의 세로축에 직각이 되도록 평활하게 마무리하고, 전체면을 고르게 가압한 후 압축강도 시험을 하였다. 5개의 시편을 공인분석기관을 통해 측정한 결과, 도 6에 도시된 바와 같이, 압축강도는 KS L 8510에서 부생석회 벽돌 기준 압축강도(8N/㎟)를 훨씬 상회하여, 10∼17N/㎟으로 나타나 압축강도가 매우 우수하다는 것을 확인하였다. For bricks, the compressive strength was tested according to the test method specified and specified in the Korean Industrial Standard KS L 8510. Compressive strength can be obtained as C=W/A(N/mm2), C is compressive strength (N/mm2), pressurized shear area (mm2), and W is the maximum load (N), respectively. The specimen was smooth finished so that both sides of the pressurized surface were perpendicular to the longitudinal axis of the specimen brick, and the entire surface was evenly pressurized, followed by a compressive strength test. As a result of measuring five specimens through an authorized analysis institute, as shown in FIG. 6 , the compressive strength was much higher than the standard compressive strength (8N/㎟) of the by-lime brick in KS L 8510, and was 10 to 17N/㎟. It was confirmed that the compressive strength was very good.

- 흡수율 - Absorption rate

흡수율은 M=(m0-m1)/m1(%)으로 구할 수 있으며, M은 흡수율(%), m0는 시험체의 표수 질량(g), m1은 시험체의 건조질량을 각각 의미한다. 시험체는 가압 양면을 시험체 벽돌의 세로축에 직각이 되도록 평활하게 마무리하고, 2시간 이상 맑은 물속에 담가 흡수시켜서 시험한다. 이와 같은 방법으로 5개의 시편을 공인분석기관을 통해 측정한 결과 도 7에 도시된 바와 같이 5∼9%의 흡수율을 나타내어, 부생석회 벽돌기준 흡수율(10% 이하)보다 훨씬 낮게 나타났다. The water absorption rate can be calculated as M = (m0-m1)/m1 (%), where M is the water absorption rate (%), m0 is the surface water mass of the specimen (g), and m1 is the dry mass of the specimen. The test specimen is tested by smoothing both sides of the pressurized side so that it is perpendicular to the vertical axis of the specimen brick, and immersing it in clear water for 2 hours or more for absorption. As a result of measuring the five specimens by an authorized analytical institution in this way, as shown in FIG. 7 , the absorption rate was 5 to 9%, which was much lower than the absorption rate (10% or less) based on the by-product lime brick.

위에서는 소성을 거치지 않은 벽돌에 대한 시험 결과인데, 소성을 거치게 되면 당연히 압축강도는 더 증가할 것으로 예상되며, 흡수율은 위의 실험과 비슷한 수준으로 형성될 것으로 예상된다. The above is the test result for bricks that have not undergone firing. Naturally, the compressive strength is expected to increase further when fired, and the absorption rate is expected to be formed at a level similar to that of the above experiment.

즉 본 발명에 의해 만들어진 벽돌은 압축강도 및 흡수율 측면에서 KS 기준을 훨씬 상회하는 물성을 나타내어 건축물에 적용할 수 있음을 확인하였다. 또한 본 발명에 따른 벽돌은 광산 부산물을 이용한 것으로 매우 경제적으로 제조가능하다는 이점도 있다. That is, it was confirmed that the bricks made by the present invention can be applied to buildings by exhibiting physical properties that far exceed the KS standards in terms of compressive strength and water absorption. In addition, the brick according to the present invention has the advantage that it can be manufactured very economically by using a by-product of a mine.

본 발명의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명이 보호범위가 제한될 수도 없음을 다시 한 번 첨언한다.The protection scope of the present invention is not limited to the description and expression of the embodiments explicitly described above. In addition, it is added once again that the protection scope of the present invention cannot be limited due to obvious changes or substitutions in the technical field to which the present invention pertains.

Claims (6)

(a)광산배수 슬러지를 건조하는 단계;
(b)건조된 슬러지에 경석과 시멘트를 혼합하여 혼합물을 형성하는 단계;
(c)상기 혼합물에 물을 첨가하는 단계;
(d)물이 첨가된 상기 혼합물을 압축 및 성형하여 벽돌 성형체를 제조하는 단계; 및
(e)상기 벽돌 성형체를 건조하는 단계;를 포함하며,
상기 혼합물은, 광산배수 슬러지 30~50중량%, 경석 20~30중량%, 시멘트 30~40중량%의 범위로 배합되는 것을 특징으로 하는 광산배수 슬러지를 이용한 벽돌 제조방법.
(a) drying the mine drainage sludge;
(b) mixing the dried sludge with pumice stone and cement to form a mixture;
(c) adding water to the mixture;
(d) preparing a brick molded body by compressing and molding the mixture to which water is added; and
(e) drying the brick molded body; including,
The mixture is 30 to 50% by weight of the mine drainage sludge, 20 to 30% by weight of pumice, and 30 to 40% by weight of cement.
제1항에 있어서,
상기 광산배수 슬러지는 함수율이 20~30% 범위로 형성될 때까지 건조하는 것을 특징으로 하는 광산배수 슬러지를 이용한 벽돌 제조방법.
According to claim 1,
The method for manufacturing bricks using the mine drainage sludge, characterized in that the mine drainage sludge is dried until the moisture content is formed in the range of 20 to 30%.
삭제delete 제1항에 있어서,
체거름을 통해 상기 광산배수 슬러지와 경석의 입도는 5mm(4mesh) 이하로 형성하는 것을 특징으로 하는 광산배수 슬러지를 이용한 벽돌 제조방법.
According to claim 1,
A method for manufacturing bricks using mine drainage sludge, characterized in that the particle size of the mine drainage sludge and pumice stone is formed to be 5 mm (4 mesh) or less through a sieve.
제1항에 있어서,
상기 혼합물에 첨가하는 물은 전체에서 5~15중량% 범위인 것을 특징으로 하는 광산배수 슬러지를 이용한 벽돌 제조방법.
According to claim 1,
Brick manufacturing method using the mine drainage sludge, characterized in that the water added to the mixture is in the range of 5 to 15% by weight of the total.
(a)광산배수 슬러지를 건조하는 단계;
(b)건조된 슬러지에 경석과 시멘트를 혼합하여 혼합물을 형성하는 단계;
(c)상기 혼합물에 물과 유기결합재를 첨가하는 단계;
(d)상기 혼합물을 압축 및 성형하여 벽돌 성형체를 제조하는 단계;
(e)상기 벽돌 성형체를 1100~1300℃로 가열 소성하는 단계; 및
(f)소성된 상기 벽돌 성형체를 냉각시키는 단계;를 포함하며,
상기 혼합물은, 광산배수 슬러지 30~50중량%, 경석 20~30중량%, 시멘트 30~40중량%의 범위로 배합되는 것을 특징으로 하는 광산배수 슬러지를 이용한 벽돌 제조방법.

(a) drying the mine drainage sludge;
(b) mixing the dried sludge with pumice stone and cement to form a mixture;
(c) adding water and an organic binder to the mixture;
(d) preparing a brick molded body by compressing and molding the mixture;
(e) heating and calcining the brick molded body at 1100-1300°C; and
(f) cooling the fired brick compact;
The mixture is 30 to 50% by weight of the mine drainage sludge, 20 to 30% by weight of pumice, and 30 to 40% by weight of cement.

KR1020200164248A 2020-11-30 2020-11-30 Method for manufacturing brick using mine drainage sludge KR102283099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200164248A KR102283099B1 (en) 2020-11-30 2020-11-30 Method for manufacturing brick using mine drainage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200164248A KR102283099B1 (en) 2020-11-30 2020-11-30 Method for manufacturing brick using mine drainage sludge

Publications (1)

Publication Number Publication Date
KR102283099B1 true KR102283099B1 (en) 2021-07-29

Family

ID=77127588

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200164248A KR102283099B1 (en) 2020-11-30 2020-11-30 Method for manufacturing brick using mine drainage sludge

Country Status (1)

Country Link
KR (1) KR102283099B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075270A (en) * 2006-09-19 2008-04-03 Dc Co Ltd Water-retentive block
KR100860017B1 (en) * 2008-01-17 2008-09-25 유종희 Soil aggregate composition for civil engineering and construction materials using process sludge and manufacturing method thereof
KR20140123789A (en) * 2013-04-15 2014-10-23 박상언 Concrete block manufacturing method using the shellfish by-products, and an industrial-waste of iron works
KR101866200B1 (en) * 2017-06-30 2018-06-15 한국과학기술연구원 Adsorbent for removal of H2S comprising mine drainage sludge and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075270A (en) * 2006-09-19 2008-04-03 Dc Co Ltd Water-retentive block
KR100860017B1 (en) * 2008-01-17 2008-09-25 유종희 Soil aggregate composition for civil engineering and construction materials using process sludge and manufacturing method thereof
KR20140123789A (en) * 2013-04-15 2014-10-23 박상언 Concrete block manufacturing method using the shellfish by-products, and an industrial-waste of iron works
KR101866200B1 (en) * 2017-06-30 2018-06-15 한국과학기술연구원 Adsorbent for removal of H2S comprising mine drainage sludge and method for preparing the same

Similar Documents

Publication Publication Date Title
CN107840623B (en) Baking-free brick prepared from waste slurry and preparation method thereof
US20150135997A1 (en) Internal curing composition for concrete mixtures
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
CN110563369B (en) Modified limestone powder, preparation method thereof and concrete
Velardo et al. Durability of concrete bearing polymer-treated mixed recycled aggregate
KR20120128624A (en) Method for preparing a composite material from waste and resulting material
CN110964534A (en) High-performance environment-friendly soft soil curing agent and preparation method thereof
JP6662046B2 (en) Method for producing solidified body containing mud
KR100836598B1 (en) A composition of concrete mortar which used waste concrete
KR102283099B1 (en) Method for manufacturing brick using mine drainage sludge
KR100599226B1 (en) The product of green planting porous concrete using industrial wastes and recycling aggregate
KR100795936B1 (en) Clay permeable block using waste clay and manufacturing method thereof
KR101069249B1 (en) Non-sintering block and method of manufacturing thereof
KR101182607B1 (en) Dehydration material of sludge with high water containing rate and method of the same using
KR101096012B1 (en) Natural friendly-concrete block with function of purificating water using composition of firm-agent and recyclable materials
WO2010087647A2 (en) Construction product material using sludge, and method for producing same
JP4462853B2 (en) Neutral solidifying material for hydrous soil, soil heavy metal elution control method and dehydration method using the same
KR102628977B1 (en) Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste
KR20160096325A (en) Cement brick having gypsum wastes and manufacturing process thereof
KR101394549B1 (en) Artificial lightweight aggregate using sewage sludge and inorganic solidfication agent and thereof
KR20180110416A (en) Manufacturing method of alkali actived hardened material using sedimentation sludge
CN114573312B (en) Method for enhancing compressive strength of lead smelting water-quenched slag-based cementing material through mechanical activation
Aziz et al. Solidification and stabilization of the incinerated wastewater sludge from textile industry
KR102631822B1 (en) Mixed composition containing inorganic waste composition, And the material using a mix composition
CN112551932B (en) Waste residue-based sludge baking-free brick additive and application method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant