KR102281404B1 - Coating method of super-hydrophobic surface - Google Patents

Coating method of super-hydrophobic surface Download PDF

Info

Publication number
KR102281404B1
KR102281404B1 KR1020190132277A KR20190132277A KR102281404B1 KR 102281404 B1 KR102281404 B1 KR 102281404B1 KR 1020190132277 A KR1020190132277 A KR 1020190132277A KR 20190132277 A KR20190132277 A KR 20190132277A KR 102281404 B1 KR102281404 B1 KR 102281404B1
Authority
KR
South Korea
Prior art keywords
coating method
plasma
superhydrophobic
surface coating
filter
Prior art date
Application number
KR1020190132277A
Other languages
Korean (ko)
Other versions
KR20210048250A (en
Inventor
최성호
이승호
김운중
김지수
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020190132277A priority Critical patent/KR102281404B1/en
Publication of KR20210048250A publication Critical patent/KR20210048250A/en
Application granted granted Critical
Publication of KR102281404B1 publication Critical patent/KR102281404B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0428Rendering the filter material hydrophobic

Abstract

본 발명은 초소수성 표면 코팅방법에 관한 것으로, 플라즈마를 이용하여 표면에 초소수성을 부여할 수 있으며, 제조공정이 간단하다. 또한 초소수성 표면을 갖는 공기정화용 필터는 초소수성 성질로 인해 1차적으로 먼지 등의 이물질 제거가 가능하여 필터의 성능을 향상시킬 수 있으며, 자가세정 효과를 갖는다.The present invention relates to a superhydrophobic surface coating method, which can impart superhydrophobicity to the surface using plasma, and the manufacturing process is simple. In addition, the filter for air purification having a superhydrophobic surface can primarily remove foreign substances such as dust due to its superhydrophobic property, thereby improving the filter's performance and has a self-cleaning effect.

Description

초소수성 표면 코팅방법{Coating method of super-hydrophobic surface}Coating method of super-hydrophobic surface

본 발명은 공기정화용 필터의 초소수성 표면 코팅방법에 관한 것이다.The present invention relates to a method for coating a superhydrophobic surface of a filter for air purification.

최근 고체 표면에서 액체의 젖음 거동(wetting behavior)을 효과적으로 제어할 수 있는 기술이 과학적·산업적 응용 측면에서 주목받고 있다. 소재 표면의 젖음성은 표면에너지에 의해 결정되거나 또는 표면의 미세구조를 마이크로와 나노 수준의 복합적인 구조로 제어함으로써 젖음성을 극도로 감소시켜 물에 대한 접촉각이 150° 이상인 초발수 표면을 구현할 수 있다. 대부분의 초발수 표면들은 자연에 존재하는 초소수성 표면 구조에 착안한 것으로, 일반적으로 초소수성을 가지는 자연 소재로는 연꽃 잎, 벼 잎, 나비나 매미의 날개 등이 있다. 실제로 연꽃 잎은 물의 접촉각(contact angle)이 161°로 초소수성을 나타내며, 이러한 성질은 연꽃 잎 표면에 형성된 마이크로와 나노 수준의 수많은 미세돌기에 기인한다. 연꽃 잎 표면의 미세돌기는 물과의 접촉 면적을 최소화하고, 소수성 물질로 코팅되어 있어 돌기 사이에 물이 들어가는 것을 막으며, 구조화된 표면으로 인해 이물질이 아주 약한 힘으로 붙어있어 물방울이 굴러 떨어지면서 이물질을 함께 제거할 수 있다. 이를 연잎효과 또는 로터스 효과(Lotus effect)라고 하며, 이는 윈도우필름, 태양전지필름, 투명전극 제조용 잉크, 디스플레이용 기능성 필름, 건축외장재, 안경, 렌즈, 카메라 등 다양한 분야에 응용될 수 있다.Recently, a technology that can effectively control the wetting behavior of a liquid on a solid surface is attracting attention in terms of scientific and industrial applications. The wettability of the surface of the material is determined by the surface energy, or by controlling the microstructure of the surface to a micro- and nano-level complex structure, the wettability is extremely reduced, and a super water-repellent surface with a contact angle to water of 150° or more can be realized. Most of the superhydrophobic surfaces are based on the superhydrophobic surface structure that exists in nature. In general, natural materials with superhydrophobicity include lotus leaves, rice leaves, and wings of butterflies and cicadas. In fact, the lotus leaf exhibits superhydrophobicity with a water contact angle of 161°, and this property is due to the numerous micro- and nano-level microprotrusions formed on the surface of the lotus leaf. The microprotrusions on the surface of the lotus leaf minimize the contact area with water and are coated with a hydrophobic material to prevent water from entering between the protrusions. Foreign substances can be removed together. This is called the lotus effect or the lotus effect, and it can be applied to various fields such as window films, solar cell films, transparent electrode manufacturing inks, display functional films, building exterior materials, glasses, lenses, and cameras.

초발수성 표면을 구현하기 위해서는 낮은 표면에너지와 높은 표면 거칠기가 요구되며, 이를 위해 나노 크기의 유/무기입자를 이용한 나노 또는 마이크로 크기의 거칠기를 가지는 방법이 보고되었다. 이는 크게 두 가지의 방법으로 나눠지며, 첫 번째는 나노 구조 표면을 만들고 낮은 표면에너지를 갖는 소재를 코팅하는 방법으로, 화학적 식각에 의해 주형 표면에 마이크로 크기의 단층 구조 및 상기 단층 구조 내 나노 크기의 홈 구조를 형성한 후 상기 식각된 주형 상에 열과 압력을 가해 폴리머 구조물을 전사하고 전사된 폴리머 구조물을 주형으로부터 떼어내는 방법이다. 나노 소재로는 불소화합물, 실리카와 탄소소재 등의 무기소재, 금속, 폴리프로필렌과 폴리스티렌 등의 고분자 재료 등이 사용되며, 일반적으로 표면에너지가 낮은 불소계 화합물이나 고분자가 널리 활용된다. 하지만 본 방법은 다양한 종류의 소재 표면에 낮은 표면에너지를 갖는 소재로 간편하게 처리함으로써 초발수 특성을 구현할 수 있는 장점이 있으나, 불소화 처리와 같은 표면의 소수화를 위한 후처리 공정이 필요하여 제조과정이 비교적 복잡하고, 대량 생산이 어려우며, 접촉각이 낮은 문제가 있다. 두 번째 방법은 낮은 표면에너지를 갖는 소재를 이용하여 직접 나노 구조 표면을 구현하는 방법이다. 이는 초발수 나노 구조 표면을 별다른 처리 없이 한 번에 구현할 수 있는 장점이 있으나 재료의 특성에 전적으로 의존하는 문제가 있다. 이 외에도 초소수성을 구현하기 위한 다양한 기술들이 개발되고 있으나, 기술적 및 경제적 측면에서 아직 미흡한 수준이다.In order to realize a superhydrophobic surface, low surface energy and high surface roughness are required, and for this purpose, a method having nano- or micro-scale roughness using nano-sized organic/inorganic particles has been reported. This is largely divided into two methods. The first is a method of making a nanostructured surface and coating a material with low surface energy, and a micro-sized single-layer structure and a nano-sized structure within the single-layer structure are formed on the surface of the mold by chemical etching. After forming the groove structure, heat and pressure are applied to the etched mold to transfer the polymer structure, and the transferred polymer structure is removed from the mold. As nanomaterials, fluorine compounds, inorganic materials such as silica and carbon materials, metals, and polymer materials such as polypropylene and polystyrene are used. In general, fluorine-based compounds or polymers with low surface energy are widely used. However, this method has the advantage of realizing super water-repellent properties by conveniently treating various types of material surfaces with materials with low surface energy, but requires a post-treatment process for hydrophobization of the surface such as fluorination treatment, so the manufacturing process is relatively simple. It is complex, difficult to mass-produce, and has a low contact angle. The second method is to directly implement a nanostructured surface using a material with low surface energy. This has the advantage of being able to implement a super water-repellent nanostructured surface at once without any special treatment, but there is a problem that it completely depends on the properties of the material. In addition to this, various technologies for implementing superhydrophobicity are being developed, but they are still insufficient in technical and economic aspects.

한편, 소재 표면 물성을 개선하는 방법 중 기본 물성에 영향을 주지 않고 표면 특성을 변화시키는 방법으로 플라즈마 표면처리 기술을 들 수 있으며, 이 방법은 특성 변화가 표면층에 국한되어 균일하게 일어나므로 처리된 표면을 안정하게 다룰 수 있음과 동시에 저온에서 안정한 모든 물질을 처리할 수 있어 표면처리의 폭 넓은 장점을 지닌다.On the other hand, among the methods of improving the surface properties of a material, a plasma surface treatment technique can be used to change the surface properties without affecting the basic properties. In this method, the property change is limited to the surface layer and occurs uniformly, so the treated surface It has a wide range of advantages in surface treatment because it can handle all materials that are stable at low temperatures and at the same time can handle all materials stably.

이에, 본 발명자는 간단한 제조공정으로 우수한 초소수성을 부여하기 위한 연구를 수행한 결과, 플라즈마 중합을 통해 초소수성 표면을 구현하여 본 발명을 완성하였다.Accordingly, the present inventors completed the present invention by realizing a superhydrophobic surface through plasma polymerization as a result of conducting research to impart excellent superhydrophobicity through a simple manufacturing process.

한국공개특허 10-2018-0031248호Korean Patent Publication No. 10-2018-0031248

본 발명은 상기 문제를 해결하기 위해 안출된 것으로, 제조공정이 간단하며, 코팅력이 우수하고, 높은 접촉각을 갖는 초소수성 표면 코팅방법을 제공하는 것을 목적으로 한다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a superhydrophobic surface coating method having a simple manufacturing process, excellent coating power, and a high contact angle.

또한, 본 발명은 상기 코팅방법에 의해 코팅되어 표면이 초소수성이며, 이로 인해 1차적으로 먼지 등의 이물질 제거가 가능하여 필터 기능이 향상된 공기정화용 필터를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide an air purifying filter with an improved filter function by being coated by the above coating method and having a superhydrophobic surface, which can primarily remove foreign substances such as dust.

상기 과제를 해결하기 위하여 본 발명은 1) 트리메틸실릴 메타크릴레이트(trimethylsilyl methacrylate)와 메틸 메타크릴레이트(methyl methacrylate)를 혼합하는 단계; 2) 상기 혼합물을 가스와 함께 플라즈마 반응기로 주입하여 기판상에 분사하는 단계; 및 3) 플라즈마 처리하여 플라즈마 중합 코팅하는 단계;를 포함하는 초소수성 표면 코팅방법을 제공한다.In order to solve the above problems, the present invention comprises the steps of: 1) mixing trimethylsilyl methacrylate and methyl methacrylate; 2) injecting the mixture together with a gas into a plasma reactor and spraying it on a substrate; And 3) plasma treatment by plasma polymerization coating; provides a superhydrophobic surface coating method comprising a.

상기 3)단계 후 상기 기판의 표면은 초소수성을 가지며, 상기 1)단계에서 트리메틸실릴 메타크릴레이트와 메틸 메타크릴레이트는 4:1 몰비로 혼합되는 것을 특징으로 한다.After step 3), the surface of the substrate has superhydrophobicity, and in step 1), trimethylsilyl methacrylate and methyl methacrylate are mixed in a molar ratio of 4:1.

상기 플라즈마는 저온 플라즈마이며, 플라즈마 처리 시간은 3분 내지 6분이고, 전력은 15 W이다.The plasma is a low-temperature plasma, the plasma treatment time is 3 to 6 minutes, and the power is 15 W.

상기 가스는 질소가스를 포함하며, 상기 기판은 유리, 금속, 부직포, 아크릴, 스판덱스, 폴리머, 세라믹, 종이, 플라스틱, 실리콘, 울, 실크, 면, 아마, 황마, 나무, 나일론 또는 활성탄소섬유를 포함한다.The gas includes nitrogen gas, and the substrate is made of glass, metal, non-woven fabric, acrylic, spandex, polymer, ceramic, paper, plastic, silicone, wool, silk, cotton, flax, jute, wood, nylon or activated carbon fiber. include

또한, 본 발명은 다른 측면에서 상기 코팅방법에 의해 코팅된 공기정화용 필터를 제공하며, 상기 공기정화용 필터의 표면은 초소수성인 것을 특징으로 한다.In another aspect, the present invention provides a filter for air purification coated by the coating method, and the surface of the filter for air purification is characterized in that it is superhydrophobic.

본 발명에 의하면, 플라즈마를 이용하여 중합 코팅함으로써 표면에 초소수성을 부여할 수 있으며, 제조공정이 간단하고, 초소수성 표면을 갖는 공기정화용 필터는 초소수성 성질로 인해 1차적으로 먼지 등의 이물질 제거가 가능하여 필터의 성능을 향상시킬 수 있으며, 자가세정 효과를 갖는다.According to the present invention, superhydrophobicity can be imparted to the surface by polymerization coating using plasma, the manufacturing process is simple, and the air purification filter having a superhydrophobic surface primarily removes foreign substances such as dust due to the superhydrophobic property It is possible to improve the performance of the filter and has a self-cleaning effect.

도 1은 본 발명의 실시예에 따른 코팅된 유리기판의 contact angle 측정 결과를 나타낸 것이다.
도 2는 본 발명의 실시예에 따른 코팅된 유리기판의 라만 측정 결과를 나타낸 것이다.
도 3은 본 발명의 실시예에 따른 코팅된 유리기판의 SEM 이미지를 나타낸 것이다.
도 4는 본 발명의 실시예에 따른 부직포 필터의 SEM 이미지를 나타낸 것이다.
1 shows a contact angle measurement result of a coated glass substrate according to an embodiment of the present invention.
2 shows a Raman measurement result of a coated glass substrate according to an embodiment of the present invention.
3 shows an SEM image of a coated glass substrate according to an embodiment of the present invention.
4 shows an SEM image of a nonwoven filter according to an embodiment of the present invention.

이하, 본 발명을 보다 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present invention will be described in more detail. In describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명은 1) 트리메틸실릴 메타크릴레이트(trimethylsilyl methacrylate)와 메틸 메타크릴레이트(methyl methacrylate)를 혼합하는 단계; 2) 상기 혼합물을 가스와 함께 플라즈마 반응기로 주입하여 기판상에 분사하는 단계; 및 3) 플라즈마 처리하여 플라즈마 중합 코팅하는 단계;를 포함하는 초소수성 표면 코팅방법을 제공한다.The present invention comprises the steps of 1) mixing trimethylsilyl methacrylate and methyl methacrylate; 2) injecting the mixture together with a gas into a plasma reactor and spraying it on a substrate; And 3) plasma treatment by plasma polymerization coating; provides a superhydrophobic surface coating method comprising a.

상기 3)단계 후 상기 기판의 표면은 초소수성을 가진다.After step 3), the surface of the substrate has superhydrophobicity.

상기 1)단계에서 트리메틸실릴 메타크릴레이트와 메틸 메타크릴레이트는 4:1 몰비로 혼합되는 것이 바람직하며, 상기 몰비로 혼합되지 않을 시 초소수성 표면이 형성되지 않거나 초소수성 성능이 저하될 수 있다.In step 1), trimethylsilyl methacrylate and methyl methacrylate are preferably mixed in a molar ratio of 4:1, and when not mixed in the molar ratio, a superhydrophobic surface may not be formed or superhydrophobic performance may be reduced.

상기 플라즈마는 저온 플라즈마인 것이 바람직하다. 플라즈마 처리 시간은 3분 내지 6분인 것이 바람직하며, 더욱 바람직하게는 4분 내지 5분일 수 있고, 가장 바람직하게는 5분일 수 있다. 플라즈마 처리 시간이 3분 미만일 경우 플라즈마 중합이 제대로 일어나지 않아 코팅이 잘 되지 않을 수 있으며, 6분 이상일 경우 기재가 손상될 수 있다.Preferably, the plasma is a low-temperature plasma. The plasma treatment time is preferably 3 to 6 minutes, more preferably 4 to 5 minutes, and most preferably 5 minutes. If the plasma treatment time is less than 3 minutes, plasma polymerization may not occur properly and coating may not be performed well. If the plasma treatment time is longer than 6 minutes, the substrate may be damaged.

상기 플라즈마 전력은 15 W인 것이 바람직하며, 상기 가스는 질소가스인 것이 바람직하다.The plasma power is preferably 15 W, and the gas is preferably nitrogen gas.

상기 기판은 유리, 금속, 부직포, 아크릴, 스판덱스, 폴리머, 세라믹, 종이, 플라스틱, 실리콘, 울, 실크, 면, 아마, 황마, 나무, 나일론 또는 활성탄소섬유를 포함할 수 있으나, 이에 제한되는 것은 아니다.The substrate may include glass, metal, non-woven fabric, acrylic, spandex, polymer, ceramic, paper, plastic, silicone, wool, silk, cotton, flax, jute, wood, nylon or activated carbon fiber, but is not limited thereto no.

또한, 본 발명은 다른 측면에서 상기 코팅방법에 의해 코팅된 공기정화용 필터를 제공하며, 상기 공기정화용 필터의 표면은 초소수성인 것이 바람직하다.In another aspect, the present invention provides a filter for air purification coated by the coating method, and it is preferable that the surface of the filter for air purification is superhydrophobic.

이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1. 코팅조성물 제조Example 1. Preparation of coating composition

주 단량체인 methyl methacrylate (이하 MMA로 약기함)에 trifluoromethyl methacrylate (이하 TFMA로 약기함) 및 trimethylsilyl methacrylate (이하 TSMA로 약기함)를 각각 하기 표 1에 기재된 비율로 혼합하였다. 또한, 가교제 역할을 하는 dimethacrylate (이하 DMA로 약기함)를 10% 비율로 추가하여 비교 분석하였다.The main monomer methyl methacrylate (hereinafter abbreviated as MMA) was mixed with trifluoromethyl methacrylate (hereinafter abbreviated as TFMA) and trimethylsilyl methacrylate (hereinafter abbreviated as TSMA) in the ratio shown in Table 1, respectively. In addition, dimethacrylate (hereinafter abbreviated as DMA) serving as a crosslinking agent was added at a ratio of 10% for comparative analysis.

하기 표 1은 실시예(1) 내지 실시예(24)의 성분별 비율을 나타낸 것이다.Table 1 below shows the ratio of each component of Examples (1) to (24).

성분ingredient 몰비molar ratio 성분대비 DMA 함량DMA content to ingredients 실시예(1)Example (1) TFMA:MMATFMA: MMA 100:0100:0 -- 실시예(2)Example (2) 80:2080:20 -- 실시예(3)Example (3) 60:4060:40 -- 실시예(4)Example (4) 40:6040:60 -- 실시예(5)Example (5) 20:8020:80 -- 실시예(6)Example (6) 0:1000:100 -- 실시예(7)Example (7) 100:0100:0 10%10% 실시예(8)Example (8) 80:2080:20 10%10% 실시예(9)Example (9) 60:4060:40 10%10% 실시예(10)Example (10) 40:6040:60 10%10% 실시예(11)Example (11) 20:8020:80 10%10% 실시예(12)Example (12) 0:1000:100 10%10% 실시예(13)Example (13) TSMA:MMATSMA: MMA 100:0100:0 -- 실시예(14)Example (14) 80:2080:20 -- 실시예(15)Example (15) 60:4060:40 -- 실시예(16)Example (16) 40:6040:60 -- 실시예(17)Example (17) 20:8020:80 -- 실시예(18)Example (18) 100:0100:0 10%10% 실시예(19)Example (19) 80:2080:20 10%10% 실시예(20)Example (20) 60:4060:40 10%10% 실시예(21)Example (21) 40:6040:60 10%10% 실시예(22)Example (22) 20:8020:80 10%10% 실시예(23)Example (23) TFMA:TSMA:MMATFMA:TSMA:MMA 80:80:2080:80:20 -- 실시예(24)Example (24) 80:80:2080:80:20 10%10%

실시예 2. 유리기판 코팅Example 2. Glass substrate coating

실린지 안에 코팅조성물을 5 mL 넣은 후 저온 AC 플라즈마 장치에 실린지 펌프를 연결하고, 질소가스를 주입하였다. 유리기판 위에 0.1 mL/sec로 10분간 플라즈마 중합 코팅하였으며, 플라즈마 장치의 전압은 15 W/A로 고정하였다.After putting 5 mL of the coating composition in the syringe, the syringe pump was connected to the low-temperature AC plasma device, and nitrogen gas was injected. Plasma polymerization coating was carried out for 10 minutes at 0.1 mL/sec on a glass substrate, and the voltage of the plasma device was fixed at 15 W/A.

실시예 3. 초소수성 평가Example 3. Superhydrophobicity evaluation

실시예(1) 내지 실시예(24)의 초소수성을 평가하기 위해 코팅조성물이 코팅된 유리기판의 contact angle 및 투과도를 측정하여 비교 분석하였으며, 코팅되지 않은 유리를 대조군으로 이용하였다.In order to evaluate the superhydrophobicity of Examples (1) to (24), the contact angle and transmittance of the glass substrate coated with the coating composition were measured and analyzed for comparison, and uncoated glass was used as a control.

하기 표 2는 접촉각 및 투과도 측정 결과를 나타낸 것이다.Table 2 below shows the contact angle and transmittance measurement results.

접촉각(°)Contact angle (°) Transmittance(%)Transmittance (%) UV(365nm)UV (365 nm) IR(940nm)IR (940 nm) VL(380~700nm)VL (380~700nm) 실시예(1)Example (1) 51.051.0 91.091.0 89.189.1 92.392.3 실시예(2)Example (2) 56.656.6 91.391.3 88.688.6 92.892.8 실시예(3)Example (3) 78.278.2 91.491.4 88.788.7 92.892.8 실시예(4)Example (4) 40.140.1 93.493.4 89.389.3 92.792.7 실시예(5)Example (5) 34.734.7 93.093.0 89.189.1 92.592.5 실시예(6)Example (6) 42.642.6 91.391.3 88.488.4 90.690.6 실시예(7)Example (7) 51.051.0 91.091.0 89.189.1 92.392.3 실시예(8)Example (8) 80.680.6 91.391.3 88.688.6 92.892.8 실시예(9)Example (9) 71.071.0 91.491.4 88.788.7 92.892.8 실시예(10)Example (10) 70.970.9 93.493.4 89.389.3 92.792.7 실시예(11)Example (11) 68.068.0 93.093.0 89.189.1 92.592.5 실시예(12)Example (12) 55.055.0 91.391.3 88.488.4 90.690.6 실시예(13)Example (13) 110110 58.458.4 87.987.9 84.184.1 실시예(14)Example (14) 153153 77.177.1 90.090.0 85.085.0 실시예(15)Example (15) 123123 69.369.3 88.788.7 88.288.2 실시예(16)Example (16) 115115 55.555.5 89.789.7 84.284.2 실시예(17)Example (17) 95.095.0 54.454.4 86.986.9 84.184.1 실시예(18)Example (18) 110110 93.093.0 89.189.1 92.592.5 실시예(19)Example (19) 101101 77.177.1 90.090.0 85.085.0 실시예(20)Example (20) 117117 69.369.3 88.788.7 88.288.2 실시예(21)Example (21) 114114 55.555.5 88.788.7 84.284.2 실시예(22)Example (22) 56.456.4 91.391.3 89.489.4 89.089.0 실시예(23)Example (23) 109109 88.188.1 90.090.0 88.088.0 실시예(24)Example (24) 111111 94.194.1 92.092.0 91.091.0 대조군control 18.518.5 99.099.0 99.099.0 99.099.0

상기 표 2 및 도 1을 참조하면, TSMA와 MMA가 혼합된 실시예(13) 내지 실시예(17)은 대략 110° 이상의 높은 접촉각을 나타내어 소수성이 우수함을 알 수 있다. 그 중 TSMA와 MMA가 80:20 비율로 혼합된 실시예(14)는 접촉각이 153°인 구 형태의 동그란 모양을 나타냈으며, 가장 초소수성에 가까운 결과를 나타내었다. 반면, TFMA와 MMA를 혼합한 경우는 접촉각이 80° 이하로 낮은 것을 확인할 수 있다.Referring to Table 2 and FIG. 1, it can be seen that Examples (13) to (17) in which TSMA and MMA are mixed exhibit a high contact angle of about 110° or more, thereby showing excellent hydrophobicity. Among them, Example 14, in which TSMA and MMA were mixed in a ratio of 80:20, exhibited a spherical, round shape with a contact angle of 153°, and showed the closest result to superhydrophobicity. On the other hand, when TFMA and MMA are mixed, it can be seen that the contact angle is as low as 80° or less.

TFMA와 MMA의 혼합물에 DMA를 첨가한 경우 여전히 낮은 접촉각을 보였으며, TSMA:MMA에 DMA를 첨가한 경우 60:40 비율로 혼합된 실시예(20)이 117°로 초소수성에 가까운 높은 접촉각을 나타내었다. 또한, 실시예(23)은 109°, 실시예(24)는 111°의 접촉각을 나타내어, 가교제 DMA의 혼합 여부는 소수성 특성에 큰 영향을 주지 않음을 확인하였다.When DMA was added to a mixture of TFMA and MMA, still showed a low contact angle, and when DMA was added to TSMA:MMA, Example (20) mixed in a 60:40 ratio showed a high contact angle close to superhydrophobicity at 117° indicated. In addition, Example 23 showed a contact angle of 109° and Example 24 had a contact angle of 111°, confirming that the mixing of the crosslinking agent DMA did not significantly affect the hydrophobic property.

반면, 코팅되지 않은 유리기판은 18.5°로 소수성이 매우 낮음을 알 수 있다.On the other hand, it can be seen that the uncoated glass substrate has very low hydrophobicity at 18.5°.

실시예 4. 코팅 확인 평가Example 4. Coating Identification Evaluation

1) 라만 분석1) Raman analysis

도 2는 코팅된 유리기판의 라만(Raman) 분석 결과를 나타낸 것으로, C-H 결합을 나타내는 1000 cm-1 피크를 확인함에 따라 유리기판 위에 코팅조성물이 코팅되었음을 알 수 있다.Figure 2 shows the results of Raman analysis of the coated glass substrate, and it can be seen that the coating composition was coated on the glass substrate by confirming the 1000 cm -1 peak indicating the CH bond.

2) 주사전자현미경(SEM) 분석2) Scanning electron microscope (SEM) analysis

주사전자현미경(SEM)을 통해 코팅조성물이 코팅된 유리기판의 정면과 측면의 SEM 이미지를 비교 분석하였다. 도 3에서 보는 바와 같이, 유리기판의 표면 위에 플라즈마 중합된 전구체들이 코팅되어 있는 것을 확인하였다. 도 3(a)는 실시예(3), 도 3(b)는 실시예(8), 도 3(c)는 실시예(20), 도 3(d)는 실시예(14), 도 3(e)는 실시예(23), 도 3(f)는 실시예(24)의 SEM 이미지이다.SEM images of the front and side surfaces of the glass substrate coated with the coating composition were compared and analyzed through a scanning electron microscope (SEM). As shown in FIG. 3 , it was confirmed that plasma-polymerized precursors were coated on the surface of the glass substrate. Fig. 3(a) is the embodiment (3), Fig. 3(b) is the embodiment (8), Fig. 3(c) is the embodiment (20), Fig. 3(d) is the embodiment (14), and Fig. 3 (e) is an SEM image of Example 23, and FIG. 3(f) is an SEM image of Example 24.

TFMA와 TSMA 비교시, TSMA가 혼합된 경우 유리기판 위에 플라즈마 중합된 전구체들이 더 많이 부착되어 있는 것을 알 수 있으며, 가교제의 유무에 따른 부착 정도는 비슷한 것으로 나타났다.When comparing TFMA and TSMA, it can be seen that when TSMA is mixed, more plasma-polymerized precursors are attached to the glass substrate, and the degree of adhesion according to the presence or absence of a crosslinking agent is similar.

한편, TFMA와 TSMA를 혼합한 경우는 TFMA를 단독으로 넣었을 때보다 전구체가 많이 형성되었지만, TSMA를 단독으로 넣었을 때보다는 오히려 형성된 전구체 양이 감소하였다. TFMA와 TSMA를 혼합하여 가교제를 첨가한 경우는 가교제를 넣지 않은 경우보다 전구체가 더 많이 형성된 것으로 나타났으나, 상기 접촉각 측정결과에서와 같이, 접촉각에는 영향을 미치지 않는 것으로 보아, 소수성 특성에는 크게 영향을 주지 않는 것으로 판단된다.On the other hand, when TFMA and TSMA were mixed, more precursors were formed than when TFMA was added alone, but the amount of precursors formed was decreased rather than when TSMA was added alone. When a crosslinking agent was added by mixing TFMA and TSMA, more precursors were formed than when no crosslinking agent was added. It is considered not to give

실시예 5. 공기정화필터 제조예 및 특성평가Example 5. Air purification filter manufacturing example and characteristic evaluation

TSMA:MMA를 80:20으로 혼합한 코팅조성물을 플라즈마 중합하여 부직포 표면에 코팅하였다. 또한, TSMA:MMA를 80:20으로 혼합한 코팅조성물에 열 개시제 AIBN 4%를 첨가한 후 부직포 필터를 상기 용액에 담갔다 빼고 건조한 후 UV램프로 3분 동안 70℃에서 열중합하였다. 상기 코팅된 부직포 필터를 SEM으로 측정하여 코팅 정도를 확인하였다.A coating composition in which TSMA:MMA was mixed in an 80:20 ratio was plasma-polymerized and coated on the surface of the nonwoven fabric. In addition, 4% of the thermal initiator AIBN was added to the coating composition in which TSMA:MMA was mixed at 80:20, and then the nonwoven filter was immersed in the solution and dried, and then thermally polymerized at 70° C. for 3 minutes with a UV lamp. The coating degree was confirmed by measuring the coated nonwoven filter by SEM.

도 4(a)는 코팅하지 않은 부직포 필터의 SEM 이미지로, 부직포 섬유가 코팅되지 않은 것을 확인할 수 있다. 도 4(b)는 UV를 이용하여 코팅한 것으로, 부직포 섬유 사이의 빈 공간에 폴리머가 형성되었으나, 부직포 섬유 가닥에는 적게 코팅된 것을 알 수 있다. 반면, 플라즈마 중합으로 코팅된 부직포 필터는, 도 4(c)에서 보듯이, 부직포 필터의 섬유에 고르게 잘 코팅된 것을 확인하였다.Figure 4 (a) is an SEM image of the non-coated non-woven filter, it can be confirmed that the non-woven fiber is not coated. FIG. 4(b) shows that the coating was performed using UV, and although the polymer was formed in the empty space between the nonwoven fibers, it can be seen that the nonwoven fiber strands were less coated. On the other hand, it was confirmed that the nonwoven filter coated by plasma polymerization was coated evenly and well on the fibers of the nonwoven filter, as shown in FIG. 4(c) .

종합해 볼 때, 접촉각이 낮은 표면보다 접촉각이 높은 표면에서 더 많은 전구체들이 코팅되는 것을 확인할 수 있으며, 코팅력이 우수함을 알 수 있다. 이에 따라 공기정화용 필터 표면에 초소수성을 부여하여 1차적으로 먼지 등의 이물질을 제거함으로써 필터의 성능이 개선될 것으로 기대된다.Taken together, it can be seen that more precursors are coated on the surface with a high contact angle than on the surface with a low contact angle, and it can be seen that the coating power is excellent. Accordingly, it is expected that the performance of the filter will be improved by providing superhydrophobicity to the surface of the air purifying filter to primarily remove foreign substances such as dust.

이상, 본 발명을 예시적으로 설명하였으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.Above, the present invention has been described by way of example, and various modifications will be possible without departing from the essential characteristics of the present invention by those of ordinary skill in the art to which the present invention pertains. Accordingly, the embodiments disclosed in the present specification are intended to illustrate, not to limit the present invention, and the spirit and scope of the present invention are not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technologies within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (10)

1) 트리메틸실릴 메타크릴레이트(trimethylsilyl methacrylate)와 메틸 메타크릴레이트(methyl methacrylate)를 혼합하는 단계;
2) 상기 1) 단계에 의해 준비된 혼합물을 가스와 함께 플라즈마 반응기로 주입하여 기판상에 분사하는 단계; 및
3) 상기 반응기 내의 플라즈마 처리에 의해 플라즈마 중합 코팅하는 단계;를 포함하는 것을 특징으로 하는 초소수성 표면 코팅방법
1) mixing trimethylsilyl methacrylate and methyl methacrylate;
2) injecting the mixture prepared in step 1) into a plasma reactor together with a gas and spraying it on a substrate; and
3) superhydrophobic surface coating method comprising a; plasma polymerization coating by plasma treatment in the reactor
제1항에 있어서, 상기 3)단계 후 상기 기판의 표면이 초소수성을 갖는 것을 특징으로 하는 초소수성 표면 코팅방법
The superhydrophobic surface coating method according to claim 1, wherein the surface of the substrate has superhydrophobicity after step 3)
제1항에 있어서, 상기 1) 단계에서 트리메틸실릴 메타크릴레이트와 메틸 메타크릴레이트가 4:1 몰비로 혼합되는 것을 특징으로 하는 초소수성 표면 코팅방법
The superhydrophobic surface coating method according to claim 1, wherein in step 1) trimethylsilyl methacrylate and methyl methacrylate are mixed in a molar ratio of 4:1
제1항에 있어서, 상기 3) 단계에서 플라즈마 처리 시간은 3분 내지 6분인 것을 특징으로 하는 초소수성 표면 코팅방법
The superhydrophobic surface coating method according to claim 1, wherein the plasma treatment time in step 3) is 3 to 6 minutes.
제1항에 있어서, 상기 플라즈마는 저온 플라즈마인 것을 특징으로 하는 초소수성 표면 코팅방법
The superhydrophobic surface coating method according to claim 1, wherein the plasma is a low-temperature plasma.
제1항에 있어서, 상기 플라즈마 처리 전력은 15 W인 것을 특징으로 하는 초소수성 표면 코팅방법
The superhydrophobic surface coating method according to claim 1, wherein the plasma treatment power is 15 W.
제1항에 있어서, 상기 가스는 질소가스를 포함하는 것을 특징으로 하는 초소수성 표면 코팅방법
The superhydrophobic surface coating method according to claim 1, wherein the gas comprises nitrogen gas.
제1항에 있어서, 상기 기판은 유리, 금속, 부직포, 아크릴, 스판덱스, 종이, 플라스틱, 실리콘, 울, 실크, 면, 아마, 황마, 나무, 나일론 및 활성탄소섬유로 이루어진 군에서 어느 하나인 것을 특징으로 하는 초소수성 표면 코팅방법
According to claim 1, wherein the substrate is any one from the group consisting of glass, metal, non-woven fabric, acrylic, spandex, paper, plastic, silicone, wool, silk, cotton, flax, jute, wood, nylon and activated carbon fiber Superhydrophobic surface coating method characterized by
제1항 내지 제8항 중 어느 한 항에 따른 코팅방법으로 코팅된 공기정화용 필터
A filter for air purification coated with the coating method according to any one of claims 1 to 8
제9항에 있어서, 상기 필터의 표면은 초소수성인 것을 특징으로 하는 공기정화용 필터
The filter for air purification according to claim 9, wherein the surface of the filter is superhydrophobic.
KR1020190132277A 2019-10-23 2019-10-23 Coating method of super-hydrophobic surface KR102281404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190132277A KR102281404B1 (en) 2019-10-23 2019-10-23 Coating method of super-hydrophobic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190132277A KR102281404B1 (en) 2019-10-23 2019-10-23 Coating method of super-hydrophobic surface

Publications (2)

Publication Number Publication Date
KR20210048250A KR20210048250A (en) 2021-05-03
KR102281404B1 true KR102281404B1 (en) 2021-07-26

Family

ID=75910786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190132277A KR102281404B1 (en) 2019-10-23 2019-10-23 Coating method of super-hydrophobic surface

Country Status (1)

Country Link
KR (1) KR102281404B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160333258A1 (en) 2015-05-13 2016-11-17 Preferred Technology, Llc Hydrophobic Coating of Particulates for Enhanced Well Productivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100001034A (en) * 2008-06-26 2010-01-06 주식회사 엔에코 Air cleaner having a repellent coating and low temperature catalyst
KR20180031248A (en) 2016-09-19 2018-03-28 성균관대학교산학협력단 A ultrahydrophobic thin film, use of protection for electrochromic smart window surface and a preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160333258A1 (en) 2015-05-13 2016-11-17 Preferred Technology, Llc Hydrophobic Coating of Particulates for Enhanced Well Productivity

Also Published As

Publication number Publication date
KR20210048250A (en) 2021-05-03

Similar Documents

Publication Publication Date Title
Ren et al. CuO nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property
Yoo et al. A stacked polymer film for robust superhydrophobic fabrics
Xu et al. Oil-repellent antifogging films with water-enabled functional and structural healing ability
Wang et al. A robust transparent and anti-fingerprint superhydrophobic film
Lu et al. One-step facile route to fabricate functionalized nano-silica and silicone sealant based transparent superhydrophobic coating
KR101587308B1 (en) Coating composition, method of antifouling treatment and antifouling substrate
US20050084653A1 (en) Shaped bodies with self-cleaning properties and method for the production of such shaped bodies
TWI551307B (en) Medical device and method for producing the same
Ai et al. Biomimetic polymeric superamphiphobic surfaces: their fabrication and applications
Xi et al. Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2, 2, 2‐trifluoroethyl methacrylate
KR20150089990A (en) Superhydrophobic Surface Body and Method for Fabricating Superhydrophobic Surface Body Using iCVD
Luo et al. Transparent super-repellent surfaces with low haze and high jet impact resistance
CN110885398A (en) Preparation method of antibacterial cationic fluoropolymer microsphere emulsion
Hegemann et al. Plasma surface engineering for manmade soft materials: A review
Chen et al. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage
CN110885592A (en) Super-hydrophobic antibacterial cationic fluoropolymer nano-coating
CN111501023A (en) Hydrophilic antifogging film layer, preparation method, application and product thereof
Liu et al. Transparent grafted zwitterionic copolymer coatings that exhibit both antifogging and self-cleaning properties
KR102281404B1 (en) Coating method of super-hydrophobic surface
Li et al. Superhydrophilic and underwater superoleophobic poly (propylene) nonwoven coated with TiO2 by atomic layer deposition
CN108300083B (en) Fluorine-containing copolymer/nano SiO2Super-hydrophobic coating and preparation method thereof
KR102054856B1 (en) Method of Body Having Robust Superomniphobic Surfaces By Using Localized Photofluidization of Azobenzene-Containing Polymer
Joghee et al. Superhydrophobic coatings based on pseudoboehmite nanoflakelets for sustainable photovoltaic energy production
Xu et al. Nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated using a combination of etching method and mist polymerization technology
Hamada et al. Robust and transparent antifogging polysilsesquioxane film containing a hydroxy group

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant