KR102271380B1 - Indor positioning system using beacon - Google Patents

Indor positioning system using beacon Download PDF

Info

Publication number
KR102271380B1
KR102271380B1 KR1020180144424A KR20180144424A KR102271380B1 KR 102271380 B1 KR102271380 B1 KR 102271380B1 KR 1020180144424 A KR1020180144424 A KR 1020180144424A KR 20180144424 A KR20180144424 A KR 20180144424A KR 102271380 B1 KR102271380 B1 KR 102271380B1
Authority
KR
South Korea
Prior art keywords
terminal
beacon
error value
measuring device
initial error
Prior art date
Application number
KR1020180144424A
Other languages
Korean (ko)
Other versions
KR102271380B9 (en
KR20200059553A (en
Inventor
원유재
강진수
염철민
박종형
박두익
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020180144424A priority Critical patent/KR102271380B1/en
Publication of KR20200059553A publication Critical patent/KR20200059553A/en
Application granted granted Critical
Publication of KR102271380B1 publication Critical patent/KR102271380B1/en
Publication of KR102271380B9 publication Critical patent/KR102271380B9/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

본 발명에 의한 실내위치측정시스템은, 4개의 비콘, 단말기를 포함하는 비콘기반 실내위치측정시스템에 있어서, 4개의 비콘으로터 단말기가 수신한 RSSI신호를 평균 필터와 칼만필터를 적용하여 보정하고, 4개의 비콘 중 3개씩을 선택하여 삼변측량으로 위치를 추정한 후, 4개의 추정값을 평균하여 최종적인 위치 추정값을 구하는 것을 특징으로 한다.The indoor positioning system according to the present invention, in a beacon-based indoor positioning system including four beacons and a terminal, corrects the RSSI signal received by the terminal from the four beacons by applying an average filter and a Kalman filter, It is characterized in that after selecting three of the four beacons and estimating the position by trilateration, the final position estimate value is obtained by averaging the four estimated values.

Description

비콘기반 실내위치측정시스템{INDOR POSITIONING SYSTEM USING BEACON}Beacon-based indoor positioning system {INDOR POSITIONING SYSTEM USING BEACON}

본 발명은 비콘기반 실내위치측정시스템에 관한 것으로, 보다 상세하게는 비콘으로터 단말기가 수신한 RSSI신호를 이용하여 단말기의 위치를 추정하는 비콘기반 실내위치측정시스템에 관한 것이다.The present invention relates to a beacon-based indoor positioning system, and more particularly, to a beacon-based indoor positioning system for estimating the location of a terminal using an RSSI signal received by a beacon rotor terminal.

최근 고객의 위치를 기반으로 여러 가지 서비스를 제공해주는 위치기반서비스가 다양한 산업 분야에서 각광받고 있다. 위치기반서비스의 핵심 기술인 측위기술에는 일반적으로 GPS가 활용되고 있다. 하지만 실내 공간에서는 GPS 신호를 이용하여 위치를 찾아낼 수 없어서 다른 방식의 측위 기술을 필요로 하고 있다. 그 중 하나로 비콘을 사용할 수 있고, 비특허문헌 1과 비특허문헌 2에는 비콘을 이용하는 실내 측위 기술이 개시되어 있다. 비콘은 블루투스 기술을 기반으로 근거리 내에 감지되는 단말기에 각종 정보와 서비스를 제공할 수 있는 무선 통신 장치를 말한다. 사용자가 비콘이 신호를 송신하는 특정 공간에 진입했을 때 스마트폰 어플리케이션을 통해 각종 서비스를 제공받을 수 있다. 비콘을 이용하여 실내 공간에서 단말기의 위치를 알아내기 위해서는 3개 이상의 비콘과 단말기 사이의 거리를 구하고 삼변측량법을 적용하여 사용자의 위치를 계산해야 한다. 이 때 비콘과 단말기의 거리를 측정하기 위해서 비콘의 RSSI 신호를 이용한다. 이러한 방법이 비특허문헌 3에 개시되어 있다. 하지만 RSSI는 주변의 장애물 존재 여부, 날씨, 습도와 같은 주변 환경에 굉장히 민감하기 때문에 그대로 적용하여 단말기의 거리를 측정한다면 오차가 발생하고 이로 인해 실내 측위 시 계산한 위치 역시 신뢰도가 떨어진다. 이러한 문제점이 비특허문헌 4에 기재되어 있다.Recently, location-based services, which provide various services based on the location of customers, have been in the spotlight in various industries. GPS is generally used for positioning technology, which is the core technology of location-based services. However, in an indoor space, it is not possible to locate a location using a GPS signal, so a different method of positioning is required. One of them can use a beacon, and non-patent document 1 and non-patent document 2 disclose indoor positioning technology using a beacon. A beacon refers to a wireless communication device capable of providing various information and services to a terminal detected within a short distance based on Bluetooth technology. When a user enters a specific space where a beacon transmits a signal, various services may be provided through a smartphone application. In order to find out the location of a terminal in an indoor space using a beacon, the distance between three or more beacons and the terminal must be obtained and the user's location must be calculated by applying the trilateration method. At this time, the RSSI signal of the beacon is used to measure the distance between the beacon and the terminal. Such a method is disclosed in Non-Patent Document 3. However, since RSSI is very sensitive to the surrounding environment such as the presence of obstacles, weather, and humidity, an error occurs if the distance of the terminal is measured by applying it as it is. Such a problem is described in Non-Patent Document 4.

따라서 정확한 실내 측위를 위해서는 비콘과 단말기 사이의 거리가 정확하게 측정되어야 하고. 이를 위해 보정 알고리즘을 적용하여 RSSI 데이터의 오차를 개선하는 기술이 필요하다.Therefore, for accurate indoor positioning, the distance between the beacon and the terminal must be accurately measured. For this, a technique for improving the error of RSSI data by applying a correction algorithm is required.

조영수, "실내외 연속측위 기술 동향", 한국전자통신연구원, 전자통신동향분석, 22권 3호, pp.20~28, 2007.6Youngsoo Cho, "Indoor/Outdoor Continuous Positioning Technology Trend", Electronics and Telecommunications Research Institute, Electronic Communication Trend Analysis, Vol. 22, No. 3, pp.20~28, June 2007 한국 인터넷 진흥원, "국내·외 LBS 산업 동향 보고서", 2018Korea Internet & Security Agency, "Korea and overseas LBS industry trend report", 2018 Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, "Bluetooth positioning using rssi and triangulation methods", Consumer Communications and Networking Conference (CCNC), 2013 IEEE, pp.837 - 842, IEEEY. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, "Bluetooth positioning using rssi and triangulation methods", Consumer Communications and Networking Conference (CCNC), 2013 IEEE, pp.837 - 842, IEEE Q. Dong and W. Dargie, "Evaluation of the reliability of RSSI for indoor localization",in Proc. International Conference on Wireless Communications in Unusual and Confined Areas (ICWCUCA), Aug. 2012.Q. Dong and W. Dargie, “Evaluation of the reliability of RSSI for indoor localization”, in Proc. International Conference on Wireless Communications in Unusual and Confined Areas (ICWCUCA), Aug. 2012.

본 발명이 해결하고자는 하는 과제는, 비콘기반 실내위치측정시스템에서 비콘과 단말기 사이의 정확한 거리 측정을 위해 RSSI 데이터의 오차를 개선하여 비콘과 단말기 사이의 정확한 거리 측정을 하고, 이로 인해 실내 위치 측정의 정확도를 향상시키는 것이다.The problem to be solved by the present invention is to measure the accurate distance between the beacon and the terminal by improving the error of the RSSI data for accurate distance measurement between the beacon and the terminal in the beacon-based indoor positioning system, thereby measuring the indoor location to improve the accuracy of

본 발명에 의한 실내위치측정시스템은, 4개의 비콘, 단말기를 포함하는 비콘기반 실내위치측정시스템에 있어서, 4개의 비콘으로터 단말기가 수신한 RSSI신호를 평균 필터와 칼만필터를 적용하여 보정하고, 4개의 비콘 중 3개씩을 선택하여 삼변측량으로 위치를 추정한 후, 4개의 추정값을 평균하여 최종적인 위치 추정값을 구하는 것을 특징으로 한다.The indoor positioning system according to the present invention, in a beacon-based indoor positioning system including four beacons and a terminal, corrects the RSSI signal received by the terminal from the four beacons by applying an average filter and a Kalman filter, It is characterized in that after selecting three of the four beacons and estimating the position by trilateration, the final position estimate value is obtained by averaging the four estimated values.

본 발명에 의한 다른 실시예에 의한 실내위치측정시스템은, 4개의 비콘, 단말기, 초기 오차값 측정장치를 포함하는 비콘기반 실내위치측정시스템에 있어서, 단말기를 초기 오차값 측정 장치에 놓으면 단말기 고유의 오차값을 구할 수 있고, 단말기의 위치를 추정할 때, 4개의 비콘으로터 단말기가 수신한 RSSI신호를 평균필터와 칼만필터를 적용하고 단말기 고유의 오차값을 이용하여 보정하며, 4개의 비콘 중 3개씩을 선택하여 삼변측량으로 위치를 추정한 후, 4개의 추정값을 평균하여 최종적인 위치 추정값을 구하는 것을 특징으로 한다.The indoor positioning system according to another embodiment of the present invention is a beacon-based indoor positioning system including four beacons, a terminal, and an initial error value measuring device. The error value can be obtained, and when estimating the location of the terminal, the average filter and the Kalman filter are applied to the RSSI signal received by the terminal from four beacons, and the terminal's own error value is used to correct it. It is characterized in that after selecting three and estimating the location by trilateration, the final location estimate is obtained by averaging the four estimated values.

본 발명에 의한 비콘기반 실내위치측정시스템은, RSSI 데이터의 오차를 개선하여 비콘과 단말기 사이의 정확한 거리 측정이 가능하다.The beacon-based indoor positioning system according to the present invention can accurately measure the distance between the beacon and the terminal by improving the error of RSSI data.

도 1은 실시예 1의 개념도
도 2는 실시예 2의 개념도
도 3은 단말기와 초기 오차값 측정장치의 단면도의 예
1 is a conceptual diagram of Example 1
2 is a conceptual diagram of Embodiment 2
3 is an example of a cross-sectional view of a terminal and an initial error value measuring device

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise.

(실시예 1)(Example 1)

도 1은 실시예 1의 개념도이다.1 is a conceptual diagram of Example 1. FIG.

도 1의 실시예 1에서는 4개의 비콘{비콘 1(10), 비콘 2(20), 비콘 3(30), 비콘 4(40)}과 단말기(100)를 포함한다.In Embodiment 1 of FIG. 1 , four beacons (beacon 1 (10), beacon 2 (20), beacon 3 (30), beacon 4 (40)) and the terminal 100 are included.

스마트폰에 앱을 설치하면 실시예 1의 단말기(100)가 될 수 있다.If the app is installed on a smartphone, it may become the terminal 100 of the first embodiment.

단말기(100)는 각 비콘으로부터 수신되는 RSSI신호의 크기로부터 거리를 추정할 수 있다. 만일 각 비콘으로부터 단말기까지의 거리를 추정할 수 있다면, 삼변측량을 이용하여 단말기의 위치를 추정할 수 있다.The terminal 100 may estimate the distance from the size of the RSSI signal received from each beacon. If the distance from each beacon to the terminal can be estimated, the location of the terminal can be estimated using trilateration.

삼변측량(三邊測量)은 삼각측량과 마찬가지로 삼각형 기하학을 사용하여 물체의 상대 위치를 구하는 방법이다. 하나의 변의 길이와, 양 끝의 두 각을 이용하는 삼각측량과는 달리 삼변측량은 목표의 위치를 알기 위해서 두 개 이상의 기준점과, 물체와 각 기준점과의 거리를 이용한다. 삼변측량만으로 2차원 면에서의 상대위치를 정확하고 유일하게 결정하기 위해서는 최소한 3개의 기준점이 필요하다Trilateration (三邊測量), like triangulation, is a method of finding the relative position of an object using triangular geometry. Unlike triangulation, which uses the length of one side and two angles at both ends, trilateration uses two or more reference points and the distance between an object and each reference point to find the target location. At least three reference points are required to accurately and uniquely determine the relative position in a two-dimensional plane using only trilateration.

그러나 각 비콘으로부터 수신되는 RSSI신호의 크기로부터 거리를 추정할 때, 여러가지 이유로 오차가 발생할 수 있다.However, when estimating the distance from the size of the RSSI signal received from each beacon, errors may occur for various reasons.

만일 각 비콘으로부터 수신되는 RSSI신호에 평균필터와 칼만필터를 적용하면 오차를 줄일 수 있다.If the average filter and the Kalman filter are applied to the RSSI signal received from each beacon, the error can be reduced.

평균필터는 잡음이 포함될 수 있는 측정값에서 평균값을 구함으로써 잡음의 영향을 줄이는 필터이다.The average filter is a filter that reduces the effect of noise by averaging the measured values that may contain noise.

칼만필터는 잡음이 포함되어 있는 선형 역학계의 상태를 추적하는 재귀 필터로, 루돌프 칼만이 개발한 것이다. 이것은 선행하는 비특허문헌{김성필, "칼만필터의 이해", 아진, pp. 75~80, 2010}에도 기재되어 있다.The Kalman filter is a recursive filter that tracks the state of a linear dynamic system that contains noise, and was developed by Rudolf Kalman. This is the preceding non-patent literature {Seongpil Kim, "Understanding the Kalman Filter", Ajin, pp. 75-80, 2010}.

그리고 각 비콘으로부터 수신되는 RSSI신호에 평균필터와 칼만필터를 적용한 후에도 오차가 남아있을 수 있는데, 이 오차에 의한 단말기 추정 위치의 오차는 다음의 방법으로 줄인다.And even after applying the average filter and the Kalman filter to the RSSI signal received from each beacon, an error may remain, and the error of the terminal estimated position due to this error is reduced by the following method.

본 실시예에서는 4개의 비콘 중 3개씩을 선택하여 삼변측량으로 위치를 추정한 후, 4개의 추정값을 평균하여 최종적인 위치 추정값을 구한다.In the present embodiment, three of the four beacons are selected and the location is estimated by trilateration, and then the final location estimate is obtained by averaging the four estimated values.

비콘은 BLE(Bluetooth Low Energy)기술을 이용하므로, 실행시 사용자의 단말기(예를 들면, 스마트폰)의 블루투스 기능을 활성화시켜야 한다.Since the beacon uses BLE (Bluetooth Low Energy) technology, it is necessary to activate the Bluetooth function of the user's terminal (eg, smart phone) when it is executed.

실시예 1은 강의실 내에서 학생들의 위치를 표시하는 기술에 이용될 수 있다. 그 외에도 교육기관의 출석 관리 어플리케이션, 실내 내비게이션 서비스, 미차 찾기 서비스 등 실내 위치측정시스템에 사용될 수 있다.Embodiment 1 can be used in a technique for indicating the location of students in a classroom. In addition, it can be used for indoor positioning systems such as attendance management applications of educational institutions, indoor navigation services, and missing car search services.

실시예 1의 실내 위치측정시스템은 사용자의 단말기(예를 들면, 스마트폰) 외에는 BLE 비콘만을 이용하므로, 다른 방법을 이용하는 것보다 저렴한 가격으로 실내측위를 가능하게 한다.Since the indoor positioning system of Embodiment 1 uses only the BLE beacon other than the user's terminal (eg, a smartphone), it enables indoor positioning at a lower price than using other methods.

그런데 실시예 1에서는 단말기의 위치 추정 결과에 오차가 있을 수 있다. 단말기마다 특성이나 성능이 다르고, 오차 특성이 다르기 때문이다.However, in the first embodiment, there may be an error in the position estimation result of the terminal. This is because each terminal has different characteristics and performance and different error characteristics.

만일 단말기 고유의 오차 특성을 감안하여 단말기의 위치를 추정할 수 있다면, 오차를 더욱 줄일 수 있을 것이다.If the location of the terminal can be estimated in consideration of the terminal's inherent error characteristics, the error can be further reduced.

실시예 2에서는 단말기 고유의 오차 특성을 감안하여 단말기의 위치를 추정한다.In the second embodiment, the position of the terminal is estimated in consideration of the error characteristic inherent in the terminal.

(실시예 2)(Example 2)

도 2는 실시예 2의 개념도이고, 도 3은 단말기와 초기 오차값 측정장치의 단면도의 예이다.2 is a conceptual diagram of Embodiment 2, and FIG. 3 is an example of a cross-sectional view of a terminal and an apparatus for measuring an initial error value.

도 2가 도 1과 다른 점은 초기 오차값 측정장치(200)을 더 포함하는 점이다. FIG. 2 is different from FIG. 1 in that it further includes an initial error value measuring device 200 .

초기 오차값 측정장치(200)는 고정된 위치에 설치되어 있고, 그 위치를 미리 알고 있다.The initial error value measuring device 200 is installed at a fixed position, and the position is known in advance.

따라서 단말기를 초기 오차값 측정장치(200) 위에 놓을 때, 단말기의 정확한 위치를 알고 있으므로, 단말기에서 각 비콘에 이르는 정확한 거리를 알 수 있다.Therefore, when the terminal is placed on the initial error value measuring apparatus 200, the precise location of the terminal is known, and thus the precise distance from the terminal to each beacon can be known.

이때 단말기에서 각 비콘으로부터 수신한 RSSI신호를 분석하면, 단말기 고유의 오차 특성을 알 수 있다. 즉 오프셋(offset) 값이 얼마인지, 각 비콘으로부터 거리가 얼마일 때 RSSI신호의 크기가 얼마인지를 알 수 있다.At this time, when the terminal analyzes the RSSI signal received from each beacon, the terminal's inherent error characteristics can be known. That is, it is possible to know what the offset value is and what the size of the RSSI signal is when the distance is from each beacon.

이렇게 알아낸 단말기 고유의 오차 특성을 고려하여 비콘과 단말기 사이의 위치를 추정하면, 단말기 위치의 추정값과 실제 위치 사이의 오차를 더욱 줄일 수 있다.If the position between the beacon and the terminal is estimated in consideration of the terminal-specific error characteristics found in this way, the error between the estimated value of the terminal position and the actual position can be further reduced.

도 3에서는, 초기 오차값 측정장치(200)의 상부에 초기 오차값 측정장치 버튼(210)이 형성되어 있고, 단말기를 초기 오차값 측정 장치에 놓으면 초기오차값 측정장치 버튼(210)이 눌러진다. 초기오차값 측정장치 버튼(210)이 눌러지면, 초기 오차값 측정장치(200)는 단말기(100)에 측정개시 신호를 보내고, 단말기(100)는 각 비콘으로부터 RSSI신호를 수신하고, 실제 거리와 비교하여 단말기 고유의 오차 특성을 알아낸다.3, the initial error value measuring device button 210 is formed on the upper portion of the initial error value measuring device 200, and when the terminal is placed on the initial error value measuring device, the initial error value measuring device button 210 is pressed . When the initial error value measuring device button 210 is pressed, the initial error value measuring device 200 sends a measurement start signal to the terminal 100, and the terminal 100 receives the RSSI signal from each beacon, and By comparison, the error characteristics inherent in the terminal are found.

오차값 측정장치(200)는 단말기(100)에 측정개시 신호를 보낼 때 무선통신(예를 들면, 블루투스 통신, nfc 통신 등)을 이용할 수 있다.The error value measuring device 200 may use wireless communication (eg, Bluetooth communication, nfc communication, etc.) when sending a measurement start signal to the terminal 100 .

따라서 실시예 2에 의한 단말기 위치 추정방법의 순서는 다음과 같이 할 수 있다.Therefore, the order of the terminal position estimation method according to the second embodiment can be as follows.

(1) 제1 단계: 사용자가 단말기를 초기 오차값 측정 장치에 놓는다.(1) First step: the user puts the terminal on the initial error value measuring device.

(2) 제2 단계: 단말기(100)가 측정개시 신호를 받으면, 4개의 비콘으로부터 RSSI신호를 수신한 후 평균필터와 칼만필터를 적용한 값을 구한다. 그 결과 구한 값과 실제 거리를 비교하여 단말기 고유의 오차 특성을 알아낸다.(2) Step 2: When the terminal 100 receives the measurement start signal, it receives the RSSI signal from the four beacons, and then obtains a value to which the average filter and the Kalman filter are applied. As a result, the error characteristic inherent in the terminal is found by comparing the obtained value with the actual distance.

(3) 제3 단계: 단말기를 초기 오차값 측정 장치로부터 이탈한 후 4개의 비콘으로부터 RSSI신호를 수신한다.(3) Step 3: After leaving the terminal from the device for measuring the initial error value, RSSI signals are received from four beacons.

(4) 제4 단계: 4개의 비콘으로터 단말기가 수신한 RSSI신호를 평균필터와 칼만필터를 적용하고 단말기 고유의 오차값을 이용하여 보정한다.(4) Step 4: Apply the average filter and Kalman filter to the RSSI signal received by the terminal from the four beacon rotors, and correct it using the terminal's own error value.

(5) 제5 단계: 4개의 비콘 중 3개씩을 선택하여 삼변측량으로 위치를 추정한 후, 4개의 추정값을 평균하여 최종적인 위치 추정값을 구한다.(5) Step 5: After selecting three of the four beacons and estimating the location by trilateration, the final location estimate is obtained by averaging the four estimated values.

상기 제4 단계와 제5 단계는 단말기가 할 수도 있고, 단말기로부터 필요한 데이터를 전송받은 서버 등에서 할 수도 있다.The fourth and fifth steps may be performed by the terminal, or may be performed by a server that has received necessary data from the terminal.

단말기(100)(예를 들면, 스마트폰)이 상기와 같이 동작하기 위해서는, 단말기(100)가 상기와 같이 동작하도록 하는 앱(애플리케이션 프로그램)이 단말기(100)에 설치되어 있어야 한다.In order for the terminal 100 (eg, a smartphone) to operate as described above, an app (application program) that allows the terminal 100 to operate as described above must be installed in the terminal 100 .

10: 비콘 1
20: 비콘 2
30: 비콘 3
40: 비콘 4
100: 단말기
200: 초기 오차값 측정장치
210: 초기오차값 측정장치 버튼
10: Beacon 1
20: Beacon 2
30: Beacon 3
40: beacon 4
100: terminal
200: initial error value measuring device
210: initial error value measuring device button

Claims (2)

삭제delete 4개의 비콘, 단말기, 초기 오차값 측정장치를 포함하는 비콘기반 실내위치측정시스템에 있어서,
초기 오차값 측정장치의 상부에 초기 오차값 측정장치 버튼이 형성되어 있고,
단말기를 초기 오차값 측정 장치에 놓으면 초기오차값 측정장치 버튼이 눌러지고,
초기오차값 측정장치 버튼이 눌러지면, 초기 오차값 측정장치는 단말기에 측정개시 신호를 보내고, 단말기는 각 비콘으로부터 RSSI신호를 수신하고, 실제 거리와 비교하여 단말기 고유의 오차 특성을 알아내고,
단말기의 위치를 추정할 때, 4개의 비콘으로터 단말기가 수신한 RSSI신호를 평균필터와 칼만필터를 적용하고 단말기 고유의 오차값을 이용하여 보정하며, 4개의 비콘 중 3개씩을 선택하여 삼변측량으로 위치를 추정한 후, 4개의 추정값을 평균하여 최종적인 위치 추정값을 구하는 것을 특징으로 하는 비콘기반 실내위치측정시스템.
In the beacon-based indoor positioning system comprising four beacons, a terminal, and an initial error value measuring device,
An initial error value measuring device button is formed on the upper part of the initial error value measuring device,
When the terminal is placed on the initial error value measuring device, the initial error value measuring device button is pressed,
When the initial error value measurement device button is pressed, the initial error value measurement device sends a measurement start signal to the terminal, the terminal receives the RSSI signal from each beacon, compares it with the actual distance,
When estimating the location of the terminal, the average filter and the Kalman filter are applied to the RSSI signal received by the terminal from the four beacons, and are corrected using the terminal's own error value. After estimating the location with a beacon-based indoor location measurement system, characterized in that the final location estimate is obtained by averaging the four estimated values.
KR1020180144424A 2018-11-21 2018-11-21 Indor positioning system using beacon KR102271380B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180144424A KR102271380B1 (en) 2018-11-21 2018-11-21 Indor positioning system using beacon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180144424A KR102271380B1 (en) 2018-11-21 2018-11-21 Indor positioning system using beacon

Publications (3)

Publication Number Publication Date
KR20200059553A KR20200059553A (en) 2020-05-29
KR102271380B1 true KR102271380B1 (en) 2021-06-29
KR102271380B9 KR102271380B9 (en) 2022-03-15

Family

ID=70912312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180144424A KR102271380B1 (en) 2018-11-21 2018-11-21 Indor positioning system using beacon

Country Status (1)

Country Link
KR (1) KR102271380B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102679597B1 (en) * 2021-07-16 2024-07-01 충남대학교 산학협력단 Indoor positioning system and method to minimize positioning error
KR20230113885A (en) 2022-01-24 2023-08-01 파파야 주식회사 Smart beacon device providing accurate indoor positioning based on smartphone recognition and operating method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180010545A (en) * 2016-07-21 2018-01-31 주식회사 신세계아이앤씨 Positioning system and method
KR101956438B1 (en) * 2017-01-13 2019-03-08 조선대학교산학협력단 Indoor positioning system based on fingerprinting with the efficient radio map establishment and method thereof
KR20180110392A (en) * 2017-03-29 2018-10-10 현대엘리베이터주식회사 Hybrid location positioning method for indoor location measurement based on smart device

Also Published As

Publication number Publication date
KR102271380B9 (en) 2022-03-15
KR20200059553A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
Tian et al. A low-cost INS and UWB fusion pedestrian tracking system
US9374674B2 (en) Method and apparatus for recognizing indoor location using received signal strength intensity map
US8509819B2 (en) Information processing apparatus and correction method
Park et al. Smartphone-based pedestrian tracking in indoor corridor environments
US20100323723A1 (en) Base Station Mapping with Angle-of-Arrival and Timing Advance Measurements
EP3613244B1 (en) Fingerprinting enhancement with multi-band aoa measurements
US20150133149A1 (en) Apparatus and method for recognizing location of terminal based on radio fingerprint map
KR101600190B1 (en) Indoor positioning apparatus considering environmental parameters and method thereof
JP2005176386A (en) Mobile device
Anagnostopoulos et al. Accuracy enhancements in indoor localization with the weighted average technique
KR102271380B1 (en) Indor positioning system using beacon
Wu et al. Improved localization algorithms based on reference selection of linear least squares in LOS and NLOS environments
KR20230025992A (en) Apparatus and method for indoor positioning of pedestrians
KR20150112659A (en) Method for determining moving direction and correcting position information and positioning apparatus using the method
Xiao et al. An environmental-adaptive RSSI based indoor positioning approach using RFID
Luo Range error correction in RSSI-based wireless sensor node localization
KR102267954B1 (en) Rss signal correction method
KR20180031150A (en) System for location determination using fingerprinting having function of constructing radio map and method for constructing radio map of the same
Wei et al. Indoor localization method comparison: Fingerprinting and Trilateration algorithm
KR102032885B1 (en) Signal correction method
KR20140119333A (en) Method and Apparatus for Location Determination to Improve the accuracy of the location
Landolsi et al. TOAI/AOA/RSS maximum likelihood data fusion for efficient localization in wireless networks
KR100969465B1 (en) Method for measuring mobile node position in wireless sensor networks
KR102297577B1 (en) Method for measuring position of terminal using strength of base station signal and terminal perfoming method thereof
CN109116342B (en) Positioning method, positioning device, positioning medium and computing equipment

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2020101002097; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20200824

Effective date: 20210521

GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]