KR102278139B1 - Method for measuring dispersion stability of asphaltene in oils - Google Patents

Method for measuring dispersion stability of asphaltene in oils Download PDF

Info

Publication number
KR102278139B1
KR102278139B1 KR1020190177996A KR20190177996A KR102278139B1 KR 102278139 B1 KR102278139 B1 KR 102278139B1 KR 1020190177996 A KR1020190177996 A KR 1020190177996A KR 20190177996 A KR20190177996 A KR 20190177996A KR 102278139 B1 KR102278139 B1 KR 102278139B1
Authority
KR
South Korea
Prior art keywords
oil
measuring
solution
transmittance
coagulant
Prior art date
Application number
KR1020190177996A
Other languages
Korean (ko)
Other versions
KR20210085204A (en
Inventor
고강석
노남선
김광호
권은희
임석현
하이 흥 팜
안 중 팜
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020190177996A priority Critical patent/KR102278139B1/en
Publication of KR20210085204A publication Critical patent/KR20210085204A/en
Application granted granted Critical
Publication of KR102278139B1 publication Critical patent/KR102278139B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 아스팔텐을 포함하는 경질화 처리된 유분내 아스팔텐의 분산 안정성 측정 방법에 관한 것으로, 상기 유분을 용해제로 용해하여 용해액을 얻는 단계; 상기 용해액에 응집제를 가하면서 상기 용해액의 자외선 투과도를 측정하는 단계; 및 상기 응집제의 투입량 및 자외선 투과도의 변화로부터 상기 유분의 아스팔텐의 분산 안정성을 측정하는 단계를 포함하며, 상기 자외선 투과도 측정에서 상기 용해액의 자외선 경로길이(path length)는 0.3mm 내지 0.7mm이다.The present invention relates to a method for measuring dispersion stability of asphaltenes in a hardened oil containing asphaltenes, comprising the steps of: dissolving the oil with a solubilizing agent to obtain a solution; measuring the ultraviolet transmittance of the solution while adding a coagulant to the solution; and measuring the dispersion stability of the asphaltenes in the oil from the change in the amount of the coagulant and the ultraviolet transmittance, wherein the ultraviolet path length of the solution in the ultraviolet transmittance measurement is 0.3 mm to 0.7 mm .

Description

유분의 아스팔텐 분산 안정성 측정 방법{Method for measuring dispersion stability of asphaltene in oils}Method for measuring dispersion stability of asphaltene in oils

본 발명은 유분내 아스팔텐의 분산 안정성 측정 방법에 관한 것이다.The present invention relates to a method for measuring dispersion stability of asphaltenes in oil.

감압잔사유와 같은 중질유분을 열분해 또는 수첨분해를 통해 경질화(고도화)하는 공정이 많이 수행되고 있다.There are many processes of lightening (advanced) heavy oil components such as vacuum residue through thermal decomposition or hydrocracking.

경질화된 유분은 조성 변화로 인해 아스팔텐 침전 현상이 발생한다. 아스팔텐 침전은 장치 내 침적, 파울링 현상, 촉매 불활성화 등 공정상 문제점을 야기한다. 따라서 경질화된 유분의 아스팔텐 안정성을 정확히 측정하는 것이 중요하다.As for the hardened oil, asphaltene precipitation occurs due to the change in composition. Asphaltene precipitation causes process problems such as deposition in the device, fouling, and catalyst deactivation. Therefore, it is important to accurately measure the asphaltene stability of the hardened oil.

잔사유내 총 침전물 함량을 측정하는 ASTM D4870 방법이 있다. 이 방법에서는 침전물 함량의 hot filtration 방식으로 측정한다. 그러나 이 방법에서는 점도가 높거나(55 cSt at 100 ℃ 이상) 침전물 함량이 많은 경우(0.5 wt% 이상)에는 측정이 불가한 문제가 있다.There is an ASTM D4870 method for determining the total sediment content in the resid. In this method, the sediment content is measured by hot filtration. However, this method has a problem in that it cannot be measured when the viscosity is high (55 cSt at 100 °C or more) or the sediment content is high (0.5 wt% or more).

아스팔텐의 분산 안정성 측정 방법으로는 D6703, D7157(S-value) 및 D7112 (P-value)등이 있다. 그러나 이들 방법은 경질화 처리된 유분에 비해 안정성이 높은 Crude Oil, Asphalt, Residual Product에 대해서만 분산 안정성이 측정 가능하다. 이들 방법에서 경질화된 유분을 실험하면 막힘 현상이 발생하거나 피크 관찰이 불가한 문제가 있다. Methods for measuring dispersion stability of asphaltenes include D6703, D7157 (S-value) and D7112 (P-value). However, these methods can measure dispersion stability only for crude oil, asphalt, and residual products, which have higher stability than hardened oil. In these methods, when the hardened oil is tested, there is a problem that clogging occurs or peak observation is impossible.

미국특허공개 제2019-0113473호(2019.04.18. 공개)US Patent Publication No. 2019-0113473 (published on April 18, 2019)

본 발명의 목적은 경질화 처리된 유분내 아스팔텐의 분산 안정성을 측정하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for measuring the dispersion stability of asphaltenes in hardened oil.

상기 본 발명의 목적은 아스팔텐을 포함하는 경질화 처리된 유분내 아스팔텐의 분산 안정성 측정 방법에 있어서, 상기 유분을 용해제로 용해하여 용해액을 얻는 단계; 상기 용해액에 응집제를 가하면서 상기 용해액의 자외선 투과도를 측정하는 단계; 및 상기 응집제의 투입량 및 자외선 투과도의 변화로부터 상기 유분의 아스팔텐의 분산 안정성을 측정하는 단계를 포함하며, 상기 자외선 투과도 측정에서 상기 용해액의 자외선 경로길이(path length)는 0.3mm 내지 0.7mm인 것에 의해 달성된다.An object of the present invention is to provide a method for measuring dispersion stability of asphaltenes in a hardened oil containing asphaltenes, comprising: dissolving the oil with a solubilizing agent to obtain a solution; measuring the ultraviolet transmittance of the solution while adding a coagulant to the solution; and measuring the dispersion stability of the asphaltenes in the oil from the change in the amount of the coagulant and the ultraviolet transmittance, wherein the ultraviolet path length of the solution in the ultraviolet transmittance measurement is 0.3 mm to 0.7 mm. achieved by

상기 용해제는 아로마틱 계열의 용매를 포함하고, 상기 응집제는 파라핀 계열의 용매를 포함하며, 상기 용해액 내의 측정 유분의 농도는 5중량% 내지 50중량%일 수 있다.The dissolving agent includes an aromatic solvent, the coagulant includes a paraffin-based solvent, and the concentration of the measured oil in the solution may be 5 wt% to 50 wt%.

상기 자외선 투과도 측정은 상기 용해액을 자외선 투과도를 측정하는 플로우 셀에 순환시키면서 수행되며, 상기 용해제를 이용하여 자외선 투과도를 안정시키는 단계를 더 포함할 수 있다.The UV transmittance measurement is performed while circulating the solution in a flow cell for measuring UV transmittance, and may further include the step of stabilizing the UV transmittance using the dissolving agent.

상기 유분은 중질유분을 경질화해서 얻은 것이며, 아스팔텐 함량이 0.5 wt.% 이상이거나 침전물 함량이 0.1 wt.%(filter size 1.6μm [ASTM D4870]) 이상일 수 있다.The fraction is obtained by lightening the heavy fraction, and may have an asphaltene content of 0.5 wt.% or more or a sediment content of 0.1 wt.% (filter size 1.6μm [ASTM D4870]) or more.

상기 중질유분은 감압잔사유를 포함하며, 상기 유분은 상기 감압잔사유를 수첨분해 또는 열분해하여 얻을 수 있다.The heavy fraction includes reduced pressure residue, and the fraction may be obtained by hydrocracking or pyrolysis of the reduced pressure residual oil.

상기 용해제는 톨루엔을 포함하고, 상기 응집제는 노말헵탄을 포함할 수 있다.The dissolving agent may include toluene, and the flocculant may include n-heptane.

본 발명에 따르면 경질화된 유분내 아스팔텐의 분산 안정성을 측정하는 방법을 제공함으로써 공정내 반응기, 탱크, 이송라인 등에서 유분의 상분리 여부를 판단하기 위한 정보를 제공할 수 있다.According to the present invention, by providing a method for measuring the dispersion stability of asphaltenes in the hardened oil, information for determining whether the oil is phase separated in a reactor, a tank, a transfer line, etc. in the process can be provided.

도 1은 본 발명의 일 실시예에 따른 안정성 측정방법을 나타낸 순서도이고,
도 2는 본 발명의 일 실시예에 따른 안정성 측정을 위한 측정 장치의 모식도이고,
도 3은 본 발명의 실험예 1에서 경질화된 유분의 자외선 경로길이에 따른 투과도 변화를 나타낸 것이고,
도 4는 본 발명의 실험예 2에서 경질화된 유분의 1mm 자외선 경로길이에서의 투과도 변화를 나타낸 것이고,
도 5는 본 발명의 실험예에서 경질화된 유분의 용해액 농도에 따른 투과도 변화를 나타낸 것이다.
1 is a flowchart showing a method for measuring stability according to an embodiment of the present invention;
2 is a schematic diagram of a measuring device for measuring stability according to an embodiment of the present invention;
3 shows the change in transmittance according to the UV path length of the hardened oil in Experimental Example 1 of the present invention;
Figure 4 shows the change in transmittance in the 1mm UV path length of the hardened oil in Experimental Example 2 of the present invention,
Figure 5 shows the change in permeability according to the concentration of the solution of the hardened oil in the experimental example of the present invention.

이하 도면을 참조하여 본 발명에 따른 유분의 안정성 측정방법을 설명한다.Hereinafter, a method for measuring the stability of an oil according to the present invention will be described with reference to the drawings.

도 1은 본 발명의 일 실시예에 따른 안정성 측정방법을 나타낸 순서도이다.1 is a flowchart illustrating a method for measuring stability according to an embodiment of the present invention.

먼저, 유분의 용해액을 마련한다(S100).First, a solution of oil is prepared (S100).

본 발명에서의 측정 대상은 아스팔텐을 포함하며 경질화 처리된 유분이다. 아스팔텐은 노말 펜탄에 녹지 않는 물질로 정의한다. 측정 대상 유분은 중질유분을 경질화(고도화)한 유분일 수 있다. 측정 대상 유분은, 이에 한정되지 않으나, 유분을 수첨분해하거나 열처리한 것일 수 있다. 또는 delayed coker 생성물 또는 visbreaker 생성물일 수 있다.An object to be measured in the present invention is an oil that contains asphaltenes and has been hardened. Asphaltene is defined as a substance that does not dissolve in normal pentane. The oil to be measured may be an oil obtained by lightening (advancing) a heavy oil. The oil to be measured is not limited thereto, but may be hydrolyzed or heat-treated. or a delayed coker product or a visbreaker product.

측정 대상 유분은 아스팔텐 함량 0.5 wt.% 이상이거나 침전물 함량 0.1 wt.%(filter size 1.6μm [ASTM D4870])이상일 수 있다. 침전물 함량은, 이에 한정되지 않으나, 0.1 wt.% 내지 20 wt.% 또는 0.5wt.% 내지 20wt.%일 수 있다.The oil to be measured may have an asphaltene content of 0.5 wt.% or more or a sediment content of 0.1 wt.% (filter size 1.6μm [ASTM D4870]) or more. The sediment content may be, but not limited to, 0.1 wt.% to 20 wt.% or 0.5 wt.% to 20 wt.%.

용해액(측정유분과 아로마틱 용매 혼합물)은 유분을 용해제로 용해시켜 마련한다. 용해제는 아로마틱 용매로서, 이에 한정되지 않으나, 톨루엔일 수 있다. 용해액의 유분 농도는 3중량% 내지 30중량%, 5중량% 내지 20중량%일 또는 5중량% 내지 50중량%일 수 있다. 용해액의 유분 농도가 높을 경우 높은 점도로 인해 용해액의 순환이 어려울 수 있다. 용해액의 유분 농도가 낮을 경우 농도 차이에 따른 자외선 투과도 피크 발생 시점 변화가 작아 실험 오차가 발생할 수 있다. The solution (mixture of the measuring oil and the aromatic solvent) is prepared by dissolving the oil with a solvent. The solubilizing agent is an aromatic solvent, but is not limited thereto, and may be toluene. The oil concentration of the solution may be 3 wt% to 30 wt%, 5 wt% to 20 wt%, or 5 wt% to 50 wt%. When the concentration of oil in the solution is high, circulation of the solution may be difficult due to high viscosity. When the oil concentration of the solution is low, the change in the time of occurrence of the UV transmittance peak according to the concentration difference is small, which may cause experimental errors.

이후 응집제를 가하면서 용해액의 자외선 투과도를 측정한다(S200). 응집제는 파라핀 용매로서, 이에 한정되지는 않으나, 노말 헵탄일 수 있다. 측정 전에 용해제 만을 사용하여 자외선 투과도를 안정화시킬 수 있으며, 용해액을 대상으로도 자외선 투과도를 일정한 수준으로 안정화시킬 수 있다.Then, while adding the coagulant, the ultraviolet transmittance of the solution is measured (S200). The flocculant is a paraffin solvent, which may be, but is not limited to, normal heptane. UV transmittance can be stabilized by using only a solubilizer before measurement, and UV transmittance can be stabilized to a certain level even with a solution.

응집제는 일정한 속도로 용해액에 가해진다. 용해액의 자외선 투과도 측정은 플로우 셀(flow cell)에 용해액을 통과시키면서 수행된다. 플로우 셀의 자외선 경로길이(path length)는 0.3mm 내지 0.7mm일 수 있다. 자외선 경로길이가 0.3mm보다 작으면 셀의 막힘 현상이 발생할 수 있으며, 1mm보다 크면 자외선 투과도 변화가 명확하지 않을 수 있다.The flocculant is added to the solution at a constant rate. Measurement of the ultraviolet transmittance of the solution is performed while passing the solution through a flow cell. The UV path length of the flow cell may be 0.3 mm to 0.7 mm. If the UV path length is less than 0.3 mm, clogging of the cell may occur, and if it is larger than 1 mm, the change in UV transmittance may not be clear.

이후 측정된 응집제 사용량과 자외선 투과도 변화로부터 유분의 안정성을 측정한다(S300).Then, the stability of the oil is measured from the measured amount of coagulant and the change in UV transmittance (S300).

응집제의 투입량이 증가하면 초기에는 희석효과에 의해 투과도가 증가하기 시작하며, 이후 응집이 발생하면 생겨난 입자들로 인해 투과도가 감소한다. 용해액의 농도(사용된 톨루엔양/유분양)와 투과도 감소시점까지의 응집제 사용량으로부터 유분의 안정성을 측정할 수 있으며, 구체적인 방법은 당업자가 적절히 조절할 수 있다.When the amount of coagulant is increased, the permeability starts to increase initially due to the dilution effect, and then, when agglomeration occurs, the permeability decreases due to the generated particles. The stability of the oil can be measured from the concentration of the solution (the amount of toluene used / the amount of oil used) and the amount of the coagulant used until the time of the decrease in permeability, and the specific method can be appropriately adjusted by those skilled in the art.

이상 본 발명에 따른 측정방법을 사용하면 아스팔텐을 포함하며 경질화 처리된 유분내 아스팔텐 분산 안정성을 용이하게 측정할 수 있다.As described above, by using the measuring method according to the present invention, it is possible to easily measure the dispersion stability of asphaltenes in oil that contains asphaltenes and has been hardened.

도 2는 본 발명의 일 실시예에 따른 아스팔텐의 분산 안정성 측정을 위한 측정 장치의 모식도이다.2 is a schematic diagram of a measuring device for measuring dispersion stability of asphaltenes according to an embodiment of the present invention.

측정장치(1)는 용해액 탱크(10), 플로우셀(20) 및 응집제 탱크(30)를 포함한다. 도면에서는 유체이동 및 제어를 위한 펌프 및 유량계 등의 구성을 생략하였으며, 자외선 조사 및 투과도 측정장치의 구성도 생략하였다.The measuring device 1 includes a solution tank 10 , a flow cell 20 , and a coagulant tank 30 . In the drawings, the configuration of the pump and the flow meter for fluid movement and control is omitted, and the configuration of the ultraviolet irradiation and transmittance measuring device is also omitted.

용해액은 용해액 탱크(10)와 플로우셀(20) 사이를 순환한다. 플로우셀(20)에는 자외선 투과창(21)이 마련되어 있다.The lysate circulates between the lysate tank 10 and the flow cell 20 . The flow cell 20 is provided with an ultraviolet transmission window 21 .

응집제 탱크(30)의 응집제는 정량펌프를 이용하여 용해액 탱크(10)에 공급된다. 용해액 탱크(10)에는, 도시하지는 않았지만, 교반장치가 마련되어 있을 수 있다.The coagulant of the coagulant tank 30 is supplied to the solution tank 10 using a metering pump. The solution tank 10, although not shown, may be provided with a stirring device.

이하 실험예를 통하여 본 발명의 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through experimental examples.

UV장치는 동일시마즈의 UV-2700, 740nm를 사용하였으며, 플로우셀은 Starna의 type74.4, Quarz를 사용하였다. 응집제의 주입은 TELEDYNE D-SETIES의 실린지 펌프를 사용하였다.UV-2700, 740nm from Dongil Shimadzu was used as the UV device, and Starna type74.4, Quarz was used for the flow cell. The coagulant was injected using a syringe pump of TELEDYNE D-SETIES.

먼저, 톨루엔을 플로우 셀(10)에 순환시켜 자외선 장치의 영점(투과도 100%)을 잡아주었다.First, toluene was circulated in the flow cell 10 to set the zero point (transmittance 100%) of the UV device.

바이알에 유분과 톨루엔을 투입 후 20℃, 500rpm 조건에서 완전히 용해시켰다. 용해액을 용해액 탱크(10)에 주입하고 플로우 셀(10)에 순환시키면서 투과도를 안정화시킨다.After adding oil and toluene to the vial, it was completely dissolved at 20 °C and 500 rpm. The lysate is injected into the lysate tank 10 and circulated in the flow cell 10 to stabilize the permeability.

투과도가 안정화된 후 응집제 탱크(30) 내에 있는 노말 헵탄을 용해액 탱크(10)로 주입(적정)하면서 투과도를 관찰했다. 응집이 발생하여 자외선 투과도가 확실히 감소됨이 확인되면 실험을 종료하였다.After the permeability was stabilized, normal heptane in the coagulant tank 30 was injected (titrated) into the solution tank 10, and the permeability was observed. When it was confirmed that aggregation occurred and the UV transmittance was clearly reduced, the experiment was terminated.

실험에서 톨루엔은 3ml를 사용했으며, 노말헵탄의 주입속도는 0.3ml/min였다.In the experiment, 3 ml of toluene was used, and the injection rate of n-heptane was 0.3 ml/min.

측정 대상 유분은 감압잔사유를 수첨분해하여 경질화한 유분을 사용하였다.As the oil to be measured, an oil obtained by hydrolysis of reduced pressure residue was used.

감압잔사유는 정유사로부터 공급받았으며, 조성은 VGO-343~524℃ 20.1%, VR-524℃+ 79.9%였다. The vacuum residue was supplied from an oil refinery and the composition was VGO-343~524℃ 20.1%, VR-524℃+79.9%.

실험예 1Experimental Example 1

경질화된 유분에 대해 11% 농도에서 자외선 경로길이에 따른 투과도 변화를 관찰하였다.For the hardened oil, a change in transmittance according to the UV path length was observed at a concentration of 11%.

경질화된 유분은 감압잔사유를 405℃, 160기압에서 1시간 수첨반응시켜 얻었다. 아스팔텐 함량은 9.8wt.%이며 침전물 함량은 0.3 wt.%였다. 자외선 경로길이는 0.2mm, 0.5mm 및 1mm의 세 가지로 변화시켰다.The lightened fraction was obtained by hydrogenating the vacuum residue at 405°C and 160 atm for 1 hour. The asphaltene content was 9.8 wt.% and the precipitate content was 0.3 wt.%. The UV path length was changed to 0.2 mm, 0.5 mm and 1 mm.

실험결과 자외선 경로길이 0.2mm에서는 막힘 현상이 관찰되어 투과도 변화를 관찰할 수 없었다.As a result of the experiment, clogging was observed at the UV path length of 0.2 mm, so no change in transmittance could be observed.

도 3은 본 발명의 실험예에서 경질화된 유분의 자외선 경로길이에 따른 투과도 변화를 나타낸 것이다.3 shows the change in transmittance according to the UV path length of the hardened oil in the experimental example of the present invention.

도 3과 같이 0.5mm인 경우 자외선 투과도 변화를 분명하게 확인할 수 있으나, 1mm인 경우 자외선 투과도 변화가 불분명하였다.As shown in FIG. 3 , a change in UV transmittance was clearly confirmed in the case of 0.5 mm, but the change in UV transmittance was unclear in the case of 1 mm.

실험예 2Experimental Example 2

실험예 1과 다른 조건에서 경질화된 유분에 대해 자외선 경로길이 0.2mm 및 1mm에서 투과도 변화를 관찰하였다.For the hardened oil under conditions different from those of Experimental Example 1, changes in transmittance were observed at the UV path lengths of 0.2 mm and 1 mm.

경질화된 유분은 감압잔사유를 440℃, 180기압에서 3시간 수첨반응시켜 얻었다. 아스팔텐 함량은 6.7wt.%이며 침전물 함량은 1.3 wt.%였다.The lightened fraction was obtained by hydrogenating the vacuum residue at 440°C and 180 atm for 3 hours. The asphaltene content was 6.7 wt.% and the precipitate content was 1.3 wt.%.

자외선 경로길이 0.2mm에서는 막힘 현상으로 인해 투과도 변화를 관찰할 수 없었다.At the UV path length of 0.2 mm, no change in transmittance could be observed due to clogging.

도 4는 실험예 2에서 경질화된 유분의 1mm 자외선 경로길이에서의 투과도 변화를 나타낸 것이다.Figure 4 shows the change in transmittance in the 1mm UV path length of the hardened oil in Experimental Example 2.

자외선 투과도 변화는 관찰이 되나 투과도의 변화지점을 관측할 수 없었다.A change in UV transmittance was observed, but the point of change in transmittance could not be observed.

실험예 3Experimental Example 3

경질화된 유분에 대해 용해액 농도를 변화하면서 투과도 변화를 관찰하였다.The permeability change was observed while changing the concentration of the solution for the hardened oil.

경질화된 유분은 감압잔사유를 405℃, 160기압에서 2시간 수첨반응시켜 얻었다. 아스팔텐 함량은 9.4wt.%이며 침전물 함량은 0.44 wt.%였다.The lightened fraction was obtained by hydrogenating the vacuum residue at 405° C. and 160 atm for 2 hours. The asphaltene content was 9.4 wt.% and the precipitate content was 0.44 wt.%.

용해액의 농도는 11중량%, 21중량% 및 28중량%였으며, 자외선 경로길이는 0.5mm였다.The concentration of the solution was 11 wt%, 21 wt% and 28 wt%, and the UV path length was 0.5 mm.

도 5는 본 발명의 실험예에서 경질화된 유분의 용해액 농도에 따른 투과도 변화를 나타낸 것이다.Figure 5 shows the change in permeability according to the concentration of the solution of the hardened oil in the experimental example of the present invention.

11중량%에서 투과도 변화가 분명하게 관찰되며, 28중량%까지도 투과도 변화를 관찰할 수 있음을 알 수 있다.It can be seen that a change in transmittance is clearly observed at 11 wt%, and a change in transmittance can be observed up to 28 wt%.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited by the above-described embodiments and the accompanying drawings, and it is common in the technical field to which the present invention pertains that various substitutions, modifications and changes are possible within the scope without departing from the technical spirit of the present invention. It will be clear to those who have the knowledge of

Claims (6)

아스팔텐을 포함하는 경질화 처리된 유분내 아스팔텐의 분산 안정성 측정 방법에 있어서,
상기 유분을 용해제로 용해하여 용해액을 얻는 단계;
상기 용해액에 응집제를 가하면서 상기 용해액의 자외선 투과도를 측정하는 단계; 및
상기 응집제의 투입량 및 자외선 투과도의 변화로부터 상기 유분의 아스팔텐의 분산 안정성을 측정하는 단계를 포함하며,
상기 자외선 투과도 측정에서 상기 용해액의 자외선 경로길이(path length)는 0.3mm 내지 0.7mm이며,
상기 유분은 중질유분을 경질화해서 얻은 것이며,
아스팔텐 함량이 0.5 wt.% 이상이거나 침전물 함량이 0.1 wt.%(filter size 1.6μm [ASTM D4870]) 이상인 측정 방법.
A method for measuring dispersion stability of asphaltenes in a hardened oil containing asphaltenes,
dissolving the oil with a dissolving agent to obtain a solution;
measuring the ultraviolet transmittance of the solution while adding a coagulant to the solution; and
Measuring the dispersion stability of asphaltenes in the oil from the change in the amount of the coagulant and the UV transmittance,
In the UV transmittance measurement, the UV path length of the solution is 0.3 mm to 0.7 mm,
The oil is obtained by lightening the heavy oil,
Measuring method with an asphaltene content of 0.5 wt.% or more or a sediment content of 0.1 wt.% or more (filter size 1.6 μm [ASTM D4870]).
제1항에 있어서,
상기 용해제는 아로마틱 계열의 용매를 포함하고,
상기 응집제는 파라핀 계열의 용매를 포함하며,
상기 용해액 내의 측정 유분의 농도는 5중량% 내지 50중량%인 측정 방법.
According to claim 1,
The dissolving agent includes an aromatic solvent,
The coagulant includes a paraffin-based solvent,
The concentration of the measurement oil in the solution is 5% by weight to 50% by weight of the measurement method.
제1항에 있어서,
상기 자외선 투과도 측정은 상기 용해액을 자외선 투과도를 측정하는 플로우 셀에 순환시키면서 수행되며,
상기 용해제를 이용하여 자외선 투과도를 안정시키는 단계를 더 포함하는 측정 방법.
According to claim 1,
The ultraviolet transmittance measurement is performed while circulating the solution through a flow cell for measuring ultraviolet transmittance,
The measuring method further comprising the step of stabilizing the ultraviolet transmittance using the solubilizing agent.
삭제delete 제1항에 있어서,
상기 중질유분은 감압잔사유를 포함하며,
상기 유분은 상기 감압잔사유를 수첨분해 또는 열분해하여 얻은 측정 방법.
According to claim 1,
The heavy oil includes reduced pressure residue,
The oil content is a measuring method obtained by hydrocracking or thermal decomposition of the vacuum residue.
제5항에 있어서,
상기 용해제는 톨루엔을 포함하고,
상기 응집제는 노말헵탄을 포함하는 측정 방법.


6. The method of claim 5,
The dissolving agent includes toluene,
The method for measuring the coagulant comprises n-heptane.


KR1020190177996A 2019-12-30 2019-12-30 Method for measuring dispersion stability of asphaltene in oils KR102278139B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190177996A KR102278139B1 (en) 2019-12-30 2019-12-30 Method for measuring dispersion stability of asphaltene in oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190177996A KR102278139B1 (en) 2019-12-30 2019-12-30 Method for measuring dispersion stability of asphaltene in oils

Publications (2)

Publication Number Publication Date
KR20210085204A KR20210085204A (en) 2021-07-08
KR102278139B1 true KR102278139B1 (en) 2021-07-16

Family

ID=76894399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190177996A KR102278139B1 (en) 2019-12-30 2019-12-30 Method for measuring dispersion stability of asphaltene in oils

Country Status (1)

Country Link
KR (1) KR102278139B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467340B1 (en) 1999-10-21 2002-10-22 Baker Hughes Incorporated Asphaltenes monitoring and control system
JP2005536721A (en) 2002-07-19 2005-12-02 エクソンモービル リサーチ アンド エンジニアリング カンパニー Asphaltene aggregation in petroleum mixtures determined by small-angle light scattering
US9221803B2 (en) 2007-12-18 2015-12-29 Instituto Mexicano Del Petroleo Asphaltene-dispersing/inhibiting additive based on oxazolidines derived from polyalkyl or polyalkenyl N-hydroxyalkyl succinimides
KR101636098B1 (en) * 2008-10-20 2016-07-04 날코 컴퍼니 Method for predicting hydrocarbon process stream stability using near infrared spectra

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102063549B1 (en) 2018-03-27 2020-01-09 농업회사법인 주식회사 헵시바 에프엔비 Pectin extracted from fruit foil using natural acids and their preparation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467340B1 (en) 1999-10-21 2002-10-22 Baker Hughes Incorporated Asphaltenes monitoring and control system
JP2005536721A (en) 2002-07-19 2005-12-02 エクソンモービル リサーチ アンド エンジニアリング カンパニー Asphaltene aggregation in petroleum mixtures determined by small-angle light scattering
US9221803B2 (en) 2007-12-18 2015-12-29 Instituto Mexicano Del Petroleo Asphaltene-dispersing/inhibiting additive based on oxazolidines derived from polyalkyl or polyalkenyl N-hydroxyalkyl succinimides
KR101636098B1 (en) * 2008-10-20 2016-07-04 날코 컴퍼니 Method for predicting hydrocarbon process stream stability using near infrared spectra

Also Published As

Publication number Publication date
KR20210085204A (en) 2021-07-08

Similar Documents

Publication Publication Date Title
Kraiwattanawong et al. Effect of asphaltene dispersants on aggregate size distribution and growth
Fingas et al. Water‐in‐oil emulsions: Formation and prediction
Melendez-Alvarez et al. On the evaluation of the performance of asphaltene dispersants
US11280779B2 (en) Solvency for asphaltene deposit remediation or inhibition
Maqbool et al. Effect of temperature on the precipitation kinetics of asphaltenes
Malkin et al. Some compositional viscosity correlations for crude oils from Russia and Norway
Nielsen et al. Effects of temperature and pressure on asphaltene particle size distributions in crude oils diluted with n-pentane
Rashid et al. Screening of ionic liquids as green oilfield solvents for the potential removal of asphaltene from simulated oil: COSMO-RS model approach
CA2876234C (en) Process for predicting the stability of crude oil and employing same in transporting and/or refining the crude oil
Azinfar et al. Effect of asphaltene on phase behavior and thermophysical properties of solvent/bitumen systems
US9581581B2 (en) Methods of determining crude oil stability
Wiehe et al. Application of the oil compatibility model to refinery streams
Haji-Akbari et al. Effect of asphaltene concentration on the aggregation and precipitation tendency of asphaltenes
Sakthivel et al. Experimental investigation on the effect of aliphatic ionic liquids on the solubility of heavy crude oil using UV–visible, Fourier transform-infrared, and 13C NMR spectroscopy
Chandio et al. Temperature effects on solubility of asphaltenes in crude oils
Tukhvatullina et al. Supramolecular structures of oil systems as the key to regulation of oil behavior
Ashtari et al. Investigation on asphaltene and heavy metal removal from crude oil using a thermal effect
Xu Asphaltene precipitation in paraffinic froth treatment: effects of solvent and temperature
Guzmán et al. Evaluation of asphaltene stability of a wide range of Mexican crude oils
KR102278139B1 (en) Method for measuring dispersion stability of asphaltene in oils
Abedini et al. Reversibility of asphaltene precipitation in porous and non-porous media
Stratiev et al. Impact of oil compatibility on quality of produced fuel oil during start-up operations of the new residue ebullated bed H-Oil hydrocracking unit in the LUKOIL Neftohim Burgas refinery
KR102278140B1 (en) Method for measuring a degree of homogeneity of oils using reverse titration
Abrahamsen Organic flow assurance: asphaltene dispersant/inhibitor formulation development through experimental design
CN110462399B (en) Method for determining stability reserves and solubility parameters of asphaltene-containing process streams by combined use of turbidimetry and refractive index

Legal Events

Date Code Title Description
GRNT Written decision to grant