KR102272651B1 - Baculovirus with increased yield of foreign protein production - Google Patents

Baculovirus with increased yield of foreign protein production Download PDF

Info

Publication number
KR102272651B1
KR102272651B1 KR1020190035666A KR20190035666A KR102272651B1 KR 102272651 B1 KR102272651 B1 KR 102272651B1 KR 1020190035666 A KR1020190035666 A KR 1020190035666A KR 20190035666 A KR20190035666 A KR 20190035666A KR 102272651 B1 KR102272651 B1 KR 102272651B1
Authority
KR
South Korea
Prior art keywords
gene
cells
leu
baculovirus
bmbacmid
Prior art date
Application number
KR1020190035666A
Other languages
Korean (ko)
Other versions
KR20200114256A (en
Inventor
곽원석
김현수
우수동
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020190035666A priority Critical patent/KR102272651B1/en
Publication of KR20200114256A publication Critical patent/KR20200114256A/en
Application granted granted Critical
Publication of KR102272651B1 publication Critical patent/KR102272651B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0601Invertebrate cells or tissues, e.g. insect cells; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01014Chitinase (3.2.1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/22Cysteine endopeptidases (3.4.22)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 외래 단백질을 본래의 형태로 장기간 과발현하기 위한 새로운 배큘로바이러스 박미드(Bacmid) 및 이를 이용한 외래 목적 단백질의 증대된 생산 방법에 관한 것으로, 본 발명의 배큘로바이러스는 병원력이 감소된 박미드(Bacmid)를 이용하여 예방 또는 치료적 가치가 높은 외래 유용 단백질의 고유한 형태로 발현 가능함으로써 생물적 활성이나 발현량을 증대시키므로 곤충 및 곤충세포에서 예방 또는 치료목적의 항원 등의 유용 단백질을 저비용 및 고효율로 생산할 수 있다.The present invention relates to a novel baculovirus Bacmid for long-term overexpression of a foreign protein in its original form and to an increased production method of a foreign target protein using the same, wherein the baculovirus of the present invention has reduced pathogenicity. By using Bacmid, it is possible to express in a unique form of an exogenous useful protein with high prophylactic or therapeutic value, thereby increasing the biological activity or expression level. Therefore, useful proteins such as antigens for prophylactic or therapeutic purposes in insects and insect cells can be produced. It can be produced with low cost and high efficiency.

Description

외래단백질의 발현량과 발현시간이 증대된 배큘로바이러스{Baculovirus with increased yield of foreign protein production}Baculovirus with increased expression amount and expression time of foreign protein {Baculovirus with increased yield of foreign protein production}

본 발명은 외래 단백질을 본래의 형태로 장기간 과발현하기 위한 새로운 배큘로바이러스 박미드(Bacmid) 및 이를 이용한 외래 목적 단백질의 증대된 생산 방법에 관한 것이다.The present invention relates to a novel baculovirus Bacmid for long-term overexpression of an exogenous protein in its original form and to an increased production method of the exogenous target protein using the same.

배큘로바이러스 발현 시스템(Baculovirus Expression System; BES)은 핵다각체병 바이러스(Nucleopolyhedrovirus; NPV)의 강력한 p10 유전자 프로모터(promoter) 또는 다각체 단백질 유전자 프로모터(polyhedrin gene promoter)를 이용하는 발현 시스템이다.The Baculovirus Expression System (BES) is an expression system using the strong p10 gene promoter or polyhedrin gene promoter of Nucleopolyhedrovirus (NPV).

BES는 외래단백질(foreign protein)의 발현 효율이 매우 높을 뿐만 아니라, 고등 진핵세포인 곤충세포를 이용함으로써 발현된 외래 단백질의 생물학적 및 면역학적 활성이 뛰어나기 때문에, 대장균(E. coli), 효모(yeast), 포유동물세포(mammalian cell) 등을 이용하는 다른 발현 시스템에 비해 여러 가지 면에서 많은 장점을 가지고 있어 크게 주목받고 있다.BES not only has very high expression efficiency of foreign proteins, but also has excellent biological and immunological activities of foreign proteins expressed by using insect cells, which are higher eukaryotic cells, so that E. coli, yeast (E. coli), yeast (E. coli) Yeast), mammalian cells (mammalian cells), etc. compared to other expression systems have many advantages compared to other aspects, it is receiving a lot of attention.

곤충세포에서 외래 단백질을 발현시키는 경우, 대장균 발현시스템과 유사한 수준까지 단백질을 대량 생산할 수 있고, 당부가(glycosylation), 아실화(acylation), 이황화결합(disulfide bond formation)과 같은 번역 후 수정과정(post-translational modification process)이 효과적으로 이루어져 대장균과 효모를 숙주세포로 이용한 경우와는 달리 천연형 단백질(native protein)과 유사한 정도의 생물학적 활성을 갖는 외래 단백질을 대량으로 얻을 수 있어 산업적으로 매우 유용하다.In the case of expressing foreign proteins in insect cells, proteins can be mass-produced to a level similar to that of the E. coli expression system, and post-translational modifications such as glycosylation, acylation, and disulfide bond formation ( Unlike the case where E. coli and yeast are used as host cells because the post-translational modification process is effectively performed, it is very useful industrially because it is possible to obtain a large amount of foreign protein having a biological activity similar to that of a native protein.

한편 포유동물세포를 사용하는 재조합 단백질 생산 방법은 인간 의약품으로서 치료적 가치가 높은 단백질을 얻을 수 있지만, 포유동물 세포의 배양 및 유지를 위해 포유동물 유래의 각종 호르몬과 생장조절물질이 다량으로 필요하므로 상당한 비용이 요구된다는 문제점이 있다.On the other hand, the recombinant protein production method using mammalian cells can obtain a protein with high therapeutic value as a human drug, but various hormones and growth regulators derived from mammals are required in large amounts for culturing and maintaining mammalian cells. There is a problem that a considerable cost is required.

그러나 곤충 세포를 이용하는 경우에는 포유 동물세포와 유사한 번역 후 수식과정이 이루어짐에도 저비용으로 재조합 단백질을 생산할 수 있어 더욱 경제적인 단백질 생산 방법으로 알려져 있다.However, in the case of using insect cells, it is known as a more economical protein production method because it is possible to produce recombinant proteins at low cost even after a post-translational modification process similar to mammalian cells.

또한, 다른 발현계에 비해 가장 효율적으로 다중유전자발현(multiple gene expression)이 가능하여 다양한 단백질의 동시발현이 요구되는 바이러스 유사입자(virus-like particle)의 제작 및 생산에 널리 이용되고 있다. In addition, it is widely used in the production and production of virus-like particles that require simultaneous expression of various proteins because multiple gene expression is possible most efficiently compared to other expression systems.

현재 곤충 세포를 이용한 BES는 오토그라파켈리포니카 핵다각체병 바이러스(Autographa californica NPV; AcNPV)와 누에 핵다각체병 바이러스(Bombyx mori NPV; BmNPV)를 이용하는 두 가지 발현 시스템이 대표적이다. Currently, BES using insect cells is representative of two expression systems using Autographa californica NPV (AcNPV) and Bombyx mori NPV (BmNPV).

하지만, BES에서 주로 이용하는 다각체 단백질 유전자 프로모터는 유용 단백질의 종류에 따라 발현수준이 다르게 나타나며, 대부분 본래 다각체 단백질 유전자 프로모터에 의해 발현되는 다각체 단백질(polyhedrin)보다 낮은 수준으로 발현된다는 단점이 있어, BES의 기술적 한계점으로 지적되고 있다. However, the polyhedral protein gene promoter mainly used in BES shows different expression levels depending on the type of useful protein, and most of the polyhedral protein gene promoters have the disadvantage that they are expressed at a lower level than the polyhedrin originally expressed by the polyhedral protein gene promoter. , it is pointed out as a technical limitation of BES.

이와 같은 한계를 극복하기 위하여 BES의 주요 구성 요소인 벡터(vector), 배큘로바이러스 게놈(genome), 세포주에 대한 개량이 이루어지고 있으며 특히, 비교적 조작이 쉬운 벡터의 개량에 대한 연구가 가장 활발히 이루어져 왔다.In order to overcome this limitation, the vector, baculovirus genome, and cell line, which are major components of BES, are being improved. In particular, research on the improvement of relatively easy-to-manipulate vectors has been most actively conducted. come.

주로 바이러스의 생활사 마지막 단계에 폭발적으로 전사활성을 나타내는 프로모터인 다각체 단백질 유전자 프로모터 또는 p10 유전자 프로모터와 같이 매우 느린 유전자의 프로모터(very late gene promoter)를 이용한 개량이 대부분이었다. Most of the improvements were made using a very late gene promoter, such as the polyhedral protein gene promoter or the p10 gene promoter, which is a promoter that exhibits explosive transcriptional activity at the last stage of the virus's life cycle.

하지만, 병원성 바이러스라는 배큘로바이러스의 특성으로 인해 이러한 프로모터를 이용할 경우, 유용 단백질이 충분히 발현되지 못한 체 숙주 또는 숙주세포가 사멸에 이르게 되어 실제 유용 단백질의 생산량 및 생산된 단백질의 번역 후 변형과정이 기대만큼 이루어지지 못한다는 문제점이 제기되고 있다.However, due to the characteristics of baculovirus as a pathogenic virus, when such a promoter is used, the host or host cell in which the useful protein is not sufficiently expressed leads to death, and the production of the useful protein and the post-translational modification of the produced protein are reduced. The problem is that it does not work as expected.

(001) 대한민국 등록 특허 KR 10-0353475(001) Korean Patent Registration KR 10-0353475 (002) 대한민국 등록 특허 KR 10-1812250(002) Korean Patent Registration KR 10-1812250

이에 본 발명자들은 배큘로바이러스의 게놈으로부터 병원성 인자 중 하나인 p10 유전자 및 다각체 단백질 유전자 프로모터와 전사인자를 경쟁적으로 공유하는 p10 유전자 프로모터를 제거하여 목적 유용 단백질의 발현량과 세포의 생존 시간이 증대되는 효과를 확인하였으며, 여기에 배큘로바이러스의 또 다른 병원성 인자인 키티나아제(chitinase)와 시스테인 단백질 가수분해 효소(v-cath)를 추가 제거함으로서 유용 단백질의 생산량과 세포의 생존시간이 대폭 증대되는 효과를 확인하고 본 발명을 완성하였다. Accordingly, the present inventors removed the p10 gene, one of pathogenic factors, and the p10 gene promoter, which competitively shares transcription factors with the polyhedral protein gene promoter from the genome of baculovirus, thereby increasing the expression level of the target useful protein and the cell survival time. The effect was confirmed, and by additionally removing chitinase and cysteine proteolytic enzyme (v-cath), another pathogenic factor of baculovirus, the production of useful proteins and cell survival time are significantly increased. The effect was confirmed and the present invention was completed.

따라서 본 발명은 p10 유전자 프로모터 및 p10 유전자가 결실되어 외래 목적 단백질의 생산량 및 발현시간이 증대된 재조합 배큘로바이러스를 제공한다. Accordingly, the present invention provides a recombinant baculovirus in which the p10 gene promoter and the p10 gene are deleted to increase the production and expression time of an exogenous target protein.

또한, 본 발명은 p10 유전자 프로모터, p10 유전자, 배큘로바이러스의 키티나아제(chitinase) 및 시스테인 단백질 가수분해 효소(v-cath)가 결실되어 외래 목적 단백질의 생산량 및 발현시간이 증대된 재조합 배큘로바이러스를 제공한다. In addition, in the present invention, the p10 gene promoter, p10 gene, baculovirus chitinase and cysteine proteolytic enzyme (v-cath) are deleted so that the production and expression time of the exogenous target protein is increased by recombinant baculo. provide the virus.

또한, 본 발명은 p10 유전자 프로모터 및 p10 유전자가 결실된 재조합 전이 벡터를 제조하는 단계; 상기 재조합 전이 벡터에 외래 목적 단백질을 코딩하는 뉴클레오타이드 서열을 클로닝하는 단계; 및 상기 클로닝된 재조합 전이 벡터 및 백미드(Bacmid)를 곤충 또는 곤충세포에 도입하는 단계를 포함하는 외래 목적 단백질을 대량으로 생산하는 방법을 제공한다. In addition, the present invention comprises the steps of preparing a recombinant transfer vector in which the p10 gene promoter and the p10 gene are deleted; cloning the nucleotide sequence encoding the foreign target protein into the recombinant transfer vector; and introducing the cloned recombinant transfer vector and Bacmid into insects or insect cells.

아울러, 본 발명은 p10 유전자 프로모터, p10 유전자, 배큘로바이러스의 키티나아제(chitinase) 및 시스테인 단백질 가수분해 효소(v-cath)가 결실된 재조합 전이 벡터를 제조하는 단계; 상기 재조합 전이 벡터에 외래 목적 단백질을 코딩하는 뉴클레오타이드 서열을 클로닝하는 단계; 및 상기 클로닝된 재조합 전이 벡터 및 백미드(Bacmid)를 곤충 또는 곤충세포에 도입하는 단계를 포함하는 외래 목적 단백질을 대량으로 생산하는 방법을 제공한다. In addition, the present invention comprises the steps of preparing a recombinant transfer vector in which p10 gene promoter, p10 gene, baculovirus chitinase and cysteine proteolytic enzyme (v-cath) are deleted; cloning the nucleotide sequence encoding the foreign target protein into the recombinant transfer vector; and introducing the cloned recombinant transfer vector and Bacmid into insects or insect cells.

본 발명의 배큘로바이러스는 병원력이 감소된 박미드(Bacmid)를 이용하여 예방 또는 치료적 가치가 높은 외래 유용 단백질의 고유한 형태로 발현 가능함으로써 생물적 활성이나 발현량을 증대시키므로 곤충 및 곤충세포에서 예방 또는 치료목적의 항원 등의 유용 단백질을 저비용 및 고효율로 생산할 수 있다.The baculovirus of the present invention can be expressed in a unique form of an exogenous useful protein with high preventive or therapeutic value using Bacmid with reduced pathogenicity, thereby increasing the biological activity or expression level of insects and insect cells. useful proteins such as antigens for prophylactic or therapeutic purposes can be produced at low cost and with high efficiency.

도 1은 Bm5 세포에서의 상동 재조합에 의한 BmBacmid-Δp10 system을 제작한 모식도이다.
도 2는 PCR에 의해 BmBacmid-Δp10 및 BmBacmid-Δpcc의 구축을 확인한 사진이다:(A)ORF1629 영역 PCR;(B) 헬퍼 플라스미드 검출을 위한 전위효소 유전자 PCR;(C)Mini-F 레플리콘 영역 PCR;(D)p10 영역 PCR;(E)키티나아제 및 시스테인 프로테아제 유전자 영역 PCR.
도 3은 BmBacmid-Δp10의 DH10B 세포로의 전기천공 후 LB 플레이트상에 형성된 콜로니를 나타낸 사진이다.
도 4는 야생형 바큘로 바이러스 BmNPV-K1 및 변형된 Bacmids의 모식도이다:
(A)BmNPV-K1;(B)BpBacmid;(C)BmBacmid-Δp10;(D)BmBacmid-Δpcc.
도 5는 배큘로 바이러스 게놈에서 키티나아제와 시스테인 프로테아제 유전자의 배열에 대한 모식도이다.
도 6은 람다 재조합 시스템을 이용한 BmBacmid의 변형후의 BmBacmid-Δpcc system을 제작한 모식도이다.
도 7은 람다 재조합 시스템을 통한 BmBacmid-Δpcc의 제조후 pREDGm의 회복(curing)
pREDGm의 경화 후, 콜로니를 LB 플레이트 A 및 LB 플레이트 B에서 복제,
(A)카나마이신, 클로람페니콜, 테트라 사이클린 및 겐타 마이신을 함유하는 LB 플레이트;(B)카나마이신, 클로람페니콜 및 테트라 사이클린을 함유하는 LB 플레이트.
도 8은 배양 1 내지 12일째에 rBm-p6.9v-EGFP-wt(wt), rBm-p6.9v-EGFP-Δp10(Δp10), rBm-p6.9v-EGFP Δpcc)로 감염된 Bm5 세포의 감염된 형광 현미경 사진이다.
도 9는 EGFP의 형광 강도를 나타낸 그래프이다:
Bm5 세포를 각각의 재조합 바이러스로 M.O.I. 5 마리가 감염 후 1 일에서 12 일 사이에 수확됨, 형광 분광계를 사용하여 세포 추출물의 형광 강도를 측정하였음, 막대는 평균±SE(n=3)를 나타냄, wt, rBm-p6.9v-EGFP-wt; Δp10, rBm-p6.9v-EGFP-Δp10; Δpcc, rBm-p6.9v-EGFP.
도 10은 WT BmNPV-K1 및 변형된 BmBacmids의 BV 성장 곡선의 비교한 그래프이다.
도 11은 WT BmNPV-K1 또는 변형된 BmBacmid 바이러스로 감염된 Bm5 세포의 생존률의 사이를 나타낸 그래프이다.
1 is a schematic diagram illustrating the production of a BmBacmid-Δp10 system by homologous recombination in Bm5 cells.
2 is a photograph confirming the construction of BmBacmid-Δp10 and BmBacmid-Δpcc by PCR: (A) ORF1629 region PCR; (B) transposase gene PCR for helper plasmid detection; (C) Mini-F replicon region PCR; (D) p10 region PCR; (E) chitinase and cysteine protease gene region PCR.
3 is a photograph showing colonies formed on LB plates after electroporation of BmBacmid-Δp10 into DH10B cells.
Figure 4 is a schematic diagram of wild-type baculovirus BmNPV-K1 and modified Bacmids:
(A) BmNPV-K1; (B) BpBacmid; (C) BmBacmid-Δp10; (D) BmBacmid-Δpcc.
5 is a schematic diagram of the arrangement of chitinase and cysteine protease genes in the baculovirus genome.
6 is a schematic diagram illustrating the production of a BmBacmid-Δpcc system after modification of BmBacmid using a lambda recombination system.
Figure 7 is the recovery (curing) of pREDGm after the preparation of BmBacmid-Δpcc through the lambda recombination system.
After curing of pREDGm, colonies were cloned in LB plate A and LB plate B;
(A) LB plates containing kanamycin, chloramphenicol, tetracycline and gentamicin; (B) LB plates containing kanamycin, chloramphenicol and tetracycline.
8 shows the infection of Bm5 cells infected with rBm-p6.9v-EGFP-wt (wt), rBm-p6.9v-EGFP-Δp10 (Δp10), rBm-p6.9v-EGFP Δpcc) on days 1 to 12 of culture. It is a fluorescence micrograph.
9 is a graph showing the fluorescence intensity of EGFP:
Bm5 cells were harvested between 1 and 12 days post infection at MOI of 5 mice with each recombinant virus, fluorescence intensity of cell extracts was measured using a fluorescence spectrometer, bars represent mean±SE (n=3) , wt, rBm-p6.9v-EGFP-wt; Δp10, rBm-p6.9v-EGFP-Δp10; Δpcc, rBm-p6.9v-EGFP.
10 is a graph comparing BV growth curves of WT BmNPV-K1 and modified BmBacmids.
11 is a graph showing the survival rate of Bm5 cells infected with WT BmNPV-K1 or modified BmBacmid virus.

이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 발현 벡터의 개량과 함께 배큘로바이러스 자체에 존재하며 재조합 단백질 발현효율 및 안정성에 영향을 미칠 뿐만 아니라 숙주에 병원성을 나타내는 유전자의 제거를 위해 배큘로바이러스의 게놈 또한 개량하였다. 재조합 단백질의 발현에 이용되는 주요 프로모터인 polyhedrin promoter와 함께 very late promoter에 속하며 전사인자를 공유한다고 알려져 있는 p10 유전자 및 그 프로모터의 제거를 통해 재조합 단백질의 생산량 증대 및 숙주세포의 생존률 향상을 확인하였다.The present invention has also improved the genome of baculovirus in order to remove genes that exist in baculovirus itself and affect recombinant protein expression efficiency and stability along with improvement of the expression vector, as well as show pathogenicity in the host. Together with the polyhedrin promoter, which is a major promoter used for recombinant protein expression, the p10 gene, which is known to belong to the very late promoter and share transcription factors, and its promoter were removed to increase the production of the recombinant protein and improve the survival rate of the host cell.

또한, 재조합 단백질의 분해를 야기함으로써 안정성 저하를 통해 생산량을 감소시키는 시스테 인단백질 가수분해 효소(cysteine protease, V-cath)와 숙주에 병원성 인자로 작용하며, 소포체 수송 억제 유전자로 알려진 키티나아제(chitinase) 유전자의 제거를 통해 재조합 단백질의 생산량을 증대시켰을 뿐만 아니라 바이러스 감염세포의 사멸을 지연시켜 재조합 단백질의 생산 시간 또한 증대시켰고, 5령 누에 유충에서도 생존시간을 매우 증대시킬 수 있음을 확인하였다.In addition, cysteine protease (V-cath), which reduces production through stability degradation by causing degradation of recombinant proteins, and chitinase, which acts as a pathogenic factor in the host, is known as an endoplasmic reticulum transport inhibitory gene By removing the (chitinase) gene, not only the production of the recombinant protein was increased, but also the production time of the recombinant protein was increased by delaying the death of virus-infected cells, and it was confirmed that the survival time could be greatly increased even in the 5th instar silkworm larvae. .

또한, 세포 생존률의 증대에 따라 재조합 단백질의 생산 시간을 연장시킴으로써 기존에 비해 더 높은 수율을 기대 할 수 있을 것으로 여겨지며, 특히 구조단백질의 발현 후 조립(assembly) 및 세포의 세포막을 둘러싸고 방출되는 외막형 바이러스(envelpoed virus)의 바이러스 유사입자(virus-like particle :VLP)생산에 매우 유용한 도구가 될 수 있다.In addition, it is believed that a higher yield can be expected than before by extending the production time of the recombinant protein according to the increase in cell viability. In particular, the outer membrane type that surrounds the cell membrane and is released after assembly and the cell membrane after the expression of the structural protein. It can be a very useful tool for the production of virus-like particles (VLPs) of enveloped viruses.

본 발명은 p10 유전자 프로모터 및 p10 유전자가 결실되어 외래 목적 단백질의 생산량 및 발현시간이 증대된 재조합 배큘로바이러스를 제공한다. The present invention provides a recombinant baculovirus in which the p10 gene promoter and the p10 gene are deleted to increase the production and expression time of an exogenous target protein.

상기 p10 유전자 프로모터는 서열번호 1의 염기서열로 표시되는 것이다.The p10 gene promoter is represented by the nucleotide sequence of SEQ ID NO: 1.

상기 p10 유전자는 서열번호 2의 염기서열로 표시되고, 서열번호 3의 아미노산 서열로 표시되는 것이다.The p10 gene is represented by the nucleotide sequence of SEQ ID NO: 2 and the amino acid sequence of SEQ ID NO: 3.

또한, 본 발명은 p10 유전자 프로모터, p10 유전자, 배큘로바이러스의 키티나아제(chitinase) 및 시스테인 단백질 가수분해 효소(v-cath)가 결실되어 외래 목적 단백질의 생산량 및 발현시간이 증대된 재조합 배큘로바이러스를 제공한다. In addition, in the present invention, the p10 gene promoter, p10 gene, baculovirus chitinase and cysteine proteolytic enzyme (v-cath) are deleted so that the production and expression time of the exogenous target protein is increased by recombinant baculo. provide the virus.

상기 배큘로바이러스의 키티나아제(chitinase)는 서열번호 4의 염기서열로 표시되고, 서열번호 5의 아마노산 서열로 표시되는 것이다.The chitinase of the baculovirus is represented by the nucleotide sequence of SEQ ID NO: 4, and is represented by the amino acid sequence of SEQ ID NO: 5.

상기 시스테인 단백질 가수분해 효소(v-cath)는 서열번호 6의 염기서열로 표시되고, 서열번호 3의 아미노산 서열로 표시되는 것이다. The cysteine proteolytic enzyme (v-cath) is represented by the nucleotide sequence of SEQ ID NO: 6 and the amino acid sequence of SEQ ID NO: 3.

또한, 본 발명은 p10 유전자 프로모터 및 p10 유전자가 결실된 재조합 전이 벡터를 제조하는 단계; 상기 재조합 전이 벡터에 외래 목적 단백질을 코딩하는 뉴클레오타이드 서열을 클로닝하는 단계; 및 상기 클로닝된 재조합 전이 벡터 및 백미드(Bacmid)를 곤충 또는 곤충세포에 도입하는 단계를 포함하는 외래 목적 단백질을 대량으로 생산하는 방법을 제공한다. In addition, the present invention comprises the steps of preparing a recombinant transfer vector in which the p10 gene promoter and the p10 gene are deleted; cloning the nucleotide sequence encoding the foreign target protein into the recombinant transfer vector; and introducing the cloned recombinant transfer vector and Bacmid into insects or insect cells.

본 발명의 일실시예에 있어서, 상기 벡터는 p10 유전자 프로모터를 이용하여 다각체 단백질을 발현하는 봉입체 형성(occlusion body positive) 재조합 BmNPV를 제작하는데 이용하는 BpGOZA 박미드(bacmid)를 기반으로 하여 Bac-to-Bac system을 도입한 BpBacmid의 바이러스 DNA와 p10 유전자 프로모터의 상류영역 서열부터 p10 유전자의 하류영역까지 서열 중 p10 유전자 프로모터 및 그 유전자가 제거된 재조합 전이벡터 BmBacmid-Δp10를 제작할 수 있다.In one embodiment of the present invention, the vector is Bac-to based on the BpGOZA bacmid used to construct an occlusion body positive recombinant BmNPV expressing a polyhedral protein using the p10 gene promoter. It is possible to construct a recombinant transfer vector BmBacmid-Δp10 in which the viral DNA of BpBacmid introduced with the -Bac system and the p10 gene promoter and its gene are removed from the sequence from the upstream region of the p10 gene promoter to the downstream region of the p10 gene.

본 발명의 일실시예에 있어서, 상기 곤충 세포는 BT1-Tn-5B1-4 세포, Hi5 세포, LD652Y 세포, Sf9 세포, Sf21 세포, Kc1 세포, SL2 세포, Bm5 세포, BmN 세포 및 모기(mosquito) 세포로 이루어진 군에서 선택된 1종인 것일 수 있다.In one embodiment of the present invention, the insect cells are BT1-Tn-5B1-4 cells, Hi5 cells, LD652Y cells, Sf9 cells, Sf21 cells, Kc1 cells, SL2 cells, Bm5 cells, BmN cells and mosquitoes (mosquito). It may be one selected from the group consisting of cells.

본 발명의 일실시예에 있어서, 상기 곤충은 누에나방(Bombyx mori), 도둑나방(Spodoptera frugiperda), 양배추은무늬밤나방(Trichoplusia ni) 및 벌집나방(Galleria mellonella)으로 이루어진 군에서 선택된 1종인 것일 수 있다.In one embodiment of the present invention, the insect may be one selected from the group consisting of silkworm moth (Bombyx mori), thief moth (Spodoptera frugiperda), cabbage silver pattern chestnut moth (Trichoplusia ni), and beehive moth (Galleria mellonella). .

본 발명의 일실시예에 있어서, 상기 배큘로바이러스는 오토그라파 캘리포니카 핵다각체병 바이러스(Autographa californica nuclear polyhedrosis virus, AcNPV) 또는 누에 핵다각체병 바이러스(Bombyx mori nucleopolyhedrovirus, BmNPV)인 것일 수 있다.In one embodiment of the present invention, the baculovirus may be Autographa californica nuclear polyhedrosis virus (AcNPV) or Bombyx mori nucleopolyhedrovirus (BmNPV).

아울러, 본 발명은 p10 유전자 프로모터, p10 유전자, 배큘로바이러스의 키티나아제(chitinase) 및 시스테인 단백질 가수분해 효소(v-cath)가 결실된 재조합 전이 벡터를 제조하는 단계; 상기 재조합 전이 벡터에 외래 목적 단백질을 코딩하는 뉴클레오타이드 서열을 클로닝하는 단계; 및 상기 클로닝된 재조합 전이 벡터 및 백미드(Bacmid)를 곤충 또는 곤충세포에 도입하는 단계를 포함하는 외래 목적 단백질을 대량으로 생산하는 방법을 제공한다. In addition, the present invention comprises the steps of preparing a recombinant transfer vector in which p10 gene promoter, p10 gene, baculovirus chitinase and cysteine proteolytic enzyme (v-cath) are deleted; cloning the nucleotide sequence encoding the foreign target protein into the recombinant transfer vector; and introducing the cloned recombinant transfer vector and Bacmid into insects or insect cells.

본 발명의 일실시예 있어서, 상기 벡터는 배큘로바이러스의 시스테인단백질가수분해 효소 유전자 및 키티나아제 유전자는 lef-7 유전자의 ORF(open reading frame)와 gp64 유전자의 ORF 사이에 존재하며 41내지 122 bp의 짧은 서열의 양방향성 프로모터를 중심으로 하여 서로 반대방향으로 존재한다(Michale, 2011). 따라서 lambda red recombination system을 이용하여 시스테인 단백질 가수분해 효소 유전자 및 키티나아제 유전자를 동시에 제거할 수 있으며, 키티나아제 유전자의 주변 유전자인 lef-7의 예상 프로모터 서열과 시스테인단백질가수분해 효소 유전자의 주변 유전자인 gp64의 poly A 서열에 손상이 되지 않도록 제거 위치를 설정한 뒤 이들 유전자를 제거하여 BmBacmid-Δpcc를 제작할 수 있다.In one embodiment of the present invention, in the vector, the baculovirus cysteine proteolytic enzyme gene and the chitinase gene are present between the open reading frame (ORF) of the lef-7 gene and the ORF of the gp64 gene, 41 to 122 They exist in opposite directions with respect to the bidirectional promoter of the short sequence of bp (Michale, 2011). Therefore, the cysteine proteolytic enzyme gene and the chitinase gene can be simultaneously removed using the lambda red recombination system, and the predicted promoter sequence of lef-7, a gene surrounding the chitinase gene, and the cysteine proteolytic enzyme gene BmBacmid-Δpcc can be produced by removing these genes after setting the removal position so as not to damage the poly A sequence of the gene gp64.

본 발명의 일실시예에 있어서, 상기 곤충 세포는 BT1-Tn-5B1-4 세포, Hi5 세포, LD652Y 세포, Sf9 세포, Sf21 세포, Kc1 세포, SL2 세포, Bm5 세포, BmN 세포 및 모기(mosquito) 세포로 이루어진 군에서 선택된 1종인 것일 수 있다.In one embodiment of the present invention, the insect cells are BT1-Tn-5B1-4 cells, Hi5 cells, LD652Y cells, Sf9 cells, Sf21 cells, Kc1 cells, SL2 cells, Bm5 cells, BmN cells and mosquitoes (mosquito). It may be one selected from the group consisting of cells.

본 발명의 일실시예에 있어서, 상기 곤충은 누에나방(Bombyx mori), 도둑나방(Spodoptera frugiperda), 양배추은무늬밤나방(Trichoplusia ni) 및 벌집나방(Galleria mellonella)으로 이루어진 군에서 선택된 1종인 것일 수 있다.In one embodiment of the present invention, the insect may be one selected from the group consisting of silkworm moth (Bombyx mori), thief moth (Spodoptera frugiperda), cabbage silver pattern chestnut moth (Trichoplusia ni), and beehive moth (Galleria mellonella). .

본 발명의 일실시예에 있어서, 상기 배큘로바이러스는 오토그라파 캘리포니카 핵다각체병 바이러스(Autographa californica nuclear polyhedrosis virus, AcNPV) 또는 누에 핵다각체병 바이러스(Bombyx mori nucleopolyhedrovirus, BmNPV)인 것일 수 있다.In one embodiment of the present invention, the baculovirus may be Autographa californica nuclear polyhedrosis virus (AcNPV) or Bombyx mori nucleopolyhedrovirus (BmNPV).

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not to be construed as being limited by these examples.

<< 실시예Example 1> 재료 및 방법 1> Materials and Methods

<1-1> 바이러스 및 세포주<1-1> Viruses and cell lines

Bombyx mori의 난소에서 유래한 세포주인 Bm5 세포는 TC-100 insect medium(Welgene, Korea)에 fetal bovine serum(FBS)(Welgene, Korea)을 10% 첨가하여 27℃ 항온기에서 정치배양하며 실험에 사용하였다. trypan blue 염색을 통하여 세포를 계수하였고, 계대배양은 세포배양용 T-25 플라스크(25 cm2)당 2.0 × 106 세포로 하여 4일 간격으로 재분주하였다. 곤충 바이러스는 한국에서 분리된 야생주(wild type)로써 BmNPV-K1 strain을 Bm5 세포에 접종하여 증식 후 실험에 사용하였다.Bm5 cells, a cell line derived from the ovary of Bombyx mori, were used for the experiment by adding 10% of fetal bovine serum (FBS) (Welgene, Korea) to TC-100 insect medium (Welgene, Korea) and culturing stationary in an incubator at 27°C. . Cells were counted through trypan blue staining, and subculture was performed at 2.0 × 106 cells per T-25 flask for cell culture (25 cm 2 ) and redistributed every 4 days. Insect virus was a wild type isolated from Korea, and BmNPV-K1 strain was inoculated into Bm5 cells and used in the experiment after propagation.

<1-2> 재조합 <1-2> recombination BmNPVBmNPV 제작 making

재조합 전이벡터를 DH10BmBac 또는 DH10Bm-ΔP10 또는 DH10Bm-ΔPCC competent 세포 내로 형질전환시키고, DH10BmBac 및 DH10Bm-ΔP10의 경우 gentamicin(10 μg/mL), kanamycin(40 μg/mL), tetracycline(10 μg/mL), X-gal 및 IPTG가 처리된 LB plate, DH10Bm-ΔPCC의 경우 chloramphenicol(30 μg/mL), gentamicin(10 μg/mL), kanamycin(40 μg/mL), tetracycline(10 μg/mL), X-gal 및 IPTG가 처리된 LB plate를 이용하여 24시간 이상 37℃에서 암배양 후 하얀색 콜로니를 선별하여 배양하고 PureLink® HiPure Plasmid Miniprep Kit(ThermoFisher, USA)를 이용하여 추출하였다. LacZ 유전자 내 att-Tn7으로 목적 유전자의 전이를 확인하기 위하여 AccuPower® ProFi Taq PCR Premix(Bioneer Co., Daejeon, Korea)와 하기 표 2의 프라이머를 이용하여 PCR을 수행하였다.Transform the recombinant transfer vector into DH10BmBac or DH10Bm-ΔP10 or DH10Bm-ΔPCC competent cells, and for DH10BmBac and DH10Bm-ΔP10, gentamicin (10 μg/mL), kanamycin (40 μg/mL), tetracycline (10 μg/mL) , LB plate treated with X-gal and IPTG, for DH10Bm-ΔPCC, chloramphenicol (30 μg/mL), gentamicin (10 μg/mL), kanamycin (40 μg/mL), tetracycline (10 μg/mL), X -Gal and IPTG-treated LB plates were used for cancer culture at 37°C for 24 hours or longer, and white colonies were selected and cultured, and extracted using PureLink® HiPure Plasmid Miniprep Kit (ThermoFisher, USA). To confirm the transfer of the target gene to att-Tn7 in the LacZ gene, PCR was performed using AccuPower® ProFi Taq PCR Premix (Bioneer Co., Daejeon, Korea) and the primers in Table 2 below.

프라이머primer 서열번호SEQ ID NO: 서열order M13F(-40)M13F(-40) 88 5’-GTT TTC CCA GTC ACG AC-3’5'-GTT TTC CCA GTC ACG AC-3' M13R(-40)M13R(-40) 99 5’-CAG GAA ACA GCT ATG AC-3’5’-CAG GAA ACA GCT ATG AC-3’

<1-3> 재조합 <1-3> recombination BmNPVBmNPV 순화 sublimation

재조합 BmNPV의 순화는 plaque assay(O’Reilly et al., 1992) 방법으로 수행하였다. Bm5 세포를 2.0×106개로 60 mm dish(SPL Co. Ltd., Pocheon, Korea)에 분주하고, 재조합 BmNPV의 생성이 확인된 세포배양 배지를 10-4 ∼ 10-6으로 희석하여 접종 후 4시간 동안 정치배양 하였다. 이후, 5% SeaPlaqueAgarose(Lonza, Basel, Switzerland)를 멸균하여 녹인 후, 45℃ water bath에서 정치시키고 세포배양 배지와 혼합하여 최종적으로 0.5% agarose가 되도록 준비하였다. 4시간의 바이러스 접종 후, 접종액을 완전히 제거하고 준비한 agarose gel을 감염 세포 위에 3 mL씩 overlay한 뒤 27℃에서 배양하며 3일 후부터 plaque의 생성유무를 관찰하였다. 생성된 plaque은 마이크로피펫(micropipette)을 이용하여 분리한 후 세포배양 배지 100 μL에 첨가하고 vortexing하여 혼합액을 24 well plate에 접종하였다. 접종 3일 후, 재조합 바이러스의 생성이 확인된 세포를 수거하여 바이러스 DNA를 추출하고 PCR을 수행하여 재조합 바이러스의 순수성을 확인하였다. 바이러스의 순수성을 확인하기 위한 PCR은 목적 유전자가 전이되는 위치에서 표 1의 프라이머를 이용하여 삽입을 확인하였다.Purification of recombinant BmNPV was performed by plaque assay (O'Reilly et al., 1992). Bm5 cells were aliquoted into 2.0×10 6 pieces in a 60 mm dish (SPL Co. Ltd., Pocheon, Korea), and the cell culture medium in which the production of recombinant BmNPV was confirmed was diluted to 10 -4 ∼ 10 -6 and inoculated 4 It was incubated for a period of time. Thereafter, 5% SeaPlaque Agarose (Lonza, Basel, Switzerland) was sterilized and dissolved, left still in a water bath at 45° C., and mixed with a cell culture medium to finally prepare 0.5% agarose. After 4 hours of virus inoculation, the inoculum was completely removed, and 3 mL of the prepared agarose gel was overlaid on the infected cells, incubated at 27°C, and the formation of plaques was observed after 3 days. The resulting plaque was separated using a micropipette, added to 100 μL of cell culture medium, vortexed, and the mixture was inoculated into a 24-well plate. Three days after inoculation, cells in which the production of recombinant virus was confirmed were collected, viral DNA was extracted, and PCR was performed to confirm the purity of the recombinant virus. In PCR to confirm the purity of the virus, insertion was confirmed using the primers in Table 1 at the location where the target gene was transferred.

<1-4> <1-4> 배큘로바이러스baculovirus 정량 dose

순수성이 확인된 재조합 바이러스의 역가(titer)를 end-point dilution assay(TCID50) 방법을 사용하여 측정하였다. 96 well plate에 2.0×104 cell/90 μL의 곤충 세포를 분주하고, 바이러스 배양액을 10-5, 10-6, 10-7, 10-8 농도로 희석한 후, 각 희석 농도의 바이러스 접종액을 12개의 well에 10 μL씩 접종하여 27℃에서 5일 배양한 후, 위상차 현미경을 이용하여 감염된 well 개수와 감염되지 않은 well 개수의 비율로부터 mL당 p.f.u.(plaque forming unit)을 계산하였다.The titer of the recombinant virus whose purity was confirmed was measured using an end-point dilution assay (TCID50) method. After dispensing 2.0×10 4 cells/90 μL of insect cells in a 96 well plate, the virus culture was diluted to 10 -5 , 10 -6 , 10 -7 , 10 -8 concentrations, and then the virus inoculum at each dilution concentration was inoculated into 12 wells by 10 μL and cultured at 27°C for 5 days, and pfu (plaque forming unit) per mL was calculated from the ratio of the number of infected wells to the number of uninfected wells using a phase contrast microscope.

<1-5> <1-5> 배큘로바이러스baculovirus DNA 추출 DNA extraction

바이러스 DNA의 분리를 위해 각 재조합 바이러스에 감염된 세포를 1,000 × g로 5분 동안 원심분리하여 상층액에 존재하는 BV를 수거하고 20% PEG solution(20% Polyethylene Glycol 8000, 0.5M NaCl)을 1:1 Volume으로 혼합하여 ice에서 30분 정치하고 10,000×g, 4℃에서 10분간 원심분리하여 침전된 BV를 얻었다. 그 후 500 μL의 lysis buffer(50 mM Tris-HCl, 10 mM EDTA, 5% β-mercaptoethanol, 4% SDS, pH 8.0)를 첨가하여 15초간 vortexing하고 상온에서 10분간 방치하였다. 그 후, 12,000×g으로 20분 동안 원심분리하여 상층액을 수거하고, phenol과 isoamyl alcohol(IAA) 처리 과정을 수행하였다. 3 M sodium acetate를 최종 부피의 1/10로, 99% 냉에탄올을 2배 부피로 첨가하여 -70℃에서 30분간 방치한 후, 12,000×g으로 15분간 원심분리하여 DNA 침전물을 얻었다. 70% ethanol로 세척하고 건조한 뒤 멸균수에 녹여서 실험에 이용하였다.For isolation of viral DNA, cells infected with each recombinant virus were centrifuged at 1,000 × g for 5 minutes to collect BV present in the supernatant, and 20% PEG solution (20% Polyethylene Glycol 8000, 0.5M NaCl) was 1: The mixture was mixed in 1 Volume, left on ice for 30 minutes, and centrifuged at 10,000×g, 4° C. for 10 minutes to obtain precipitated BV. Then, 500 μL of lysis buffer (50 mM Tris-HCl, 10 mM EDTA, 5% β-mercaptoethanol, 4% SDS, pH 8.0) was added, vortexed for 15 seconds, and left at room temperature for 10 minutes. Then, the supernatant was collected by centrifugation at 12,000 × g for 20 minutes, and phenol and isoamyl alcohol (IAA) treatment was performed. After adding 3 M sodium acetate to 1/10 of the final volume and double volume of 99% cold ethanol, it was left at -70°C for 30 minutes, and then centrifuged at 12,000×g for 15 minutes to obtain a DNA precipitate. After washing with 70% ethanol and drying, it was dissolved in sterile water and used for the experiment.

<1-6> SDS-PAGE 및 Western blot analysis<1-6> SDS-PAGE and Western blot analysis

각 재조합 BmNPV가 접종된 Bm5 세포를 1,000 × g로 5분 동안 원심분리하여 침전된 세포를 수거하고 PBS로 세척하였다. 세포 침전물은 세포 침전물은 0.1 % PBS-T buffer(PBS with 0.1 % Triton X-100)에 부유시키고 protease inhibitor cocktail(Sigma-Aldrich, Saint Louis, USA)을 최종부피의 1%가 되게 첨가하고 얼음에 30분간 방치 후, 5X SDS-PAGE loading sample buffer(312.5 mM Tris-HCl, 50% glycerol, 5% β-mercaptoethanol, 10% SDS, 0.1 % bromophenol blue, pH 6.8)를 첨가하여 100℃에서 10분간 가열하고 12,000 × g에서 10분간 원심분리하여 시료를 제작하였다. SDS-PAGE 시료는 10 %와 12 % SDS-polyacrylamide gel에서 125V의 전압에서 전기영동을 수행하였다. 전기영동 후, gel은 Coomassie brilliant blue solution(1 g coomassie brilliant blue, 450 mL methanol, 100 mL glacial acetic acid with 450 mL distilled water)으로 상온에서 1시간 동안 염색하고, destaining solution(400 mL methanol, 100 mL glacial acetic acid with 500 mL distilled water)으로 탈색하여 관찰하였다. Western blot analysis를 위하여 SDS-PAGE gel을 nitrocellulose membrane(Pall Corp, New York, USA)에 15V의 전압으로 1시간 동안 transfer하였고, blocking을 위하여 TBS-T(20 mM Tris, 150 mM NaCl, 0.1 % Tween 20, pH 7.4)에 녹인 5% skim milk를 1시간 처리하였다. EGFP에 특이적인 anti-GFP 항체(Cell signaling, USA)는 TBS-T에 희석하여 처리한 후, 15분씩 3번 세척하였다. 2차 항체(anti-mouse IgG) 또한 TBS-T에 희석하여 처리한 후, 15분씩 3번 세척하였다. 최종적으로 membrane에 Western HRP substrate(Merck Millipore, Burlington, USA)를 처리하고 Azure c300 Western Blot Chemiluminescent Blot Imaging System(Azure biosystem, Dublin, USA)으로 이미지를 촬영하여 특이적인 밴드를 관찰하였다.Bm5 cells inoculated with each recombinant BmNPV were centrifuged at 1,000 × g for 5 minutes to collect the precipitated cells and washed with PBS. Cell precipitate is suspended in 0.1% PBS-T buffer (PBS with 0.1% Triton X-100), and protease inhibitor cocktail (Sigma-Aldrich, Saint Louis, USA) is added to make 1% of the final volume and placed on ice. After leaving for 30 minutes, add 5X SDS-PAGE loading sample buffer (312.5 mM Tris-HCl, 50% glycerol, 5% β-mercaptoethanol, 10% SDS, 0.1 % bromophenol blue, pH 6.8) and heat at 100°C for 10 minutes and centrifuged at 12,000 × g for 10 minutes to prepare a sample. SDS-PAGE samples were electrophoresed at a voltage of 125V on 10% and 12% SDS-polyacrylamide gels. After electrophoresis, the gel was stained with Coomassie brilliant blue solution (1 g coomassie brilliant blue, 450 mL methanol, 100 mL glacial acetic acid with 450 mL distilled water) at room temperature for 1 hour, and destaining solution (400 mL methanol, 100 mL). It was observed by decolorization with glacial acetic acid with 500 mL distilled water). For Western blot analysis, the SDS-PAGE gel was transferred to a nitrocellulose membrane (Pall Corp, New York, USA) at a voltage of 15 V for 1 hour, and for blocking, TBS-T (20 mM Tris, 150 mM NaCl, 0.1 % Tween) 20, pH 7.4) was treated with 5% skim milk for 1 hour. EGFP-specific anti-GFP antibody (Cell signaling, USA) was diluted in TBS-T and washed three times for 15 minutes each. Secondary antibody (anti-mouse IgG) was also diluted in TBS-T and washed three times for 15 minutes each. Finally, the membrane was treated with Western HRP substrate (Merck Millipore, Burlington, USA), and an image was taken with an Azure c300 Western Blot Chemiluminescent Blot Imaging System (Azure biosystem, Dublin, USA) to observe a specific band.

<1-7> 형광 현미경 관찰<1-7> Fluorescence microscopy

재조합 BmNPV에 의한 형광단백질의 발현 확인을 위해 형광현미경 Sundew MCX1600(micros, Sankt Veit an der Glan, Austria)을 사용하여 관찰하였다. 녹색형광단백질 EGFP는 488㎚에서 최고의 파장과 510㎚에서 최고의 방출파장을 나타내며 형광현미경상에서 방출되는 청색광(Max 470㎚)이 녹색광(510㎚)으로 변환되어 형광을 관찰할 수 있었다. 형광현미경 관찰 후 INFINITY software Program을 이용하여 발현된 형광사진을 촬영하였다.In order to confirm the expression of the fluorescent protein by recombinant BmNPV, it was observed using a fluorescence microscope Sundew MCX1600 (micros, Sankt Veit an der Glan, Austria). The green fluorescent protein EGFP showed the highest wavelength at 488 nm and the highest emission wavelength at 510 nm, and the blue light (Max 470 nm) emitted under a fluorescence microscope was converted into green light (510 nm) to observe fluorescence. After observation under a fluorescence microscope, the expressed fluorescence pictures were taken using INFINITY software program.

<1-8> 형광 광도 측정<1-8> Fluorescence photometry

EGFP 과발현 재조합 BmNPV를 5 M.O.I.로 접종 한 Bm5 세포를 1일부터 6일까지 24시간 간격으로 수거한 뒤 1000×g로 5분 동안 원심분리하여 phosphate buffed saline(PBS)으로 세척하였다. 침전된 세포에 RIPA buffer를 1mL 첨가하고 얼음에 30분간 방치 후 2mL의 PBS를 첨가하였다. 측정시료는 최소 3mL을 사용하고 488㎚의 excitation filter와 510㎚의 emission filter에서 K2™ fluorescence spectrometer(ISS inc., USA)로 형광 광도를 측정하였다.Bm5 cells inoculated with EGFP-overexpressing recombinant BmNPV with 5 M.O.I. were collected at 24 hour intervals from day 1 to day 6, centrifuged at 1000 × g for 5 minutes, and washed with phosphate buffered saline (PBS). 1 mL of RIPA buffer was added to the precipitated cells, left on ice for 30 minutes, and then 2 mL of PBS was added. A minimum of 3 mL of the measurement sample was used, and the fluorescence intensity was measured with a K2™ fluorescence spectrometer (ISS inc., USA) in an excitation filter of 488 nm and an emission filter of 510 nm.

<1-9> p10 promoter 및 유전자 제거<1-9> p10 promoter and gene removal

배큘로바이러스의 p10 promoter 및 유전자의 제거를 위해 p10 promoter 상류Upstream of the p10 promoter for removal of the baculovirus p10 promoter and gene

500bp 영역은 배큘로바이러스 DNA를 주형으로 AccuPower® ProFi Taq PCR Premix(Bioneer Co., Daejeon, Korea)를 이용하여 하기 표 2의 p10-5'-F와 p10-5'-R를 10 pmole 첨가하였고, 반각응 용액의 최종 부피는 멸균수를 사용하여 20 μL로 맞춘 후 Thermal Cycler(TaKaRa, Kusatsu, Japan)로 PCR을 수행하였다. pMD20-T vector(TaKaRa, Kusatsu, Japan)로의 클로닝은 이전의 실험과 동일한 방법으로 수행하였다.For the 500bp region, 10 pmole of p10-5'-F and p10-5'-R of Table 2 below were added using AccuPower® ProFi Taq PCR Premix (Bioneer Co., Daejeon, Korea) using baculovirus DNA as a template. , The final volume of the reaction solution was adjusted to 20 μL using sterile water, and PCR was performed with a Thermal Cycler (TaKaRa, Kusatsu, Japan). Cloning into the pMD20-T vector (TaKaRa, Kusatsu, Japan) was performed in the same manner as in the previous experiment.

pMD20-T vector(TaKaRa, Kusatsu, Japan)에 클로닝된 p10 promoter 상류 500 bp 영역을 제한효소(Kpn I/Hind III)을 이용하여 pBlueScript II SK(+) 벡터에 ligation 반응 후 DH5α competent 세포 내로 형질전환 시키고 ampiciline이 처리된 LB plate에서 배양하였다. 콜로니를 선발하여 ampiciline이 첨가된 LB medium에서 배양 후 재조합 플라스미드를 추출한 뒤, pBlue-p10-5'으로 명명하였다. 그 후 p10 유전자 하류 500 bp 영역은 하기 표 2의 p10-3'-F와 p10-3'-R를 10 pmole 첨가하였고, 반응 용액의 최종 부피는 멸균수를 사용하여 20 μL로 맞춘 후 Thermal Cycler(TaKaRa, Kusatsu, Japan)로 PCR을 수행하였다. pMD20-T vector(TaKaRa, Kusatsu, Japan)로의 클로닝은 이전의 실험과 동일한 방법으로 수행하였다. pMD20-T vector(TaKaRa, Kusatsu, Japan)에 클로닝된 p10 유전자 하류 500 bp 영역을 제한효소(Pst I/Spe I)을 이용하여 pBlue-p10-5' 벡터에 ligation 반응 후 DH5α competent 세포 내로 형질전환시키고 ampiciline이 처리된 LB plate에서 배양하였다. 콜로니를 선발하여 ampiciline이 첨가된 LB medium에서 배양 후 재조합 플라스미드를 추출한 뒤, pBm101-ΔP10으로 명명하였다. 제작된 모든 재조합 플라스미드는 COSMOgenetech(Daejeon, Korea)사에 의뢰한 염기서열 분석을 통해 서열을 최종 확인하였다.After ligation of the p10 promoter upstream 500 bp region cloned into pMD20-T vector (TaKaRa, Kusatsu, Japan) to pBlueScript II SK(+) vector using restriction enzymes (Kpn I/Hind III), transform into DH5α competent cells. and cultured in LB plates treated with amiciline. After selecting colonies and culturing them in LB medium to which ampiciline was added, the recombinant plasmid was extracted and named pBlue-p10-5'. After that, 10 pmole of p10-3'-F and p10-3'-R of Table 2 below were added to the 500 bp region downstream of the p10 gene, and the final volume of the reaction solution was adjusted to 20 μL using sterile water, followed by a Thermal Cycler (TaKaRa, Kusatsu, Japan) PCR was performed. Cloning into the pMD20-T vector (TaKaRa, Kusatsu, Japan) was performed in the same manner as in the previous experiment. The 500 bp region downstream of the p10 gene cloned into the pMD20-T vector (TaKaRa, Kusatsu, Japan) was ligated into the pBlue-p10-5' vector using restriction enzymes (Pst I/Spe I), and then transformed into DH5α competent cells. and cultured in LB plates treated with amiciline. After selecting colonies and culturing them in LB medium to which ampiciline was added, recombinant plasmids were extracted and named pBm101-ΔP10. All recombinant plasmids produced were finally confirmed in sequence through sequencing requested by COSMOgenetech (Daejeon, Korea).

제작된 pBm101-ΔP10 500 ng와 BpBacmid DNA(Lee, 2018) 100 ng을 100 μL의 TC-100 insect medium(Welgene, Korea)에 혼합하고, transfection reagent인 Cellfectin II(Invitrogen, Carlsbad, USA) 8 μL를 medium에 첨가하여 각각의 혼합액(mixture)을 재혼합하여 27℃에서 30분간 반응시켰다. 반응 후, 6well plate에 1×106 cell/mL로 분주된 Bm5 세포에 접종하여 동시 형질주입(co-transfection)하였다. 접종 3일 후부터 위상차 현미경을 이용하여 재조합 BmNPV의 감염 양상을 확인하였으며, 이전의 실험과 동일한 방법으로 plaque assay를 수행하여 다각체가 형성되지 않는 배큘로바이러스의 plaque를 선발하여 실험에 이용하였다.500 ng of the prepared pBm101-ΔP10 and 100 ng of BpBacmid DNA (Lee, 2018) were mixed in 100 μL of TC-100 insect medium (Welgene, Korea), and 8 μL of Cellfectin II (Invitrogen, Carlsbad, USA), a transfection reagent, was added. After adding to the medium, each mixture was remixed and reacted at 27° C. for 30 minutes. After the reaction, Bm5 cells seeded at 1×10 6 cell/mL in a 6 well plate were inoculated and co-transfected. From 3 days after inoculation, the infection pattern of recombinant BmNPV was confirmed using a phase-contrast microscope, and plaque assay was performed in the same manner as in the previous experiment to select baculovirus plaques in which polyhedron was not formed and used for the experiment.

프라이머primer 서열번호SEQ ID NO: 서열order p10-5'-Fp10-5'-F 1010 5' - GGT ACC TGT CAT TTA TTA ATT TGG ATG A - 3'5' - GGT ACC TGT CAT TTA TTA ATT TGG ATG A - 3' p10-5'-Rp10-5'-R 1111 5' - AAG CTT TTA ACT ATA ATA TAT TGT GTT GGG T- 3'5' - AAG CTT TTA ACT ATA ATA TAT TGT GTT GGG T- 3' p10-3'-Fp10-3'-F 1212 5' - CTG CAG ATG AAT CGT TTT TAA AAT AAC A - 3'5' - CTG CAG ATG AAT CGT TTT TAA AAT AAC A - 3' p10-3'-Rp10-3'-R 1313 5' - ACT AGT GAA GAA CAC ACG ATC ATG G - 3'5' - ACT AGT GAA GAA CAC ACG ATC ATG G - 3'

<1-10> <1-10> BacmidBacmid 제작 making

배큘로바이러스의 chitinase 유전자 및 cystein protease(v-cath)유전자의 제거를 위하여, red recombinase를 발현하는 pREDKI(addgene #51626)에 gentamicin 저항성 유전자를 도입하여 pREDGm을 제작하였다. 그 후 DH10Bm-ΔP10 competent 세포 내로 형질전환 시키고 gentamicin(10 μg/mL), kanamycin(40 μg/mL), X-gal 및 IPTG가 처리된 LB plate를 이용하여 24시간 이상 30℃에서 암배양 후 파란색 콜로니를 선별하여 배양한 다음, araBAD promoter의 induction을 통한 red recombinase의 발현을 위해 L-arabinose가 0.1 M 첨가된 SOB 배지를 이용하여 30℃에서 OD600= 0.6 a.b.s.까지 배양 후 electro-competent cell을 제작하였다. 제거 대상 유전자의 ORF를 파괴하고 chloramphenicol 저항성 유전자와 promoter를 삽입하기 위해 pIDC 플라스미드로부터 AccuPower® ProFi Taq PCR Premix(Bioneer Co., Daejeon, Korea)를 이용하여 표 3의 Cm-F primer와 Cm-R primer를 10 pmole 첨가하였고, 반응 용액의 최종 부피는 멸균수를 사용하여 20 μL로 맞춘 후 Thermal Cycler(TaKaRa, Kusatsu, Japan)로 PCR을 수행하였다. PCR 산물은 pMD20-T vector(TaKaRa, usatsu, Japan)로의 클로닝을 통해 pMD20-CmR을 제작하였다. 그 후 배큘로바이러스의 DNA에서 AccuPower® ProFi Taq PCR Premix(Bioneer Co., Daejeon, Korea)를 이용하여 표4의 Chitinase-F primer와 Cystein-R primer를 10 pmole 첨가하였고, 반응 용액의 최종 부피는 멸균수를 사용하여 20 μL로 맞춘 후 PCR을 수행하였다. PCR 산물은 pMD20-T vector(TaKaRa, Kusatsu, Japan)로의 클로닝을 통해 pMD20-CC를 제작하였다. pMD20-CC에 제한효소(Aat II/Apa I)을 이용하여 벡터를 제작하고 pMD20-CmR으로부터 동일한 제한효소를 처리하여 얻은 chloramphenicol 저항성 유전자와 promoter 서열을 ligation 반응하였다. Ligation 반응 후 DH5α competent 세포 내로 형질전환 시키고 chloramphenicol이 처리된 LB plate에서 배양하였다. 콜로니를 선발하여 chloramphenicol이 첨가된 LB medium에서 배양 후 재조합 플라스미드를 추출한 뒤, pMD20-Partial-CC-CmR으로 명명하였다. 그 후 pMD20-Partial-CC-CmR에서 AccuPower® Pfu PCR PreMix(Bioneer Co., Daejeon, Korea)를 이용하여 표 3의 Chitinase-F primer와 Cystein-R primer로 하여 PCR을 수행하였다. PCR을 통해 얻어진 부분 절단된 chitinase 유전자와 cysteine protease 유전자 사이에 chloramphenicol 저항성 유전자와 promoter를 포함하는 PCR 산물 0.5μg을 pREDGm을 가지는 DH10Bm-ΔP10세포에 2.8 kV 전압으로 전기천공법(electroporation)을 통해 형질전환 하였다. 그 후 SOC배지를 이용하여 37℃에서 4시간 배양 후 chloramphenicol(5 μg/mL), X-gal 및 IPTG가 처리된 LB plate를 이용하여 24시간 이상 37℃에서 암배양 후 파란색 콜로니를 선별하였다. Bacmid DNA에서 제거대상 유전자들의 ORF 파괴 및 chloramphenicol 저항성 유전자와 promoter의 삽입 여부는 표 3의 Chitinase-F와 Cystein-R을 이용한 PCR을 통해 재검정 하였다.To remove the baculovirus chitinase gene and cystein protease (v-cath) gene, pREDGm was prepared by introducing a gentamicin resistance gene into pREDKI (addgene #51626) expressing red recombinase. After that, transform into DH10Bm-ΔP10 competent cells and use LB plates treated with gentamicin (10 μg/mL), kanamycin (40 μg/mL), X-gal, and IPTG. After selecting and culturing colonies, using SOB medium supplemented with L-arabinose 0.1 M for red recombinase expression through induction of the araBAD promoter at 30°C to OD600 = 0.6 abs, electro-competent cells were prepared. . Cm-F primer and Cm-R primer in Table 3 using AccuPower® ProFi Taq PCR Premix (Bioneer Co., Daejeon, Korea) from pIDC plasmid to destroy the ORF of the gene to be removed and insert the chloramphenicol resistance gene and promoter 10 pmole was added, and the final volume of the reaction solution was adjusted to 20 μL using sterile water, and then PCR was performed with a Thermal Cycler (TaKaRa, Kusatsu, Japan). The PCR product was cloned into pMD20-T vector (TaKaRa, usatsu, Japan) to construct pMD20-CmR. Then, 10 pmole of Chitinase-F primer and Cystein-R primer in Table 4 were added to the baculovirus DNA using AccuPower® ProFi Taq PCR Premix (Bioneer Co., Daejeon, Korea), and the final volume of the reaction solution was After adjusting to 20 μL using sterile water, PCR was performed. The PCR product was cloned into pMD20-T vector (TaKaRa, Kusatsu, Japan) to construct pMD20-CC. A vector was prepared using restriction enzymes (Aat II/Apa I) in pMD20-CC, and the chloramphenicol resistance gene and promoter sequence obtained by treatment with the same restriction enzyme from pMD20-CmR were ligated. After the ligation reaction, the cells were transformed into DH5α competent cells and cultured in LB plates treated with chloramphenicol. After selecting colonies and culturing them in LB medium to which chloramphenicol was added, recombinant plasmids were extracted and named pMD20-Partial-CC-CmR. Then, PCR was performed using the Chitinase-F primer and Cystein-R primer in Table 3 using AccuPower® Pfu PCR PreMix (Bioneer Co., Daejeon, Korea) in pMD20-Partial-CC-CmR. Transform 0.5 μg of the PCR product containing the chloramphenicol resistance gene and promoter between the partially cleaved chitinase gene and the cysteine protease gene obtained through PCR into DH10Bm-ΔP10 cells having pREDGm at a voltage of 2.8 kV by electroporation. did. After 4 hours of incubation at 37°C using SOC medium, using LB plates treated with chloramphenicol (5 μg/mL), X-gal and IPTG, blue colonies were selected after cancer culture at 37°C for more than 24 hours. ORF disruption of genes to be removed in Bacmid DNA and insertion of chloramphenicol resistance genes and promoters were retested by PCR using Chitinase-F and Cystein-R shown in Table 3.

프라이머primer 서열번호SEQ ID NO: 서열order Cm-FCm-F 1414 5' - GAC GTC ATA GAT CTG GGC CAA CTT TTG G -3'5' - GAC GTC ATA GAT CTG GGC CAA CTT TTG G -3' Cm-RCm-R 1515 5' - GGG CCC CAG GCG TTT AAG GGC ACC AAT AAC- 3'5' - GGG CCC CAG GCG TTT AAG GGC ACC AAT AAC-3' Chitinase-FChitinase-F 1616 5' - CTG CAG TTG AGC AAG TCG CCG TTA TCG GC- 3'5'-CTG CAG TTG AGC AAG TCG CCG TTA TCG GC-3' Cystein-RCystein-R 1717 5' - GAA TTC CGA CAA AAT CAC AAT CGA TCA TTT G - 3'5' - GAA TTC CGA CAA AAT CAC AAT CGA TCA TTT G - 3'

<1-11> Budded virus(<1-11> Budded virus ( BVBV ) 생산량 검정) production test

6 well plate에 1×106 cell/mL로 분주된 Bm5 세포에 각각의 BV를 5 M.O.I.로 1시간 동안 감염 후 새로운 배지로 교체해주었다. 그 후 6일차 까지 1일 간격으로 각 well의 세포를 수거하며 1,000×g, 4℃에서 5분간 원심분리 하여 상층에 존재하는 BV를 얻었다. BV의 역가 측정은 End-point dilution assay(TCID50) 방법을 이용하였다.Bm5 cells seeded at 1×10 6 cell/mL in a 6 well plate were infected with each BV at an MOI of 5 for 1 hour and then replaced with a fresh medium. After that, cells from each well were collected at 1-day intervals until the 6th day and centrifuged at 1,000×g, 4°C for 5 minutes to obtain BV present in the upper layer. The BV titer was measured using an endpoint dilution assay (TCID50) method.

<1-12> 세포 생존율 검정<1-12> Cell viability assay

6 well plate에 1×106 cell/mL로 분주된 Bm5 세포에 각각의 BV를 5 M.O.I.로 1시간 동안 감염 후 새로운 배지로 교체해주었다. 그 후 6일차 까지 1일 간격으로 각 well의 세포를 수거하여 Trypan blue 염색을 통해 세포 계수 및 생존률 측정을 수행하였다.Bm5 cells seeded at 1×10 6 cell/mL in a 6 well plate were infected with each BV at an MOI of 5 for 1 hour and then replaced with a fresh medium. After that, cells from each well were collected at 1 day intervals until the 6th day, and cell counting and viability were measured through Trypan blue staining.

<1-13> 생물검정<1-13> Bioassay

배큘로바이러스 BV를 50 μL의 TC-100 배지에 1×105 p.f.u.가 되도록 희석한 후 1 mL 주사기를 이용하여 10마리의 4령 누에에 주사 접종하였으며 음성 대조군의 경우 TC-100 배지만 주사 접종하였다. 그 후 평균 생존 시간을 확인하기 위해 1일 간격으로 생존 여부를 관찰하고 기록하였다. 실험은 총 3반복으로 수행하였다. Baculovirus BV was diluted to 1×10 5 pfu in 50 μL of TC-100 medium and inoculated into 10 4 instar silkworms using a 1 mL syringe. In the case of negative control, only TC-100 medium was injected and inoculated. . Thereafter, survival was observed and recorded at 1-day intervals to confirm the average survival time. The experiment was performed in total 3 repetitions.

<< 실시예Example 2> 재조합 단백질의 생산량 증대를 위한 새로운 2> A new method for increasing the production of recombinant proteins BmBacmidBmBacmid 제작 making

<2-1> 유전자 제거를 통한 새로운 <2-1> A new method through gene deletion BmBacmidBmBacmid 제작 making

① p10 promoter 및 유전자가 제거된 ① p10 promoter and gene removed BmBacmidBmBacmid -- Δp10Δp10 제작 making

p10 promoter를 이용하여 polyhedrin을 발현하는 occlusion body positive 재조합 BmNPV를 제작하는데 이용하는 BpGOZA를 기반으로 하여 Bac-to-Bac system을 도입한 BpBacmid(Lee , 2018)의 바이러스 DNA와 p10 promoter의 상류영역 서열부터 p10 유전자의 하류영역까지 서열 중 p10 promoter 및 유전자가 제거된 재조합 전이벡터 pBm101-ΔP10을 Bm5 세포에 동시 형질주입(co-transfection) 후 감염양상을 확인하고 BV를 수거하였다. 그 후 plaque assay를 수행하고 현미경 관찰을 통해 다각체가 형성되지 않는 plaque를 선발하였다(도 1). 그 후 p10 promoter 및 유전자의 유무를 PCR을 통해 재검정 한 뒤(도 2), BmBacmid-Δp10을 제작 완료하였다. BmBacmid-Δp10 DNA를 DH10B electro-competent 세포에 형질전환 후 파란색 콜로니를 선발한 뒤(도 3) 배양하고, 이를 이용하여 electro competent 세포를 제작한 뒤 transposition helper plasmid인 pMON7124 로 형질전환 후 다시 파란색 콜로니 선발을 통해 배양하였다. 배양된 콜로니를 이용하여 ORF1629 영역(도 2A) helper plasmid 유무(도 2B), Mini-F 영역(도 2C), p10 유전자 영역(도 2D)에 대한 PCR 검정을 통해 BmBacmid-Δp10 및 helper plasmid의 존재 여부를 재검정하고 BmBacmid-Δp10에 대한 Bacmid system을 제작 완료 하였다(도 4).Based on BpGOZA, which is used to construct polyhedrin-expressing recombinant BmNPV using the p10 promoter, the viral DNA of BpBacmid (Lee, 2018) introduced with the Bac-to-Bac system and p10 from the sequence upstream of the p10 promoter After co-transfection into Bm5 cells with the recombinant transfer vector pBm101-ΔP10 in which the p10 promoter and gene were removed from the sequence up to the downstream region of the gene, the infection pattern was confirmed and BV was collected. Thereafter, plaque assay was performed and plaques in which polyhedron was not formed were selected through microscopic observation (FIG. 1). After that, the presence or absence of the p10 promoter and gene was re-tested through PCR (FIG. 2), and BmBacmid-Δp10 was produced. After transforming BmBacmid-Δp10 DNA into DH10B electro-competent cells, select blue colonies (FIG. 3) and culture them. Using them, electro-competent cells were prepared, transformed with pMON7124, a transposition helper plasmid, and then blue colonies were selected again. cultured through The presence of BmBacmid-Δp10 and helper plasmid through PCR assay for ORF1629 region (Fig. 2A), presence or absence of helper plasmid (Fig. 2B), Mini-F region (Fig. 2C), and p10 gene region (Fig. 2D) using cultured colonies It was retested and the Bacmid system for BmBacmid-Δp10 was completed (FIG. 4).

② p10 promoter 및 유전자, ② p10 promoter and gene; cysteinecysteine protease(v- protease (v- cathcath ) 및 ) and chitinase가chitinase 제거된 BmBacmid-Δpcc 제작 Production of the removed BmBacmid-Δpcc

배큘로바이러스의 cysteine protease 유전자 및 chitinase 유전자는 lef-7 유전자의 ORF와 gp64 유전자의 ORF 사이에 존재하며 41내지 122 bp의 짧은 서열의 양방향성 promoter를 중심으로 하여 서로 반대방향으로 존재한다(도 5). 따라서 lambda red recombination system을 이용하여 cysteine protease 유전자 및 chitinase 유전자를 동시에 제거할 수 있으며, chitinase 유전자의 주변 유전자인 lef-7의 예상 promoter 서열과 cysteine protease 유전자의 주변 유전자인 gp64의 polyA 서열에 손상이 되지 않도록 제거 위치를 설정한 뒤 이들 유전자를 제거하였다. Red recombinase를 발현하는 pREDGm을 DH10Bm-ΔP10 competent 세포 내로 형질전환시키고 파란색 콜로니를 선발한 뒤, 배양된 콜로니를 이용하여 electro competent 세포를 제작하였다. 그 후 cysteine protease 유전자 및 chitinase 유전자의 양방향성 promoter 및 유전자 서열을 제한효소(Aat II/Apa I) 처리를 통해 제거하고 chloramphenicol 저항성 유전자와 프로모터 서열을 삽입하여 제작한 pMD20-Partial-CC-CmR 으로부터 PCR을 통해 얻어진 산물을 형질전환한 뒤, chloramphenicol(5 μg/mL), X-gal 및 IPTG가 처리된 LB plate에서 배양된 파란색 콜로니를 선발하고 PCR을 통해 cysteine protease 유전자 및 chitinase 유전자의 ORF 결손 여부를 재확인 하여(도 2) BmBacmid-Δpcc 제작 및 선발을 완료 하였다(도 6). 그 후 bacmid system의 완성을 위하여 pREDGm의 plasmid curing을 수행하였으며 chloramphenicol(5 μg/mL), X-gal 및 IPTG가 처리된 LB plate 와 gentamicin(10 μg/mL), chloramphenicol(5 μg/mL), X-gal 및 IPTG가 처리된 LB plate에서 duplicate assay를 통해 gentamicin 배지에서 자라지 못하는 pREDGm이 제거된 콜로니를 선발한 뒤(도 7) PCR을 통해 재확인 하였다(도 2). 그 후 electro competent 세포를 제작한 뒤 transposition helper plasmid인 pMON7124를 형질전환 후 다시 파란색 콜로니 선발을 통해 배양하였다. 배양된 콜로니를 이용하여 PCR을 통해 BmBacmid-Δpcc 및 helper plasmid의 존재 여부를 재검정하고 BmBacmid-Δpcc에 대한 Bacmid system인 DH10Bm-Δpcc를 제작 완료하였다(도 6).The cysteine protease gene and chitinase gene of baculovirus exist between the ORF of the lef-7 gene and the ORF of the gp64 gene, and exist in opposite directions centering on the bidirectional promoter of a short sequence of 41 to 122 bp (FIG. 5). . Therefore, the cysteine protease gene and the chitinase gene can be simultaneously removed using the lambda red recombination system, and the predicted promoter sequence of lef-7, the chitinase gene, and the polyA sequence of gp64, the cysteine protease gene, are not damaged. These genes were removed after setting the removal positions so that they do not exist. pREDGm expressing red recombinase was transformed into DH10Bm-ΔP10 competent cells, blue colonies were selected, and electro competent cells were prepared using the cultured colonies. Then, the bidirectional promoter and gene sequence of the cysteine protease gene and chitinase gene were removed through restriction enzyme (Aat II/Apa I) treatment, and PCR was performed from pMD20-Partial-CC-CmR prepared by inserting the chloramphenicol resistance gene and promoter sequence. After transforming the obtained product, select blue colonies cultured on LB plates treated with chloramphenicol (5 μg/mL), X-gal and IPTG, and reconfirm the ORF deletion of cysteine protease gene and chitinase gene through PCR (FIG. 2), BmBacmid-Δpcc production and selection were completed (FIG. 6). After that, plasmid curing of pREDGm was performed to complete the bacmid system. LB plate treated with chloramphenicol (5 μg/mL), X-gal and IPTG, gentamicin (10 μg/mL), chloramphenicol (5 μg/mL), In LB plates treated with X-gal and IPTG, colonies from which pREDGm that could not grow in gentamicin medium were removed were selected through duplicate assay (FIG. 7), and then reconfirmed by PCR (FIG. 2). Thereafter, electro-competent cells were prepared, transformed with pMON7124, a transposition helper plasmid, and then cultured by selecting blue colonies again. Using the cultured colonies, the presence of BmBacmid-Δpcc and helper plasmid was re-tested through PCR, and DH10Bm-Δpcc, a Bacmid system for BmBacmid-Δpcc, was completed (FIG. 6).

③ 재조합 단백질 생산 최적 ③ Optimal production of recombinant protein BmBacmidBmBacmid 선발 Selection

p10 유전자 및 p10 유전자 promoter가 제거된 BmBacmid-Δp10과 여기에 cysteine protease와 chitinase가 추가 제거된 BmBacmid-Δpcc의 단백질 생산 효율 증대 효과를 검정하기 위하여 과발현 벡터 선발에서 가장 높은 발현량을 나타내었던 pBm-p6.9v-EGFP를 이용해 재조합 바이러스를 제작하였다. pBm-p6.9v-EGFP를 DH10BmBacmid(Lee, 2018), DH10BmBacmid-Δp10 및 DH10BmBacmid-Δpcc competent 세포에 형질전환시키고 배양액을 kanamycin, tetracycline, gentamicin, X-gal 및 IPTG가 처리된 LB plate에 도말하여 하얀색 콜로니를 선발하여 배양하였다 그 후 추가적인 순수분리를 위하여 동일한 조성의 LB plate에 streak을 진행한 뒤 배양하고 다시 하얀색 콜로니를 선발하였다. 하얀색 콜로니는 전이벡터의 목적유전자 서열이 BmBacmid의 LacZα-att Tn7으로 전이가 이루어지므로 LacZα의 발현이 불가능하며, 전이가 발생하지 않은 경우 LacZα의 정상적 발현으로 인해 파란색 콜로니를 형성한다. 따라서 최종 선별된 하얀색 콜로니를 배양한 뒤 재조합 BmBacmid DNA를 추출하였으며, 추출된 DNA의 목적 유전자에 의한 재조합 여부를 재확인하기 위해 LacZα서열 내에 존재하는 M13 F와 M13 R primer site를 이용한 PCR을 통해 재조합 여부를 최종 확인하였다. 전이가 발생하지 않은 경우 약 300 bp의 밴드를 형성하게 되며, 전이가 발생한 경우 Tn7 R에서 Tn7 L 사이의 서열에 300 bp가 추가된 크기의 밴드가 형성됨에 따라 pBm-p6.9v-EGFP에 대한 특이적 밴드가 관찰되어 정상적인 전이에 의한 재조합 BmBacmid가 제작되었음을 확인하였다. 그 후 각각의 재조합 BmBacmid DNA를 Bm5 세포내로 전이하고, 바이러스 감염 양상이 나타날 때까지 형광현미경을 통해 관찰한 뒤, 감염양상이 나타나는 세포의 배지를 수거하여 새로운 Bm5 세포에서 BV의 대량증식 과정을 거친 후 각각의 재조합 바이러스를 rBm-p6.9v-EGFP-wt, rBm-p6.9v-EGFP-Δp10, rBm-p6.9v-EGFP으로 명명하였으며, 역가 측정 후 실험에 이용하였다.In order to test the effect of increasing the protein production efficiency of BmBacmid-Δp10 from which the p10 gene and p10 gene promoter were removed, and BmBacmid-Δpcc from which cysteine protease and chitinase were additionally removed, pBm-p6, which showed the highest expression level in overexpression vector selection, was tested. Recombinant virus was constructed using .9v-EGFP. Transform pBm-p6.9v-EGFP into DH10BmBacmid (Lee, 2018), DH10BmBacmid-Δp10 and DH10BmBacmid-Δpcc competent cells. Colonies were selected and cultured. After that, for additional pure separation, streak was performed on an LB plate of the same composition and cultured, and white colonies were selected again. In white colonies, expression of LacZα is impossible because the target gene sequence of the transfer vector is transferred to LacZα-att Tn7 of BmBacmid. If no metastasis occurs, blue colonies are formed due to normal expression of LacZα. Therefore, after culturing the finally selected white colonies, recombinant BmBacmid DNA was extracted, and to reconfirm whether the extracted DNA was recombinated by the target gene, whether or not recombination was performed through PCR using the M13 F and M13 R primer sites present in the LacZα sequence. was finally confirmed. When no metastasis occurs, a band of about 300 bp is formed, and when metastasis occurs, a band with a size of 300 bp added to the sequence between Tn7 R and Tn7 L is formed. A specific band was observed, confirming that recombinant BmBacmid was produced by normal metastasis. After that, each recombinant BmBacmid DNA was transferred into Bm5 cells, observed through a fluorescence microscope until virus infection appeared, and then the medium of the cells showing the infection pattern was collected, and the new Bm5 cells were subjected to mass proliferation of BV. Afterwards, each recombinant virus was named rBm-p6.9v-EGFP-wt, rBm-p6.9v-EGFP-Δp10, rBm-p6.9v-EGFP, and was used in the experiment after titer measurement.

제작된 다양한 형태의 BmBacmid별 EGFP 발현증대 효과를 비교하기 위하여 Bm5 세포에 재조합 BmNPV를 접종하고 1일차부터 12일차 까지 1일 간격으로 형광 현미경 관찰을 수행하고 세포를 수거하여 형광광도 측정을 수행하였다. 형광현미경 관찰 결과 rBm-p6.9v-EGFP-wt에 감염된 Bm5 세포의 경우 감염 3일차에 가장 많은 수의 EGFP 발현 세포를 확인할 수 있었으며, 그 이후 시간이 지날수록 바이러스에 의한 세포 용해가 발생하였다. rBm-p6.9v-EGFP-Δp10에 감염된 Bm5 세포의 경우 감염 4일차에서 가장 많은 수의 EGFP 발현 세포를 확인할 수 있었으며 rBm-p6.9v-EGFP-wt에 비해 1일 이후 세포 용해가 나타났다. 따라서 p10 유전자 및 p10 유전자의 promoter 제거만으로도 Bm5 세포에 대한 바이러스의 병원력이 감소하였음을 확인하였다. rBm-p6.9v-EGFP에 감염된 Bm5 세포의 경우 다른 BmBacmid 형태와 달리 3-6일차에 매우 많은 수의 EGFP 발현 세포를 확인할 수 있었으며, 바이러스에 의한 세포 용해 또한 매우 느리게 발생하여 감염 12일차에도 많은 수의 세포에서 EGFP 발현을 확인할 수 있었다(도 8).In order to compare the effect of increasing EGFP expression for each of the various types of BmBacmid produced, recombinant BmNPV was inoculated into Bm5 cells, and fluorescence microscopy was performed at 1 day intervals from the 1st to the 12th day, and the cells were collected and the fluorescence photometry was performed. As a result of fluorescence microscopy, in the case of Bm5 cells infected with rBm-p6.9v-EGFP-wt, the largest number of EGFP-expressing cells could be identified on the 3rd day of infection, and then, as time passed, cell lysis by the virus occurred. In the case of Bm5 cells infected with rBm-p6.9v-EGFP-Δp10, the highest number of EGFP-expressing cells could be identified on the 4th day of infection, and cell lysis was observed after 1 day compared to rBm-p6.9v-EGFP-wt. Therefore, it was confirmed that the pathogenicity of the virus to Bm5 cells was reduced only by removing the p10 gene and the promoter of the p10 gene. In the case of Bm5 cells infected with rBm-p6.9v-EGFP, unlike other BmBacmid types, a very large number of EGFP-expressing cells could be identified on days 3-6. EGFP expression was confirmed in veterinary cells (FIG. 8).

1일 간격으로 수거된 Bm5 세포를 이용한 형광광도 측정에서도 형광현미경 관찰결과와 유사하게 rBm-p6.9v-EGFP-wt에 감염된 Bm5 세포의 경우 감염 2일차까지 가장 빠르고 높은 활성의 EGFP를 확인할 수 있었으며, 3일차에서 EGFP 활성의 정점을 나타내었고 그 이후 세포 용해에 따른 급격한 EGFP의 활성 저하를 확인하였다(도 9). rBm-p6.9v-EGFP-Δp10에 감염된 Bm5 세포의 경우 1-2일차를 제외한 거의 모든 일차에서 대조군으로 이용된 rBm-p6.9v-EGFP-wt에 비해 높은 EGFP의 활성을 확인할 수 있었으며, 감염 4일차 이후 세포 용해에 따른 급격한 EGFP 활성 저하현상을 나타내어 약 1일의 세포 생존률 증대 효과를 확인하였다. p10 유전자 promoter의 제거를 통해 polyhedrin gene promoter와의 전사인자 경쟁 요인을 제거함으로써 polyhedrin gene promoter의 전사인자 독점으로 인해 약 3배 발현량 증대 효과가 나타난 것으로 여겨지며, 병원성 인자로 알려져 있는 p10 유전자의 제거를 통해 감염 세포의 생존률 증대 효과가 나타난 것으로 여겨진다(도 9). rBm-p6.9v-EGFP에 감염된 Bm5 세포의 경우 형광광도 측정 결과에서도 다른 BmBacmid 형태와 달리 매우 높은 수준의 EGFP 활성을 확인할 수 있었으며, 감염 12일 차에도 rBm-p6.9v-EGFP-wt의 3일차와 거의 유사한 활성 수준을 나타냈다. 모든 일차에서 다른 BmBacmid에 비해 월등히 높은 EGFP 활성을 나타내었으며, 특히 EGFP의 활성이 정점을 나타내는 5일차 결과와 rBm-p6.9v-EGFP-Δp10의 4일차 결과와의 비교에서 약 1.2배 상승률을 나타내었고, rBm-p6.9v-EGFP-wt의 3일차 결과와의 비교에서 약 3.2배 상승률을 나타냄으로써 단백질 발현효율 증진에 대한 cysteine protease 및 chitinase의 제거 효과를 확인할 수 있었으며, 감염 6일차 이후 세포의 용해가 발생하였으므로 rBm-p6.9v-EGFP-wt 대비 약 4일의 생존률 증대 효과를 나타내었다.Similar to the results of fluorescence microscopy, in the fluorescence measurement using Bm5 cells harvested at 1-day intervals, Bm5 cells infected with rBm-p6.9v-EGFP-wt showed the fastest and highest activity of EGFP until the second day of infection. , showed the peak of EGFP activity on the 3rd day, and after that, it was confirmed that the EGFP activity decreased rapidly following cell lysis ( FIG. 9 ). In the case of Bm5 cells infected with rBm-p6.9v-EGFP-Δp10, higher EGFP activity was confirmed compared to rBm-p6.9v-EGFP-wt, which was used as a control, in almost all days except for days 1-2, After the 4th day, it showed a rapid decrease in EGFP activity due to cell lysis, confirming the effect of increasing the cell viability of about 1 day. It is believed that by removing the factor competing with the polyhedrin gene promoter through the removal of the p10 gene promoter, the expression level increased by about 3 times due to the monopoly of the transcription factor of the polyhedrin gene promoter. It is believed that the effect of increasing the viability of the infected cells was shown ( FIG. 9 ). In the case of Bm5 cells infected with rBm-p6.9v-EGFP, a very high level of EGFP activity was confirmed, unlike other BmBacmid types, in the fluorescence measurement results, and even on the 12th day of infection, 3 of rBm-p6.9v-EGFP-wt The activity level was almost similar to that of the primary. On all days, EGFP activity was significantly higher than that of other BmBacmids, and in particular, the increase rate of EGFP activity peaked on the 5th day and the result on the 4th day of rBm-p6.9v-EGFP-Δp10 showed an increase rate of about 1.2 times. and rBm-p6.9v-EGFP-wt showed an increase rate of about 3.2 times in comparison with the results on the 3rd day, confirming the removal effect of cysteine protease and chitinase on the enhancement of protein expression efficiency. Because dissolution occurred, it showed an effect of increasing the survival rate of about 4 days compared to rBm-p6.9v-EGFP-wt.

따라서 BmNPV의 p10/cysteine protease/chitinase를 제거한 형태의 BmBacmid에서 가장 높은 EGFP의 발현 및 세포 사멸의 지연을 확인함으로써 외래 유용 단백질의 생산에 가장 효율적인 BmBacmid 임을 확인하였다. 기존 AcMNPV의 p10/cysteine protease/chitinase를 제거한 형태의 bacmid의 경우 EGFP의 발현량 증대 효과는 확인하였지만, 오히려 p10의 제거를 통해 세포의 생존률이 감소하는 현상이 보고되었으나(Hitchman et al., 2010), 본 연구결과에서는 BmNPV의 p10/cysteine protease/chitinase 유전자의 제거를 통해 EGFP 발현량 및 세포의 생존률 모두 증대되는 효과를 처음으로 제시하였다(도 9).Therefore, it was confirmed that BmBacmid was the most efficient for the production of exogenous useful proteins by confirming the highest EGFP expression and delay in cell death in the form of BmBacmid in which p10/cysteine protease/chitinase of BmNPV was removed. In the case of the existing AcMNPV p10/cysteine protease/chitinase-removed form of bacmid, the effect of increasing the expression level of EGFP was confirmed, but rather, a phenomenon in which cell viability decreased through the removal of p10 was reported (Hitchman et al., 2010). , In this study, the effect of increasing both EGFP expression level and cell viability through removal of the p10/cysteine protease/chitinase gene of BmNPV was presented for the first time (FIG. 9).

<< 실시예Example 3> 새로운 3> new BmBacmid의BmBacmid 특성 분석 Characterization

배큘로바이러스 발현 벡터 시스템의 목적 단백질 생산량을 증대시키기 위하여 BmBacmid로부터 p10 유전자 promoter 및 p10 유전자, cysteine protease 유전자 및 chitinase 유전자의 제거를 수행하였다. 최종적으로 완성된 BmBacmid-Δpcc은 야생형과 유사한 GOZA system을 이용한 재조합 BmNPV에 비해 약 3.2배 높은 수준의 재조합 단백질 생산량과 바이러스 감염 세포의 생존률이 약 48시간 지연되는 효과를 나타내었다. 따라서 이러한 효과들이 정상적인 바이러스의 증식에도 어떤 영향을 줄 수 있을 가능성에 대해 추가적으로 조사하였다. 이를 위해 BmBacmid-Δpcc의 정상적인 BV 증식 여부와 더불어, BmBacmid-Δpcc를 통해 제작된 재조합 BmNPV에 감염된 세포 및 유충의 일차별 생존률을 평가함으로써 재조합 단백질 발현을 위한 BmBacmid-Δpcc 시스템의 구축을 완료 하고자 하였다.In order to increase the target protein production of the baculovirus expression vector system, the p10 gene promoter, p10 gene, cysteine protease gene, and chitinase gene were removed from BmBacmid. The finally completed BmBacmid-Δpcc exhibited an effect of about 3.2 times higher recombinant protein production and a 48 hour delay in the viability of virus-infected cells compared to recombinant BmNPV using the GOZA system similar to wild-type. Therefore, the possibility that these effects may have any effect on normal virus proliferation was further investigated. To this end, we tried to complete the construction of the BmBacmid-Δpcc system for recombinant protein expression by evaluating the primary viability of cells and larvae infected with the recombinant BmNPV produced through BmBacmid-Δpcc as well as the normal BV proliferation of BmBacmid-Δpcc.

<3-1> <3-1> BmBacmidBmBacmid 개량에 따른 according to improvement BVBV 생산량 검정 production test

BmBacmid의BmBacmid BVBV 생산에 대한 영향 impact on production

제작된 다양한 형태의 BmBacmid별 BV 생산량을 비교하기 위하여 Bm5 세포에 재조합 BmNPV를 접종하고 24시간부터 144시간까지 24시간 간격으로 바이러스를 수거하여 일차별 BV의 생산량을 측정하였다. 대조군으로 이용된 야생주 배큘로바이러스인 BmNPV-K1의 경우 접종 72시간 차까지 급격한 BV의 생산을 통해 약 2 ×108 pfu/mL의 역가를 나타내었으며, 그 이후 96시간차에 역가의 정점을 나타낸 후 서서히 감소하는 양상을 나타내었다(도 10). 그 외 GOZA system을 이용한 재조합 BmNPV, BmBacmid-Δp10와 BmBacmid-Δpcc에 의한 각 재조합 BmNPV의 경우 대조군에 비해 약간 낮은 수준의 역가를 나타내었으나 72시간차까지 급격한 BV 생산량을 나타내었고, 그 이후 서서히 증가하는 추세를 나타내었다(도 10). 결국 감염 120시간차에 이르러 야생주와 거의 유사한 수준의 역가를 나타냄으로써 BmBacmid-Δpcc의 숙주세포에 대한 낮은 병원력은 BV의 생산량과는 무관하며 병원성 유전자의 제거에 의한 효과임을 확인하였다.In order to compare the production of BV for each type of BmBacmid produced, recombinant BmNPV was inoculated into Bm5 cells, and the virus was collected at 24 hour intervals from 24 hours to 144 hours to measure the daily production of BV. In the case of BmNPV-K1, a wild strain baculovirus used as a control , it exhibited a titer of about 2 × 10 8 pfu/mL through rapid BV production up to 72 hours after inoculation, and after that, the titer peaked at 96 hours. After that, it showed a gradually decreasing pattern (FIG. 10). In addition, in the case of recombinant BmNPV using the GOZA system, each recombinant BmNPV by BmBacmid-Δp10 and BmBacmid-Δpcc showed a slightly lower titer than the control group, but showed a rapid BV production up to 72 hours, and then gradually increased. was shown (FIG. 10). In the end, it was confirmed that the low pathogenicity of BmBacmid-Δpcc to host cells was not related to the production of BV and was an effect of the removal of the pathogenic gene by showing a titer at a level almost similar to that of the wild strain at 120 hours of infection.

<3-2> <3-2> BmBacmid의BmBacmid 병원력hospital history 검정 black

Bm5Bm5 세포에 대한 for cells 병원력hospital history 검정 black

BmBacmid-Δp10, BmBacmid-Δpcc및 Vankyrin-1을 발현하는 BmBacmid-Δpcc-VV의 병원력 약화 및 세포의 생존률 증대 효과를 검증하기 위하여 야생주 배큘로바이러스인 BmNPV-K1에 감염된 세포 및 배큘로바이러스 비접종 세포와 비교 평가를 실시하였다. Bm5 세포에 각 바이러스를 접종하고 1일 간격으로 7일차까지 세포를 수거하여 trypan blue 염색을 수행하고, hemocytometer를 이용하여 Bm5 세포의 생존률을 측정하였다. 배큘로바이러스 비접종 세포인 Bm5 세포의 경우 6일차까지 약 90%대의 생존률을 나타낸 뒤 배양배지의 양분 고갈 및 증식 공간의 부족 등의 이유로 7일차부터 생존률 감소 현상을 나타내었다(도 11). BmNPV-K1에 감염된 세포의 경우 감염 3일차까지 약 90-80 %의 생존률을 나타낸 뒤 급격한 하락을 보였고 7일차에 20 % 미만의 생존률을 나타내었다(도 11). 또한, 야생주 배큘로바이러스와 거의 유사한 형태의 GOZA 바이러스 역시 BmNPV-K1과 매우 흡사한 양상을 보였다. 반면, BmBacmid-Δp10의 경우 이들 바이러스에 비해 더 늦은 6일차 까지 80% 이상의 생존률을 보인 뒤 급격히 하락하였다. 특히, BmBacmid-Δpcc 및 BmBacmid-Δpcc-vv의 경우 감염 6일차에 약 85%의 높은 생존률을 보였고 7일차에 약간의 하락을 나타냈으나 여전히 70% 이상의 높은 생존률을 보였다(도 11). 이러한 결과는 바이러스 비접종 세포의 7일차 생존률이 약 82%인 것을 감안할 때 매우 높은 생존률이며, BmNPV-K1에 비해서는 약 50% 높은 생존율이었다. 따라서 배큘로바이러스의 병원성 유전자인 p10 유전자 및 chitinase의 제거를 통해 상당한 수준의 병원력을 상실하였음을 나타내는 결과이다. 이는 세포 생존률의 증대에 따라 재조합 단백질의 생산 시간을 연장시킴으로써 기존에 비해 더 높은 수율을 기대할 수 있을 것으로 여겨지며, 특히 세포의 세포막을 둘러싸고 방출되는 외막형 바이러스(envelpoed virus)의 바이러스 유사입자(virus-like particle :VLP)생산에 매우 유용한 도구가 될 수 있음을 입증하는 결과이다.In order to verify the effect of weakening pathogenicity and increasing cell viability of BmBacmid-Δpcc-VV expressing BmBacmid-Δp10, BmBacmid-Δpcc and Vankyrin-1, cells infected with BmNPV-K1, a wild strain baculovirus, and non-inoculated with baculovirus Comparative evaluation with cells was performed. Bm5 cells were inoculated with each virus, and cells were collected at 1 day intervals until the 7th day, stained with trypan blue, and the viability of Bm5 cells was measured using a hemocytometer. Bm5 cells, which are non-inoculated baculovirus cells, showed a survival rate of about 90% until the 6th day, and then showed a decrease in the survival rate from the 7th day due to nutrient depletion of the culture medium and lack of growth space (Fig. 11). Cells infected with BmNPV-K1 showed a survival rate of about 90-80% until the 3rd day of infection, followed by a sharp decline, and showed a survival rate of less than 20% on the 7th day (FIG. 11). In addition, the GOZA virus, which is almost similar to the wild strain baculovirus, also showed a pattern very similar to that of BmNPV-K1. On the other hand, BmBacmid-Δp10 showed a survival rate of 80% or more until the 6th day, which was later than those of these viruses, and then declined sharply. In particular, BmBacmid-Δpcc and BmBacmid-Δpcc-vv showed a high survival rate of about 85% on the 6th day of infection and a slight decrease on the 7th day, but still showed a high survival rate of 70% or more (FIG. 11). This result is a very high survival rate considering that the 7-day survival rate of the virus-inoculated cells is about 82%, and it was about 50% higher than that of BmNPV-K1. Therefore, this result indicates that a significant level of pathogenicity was lost through the removal of the p10 gene and chitinase, which are pathogenic genes of baculovirus. It is expected that a higher yield can be expected than before by extending the production time of the recombinant protein according to the increase in cell viability. In particular, virus-like particles of an enveloped virus that surround the cell membrane of cells and are released. It is a result that proves that it can be a very useful tool for like particle (VLP) production.

② 누에 유충에 대한 ② For silkworm larvae 병원력hospital history 검정 black

BmBacmid-Δp10, BmBacmid-Δp10-VV, BmBacmid-Δpcc및 BmBacmid-Δpcc-VV의 병원력을 누에 유충에서도 확인하기 위해 위 실험과 동일한 바이러스들을 TC-100 배지에 1 × 105 p.f.u.가 되도록 희석한 후 1 mL 주사기를 이용하여 10마리의 5령 누에에 주사 접종하고 평균 생존시간을 측정하였다. 그 결과 바이러스를 접종하지 않은 무처리 누에의 경우 7-8일차에 모두 고치를 틀고 용화 되었으며 BmNPV-K1에 감염된 누에의 경우 평균 120.0시간, GOZA 바이러스에 감염된 누에는 140.8시간, BmBacmid-Δp10의 경우 166.4시간, BmBacmid-Δp10-VV의 경우 187.2시간 BmBacmid-Δpcc의 경우 201.6시간, BmBacmid-Δpcc-VV의 경우 193.6시간으로 나타나 Bm5 세포에서의 결과와 거의 유사하게 BmBacmid-Δpcc와 BmBacmid-Δpcc-VV가 매우 낮은 병원력을 나타냈으며 가장 긴 생존시간을 보인 BmBacmid-Δpcc 감염 누에의 경우 BmNPV-K1에 비해 약 82시간의 생존시간 증대 효과를 보임으로써 세포뿐만 아니라 누에 유충을 이용한 재조합 단백질의 생산 또는 바이러스 유사입자 생산에 매우 효율적인 발현 시스템임을 재확인하는 결과였다(표 4).To confirm the pathogenicity of BmBacmid-Δp10, BmBacmid-Δp10-VV, BmBacmid-Δpcc and BmBacmid-Δpcc-VV in silkworm larvae, the same viruses as in the above experiment were diluted to 1 × 10 5 pfu in TC-100 medium. Using an mL syringe, 10 5 instar silkworms were inoculated and the average survival time was measured. As a result, in the case of untreated silkworms that were not inoculated with the virus, all silkworms were cocooned and lysed on the 7th and 8th days. For silkworms infected with BmNPV-K1, an average of 120.0 hours, for silkworms infected with GOZA virus, 140.8 hours, and for BmBacmid-Δp10, 166.4. Time, 187.2 hours for BmBacmid-Δp10-VV, 201.6 hours for BmBacmid-Δpcc, and 193.6 hours for BmBacmid-Δpcc-VV, almost similar to the results in Bm5 cells, BmBacmid-Δpcc and BmBacmid-Δpcc-VV were very In the case of BmBacmid-Δpcc-infected silkworms with low pathogenicity and the longest survival time, the survival time was increased by about 82 hours compared to BmNPV-K1, resulting in the production of recombinant proteins or virus-like particles using cells as well as silkworm larvae. It was a result of reconfirming that it is a very efficient expression system (Table 4).

바이러스virus ST50(h)ST50(h) 95% confidence interval(h)95% confidence interval (h) LowerLower UpperUpper Control silkwormsControl silkworms 192.0a* 192.0 a* 187.2187.2 196.8196.8 BmNPV-K1BmNPV-K1 120.0d 120.0 d 105.6105.6 129.6129.6 GOZAGOZA 140.8c 140.8 c 139.2139.2 144.0144.0 BmBacmid-Δp10BmBacmid-Δp10 166.4b 166.4 b 144.0144.0 182.4182.4 BmBacmid-Δp10-VVBmBacmid-Δp10-VV 187.2a 187.2 a 182.4182.4 192.0192.0 BmBacmid-Δpcc BmBacmid-Δpcc 201.6a 201.6 a 196.8196.8 206.4206.4 BmBacmid-Δpcc-VVBmBacmid-Δpcc-VV 193.6a 193.6 a 182.4182.4 201.6201.6

<110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Baculovirus with increased yield of foreign protein production <130> PN1903-146 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 110 <212> DNA <213> Unknown <220> <223> p10 promoter DNA seq <400> 1 gacctttaat tcaacccaac acaatatatt acagctaaat aagaattatt attaaattat 60 ttgtatatta attaaaatct tatactgtaa attacatttt atttactatc 110 <210> 2 <211> 285 <212> DNA <213> Unknown <220> <223> p10 gene DNA seq <400> 2 atgtcaaagc ctaacgtttt gacgcaaatt ttagacgccg ttacggaaac taacacaaag 60 gttgacagtg ttcaaactca gttaaacggg ctggaagaat cattccagct tttggacggt 120 ttgcccgctc aattgaccga tcttaacact aagatctcag aaattcaatc catattgacc 180 ggcgacattg ttccggatct tccagactca ctaaagccta agctgaaaag ccaagctttt 240 gaactcgatt cagacgctcg tcgtggtaaa cgcagttcca agtaa 285 <210> 3 <211> 94 <212> PRT <213> Unknown <220> <223> p10 gene A.A. seq <400> 3 Met Ser Lys Pro Asn Val Leu Thr Gln Ile Leu Asp Ala Val Thr Glu 1 5 10 15 Thr Asn Thr Lys Val Asp Ser Val Gln Thr Gln Leu Asn Gly Leu Glu 20 25 30 Glu Ser Phe Gln Leu Leu Asp Gly Leu Pro Ala Gln Leu Thr Asp Leu 35 40 45 Asn Thr Lys Ile Ser Glu Ile Gln Ser Ile Leu Thr Gly Asp Ile Val 50 55 60 Pro Asp Leu Pro Asp Ser Leu Lys Pro Lys Leu Lys Ser Gln Ala Phe 65 70 75 80 Glu Leu Asp Ser Asp Ala Arg Arg Gly Lys Arg Ser Ser Lys 85 90 <210> 4 <211> 1659 <212> DNA <213> Unknown <220> <223> chitinase gene DNA seq <400> 4 atgttgtaca aattgttaaa cgttttgtgg ttggtggtcg ccgtttccaa cgcgattccc 60 ggcacgccgg tgatcgattg ggccgaacgc aattatgcgc tcgtaaaaat aaattacgag 120 gccaccgctt acgaaaattt aataaagctc aaagaacaag tcgacgttca cgtcagttgg 180 aacgtatgga acggcgacat tggcgacata gcgtacgtgt tctttgacga gcagcaggta 240 tggaaaggcg acgccgacag taaaagggct accattaatg ttattgtgag cgggcaattt 300 aacatgcgtg tcaaactttg caatgaggac ggctgttcca taagcgatcc cgtgttggtc 360 aaaatcgcag acaccgacgg cggtcatctg gcgccgctcg aatacacatg gctggaaaac 420 aacaaacccg gcagaagaga ggataaaatt gtcgctgcgt actttgtcga gtggggtgtg 480 tacgggcgca gctttcccgt agacaaagtt cccttgccaa atttatcgca cttgttgtac 540 ggtttcatac ccatctgcgg cggcgatgga ataaacgacg ccctcaaaac aatacccgga 600 agttttgaag ctctgcaacg atcgtgcagg ggacgcgaag atttcaaagt tgccatccac 660 gatccgtggg ccgccgtaca aaaaccccaa aagggcgtgt ccgcttggaa cgaaccgtac 720 aaaggcaatt ttggacaatt gatggcggcg aaattagcaa acccacatct aaaaattctt 780 ccttcaatag gaggctggac tctgtcggac ccattctatt tcatgcacga cgttgaaaaa 840 agaaacgttt ttgtagagtc ggttaaggaa tttttgcaag tgtggaaatt ttttgatggt 900 gtagacgtcg attgggaatt tccgggcggc aaaggggcta acccgtcgct gggcgatgcg 960 gagcgtgacg ccaaaacata cattctgttg ttggatgagc tgcgcgaaat gctagacgac 1020 ctcgaagtgc aaaccggcag ggtttacgaa ttaacaagcg ctataagcgc gggctacgac 1080 aagattgccg tggtaaacta cgccgaagcg caaaagtcat tagacaaaat atttctcatg 1140 acttacgatt ttaaaggggc ttggtcaaac acggatttgg gctaccaaac aacagtctac 1200 gcgccaagtt ggaactcgga agagctgtac actacacatt acgctgtcga tgcgttactg 1260 gaacaaggcg tcgatcccaa caaaataatt gtgggcgtcg ccatgtacgg ccgcggctgg 1320 accggcgtaa caaattatac gaatggcaat tatttttccg gcactggcaa cgggccggtg 1380 tcgggcacgt gggaggacgg tgttgtagat tatcgtcaaa ttcaaaaaga tctcaacaat 1440 tatgtgtaca cgtttgacag cgccgctcaa gcgtcgtacg ttttcgataa aagtaaaggc 1500 gatttgattt cgtttgacag cgtcgactct gtgttaggaa aagttaaata tgtcgaccga 1560 aataaattgg gcggcttgtt tgcttgggag attgatgccg ataacggcga cttgctcaac 1620 gcgatgaacg cacagtttaa acttagagat gaactgtaa 1659 <210> 5 <211> 552 <212> PRT <213> Unknown <220> <223> chitinase gene A.A. seq <400> 5 Met Leu Tyr Lys Leu Leu Asn Val Leu Trp Leu Val Val Ala Val Ser 1 5 10 15 Asn Ala Ile Pro Gly Thr Pro Val Ile Asp Trp Ala Glu Arg Asn Tyr 20 25 30 Ala Leu Val Lys Ile Asn Tyr Glu Ala Thr Ala Tyr Glu Asn Leu Ile 35 40 45 Lys Leu Lys Glu Gln Val Asp Val His Val Ser Trp Asn Val Trp Asn 50 55 60 Gly Asp Ile Gly Asp Ile Ala Tyr Val Phe Phe Asp Glu Gln Gln Val 65 70 75 80 Trp Lys Gly Asp Ala Asp Ser Lys Arg Ala Thr Ile Asn Val Ile Val 85 90 95 Ser Gly Gln Phe Asn Met Arg Val Lys Leu Cys Asn Glu Asp Gly Cys 100 105 110 Ser Ile Ser Asp Pro Val Leu Val Lys Ile Ala Asp Thr Asp Gly Gly 115 120 125 His Leu Ala Pro Leu Glu Tyr Thr Trp Leu Glu Asn Asn Lys Pro Gly 130 135 140 Arg Arg Glu Asp Lys Ile Val Ala Ala Tyr Phe Val Glu Trp Gly Val 145 150 155 160 Tyr Gly Arg Ser Phe Pro Val Asp Lys Val Pro Leu Pro Asn Leu Ser 165 170 175 His Leu Leu Tyr Gly Phe Ile Pro Ile Cys Gly Gly Asp Gly Ile Asn 180 185 190 Asp Ala Leu Lys Thr Ile Pro Gly Ser Phe Glu Ala Leu Gln Arg Ser 195 200 205 Cys Arg Gly Arg Glu Asp Phe Lys Val Ala Ile His Asp Pro Trp Ala 210 215 220 Ala Val Gln Lys Pro Gln Lys Gly Val Ser Ala Trp Asn Glu Pro Tyr 225 230 235 240 Lys Gly Asn Phe Gly Gln Leu Met Ala Ala Lys Leu Ala Asn Pro His 245 250 255 Leu Lys Ile Leu Pro Ser Ile Gly Gly Trp Thr Leu Ser Asp Pro Phe 260 265 270 Tyr Phe Met His Asp Val Glu Lys Arg Asn Val Phe Val Glu Ser Val 275 280 285 Lys Glu Phe Leu Gln Val Trp Lys Phe Phe Asp Gly Val Asp Val Asp 290 295 300 Trp Glu Phe Pro Gly Gly Lys Gly Ala Asn Pro Ser Leu Gly Asp Ala 305 310 315 320 Glu Arg Asp Ala Lys Thr Tyr Ile Leu Leu Leu Asp Glu Leu Arg Glu 325 330 335 Met Leu Asp Asp Leu Glu Val Gln Thr Gly Arg Val Tyr Glu Leu Thr 340 345 350 Ser Ala Ile Ser Ala Gly Tyr Asp Lys Ile Ala Val Val Asn Tyr Ala 355 360 365 Glu Ala Gln Lys Ser Leu Asp Lys Ile Phe Leu Met Thr Tyr Asp Phe 370 375 380 Lys Gly Ala Trp Ser Asn Thr Asp Leu Gly Tyr Gln Thr Thr Val Tyr 385 390 395 400 Ala Pro Ser Trp Asn Ser Glu Glu Leu Tyr Thr Thr His Tyr Ala Val 405 410 415 Asp Ala Leu Leu Glu Gln Gly Val Asp Pro Asn Lys Ile Ile Val Gly 420 425 430 Val Ala Met Tyr Gly Arg Gly Trp Thr Gly Val Thr Asn Tyr Thr Asn 435 440 445 Gly Asn Tyr Phe Ser Gly Thr Gly Asn Gly Pro Val Ser Gly Thr Trp 450 455 460 Glu Asp Gly Val Val Asp Tyr Arg Gln Ile Gln Lys Asp Leu Asn Asn 465 470 475 480 Tyr Val Tyr Thr Phe Asp Ser Ala Ala Gln Ala Ser Tyr Val Phe Asp 485 490 495 Lys Ser Lys Gly Asp Leu Ile Ser Phe Asp Ser Val Asp Ser Val Leu 500 505 510 Gly Lys Val Lys Tyr Val Asp Arg Asn Lys Leu Gly Gly Leu Phe Ala 515 520 525 Trp Glu Ile Asp Ala Asp Asn Gly Asp Leu Leu Asn Ala Met Asn Ala 530 535 540 Gln Phe Lys Leu Arg Asp Glu Leu 545 550 <210> 6 <211> 972 <212> DNA <213> Unknown <220> <223> Cysteine protease gene DNA seq <400> 6 atgaacaaaa ttttgtttta tttgtttgtg tacgccgttg taaagagcgc ggcctacgat 60 cctttgaaag cgcctaatta ttttgaagaa tttgttcatc gattcaacaa aaattatagt 120 agcgaagttg aaaaattgcg aagattcaaa attttccaac acaatttaaa tgaaattatc 180 aataaaaacc aaaacgattc ggccaaatat gaaataaaca aattctcgga tttgtccaaa 240 gacgaaacta tcgcaaaata cacaggtctg tctttgccta ctcagactca aaatttttgc 300 aaggtcatac tcttagacca gccgccgggt aaagggcccc ttgaatttga ctggcgtcgt 360 ctcaacaaag tcactagcgt aaaaaatcag ggcatgtgtg gcgcctgctg ggcgtttgcc 420 actctggcta gtttggaaag tcaatttgca atcaaacata accagttgat taatctgtcg 480 gagcagcaaa tgatcgattg tgattttgtc gacgctggct gtaacggcgg cttgttgcac 540 acagcgttcg aagccatcat taaaatgggc ggcgtacagc tggaaagcga ctatccatac 600 gaagcagaca ataacaattg ccgtatgaac tccaataagt ttctagttca agtaaaagat 660 tgttatagat acattaccgt gtacgaggaa aaacttaaag atttgttacg ccttgtcggc 720 cctattccta tggccataga cgctgccgac attgttaact ataaacaggg tattataaaa 780 tattgtttcg acagcggtct aaaccatgcg gttcttttag tgggttatgg tgttgaaaac 840 aacattccat attggacctt taaaaacact tggggcacgg attggggaga ggacggattt 900 ttcagggtac aacaaaacat aaacgcctgt ggtatgagaa acgaacttgc gtctactgca 960 gtcatttatt aa 972 <210> 7 <211> 323 <212> PRT <213> Unknown <220> <223> Cysteine protease gene A.A. seq <400> 7 Met Asn Lys Ile Leu Phe Tyr Leu Phe Val Tyr Ala Val Val Lys Ser 1 5 10 15 Ala Ala Tyr Asp Pro Leu Lys Ala Pro Asn Tyr Phe Glu Glu Phe Val 20 25 30 His Arg Phe Asn Lys Asn Tyr Ser Ser Glu Val Glu Lys Leu Arg Arg 35 40 45 Phe Lys Ile Phe Gln His Asn Leu Asn Glu Ile Ile Asn Lys Asn Gln 50 55 60 Asn Asp Ser Ala Lys Tyr Glu Ile Asn Lys Phe Ser Asp Leu Ser Lys 65 70 75 80 Asp Glu Thr Ile Ala Lys Tyr Thr Gly Leu Ser Leu Pro Thr Gln Thr 85 90 95 Gln Asn Phe Cys Lys Val Ile Leu Leu Asp Gln Pro Pro Gly Lys Gly 100 105 110 Pro Leu Glu Phe Asp Trp Arg Arg Leu Asn Lys Val Thr Ser Val Lys 115 120 125 Asn Gln Gly Met Cys Gly Ala Cys Trp Ala Phe Ala Thr Leu Ala Ser 130 135 140 Leu Glu Ser Gln Phe Ala Ile Lys His Asn Gln Leu Ile Asn Leu Ser 145 150 155 160 Glu Gln Gln Met Ile Asp Cys Asp Phe Val Asp Ala Gly Cys Asn Gly 165 170 175 Gly Leu Leu His Thr Ala Phe Glu Ala Ile Ile Lys Met Gly Gly Val 180 185 190 Gln Leu Glu Ser Asp Tyr Pro Tyr Glu Ala Asp Asn Asn Asn Cys Arg 195 200 205 Met Asn Ser Asn Lys Phe Leu Val Gln Val Lys Asp Cys Tyr Arg Tyr 210 215 220 Ile Thr Val Tyr Glu Glu Lys Leu Lys Asp Leu Leu Arg Leu Val Gly 225 230 235 240 Pro Ile Pro Met Ala Ile Asp Ala Ala Asp Ile Val Asn Tyr Lys Gln 245 250 255 Gly Ile Ile Lys Tyr Cys Phe Asp Ser Gly Leu Asn His Ala Val Leu 260 265 270 Leu Val Gly Tyr Gly Val Glu Asn Asn Ile Pro Tyr Trp Thr Phe Lys 275 280 285 Asn Thr Trp Gly Thr Asp Trp Gly Glu Asp Gly Phe Phe Arg Val Gln 290 295 300 Gln Asn Ile Asn Ala Cys Gly Met Arg Asn Glu Leu Ala Ser Thr Ala 305 310 315 320 Val Ile Tyr <210> 8 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> M13F(-40) <400> 8 gttttcccag tcacgac 17 <210> 9 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> M13R(-40) <400> 9 caggaaacag ctatgac 17 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> p10-5'-F <400> 10 ggtacctgtc atttattaat ttggatga 28 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> p10-5'-R <400> 11 aagcttttaa ctataatata ttgtgttggg t 31 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> p10-3'-F <400> 12 ctgcagatga atcgttttta aaataaca 28 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> p10-3'-R <400> 13 actagtgaag aacacacgat catgg 25 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Cm-F <400> 14 gacgtcatag atctgggcca acttttgg 28 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Cm-R <400> 15 gggccccagg cgtttaaggg caccaataac 30 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Chitinase-F <400> 16 ctgcagttga gcaagtcgcc gttatcggc 29 <210> 17 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Cystein-R <400> 17 gaattccgac aaaatcacaa tcgatcattt g 31 <110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Baculovirus with increased yield of foreign protein production <130> PN1903-146 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 110 <212> DNA <213> Unknown <220> <223> p10 promoter DNA seq <400> 1 gacctttaat tcaacccaac acaatatatt acagctaaat aagaattatt attaaattat 60 ttgtatatta attaaaatct tatactgtaa attacattt atttactatc 110 <210> 2 <211> 285 <212> DNA <213> Unknown <220> <223> p10 gene DNA seq <400> 2 atgtcaaagc ctaacgtttt gacgcaaatt ttagacgccg ttacggaaac taacacaaag 60 gttgacagtg ttcaaactca gttaaacggg ctggaagaat cattccagct tttggacggt 120 ttgcccgctc aattgaccga tcttaacact aagatctcag aaattcaatc catattgacc 180 ggcgacattg ttccggatct tccagactca ctaaagccta agctgaaaag ccaagctttt 240 gaactcgatt cagacgctcg tcgtggtaaa cgcagttcca agtaa 285 <210> 3 <211> 94 <212> PRT <213> Unknown <220> <223> p10 gene A.A. seq <400> 3 Met Ser Lys Pro Asn Val Leu Thr Gln Ile Leu Asp Ala Val Thr Glu 1 5 10 15 Thr Asn Thr Lys Val Asp Ser Val Gln Thr Gln Leu Asn Gly Leu Glu 20 25 30 Glu Ser Phe Gln Leu Leu Asp Gly Leu Pro Ala Gln Leu Thr Asp Leu 35 40 45 Asn Thr Lys Ile Ser Glu Ile Gln Ser Ile Leu Thr Gly Asp Ile Val 50 55 60 Pro Asp Leu Pro Asp Ser Leu Lys Pro Lys Leu Lys Ser Gln Ala Phe 65 70 75 80 Glu Leu Asp Ser Asp Ala Arg Arg Gly Lys Arg Ser Ser Lys 85 90 <210> 4 <211> 1659 <212> DNA <213> Unknown <220> <223> chitinase gene DNA seq <400> 4 atgttgtaca aattgttaaa cgttttgtgg ttggtggtcg ccgtttccaa cgcgattccc 60 ggcacgccgg tgatcgattg ggccgaacgc aattatgcgc tcgtaaaaat aaattacgag 120 gccaccgctt acgaaaattt aataaagctc aaagaacaag tcgacgttca cgtcagttgg 180 aacgtatgga acggcgacat tggcgacata gcgtacgtgt tctttgacga gcagcaggta 240 tggaaaggcg acgccgacag taaaagggct accattaatg ttattgtgag cgggcaattt 300 aacatgcgtg tcaaactttg caatgaggac ggctgttcca taagcgatcc cgtgttggtc 360 aaaatcgcag acaccgacgg cggtcatctg gcgccgctcg aatacacatg gctggaaaac 420 aacaaacccg gcagaagaga ggataaaatt gtcgctgcgt actttgtcga gtggggtgtg 480 tacgggcgca gctttcccgt agacaaagtt cccttgccaa atttatcgca cttgttgtac 540 ggtttcatac ccatctgcgg cggcgatgga ataaacgacg ccctcaaaac aatacccgga 600 agttttgaag ctctgcaacg atcgtgcagg ggacgcgaag atttcaaagt tgccatccac 660 gatccgtggg ccgccgtaca aaaaccccaa aagggcgtgt ccgcttggaa cgaaccgtac 720 aaaggcaatt ttggacaatt gatggcggcg aaattagcaa acccacatct aaaaattctt 780 ccttcaatag gaggctggac tctgtcggac ccattctatt tcatgcacga cgttgaaaaa 840 agaaacgttt ttgtagagtc ggttaaggaa tttttgcaag tgtggaaatt ttttgatggt 900 gtagacgtcg attgggaatt tccgggcggc aaaggggcta acccgtcgct gggcgatgcg 960 gagcgtgacg ccaaaacata cattctgttg ttggatgagc tgcgcgaaat gctagacgac 1020 ctcgaagtgc aaaccggcag ggtttacgaa ttaacaagcg ctataagcgc gggctacgac 1080 aagattgccg tggtaaacta cgccgaagcg caaaagtcat tagacaaaat atttctcatg 1140 acttacgatt ttaaaggggc ttggtcaaac acggatttgg gctaccaaac aacagtctac 1200 gcgccaagtt ggaactcgga agagctgtac actacacatt acgctgtcga tgcgttactg 1260 gaacaaggcg tcgatcccaa caaaataatt gtgggcgtcg ccatgtacgg ccgcggctgg 1320 accggcgtaa caaattatac gaatggcaat tatttttccg gcactggcaa cgggccggtg 1380 tcgggcacgt gggaggacgg tgttgtagat tatcgtcaaa ttcaaaaaga tctcaacaat 1440 tatgtgtaca cgtttgacag cgccgctcaa gcgtcgtacg ttttcgataa aagtaaaggc 1500 gatttgattt cgtttgacag cgtcgactct gtgttaggaa aagttaaata tgtcgaccga 1560 aataaattgg gcggcttgtt tgcttgggag attgatgccg ataacggcga cttgctcaac 1620 gcgatgaacg cacagtttaa acttagagat gaactgtaa 1659 <210> 5 <211> 552 <212> PRT <213> Unknown <220> <223> chitinase gene A.A. seq <400> 5 Met Leu Tyr Lys Leu Leu Asn Val Leu Trp Leu Val Val Ala Val Ser 1 5 10 15 Asn Ala Ile Pro Gly Thr Pro Val Ile Asp Trp Ala Glu Arg Asn Tyr 20 25 30 Ala Leu Val Lys Ile Asn Tyr Glu Ala Thr Ala Tyr Glu Asn Leu Ile 35 40 45 Lys Leu Lys Glu Gln Val Asp Val His Val Ser Trp Asn Val Trp Asn 50 55 60 Gly Asp Ile Gly Asp Ile Ala Tyr Val Phe Phe Asp Glu Gln Gln Val 65 70 75 80 Trp Lys Gly Asp Ala Asp Ser Lys Arg Ala Thr Ile Asn Val Ile Val 85 90 95 Ser Gly Gln Phe Asn Met Arg Val Lys Leu Cys Asn Glu Asp Gly Cys 100 105 110 Ser Ile Ser Asp Pro Val Leu Val Lys Ile Ala Asp Thr Asp Gly Gly 115 120 125 His Leu Ala Pro Leu Glu Tyr Thr Trp Leu Glu Asn Asn Lys Pro Gly 130 135 140 Arg Arg Glu Asp Lys Ile Val Ala Ala Tyr Phe Val Glu Trp Gly Val 145 150 155 160 Tyr Gly Arg Ser Phe Pro Val Asp Lys Val Pro Leu Pro Asn Leu Ser 165 170 175 His Leu Leu Tyr Gly Phe Ile Pro Ile Cys Gly Gly Asp Gly Ile Asn 180 185 190 Asp Ala Leu Lys Thr Ile Pro Gly Ser Phe Glu Ala Leu Gln Arg Ser 195 200 205 Cys Arg Gly Arg Glu Asp Phe Lys Val Ala Ile His Asp Pro Trp Ala 210 215 220 Ala Val Gln Lys Pro Gln Lys Gly Val Ser Ala Trp Asn Glu Pro Tyr 225 230 235 240 Lys Gly Asn Phe Gly Gln Leu Met Ala Ala Lys Leu Ala Asn Pro His 245 250 255 Leu Lys Ile Leu Pro Ser Ile Gly Gly Trp Thr Leu Ser Asp Pro Phe 260 265 270 Tyr Phe Met His Asp Val Glu Lys Arg Asn Val Phe Val Glu Ser Val 275 280 285 Lys Glu Phe Leu Gln Val Trp Lys Phe Phe Asp Gly Val Asp Val Asp 290 295 300 Trp Glu Phe Pro Gly Gly Lys Gly Ala Asn Pro Ser Leu Gly Asp Ala 305 310 315 320 Glu Arg Asp Ala Lys Thr Tyr Ile Leu Leu Leu Asp Glu Leu Arg Glu 325 330 335 Met Leu Asp Asp Leu Glu Val Gln Thr Gly Arg Val Tyr Glu Leu Thr 340 345 350 Ser Ala Ile Ser Ala Gly Tyr Asp Lys Ile Ala Val Val Asn Tyr Ala 355 360 365 Glu Ala Gln Lys Ser Leu Asp Lys Ile Phe Leu Met Thr Tyr Asp Phe 370 375 380 Lys Gly Ala Trp Ser Asn Thr Asp Leu Gly Tyr Gln Thr Thr Val Tyr 385 390 395 400 Ala Pro Ser Trp Asn Ser Glu Glu Leu Tyr Thr Thr His Tyr Ala Val 405 410 415 Asp Ala Leu Leu Glu Gln Gly Val Asp Pro Asn Lys Ile Ile Val Gly 420 425 430 Val Ala Met Tyr Gly Arg Gly Trp Thr Gly Val Thr Asn Tyr Thr Asn 435 440 445 Gly Asn Tyr Phe Ser Gly Thr Gly Asn Gly Pro Val Ser Gly Thr Trp 450 455 460 Glu Asp Gly Val Val Asp Tyr Arg Gln Ile Gln Lys Asp Leu Asn Asn 465 470 475 480 Tyr Val Tyr Thr Phe Asp Ser Ala Ala Gln Ala Ser Tyr Val Phe Asp 485 490 495 Lys Ser Lys Gly Asp Leu Ile Ser Phe Asp Ser Val Asp Ser Val Leu 500 505 510 Gly Lys Val Lys Tyr Val Asp Arg Asn Lys Leu Gly Gly Leu Phe Ala 515 520 525 Trp Glu Ile Asp Ala Asp Asn Gly Asp Leu Leu Asn Ala Met Asn Ala 530 535 540 Gln Phe Lys Leu Arg Asp Glu Leu 545 550 <210> 6 <211> 972 <212> DNA <213> Unknown <220> <223> Cysteine protease gene DNA seq <400> 6 atgaacaaaa ttttgtttta tttgtttgtg tacgccgttg taaagagcgc ggcctacgat 60 cctttgaaag cgcctaatta ttttgaagaa tttgttcatc gattcaacaa aaattatagt 120 agcgaagttg aaaaattgcg aagattcaaa attttccaac acaatttaaa tgaaattatc 180 aataaaaacc aaaacgattc ggccaaatat gaaataaaca aattctcgga tttgtccaaa 240 gacgaaacta tcgcaaaata cacaggtctg tctttgccta ctcagactca aaatttttgc 300 aaggtcatac tcttagacca gccgccgggt aaagggcccc ttgaatttga ctggcgtcgt 360 ctcaacaaag tcactagcgt aaaaaatcag ggcatgtgtg gcgcctgctg ggcgtttgcc 420 actctggcta gtttggaaag tcaatttgca atcaaacata accagttgat taatctgtcg 480 gagcagcaaa tgatcgattg tgattttgtc gacgctggct gtaacggcgg cttgttgcac 540 acagcgttcg aagccatcat taaaatgggc ggcgtacagc tggaaagcga ctatccatac 600 gaagcagaca ataacaattg ccgtatgaac tccaataagt ttctagttca agtaaaagat 660 tgttatagat acattaccgt gtacgaggaa aaacttaaag atttgttacg ccttgtcggc 720 cctattccta tggccataga cgctgccgac attgttaact ataaacaggg tattataaaa 780 tattgtttcg acagcggtct aaaccatgcg gttcttttag tgggttatgg tgttgaaaac 840 aacattccat attggacctt taaaaacact tggggcacgg attggggaga ggacggattt 900 ttcagggtac aacaaaacat aaacgcctgt ggtatgagaa acgaacttgc gtctactgca 960 gtcatttatt aa 972 <210> 7 <211> 323 <212> PRT <213> Unknown <220> <223> Cysteine protease gene A.A. seq <400> 7 Met Asn Lys Ile Leu Phe Tyr Leu Phe Val Tyr Ala Val Val Lys Ser 1 5 10 15 Ala Ala Tyr Asp Pro Leu Lys Ala Pro Asn Tyr Phe Glu Glu Phe Val 20 25 30 His Arg Phe Asn Lys Asn Tyr Ser Ser Glu Val Glu Lys Leu Arg Arg 35 40 45 Phe Lys Ile Phe Gln His Asn Leu Asn Glu Ile Ile Asn Lys Asn Gln 50 55 60 Asn Asp Ser Ala Lys Tyr Glu Ile Asn Lys Phe Ser Asp Leu Ser Lys 65 70 75 80 Asp Glu Thr Ile Ala Lys Tyr Thr Gly Leu Ser Leu Pro Thr Gln Thr 85 90 95 Gln Asn Phe Cys Lys Val Ile Leu Leu Asp Gln Pro Pro Gly Lys Gly 100 105 110 Pro Leu Glu Phe Asp Trp Arg Arg Leu Asn Lys Val Thr Ser Val Lys 115 120 125 Asn Gln Gly Met Cys Gly Ala Cys Trp Ala Phe Ala Thr Leu Ala Ser 130 135 140 Leu Glu Ser Gln Phe Ala Ile Lys His Asn Gln Leu Ile Asn Leu Ser 145 150 155 160 Glu Gln Gln Met Ile Asp Cys Asp Phe Val Asp Ala Gly Cys Asn Gly 165 170 175 Gly Leu Leu His Thr Ala Phe Glu Ala Ile Ile Lys Met Gly Gly Val 180 185 190 Gln Leu Glu Ser Asp Tyr Pro Tyr Glu Ala Asp Asn Asn Asn Cys Arg 195 200 205 Met Asn Ser Asn Lys Phe Leu Val Gln Val Lys Asp Cys Tyr Arg Tyr 210 215 220 Ile Thr Val Tyr Glu Glu Lys Leu Lys Asp Leu Leu Arg Leu Val Gly 225 230 235 240 Pro Ile Pro Met Ala Ile Asp Ala Ala Asp Ile Val Asn Tyr Lys Gln 245 250 255 Gly Ile Ile Lys Tyr Cys Phe Asp Ser Gly Leu Asn His Ala Val Leu 260 265 270 Leu Val Gly Tyr Gly Val Glu Asn Asn Ile Pro Tyr Trp Thr Phe Lys 275 280 285 Asn Thr Trp Gly Thr Asp Trp Gly Glu Asp Gly Phe Phe Arg Val Gln 290 295 300 Gln Asn Ile Asn Ala Cys Gly Met Arg Asn Glu Leu Ala Ser Thr Ala 305 310 315 320 Val Ile Tyr <210> 8 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> M13F(-40) <400> 8 gttttcccag tcacgac 17 <210> 9 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> M13R(-40) <400> 9 caggaaacag ctatgac 17 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> p10-5'-F <400> 10 ggtacctgtc atttattaat ttggatga 28 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> p10-5'-R <400> 11 aagcttttaa ctataatata ttgtgttggg t 31 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> p10-3'-F <400> 12 ctgcagatga atcgttttta aaataaca 28 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> p10-3'-R <400> 13 actagtgaag aacacacgat catgg 25 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Cm-F <400> 14 gacgtcatag atctgggcca acttttgg 28 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Cm-R <400> 15 gggccccagg cgtttaaggg caccaataac 30 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Chitinase-F <400> 16 ctgcagttga gcaagtcgcc gttatcggc 29 <210> 17 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Cystein-R <400> 17 gaattccgac aaaatcacaa tcgatcattt g 31

Claims (10)

p10 유전자 프로모터, p10 유전자, 키티나아제(chitinase) 및 시스테인 단백질 가수분해 효소(v-cath)가 모두 결실되어 숙주세포의 생존율을 향상시켜 외래 목적 단백질의 생산량을 증대시키는 재조합 배큘로바이러스인 재조합 누에핵다각체병 바이러스(Bombyx mori nucleopolyhedrovirus, BmNPV). The p10 gene promoter, p10 gene, chitinase and cysteine proteolytic enzyme (v-cath) are all deleted to improve the viability of host cells, thereby increasing the production of foreign target proteins by recombinant baculovirus recombinant silkworm. Nuclear polyhedrosis virus (Bombyx mori nucleopolyhedrovirus, BmNPV). 삭제delete p10 유전자 프로모터, p10 유전자, 키티나아제(chitinase)를 코딩하는 유전자 및 시스테인 단백질 가수분해 효소(v-cath)를 코딩하는 유전자가 모두 결실된 재조합 베큘로바이러스 전이 벡터를 제조하는 단계;
상기 전이 벡터에 외래 목적 단백질을 코딩하는 뉴클레오타이드 서열을 클로닝하는 단계; 및
상기 클로닝하여 제조된 재조합 전이 벡터 및 백미드(Bacmid)를 숙주세포인 Bm5 곤충세포에 도입하는 단계를 포함하며,
상기 베큘로바이러스는 누에핵다각체병 바이러스(Bombyx mori nucleopolyhedrovirus, BmNPV)인 것을 특징으로 하는,
숙주세포의 생존율을 향상시켜 외래 목적 단백질을 대량으로 생산하는 방법.
preparing a recombinant baculovirus transfer vector in which the p10 gene promoter, the p10 gene, the gene encoding chitinase and the gene encoding cysteine proteolytic enzyme (v-cath) are all deleted;
cloning the nucleotide sequence encoding the foreign target protein into the transfer vector; and
and introducing the recombinant transfer vector and Bacmid prepared by cloning into Bm5 insect cells, which are host cells,
The baculovirus is characterized in that the silkworm nuclear polyhedrosis virus (Bombyx mori nucleopolyhedrovirus, BmNPV),
A method for mass production of foreign target proteins by improving the survival rate of host cells.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190035666A 2019-03-28 2019-03-28 Baculovirus with increased yield of foreign protein production KR102272651B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190035666A KR102272651B1 (en) 2019-03-28 2019-03-28 Baculovirus with increased yield of foreign protein production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190035666A KR102272651B1 (en) 2019-03-28 2019-03-28 Baculovirus with increased yield of foreign protein production

Publications (2)

Publication Number Publication Date
KR20200114256A KR20200114256A (en) 2020-10-07
KR102272651B1 true KR102272651B1 (en) 2021-07-02

Family

ID=72883214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190035666A KR102272651B1 (en) 2019-03-28 2019-03-28 Baculovirus with increased yield of foreign protein production

Country Status (1)

Country Link
KR (1) KR102272651B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240108808A (en) 2022-12-29 2024-07-10 충북대학교 산학협력단 Transformed insect cell line for increasing production of recombinant protein and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882837B1 (en) 2006-04-05 2009-02-10 진병래 Recombinant Bombyx mori nuclear polyhedrosis virus lacking the virus-encoded chitinase and cathepsin genes
WO2013014294A2 (en) 2011-07-27 2013-01-31 Genethon Improved baculovirus expression systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353475B1 (en) 2000-01-25 2002-09-27 대한민국 Expression vector for transformation of insect cell lines and transformed insect cell lines producing antibacterial protein
FR2978456B1 (en) * 2011-07-27 2015-02-20 Genethon BACULOVIRAL SYSTEM FOR THE EXPRESSION OF A GENE THERAPEUTIC VECTOR
KR101812250B1 (en) 2017-04-19 2017-12-26 대한민국 Recombinant baculovirus with increased expression of enterovirus virus-like particles and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882837B1 (en) 2006-04-05 2009-02-10 진병래 Recombinant Bombyx mori nuclear polyhedrosis virus lacking the virus-encoded chitinase and cathepsin genes
WO2013014294A2 (en) 2011-07-27 2013-01-31 Genethon Improved baculovirus expression systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cell Biol Toxicol (2010) 26:57-68
J Virol Methods. 2004;122(1):113-8.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240108808A (en) 2022-12-29 2024-07-10 충북대학교 산학협력단 Transformed insect cell line for increasing production of recombinant protein and use thereof

Also Published As

Publication number Publication date
KR20200114256A (en) 2020-10-07

Similar Documents

Publication Publication Date Title
ES2612854T3 (en) Recombinant DNA elements for the expression of recombinant proteins in a host cell
EP2858489B1 (en) Recombinant dna elements for the expression of recombinant proteins in a host cell
GB2463783A (en) A method for preparing antigens of foot-and-mouth disease virus
EP2350292B1 (en) Insect-derived promoters for foreign proteins expression in insect cells
KR102272651B1 (en) Baculovirus with increased yield of foreign protein production
KR102148865B1 (en) Hyper enhanced baculovirus expression vector with increased production of foreign proteins by early expression
CN110272480B (en) Duck alpha interferon and mutant thereof, preparation method and application
WO2014086973A1 (en) Enhanced production of the porcine circovirus capsid protein by a baculovirus vector expression system
RU2619161C2 (en) Recombinant dna elements for recombinant proteins expression in the host cell
US11655482B2 (en) Recombinant transition vector for increasing foreign protein expression
Wang et al. Bombyx mori nucleopolyhedrovirus protein Bm11 is involved in occlusion body production and occlusion-derived virus embedding
Park et al. Enhanced production of secretory β1, 3-N-acetylglucosaminyltransferase 2 fusion protein into hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid integrated signal sequence
CN110295196B (en) Method for prolonging death time of bombyx mori infected nuclear polyhedrosis virus, recombinant baculovirus thereof and application
CN110592139B (en) Construction method and application of tussah nuclear polyhedrosis virus shuttle vector
CN113073117A (en) Ac18-23 knockout baculovirus expression vector
KR101223577B1 (en) A recombinant virus bEasyBac and baculovirus expression vector system using the same
JP4288389B2 (en) BmNPV shuttle vector
KR102275815B1 (en) Recombinant vector for overexpressing target protein and mass-production method of target protein using the same vector in insect cell
CN112852825B (en) Tussah midgut specific gene ApLITAF and promoter and application thereof
Peng et al. Function and Application Analysis of Ac132 Protein in Autographa californica Multiple Nucleopolyhedrovirus
JP6044974B2 (en) Recombinant silkworm nuclear polyhedrosis virus vector
KR100882837B1 (en) Recombinant Bombyx mori nuclear polyhedrosis virus lacking the virus-encoded chitinase and cathepsin genes
KR100270928B1 (en) TRANSITIONAL VECTOR, PBM10 USING p10 GENE OF BOMBYX MORI NUCLEOCAPSIDE POLYHEDRON VIRUS VB2(KCTC8873P) AND METHOD FOR PREPARATION THEREOF
KR101233081B1 (en) A recombinant virus bEasyBac and baculovirus expression vector system using the same
WO2007029360A1 (en) Bacmid variant, method of producing the same and method of producing target protein by using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant