KR102273948B1 - Standalone Electricity and Hydrogen Gas Charging Station - Google Patents

Standalone Electricity and Hydrogen Gas Charging Station Download PDF

Info

Publication number
KR102273948B1
KR102273948B1 KR1020190040527A KR20190040527A KR102273948B1 KR 102273948 B1 KR102273948 B1 KR 102273948B1 KR 1020190040527 A KR1020190040527 A KR 1020190040527A KR 20190040527 A KR20190040527 A KR 20190040527A KR 102273948 B1 KR102273948 B1 KR 102273948B1
Authority
KR
South Korea
Prior art keywords
hydrogen gas
hydrogen
facility
electric
charging
Prior art date
Application number
KR1020190040527A
Other languages
Korean (ko)
Other versions
KR20200118916A (en
Inventor
강동엽
Original Assignee
강동엽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강동엽 filed Critical 강동엽
Priority to KR1020190040527A priority Critical patent/KR102273948B1/en
Publication of KR20200118916A publication Critical patent/KR20200118916A/en
Application granted granted Critical
Publication of KR102273948B1 publication Critical patent/KR102273948B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/54Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/003Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 자립형 전기 및 수소가스 충전소에 관한 것으로,
생활쓰레기와 음식물쓰레기의 가연성 물질을 저온도 연소기에서 연소하는 중에 생성되는 증기에 의해 ORC 터빈 발전기의 터빈을 회전시켜 생성한 전기에너지 그리고 집적형 태양광 발전장치에 의해 생성한 전기에너지를 전기 충전시설에 충전하면서 필요할 때 방전하여 사용할 수 있도록 하고,
외부로부터 공급되는 수소가스와 수전해 시설에 의해 생성한 수소가스는 수소 충전시설에 충전하고 산소가스는 산소탱크에 저장하도록 하고,
상기의 수소 충전시설에 저장된 수소가스와 산소탱크에 저장된 산소가스의 화학반응으로 생기는 화학에너지를 전기에너지로 바꾸어 상기 충방전 배터리의 전기 충전시설에 저장하면서 전기에너지와 열을 사용하도록 하는 연료전지 시설로 구성하여 태양열과 ORC 터빈 발전기 및 연료전지 시설에 의한 전기에너지를 사용하는 중에 필요한 경우에는 외부로부터 공급되는 전기에너지를 전기 차량의 충전에 사용하도록 하고, 수소 충전시설에 전기분해에 의한 수소가스와 외부로부터의 수소가스를 저장한 상태에서 수소가스 차량에 충전하도록 구성한 것이다.
The present invention relates to a self-supporting electricity and hydrogen gas charging station,
Electric energy generated by rotating the turbine of the ORC turbine generator by steam generated while combusting combustible materials of household waste and food waste in a low-temperature combustor, and electric energy generated by the integrated solar power generator It can be used by discharging it when needed while charging it,
The hydrogen gas supplied from the outside and the hydrogen gas generated by the water electrolysis facility are charged in the hydrogen filling facility, and the oxygen gas is stored in the oxygen tank,
A fuel cell facility that converts chemical energy generated by a chemical reaction between the hydrogen gas stored in the hydrogen charging facility and the oxygen gas stored in the oxygen tank into electrical energy and stores it in the electric charging facility of the charging/discharging battery to use electrical energy and heat When necessary while using electric energy from solar heat, ORC turbine generators and fuel cell facilities, electric energy supplied from the outside is used to charge electric vehicles, and hydrogen gas by electrolysis is added to the hydrogen charging facility. It is configured to charge the hydrogen gas vehicle in a state where hydrogen gas from the outside is stored.

Figure R1020190040527
Figure R1020190040527

Description

자립형 전기 및 수소가스 충전소{omitted}Self-contained electricity and hydrogen gas refueling stations{omitted}

본 발명은 자립형 전기 및 수소가스 충전소에 관한 것으로, 상세하게는 전기 충전시설과 수소 충전시설을 하나의 주유소에 설치하여 전기 차량의 충전과 수소가스 차량의 충전은 물론 전기와 수소가스를 동시에 사용하는 하이브리드형 차량도 효율적으로 이용할 수 있도록 하되, 외부로부터 공급되는 AC전원을 DC전원으로 변환하여 공급하는 전기 충전시설과 수소가스를 수소 충전시설을 구비한 충전소에 규격화 처리된 생활쓰레기, 음식물쓰레기 등을 연소시키면서 발생하는 열로 발전을 일으키는 ORC 터빈 발전기와 태양열 태양광 발전 그리고 풍력발전에 의한 전기에너지를 충전하여 사용하도록 하는 동시에 여분의 전기에너지를 이용하여 물을 전기분해하는 과정에서 생성한 수소가스를 수소 충전시설에 충전하도록 하여 자체적으로 생성한 에너지에 의하여 전기 차량과 수소 가스 차량을 동시에 수용하거나 또는 ESS 시설장치와 함께 적정규모의 에너지 저장시설로서도 기능할 수 있도록 한 자립형 전기 및 수소가스 충전소에 관한 것이다.The present invention relates to a self-supporting electric and hydrogen gas charging station, and more particularly, by installing an electric charging facility and a hydrogen charging facility in one gas station, charging an electric vehicle and charging a hydrogen gas vehicle, as well as using electricity and hydrogen gas at the same time Hybrid vehicles can also be used efficiently, but standardized household waste, food waste, etc. are provided at charging stations equipped with an electric charging facility that converts AC power supplied from the outside into DC power and supplies hydrogen gas with a hydrogen charging facility. The ORC turbine generator, which generates power with the heat generated during combustion, is charged and used with electrical energy from solar power, solar power, and wind power. At the same time, hydrogen gas generated in the process of electrolyzing water using excess electrical energy is converted to hydrogen. It relates to a self-supporting electric and hydrogen gas charging station that can be charged at a charging facility to accommodate electric vehicles and hydrogen gas vehicles at the same time with the energy generated by itself, or function as an energy storage facility of an appropriate scale together with ESS facilities .

현재 전 세계적으로 소비되는 에너지는 대부분이 화석원료인 석유 및 석탄으로 이루어지며, 특히 자동차의 경우 휘발류 또는 경유와 같은 유류를 화석연료를 이용하는 것이 전부라고 해도 무방할 정도이다.Currently, most of the energy consumed worldwide consists of fossil fuels such as petroleum and coal, and in particular, in the case of automobiles, it is safe to say that all fuels such as gasoline or diesel are used.

하지만 석유와 같은 화석연료는 그 매장량에 한계가 있으며, 또한 에너지를 얻기 위하여 연소시킬 때 발생하는 각종 가스 및 분진 및 연소 후 잔여물질은 환경 오염의 주범이 되고 있으며 또한 요즘 가장 이슈가 되고 있는 지구온난화의 주범이라고 할 수 있다.However, fossil fuels such as petroleum have limited reserves, and various gases, dust, and residual substances after combustion generated when burning to obtain energy are the main culprits of environmental pollution and global warming, which is the most important issue these days. can be said to be the culprit of

지구 온난화 현상이 점점 심각해짐에 따라 전 세계적으로 친환경적인 그린(Green) 정책을 수립하여 그 실천에 노력하고 있으며, 그 일환으로 자동차 분야에서도 휘발유나 디젤 등과 같은 화석 원료 대신에 탄소를 배출하지 않는 전기 에너지를 이용한 자동차의 개발에 박차를 가하고 있다.As global warming becomes more and more serious, eco-friendly green policies have been established worldwide and are being put into practice. As a part of this, in the automobile sector, electricity that does not emit carbon instead of fossil raw materials such as gasoline and diesel We are accelerating the development of automobiles using energy.

그러나, 전기 자동차의 경우 충전지(배터리)에 저장된 전기 에너지를 다 사용하고 나면 다시 충전을 해야 하는데, 현재로서는 충전을 하기 위한 인프라(infra)가 매우 부족하고 또한 충전 시간이 오래 걸리는 단점이 있다.However, in the case of an electric vehicle, it has to be charged again after the electric energy stored in the rechargeable battery (battery) is used up. Currently, there is a disadvantage that the infrastructure for charging is very insufficient and the charging time is long.

이를 해결하기 위해서는, 현재의 주유소와 같이 전기 에너지를 충전할 수 있는 충전소를 여러 곳에 설치해야 하며 충전지의 충전 용량도 보다 많은 전기 에너지를 충전할 수 있도록 높여야 하는데, 이와 같은 사항들은 전기자동차의 보급이 늘어나고 배터리 기술이 발전함에 따라 가까운 미래에 해결될 수 있을 것으로 판단된다.To solve this problem, charging stations that can charge electric energy, such as the current gas station, must be installed in several places, and the charging capacity of the rechargeable battery must be increased to charge more electric energy. As battery technology develops, it is expected that this can be resolved in the near future.

하지만, 이러한 기술 발전 전망에도 불구하고 충전지의 충전 시간을 현재의 주유 시간 정도로 단축하는 것은 결코 쉬운 일이 아니며, 이는 여전히 전기 자동차가 불편한 치명적인 단점으로 작용한다.However, it is not easy to shorten the charging time of a rechargeable battery to the current refueling time, despite the prospect of technological advancement, which is still a fatal disadvantage that electric vehicles are inconvenient.

따라서, 전술한 단점을 극복하고 전기 자동차의 활용도와 보급률을 더욱 높일 수 있는 새로운 방안이 요구된다.Accordingly, there is a need for a new method capable of overcoming the above-described disadvantages and further increasing the utilization and penetration rate of electric vehicles.

그리고 대체에너지로는 수소와 같은 청정에너지원과 수력, 풍력, 태양열과 같은 자연에너지를 들 수 있으며, 특히 자동차의 에너지원으로는 그 효율성과 출력을 감안하면 수소를 이용한 연료전지가 바람직한 동력원으로 기대되고 있다.In addition, clean energy sources such as hydrogen and natural energy such as hydropower, wind power, and solar heat can be cited as alternative energy sources. Considering their efficiency and output, in particular, as an energy source for automobiles, a fuel cell using hydrogen is expected to be a desirable power source. is becoming

즉 일반 전기 자동차의 경우 충전지가 갈수록 가벼워지고 있다고는 하지만 그 무게가 무겁고 또한 충전에 걸리는 시간을 감안하면 상당한 불편함이 있으나, 연료전지는 압축수소를 산소와 결합해 발생하는 물과 전기를 이용해 동력을 얻는 자동차로 소음이 적고 배기가스를 전혀 배출하지 않는 것을 특징으로 하며 원료인 압축수소의 주입은 일반 가스차와 같이 신속하게 이루어지므로 그 효율성 면에서는 기존 자동차와 다름없는 것이다.In other words, in the case of general electric vehicles, although rechargeable batteries are getting lighter, they are heavy and inconvenient considering the charging time. However, fuel cells use water and electricity generated by combining compressed hydrogen with oxygen to generate power. It is characterized by low noise and no emission of exhaust gas as a vehicle that obtains a gas, and the injection of compressed hydrogen, a raw material, is performed as quickly as a general gas vehicle, so in terms of efficiency, it is no different from that of an existing vehicle.

이러한 압축수소를 사용하기 위하여 자동차의 내부에는 고압의 수소가스 저장용기를 두고 충전할 수 있도록 하여야하므로 현재 주유소와 같은 형태로 수소충전소가 건설되어야하는 것이다.In order to use such compressed hydrogen, a high-pressure hydrogen gas storage container must be placed inside the vehicle so that it can be charged, so a hydrogen filling station must be constructed in the same form as the current gas station.

이때 수소는 기존의 LPG와는 그 성질이 상이하고 또한 압축된 형태로 공급되어야하므로 기존 가스충전소와는 다른 구조를 가져야한다.At this time, since the properties of hydrogen are different from that of the existing LPG and must be supplied in a compressed form, it must have a structure different from that of the existing gas filling station.

그러나 하나의 주유소에 전기충전과 가스충전을 선택적으로 수행할 수 있는 하이브리드형 충전소를 설치하여 있도록 하여 다양한 전기자동차 및 수소전기차 또는 이들의 하이브리드형 차량을 수용할 수 있도록 할 필요가 있다.However, it is necessary to install a hybrid charging station capable of selectively performing electric charging and gas charging at one gas station to accommodate various electric vehicles and hydrogen electric vehicles or hybrid vehicles thereof.

그러므로 2000년 10월 13일자 실용신안등록 제20-0208305호(풍력, 파력, 태양력을 동시에 이용 가능한 1차 발전과 그것을 이용한 물의 전기 분해 및 2차 산수소 발전기)가 제안되었으며,Therefore, utility model registration No. 20-0208305 dated October 13, 2000 (primary power generation that can use wind power, wave power, and solar power at the same time and water electrolysis and secondary oxyhydrogen generator using it) has been proposed,

이는 지붕에 동쪽, 서쪽 그리고 남쪽을 향해 여러 개의 판넬 집광판이 부착되고, 북쪽에는 번호를 표기할 수 있는 공간이 있는 중심부가 볼록한 형태;It has a central convex shape with a number of panel condensers attached to the roof facing east, west and south, and a numbering space on the north side;

상기의 지붕을 부력체와 간격을 두기 위한 다수개의 지지대로 지지하면서 전선 연결이 가능한 구멍이 있는 형태의 지지대;A support in the form of a hole through which wires can be connected while supporting the roof with a plurality of supports for spacing the buoyancy body;

상기의 간격으로 풍력 발전기가 수용되고, 풍력에 의해 회전하는 제1 프로펠러, 제2 프로펠러 그리고 화살 뒷날개 형태의 방향유지 날개로 구성되며 활형 스프링 지지축에 의해 풍력발전기 일체를 360도 회전과 전력 이송을 가능하게 하는 금속형의 날카로운 침 형태의 구조로 상하 지지되면서, 상기의 지붕 천장의 중앙부의 금속재료로 된 홈과 부력체(306)의 중앙부의 금속재질의 홈에 고정 설치되고;The wind power generator is accommodated at the above intervals, and it is composed of a first propeller, a second propeller, and a direction maintaining blade in the form of an arrow hindwing rotated by wind power, and the wind power generator rotates 360 degrees and transmits power by the bow spring support shaft. While being supported up and down by a metal-type sharp needle-like structure that enables it, it is fixedly installed in a metal groove in the central part of the roof ceiling and a metal groove in the central part of the buoyancy body 306;

상기 지붕의 천장 중앙부와 부력체 중심부는 서로 마주보며 볼록한 형태;The central portion of the ceiling and the central portion of the buoyancy body of the roof face each other and have a convex shape;

1차 발전기 부력체 내부에는 파력을 이용한 발전시키는 구조가 수용되는 수용관간부가 있으며;Inside the buoyancy body of the primary generator, there is an accommodating pipe section in which a structure for generating power using wave power is accommodated;

수심 수m 속에 설치되는 수압판과 균형추, 이를 연장 지지하는 지지바, 이 지지바는 부력체 내부의 수용공간부에까지 연장되어 수직기어와 연결;A pressure plate and a counterweight installed in a water depth of m, a support bar extending and supporting the same, the support bar extends to the receiving space inside the buoyancy body and is connected to a vertical gear;

수직기어의 상하 최대 이동 폭을 제한하는 간격유지부재;a gap maintaining member for limiting the vertical maximum movement width of the vertical gear;

상기의 수직기어에 맞물린 정, 역회전하는 회전기어;a rotating gear engaged with the vertical gear and rotating forward and reverse;

회전기어의 회전력을 약간 승속하는 승속기어와 다수개의 수십mW급 소형 발전기 조합;A combination of a boost gear that slightly increases the rotational force of the rotating gear and a number of small generators of several tens of mW;

상기의 풍력과 파력으로 발생된 전기를 각각의 정류기로 직류변환;DC conversion of the electricity generated by the wind and wave power to each rectifier;

상기의 1차발전기를 셀 단위로 하여 이웃하는 셀과 전기적으로 연결되는 구조;a structure electrically connected to a neighboring cell by using the primary generator as a cell unit;

2차 발전기의 부력체는 수십에서 수백 개의 1차 발전기에서 각각 생산된 전원으로 전기 분해용 전극이 있어 물을 전기분해;The buoyancy body of the secondary generator is the power produced by tens to hundreds of primary generators, respectively, and there is an electrode for electrolysis to electrolyze water;

여기서 생산된 수소와 산소를 부력체 내부로 이송하는 산소 이송관, 수소 이송관, 이 각각의 이송관 내부에는 산소 가스 유출방지막, 수소가스 유출 방지막이 있으며, 공기 수용공간부 속에 있는 산소 저장 주름 튜브, 수소저장 주름튜브에 각각 저장;An oxygen transport pipe and a hydrogen transport pipe that transport the hydrogen and oxygen produced here to the inside of the buoyant body, and inside each transport pipe, there are an oxygen gas leak prevention film and a hydrogen gas leak prevention film, and an oxygen storage corrugated tube in the air receiving space , stored in hydrogen storage corrugated tubes, respectively;

상기의 가스를 분배하는 산소, 수소 가스 분배기로 여러 다발의 파이프로 분배, 상기의 가스분배기는 가스개폐 및 컨트롤 박스를 통해 제어되어, 산소가스와 수소가스 유출할 수 있는 구조;The oxygen and hydrogen gas distributor for distributing the gas is divided into several bundles of pipes, the gas distributor is controlled through the gas opening/closing and control box, so that oxygen gas and hydrogen gas can flow out;

상기의 여러 다발의 파이프를 통해 산수소 발전기로 공급되어 발전하는 구조의 발전기;a generator having a structure in which electricity is generated by being supplied to an oxyhydrogen generator through the plurality of bundles of pipes;

부산물로 발생된 물을 이송하는 물 이송관, 그리고 이물을 저장하는 물탱크의 형태 구조를 갖도록 구성함으로써 풍력 발전기와 태양추적형 태양전지를 이용하여 얻은 청정 에너지를 필요한 부하에 즉시 사용하거나 배터리에 저장해 두고 또 다른 여분은 수소에너지로 변환시켜서 장기간 저장하여 활용하도록 구성하였다.By configuring it to have a water transfer pipe that transports water generated as by-products and a water tank that stores foreign substances, the clean energy obtained by using a wind power generator and solar-tracking solar cell can be used immediately to a necessary load or stored in a battery. The rest was converted into hydrogen energy and stored for long-term use.

그러나 상기와 같은 종래의 풍력과 태양광을 이용한 발전시스템에 의하여서는 발전효율이 높지 않아 구조물의 설치비용에 따른 채산성이 맞지 않음은 물론, 하나의 구조체에 풍력과 태양광 발전 설비를 일체로 설치하므로 빛을 차단하거나 바람의 흐름을 차단하게 되는 문제점이 있었다.However, according to the conventional power generation system using wind power and solar power as described above, the power generation efficiency is not high, so the profitability according to the installation cost of the structure is not suitable. There was a problem in blocking the light or blocking the flow of wind.

또한, 2009년 06월 11일자 공개특허공보 제10-2009-0059389호(신재생 에너지 발생 시스템)이 제안되었으며,In addition, published June 11, 2009 No. 10-2009-0059389 (renewable energy generation system) has been proposed,

이는, 태양전지셀로 이루어진 태양광 판넬을 포함하는 태양광발전유닛, This is a photovoltaic unit comprising a photovoltaic panel made of solar cells,

풍력터빈을 포함하는 풍력발전유닛,A wind power unit comprising a wind turbine,

상기 태양광 판넬 및 상기 풍력 터빈에서 발생된 전력을 배분기준에 따라 수용가, 축전지 또는 전해조에 배분하도록 제어하는 제어기, 직류전력을 교류전력으로 변환하는 인버터 및 정전압 회로를 포함하는 제어유닛;a control unit including a controller for controlling to distribute the power generated from the solar panel and the wind turbine to a customer, a storage battery or an electrolyzer according to a distribution standard, an inverter for converting DC power into AC power, and a constant voltage circuit;

상기 제어유닛으로부터 공급된 전력을 저장하는 축전지,a storage battery for storing power supplied from the control unit;

상기 제어유닛 또는 상기 축전지로부터 공급된 전력으로 수소 및 산소를 생산하는 전해조,an electrolyzer for producing hydrogen and oxygen with electric power supplied from the control unit or the storage battery;

상기 전해조에서 생산된 수소를 이용하여 전력을 발생하는 연료전지를 포함하도록 하되,To include a fuel cell for generating electric power using the hydrogen produced in the electrolytic cell,

상기 전해조에서 생산된 수소 및 산소를 각각 저장하는 수소 저장조 및 산소 저장조를 더 포함하도록 하고, To further include a hydrogen storage tank and an oxygen storage tank for storing hydrogen and oxygen produced in the electrolytic cell, respectively,

상기 연료전지는 상기 수소 저장조에 저장된 수소를 이용하여 전력을 발생하도록 하고,The fuel cell generates electric power using hydrogen stored in the hydrogen storage tank,

상기 태양광 판넬 및 상기 풍력 터빈에서 발전이 없는 경우에는 상기 전해조 또는 상기 수소 저장조로부터 공급된 수소를 이용하여 상기 연료전지를 구동하여 전력을 공급하도록 구성하였다.When there is no power generation in the solar panel and the wind turbine, the fuel cell is driven using hydrogen supplied from the electrolytic cell or the hydrogen storage tank to supply power.

그러나 상기와 같은 종래의 신재생 에너지 발생 시스템에 의하여서는 태양광발전효율이 높지 않이 채산성이 낮을 뿐 아니라, 하나의 구조체에 풍력과 태양광 발전 설비를 일체로 설치하는 데에 따른 문제점이 있었다.However, according to the conventional renewable energy generation system as described above, there is a problem in that solar power generation efficiency is not high and profitability is low, and there is a problem in installing wind power and solar power generation equipment in one structure integrally.

이에 본 발명은 상기한 바와 같은 종래의 문제점을 해소하기 위한 것으로, 전기 충전시설과 수소 충전시설을 하나의 주유소에 설치하여 전기 차량의 충전과 수소가스 차량의 충전은 물론 전기와 수소가스를 동시에 사용하는 하이브리드형 차량도 효율적으로 이용할 수 있도록 하되, 외부로부터 공급되는 AC전원을 DC전원으로 변환하여 공급하는 전기 충전시설과 수소가스를 수소 충전시설을 구비한 충전소에 규격화 처리된 생활쓰레기, 음식물쓰레기 등을 연소시키면서 발생하는 열로 발전을 일으키는 ORC 터빈 발전기와 태양열 태양광 발전 그리고 풍력발전에 의한 전기에너지를 충전하여 사용하도록 하는 동시에 여분의 전기에너지를 이용하여 물을 전기분해하는 과정에서 생성한 수소가스를 수소 충전시설에 충전하도록 하여 자체적으로 생성한 에너지에 의하여 전기 차량과 수소 가스 차량을 동시에 수용하거나 또는 ESS 시설장치와 함께 적정규모의 에너지 저장시설로서도 기능할 수 있도록 한 자립형 전기 및 수소가스 충전소를 제공하는 것을 그 목적으로 한다.Accordingly, the present invention is to solve the conventional problems as described above, by installing an electric charging facility and a hydrogen charging facility in one gas station to use electricity and hydrogen gas simultaneously as well as charging an electric vehicle and charging a hydrogen gas vehicle Hybrid vehicles can be used efficiently, but electric charging facilities that convert AC power supplied from the outside into DC power and supply hydrogen gas are standardized at charging stations equipped with hydrogen charging facilities, such as household waste, food waste, etc. The ORC turbine generator, which generates electricity with the heat generated by burning it, charges and uses electrical energy from solar power generation and wind power generation, while at the same time using the excess electrical energy to generate hydrogen gas generated in the process of electrolysis of water. Provide a self-contained electricity and hydrogen gas charging station that can be charged at a hydrogen charging facility to accommodate both electric vehicles and hydrogen gas vehicles with self-generated energy, or function as an energy storage facility of an appropriate scale along with ESS facilities to do that for that purpose.

상기 목적을 달성하기 위한 본 발명의 자립형 전기 및 수소가스 충전소는,Independent electricity and hydrogen gas charging station of the present invention for achieving the above object,

생활쓰레기와 음식물쓰레기를 비롯한 가연성 물질을 저온도로 완전연소를 하는 중에 가열하여 증기를 발생하는 저온도 연소기와,A low-temperature combustor that generates steam by heating combustible materials such as household waste and food waste during complete combustion at a low temperature;

상기의 저온도 연소기와 집적형 태양열에 의한 생성한 증기를 필요에 따라 상변환하면서 저장하였다가 필요한 때 다시 증기로 사용할 수 있도록 하는 상변환 축열부(PCM)과,A phase change heat storage unit (PCM) that stores the steam generated by the low-temperature combustor and the integrated solar heat while changing the phase as needed, and uses it again as steam when necessary;

상기의 저온도 연소기에서 생성되는 증기에 의해 터빈을 회전시키면서 발전을 일으키는 ORC(Organic Rankine Cycle) 터빈 발전기와,An ORC (Organic Rankine Cycle) turbine generator that generates power while rotating a turbine by steam generated from the low-temperature combustor;

상기의 ORC 터빈 발전기에서 생성된 전기에너지를 에너지 저장 장치(ESS)를 거쳐 공급받아 충전하였다가 필요할 때 방전하도록 하는 충방전 배터리의 전기 충전시설과,An electric charging facility for a charge/discharge battery that receives the electric energy generated by the ORC turbine generator through an energy storage device (ESS), charges it, and discharges it when necessary;

외부로부터 공급되는 수소가스를 충진하여 사용하는 수소 충전시설과,A hydrogen charging facility for filling and using hydrogen gas supplied from the outside;

태양광을 이용하여 발전을 하는 중에 생성되는 전기에너지를 상기의 에너지 저장 장치(ESS)를 거쳐 충방전 배터리의 전기 충전시설에 충전하는 집적형 태양광 발전장치와, An integrated photovoltaic power generation device that charges the electric energy generated during power generation using sunlight to the electric charging facility of the charge/discharge battery through the energy storage device (ESS);

상기 충방전 배터리의 충방전 배터리의 전기 충전시설에 충전된 전기에너지를 이용하여 수소가스와 산소를 생성하여 수소가스는 수소 충전시설에 저장하면서 산소가스는 산소탱크에 저장하는 수전해 시설과,A water electrolysis facility for generating hydrogen gas and oxygen using the electric energy charged in the electric charging facility of the charge/discharge battery of the charge/discharge battery and store the hydrogen gas in the hydrogen charging facility while storing the oxygen gas in the oxygen tank;

상기의 수소 충전시설에 저장된 수소가스와 산소탱크에 저장된 산소가스의 화학반응으로 생기는 화학에너지를 전기에너지로 바꾸어 상기의 전기 충전시설에 저장하면서 전기에너지와 열을 사용하도록 하는 연료전지 시설로 구성하여 태양열과 ORC 터빈 발전기 및 연료전지 시설에 의한 전기에너지를 사용하는 중에 필요한 경우에는 외부로부터 공급되는 전기에너지를 전기 차량의 충전에 사용하도록 하고, 수소 충전시설에 전기분해에 의한 수소가스와 외부로부터의 수소가스를 저장한 상태에서 수소가스 차량에 충전하도록 하되,It consists of a fuel cell facility that converts chemical energy generated by a chemical reaction between the hydrogen gas stored in the hydrogen charging facility and the oxygen gas stored in the oxygen tank into electric energy and stores it in the electric charging facility to use electric energy and heat. If necessary while using the electric energy from solar heat, ORC turbine generators and fuel cell facilities, electric energy supplied from the outside should be used to charge electric vehicles, and hydrogen gas by electrolysis and In a state where hydrogen gas is stored, the hydrogen gas vehicle is charged,

상기의 저온도 연소기는, The low-temperature combustor described above,

생활폐기물과 음식물쓰레기 등을 이용하여 제조한 고형연료를 연소실에서 연소하도록 하고,Solid fuel manufactured using household waste and food waste is burned in the combustion chamber,

맥반석, 게르마늄석, 황토 및 전기석을 25중량%씩 혼합하여 파쇄한 축열층을 상기 연소실의 외면을 에워싸는 형태로 형성하여 연소실의 온도가 낮아지는 것을 방지하면서 열을 축적하도록 하고, A heat storage layer crushed by mixing 25% by weight of elvan stone, germanium stone, loess and tourmaline is formed to surround the outer surface of the combustion chamber to prevent the temperature of the combustion chamber from lowering and to accumulate heat,

상기 축열층의 내부에 와류하는 형태로 가열관을 매립 설치하여 하단의 유입관을 통해 유입된 물이 증기의 상태로 압력 밸브를 통하여 배출되도록 하고,The heating tube is buried in the form of a vortex flow inside the heat storage layer so that the water introduced through the inlet tube at the bottom is discharged through the pressure valve in the state of steam,

상기 축열층의 내부인 연소실 상부에 철크롬 재질의 철망을 여러 층으로 배열한 제1 재연소부 및 제2 재연소부를 차례로 형성하여 불완전 연소 상태로 상승하는 연소가스를 재차 연소시켜 완전 연소가 이루어지도록 하고, A first recombustion unit and a second reburn unit in which iron-chromium wire mesh is arranged in several layers are sequentially formed on the upper part of the combustion chamber that is inside the heat storage layer, so that the combustion gas rising to an incomplete combustion state is burned again to achieve complete combustion. and,

상기의 제1 및 제2 재연소부를 통과하는 완전히 연소된 연소가스가 배출되는 배출관의 외면에 공기 파이프가 와류하도록 감은 공기 예열관을 형성하여 예열된 공기가 연소실로 공급되도록 구성하는 한편, On the outer surface of the exhaust pipe from which the completely combusted combustion gas passing through the first and second recombustion units is discharged, an air preheating pipe wound so that the air pipe is vortexed is formed so that the preheated air is supplied to the combustion chamber,

상기의 가열관에서 가열된 증기를 공급받는 ORC 터빈 발전기에서 터빈을 회전시키면서 발전에 의한 전기를 생성하도록 하고,To generate electricity by power generation while rotating a turbine in an ORC turbine generator supplied with steam heated from the heating tube,

상기의 집적형 태양광 발전장치는,The integrated solar power generation device,

프레넬렌즈(Fresnel Lens)를 포함한 원통형 볼록렌즈의 외면에 원주상으로 반사경을 설치하여 직접 조사되는 빛과 반사경에서 반사되는 빛을 원통형 볼록렌즈를 통해 많은 태양광을 수집할 수 있도록 하고, A reflector is installed in a cylindrical shape on the outer surface of a cylindrical convex lens including a Fresnel lens so that a lot of sunlight can be collected through the cylindrical convex lens and the light directly irradiated and the light reflected from the reflector,

상기의 볼록렌즈로부터의 태양광은 전송 광케이블을 통하여 다수의 분산 광케이블로 분산 이동하도록 하고,The sunlight from the convex lens is dispersed and moved to a plurality of distributed optical cables through a transmission optical cable,

상기의 분산 광케이블을 통하여 공급되는 태양광은 분광부로 전달되어 이의 아래쪽과 위쪽에 차례로 배열한 다수의 박막 태양광 솔라에 전달하도록 하고, The sunlight supplied through the distributed optical cable is transmitted to the spectrometer so that it is transmitted to a plurality of thin-film solar cells arranged sequentially below and above it,

상기의 분광부는 상면과 하면의 양쪽 표면을 오목렌즈의 형태로 하여 원하는 부위에 빛을 골고루 분광하면서 단위 면적에서 최대의 태양광 발전 효율을 올릴 수 있도록 구성됨을 특징으로 한다.The spectrometer is characterized in that both surfaces of the upper and lower surfaces in the form of a concave lens are configured to evenly distribute light to a desired area while increasing the maximum solar power generation efficiency in a unit area.

상기의 본 발명에 따른 자립형 전기 및 수소가스 충전소에 의하여서는 생활쓰레기와 음식물쓰레기를 비롯한 가연성 물질을 저온도 연소기에서 연소하는 중에 생성되는 증기에 의해 ORC 터빈 발전기의 터빈을 회전시켜 생성한 전기에너지 그리고 집적형 태양광 발전장치에 의해 생성한 전기에너지를 전기 충전시설에 충전하면서 필요할 때 방전하여 사용할 수 있도록 하고,In the self-contained electricity and hydrogen gas charging station according to the present invention, electric energy generated by rotating the turbine of the ORC turbine generator by steam generated while combusting combustible materials including household waste and food waste in a low-temperature combustor; The electric energy generated by the integrated photovoltaic device is charged to the electric charging facility and discharged when needed so that it can be used.

외부로부터 공급되는 수소가스와 수전해 시설에 의해 생성한 수소가스는 수소가스 스테이션의 수소 충전시설에 충전하고 산소가스는 산소탱크에 저장하도록 하고,The hydrogen gas supplied from the outside and the hydrogen gas generated by the water electrolysis facility are charged in the hydrogen filling facility of the hydrogen gas station, and the oxygen gas is stored in the oxygen tank,

상기의 수소 충전시설에 저장된 수소가스와 산소탱크에 저장된 산소가스의 화학반응으로 생기는 화학에너지를 연료전지 시설에 의해 전기에너지로 바꾸어 상기의 전기 충전시설에 저장하여 사용하도록 함으로써 태양광과 ORC 터빈 발전기 및 연료전지 시설에 의한 전기에너지를 사용하는 중에 필요한 경우에는 외부로부터 공급되는 전기에너지를 전기 차량의 충전에 사용하도록 하고,Solar power and ORC turbine generator by converting chemical energy generated by the chemical reaction of hydrogen gas stored in the hydrogen charging facility and oxygen gas stored in the oxygen tank into electric energy by the fuel cell facility and storing it in the electric charging facility and electric energy supplied from the outside is used for charging the electric vehicle if necessary while using electric energy by the fuel cell facility;

수소 충전시설에 전기분해에 의한 수소가스와 외부로부터의 수소가스를 저장한 상태에서 수소가스 차량에 충전하도록 하고, Hydrogen gas by electrolysis and hydrogen gas from the outside are stored in a hydrogen charging facility to be charged in a hydrogen gas vehicle,

상기의 수소가스를 치환하여 수소화합물로 저장할 경우 안정적인 대규모 에너지 저장 시설로서도 기능을 할 수 있게 되며, 이를 통하여 에너지 공급의 적정한 운용을 통한 수익성 확보 및 매우 안정적인 에너지 공급 시스템 구축을 가능하게 하는 효과가 있다.When the above hydrogen gas is replaced and stored as a hydrogen compound, it can function as a stable large-scale energy storage facility, and through this, it has the effect of securing profitability through the proper operation of energy supply and enabling the construction of a very stable energy supply system. .

도 1은 본 발명의 전체 구성을 도시한 개략도.
도 2는 본 발명 저온도 연소기의 구성을 도시한 개략도.
도 3은 본 발명 집적형 태양광 발전장치의 구성을 도시한 개략도.
1 is a schematic diagram showing the overall configuration of the present invention.
Figure 2 is a schematic diagram showing the configuration of the present invention low-temperature combustor.
Figure 3 is a schematic diagram showing the configuration of the present invention integrated solar power generation device.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명의 실시 예에 따른 전체 구성을 도시한 것으로서,1 shows the overall configuration according to an embodiment of the present invention,

생활쓰레기와 음식물쓰레기를 비롯한 가연성 물질을 연소하는 중에 발생하는 열로 가열하여 증기를 발생하는 저온도 연소기(1)와, A low-temperature combustor (1) that generates steam by heating with heat generated during combustion of combustible materials including household waste and food waste;

내부에 흑색 도료(3)가 칠해진 유리관(4)을 통과하는 중에 태양광에 의한 열로 물을 가열하는 집광형 태양열(2)과,Concentrating solar heat (2) that heats water with heat from sunlight while passing through the glass tube (4) painted with black paint (3) inside;

상기의 저온도 연소기(1) 및 집광형 태양열(2)에서 생성한 증기를 필요에 따라 상변환하면서 저장하였다가 필요한 때 다시 증기로 사용할 수 있도록 하는 상변환 축열부(PCM)(5)과, A phase change heat storage unit (PCM) (5) for storing the steam generated by the low-temperature combustor (1) and the concentrating solar heat (2) while changing the phase as needed and then using it again as steam when necessary;

상기의 축열부(PCM)(5)를 거치거나 직접 공급되는 증기에 의해 터빈을 회전시키면서 발전을 일으키는 ORC 터빈 발전기(10)와,ORC turbine generator 10 that generates power while rotating the turbine by steam supplied directly or through the heat storage unit (PCM) 5;

상기의 ORC 터빈 발전기(10)에서 생성된 전기에너지를 다른 에너지로 변환하여 저장하였다가 전기 충전시설에 전기에너지로 공급하는 에너지 저장 장치(ESS)(20)와, An energy storage device (ESS) 20 that converts and stores the electrical energy generated by the ORC turbine generator 10 into other energy and supplies it as electrical energy to an electrical charging facility;

상기의 에너지 저장 장치(20)로부터의 전기에너지와 풍력발전(22)에 의한 전기에너지를 상기 에너지 저장 장치(ESS)(20)를 거쳐 공급받아 충전하였다가 전기자동차로 공급하도록 하는 충방전 배터리의 전기 충전시설(21)와, The electric energy from the energy storage device 20 and the electric energy generated by the wind power generation 22 are supplied through the energy storage device (ESS) 20, charged and then supplied to the electric vehicle. an electric charging facility (21);

외부에서 공급되는 수소가스를 충진하여 수소자동차에 공급하도록 하는 수소가스 스테이션의 수소 충전시설(30)과,A hydrogen charging facility 30 of a hydrogen gas station that fills hydrogen gas supplied from the outside and supplies it to a hydrogen vehicle;

태양광을 이용하여 발전을 하는 중에 생성되는 전기에너지를 상기의 에너지 저장 장치(ESS)(20)를 거쳐 충방전 배터리의 전기 충전시설(21)에 충전하여 전기 자동차에 충전하도록 하는 집적형 태양광 발전장치(40)와,Integrated solar power to charge the electric energy generated during power generation using sunlight to the electric charging facility 21 of the charge/discharge battery through the energy storage device (ESS) 20 to charge the electric vehicle a power generator 40, and

상기의 전기 충전시설(21)에 충전된 전기에너지를 이용하여 수소가스와 산소를 생성하여 수소가스는 수소가스 스테이션의 수소 충전시설(30)에 직접 저장하거나 톨루엔이나 암모니아 가스를 혼합하는 치환을 하여 수소 탱크(31)에 고효율로 저장하였다가 필요시 톨루엔이나 암모니아 가스를 분리하는 환원 과정을 거쳐 연료전지 시설(60)에 저장하면서 산소가스는 산소탱크(51)에 저장하여 상기의 저온도 연소기(1)로 일부 공급하도록 하는 수전해 시설(50)와,Hydrogen gas and oxygen are generated using the electric energy charged in the electric charging facility 21, and the hydrogen gas is stored directly in the hydrogen charging facility 30 of the hydrogen gas station or by substituting a mixture of toluene or ammonia gas. It is stored in the hydrogen tank 31 with high efficiency and, if necessary, through a reduction process of separating toluene or ammonia gas, and then stored in the fuel cell facility 60, while the oxygen gas is stored in the oxygen tank 51 and stored in the low-temperature combustor ( 1) a water electrolysis facility 50 for supplying a part, and

상기의 수소 충전시설(30)에 저장된 수소가스와 산소탱크(51)에 저장된 산소가스의 화학반응으로 생기는 화학에너지를 전기에너지로 바꾸어 상기의 에너지 저장 장치(ESS)(20)를 거쳐 전기 충전시설(21)에 저장하면서 전기에너지와 열을 사용하도록 하는 연료전지 시설(60)로 구성한 것이다.The chemical energy generated by the chemical reaction of the hydrogen gas stored in the hydrogen charging facility 30 and the oxygen gas stored in the oxygen tank 51 is converted into electrical energy, and the energy storage device (ESS) 20 passes through the electric charging facility. It is composed of a fuel cell facility (60) that uses electric energy and heat while being stored in (21).

도 2는 본 발명 저온도 연소기(1)의 구성을 개략적으로 도시한 것으로서,2 schematically shows the configuration of the low-temperature combustor 1 of the present invention,

생활폐기물과 음식물쓰레기 등을 이용하여 제조한 고형연료를 연소실(100)에서 연소하도록 하고,Solid fuel manufactured using household waste and food waste is burned in the combustion chamber 100,

맥반석, 게르마늄석, 황토 및 전기석을 25중량%씩 혼합하여 파쇄한 축열층(101)을 상기 연소실(100)의 외면을 에워싸는 형태로 형성하여 연소실(100)의 온도가 낮아지는 것을 방지하면서 열을 축적하도록 하고,The heat storage layer 101, which is crushed by mixing 25% by weight of elvan, germanium stone, loess, and tourmaline, is formed to surround the outer surface of the combustion chamber 100, thereby reducing the temperature of the combustion chamber 100 while preventing the temperature from being lowered. to accumulate,

상기 축열층(101)의 내부에 와류하는 형태로 가열관(102)을 매립 설치하여 하단의 역류 방지용 첵밸브(103)를 구비한 유입관(4)을 통해 유입된 물이 증기의 상태로 압력 밸브(104)와 배출관(105)을 통하여 배출되도록 하고,By embedding the heating tube 102 in the form of a vortex flow in the heat storage layer 101, the water introduced through the inlet tube 4 having the check valve 103 for preventing backflow at the bottom is pressure in the state of steam. to be discharged through the valve 104 and the discharge pipe 105,

상기 축열층(101)의 내부인 연소실(100) 상부에 철크롬 재질의 철망(111)(121)을 여러 층으로 배열한 제1 재연소부(110) 및 제2 재연소부(120)를 차례로 형성하여 연소 상태로 상승하는 불완전 연소가스를 재차 연소시켜 완전 연소가 이루어지도록 하고,A first re-combustion unit 110 and a second re-burn unit 120 are sequentially formed on the upper portion of the combustion chamber 100 that is inside the heat storage layer 101 , in which wire meshes 111 and 121 made of iron-chromium are arranged in several layers. to burn the incomplete combustion gas rising to the combustion state again to achieve complete combustion,

상기의 제1 및 제2 재연소부(110)(120)를 통과하는 완전히 연소된 연소가스가 배출되는 배출관(130)의 외면에 공기 파이프(131)가 와류하도록 감은 공기예열관을 형성하여 예열된 공기가 연소실(100)로 공급되도록 하여 연소실의 냉각화를 방지하여 연소 효율을 높이도록 구성한 것이다.Preheated by forming an air preheating tube wound so that the air pipe 131 is vortexed on the outer surface of the exhaust pipe 130 through which the completely combusted combustion gas passing through the first and second recombustion units 110 and 120 is discharged It is configured so that air is supplied to the combustion chamber 100 to prevent cooling of the combustion chamber to increase combustion efficiency.

그리고 상기의 가열관(102)에서 가열된 증기를 배출관(105)을 통하여 공급받는 ORC 터빈 발전기(10)에서 터빈을 회전시키면서 발전에 의한 전기를 생성하도록 한다.And the ORC turbine generator 10 that receives the steam heated in the heating tube 102 through the discharge tube 105 rotates the turbine to generate electricity by power generation.

도 3 및 도 4는 본 발명 집적형 태양광 발전장치의 구성을 도시한 것으로서,3 and 4 show the configuration of the present invention integrated solar power generation device,

볼록렌즈(201)의 외면에 원주상으로 (202)을 설치한 집광부(200)에서 직접 조사되는 빛과 반사경(202)에서 반사되는 빛을 원통형 집광렌즈(203)를 통해 태양광을 수집할 수 있도록 하고, The light irradiated directly from the condensing unit 200 in which 202 is installed in a cylindrical shape on the outer surface of the convex lens 201 and the light reflected from the reflector 202 are collected through the cylindrical condensing lens 203 to collect sunlight. make it possible,

상기 집광부(200)의 원통형 집광렌즈(201)을 수집된 태양광은 전송 광케이블(204)과 분산 광케이블(205)을 통하여 다수의 분광부(210)로 분산 이동하여 분광렌즈(211)(214)(217)로 공급되어 위쪽과 아래쪽으로 빛을 분산하도록 하고,The sunlight collected by the cylindrical condensing lens 201 of the condensing unit 200 disperses and moves to a plurality of spectral units 210 through the transmission optical cable 204 and the distributed optical cable 205 to the spectral lenses 211 and 214 ) (217) to scatter the light upward and downward,

상기 분광렌즈(211)(214)(217)는 상면과 하면의 양쪽 표면을 오목렌즈(212, 213)(215, 216)(218, 219)의 형태로 형성하여 빛이 분산되면서 상기 분광렌즈(211)(214)(217)의 위쪽과 아래쪽에 차례로 배열한 발전부(220)의 다수의 박막 태양광 솔라(221)(222)(223)에 전달하여 효율적인 태양광 발전이 이루어지도록 구성한 것이다.The spectroscopic lenses 211, 214, and 217 form both surfaces of the upper and lower surfaces in the form of concave lenses 212, 213, 215, 216, 218, 219 to disperse the light. 211), 214, and 217 are configured such that efficient photovoltaic power generation is achieved by transmitting the plurality of thin-film solar solar cells 221, 222, 223 of the power generation unit 220 sequentially arranged above and below.

상기와 같이 구성한 본 발명의 자립형 전기 및 수소가스 충전소는,The self-supporting electricity and hydrogen gas charging station of the present invention configured as described above,

생활쓰레기와 음식물쓰레기를 비롯한 가연성 물질을 저온도 연소기(1)에서 연소하는 중에 발생하는 열로 가열하여 증기를 발생하도록 한다.Combustible materials including household waste and food waste are heated with heat generated during combustion in the low-temperature combustor 1 to generate steam.

유리관(4)의 내부에 흑색 도료(3)가 칠해진 집광형 태양열(2)을 통과하는 중에 태양광에 의한 열로 물을 가열하도록 한다.The water is heated by heat from sunlight while passing through the condensing solar heat (2) coated with the black paint (3) inside the glass tube (4).

상기의 저온도 연소기(1) 및 집광형 태양열(2)에서 생성한 증기를 필요에 따라 상변환하면서 상변환 축열부(PCM)(5)에 저장하였다가 필요한 때 다시 증기로 사용할 수 있도록 한다.The steam generated by the low-temperature combustor 1 and the concentrating solar heat 2 is stored in the phase-change heat storage unit (PCM) 5 while changing the phase as needed, and then used again as steam when necessary.

상기의 상변환 축열부(PCM)(5)를 거치거나 직접 ORC 터빈 발전기(10)로 공급되는 증기에 의해 터빈을 회전시키면서 발전을 일으키도록 한다.The phase change heat storage unit (PCM) (5) to generate power while rotating the turbine by steam or directly supplied to the ORC turbine generator (10).

상기의 ORC 터빈 발전기(10)에서 생성된 전기에너지를 다른 에너지로 변환하여 에너지 저장 장치(ESS)(20)에 저장하였다가 전기 충전시설에 전기에너지로 공급하도록 한다.The electrical energy generated by the ORC turbine generator 10 is converted into other energy, stored in an energy storage device (ESS) 20 , and then supplied as electrical energy to an electrical charging facility.

상기의 에너지 저장 장치(20)로부터의 전기에너지와 풍력발전(22)에 의한 전기에너지를 에너지 저장 장치(ESS)(20)를 거쳐 전기 충전시설(21)에 충전하였다가 전기자동차로 공급하도록 한다.The electric energy from the energy storage device 20 and the electric energy generated by the wind power generation 22 are charged to the electric charging facility 21 through the energy storage device (ESS) 20 and then supplied to the electric vehicle. .

외부에서 공급되는 수소가스를 수소가스 스테이션의 수소 충전시설(30)에 충진하여 수소자동차에 공급하도록 한다.Hydrogen gas supplied from the outside is filled in the hydrogen charging facility 30 of the hydrogen gas station to supply the hydrogen vehicle.

집적형 태양광 발전장치(40)에서 태양광을 이용하여 발전을 하는 중에 생성되는 전기에너지를 상기의 에너지 저장 장치(ESS)(20)를 거쳐 전기 충전시설(21)에 충전하여 전기 자동차에 충전하도록 한다.The electric energy generated during power generation using sunlight in the integrated photovoltaic device 40 is charged to the electric charging facility 21 via the energy storage device (ESS) 20 and charged to the electric vehicle. let it do

상기 충방전 배터리의 전기 충전시설(21)에 충전된 전기에너지를 이용하여 수전해 시설(50)에서 수소가스와 산소를 생성하여 수소가스는 수소가스 스테이션의 수소 충전시설(30)에 직접 저장하거나 톨루엔이나 암모니아 가스를 혼합하는 치환을 하여 수소 탱크(31)에 고효율로 저장하였다가 필요시 톨루엔이나 암모니아 가스를 분리하는 환원 과정을 거쳐 연료전지 시설(60)에 저장하면서 산소가스는 산소탱크(51)에 저장하여 상기의 저온도 연소기(1)로 일부 공급하도록 한다.Hydrogen gas and oxygen are generated in the water electrolysis facility 50 using the electric energy charged in the electric charging facility 21 of the charge/discharge battery, and the hydrogen gas is directly stored in the hydrogen charging facility 30 of the hydrogen gas station or The oxygen gas is stored in the hydrogen tank 31 with high efficiency by mixing toluene or ammonia gas and stored in the fuel cell facility 60 through a reduction process that separates toluene or ammonia gas when necessary, while the oxygen gas is stored in the oxygen tank 51 ) to be partially supplied to the low-temperature combustor (1).

상기의 수소 충전시설(30)에 저장된 수소가스와 산소탱크(51)에 저장된 산소가스가 연료전지 시설(60)에서 일으키는 화학반응으로 생기는 화학에너지를 전기에너지로 바꾸어 상기의 에너지 저장 장치(ESS)(20)를 거쳐 전기 충전시설(21)에 저장하면서 전기에너지와 열을 사용하도록 한다.Hydrogen gas stored in the hydrogen charging facility 30 and oxygen gas stored in the oxygen tank 51 convert chemical energy generated by a chemical reaction caused in the fuel cell facility 60 into electrical energy, and the energy storage device (ESS) Through (20), the electric energy and heat are used while being stored in the electric charging facility (21).

그리고 가연성 생활폐기물과 음식물쓰레기 등을 이용하여 제조한 고형연료를 연소실(100)에서 연소하도록 하되,And the solid fuel manufactured using combustible household waste and food waste is combusted in the combustion chamber 100,

맥반석, 게르마늄석, 황토 및 전기석을 25중량%씩 혼합하여 파쇄한 축열층(101)을 상기 연소실(100)의 외면을 에워싸는 형태로 형성하여 연소실(100)의 온도가 낮아지는 것을 방지하면서 열을 축적하도록 한다.The heat storage layer 101, which is crushed by mixing 25% by weight of elvan, germanium stone, loess, and tourmaline, is formed to surround the outer surface of the combustion chamber 100 to reduce the temperature of the combustion chamber 100 while preventing the temperature from lowering. to accumulate

상기 축열층(101)의 내부에 와류하는 형태로 가열관(102)을 매립 설치하여 하단의 유입관(103)을 통해 유입된 물이 증기의 상태로 압력 밸브(104)와 배출관(105)을 통하여 배출되도록 한다.By embedding the heating tube 102 in the form of a vortex flow in the heat storage layer 101, the water introduced through the inlet tube 103 at the bottom is in the form of steam, and the pressure valve 104 and the discharge tube 105 are connected. to be discharged through

상기 축열층(101)의 내부인 연소실(100) 상부에 철크롬 재질의 철망(111)(121)을 여러 층으로 배열한 제1 재연소부(110) 및 제2 재연소부(120)를 차례로 형성하여 연소 상태로 상승하는 불완전 연소가스를 재차 연소시켜 완전 연소가 이루어지도록 한다.A first re-combustion unit 110 and a second re-burn unit 120 are sequentially formed on the upper portion of the combustion chamber 100 that is inside the heat storage layer 101 , in which wire meshes 111 and 121 made of iron-chromium are arranged in several layers. Thus, the incomplete combustion gas rising to the combustion state is burned again to achieve complete combustion.

상기의 제1 및 제2 재연소부(110)(120)를 통과하는 완전히 연소된 연소가스가 배출되는 배출관(130)의 외면에 공기 파이프(131)가 와류하도록 감은 공기예열관을 형성하여 예열된 공기가 연소실(100)로 공급되도록 하여 연소실의 냉각화를 방지하여 연소 효율을 높이도록 한다.Preheated by forming an air preheating tube wound so that the air pipe 131 is vortexed on the outer surface of the exhaust pipe 130 through which the completely combusted combustion gas passing through the first and second recombustion units 110 and 120 is discharged Air is supplied to the combustion chamber 100 to prevent cooling of the combustion chamber to increase combustion efficiency.

그리고 상기의 가열관(102)에서 가열된 증기를 배출관(105)을 통하여 공급받는 ORC 터빈 발전기(10)에서 터빈을 회전시키면서 발전에 의한 전기를 생성하도록 한다.And the ORC turbine generator 10 that receives the steam heated in the heating tube 102 through the discharge tube 105 rotates the turbine to generate electricity by power generation.

한편, 상기의 집적형 태양광 발전장치(40)에서는,On the other hand, in the integrated solar power generation device 40,

볼록렌즈(201)의 외면에 원주상으로 반사경(202)을 설치한 집광부(200)에서 직접 조사되는 빛과 반사경(202)에서 반사되는 빛을 원통형 집광렌즈(203)를 통해 많은 태양광을 수집할 수 있도록 한다.The light irradiated directly from the condensing unit 200 in which the reflective mirror 202 is installed in a cylindrical shape on the outer surface of the convex lens 201 and the light reflected from the reflective mirror 202 receive a lot of sunlight through the cylindrical condensing lens 203 . make it possible to collect

상기 집광부(200)의 볼록렌즈(201)와 원통형 집광렌즈(203)를 통해 수집된 태양광은 전송 광케이블(204)과 분산 광케이블(205)을 통하여 다수의 분광부(210)로 분산 이동하여 분광렌즈(211)(214)(217)로 공급되어 위쪽과 아래쪽으로 빛을 분산하도록 한다.The sunlight collected through the convex lens 201 and the cylindrical condensing lens 203 of the condensing unit 200 disperses and moves to a plurality of spectrometers 210 through the transmission optical cable 204 and the distributed optical cable 205. It is supplied to the spectroscopic lenses 211, 214, and 217 to disperse light upward and downward.

상기 분광렌즈(211)(214)(217)는 상면과 하면의 양쪽 표면을 오목렌즈(212, 213)(215, 216)(218, 219)의 형태로 형성하여 빛이 분산되면서 상기 분광렌즈(211)(214)(217)의 위쪽과 아래쪽에 차례로 배열한 발전부(220)의 다수의 박막 태양광 솔라(221)(222)(223)에 전달하여 효율적인 태양광 발전이 이루어지도록 한다.The spectroscopic lenses 211, 214, and 217 form both surfaces of the upper and lower surfaces in the form of concave lenses 212, 213, 215, 216, 218, 219 to disperse the light. 211), 214, and 217 are transmitted to a plurality of thin-film solar solar cells 221, 222, 223 of the power generation unit 220 sequentially arranged above and below to achieve efficient solar power generation.

그리고 외부로부터 공급되는 수소가스를 충진하는 수소가스 스테이션의 수소 충전시설(30)에 상기의 전기 충전시설(20)에 충전된 전기에너지를 이용한 수전해 시설(50)에서 생성한 수소가스를 저장하면서 산소가스는 산소탱크(51)에 저장하도록 한다.And while storing the hydrogen gas generated in the water electrolysis facility 50 using the electric energy charged in the electric charging facility 20 in the hydrogen charging facility 30 of the hydrogen gas station that fills the hydrogen gas supplied from the outside Oxygen gas is stored in the oxygen tank (51).

상기의 수소 충전시설(30)에 저장된 수소가스와 산소탱크(51)에 저장된 산소 가스의 화학반응으로 생기는 화학에너지를 연료전지 시설(60)에서 전기에너지로 바꾸어 상기의 전기 충전시설에 저장하면서 전기에너지와 열을 사용하도록 한다.Chemical energy generated by a chemical reaction between the hydrogen gas stored in the hydrogen charging facility 30 and the oxygen gas stored in the oxygen tank 51 is converted into electrical energy in the fuel cell facility 60 and stored in the electric charging facility, while storing electricity Use energy and heat.

이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 또한 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시 가능한 것은 물론이고, 그와 같은 변경은 기재된 청구 범위 내에 있게 된다.In the above, a preferred embodiment of the present invention has been illustrated and described, but the present invention is not limited to the above-described embodiment, and it is common in the field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims Various modifications may be made by any person skilled in the art, and such modifications are within the scope of the described claims.

1 : 저온도 연소기 10 : ORC 터빈 발전기
21 : 전기 충전시설 30 : 수소 충전시설
40 : 집적형 태양광 발전장치 50 : 수전해 시설
51 : 산소탱크 60 : 연료전지 시설
1: low temperature combustor 10: ORC turbine generator
21: electric charging facility 30: hydrogen charging facility
40: integrated solar power generation device 50: water electrolysis facility
51: oxygen tank 60: fuel cell facility

Claims (3)

생활쓰레기와 음식물쓰레기를 비롯한 가연성 물질을 연소하는 중에 발생하는 열로 가열하여 증기를 발생하는 저온도 연소기(1)와,
내부에 흑색 도료(3)가 칠해진 유리관(4)을 통과하는 중에 태양광에 의한 열로 물을 가열하는 집광형 태양열(2)과,
상기의 저온도 연소기(1) 및 집광형 태양열(2)에서 생성한 증기를 필요에 따라 상변환하면서 저장하였다가 필요한 때 다시 증기로 사용할 수 있도록 하는 상변환 축열부(PCM)(5)과,
상기의 상변환 축열부(PCM)(5)를 거치거나 직접 공급되는 증기에 의해 터빈을 회전시키면서 발전을 일으키는 ORC 터빈 발전기(10)와,
상기의 ORC 터빈 발전기(10)에서 생성된 전기에너지를 다른 에너지로 변환하여 저장하였다가 전기 충전시설에 전기에너지로 공급하는 에너지 저장 장치(ESS)(20)와,
상기의 에너지 저장 장치(20)로부터의 전기에너지와 풍력발전(22)에 의한 전기에너지를 상기 에너지 저장 장치(ESS)(20)를 거쳐 공급받아 충전하였다가 전기자동차로 공급하도록 하는 전기 충전시설(21)와,
외부에서 공급되는 수소가스를 충진하여 수소자동차에 공급하도록 하는 수소가스 스테이션의 수소 충전시설(30)과,
태양광을 이용하여 발전을 하는 중에 생성되는 전기에너지를 상기의 에너지 저장 장치(ESS)(20)를 거쳐 전기 충전시설(21)에 충전하여 전기 자동차에 충전하도록 하는 집적형 태양광 발전장치(40)와,
상기의 전기 충전시설(21)에 충전된 전기에너지를 이용하여 수소가스와 산소를 생성하여 수소가스는 수소가스 스테이션의 수소 충전시설(30)에 직접 저장하거나 톨루엔이나 암모니아 가스를 혼합하는 치환을 하여 수소 탱크(31)에 고효율로 저장하였다가 필요시 톨루엔이나 암모니아 가스를 분리하는 환원 과정을 거쳐 연료전지 시설(60)에 공급하면서 산소가스는 산소탱크(51)에 저장하여 상기의 저온도 연소기(1)로 일부 공급하도록 하는 수전해 시설(50)과,
상기의 수소 충전시설(30)에 저장된 수소가스와 산소탱크(51)에 저장된 산소가스의 화학반응으로 생기는 화학에너지를 전기에너지로 바꾸어 상기의 에너지 저장 장치(ESS)(20)를 거쳐 전기 충전시설(21)에 저장하면서 전기에너지와 열을 사용하도록 하는 연료전지 시설(60)로 구성한 자립형 전기 및 수소가스 충전소에 있어서,
집광부(200)의 일반적인 볼록렌즈(201)와 원통형 집광렌즈(203)를 통해 수집된 태양광은 전송 광케이블(204)과 분산 광케이블(205)을 통하여 다수의 분광부(210)로 분산 이동하여 분광렌즈(211)(214)(217)로 공급되어 위쪽과 아래쪽으로 빛을 분산하도록 하고,
상기 분광렌즈(211)(214)(217)는 상면과 하면의 양쪽 표면을 오목렌즈(212, 213)(215, 216)(218, 219)의 형태로 형성하여 빛이 분산되면서 상기 분광렌즈(211)(214)(217)의 위쪽과 아래쪽에 차례로 배열한 발전부(220)의 다수의 박막 태양광 솔라(221)(222)(223)에 전달하여 효율적인 태양광 발전이 이루어지도록 구성한 것을 특징으로 하는 자립형 전기 및 수소가스 충전소.
A low-temperature combustor (1) that generates steam by heating with heat generated during combustion of combustible materials including household waste and food waste;
Concentrating solar heat (2) that heats water with heat from sunlight while passing through the glass tube (4) painted with black paint (3) inside;
A phase change heat storage unit (PCM) (5) for storing the steam generated by the low-temperature combustor (1) and the concentrating solar heat (2) while changing the phase as needed and then using it again as steam when necessary;
ORC turbine generator 10 that generates power while rotating the turbine by steam supplied directly or through the phase change heat storage unit (PCM) 5;
An energy storage device (ESS) 20 that converts and stores the electrical energy generated by the ORC turbine generator 10 into other energy and supplies it as electrical energy to an electrical charging facility;
An electric charging facility for receiving electric energy from the energy storage device 20 and electric energy from the wind power generation 22 through the energy storage device (ESS) 20, charging it, and supplying it to an electric vehicle ( 21) and
A hydrogen charging facility 30 of a hydrogen gas station that fills hydrogen gas supplied from the outside and supplies it to a hydrogen vehicle;
An integrated solar power generation device 40 that charges the electric energy generated during power generation using sunlight to the electric charging facility 21 through the energy storage device (ESS) 20 to charge the electric vehicle. )Wow,
Hydrogen gas and oxygen are generated using the electric energy charged in the electric charging facility 21, and the hydrogen gas is stored directly in the hydrogen charging facility 30 of the hydrogen gas station or by substituting a mixture of toluene or ammonia gas. After being stored at high efficiency in the hydrogen tank 31 and supplying it to the fuel cell facility 60 through a reduction process of separating toluene or ammonia gas when necessary, the oxygen gas is stored in the oxygen tank 51 and stored in the low-temperature combustor ( 1) a water electrolysis facility 50 to supply some, and
The chemical energy generated by the chemical reaction of the hydrogen gas stored in the hydrogen charging facility 30 and the oxygen gas stored in the oxygen tank 51 is converted into electrical energy, and the energy storage device (ESS) 20 passes through the electric charging facility. In the self-supporting electric and hydrogen gas charging station composed of a fuel cell facility (60) that uses electric energy and heat while storing in (21),
The sunlight collected through the general convex lens 201 and the cylindrical condensing lens 203 of the condensing unit 200 is dispersed and moved to a plurality of spectrometers 210 through the transmission optical cable 204 and the distributed optical cable 205. It is supplied to the spectroscopic lenses 211, 214, and 217 to disperse the light upward and downward,
The spectroscopic lenses 211, 214, and 217 form both surfaces of the upper and lower surfaces in the form of concave lenses 212, 213, 215, 216, 218, 219 to disperse the light. 211), 214, 217, which are sequentially arranged on the upper and lower sides of the power generation unit 220, are transmitted to a plurality of thin-film solar solar cells 221, 222, and 223 to achieve efficient solar power generation. A self-contained electricity and hydrogen gas charging station.
청구항 1에 있어서,
상기의 저온도 연소기(1)는,
생활폐기물과 음식물쓰레기 등을 이용하여 제조한 고형연료를 연소실(100)에서 연소하도록 하고,
맥반석, 게르마늄석, 황토 및 전기석을 25중량%씩 혼합하여 파쇄한 축열층(101)을 상기 연소실(100)의 외면을 에워싸는 형태로 형성하여 연소실(100)의 온도가 낮아지는 것을 방지하면서 열을 축적하도록 하고,
상기 축열층(101)의 내부에 와류하는 형태로 가열관(102)을 매립 설치하여 하단의 유입관(103)을 통해 유입된 물이 증기의 상태로 압력 밸브(104)와 배출관(105)을 통하여 배출되도록 하고,
상기 축열층(101)의 내부인 연소실(100) 상부에 철크롬의 철망(111)(121)을 여러 층으로 배열한 제1 재연소부(110) 및 제2 재연소부(120)를 차례로 형성하여 연소 상태로 상승하는 불완전 연소가스를 재차 연소시키도록 하고,
상기의 제1 및 제2 재연소부(110)(120)를 통과하는 완전히 연소된 연소가스가 배출되는 배출관(130)의 외면에 공기 파이프(131)가 와류하도록 감은 공기예열관을 형성하여 예열된 공기가 연소실(100)로 공급되도록 하여 연소실의 냉각화를 방지하여 연소 효율을 높이도록 구성한 것을 특징으로 하는 자립형 전기 및 수소가스 충전소.
The method according to claim 1,
The low-temperature combustor 1 described above,
Solid fuel manufactured using household waste and food waste is burned in the combustion chamber 100,
The heat storage layer 101, which is crushed by mixing 25% by weight of elvan, germanium stone, loess, and tourmaline, is formed to surround the outer surface of the combustion chamber 100 to reduce the temperature of the combustion chamber 100 while preventing the temperature from lowering. to accumulate,
By embedding the heating tube 102 in the form of a vortex flow in the heat storage layer 101, the water introduced through the inlet tube 103 at the bottom is in the form of steam, and the pressure valve 104 and the discharge tube 105 are connected. to be discharged through
A first re-burning unit 110 and a second re-burning unit 120 in which iron-chromium wire meshes 111 and 121 are arranged in several layers are sequentially formed on the upper portion of the combustion chamber 100, which is the inside of the heat storage layer 101, to burn the incomplete combustion gas rising to the combustion state again,
Preheated by forming an air preheating tube wound so that the air pipe 131 is vortexed on the outer surface of the exhaust pipe 130 through which the completely combusted combustion gas passing through the first and second recombustion units 110 and 120 is discharged Self-supporting electricity and hydrogen gas charging station, characterized in that it is configured to increase combustion efficiency by preventing cooling of the combustion chamber by supplying air to the combustion chamber (100).
삭제delete
KR1020190040527A 2019-04-08 2019-04-08 Standalone Electricity and Hydrogen Gas Charging Station KR102273948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190040527A KR102273948B1 (en) 2019-04-08 2019-04-08 Standalone Electricity and Hydrogen Gas Charging Station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190040527A KR102273948B1 (en) 2019-04-08 2019-04-08 Standalone Electricity and Hydrogen Gas Charging Station

Publications (2)

Publication Number Publication Date
KR20200118916A KR20200118916A (en) 2020-10-19
KR102273948B1 true KR102273948B1 (en) 2021-07-06

Family

ID=73042797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190040527A KR102273948B1 (en) 2019-04-08 2019-04-08 Standalone Electricity and Hydrogen Gas Charging Station

Country Status (1)

Country Link
KR (1) KR102273948B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256662B1 (en) * 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device using organic rankine cycle and brown's gas generating module for treating combustible waste
KR102256668B1 (en) * 2021-02-02 2021-05-27 김강륜 Gasification apparatus having electricity generating device of organic rankine cycle for treating combustible waste
KR102280407B1 (en) * 2021-02-02 2021-07-23 김강륜 Gasification apparatus having brown's gas generation module for treating combustible waste
KR102254729B1 (en) * 2021-02-08 2021-05-24 창조이앤이 주식회사 Hydrogen and carbon dioxide manufacturing method using combustible waste
KR102490307B1 (en) * 2021-06-15 2023-01-25 한국수력원자력 주식회사 Power supply system and method for independent power-linked data center using wind power generation and water electrolysis
IT202100032474A1 (en) * 2021-12-23 2023-06-23 Nuovo Pignone Tecnologie Srl Integrated system for charging electric vehicles and hydrogen vehicles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324869B1 (en) * 2009-10-16 2013-11-01 울산대학교 산학협력단 High efficiency solar power generator of stack type
KR101422170B1 (en) * 2012-11-29 2014-07-22 윤지영 Device for dollecting and distributing sunlight
WO2015190123A1 (en) * 2014-06-13 2015-12-17 国立大学法人九州大学 Stand-alone energy supply facility equipped with vehicle hydrogen fuel supply unit and electric vehicle charger harnessing sunlight
KR102026404B1 (en) * 2016-11-24 2019-09-27 조선대학교산학협력단 Fusing and combing charging system

Also Published As

Publication number Publication date
KR20200118916A (en) 2020-10-19

Similar Documents

Publication Publication Date Title
KR102273948B1 (en) Standalone Electricity and Hydrogen Gas Charging Station
CN112736908A (en) Multi-energy collaborative optimization configuration planning method
US20120259025A1 (en) Method and Systems Thereof of Ecologically Carbon Dioxide-Neutral Methanation
KR20120103777A (en) New renewable energy hybrid power generation system
Chen et al. Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine
Vartiainen Screening of power to gas projects
AU2022221114A1 (en) Energy storage system with fuel gas
Tariq et al. Techno-economic and composite performance assessment of fuel cell-based hybrid energy systems for green hydrogen production and heat recovery
FR3055172B1 (en) AUTONOMOUS AND MOBILE ELECTRIC RECHARGE STATION
KR20160114802A (en) Hybrid power generation system
WO2016043810A1 (en) Water-rotor-internal-combustion engine (wrice)
CN114658536B (en) Carbon chemical energy storage system
CN108485717B (en) All-weather operation solar gasification reactor
KR200357241Y1 (en) Traveling solar power plant
CN115085389A (en) Energy storage system based on wind/light-carbon coupling
CN101316081A (en) Optical spectrum generator and use thereof
Yamujala et al. Present scenario of distributed generation in India—Technologies, cost analysis & power quality issues
Singh et al. Energy Storage System to meet Challenges of 21st Century-an Overview
Ashari Emission abatement cost analysis of hybrid marine current/photovoltaic/diesel system operation
US7340893B1 (en) Steam generator system
CN219970705U (en) New energy oil storage tank system
KR20140097083A (en) Electric power transport system and method for transport of electric power using the same
Ney et al. Technological centre for research of renewable resources and accumulation of electric power
CN218386949U (en) Container type renewable energy electric heat hydrogen co-production energy storage system
Elnozahy et al. Optimal Techno-economic Sizing of Electrical/Green Hydrogen Generation System for Hybrid Demand Load

Legal Events

Date Code Title Description
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant