KR102272981B1 - Device for controlling voltage of renewable energy power system based on power factor - Google Patents

Device for controlling voltage of renewable energy power system based on power factor Download PDF

Info

Publication number
KR102272981B1
KR102272981B1 KR1020190109978A KR20190109978A KR102272981B1 KR 102272981 B1 KR102272981 B1 KR 102272981B1 KR 1020190109978 A KR1020190109978 A KR 1020190109978A KR 20190109978 A KR20190109978 A KR 20190109978A KR 102272981 B1 KR102272981 B1 KR 102272981B1
Authority
KR
South Korea
Prior art keywords
power
renewable energy
power factor
factor
reactive
Prior art date
Application number
KR1020190109978A
Other languages
Korean (ko)
Other versions
KR20210028883A (en
Inventor
이수형
Original Assignee
목포대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 목포대학교산학협력단 filed Critical 목포대학교산학협력단
Priority to KR1020190109978A priority Critical patent/KR102272981B1/en
Publication of KR20210028883A publication Critical patent/KR20210028883A/en
Application granted granted Critical
Publication of KR102272981B1 publication Critical patent/KR102272981B1/en

Links

Images

Classifications

    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/006Measuring power factor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1878Arrangements for adjusting, eliminating or compensating reactive power in networks using tap changing or phase shifting transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명은 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 관한 것으로서, 특히 재생에너지 발전기의 직류 전원 출력부에 설치되어 전력 계통을 해석하여 역률을 산출하고, 산출된 역률을 기초로 가변 하는 유효전력에 대해서 무효전력을 산출하여 이를 무효전력 기준 값으로 결정하고, PLC(Programmable Logic Controller) 제어기가 이 결정된 무효전력 기준 값을 이용하여 직류전원을 교류전원으로 컨버팅함으로써 안정적인 교류전원을 출력할 수 있도록 하는, 역률 기반 재생 에너지 전력계통 의 전압 제어 장치에 관한 것이다. The present invention relates to a voltage control device for a power factor-based renewable energy power system, particularly installed in the DC power output part of a renewable energy generator to analyze the power system to calculate a power factor, and to change active power based on the calculated power factor. to calculate reactive power and determine it as a reactive power reference value, and a PLC (Programmable Logic Controller) controller converts DC power to AC power using the determined reactive power reference value to output stable AC power, It relates to a voltage control device of a power factor-based renewable energy power system.

Description

역률 기반 재생 에너지 전력계통의 전압 제어 장치{DEVICE FOR CONTROLLING VOLTAGE OF RENEWABLE ENERGY POWER SYSTEM BASED ON POWER FACTOR}DEVICE FOR CONTROLLING VOLTAGE OF RENEWABLE ENERGY POWER SYSTEM BASED ON POWER FACTOR

본 발명은 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 관한 것으로서, 특히 재생에너지 발전기의 직류 전원 출력부에 설치되어 전력 계통을 해석하여 역률을 산출하고, 산출된 역률을 기초로 가변 하는 유효전력에 대해서 무효전력을 산출하여 이를 무효전력 기준 값으로 결정하고, PLC(Programmable Logic Controller) 제어기가 이 결정된 무효전력 기준 값을 이용하여 직류전원을 교류전원으로 컨버팅함으로써 안정적인 교류전원을 출력할 수 있도록 하는, 역률 기반 재생 에너지 전력계통 의 전압 제어 장치에 관한 것이다. The present invention relates to a voltage control device for a power factor-based renewable energy power system, particularly installed in the DC power output part of a renewable energy generator to analyze the power system to calculate a power factor, and to change active power based on the calculated power factor. to calculate reactive power and determine it as a reactive power reference value, and a PLC (Programmable Logic Controller) controller converts DC power to AC power using the determined reactive power reference value to output stable AC power, It relates to a voltage control device of a power factor-based renewable energy power system.

최근, 전 세계적 관심사인 환경 문제는 에너지 분야에서도 중요하게 다루어지고 있으며, 문제 해결의 일환으로 재생에너지 관련 기술과 시장이 급격히 성장하고 있다. 대한민국 정부도 "재생에너지 3020 이행계획"에 따라 2030년까지 재생에너지 의존율을 전체 발전량의 20%까지 높이고자 한다. 목표 달성을 위해서는 송전계통에 연계된 대규모 재생에너지 발전단지뿐만 아니라, 배전계통에 연계된 다수의 소규모 재생에너지 발전기도 요구된다.Recently, environmental issues, which are a global concern, are also being treated as important in the energy field, and renewable energy-related technologies and markets are rapidly growing as part of solving the problems. According to the “Renewable Energy 3020 Implementation Plan,” the Korean government also intends to increase the reliance on renewable energy to 20% of total power generation by 2030. In order to achieve the goal, not only large-scale renewable energy power generation complexes linked to the transmission system, but also a large number of small-scale renewable energy generators linked to the distribution system are required.

현재, 계통 접속 규정에 따라, 배전계통에 연계된 재생 에너지 발전기는 계통 전압을 직접 제어하지 못하고 역률 1의 유효전력을 투입하도록 운전되고 있는데, 재생에너지 발전 투입량이 증가하면 배전계통 전압에 부정적인 영향을 줄 수 있다. 예를 들어, 5MW의 부하가 연계된 선로 말단에 연계된 재생에너지 발전기들이 10MW의 출력을 내면, 5MW의 역조류가 발생하여 선로 말단 전압이 주변압기 인출단 전압보다 높아지는 현상이 발생하며, 재생에너지의 간헐적인 출력 변동에 따라 배전계통 전압이 급격히 변하는 심각한 문제가 발생한다. 그러나 재생에너지 발전기에서 직접 배전계통 전압을 제어할 경우에는 주변압기의 OLTC(on load tab changer) 및 다수 재생에너지 발전기 간의 간섭으로 인해 제어가 제대로 이루어지지 않고 계통 전압이 불안정해질 가능성이 존재한다.Currently, according to the grid connection regulations, the renewable energy generator connected to the distribution system cannot directly control the grid voltage and is operated to input active power with a power factor of 1. can give For example, if the renewable energy generators linked to the end of the line to which the load of 5 MW are connected produce an output of 10 MW, a reverse current of 5 MW occurs, causing the line end voltage to become higher than the voltage at the outlet end of the peripheral voltage There is a serious problem that the distribution system voltage changes rapidly due to the intermittent output fluctuation of However, when the power distribution system voltage is directly controlled by the renewable energy generator, there is a possibility that the control is not performed properly and the grid voltage becomes unstable due to the interference between the on load tab changer (OLTC) of the peripheral voltage and multiple renewable energy generators.

따라서 발전량 변동에 따른 배전계통 전압 변동을 최소화하기 위해 재생에너지 발전기를 일정한 역률로 운전할 필요성이 있고, OLTC 및 다수 재생에너지 발전기 간의 제어 간섭 문제로부터 자유롭기 위해 재생에너지의 전압을 직접 제어하지 않고 기존의 전력제어 방식을 사용할 필요성이 있었다. Therefore, it is necessary to operate the renewable energy generator at a constant power factor in order to minimize the voltage fluctuation of the distribution system due to the change in the amount of power generation. There was a need to use a control scheme.

국내 특허 등록 제1132107호(등록일: 2012년 03월 23일)Domestic Patent Registration No. 1132107 (Registration Date: March 23, 2012)

따라서 본 발명은 상기한 점을 고려하여 이루어진 것으로서, OTLC(on load tab changer) 및 다수 재생에너지 발전기 간의 제어 간섭 문제에 영향을 받지 않고 안정적으로 직류전원을 교류전원으로 컨버팅할 수 있게 하는, 역률 기반 재생 에너지 전력계통의 전압 제어 장치를 제공하는 것을 목적으로 한다.Therefore, the present invention has been made in consideration of the above, and is based on a power factor that enables stable conversion of DC power to AC power without being affected by the control interference problem between an on load tab changer (OTLC) and a plurality of renewable energy generators. An object of the present invention is to provide a voltage control device for a renewable energy power system.

상기의 목적을 달성하기 위해 본 발명의 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치는 재생에너지 발전기로부터 직류 전원을 입력받아 전력계통을 해석하여서 역률을 산출하도록 구성된 역률 산출부; 및 상기 역률 산출부에 의해 산출된 역률을 기초로 가변하는 유효전력에 대해서 무효전력을 산출하여 무효전력 기준 값으로 결정하고, 이 결정된 무효전력 기준 값을 이용하여 PLC(Programmable Logic Controller) 제어에 의해 직류전원을 교류전원으로 컨버팅 하도록 구성된 역률 기반 컨버터;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the voltage control device of a power factor-based renewable energy power system according to an embodiment of the present invention includes: a power factor calculator configured to calculate a power factor by receiving DC power from a renewable energy generator and analyzing the power system; And, based on the power factor calculated by the power factor calculation unit, the reactive power is calculated for the variable active power and determined as a reactive power reference value, and using the determined reactive power reference value, by PLC (Programmable Logic Controller) control and a power factor-based converter configured to convert DC power into AC power.

상기 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 있어서, 상기 역률 산출부는 직류 전원에 대한 무효전력의 최댓값 및 최솟값과 유효전력의 최댓값 및 최솟값을 기초로 역률을 산출할 수 있다.In the power factor-based voltage control device of a renewable energy power system according to the embodiment, the power factor calculator can calculate the power factor based on the maximum and minimum values of reactive power and the maximum and minimum values of active power for DC power.

상기 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 있어서, 상기 역률 산출부에 의해 산출된 역률은 0.93일 수 있다.In the voltage control apparatus of the power factor-based renewable energy power system according to the embodiment, the power factor calculated by the power factor calculator may be 0.93.

상기 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 있어서, 상기 재생 에너지 발전기는 태양광 발전기 또는 배터리 에너지 저장장치일 수 있다.In the voltage control device of the power factor-based renewable energy power system according to the embodiment, the renewable energy generator may be a solar power generator or a battery energy storage device.

본 발명의 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 의하면, 재생에너지 발전기로부터 직류 전원을 입력받아 전력계통을 해석하여서 역률을 산출하도록 구성된 역률 산출부; 및 상기 역률 산출부에 의해 산출된 역률을 기초로 가변하는 유효전력에 대해서 무효전력을 산출하여 무효전력 기준값으로 결정하고, 이 결정된 무효전력 기준값을 이용하여 PLC(Programmable Logic Controller) 제어에 의해 직류전원을 교류전원으로 컨버팅 하도록 구성된 역률 기반 컨버터;를 포함하여 구성됨으로써, OTLC(on load tab changer) 및 다수 재생에너지 발전기 간의 제어 간섭 문제에 영향을 받지 않고 안정적으로 직류전원을 교류전원으로 컨버팅할 수 있다는 뛰어난 효과가 있다.According to the voltage control device of the power factor-based renewable energy power system according to an embodiment of the present invention, a power factor calculator configured to calculate a power factor by receiving a DC power input from a renewable energy generator and analyzing the power system; And, based on the power factor calculated by the power factor calculation unit, the reactive power is calculated for the variable active power and determined as a reactive power reference value, and DC power is controlled by PLC (Programmable Logic Controller) using the determined reactive power reference value. By including a power factor-based converter configured to convert AC power to AC power, it is possible to convert DC power to AC power stably without being affected by control interference problems between on load tab changer (OTLC) and multiple renewable energy generators It has an excellent effect.

도 1은 본 발명의 실시예에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 대한 제어블록도이다.
도 2는 배전 계통 데이터를 기반으로 한 모의 계통을 구성한 그래프로서, 일정한 유효전력과 다양한 무효전력을 투입하였을 때의 전압 양상을 나타낸다.
도 3은 재생에너지 발전기의 유효전력 출력과 무효전력 소모량의 크기 변화에 따른 연계 모선의 전압 변동을 나타낸 그래프이다.
도 4는 유효전력 공급과 무효전력 소모에 따른 전압 열지도이다.
도 5는 유효전력 출력에 따른 종래의 방법(역률:1)과 본 발명의 실시예에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치(역률:0.93)에 따른 전압 비교도이다.
1 is a control block diagram of a voltage control device of a power factor-based renewable energy power system according to an embodiment of the present invention.
FIG. 2 is a graph of a simulated system based on distribution system data, and shows voltage patterns when constant active power and various reactive powers are input.
Figure 3 is a graph showing the voltage fluctuations of the link bus according to the change in the size of the active power output and reactive power consumption of the renewable energy generator.
4 is a voltage heat map according to active power supply and reactive power consumption.
5 is a voltage comparison diagram according to the conventional method (power factor: 1) according to the active power output and the voltage control device (power factor: 0.93) of the power factor-based renewable energy power system according to an embodiment of the present invention.

본 발명의 실시예를 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예를 기술하기 위한 것이며, 결코 제한적으로 해석되어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하는 것으로 해석되어서는 안 된다.In describing the embodiments of the present invention, if it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms described below are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. The terminology used in the detailed description is for the purpose of describing embodiments of the present invention only, and should in no way be construed as limiting. Unless explicitly used otherwise, expressions in the singular include the meaning of the plural. In this description, expressions such as “comprising” or “comprising” are intended to indicate certain features, numbers, steps, acts, elements, some or a combination thereof, one or more other than those described. It should not be construed as excluding the presence or possibility of other features, numbers, steps, acts, elements, or any part or combination thereof.

도면에서 도시된 각 시스템에서, 몇몇 경우에서의 요소는 각각 동일한 참조 번호 또는 상이한 참조 번호를 가져서 표현된 요소가 상이하거나 유사할 수가 있음을 시사할 수 있다. 그러나 요소는 상이한 구현을 가지고 본 명세서에서 보여지거나 기술된 시스템 중 몇몇 또는 전부와 작동할 수 있다. 도면에서 도시된 다양한 요소는 동일하거나 상이할 수 있다. 어느 것이 제1 요소로 지칭되는지 및 어느 것이 제2 요소로 불리는지는 임의적이다.In each system shown in the figures, elements in some instances may each have the same reference number or a different reference number, suggesting that the represented element may be different or similar. However, elements may have different implementations and work with some or all of the systems shown or described herein. The various elements shown in the drawings may be the same or different. Which one is referred to as the first element and which is referred to as the second element is arbitrary.

본 명세서에서 어느 하나의 구성요소가 다른 구성요소로 데이터 또는 신호를 '전송', '전달' 또는 '제공'한다 함은 어느 한 구성요소가 다른 구성요소로 직접 데이터 또는 신호를 전송하는 것은 물론, 적어도 하나의 또 다른 구성요소를 통하여 데이터 또는 신호를 다른 구성요소로 전송하는 것을 포함한다.In this specification, when any one component 'transmits', 'transfers' or 'provides' data or signal to another component, one component directly transmits data or signal to another component, as well as, and transmitting data or signals to the other component via at least one other component.

본 발명의 실시예를 설명하기에 앞서, 공급되는 전력에 따른 전압 관계와 역률 제어에 의한 전압 개선에 대해서 살펴보기로 한다.Before describing an embodiment of the present invention, a voltage relationship according to supplied power and voltage improvement by power factor control will be described.

[공급되는 전력에 따른 전압 관계][Voltage relationship according to supplied power]

실제 국내 배전 계통 데이터를 기반으로 모의계통을 구성하였으며, 여기에 일정한 유효전력과 다양한 무효전력을 투입하였을 때의 전압 양상은 도 2와 같다. 즉, 유효전력 투입과 무효전력 소모(음의 무효전력 공급)에 의한 전압 변동은 선로 말단에서 가장 크게 나타난다. 이는 선로 말단으로 향할수록 기준이 되는 상위계통으로부터의 임피던스가 증가하여 계통의 강인성이 낮아지기 때문이다.A simulation system was constructed based on actual domestic distribution system data, and the voltage pattern when constant active power and various reactive powers were input is shown in FIG. 2 . That is, the voltage fluctuations due to active power input and reactive power consumption (negative reactive power supply) appear the greatest at the end of the line. This is because the impedance from the upper system, which is the reference, increases as it goes toward the end of the line, and the rigidity of the system decreases.

가장 민감한 모선인 선로 말단 모선에 재생에너지를 연계하여, 유효전력-전압 및 무효전력-전압의 관계를 도 3과 같이 산출하였다. 즉, 무효전력-전압은 선형 관계를 나타내며[도 3의 (b)], 유효전력-전압은 비선형 관계이나 선형에 매우 가까운 것을 확인할 수 있다[도 3의 (a)]. 이를 통해, 일정 전압을 유지하기 위한 유효전력 투입 대비 무효전력 소모량을 산출 할 수 있으며, 이는 도 4에 도시된 바와 같이 나타난다.By linking renewable energy to the bus terminal at the end of the line, which is the most sensitive bus, the relationship between active power-voltage and reactive power-voltage was calculated as shown in FIG. 3 . That is, the reactive power-voltage represents a linear relationship [FIG. 3 (b)], and it can be confirmed that the active power-voltage has a non-linear relationship but is very close to a linear relationship [FIG. 3 (a)]. Through this, it is possible to calculate the amount of reactive power consumption compared to the input of active power for maintaining a constant voltage, which is shown as shown in FIG. 4 .

즉, 무효전력의 소모 없이 10MW의 유효전력을 공급할 시에는 전압이 1.1pu 이상이 되어 계통 접속기준을 만족할 수 없으나, 유효전력 투입 시 2MVar 이상의 무효전력을 소모하면 전압이 1.05pu 이하로 유지되어 계통접속기준을 충족할 수 있다.In other words, when 10MW of active power is supplied without consumption of reactive power, the voltage becomes 1.1pu or higher and the grid connection standard cannot be satisfied. Connection criteria can be met.

도 4에서 동일 수준 전압끼리 연결을 하면, 직선에 가까운 모양이 되는데, 이는 일정 전압을 유지하는 유효전력 공급량과 무효전력 소모량이 선형 관계에 근접함을 의미한다. 즉, 유효전력 공급량의 약 28%의 무효전력을 소모하면 전압을 일정한 수준으로 유지할 수 있다. 이는 역률 약 0.93에 해당한다. 따라서 본 발명의 실시예에서는 역률이 0.93인 경우를 예시적으로 적용하였다.When the voltages of the same level are connected in FIG. 4 , the shape is close to a straight line, which means that the amount of active power supply and reactive power consumption maintaining a constant voltage is close to a linear relationship. That is, the voltage can be maintained at a constant level by consuming about 28% of the reactive power of the active power supply. This corresponds to a power factor of about 0.93. Therefore, in the embodiment of the present invention, the case where the power factor is 0.93 is exemplarily applied.

역률을 진상 0.93으로 유지하고 재생에너지를 투입하였을 때의 연계모선 전압은 도 5에 도시된 바와 같다. 역률이 1일때의 과전압 현상을 모두 해소하였고, 10MW 투입시의 전압 상승률은 약 1/4로 감소하였다The connected bus voltage when the power factor is maintained at 0.93 and renewable energy is input is as shown in FIG. 5 . The overvoltage phenomenon when the power factor was 1 was resolved, and the voltage increase rate at 10MW input was reduced to about 1/4.

이하, 본 발명의 실시예를 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 실시예에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 대한 제어블록도이다.1 is a control block diagram of a voltage control device of a power factor-based renewable energy power system according to an embodiment of the present invention.

본 발명의 실시예에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치는 다수의 재생에너지 발전기 각각의 출력단과 교류계통 사이에 설치되며, 도 1에 도시된 바와 같이, 역률 산출부(100) 및 역률 기반 컨버터(200)를 포함한다.The voltage control device of the power factor-based renewable energy power system according to an embodiment of the present invention is installed between the output terminal of each of a plurality of renewable energy generators and the AC system, and as shown in FIG. 1 , the power factor calculator 100 and the power factor It includes a base converter 200 .

역률 산출부(100)는 재생에너지 발전기로부터 직류 전원을 입력받아 전력계통을 해석하여서 역률을 산출하는 역할을 한다. 여기서 전력계통 해석은 직류 전원에 대한 무효전력의 최댓값 및 최솟값과, 유효전력의 최댓값 및 최솟값을 구하고, 이를 기초로 역률을 산출한다. 위의 설명에서와 같이 역률이 0.93일 경우를 바람직한 실시예로서 설정하였는데, 이는 종래의 역률 1인 때의 과전압 현상을 해소하고 전압 상승률도 급격히 감소시킬 수 있기 때문이다. The power factor calculator 100 receives DC power from the renewable energy generator and analyzes the power system to calculate the power factor. Here, the power system analysis calculates the maximum and minimum values of reactive power and the maximum and minimum values of active power for DC power, and calculates the power factor based on this. As described above, a case in which the power factor is 0.93 is set as a preferred embodiment, because the conventional overvoltage phenomenon when the power factor is 1 can be solved and the voltage increase rate can also be rapidly reduced.

역률 기반 컨버터(200)는 역률 산출부(100)에 의해 산출된 역률을 기초로 가변하는 유효전력에 대해서 무효전력을 산출하고, 그 산출된 무효전력을 무효전력 기준값으로 결정하며, 이 결정된 무효전력 기준값을 이용하여 PLC(Programmable Logic Controller) 제어에 의해 재생에너지 발전기로부터의 직류전원을 교류전원으로 안정적으로 컨버팅 하는 역할을 한다. PLC 제어에 대한 설명은 당업자에게는 명백한 것이므로 여기서는 생략하기로 한다. The power factor-based converter 200 calculates reactive power for the active power that varies based on the power factor calculated by the power factor calculator 100 , and determines the calculated reactive power as a reactive power reference value, and the determined reactive power It plays a role of stably converting DC power from renewable energy generator into AC power by controlling PLC (Programmable Logic Controller) using the reference value. Since the description of PLC control is obvious to those skilled in the art, it will be omitted here.

위와 같이 구성된 본 발명의 실시예에 의한, 본 발명의 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 의하면, 역률 산출부가 재생에너지 발전기로부터 직류 전원을 입력받아 전력계통을 해석하여서 역률을 산출하고, 역률 기반 컨버터가 역률 산출부에 의해 산출된 역률을 기초로 가변하는 유효전력에 대해서 무효전력을 산출하여 무효전력 기준값으로 결정하고, 이 결정된 무효전력 기준값을 이용하여 PLC(Programmable Logic Controller) 제어에 의해 직류전원을 교류전원으로 컨버팅 하도록 구성됨으로써, OTLC(on load tab changer) 및 다수 재생에너지 발전기 간의 제어 간섭 문제에 영향을 받지 않고 안정적으로 직류전원을 교류전원으로 컨버팅할 수 있다.According to the voltage control device of the power factor-based renewable energy power system according to the embodiment of the present invention according to the embodiment of the present invention configured as above, the power factor calculator receives DC power from the renewable energy generator and analyzes the power system to determine the power factor The power factor-based converter calculates reactive power for the active power that varies based on the power factor calculated by the power factor calculator and determines it as a reactive power reference value, and uses the determined reactive power reference value to perform a PLC (Programmable Logic Controller) By being configured to convert DC power to AC power by control, it is possible to stably convert DC power to AC power without being affected by the control interference problem between an on load tab changer (OTLC) and multiple renewable energy generators.

즉, 본 발명의 실시예에 의한, 본 발명의 실시형태에 의한 역률 기반 재생 에너지 전력계통의 전압 제어 장치에 의하면, 재생 에너지의 전압을 직접 제어하지 않음에도 불구하고 역률을 일정하게 유지함으로써 재생 에너지 발전기 간, 또는 상위계통이나 주변 기기와의 전압 제어 간섭 없이 안정적으로 교류전원을 얻을 수 있다.That is, according to the embodiment of the present invention, according to the voltage control device of the power factor-based renewable energy power system according to the embodiment of the present invention, renewable energy by maintaining a constant power factor despite not directly controlling the voltage of the renewable energy AC power can be stably obtained without voltage control interference between generators or with upper-level systems or peripheral devices.

도면과 명세서에는 최적의 실시예가 개시되었으며, 특정한 용어들이 사용되었으나 이는 단지 본 발명의 실시형태를 설명하기 위한 목적으로 사용된 것이지 의미를 한정하거나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.In the drawings and specification, the best embodiment is disclosed, and specific terms are used, but these are used only for the purpose of describing the embodiments of the present invention, and are used to limit the meaning or limit the scope of the present invention described in the claims it didn't happen Therefore, it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

100: 역률 산출부
200: 역률 기반 컨버터
100: power factor calculator
200: power factor based converter

Claims (4)

재생에너지 발전기로부터 직류 전원을 입력받아 상기 직류 전원에 대한 무효전력의 최댓값 및 최솟값과 유효전력의 최댓값 및 최솟값을 기초로 역률을 산출하도록 구성된 역률 산출부; 및
상기 역률 산출부에 의해 산출된 역률을 기초로 가변하는 유효전력에 대해서 무효전력을 산출하여 무효전력 기준값으로 결정하고, 이 결정된 무효전력 기준값을 이용하여 PLC(Programmable Logic Controller) 제어에 의해 직류전원을 교류전원으로 컨버팅 하도록 구성됨으로써, OTLC(on load tab changer) 및 다수 재생 에너지 발전기 간의 제어 간섭 문제에 영향을 받지 않고 안정적으로 직류 전원을 교류 전원으로 컨버팅 할 수 있는 역률 기반 컨버터;를 포함하는, 역률 기반 재생 에너지 전력계통의 전압 제어 장치.
a power factor calculator configured to receive DC power from a renewable energy generator and calculate a power factor based on the maximum and minimum values of reactive power and the maximum and minimum values of active power for the DC power; and
Based on the power factor calculated by the power factor calculator, reactive power is calculated for the variable active power and determined as a reactive power reference value, and DC power is controlled by PLC (Programmable Logic Controller) using the determined reactive power reference value. By being configured to convert to AC power, a power factor-based converter capable of stably converting DC power to AC power without being affected by the control interference problem between an on load tab changer (OTLC) and a plurality of renewable energy generators; Voltage control device for the base renewable energy power system.
삭제delete 제 1 항에 있어서,
상기 역률 산출부에 의해 산출된 역률은 0.93인, 역률 기반 재생 에너지 전력계통의 전압 제어 장치.
The method of claim 1,
The power factor calculated by the power factor calculator is 0.93, the voltage control device of the power factor-based renewable energy power system.
제 1 항에 있어서,
상기 재생 에너지 발전기는 태양광 발전기 또는 배터리 에너지 저장장치인, 역률 기반 재생 에너지 전력계통의 전압 제어 장치.
The method of claim 1,
The renewable energy generator is a photovoltaic generator or a battery energy storage device, a voltage control device of a power factor-based renewable energy power system.
KR1020190109978A 2019-09-05 2019-09-05 Device for controlling voltage of renewable energy power system based on power factor KR102272981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190109978A KR102272981B1 (en) 2019-09-05 2019-09-05 Device for controlling voltage of renewable energy power system based on power factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190109978A KR102272981B1 (en) 2019-09-05 2019-09-05 Device for controlling voltage of renewable energy power system based on power factor

Publications (2)

Publication Number Publication Date
KR20210028883A KR20210028883A (en) 2021-03-15
KR102272981B1 true KR102272981B1 (en) 2021-07-05

Family

ID=75134596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190109978A KR102272981B1 (en) 2019-09-05 2019-09-05 Device for controlling voltage of renewable energy power system based on power factor

Country Status (1)

Country Link
KR (1) KR102272981B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020365A (en) * 2005-07-11 2007-01-25 Mitsubishi Electric Corp Power factor adjuster
KR100938139B1 (en) * 2008-03-07 2010-01-22 헥스파워시스템(주) System for Improving Power Factor of Dispersed Generation Grid-Connected Inverter
KR101132107B1 (en) 2010-09-29 2012-04-05 한국전력공사 System for controlling voltage and reactive power in electric power system connected with distributed generation and method for the same

Also Published As

Publication number Publication date
KR20210028883A (en) 2021-03-15

Similar Documents

Publication Publication Date Title
O'Connell et al. Volt–var curves for photovoltaic inverters in distribution systems
Jahangiri et al. Distributed Volt/VAr control by PV inverters
Abapour et al. Dynamic planning of distributed generation units in active distribution network
CN104659805A (en) Method of operating a wind park
Margossian et al. Distribution network protection considering grid code requirements for distributed generation
CN104638668B (en) A kind of photovoltaic power generation grid-connecting control method and system
US10027121B2 (en) Method and apparatus for controlling stability of a local power grid
Neal The use of AMI meters and solar PV inverters in an advanced Volt/VAr control system on a distribution circuit
Khan et al. On stability of PV clusters with distributed power reserve capability
Chauhan et al. Intelligent energy management system for PV-battery-based microgrids in future DC homes
US11791631B2 (en) Dynamic computation and control of distributed assets at the edge of a power grid
CN105207194A (en) Determination method for installation position of DC power flow controller in multi-terminal flexible DC power grid
Deckmyn et al. A coordinated voltage control strategy for on-load tap changing transformers with the utilisation of distributed generators
Derakhshan et al. Decentralized voltage control of autonomous DC microgrids with robust performance approach
KR102272981B1 (en) Device for controlling voltage of renewable energy power system based on power factor
Jianfang et al. Multi-level control of grid-tied DC microgrids
Cong et al. Multi‐stage coordination optimisation control in hybrid AC/DC distribution network with high‐penetration renewables based on SOP and VSC
Shivam et al. Intelligent distributed control techniques for effective current sharing and voltage regulation in DC distributed systems
Selcen Ayaz et al. Local photovoltaic reactive power controller for increasing active distribution networks hosting capacity
CN114080748A (en) Control method of converter, converter and photovoltaic power generation system
Cecati et al. Optimal operation of smart grids with demand side management
US10416620B2 (en) Method and control device for robust optimization of an electricity grid
Castilla et al. Avoiding overvoltage problems in three‐phase distributed‐generation systems during unbalanced voltage sags
Van Pham et al. Probabilistic evaluation of voltage and reactive power control methods of wind generators in distribution networks
Alkaabi et al. Simplified power flow modeling approach considering on-load tap changers

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant