KR102270818B1 - Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing - Google Patents
Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing Download PDFInfo
- Publication number
- KR102270818B1 KR102270818B1 KR1020200183634A KR20200183634A KR102270818B1 KR 102270818 B1 KR102270818 B1 KR 102270818B1 KR 1020200183634 A KR1020200183634 A KR 1020200183634A KR 20200183634 A KR20200183634 A KR 20200183634A KR 102270818 B1 KR102270818 B1 KR 102270818B1
- Authority
- KR
- South Korea
- Prior art keywords
- resolution
- super
- image
- edge computing
- cloud server
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 30
- 238000004458 analytical method Methods 0.000 claims description 33
- 238000013523 data management Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 3
- 238000013473 artificial intelligence Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
- H04N21/234363—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by altering the spatial resolution, e.g. for clients with a lower screen resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
- H04N21/222—Secondary servers, e.g. proxy server, cable television Head-end
- H04N21/2223—Secondary servers, e.g. proxy server, cable television Head-end being a public access point, e.g. for downloading to or uploading from clients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/266—Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
- H04N21/2662—Controlling the complexity of the video stream, e.g. by scaling the resolution or bitrate of the video stream based on the client capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/44—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
- H04N21/4402—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
- H04N21/440263—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display by altering the spatial resolution, e.g. for displaying on a connected PDA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/462—Content or additional data management, e.g. creating a master electronic program guide from data received from the Internet and a Head-end, controlling the complexity of a video stream by scaling the resolution or bit-rate based on the client capabilities
- H04N21/4621—Controlling the complexity of the content stream or additional data, e.g. lowering the resolution or bit-rate of the video stream for a mobile client with a small screen
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Information Transfer Between Computers (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Description
본 발명은 저해상도 스트리밍 영상을 고해상도 스트리밍 영상으로 업그레이드 하여 제공하는 영상 전송 시스템에 관한 것으로, 보다 상세하게는 모바일 엣지 컴퓨팅 서버에서 인공지능 기반 슈퍼-레졸루션(SR) 모델을 이용하여, 사용자가 시청할 가능성이 있는 예측된 영상에 대해 고해상도 업그레이드 스트리밍이 가능할 수 있는 슈퍼-레볼루션 파라미터를 미리 산출하고, 해당 영상을 시청할 경우에 산출된 슈퍼-레볼루션 파라미터를 적용하여 고해상도화한 스트리밍 영상으로 제공하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템에 관한 것이다.The present invention relates to a video transmission system that upgrades a low-resolution streaming video to a high-resolution streaming video and provides it, and more particularly, by using an artificial intelligence-based super-resolution (SR) model in a mobile edge computing server, the possibility of user viewing Mobile edge computing-based super that calculates in advance the super-revolution parameter that can enable high-resolution upgrade streaming for the predicted video, and provides a high-resolution streaming video by applying the calculated super-revolution parameter when viewing the video - It relates to a resolution streaming video transmission system.
과학기술정보통신부가 공개한 2019년 6월 기준 국내 스마트폰 회선은 약 5,040만 개에 달하고, 한국 성인 스마트폰 사용률은 93%로 조사되었으며, 미국 여론기관인 '퓨 리서치'에 따르면 한국의 스마트폰 보유율은 95%로로 조사대상국 27개국 가장 높은 보유율을 보여, 한국에서 스마트폰의 활용은 거의 필수적일 정도로 매우 활용도가 높은 실정이다.As of June 2019, released by the Ministry of Science and ICT, the number of domestic smartphone lines reached about 50.4 million, and the smartphone use rate of Korean adults was 93%. According to Pew Research, an American public opinion organization, the smartphone ownership rate in Korea is 95%, which is the highest in the 27 countries surveyed, and the use of smartphones in Korea is almost essential.
이 중, 스마트폰은 온라인 동영상 시청에 많이 활용되고 있으며, 최근 조사에 의하면 한 달 이용시간이 총 317억분에 달하는 유튜브(Youtube)를 중심으로, 넷플릭스는 2019년 대비 2배 이상 시청률이 급격히 성장하는 등 온라인 동영상 시청을 위한 스마트폰의 활용은 꾸준히 늘어나고 있다.Among them, smartphones are widely used for online video viewing, and according to a recent survey, Netflix is experiencing a rapid increase in viewership by more than double compared to 2019, with YouTube being used for a total of 31.7 billion minutes per month. The use of smartphones for online video viewing is steadily increasing.
한편, 상기와 같은 온라인 동영상 시청에는 140p, 240p, 360p, …, 1024p 등 저해상도부터 고해상도까지 다양한 해상도를 갖는 영상으로 제공되는데, 이 중 고해상도 영상을 제공할수록 서비스를 제공하는 콘텐츠 사업자 입장에서는 인코딩 비용과 트래픽 비용이 발생되고, 사용자 환경에 맞추어 다수의 Bitrate별 영상과 단말기, 브라우저별 영상 포맷을 준비해야 하는 등의 준비가 이루어져야 하므로, 최종적으로 사용자의 요금부담으로 이어지게 된다.On the other hand, when watching the online video as described above, 140p, 240p, 360p, ... , 1024p, etc., are provided in various resolutions from low to high resolution. Of these, the more high-resolution video is provided, the more encoding and traffic costs are incurred from the content provider providing the service. Since preparations such as the need to prepare the video format for each terminal and browser must be made, it ultimately leads to a user's charge burden.
이에 따라, 슈퍼-레졸루션(Super Resolution) 기술이 개발되었고, 슈퍼-레졸루션 기술은 원본 고해상도 영상과 저해상도 영상의 차이를 최소화할 수 있는 가중치(Weight)를 학습하도록 이루어져 저해상도 영상을 시청함에도 불구하고 고해상도 영상과의 차이를 최소화하여 시청할 수 있는 장점을 나타내었다.Accordingly, the super-resolution technology was developed, and the super-resolution technology is made to learn a weight that can minimize the difference between the original high-resolution image and the low-resolution image, so that the high-resolution image is viewed despite viewing the low-resolution image. It showed the advantage of being able to watch by minimizing the difference between the
그러나, 상기와 같이 단순히 시청하는 영상의 차이를 최소화하기 위해서만 슈퍼-레졸루션 기술을 적용하게 되면, 학습하는 시간 때문에 영상에 대한 실시간 전송이 불가능하며, 시청하는 하나의 영상에 대해 고해상도와 저해상도 영상의 차이를 단순히 최소화시키는 특성 상 다른 영상에 동일한 가중치(Weight)를 적용하게 되면 오류가 발생하는 등의 문제점이 있다.However, if the super-resolution technology is applied only to minimize the difference between viewing images as described above, real-time transmission of images is impossible due to learning time, and the difference between high-resolution and low-resolution images for one image to be viewed Due to the characteristic of simply minimizing , there is a problem that an error occurs when the same weight is applied to other images.
한편, 동영상의 해상도 향상과 관련된 종래 기술은 한국등록특허 제10-2130074호 '열악한 네트워크 환경에서의 고화질 VOD제공 시스템', 한국등록특허 제10-1961177호 '뉴럴 네트워크를 이용한 영상 처리 방법 및 장치', 한국공개특허 제10-2019-0119550호 '영상의 해상도를 향상시키기 위한 방법 및 장치' 등이 있다.On the other hand, the prior art related to the resolution improvement of moving pictures is Korean Patent No. 10-2130074 'High-definition VOD providing system in poor network environment', Korean Patent No. 10-1961177 'Image processing method and apparatus using a neural network' , Korean Patent Application Laid-Open No. 10-2019-0119550 'Method and apparatus for improving image resolution'.
본 발명은 상기의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 모바일 엣지 컴퓨팅 서버에서 인공지능 기반 슈퍼-레졸루션(SR) 모델을 활용하여 인기 동영상 정보나 캐쉬 정보 등을 기반으로 사용자가 시청할 가능성이 있는 영상에 대해 예측하여 미리 가중치(Weight) 등을 학습하고, 사용자가 해당되는 영상을 저해상도로 시청할 시에 해당 영상에 대한 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 영상을 제공함으로써, 적은 데이터 양으로도 사용자가 고해상도 영상을 실시간으로 볼 수 있도록 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템을 제공하는 데 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to utilize an artificial intelligence-based super-resolution (SR) model in a mobile edge computing server to allow users to watch based on popular video information or cache information. Less data by predicting a possible image, learning the weight, etc. in advance, and providing a high-resolution image by applying the super-resolution parameter to the image when the user views the image in low resolution It is to provide a mobile edge computing-based super-resolution streaming video transmission system that allows users to view high-resolution videos in real time in both quantities.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 다수의 영상 콘텐츠를 저장하고, 영상 콘텐츠 재생 요청에 따라 해당 영상 콘텐츠를 실시간으로 제공하여 스트리밍 서비스를 지원하는 클라우드 서버; 상기 클라우드 서버와는 설정된 기준 이상의 장거리를 형성하여 클라우드 서버와 연동되며, 상기 클라우드 서버에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 고해상도화한 슈퍼-레졸루션 영상을 제공하는 엣지 컴퓨팅 서버 및 상기 엣지 컴퓨팅 서버와는 설정된 기준 미만의 단거리를 형성하며, 상기 클라우드 서버로 영상 콘텐츠 재생 요청을 전송하여 요청한 영상 콘텐츠를 엣지 컴퓨팅 서버로부터 상응하는 슈퍼-레졸루션 영상으로 제공 받아 재생하는 사용자 기기를 포함하여 구성될 수 있다.A mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention for solving the above problems stores a plurality of video content and provides the video content in real time in response to a video content playback request to provide a streaming service a cloud server that supports; An edge computing server and the edge computing server that form a long distance with the cloud server over a set standard and are linked with the cloud server, and provide a super-resolution image of a high resolution of a low-resolution image among the image contents provided from the cloud server; forms a short distance less than the set standard, and transmits a video content playback request to the cloud server, and receives the requested video content as a corresponding super-resolution video from the edge computing server. It may include a user device that plays it.
여기서, 상기 엣지 컴퓨팅 서버는, 상기 클라우드 서버로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받아 각각 상기 슈퍼-레졸루션 파라미터의 학습에 필요한 포맷으로 변경하여 저장하는 학습 데이터 관리부; 상기 학습 데이터 관리부로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습하여 저해상도를 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성하는 슈퍼-레졸루션 모델부; 상기 슈퍼-레졸루션 모델부로부터 학습되어 생성된 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 저장하는 슈퍼-레졸루션 파라미터 저장부 및 상기 슈퍼-레졸루션 파라미터 저장부에 저장된 가중치와 편향의 슈퍼-레졸루션 파라미터를 이용하여 저해상도 영상을 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 통신부를 포함하여 구성될 수 있다.Here, the edge computing server may include: a learning data management unit for receiving the image content delivered from the cloud server in parallel as a low-resolution image and a high-resolution image, changing each of the super-resolution parameters into a format required for learning, and storing; a super-resolution model unit for generating super-resolution parameters of weight and bias capable of increasing the low resolution by learning to minimize the difference in resolution between the formatted low-resolution image and the high-resolution image from the learning data management unit; A super-resolution parameter storage unit for storing super-resolution parameters of weight and bias generated by learning from the super-resolution model unit, and a super-resolution parameter storage unit for weights and biases stored in the super-resolution parameter storage unit It may be configured to include a communication unit that transmits a super-resolution image obtained by converting a low-resolution image into a high-resolution using a resolution parameter to a user device.
또한, 상기 학습 데이터 관리부는, 상기 슈퍼-레졸루션 모델부에서 학습이 종료될 경우, 해당 학습에 사용된 저해상도 영상 데이터와 고해상도 영상 데이터를 삭제하도록 구성될 수 있다.In addition, the learning data management unit may be configured to delete the low-resolution image data and the high-resolution image data used for the learning when the learning is finished in the super-resolution model unit.
또한, 상기 엣지 컴퓨팅 서버는, 상기 클라우드 서버에서 선정된 인기 영상 콘텐츠를 카테고리별로 분류하는 영상 콘텐츠 분석부를 더 포함하며, 상기 슈퍼-레졸루션 모델부는, 상기 영상 콘텐츠 분석부에서 카테고리별로 분류된 영상 콘텐츠에 대해서 미리 학습하여 상기 슈퍼-레졸루션 파라미터를 생성할 수 있다.In addition, the edge computing server further includes a video content analysis unit for classifying the popular video content selected by the cloud server by category, and the super-resolution model unit is configured to provide image content classified by category in the video content analysis unit. It is possible to generate the super-resolution parameter by learning in advance.
또한, 상기 영상 콘텐츠 분석부는, 상기 클라우드 서버에서 선정된 인기 영상 콘텐츠에 더하여 상기 사용자 기기에 저장된 영상 캐쉬 정보를 분석하여, 분석에 따라 도출된 사용자 선호 영상 정보에 따른 영상 콘텐츠를 카테고리별로 분류할 수 있다.In addition, the image content analysis unit may analyze the image cache information stored in the user device in addition to the popular image content selected from the cloud server, and classify the image content according to the user preference image information derived according to the analysis by category. have.
또한, 상기 카테고리는 계층적 구조로 형성되며, 상기 슈퍼-레졸루션 모델부는, 상기 계층적 구조의 카테고리 중 최상위 카테고리 영상을 기반으로 모든 카테고리에 상응하는 슈퍼-레졸루션 파라미터를 생성하는 학습을 수행할 수 있다.In addition, the categories are formed in a hierarchical structure, and the super-resolution model unit may perform learning to generate super-resolution parameters corresponding to all categories based on an image of the highest category among the categories of the hierarchical structure. .
또한, 상기 영상 콘텐츠 분석부는, 상기 클라우드 서버의 인기 영상 콘텐츠 선정 변화에 따른 신규 카테고리 추가 시에 선정된 인기 영상 콘텐츠에 가장 가깝다고 판단되는 카테고리의 하위 카테고리로 연결하되, 가장 가까운 카테고리가 존재하지 않을 경우에는 신규 최상위 카테고리로 생성할 수 있다.In addition, the video content analysis unit, when a new category is added according to the change in the selection of popular video content of the cloud server, connects to a subcategory of the category determined to be closest to the selected popular video content, but when the closest category does not exist can be created as a new top-level category.
또한, 상기 계층적 카테고리는, 각각의 카테고리를 노드(Node)로 구성하고 상기 슈퍼-레졸루션 파라미터는 변수(Variable)로 구성하는 그래픽 모델로 구성되어, 상기 엣지 컴퓨팅 서버가, 영상 콘텐츠에 대한 슈퍼-레졸루션 파라미터를 검색할 시에 노드(Node)를 통한 배열(Array) 검색과 해당되는 카테고리의 변수(Variable)만을 리딩(reading)하여 슈퍼-레졸루션 파라미터를 검색할 수 있다.In addition, the hierarchical category consists of a graphic model in which each category is configured as a node and the super-resolution parameter is configured as a variable, so that the edge computing server When searching for a resolution parameter, it is possible to search for a super-resolution parameter by searching for an array through a node and reading only a variable of a corresponding category.
또한, 상기 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 상기 사용자 기기로부터 재생 요청되는 영상 콘텐츠에 대해 일치되는 카테고리가 없고, 네트워크 환경이 설정된 조건을 만족하는 경우, 상기 클라우드 서버가 상기 사용자 기기로 고해상도 영상을 스트리밍하는 동시에, 상기 영상 콘텐츠 분석부에서 현재 재생되는 영상 콘텐츠에 대한 카테고리를 생성하고, 상기 엣지 컴퓨팅 서버에서 슈퍼-레졸루션 파라미터 생성을 수행하여, 상기 슈퍼-레졸루션 파라미터가 존재하는 시점부터 상기 엣지 컴퓨팅 서버가 상기 클라우드 서버로부터 저해상도 영상을 전송 받아 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하도록 구성될 수 있다.In addition, in the super-resolution streaming video transmission system, when there is no matching category for the video content requested to be reproduced from the user device and the network environment satisfies a set condition, the cloud server sends a high-resolution video to the user device Simultaneously with streaming, the video content analysis unit creates a category for the currently played video content, and the edge computing server performs super-resolution parameter generation, from the point in time when the super-resolution parameter exists, the edge computing server may be configured to receive a low-resolution image from the cloud server and transmit a high-resolution super-resolution image to the user device.
또한, 상기 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 상기 사용자 기기로부터 재생 요청되는 영상 콘텐츠에 대해 일치되는 카테고리가 없고, 네트워크 환경이 설정된 조건을 만족하지 않는 경우, 상기 사용자 기기에서는 요청된 스트리밍 영상에 대한 상위 단계의 카테고리의 슈퍼-레졸루션 파라미터가 적용된 고해상도화 영상이 재생되는 동시에, 상기 영상 콘텐츠 분석부는 현재 재생되는 영상 콘텐츠에 대한 카테고리를 생성하고, 상기 엣지 컴퓨팅 서버에서 슈퍼-레졸루션 파라미터 생성을 수행하여, 상기 슈퍼-레졸루션 파라미터가 존재하는 시점부터 상기 엣지 컴퓨팅 서버가 상기 클라우드 서버로부터 저해상도 영상을 전송 받아 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하도록 구성될 수 있다.In addition, in the super-resolution streaming video transmission system, when there is no matching category for the video content requested to be reproduced from the user device and the network environment does not satisfy the set condition, the user device provides information about the requested streaming video. At the same time that the high-resolution image to which the super-resolution parameter of the higher-level category is applied is played, the image content analysis unit creates a category for the currently played image content, and generates a super-resolution parameter in the edge computing server, From a point in time when the super-resolution parameter exists, the edge computing server may be configured to receive a low-resolution image from the cloud server and transmit a high-resolution super-resolution image to the user device.
또한, 상기 엣지 컴퓨팅 서버는, 상기 사용자 기기로 재생된 영상 콘텐츠가 종료된 이후에 피드백을 자체적으로 진행하거나 사용자 기기로부터 전송받고, 설정된 기준치 이하로 피드백을 얻은 영상 콘텐츠에 대해서는, 상기 슈퍼-레졸루션 모델부를 학습 정밀도를 높이도록 변환시키도록 구성될 수 있다.In addition, the edge computing server, after the video content reproduced by the user device is finished, proceeds with the feedback itself or is transmitted from the user device, and for video content that has received feedback below a set reference value, the super-resolution model It can be configured to transform wealth to increase learning precision.
여기서, 상기 피드백은, 상기 재생된 영상 콘텐츠에 대해 클라우드 서버에서 제공하는 고해상도 영상과, 상기 엣지 컴퓨팅 서버에서 제공하는 고해상도화된 영상을 비교한 비교 피드백과, 상기 사용자 기기로 입력되어 평가된 피드백 중 하나 이상일 수 있다.Here, the feedback may include a comparative feedback comparing the high-resolution image provided by the cloud server with the high-resolution image provided by the edge computing server with respect to the reproduced image content, and feedback input and evaluated by the user device. There may be more than one.
또한, 상기 슈퍼-레졸루션 모델부의 변환은, 노드와 레이어를 더 추가하여 학습가능한 슈퍼-레졸루션 파라미터를 증가시키도록 구성될 수 있다.In addition, the transformation of the super-resolution model unit may be configured to increase the learnable super-resolution parameter by adding more nodes and layers.
본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 모바일 스트리밍 영상 시청자가 기존보다 적은 통신비용으로 고해상도 영상을 즐길 수 있도록 하는 효과가 있다.The mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention has the effect of enabling a mobile streaming video viewer to enjoy a high-resolution video at a lower communication cost than before.
또한, 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 전체 스트리밍 시간을 저해상도의 영상만으로 재생할 수 있으므로, 네트워크 인프라가 열악한 지역에서도 고화질 영상을 재생할 수 있는 효과가 있다.In addition, since the mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention can reproduce the entire streaming time only with low-resolution images, there is an effect that high-quality images can be reproduced even in regions with poor network infrastructure.
또한, 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 사용자 선호도를 바탕으로 학습에 필요한 데이터를 수집하게 되므로, 사용자 선호도를 기반으로 영상을 선정하는 추천 서비스와 같은 다양한 비즈니스 모델이 적용이 가능할 수 있다.In addition, since the mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention collects data necessary for learning based on user preferences, various A business model may be applicable.
또한, 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템은, 고화질 영상 스트리밍 기술을 고도화할 수도 있다.In addition, the mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention may advance high-definition video streaming technology.
또한, 위에서 언급된 본 발명의 실시 예에 따른 효과는 기재된 내용에만 한정되지 않고, 명세서 및 도면으로부터 예측 가능한 모든 효과를 더 포함할 수 있다.In addition, the above-mentioned effects according to the embodiments of the present invention are not limited to the described content, and may further include all effects predictable from the specification and drawings.
도 1은 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 구성을 블록화한 도면이다.
도 2는 도 1의 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 일 구성인 엣지 컴퓨팅 서버의 세부 구성을 블록화한 도면이다.
도 3은 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 슈퍼-레졸루션 파라미터 학습에 필요한 저해상도 및 고해상도 영상의 포맷 과정을 예시하는 도면이다.
도 4는 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 저해상도 영상을 고해상도화하는 흐름을 보여주는 도면이다.
도 5는 계층적 카테고리 구조를 예시하는 도면이다.
도 6은 본 발명의 실시 예에 따라 클라우드 서버의 캐쉬 정보를 활용한 슈퍼-레졸루션 파라미터 생성 과정의 흐름의 일례를 보여주는 도면이다.
도 7은 본 발명의 실시 예에 따라 사용자 기기의 캐쉬 정보를 활용한 슈퍼-레졸루션 파라미터 생성 과정의 흐름의 일례를 보여주는 도면이다.
도 8은 본 발명의 실시 예에 따라 카테고리가 없을 경우에 스트리밍 영상을 재생하는 방법의 일례를 보여주는 도면이다.
도 9는 도 8의 카테고리가 없을 경우에 스트리밍 영상을 재생하는 방법의 흐름을 보여주는 도면이다.
도 10은 본 발명의 실시 예에 따라 피드백을 통한 슈퍼-레졸루션 재학습 과정을 보여주는 흐름도이다.
도 11은 본 발명의 실시 예에 따라 피드백을 활용하여 슈퍼-레졸루션 모델을 개선해 나가는 형태를 보여주는 도면이다.1 is a block diagram illustrating the configuration of a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention.
FIG. 2 is a block diagram of a detailed configuration of an edge computing server, which is a configuration of the super-resolution streaming video transmission system of FIG. 1 .
3 is a diagram illustrating a format process of low-resolution and high-resolution images required for super-resolution parameter learning of a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention.
4 is a diagram showing a flow of high-resolution a low-resolution image of a mobile edge computing-based super-resolution streaming image transmission system according to an embodiment of the present invention.
5 is a diagram illustrating a hierarchical category structure.
6 is a diagram showing an example of a flow of a super-resolution parameter generation process using cache information of a cloud server according to an embodiment of the present invention.
7 is a diagram illustrating an example of a flow of a super-resolution parameter generation process using cache information of a user device according to an embodiment of the present invention.
8 is a diagram showing an example of a method of playing a streaming video when there is no category according to an embodiment of the present invention.
9 is a diagram showing a flow of a method of reproducing a streaming video when the category of FIG. 8 does not exist.
10 is a flowchart illustrating a super-resolution re-learning process through feedback according to an embodiment of the present invention.
11 is a diagram illustrating a form of improving a super-resolution model by using feedback according to an embodiment of the present invention.
이하, 도면을 참조한 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the description of the present invention with reference to the drawings is not limited to specific embodiments, and various modifications may be made and various embodiments may be provided. In addition, it should be understood that the contents described below include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention.
이하의 설명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되는 용어로서, 그 자체에 의미가 한정되지 아니하며, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.In the following description, terms such as first and second are terms used to describe various components, meanings are not limited thereto, and are used only for the purpose of distinguishing one component from other components.
본 명세서 전체에 걸쳐 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.Like reference numbers used throughout this specification refer to like elements.
본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In addition, terms such as "comprises", "comprising" or "have" described below are intended to designate the existence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification. It should be construed as not precluding the possibility of addition or existence of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
또한, 명세서에 기재된 "…부", "…기", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as “…unit”, “…group”, and “…module” described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. can
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템을 상세히 살펴보기로 한다.Hereinafter, a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 구성을 블록화한 도면이고, 도 2는 도 1의 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 일 구성인 엣지 컴퓨팅 서버의 세부 구성을 블록화한 도면이며, 도 3은 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 슈퍼-레졸루션 파라미터 학습에 필요한 저해상도 및 고해상도 영상의 포맷 과정을 예시하는 도면이다.1 is a block diagram of the configuration of a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention, and FIG. 2 is an edge computing server that is a configuration of the super-resolution streaming video transmission system of FIG. 1 It is a block diagram of a detailed configuration, and FIG. 3 is a diagram illustrating the format process of low-resolution and high-resolution images required for super-resolution parameter learning of a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention.
또한, 도 4는 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템의 저해상도 영상을 고해상도화하는 흐름을 보여주는 도면이며, 도 5는 계층적 카테고리 구조를 예시하는 도면이고, 도 6은 본 발명의 실시 예에 따라 클라우드 서버의 캐쉬 정보를 활용한 슈퍼-레졸루션 파라미터 생성 과정의 흐름의 일례를 보여주는 도면이다.In addition, FIG. 4 is a diagram showing a flow of high-resolution a low-resolution video of a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention, and FIG. 5 is a diagram illustrating a hierarchical category structure, FIG. 6 is a diagram showing an example of a flow of a super-resolution parameter generation process using cache information of a cloud server according to an embodiment of the present invention.
또한, 도 7은 본 발명의 실시 예에 따라 사용자 기기의 캐쉬 정보를 활용한 슈퍼-레졸루션 파라미터 생성 과정의 흐름의 일례를 보여주는 도면이며, 도 8은 본 발명의 실시 예에 따라 카테고리가 없을 경우에 스트리밍 영상을 재생하는 방법의 일례를 보여주는 도면이고, 도 9는 도 8의 카테고리가 없을 경우에 스트리밍 영상을 재생하는 방법의 흐름을 보여주는 도면이다.In addition, FIG. 7 is a diagram showing an example of the flow of a super-resolution parameter generation process using cache information of a user device according to an embodiment of the present invention, and FIG. 8 is a case in which there is no category according to an embodiment of the present invention It is a diagram showing an example of a method of playing a streaming video, and FIG. 9 is a diagram showing a flow of a method of playing a streaming video when there is no category of FIG.
또한, 도 10은 본 발명의 실시 예에 따라 피드백을 통한 슈퍼-레졸루션 재학습 과정을 보여주는 흐름도이며, 도 11은 본 발명의 실시 예에 따라 피드백을 활용하여 슈퍼-레졸루션 모델을 개선해 나가는 형태를 보여주는 도면이다.In addition, FIG. 10 is a flowchart showing a super-resolution re-learning process through feedback according to an embodiment of the present invention, and FIG. 11 is a flowchart showing a form of improving a super-resolution model using feedback according to an embodiment of the present invention It is a drawing.
먼저, 도 1을 참조하면, 본 발명의 실시 예에 따른 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템은 클라우드 서버(10), 엣지 컴퓨팅 서버(20), 사용자 기기(30)를 포함하여 구성될 수 있다.First, referring to FIG. 1 , a mobile edge computing-based super-resolution streaming video transmission system according to an embodiment of the present invention is configured to include a
구체적으로, 클라우드 서버(10)는 다수의 영상 콘텐츠를 저장할 수 있다. 또한, 클라우드 서버(10)는 사용자 기기(30)의 영상 콘텐츠 재생 요청에 따라 사용자 기기(30)로 요청된 영상 콘텐츠를 실시간으로 제공하여 스트리밍 서비스를 지원할 수 있다. 이때, 영상 콘텐츠는 다양한 해상도별로 지원될 수 있으며, 지원되는 해상도의 결정은 사용자 기기(30)의 영상 콘텐츠 재생 요청에 따른다.Specifically, the
엣지 컴퓨팅 서버(20)는 클라우드 서버(10)와는 설정된 기준 이상의 장거리(LT)를 형성할 수 있다. 여기서, 설정된 기준이라 함은 국가적 단위 또는 거리적 단위에 따른 기준일 수 있다. The
예컨대, 국가적 단위라 함은 국가간 또는 대륙간의 거리를 의미하는 것으로, 만약 국가적 단위의 장거리라 함은 클라우드 서버(10)가 미국에 위치하고 엣지 컴퓨팅 서버(20)는 한국에 위치하는 것과 같이 클라우드 서버(10)가 위치된 국가를 기준으로 다른 국가일 수 있다.For example, the national unit means the distance between countries or continents. If the national unit long distance means the
또한, 거리적 단위라 함은 m, km 등의 단위 표현의 거리를 의미하는 것으로, 만약 거리적 단위의 장거리라 함은 기준이 10000km로 설정되면 10000km 이상의 속하는 거리는 모두 장거리라 할 수 있다. 즉, 클라우드 서버(10)에서 10000km 이상에 속하는 거리에 위치하는 엣지 컴퓨팅 서버(20)는 모두 장거리에 속하는 것을 의미한다.In addition, the distance unit means a distance expressed in units such as m, km, and the like. If the standard is set to 10000 km, the distance unit distance is all distances belonging to 10000 km or more. That is, the
본 발명에서는 이해가 쉽도록 국가적 단위로서, 클라우드 서버(10)는 미국에 위치하고 엣지 컴퓨팅 서버(20)는 한국에 위치하는 경우로 한정하여 설명하기로 한다.In the present invention, as a national unit for easy understanding, the description will be limited to a case where the
엣지 컴퓨팅 서버(20)는 상기와 같이 클라우드 서버(10)와는 장거리(LT)를 형성한 상태로 클라우드 서버(10)와 연동되어 클라우드 서버(10)에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 고해상도화 하여 사용자 기기(30)로 제공할 수 있다.The
여기서, 엣지 컴퓨팅 서버(20)는 바람직하게는 모바일 엣지 컴퓨팅 서버로서, 사용자 기기(30) 내부에 마련되는 엣지 컴퓨팅 서버일 수 있다. 그러나, 이에 반드시 한정되는 것은 아니며, 엣지 컴퓨팅 서버(20)는 사용자 기기(30) 외부에 마련될 수도 있고, 한편으론 외장하드나 USB 등을 통해 외부에서 마련된 상태로 사용자 기기(30)에 접속하여 사용되는 형태일 수도 있다.Here, the
사용자 기기(30)는 상술한 바와 같이 엣지 컴퓨팅 서버(20)가 내부에 마련되거나 외부에서 연동되도록 마련되는 것으로, 엣지 컴퓨팅 서버(20)와는 설정된 기준 미만의 단거리(ST)를 형성할 수 있다. 여기서, 국가적 단위의 단거리는 기본적으로 동일 국가 내의 거리를 의미하며, 비교적 큰 면적을 형성하는 국가의 경우 해당 국가 국가 내에서의 지역적 거리를 의미할 수도 있다.The
예컨대, 엣지 컴퓨팅 서버(20)가 한국에 위치하면 사용자 기기(30) 또한 한국일 수 있다. 또한, 만약 미국이나 중국 등에 속한 엣지 컴퓨팅 서버(20)일 경우에는 미국의 경우, 뉴욕에 엣지 컴퓨팅 서버(20)가 있다면 사용자 기기(30)는 해당 로컬 또는 인접 로컬에 위치한 뉴욕 또는 워싱턴에 있는 경우일 수 있고, 중국의 경우, 호남성에 엣지 컴퓨팅 서버(20)가 있다면 사용자 기기(30)는 호남성 또는 인접한 호북성 등의 로컬적 거리에 있는 경우일 수 있다.For example, if the
한편, 거리적 단위로서는 장거리가 10000km 이상으로 설정될 경우, 10000km 미만이 단거리가 될 수도 있겠으나, 보다 바람직하게는 엣지 컴퓨팅 서버(20)와 사용자 기기(30)간의 거리는 클라우드 서버(10)와 엣지 컴퓨팅 서버(20)간의 설정 기준에 속하지 않고, 따로 기준이 설정될 수도 있다.On the other hand, as a distance unit, when the long distance is set to 10000 km or more, less than 10000 km may be a short distance, but more preferably, the distance between the
예컨대, 장거리는 10000km 이상으로 설정되었으나 단거리는 기준이 1000km 미만으로 따로 설정될 수 있는 것이며, 이는 관리자의 설정에 따를 수 있다.For example, the long distance is set to 10000 km or more, but the short distance standard may be separately set to less than 1000 km, which may be set by the administrator.
단거리 또한 이해를 돕기 위해 국가적 단위의 단거리로 설정되는 것을 바탕으로 예시하기로 하며, 이에 따라 엣지 컴퓨팅 서버(20)와 사용자 기기(30)가 모두 한국에 위치한 것으로 한정하여 설명하기로 한다.The short-distance will also be exemplified based on the national short-distance setting for better understanding, and accordingly, the
사용자 기기(30)는 모바일 폰, 태블릿 PC 등 사용자가 휴대하며 영상을 시청할 수 있는 단말 또는 기기로서, 사용자로부터 영상 콘텐츠 재생 신호를 입력 받아 클라우드 서버(10)로 영상 콘텐츠 재생 요청을 전송하여, 클라우드 서버(10)로부터 요청한 영상 콘텐츠에 대한 스트리밍 서비스를 지원받을 수 있다.The
이때, 사용자 기기(30)는 엣지 컴퓨팅 서버(20)로부터 제공되는 슈퍼-레졸루션 파라미터가 적용된 영상 콘텐츠를 제공받을 수 있어, 저해상도 영상 시청을 요청하여도 고해상도 영상으로 시청할 수가 있다. 이를 통해, 트래픽 등의 영상 데이터는 저해상도의 영상 데이터를 사용하면서도 고해상도 서비스를 제공받아 적은 통신 비용으로도 시청이 가능하며, 네트워크가 열악한 지역에서도 영상 시청이 가능할 수 있다.In this case, the
한편, 상기와 같이 저해상도 영상 콘텐츠를 고해상도 영상 콘텐츠로 업그레이드 서비스를 제공 받는 사용자 기기(30)는 저해상도 영상 시청 요청을 입력 받아 클라우드 서버(10)로 전달하도록 구성됨은 물론, 고해상도 영상 시청 요청을 입력 받을 시에도 자동으로 저해상도 영상 시청 요청으로 전환하여 클라우드 서버(10)로 전달하도록 구성될 수도 있다.On the other hand, as described above, the
그러나, 이는 반드시 한정되는 사항은 아니며, 상기와 같은 저해상도 영상 시청 요청으로의 자동 변환 구성은 사용자 기기(30)의 설정에 따를 수 있다.However, this is not necessarily a limitation, and the configuration of automatic conversion into a request for viewing a low-resolution video as described above may depend on the setting of the
도 2 내지 도 7을 참조하면, 엣지 컴퓨팅 서버(20)는 학습 데이터 관리부(21), 슈퍼-레졸루션 모델부(22), 슈퍼-레졸루션 파라미터 저장부(23) 및 통신부(24)를 포함하여 구성될 수 있다.2 to 7 , the
구체적으로, 학습 데이터 관리부(21)는 클라우드 서버(10)로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받을 수 있다. 이때, 저해상도 영상과 고해상도 영상의 구분은 설정에 따른다. 또한, 학습 데이터 관리부(21)는 전달 받은 저해상도 영상과 고해상도 영상을 각각 슈퍼-레졸루션 파라미터 학습에 필요한 포맷으로 변경하여 저장할 수 있다.Specifically, the learning
슈퍼-레졸루션 파라미터 학습에 필요한 포맷 과정을 예시하는 도 3을 살펴보면, 알고리즘 내에서 위에 박싱(Boxing)된 포맷 예시가 저해상도 영상의 포맷(Lorf) 예시이고, 아래에 박싱된 포맷 예시가 고해상도 영상의 포맷(Hirf) 예시이다. 이 중 <model background=”background/nature/mountain.h5”/> 부분이 학습에 사용할 모델명일 수 있다.Referring to FIG. 3 illustrating the format process required for super-resolution parameter learning, an example of the format boxed above in the algorithm is a format (Lorf) example of a low-resolution image, and an example of the format boxed below is a format of a high-resolution image (Hirf) This is an example. Among them, the <model background=”background/nature/mountain.h5”/> part may be the model name to be used for training.
슈퍼-레졸루션 모델부(22)는 학습 데이터 관리부(21)로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습할 수 있다. 이를 통해, 저해상도 영상을 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성할 수 있다.The
여기서, 생성된 가중치와 편향은 저해상도 영상을 고해상도화 하기 위한 파라미터로서, 후술하는 통신부(24)를 통해 사용자 기기(30)로부터 재생 요청된 영상 콘텐츠가 전달될 시에 상기의 가중치와 편향이 적용되어 고해상도화한 상태로 전달될 수 있다. Here, the generated weights and biases are parameters for making a low-resolution image high-resolution, and when the image content requested to be reproduced is transmitted from the
슈퍼-레졸루션 파라미터 저장부(23)는 슈퍼-레졸루션 모델부(22)로부터 학습되어 생성된 가중치와 편향의 슈퍼-레졸루션 파라미터를 저장할 수 있으며, 통신부(24)는 슈퍼-레졸루션 파라미터 저장부(23)에 저장된 슈퍼-레졸루션 파라미터를 사용자 기기(30)가 요청한 영상 콘텐츠에 적용하여, 고해상도화된 상태의 영상을 사용자 기기(30)로 전송할 수 있다.The super-resolution
상술한 구성들을 통해 고해상도화된 스트리밍 영상인 슈퍼-레졸루션 스트리밍 영상을 사용자 기기(30)로 제공하는 과정은 도 3에 도시된 바와 같을 수 있다.A process of providing a super-resolution streaming image, which is a streaming image with high resolution through the above-described configurations, to the
한편, 상기와 같은 엣지 컴퓨팅 서버(20)의 학습과 슈퍼-레졸루션 파라미터 생성은 사용자가 영상을 시청하기 이전에 이루어져 사용자가 영상 콘텐츠를 시청하기 전 미리 적용되거나 동시에 적용되어 사용자 기기(30)로 실시간으로 고해상도화된 영상이 전달되도록 하는 것이 바람직하다. 이에 대한 자세한 설명은 후술하기로 한다. On the other hand, the learning and super-resolution parameter generation of the
또한, 학습 데이터 관리부(21)는 슈퍼-레졸루션 모델부(22)에서 학습을 수행한 영상 콘텐츠에 대해 학습이 종료될 경우에는 클라우드 서버(10)로부터 병렬적으로 전달되어 학습에 사용된 저해상도 영상 데이터와 고해상도 영상 데이터를 삭제하도록 구성되어 공간을 확보하고 처리 속도를 향상시킬 수 있다.In addition, the learning
또한, 엣지 컴퓨팅 서버(20)는 클라우드 서버(10)에서 선정된 인기 영상 콘텐츠를 카테고리별로 분류하는 영상 콘텐츠 분석부(25)를 더 포함하여 구성될 수 있다.In addition, the
여기서, 인기 영상 콘텐츠는 일간, 주간 또는 월간 단위로 선정될 수 있으며, 조회수 또는 재생수 등을 기초로 선정될 수 있으며, 영상 콘텐츠 분석부(25)는 이러한 일간, 주간 또는 월간별 인기 영상 콘텐츠를 드라마, 코믹, 영화 등과 같이 카테고리별로 분류할 수 있다.Here, the popular video content may be selected on a daily, weekly or monthly basis, and may be selected based on the number of views or replays, etc., and the video
이때, 카테고리는 상위 카테고리부터 하위 카테고리까지 수직을 이루며 분기구조를 갖는 계층적 구조를 형성하도록 분류될 수 있다.In this case, the categories may be classified so as to form a hierarchical structure having a branching structure from the upper category to the lower category.
상기와 같은 영상 콘텐츠 분석부(25)는 사용자가 시청할 가능성이 높은 영상에 대해 저해상도를 고해상도화할 준비를 갖추는 구성으로, 영상 콘텐츠 분석부(25)를 통해 선정된 인기 영상 콘텐츠를 카테고리별로 분류하고, 도 2 및 도 5에 도시된 흐름대로 슈퍼-레졸루션 모델부(22)는 영상 콘텐츠 분석부(25)에서 카테고리별로 분류된 영상 콘텐츠에 대해서 미리 학습하여 슈퍼-레졸루션 파라미터를 생성할 수 있고, 통신부(24)에서는 사용자 기기(30)로부터 미리 생성된 슈퍼-레졸루션 파라미터가 있는 인기 영상 콘텐츠의 재생 요청이 클라우드 서버(10)로 전달될 경우, 클라우드 서버(10)로부터 저해상도 영상을 받고 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 영상을 사용자 기기(30)로 전달할 수 있다.The video
한편으론, 미리 학습된 슈퍼-레졸루션 파라미터는 사용자 기기(30)로부터 인기 영상 콘텐츠의 재생 요청이 있기 전에 적용되어 저장될 수도 있으며, 사용자 기기(30)에 미리 슈퍼-레졸루션 파라미터가 적용된 영상 콘텐츠를 바로 전달할 수도 있다.On the other hand, the pre-learned super-resolution parameter may be applied and stored before there is a request to play popular video content from the
또한, 영상 콘텐츠 분석부(25)는 상기와 같은 인기 영상 콘텐츠를 기반한 것이 아닌 사용자 기기(30)에 저장된 영상 캐쉬 정보를 이용하여 사용자 기기(30)로부터 사용자가 시청할 가능성이 높은 영상을 예측하여 슈퍼-레졸루션 모델부(22)에서 미리 슈퍼-레졸루션 파라미터를 학습하도록 할 수도 있다.In addition, the video
여기서, 영상 캐쉬 정보는 사용자가 시청한 영상 콘텐츠에 대한 기록으로서, 영상 콘텐츠 분석부(25)는 기록된 영상 콘텐츠의 카테고리, 제목, 시청시간 등을 분석하도록 구성될 수 있으며, 사용자와 관련된 사용자 선호 영상 정보를 도출할 수 있다.Here, the image cache information is a record of the image content viewed by the user, and the image
이렇게, 사용자 선호 영상 정보가 도출되면 영상 콘텐츠 분석부(25)는 해당하는 모든 영상들을 카테고리별로 분류하게 되고, 상술한 인기 영상 콘텐츠에 대한 슈퍼-레졸루션 파라미터 적용과 같이 사용자 선호 영상 정보로 예측된 시청 가능 영상 콘텐츠에 대해 미리 슈퍼-레졸루션 파라미터를 생성하고 영상 콘텐츠 재생 요청 전 또는 재생 요청 시에 적용하여 실시간으로 사용자 기기(30)로 전송할 수 있다.In this way, when the user preference image information is derived, the image
상기와 같은 영상 콘텐츠 분석부(25)를 통해 사용자가 시청할 영상을 미리 예측하여 시청 가능성이 높은 영상에 대해 고해상도화할 준비를 갖춤으로서, 고해상도화한 영상 재생이 보다 신속하게 이루어질 수가 있다. By predicting the image to be viewed by the user in advance through the image
한편, 슈퍼-레졸루션 모델부(22)는 영상 콘텐츠 분석부(25)에서 분류된 계층적 구조로 형성되는 카테고리 중 최상위 카테고리 영상을 기반으로 모든 카테고리에 상응하는 슈퍼-레졸루션 파라미터를 생성하는 학습을 수행할 수 있다.Meanwhile, the
예컨대, 영화의 최상위 카테고리를 기반으로 한국 영화, 미국 영화, 중국 영화, 일본 영화 등의 국가별로 상위 카테고리가 형성되었다 가정하면, 한국 영화, 미국 영화, 일본 영화는 물론 한국 영화로부터 분기되는 하위 카테고리 모두와, 미국 영화로부터 분기되는 하위 카테고리 모두, 일본 영화로부터 분기되는 하위 카테고리 모두를 카테고리를 따라 슈퍼-레졸루션 파라미터를 생성하는 학습을 수행하는 것이다.For example, assuming that upper categories such as Korean films, American films, Chinese films, and Japanese films are formed by country based on the top category of movies, Korean films, American films, Japanese films, as well as all subcategories branching from Korean films And, all of the subcategories branching from the American movie and all the subcategories branching from the Japanese movie are trained to generate super-resolution parameters along the categories.
이때, 영상 콘텐츠 분석부(25)는 클라우드 서버(10)의 인기 영상 콘텐츠 선정 변화 또는 사용자 기기(30)의 영상 캐쉬 정보 변화를 감지할 때 해당 인기 영상 콘텐츠 또는 영상 캐쉬 정보의 카테고리가 없을 시에는 신규 카테고리로 추가할 수 있다.At this time, when the image
여기서, 신규 카테고리의 추가 시에는 추가된 인기 영상 콘텐츠 또는 영상 캐쉬 정보에 가장 가깝다고 판단되는 카테고리의 하위 카테고리로 연결할 수 있고, 가장 가까운 카테고리가 존재하지 않을 경우에는 신규 최상위 카테고리로 생성하도록 구성될 수 있다.Here, when a new category is added, it can be connected to a sub-category of a category determined to be closest to the added popular video content or video cache information, and when the closest category does not exist, it can be configured to create a new top-level category. .
예컨대, 독일 영화라는 카테고리가 추가되었을 경우에는 국가별 영화라는 상위 카테고리에 추가되어 연결되지만, 로맨틱 코미디 영화라는 카테고리가 추가되었을 경우에 로맨틱 코미디 영화와 관련된 카테고리가 존재하지 않을 경우에는 국가별 영화 옆에 로맨틱 코미디 영화 카테고리를 따로 생성할 수 있는 것이다.For example, when a category called German movies is added, it is added and linked to the parent category of movies by country, but when a category called romantic comedy movies is added, if a category related to romantic comedy movies does not exist, it will be displayed next to movies by country. You can create separate categories for romantic comedy movies.
이때, 카테고리는 자연어 처리에 의해 카테고리를 구분할 수 있으며, 만약 동일 카테고리라면 덮어 씌어 재설정 할 수도 있다.In this case, categories can be divided by natural language processing, and if the categories are the same, they can be overwritten and reset.
이러한 계층적 구조의 카테고리는, 각각의 카테고리가 노드(Node)로 구성하고, 해당 카테고리에 따른 슈퍼-레졸루션 파라미터는 변수(Variable)로 구성하는 그래픽 모델로 구성되어 효율적인 데이터 관리를 수행할 수 있으며, 사용자 기기(30)가 보다 빠른 고해상도 영상 지원을 받을 수 있도록 형성될 수 있다.In the category of such a hierarchical structure, each category is composed of nodes, and super-resolution parameters according to the corresponding categories are composed of graphic models composed of variables, so that efficient data management can be performed, The
보다 구체적으로, 엣지 컴퓨팅 서버(20)는 클라우드 서버(10)로부터 지원받는 영상 콘텐츠에 대해 고해상도화하기 위해 슈퍼-레졸루션 파라미터를 검색할 수 있는데, 이때, 노드(Node)화된 카테고리를 통해 배열(Array)에 대한 검색을 하고, 카테고리의 변수(Variable)만을 리딩(Reading)하여 슈퍼-레졸루션 파라미터를 검색함으로써, 보다 빠르게 저해상도 영상을 고해상도화할 수 있고, 사용자 기기(30)로 고해상도화된 영상을 전달할 수 있다.More specifically, the
한편, 사용자 기기(30)로부터 재생 요청되는 영상 콘텐츠가, 영상 콘텐츠 분석부(25)에서 미리 예측되지 않아 슈퍼-레졸루션 파라미터를 갖는 카테고리가 없는 영상 콘텐츠일 경우에는 네트워크 환경이 설정된 조건을 만족하는 경우와 만족하지 않는 경우에 따라서 고해상도 영상을 지원하도록 구성될 수 있다.On the other hand, when the video content requested to be reproduced from the
여기서, 네트워크 환경이 설정된 조건을 만족하는 경우는 네트워크 환경이 좋은 경우일 수 있고, 네트워크 환경이 설정된 조건을 만족하지 않는 경우는 네트워크 환경이 열악한 경우 일 수 있다.Here, the case in which the network environment satisfies the set condition may be a case in which the network environment is good, and the case in which the network environment does not satisfy the set condition may be a case in which the network environment is poor.
구체적으로, 사용자 기기(30)로부터 재생 요청되는 영상 콘텐츠에 대해 일치되는 카테고리가 없고, 네트워크 환경이 설정된 조건을 만족하는 경우에는, 클라우드 서버(10)는 일단 사용자 기기(30)로 원본 고해상도 영상으로 스트리밍을 지원하는 동시에, 영상 콘텐츠 분석부(25)에서는 현재 재생되는 영상 콘텐츠에 대한 카테고리를 생성하도록 하고, 엣지 컴퓨팅 서버(20)에서는 해당 카테고리에 대한 슈퍼-레졸루션 파라미터 생성을 수행하며, 슈퍼-레졸루션 파라미터가 존재하는 시점부터는 엣지 컴퓨팅 서버(20)는 클라우드 서버(10)로부터 저해상도 영상을 전송 받아 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기(30)로 전송할 수 있다.Specifically, if there is no matching category for the video content requested to be reproduced from the
이를 통해, 도 8 및 도 9에 도시된 바와 같이 사용자 기기(30)는 처음에는 원본 고해상도 영상으로 디스플레이 하다가 영상 시청 중간에 슈퍼-레졸루션 파라미터가 존재하는 시점부터 고해상도화된 영상을 디스플레이 되어 끊김 없이 고해상도 영상을 재생할 수 있다.Through this, as shown in FIGS. 8 and 9 , the
여기서, 클라우드 서버(10)에서 일단 사용자 기기(30)로 전송되는 원본 고해상도 영상은 네트워크 상황에 따라 해상도 크기를 자동으로 조절하는 DASH 스트리밍 영상으로 지원될 수도 있다.Here, the original high-resolution image that is once transmitted from the
반대로, 사용자 기기(30)로부터 재생 요청되는 영상 콘텐츠에 대해 일치되는 카테고리도 없고, 네트워크 환경이 설정된 조건을 만족하지 않는 경우에는, 일단 엣지 컴퓨팅 서버(20)에서는 사용자 기기(30)로부터 요청된 스트리밍 영상에 대한 상위 단계의 카테고리의 슈퍼-레졸루션 파라미터를 사용자 기기(30)로 제공하여 저해상도 영상이 고해상도화되어 재생되도록 하는 동시에, 영상 콘텐츠 분석부(25)에서는 현재 재생되는 영상 콘텐츠에 대한 카테고리를 생성하고, 엣지 컴퓨팅 서버(20)에서는 슈퍼-레졸루션 파라미터 생성 및 적용하여 사용자 기기(30)로 고해상도화한 영상을 전송할 수 있다.Conversely, if there is no matching category for the video content requested to be reproduced from the
즉, 전술한 경우와 마찬가지로 슈퍼-레졸루션 파라미터가 존재하는 시점으로부터는 클라우드 서버(10)로부터 저해상도 영상이 전송되고 엣지 컴퓨팅 서버(20)에서는 이를 고해상도화 하여 사용자 기기(30)로 전송하는 것이다.That is, as in the above case, a low-resolution image is transmitted from the
이를 통해, 본 발명은 사용자의 시청 영상이 예측되지 않은 상태에서도 네트워크 상황에 따라 유연하게 슈퍼-레졸루션 파라미터가 적용된 고해상도화한 영상을 제공하여, 최대한의 효과를 볼 수 있도록 고해상도 업그레이드 서비스를 지원할 수 있다.Through this, the present invention provides a high-resolution image to which the super-resolution parameter is applied flexibly according to the network situation even in a state where the user's viewing image is not predicted, so that the high-resolution upgrade service can be supported so that the maximum effect can be seen. .
아울러, 엣지 컴퓨팅 서버(20)는 사용자 기기(30)로 재생된 영상 콘텐츠가 종료된 이후에는 피드백을 자체적으로 진행하거나 사용자 기기(30)로부터 전달 받아, 보다 나은 슈퍼-레졸루션 스트리밍을 제공할 수 있도록 업그레이드할 수 있다.In addition, after the video content reproduced by the
구체적으로, 피드백은 재생된 영상 콘텐츠에 대해 클라우드 서버(10)에서 제공하는 원본 고해상도 영상과 엣지 컴퓨팅 서버(20)에서 제공하는 슈퍼-레졸루션 파라미터가 적용되어 고해상도화된 영상을 비교한 비교 피드백과, 사용자 기기(30)로 입력되어 평가된 피드백 중 하나 이거나 이들의 복합 피드백일 수 있다.Specifically, the feedback is comparative feedback comparing the original high-resolution image provided by the
이때, 사용자 기기(30)로부터 입력되어 평가되는 피드백은 한정되는 것은 아니나 일례로서 1~10점 또는 A~F 등급 등의 점수나 등급화된 피드백일 수 있고, 글로써 적혀진 피드백일 수도 있다. 글로써 적혀진 피드백에 있어서는 긍정 단어와 부정 단어를 인식하여 피드백을 반영할 수 있다.At this time, the feedback input and evaluated from the
엣지 컴퓨팅 서버(20)는 상기와 같은 피드백들을 얻으면 설정된 기준치 이하로 얻은 피드백인지 아닌지를 판별하는데, 설정된 기준치 이하로 피드백을 얻은 영상 콘텐츠에 대해서는, 슈퍼-레졸루션 모델부(22)를 학습 정밀도를 높이도록 변환시킬 수가 있다.The
즉, 재생된 영상 콘텐츠에 대해 클라우드 서버(10)에서 제공하는 원본 고해상도 영상과, 엣지 컴퓨팅 서버(20)에서 슈퍼-레졸루션 파라미터가 전송되어 고해상도화된 영상을 비교한 비교 피드백일 경우, 도 10에 도시된 바와 같이 구간별 대표 이미지를 선택하여 슈퍼-레졸루션 파라미터의 적용에 대해 좋음(Good)과 나쁨(Bad)으로 판단하고, 나쁨(Bad)으로 판단된 슈퍼-레졸루션(SR) 적용 부분은 재학습하도록 이루어질 수 있다.That is, in the case of comparison feedback comparing the original high-resolution image provided by the
여기서, 학습 정밀도를 높이도록 변환시키는 것은, 노드와 레이어를 더 추가하는 것으로, 학습가능한 슈퍼-레졸루션 파라미터를 증가시킬 수 있으며, 도 11에 도시된 바와 같은 흐름을 나타내면서 신뢰도와 고해상도화하는 정확도를 보다 향상시키며 개선시켜 나갈 수 있다.Here, the transformation to increase the learning precision is by adding more nodes and layers, and the learnable super-resolution parameter can be increased, and the reliability and high-resolution accuracy can be improved while showing the flow as shown in FIG. 11 . It can be improved and improved.
이상으로 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can practice the present invention in other specific forms without changing the technical spirit or essential features of the present invention. you will be able to understand Accordingly, the embodiments described above are illustrative in all respects and not restrictive.
10 : 클라우드 서버
20 : 엣지 컴퓨팅 서버
21 : 학습 데이터 관리부
22 : 슈퍼-레졸루션 모델부
23 : 슈퍼-레졸루션 파라미터 저장부
24 : 통신부
25 : 영상 콘텐츠 분석부
30 : 사용자 기기10: Cloud Server
20: Edge Computing Server
21: learning data management unit
22: super-resolution model part
23: super-resolution parameter storage unit
24: communication department
25: video content analysis unit
30: user device
Claims (13)
상기 클라우드 서버와는 설정된 기준 이상의 장거리를 형성하여 클라우드 서버와 연동되며, 상기 클라우드 서버에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 슈퍼-레졸루션 영상을 제공하는 엣지 컴퓨팅 서버 및
상기 엣지 컴퓨팅 서버와는 설정된 기준 미만의 단거리를 형성하며, 상기 클라우드 서버로 영상 콘텐츠 재생 요청을 전송하여 요청한 영상 콘텐츠를 엣지 컴퓨팅 서버로부터 상응하는 슈퍼-레졸루션 영상으로 제공 받아 재생하는 사용자 기기를 포함하며,
상기 엣지 컴퓨팅 서버는,
상기 클라우드 서버로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받아 각각 상기 슈퍼-레졸루션 파라미터의 학습에 필요한 포맷으로 변경하여 저장하는 학습 데이터 관리부;
상기 학습 데이터 관리부로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습하여 저해상도를 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성하는 슈퍼-레졸루션 모델부;
상기 슈퍼-레졸루션 모델부로부터 학습되어 생성된 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 저장하는 슈퍼-레졸루션 파라미터 저장부 및
상기 슈퍼-레졸루션 파라미터 저장부에 저장된 가중치와 편향의 슈퍼-레졸루션 파라미터를 이용하여 저해상도 영상을 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 통신부를 포함하되,
상기 클라우드 서버에서 선정된 인기 영상 콘텐츠를 카테고리별로 분류하는 영상 콘텐츠 분석부를 더 포함하며,
상기 슈퍼-레졸루션 모델부는,
상기 영상 콘텐츠 분석부에서 카테고리별로 분류된 영상 콘텐츠에 대해서 미리 학습하여 상기 슈퍼-레졸루션 파라미터를 생성하고,
상기 카테고리는 계층적 구조로 형성되며,
상기 슈퍼-레졸루션 모델부는,
상기 계층적 구조의 카테고리 중 최상위 카테고리 영상을 기반으로 모든 카테고리에 상응하는 슈퍼-레졸루션 파라미터를 생성하는 학습을 수행하고,
상기 영상 콘텐츠 분석부는,
상기 클라우드 서버의 인기 영상 콘텐츠 선정 변화에 따른 신규 카테고리 추가 시에 선정된 인기 영상 콘텐츠에 가장 가깝다고 판단되는 카테고리의 하위 카테고리로 연결하되, 가장 가까운 카테고리가 존재하지 않을 경우에는 신규 최상위 카테고리로 생성하는 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.
a cloud server that stores a plurality of video contents and provides the corresponding video contents in real time in response to a request to play the video contents to support a streaming service;
Edge computing that forms a long distance with the cloud server more than a set standard and interworks with the cloud server, and provides a super-resolution image obtained by applying a super-resolution parameter to a low-resolution image among the image contents provided from the cloud server. server and
A user device that forms a short distance less than a set standard with the edge computing server, transmits a video content playback request to the cloud server, and receives the requested video content as a corresponding super-resolution video from the edge computing server and plays it ,
The edge computing server,
a learning data management unit for receiving the image content delivered from the cloud server in parallel as a low-resolution image and a high-resolution image, changing each of the super-resolution parameters into a format required for learning, and storing them;
a super-resolution model unit for generating super-resolution parameters of weight and bias capable of increasing the low resolution by learning to minimize the difference in resolution between the formatted low-resolution image and the high-resolution image from the learning data management unit;
a super-resolution parameter storage unit for storing super-resolution parameters of weight and bias generated by learning from the super-resolution model unit; and
A communication unit for transmitting a super-resolution image obtained by converting a low-resolution image into a high resolution by using the super-resolution parameters of weights and biases stored in the super-resolution parameter storage unit to a user device,
Further comprising a video content analysis unit for classifying the popular video content selected in the cloud server by category,
The super-resolution model unit,
The video content analysis unit generates the super-resolution parameter by learning in advance for the video content classified by category,
The categories are formed in a hierarchical structure,
The super-resolution model unit,
learning to generate super-resolution parameters corresponding to all categories based on the highest category image among the categories of the hierarchical structure;
The video content analysis unit,
When a new category is added according to the change in the selection of popular video content in the cloud server, it is linked to a subcategory of the category judged to be closest to the selected popular video content, but if the closest category does not exist, creating a new top category A mobile edge computing-based super-resolution streaming video transmission system featuring.
상기 학습 데이터 관리부는,
상기 슈퍼-레졸루션 모델부에서 학습이 종료될 경우, 해당 학습에 사용된 저해상도 영상 데이터와 고해상도 영상 데이터를 삭제하는 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.
The method of claim 1,
The learning data management unit,
Mobile edge computing-based super-resolution streaming video transmission system, characterized in that when learning is finished in the super-resolution model unit, the low-resolution image data and high-resolution image data used for the learning are deleted.
상기 영상 콘텐츠 분석부는,
상기 클라우드 서버에서 선정된 인기 영상 콘텐츠에 더하여 상기 사용자 기기에 저장된 영상 캐쉬 정보를 분석하여, 분석에 따라 도출된 사용자 선호 영상 정보에 따른 영상 콘텐츠를 카테고리별로 분류하는 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.
The method of claim 1,
The video content analysis unit,
Mobile edge computing-based super, characterized in that by analyzing the image cache information stored in the user device in addition to the popular image content selected from the cloud server, and classifying the image content according to the user preference image information derived according to the analysis by category -Resolution streaming video transmission system.
상기 클라우드 서버와는 설정된 기준 이상의 장거리를 형성하여 클라우드 서버와 연동되며, 상기 클라우드 서버에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 슈퍼-레졸루션 영상을 제공하는 엣지 컴퓨팅 서버 및
상기 엣지 컴퓨팅 서버와는 설정된 기준 미만의 단거리를 형성하며, 상기 클라우드 서버로 영상 콘텐츠 재생 요청을 전송하여 요청한 영상 콘텐츠를 엣지 컴퓨팅 서버로부터 상응하는 슈퍼-레졸루션 영상으로 제공 받아 재생하는 사용자 기기를 포함하며,
상기 엣지 컴퓨팅 서버는,
상기 클라우드 서버로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받아 각각 상기 슈퍼-레졸루션 파라미터의 학습에 필요한 포맷으로 변경하여 저장하는 학습 데이터 관리부;
상기 학습 데이터 관리부로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습하여 저해상도를 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성하는 슈퍼-레졸루션 모델부;
상기 슈퍼-레졸루션 모델부로부터 학습되어 생성된 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 저장하는 슈퍼-레졸루션 파라미터 저장부 및
상기 슈퍼-레졸루션 파라미터 저장부에 저장된 가중치와 편향의 슈퍼-레졸루션 파라미터를 이용하여 저해상도 영상을 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 통신부를 포함하되,
상기 클라우드 서버에서 선정된 인기 영상 콘텐츠를 카테고리별로 분류하는 영상 콘텐츠 분석부를 더 포함하며,
상기 슈퍼-레졸루션 모델부는,
상기 영상 콘텐츠 분석부에서 카테고리별로 분류된 영상 콘텐츠에 대해서 미리 학습하여 상기 슈퍼-레졸루션 파라미터를 생성하고,
상기 카테고리는 계층적 구조로 형성되며,
상기 슈퍼-레졸루션 모델부는,
상기 계층적 구조의 카테고리 중 최상위 카테고리 영상을 기반으로 모든 카테고리에 상응하는 슈퍼-레졸루션 파라미터를 생성하는 학습을 수행하고,
상기 계층적 구조의 카테고리는,
각각의 카테고리를 노드(Node)로 구성하고 상기 슈퍼-레졸루션 파라미터는 변수(Variable)로 구성하는 그래픽 모델로 구성되어,
상기 엣지 컴퓨팅 서버가,
영상 콘텐츠에 대한 슈퍼-레졸루션 파라미터를 검색할 시에 노드(Node)를 통한 배열(Array) 검색과 해당되는 카테고리의 변수(Variable)만을 리딩(reading)하여 슈퍼-레졸루션 파라미터를 검색하는 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.
a cloud server that stores a plurality of video contents and provides the corresponding video contents in real time in response to a request to play the video contents to support a streaming service;
Edge computing that forms a long distance with the cloud server more than a set standard and interworks with the cloud server, and provides a super-resolution image obtained by applying a super-resolution parameter to a low-resolution image among the image contents provided from the cloud server. server and
A user device that forms a short distance less than a set standard with the edge computing server, transmits a video content playback request to the cloud server, and receives the requested video content as a corresponding super-resolution video from the edge computing server and plays it ,
The edge computing server,
a learning data management unit for receiving the image content delivered from the cloud server in parallel as a low-resolution image and a high-resolution image, changing each of the super-resolution parameters into a format required for learning, and storing them;
a super-resolution model unit for generating super-resolution parameters of weight and bias capable of increasing the low resolution by learning to minimize the difference in resolution between the formatted low-resolution image and the high-resolution image from the learning data management unit;
a super-resolution parameter storage unit for storing super-resolution parameters of weight and bias generated by learning from the super-resolution model unit; and
A communication unit for transmitting a super-resolution image obtained by converting a low-resolution image into a high resolution by using the super-resolution parameters of weights and biases stored in the super-resolution parameter storage unit to a user device,
Further comprising a video content analysis unit for classifying the popular video content selected in the cloud server by category,
The super-resolution model unit,
The video content analysis unit generates the super-resolution parameter by learning in advance for the video content classified by category,
The categories are formed in a hierarchical structure,
The super-resolution model unit,
learning to generate super-resolution parameters corresponding to all categories based on the highest category image among the categories of the hierarchical structure;
The categories of the hierarchical structure are,
Each category is composed of a node and the super-resolution parameter is composed of a graphic model composed of variables,
The edge computing server,
When searching for super-resolution parameters for video content, it is characterized in that the super-resolution parameters are searched by searching for an array through a node and reading only the variables of the corresponding category. Super-resolution streaming video transmission system based on mobile edge computing.
상기 클라우드 서버와는 설정된 기준 이상의 장거리를 형성하여 클라우드 서버와 연동되며, 상기 클라우드 서버에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 슈퍼-레졸루션 영상을 제공하는 엣지 컴퓨팅 서버 및
상기 엣지 컴퓨팅 서버와는 설정된 기준 미만의 단거리를 형성하며, 상기 클라우드 서버로 영상 콘텐츠 재생 요청을 전송하여 요청한 영상 콘텐츠를 엣지 컴퓨팅 서버로부터 상응하는 슈퍼-레졸루션 영상으로 제공 받아 재생하는 사용자 기기를 포함하며,
상기 엣지 컴퓨팅 서버는,
상기 클라우드 서버로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받아 각각 상기 슈퍼-레졸루션 파라미터의 학습에 필요한 포맷으로 변경하여 저장하는 학습 데이터 관리부;
상기 학습 데이터 관리부로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습하여 저해상도를 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성하는 슈퍼-레졸루션 모델부;
상기 슈퍼-레졸루션 모델부로부터 학습되어 생성된 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 저장하는 슈퍼-레졸루션 파라미터 저장부 및
상기 슈퍼-레졸루션 파라미터 저장부에 저장된 가중치와 편향의 슈퍼-레졸루션 파라미터를 이용하여 저해상도 영상을 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 통신부를 포함하되,
상기 클라우드 서버에서 선정된 인기 영상 콘텐츠를 카테고리별로 분류하는 영상 콘텐츠 분석부를 더 포함하며,
상기 슈퍼-레졸루션 모델부는,
상기 영상 콘텐츠 분석부에서 카테고리별로 분류된 영상 콘텐츠에 대해서 미리 학습하여 상기 슈퍼-레졸루션 파라미터를 생성하고,
상기 사용자 기기로부터 재생 요청되는 영상 콘텐츠에 대해 일치되는 카테고리가 없고, 네트워크 환경이 설정된 조건을 만족하는 경우,
상기 클라우드 서버가 상기 사용자 기기로 고해상도 영상을 스트리밍하는 동시에, 상기 영상 콘텐츠 분석부에서 현재 재생되는 영상 콘텐츠에 대한 카테고리를 생성하고, 상기 엣지 컴퓨팅 서버에서 슈퍼-레졸루션 파라미터 생성을 수행하여,
상기 슈퍼-레졸루션 파라미터가 존재하는 시점부터 상기 엣지 컴퓨팅 서버가 상기 클라우드 서버로부터 저해상도 영상을 전송 받아 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하며,
상기 사용자 기기로부터 재생 요청되는 영상 콘텐츠에 대해 일치되는 카테고리가 없고, 네트워크 환경이 설정된 조건을 만족하지 않는 경우,
상기 사용자 기기에서는 요청된 스트리밍 영상에 대한 상위 단계의 카테고리의 슈퍼-레졸루션 파라미터가 적용된 고해상도화 영상이 재생되는 동시에,
상기 영상 콘텐츠 분석부는 현재 재생되는 영상 콘텐츠에 대한 카테고리를 생성하고, 상기 엣지 컴퓨팅 서버에서 슈퍼-레졸루션 파라미터 생성을 수행하여,
상기 슈퍼-레졸루션 파라미터가 존재하는 시점부터 상기 엣지 컴퓨팅 서버가 상기 클라우드 서버로부터 저해상도 영상을 전송 받아 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.
a cloud server that stores a plurality of video contents and provides the corresponding video contents in real time in response to a request to play the video contents to support a streaming service;
Edge computing that forms a long distance with the cloud server more than a set standard and interworks with the cloud server, and provides a super-resolution image obtained by applying a super-resolution parameter to a low-resolution image among the image contents provided from the cloud server. server and
A user device that forms a short distance less than a set standard with the edge computing server, transmits a video content playback request to the cloud server, and receives the requested video content as a corresponding super-resolution video from the edge computing server and plays it ,
The edge computing server,
a learning data management unit for receiving the image content delivered from the cloud server in parallel as a low-resolution image and a high-resolution image, changing each of the super-resolution parameters into a format required for learning, and storing them;
a super-resolution model unit for generating super-resolution parameters of weight and bias capable of increasing the low resolution by learning to minimize the difference in resolution between the formatted low-resolution image and the high-resolution image from the learning data management unit;
a super-resolution parameter storage unit for storing super-resolution parameters of weight and bias generated by learning from the super-resolution model unit; and
A communication unit for transmitting a super-resolution image obtained by converting a low-resolution image into a high resolution by using the super-resolution parameters of weights and biases stored in the super-resolution parameter storage unit to a user device,
Further comprising a video content analysis unit for classifying the popular video content selected in the cloud server by category,
The super-resolution model unit,
The video content analysis unit generates the super-resolution parameter by learning in advance for the video content classified by category,
When there is no matching category for the video content requested to be reproduced from the user device, and the network environment satisfies the set condition,
The cloud server streams a high-resolution image to the user device, at the same time creating a category for the image content currently being played in the image content analysis unit, and generating a super-resolution parameter in the edge computing server
From the point in time when the super-resolution parameter exists, the edge computing server receives the low-resolution image from the cloud server and transmits the high-resolution super-resolution image to the user device,
When there is no matching category for the video content requested to be reproduced from the user device, and the network environment does not satisfy the set condition,
In the user device, a high-resolution image to which a super-resolution parameter of a higher-level category for the requested streaming image is applied is played,
The video content analysis unit generates a category for the currently played video content, and performs super-resolution parameter generation in the edge computing server,
Mobile edge computing-based super-resolution streaming video, characterized in that the edge computing server receives the low-resolution video from the cloud server from the point in time when the super-resolution parameter exists and transmits the high-resolution super-resolution video to the user device. transmission system.
상기 클라우드 서버와는 설정된 기준 이상의 장거리를 형성하여 클라우드 서버와 연동되며, 상기 클라우드 서버에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 슈퍼-레졸루션 영상을 제공하는 엣지 컴퓨팅 서버 및
상기 엣지 컴퓨팅 서버와는 설정된 기준 미만의 단거리를 형성하며, 상기 클라우드 서버로 영상 콘텐츠 재생 요청을 전송하여 요청한 영상 콘텐츠를 엣지 컴퓨팅 서버로부터 상응하는 슈퍼-레졸루션 영상으로 제공 받아 재생하는 사용자 기기를 포함하며,
상기 엣지 컴퓨팅 서버는,
상기 클라우드 서버로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받아 각각 상기 슈퍼-레졸루션 파라미터의 학습에 필요한 포맷으로 변경하여 저장하는 학습 데이터 관리부;
상기 학습 데이터 관리부로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습하여 저해상도를 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성하는 슈퍼-레졸루션 모델부;
상기 슈퍼-레졸루션 모델부로부터 학습되어 생성된 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 저장하는 슈퍼-레졸루션 파라미터 저장부 및
상기 슈퍼-레졸루션 파라미터 저장부에 저장된 가중치와 편향의 슈퍼-레졸루션 파라미터를 이용하여 저해상도 영상을 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 통신부를 포함하되,
상기 사용자 기기로 재생된 영상 콘텐츠가 종료된 이후에 피드백을 자체적으로 진행하거나 사용자 기기로부터 전송받고,
설정된 기준치 이하로 피드백을 얻은 영상 콘텐츠에 대해서는, 상기 슈퍼-레졸루션 모델부를 학습 정밀도를 높이도록 변환시키며,
상기 피드백은,
상기 재생된 영상 콘텐츠에 대해 클라우드 서버에서 제공하는 고해상도 영상과, 상기 엣지 컴퓨팅 서버에서 제공하는 고해상도화된 영상을 비교한 비교 피드백과, 상기 사용자 기기로 입력되어 평가된 피드백 중 하나 이상인 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.
a cloud server that stores a plurality of video contents and provides the corresponding video contents in real time in response to a request to play the video contents to support a streaming service;
Edge computing that forms a long distance with the cloud server more than a set standard and interworks with the cloud server, and provides a super-resolution image obtained by applying a super-resolution parameter to a low-resolution image among the image contents provided from the cloud server. server and
A user device that forms a short distance less than a set standard with the edge computing server, transmits a video content playback request to the cloud server, and receives the requested video content as a corresponding super-resolution video from the edge computing server and plays it ,
The edge computing server,
a learning data management unit for receiving the image content delivered from the cloud server in parallel as a low-resolution image and a high-resolution image, changing each of the super-resolution parameters into a format required for learning, and storing them;
a super-resolution model unit for generating super-resolution parameters of weight and bias capable of increasing the low resolution by learning to minimize the difference in resolution between the formatted low-resolution image and the high-resolution image from the learning data management unit;
a super-resolution parameter storage unit for storing super-resolution parameters of weight and bias generated by learning from the super-resolution model unit; and
A communication unit for transmitting a super-resolution image obtained by converting a low-resolution image into a high resolution by using the super-resolution parameters of weights and biases stored in the super-resolution parameter storage unit to a user device,
After the video content reproduced by the user device is finished, the feedback is performed by itself or is transmitted from the user device,
For video content for which feedback is obtained below a set reference value, the super-resolution model unit is converted to increase learning precision,
The feedback is
It is characterized in that at least one of a comparison feedback comparing a high-resolution image provided by a cloud server with a high-resolution image provided by the edge computing server with respect to the reproduced image content, and a feedback input to the user device and evaluated Super-resolution streaming video transmission system based on mobile edge computing.
상기 클라우드 서버와는 설정된 기준 이상의 장거리를 형성하여 클라우드 서버와 연동되며, 상기 클라우드 서버에서 제공되는 영상 콘텐츠 중 저해상도 영상에 대해 슈퍼-레졸루션 파라미터를 적용하여 고해상도화한 슈퍼-레졸루션 영상을 제공하는 엣지 컴퓨팅 서버 및
상기 엣지 컴퓨팅 서버와는 설정된 기준 미만의 단거리를 형성하며, 상기 클라우드 서버로 영상 콘텐츠 재생 요청을 전송하여 요청한 영상 콘텐츠를 엣지 컴퓨팅 서버로부터 상응하는 슈퍼-레졸루션 영상으로 제공 받아 재생하는 사용자 기기를 포함하며,
상기 엣지 컴퓨팅 서버는,
상기 클라우드 서버로부터 전달되는 영상 콘텐츠를 저해상도 영상과 고해상도 영상으로 병렬적으로 전달 받아 각각 상기 슈퍼-레졸루션 파라미터의 학습에 필요한 포맷으로 변경하여 저장하는 학습 데이터 관리부;
상기 학습 데이터 관리부로부터 포맷된 저해상도 영상과 고해상도 영상간의 해상도 차이를 최소화시키도록 학습하여 저해상도를 고해상도화할 수 있는 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 생성하는 슈퍼-레졸루션 모델부;
상기 슈퍼-레졸루션 모델부로부터 학습되어 생성된 가중치(Weight)와 편향(Bias)의 슈퍼-레졸루션 파라미터를 저장하는 슈퍼-레졸루션 파라미터 저장부 및
상기 슈퍼-레졸루션 파라미터 저장부에 저장된 가중치와 편향의 슈퍼-레졸루션 파라미터를 이용하여 저해상도 영상을 고해상도화한 슈퍼-레졸루션 영상을 사용자 기기로 전송하는 통신부를 포함하되,
상기 사용자 기기로 재생된 영상 콘텐츠가 종료된 이후에 피드백을 자체적으로 진행하거나 사용자 기기로부터 전송받고,
설정된 기준치 이하로 피드백을 얻은 영상 콘텐츠에 대해서는, 상기 슈퍼-레졸루션 모델부를 학습 정밀도를 높이도록 변환시키며,
상기 슈퍼-레졸루션 모델부의 변환은,
노드와 레이어를 더 추가하여 학습가능한 슈퍼-레졸루션 파라미터를 증가시키도록 구성되는 것을 특징으로 하는 모바일 엣지 컴퓨팅 기반 슈퍼-레졸루션 스트리밍 영상 전송 시스템.a cloud server that stores a plurality of video contents and provides the corresponding video contents in real time in response to a request to play the video contents to support a streaming service;
Edge computing that forms a long distance with the cloud server more than a set standard and interworks with the cloud server, and provides a super-resolution image obtained by applying a super-resolution parameter to a low-resolution image among the image contents provided from the cloud server. server and
A user device that forms a short distance less than a set standard with the edge computing server, transmits a video content playback request to the cloud server, and receives the requested video content as a corresponding super-resolution video from the edge computing server and plays it ,
The edge computing server,
a learning data management unit for receiving the image content delivered from the cloud server in parallel as a low-resolution image and a high-resolution image, changing each of the super-resolution parameters into a format required for learning, and storing them;
a super-resolution model unit for generating super-resolution parameters of weight and bias capable of increasing the low resolution by learning to minimize the difference in resolution between the formatted low-resolution image and the high-resolution image from the learning data management unit;
a super-resolution parameter storage unit for storing super-resolution parameters of weight and bias generated by learning from the super-resolution model unit; and
A communication unit for transmitting a super-resolution image obtained by converting a low-resolution image into a high resolution by using the super-resolution parameters of weights and biases stored in the super-resolution parameter storage unit to a user device,
After the video content reproduced by the user device is finished, the feedback is performed by itself or is transmitted from the user device,
For video content for which feedback is obtained below a set reference value, the super-resolution model unit is converted to increase learning precision,
The transformation of the super-resolution model part is,
Mobile edge computing-based super-resolution streaming video transmission system, characterized in that it is configured to increase the learnable super-resolution parameter by adding more nodes and layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200183634A KR102270818B1 (en) | 2020-12-24 | 2020-12-24 | Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200183634A KR102270818B1 (en) | 2020-12-24 | 2020-12-24 | Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102270818B1 true KR102270818B1 (en) | 2021-06-29 |
Family
ID=76626318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200183634A KR102270818B1 (en) | 2020-12-24 | 2020-12-24 | Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102270818B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117041669A (en) * | 2023-09-27 | 2023-11-10 | 湖南快乐阳光互动娱乐传媒有限公司 | Super-division control method and device for video stream and electronic equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190056957A (en) * | 2017-11-17 | 2019-05-27 | 한국전자통신연구원 | COMPUTING SYSTEM AND METHOD FOR INTELLIGENT IoE INFORMATION FRAMEWORK |
KR20190119550A (en) * | 2019-10-02 | 2019-10-22 | 엘지전자 주식회사 | Method and apparatus for enhancing image resolution |
KR102046713B1 (en) * | 2018-05-15 | 2019-11-19 | 순천향대학교 산학협력단 | Method for traffic management in mobile edge cloud for quality improvement of mobile video and apparatus thereof |
KR20190140813A (en) * | 2018-11-15 | 2019-12-20 | 주식회사 지디에프랩 | Image learning system that performs resolution restoration function based on object |
-
2020
- 2020-12-24 KR KR1020200183634A patent/KR102270818B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190056957A (en) * | 2017-11-17 | 2019-05-27 | 한국전자통신연구원 | COMPUTING SYSTEM AND METHOD FOR INTELLIGENT IoE INFORMATION FRAMEWORK |
KR102046713B1 (en) * | 2018-05-15 | 2019-11-19 | 순천향대학교 산학협력단 | Method for traffic management in mobile edge cloud for quality improvement of mobile video and apparatus thereof |
KR20190140813A (en) * | 2018-11-15 | 2019-12-20 | 주식회사 지디에프랩 | Image learning system that performs resolution restoration function based on object |
KR20190119550A (en) * | 2019-10-02 | 2019-10-22 | 엘지전자 주식회사 | Method and apparatus for enhancing image resolution |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117041669A (en) * | 2023-09-27 | 2023-11-10 | 湖南快乐阳光互动娱乐传媒有限公司 | Super-division control method and device for video stream and electronic equipment |
CN117041669B (en) * | 2023-09-27 | 2023-12-08 | 湖南快乐阳光互动娱乐传媒有限公司 | Super-division control method and device for video stream and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102271371B1 (en) | Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing for Network Traffic Reduction | |
US11245942B2 (en) | Method for addressing on-demand TV program content on TV services platform of a digital TV services provider | |
KR102428911B1 (en) | Method and system for correcting input generated using automatic speech recognition based on speech | |
US20130254804A1 (en) | Converting, navigating and displaying video content uploaded from the internet to a digital tv video-on-demand platform | |
US11272233B2 (en) | System for addressing on-demand TV program content on TV services platform of a digital TV services provider | |
CN101588493A (en) | System and method for adaptive segment prefetching of streaming media | |
US10445304B1 (en) | Automatic identification and creation of user profiles | |
WO2015152877A1 (en) | Apparatus and method for processing media content | |
KR102270818B1 (en) | Super-Resolution Streaming Video Delivery System Based-on Mobile Edge Computing | |
US9462349B2 (en) | Method and system for content recording and indexing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |