KR102270193B1 - Cement-based composition and additive manufacturing method for 3D printing architectural exterior finishing materials - Google Patents
Cement-based composition and additive manufacturing method for 3D printing architectural exterior finishing materials Download PDFInfo
- Publication number
- KR102270193B1 KR102270193B1 KR1020190005435A KR20190005435A KR102270193B1 KR 102270193 B1 KR102270193 B1 KR 102270193B1 KR 1020190005435 A KR1020190005435 A KR 1020190005435A KR 20190005435 A KR20190005435 A KR 20190005435A KR 102270193 B1 KR102270193 B1 KR 102270193B1
- Authority
- KR
- South Korea
- Prior art keywords
- cement
- weight
- powder
- printing
- based composition
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
- B32B13/04—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/10—Clay
- C04B14/106—Kaolin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/146—Silica fume
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2623—Polyvinylalcohols; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/38—Polysaccharides or derivatives thereof
- C04B24/383—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/34—Flow improvers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00181—Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 비정형 3D 프린팅 건축 외장패널 및 조형물의 적층시 안정적으로 형상을 유지할 수 있도록 한 적층형 건축 외장패널 및 조형물 제조를 위한 3D 프린팅용 시멘트계 조성물 및 제조방법에 관한 것이다.
이러한 본 발명은 시멘트 20~60중량%, 플라이애시 5~20중량%, 실리카샌드 8호사 30~70중량%의 분말과 EVA 분말수지 1~10중량%, 메칠셀룰로우즈 0.5~3중량%, 칼슘포메이트 분말 0.5~3중량%, 카르복실 유동화제 분말 0.1~2중량%를 포함하는 것을 특징으로 한다. The present invention relates to a cement-based composition for 3D printing and a manufacturing method for manufacturing a laminated building exterior panel and a sculpture, which can stably maintain a shape during lamination of atypical 3D printed architectural exterior panels and sculptures.
The present invention is 20 to 60% by weight of cement, 5 to 20% by weight of fly ash, 30 to 70% by weight of silica sand No. 8 and 1 to 10% by weight of EVA powder resin, 0.5 to 3% by weight of methylcellulose, It is characterized in that it contains 0.5 to 3% by weight of calcium formate powder, 0.1 to 2% by weight of carboxyl fluidizing agent powder.
Description
본 발명은 3D 프린팅용 시멘트계 조성물 및 제조방법에 관한 것으로, 특히 비정형 3D 프린팅 건축 외장패널 및 조형물의 적층시 안정적으로 형상을 유지할 수 있도록 한 적층형 건축 외장패널 및 조형물 제조를 위한 3D 프린팅용 시멘트계 조성물 및 제조방법에 관한 것이다. The present invention relates to a cement-based composition for 3D printing and a manufacturing method, and in particular, a cement-based composition for 3D printing for manufacturing a laminated architectural exterior panel and a sculpture that can stably maintain a shape during lamination of atypical 3D printed architectural exterior panels and sculptures; It relates to a manufacturing method.
건축분야 3D 프린팅 기술분야는 구조재와 내·외장재로 구분되며 또한 이를 구성하는 소재 및 복합재료 분야와 연관이 크며 3D 프린팅 기술은 건축산업과 관련하여 다양한 분야에서 적용이 가능하며 기존의 제조공정을 변화시킬 수 있는 주요 기술로 인식되고 있다. 3D 프린팅 기술 중 구조재 부분은 3D 프린팅에 적합한 소재를 배합하여 압출하여 적층하는 방식으로 이루어지며 한 층씩 쌓아서 구조체가 되는 벽을 연속적으로 쌓아올린다. 일반적으로 소형자재의 경우 적층제조 기술과 디자인, 경제성, 생산성을 만족하는 자재의 보급과 대형자재는 구조적인 보강재를 적용하여 적층하여 하나의 구조체로 형성하게 된다. The 3D printing technology field in the construction field is divided into structural materials and interior/exterior materials, and it is also closely related to the materials and composite materials constituting it. 3D printing technology can be applied in various fields related to the building industry and change the existing manufacturing process. It is recognized as the main technology that can make it happen. The structural material part of 3D printing technology is made by mixing and extruding materials suitable for 3D printing and stacking them one by one to continuously stack the walls that become the structures. In general, in the case of small materials, the supply of materials that satisfy additive manufacturing technology, design, economic efficiency and productivity, and large materials are laminated by applying structural reinforcement to form a single structure.
3D 프린팅 소재는 소재의 화학조성, 열물리적 특성과 3D 프린팅 공정기술의 원리 및 소재의 물리적 형상에 따라 구분한다. 일반적으로 소형 자재의 경우 적층제조기술과 생산기술을 연계하여 디자인, 경제성, 생산성을 만족하도록 하며 대형 자재의 경우는 소품과 보강재 개념이 부족하므로 강도, 경제성이 확보되는 적층제조기술 개발이 요구되지만 아직 적당한 수준의 적층제조기술이 마련되지 못하고 있는 상황이다. 3D printing materials are classified according to the chemical composition of the material, thermophysical properties, the principle of 3D printing process technology, and the physical shape of the material. In general, in the case of small materials, additive manufacturing technology and production technology are linked to satisfy design, economic efficiency, and productivity. In the case of large materials, the concept of small items and reinforcement materials is lacking, so the development of additive manufacturing technology that secures strength and economy is required. Adequate level of additive manufacturing technology has not been prepared.
이에 본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위해 제안된 것으로, 본 발명의 목적은 비정형 3D 프린팅 건축 외장패널 및 조형물의 적층시 안정적으로 형상을 유지할 수 있도록 한 적층형 건축 외장패널 및 조형물 제조를 위한 3D 프린팅용 시멘트계 조성물 및 제조방법을 제공하는 데 있다.Accordingly, the present invention has been proposed to solve the various problems of the prior art, and an object of the present invention is to manufacture a laminated architectural exterior panel and a sculpture that can stably maintain the shape when stacking atypical 3D printed architectural exterior panels and sculptures To provide a cement-based composition and manufacturing method for 3D printing.
상기와 같은 목적을 달성하기 위하여 본 발명의 기술적 사상에 의한 3D 프린팅용 시멘트계 조성물은 적층형 건축 외장패널 및 조형물 제조를 위한 것으로서, 시멘트 20~60중량%, 플라이애시 5~20중량%, 실리카샌드 8호사 30~70중량%의 분말과 EVA 분말수지 1~10중량%, 메칠셀룰로우즈 0.5~3중량%, 칼슘포메이트 분말 0.5~3중량%, 카르복실 유동화제 분말 0.1~2중량%를 포함하는 것을 그 기술적 구성상의 특징으로 할 수 있다. In order to achieve the above object, the cement-based composition for 3D printing according to the technical idea of the present invention is for manufacturing a laminated building exterior panel and a sculpture, 20 to 60% by weight of cement, 5 to 20% by weight of fly ash,
여기서, 상기 시멘트는 보통 포틀랜드 시멘트와 백색 포틀랜드 시멘트를 혼합하여 사용하거나 백색 포틀랜드 시멘트를 사용하는 것을 특징으로 할 수 있다. Here, the cement may be characterized by using a mixture of normal Portland cement and white Portland cement or using white Portland cement.
또한, 상기 플라이애시는 메타카올린 및 실리카퓸 분말 중 적어도 하나를 첨가하여 사용하는 것을 특징으로 할 수 있다. In addition, the fly ash may be characterized in that at least one of metakaolin and silica fume powder is added and used.
또한, 상기 플라이애시는 점도 조절 및 강도 증진을 위해 미분으로 분쇄한 것을 특징으로 할 수 있다. In addition, the fly ash may be characterized in that it is pulverized into fine powder for viscosity control and strength enhancement.
또한, 상기 실리카샌드는 점도 조절을 위해 미분으로 분쇄한 것을 특징으로 하는 도의 조절 등을 위해 사용하는 것을 특징으로 할 수 있다. In addition, the silica sand may be characterized in that it is used for adjusting the degree, characterized in that it is pulverized into fine powder to control the viscosity.
또한, 상기 EVA 분말수지는 시멘트 혼화용 수성 폴리머 및 재유화형 분말수지 중 적어도 하나를 혼합하여 사용하는 것을 특징으로 할 수 있다. In addition, the EVA powder resin may be characterized in that at least one of an aqueous polymer for cement admixture and a re-emulsification type powder resin is mixed and used.
이같은 본 발명의 3D 프린팅용 시멘트계 조성물에 물을 혼합한 후 믹싱하여 페이스트를 만들고, 직경 3~10mm의 노즐을 갖는 3D 프린터를 이용하여 한 층씩 적층하면 필요로 하는 건축재를 만들 수 있다. After mixing water in the cement-based composition for 3D printing of the present invention, mixing to make a paste, and laminating them layer by layer using a 3D printer having a nozzle having a diameter of 3 to 10 mm, the required building material can be made.
한편, 본 발명의 3D 프린팅용 시멘트계 조성물의 제조방법은, 시멘트 20~60중량%, 플라이애시 5~20중량%, 실리카샌드 8호사 30~70중량%의 분말과 EVA 분말수지 1~10중량%, 메칠셀룰로우즈 0.5~3중량%, 칼슘포메이트 분말 0.5~3중량%, 카르복실 유동화제 분말 0.1~2중량%를 혼합하여 제조하는 것을 그 기술적 구성상의 특징으로 한다. On the other hand, the manufacturing method of the cement-based composition for 3D printing of the present invention is 20 to 60% by weight of cement, 5 to 20% by weight of fly ash, 30 to 70% by weight of silica sand No. 8, and 1 to 10% by weight of EVA powder resin , 0.5 to 3% by weight of methyl cellulose, 0.5 to 3% by weight of calcium formate powder, and 0.1 to 2% by weight of carboxyl fluidizing agent powder are mixed to prepare the technical composition.
본 발명에 의한 적층형 건축 외장패널 및 조형물 제조를 위한 3D 프린팅용 시멘트계 조성물 및 제조방법은 비정형 3D 프린팅 건축 외장패널 및 조형물의 적층시 안정적으로 형상을 유지할 수 있다. The cement-based composition and manufacturing method for 3D printing for manufacturing laminated architectural exterior panels and sculptures according to the present invention can stably maintain the shape during lamination of atypical 3D printed architectural exterior panels and sculptures.
본 발명에 의한 3D 프린팅용 시멘트계 조성물은 4차 산업혁명의 핵심적 요소로 적층형 제조와 관련하여 활용범위가 넓기 때문에 관련 신기술 확보가 가능하고 관련 제품 개발 및 상업화에 따른 국내 제반 기술력을 증대할 수 있으며 국내 고유 기술 개발에 의한 세계적 수준의 선도 기술 확보를 기대할 수 있다. The cement-based composition for 3D printing according to the present invention is a key element of the 4th industrial revolution and has a wide application range in relation to additive manufacturing, so it is possible to secure related new technologies and increase domestic technology according to related product development and commercialization. It can be expected to secure world-class leading technology through unique technology development.
도 1은 본 발명의 실시예에 의한 3D 프린팅용 시멘트계 조성물을 사용하여 적층방식으로 3D 프린팅한 샘플 사진
도 2는 3D 프린팅용 시멘트계 조성물 원료 직경 크기를 나타낸 그래프
도 3은 3D 프린팅용 시멘트계 조성물의 각 시험체별 유동성 비교 그래프
도 4는 3D 프린팅용 시멘트계 조성물의 각 시험체별 밀도 비교 그래프
도 5는 3D 프린팅용 시멘트계 조성물의 각 시험체별 압축강도 비교 그래프
도 6a 내지 도 6c는 유동실험을 통한 시멘트계 조성물의 각 시험체의 비교 사진 및 플로값
도 7은 적층실험을 통한 시멘트계 조성물의 각 시험체의 비교 사진
도 8은 3D 프린팅용 시멘트계 조성물의 각 시험체 시리즈의 유동성 비교 그래프
도 9는 3D 프린팅용 시멘트계 조성물의 각 시험체 시리즈의 압축강도 비교 그래프1 is a photo of a sample 3D-printed in a lamination method using a cement-based composition for 3D printing according to an embodiment of the present invention;
Figure 2 is a graph showing the diameter size of the raw material of the cement-based composition for 3D printing
3 is a graph comparing the fluidity of each specimen of the cement-based composition for 3D printing;
4 is a graph comparing the density of each specimen of the cement-based composition for 3D printing;
5 is a graph comparing the compressive strength of each specimen of the cement-based composition for 3D printing;
6a to 6c are comparative photographs and flow values of each specimen of cement-based composition through flow test.
7 is a comparative photograph of each specimen of the cement-based composition through the lamination test.
8 is a graph comparing the flowability of each test specimen series of the cement-based composition for 3D printing.
9 is a graph comparing the compressive strength of each test specimen series of a cement-based composition for 3D printing;
첨부한 도면을 참조하여 본 발명의 실시예들에 의한 3D 프린팅용 시멘트계 조성물에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.A cement-based composition for 3D printing according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than actual for clarity of the present invention, or shown reduced from reality in order to understand the schematic configuration.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Also, terms such as first and second may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. Meanwhile, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
<실시예><Example>
본 발명의 실시예에 의한 3D 프린팅용 시멘트계 조성물은 적층형 건축 외장패널 및 조형물을 제조하기 위한 것으로 3D 프린터에 의해 비정형 3D 프린팅 건축 외장패널 및 조형물의 적층시 안정적으로 형상을 유지할 수 있도록 한 것이다. The cement-based composition for 3D printing according to an embodiment of the present invention is for manufacturing a laminated architectural exterior panel and a sculpture, and is capable of stably maintaining the shape during lamination of an atypical 3D printing architectural exterior panel and a sculpture by a 3D printer.
이를 위해 본 발명의 실시예에 의한 3D 프린팅용 시멘트계 조성물은 시멘트 20~60중량%, 플라이애시 5~20중량%, 실리카샌드 8호사 30~70중량%의 분말과 EVA 분말수지 1~10중량%, 메칠셀룰로우즈 0.5~3중량%, 칼슘포메이트 분말 0.5~3중량%, 카르복실 유동화제 분말 0.1~2중량%를 포함하여 이루어진다. To this end, the cement-based composition for 3D printing according to an embodiment of the present invention contains 20 to 60% by weight of cement, 5 to 20% by weight of fly ash, 30 to 70% by weight of silica sand No. 8, and 1 to 10% by weight of EVA powder resin. , 0.5 to 3% by weight of methylcellulose, 0.5 to 3% by weight of calcium formate powder, and 0.1 to 2% by weight of carboxyl fluidizing agent powder.
여기서 상기 시멘트는 보통 포틀랜드 시멘트와 백색 포틀랜드 시멘트를 혼합하여 사용하거나 백색 포틀랜드 시멘트를 사용할 수 있다. 상기 시멘트의 사용량이 20중량% 미만이면 압축강도의 발현이 되지 않아 내구성이 크게 저하되며, 60중량%를 초과하면 다른 성분들을 충분한 양으로 혼합하는데 지장을 준다. Here, the cement may be a mixture of normal Portland cement and white Portland cement, or white Portland cement may be used. If the amount of the cement used is less than 20% by weight, the compressive strength is not expressed and durability is greatly reduced, and if it exceeds 60% by weight, it interferes with mixing other components in sufficient amounts.
상기 플라이애시는 조성물에 유동성을 부여하는데 중요한 역할을 하며 이를 극대화하기 위해 메타카올린 및 실리카퓸 분말 중 적어도 하나를 첨가하여 사용하는 것이 바람직하다. 상기 플라이애시는 점도 조절 및 강도 증진을 위해 미분으로 분쇄하는 것이 좋다. 상기 플라이애시의 혼합비가 5중량% 미만이면 제조시 유동성이 저하되며, 20중량%를 초과하게 되면 강도의 저하를 초래할 수 있다.The fly ash plays an important role in imparting fluidity to the composition, and in order to maximize this, it is preferable to use by adding at least one of metakaolin and silica fume powder. The fly ash is preferably pulverized into fine powder for viscosity control and strength enhancement. If the mixing ratio of the fly ash is less than 5% by weight, the flowability is reduced during manufacture, and when it exceeds 20% by weight, it may cause a decrease in strength.
상기 실리카샌드 8호사는 혼합비가 40중량% 미만이면 수축이 발생하며, 70중량%를 초과하면 강도 저하를 초래하며 충분히 혼합되지 않는다. 상기 실리카샌드는 0.05~0.17mm의 평균입경을 갖는 고운입자로 사용되어야 하며 굵은 입자는 표면이 거칠고 적층에 불리하다. If the mixing ratio of the silica sand No. 8 is less than 40% by weight, shrinkage occurs, and when it exceeds 70% by weight, the strength decreases and the mixture is not sufficiently mixed. The silica sand should be used as fine particles having an average particle diameter of 0.05 to 0.17 mm, and coarse particles have a rough surface and are disadvantageous in lamination.
S/C비는 1:1로 설정하였으며 1:1이상 사용 시 배합 및 반죽에 불리하다. The S/C ratio is set to 1:1, and when it is used more than 1:1, it is disadvantageous for mixing and kneading.
상기 EVA 분말수지는 혼합비가 1중량% 미만이면 내구성이 저하되며 10중량%를 초과하면 강도가 저하된다. 상기 EVA 분말수지는 시멘트 혼화용 수성 폴리머 및 재유화형 분말수지 중 적어도 하나를 혼합하여 사용하는 것이 바람직하다. If the mixing ratio of the EVA powder resin is less than 1% by weight, durability is lowered, and when it exceeds 10% by weight, strength is lowered. The EVA powder resin is preferably used by mixing at least one of an aqueous polymer for cement admixture and a re-emulsification type powder resin.
상기 메칠셀룰로우즈는 시멘트 반죽의 점도를 증가시켜 적층에 유리하도록 해주는 용도로 사용되며 혼합비가 0.5중량% 미만인 경우 반죽의 점도가 크게 증진되지 않고, 3중량%를 초과하면 점도가 과도하게 높아져서 반죽이 잘 되지 않는다.The methyl cellulose is used for the purpose of increasing the viscosity of the cement dough to make it advantageous for lamination, and when the mixing ratio is less than 0.5 wt%, the viscosity of the dough is not significantly improved, and when it exceeds 3 wt%, the viscosity becomes excessively high to make the dough This is not going well.
상기 칼슘포메이트는 시멘트 반죽의 응결을 촉진시키는 화학 혼화제로 적층을 위해 응결시간 조절을 위해 포함된다. 상기 칼슘포메이트는 혼합비가 0.5중량% 미만이면 응결시간의 단축이 잘 이루어지지 않으며 3중량%를 초과하면 급결현상으로 반죽이 어려워진다. The calcium formate is included to control the setting time for lamination as a chemical admixture that promotes the setting of cement dough. If the mixing ratio of the calcium formate is less than 0.5% by weight, the setting time is not shortened well, and if it exceeds 3% by weight, the kneading becomes difficult due to rapid setting.
상기 카르복실 유동화제는 시멘트 반죽의 유동성 확보를 위해 혼합된다. 상기 카르복실 유동화제의 혼합비는 0.1중량% 미만이면 반죽의 유동성이 저하되어 압출이 어렵고, 2중량%를 초과하면 반죽이 풀어져 재료분리가 발생한다.The carboxyl fluidizing agent is mixed to ensure fluidity of the cement dough. When the mixing ratio of the carboxyl fluidizing agent is less than 0.1% by weight, the fluidity of the dough is lowered and extrusion is difficult, and when it exceeds 2% by weight, the dough is loosened and material separation occurs.
상기 주요성분들에 더해 경량성을 극대화하기 위해 경량중공실리카를 추가로 혼합할 수 있다. 상기 경량중공실리카는 상기 실리카샌드의 중량 대비 20~80%혼합하는 것이 바람직하다. 만일 경량중공실리카가 실리카샌드 대비 20% 미만으로 혼합되면 경량 저하의 효과가 미미하며, 80%를 초과하면 강도 저하를 초래할 수 있다. In addition to the above main components, lightweight hollow silica may be additionally mixed to maximize lightness. The lightweight hollow silica is preferably mixed by 20 to 80% based on the weight of the silica sand. If the lightweight hollow silica is mixed in less than 20% compared to silica sand, the effect of reducing the weight is insignificant, and if it exceeds 80%, it may cause a decrease in strength.
또한, 점도 증진을 위한 메칠셀룰로우즈 0.5~3중량%, 응결시간 조절을 위한 칼슘포메이트 분말 0.5~3중량%, 유동성 조절을 위한 카르복실 유동화제 분말 0.1~2중량%를 더 혼합하는 것이 바람직하다. In addition, 0.5 to 3% by weight of methyl cellulose for viscosity enhancement, 0.5 to 3% by weight of calcium formate powder for adjusting setting time, and 0.1 to 2% by weight of carboxyl fluidizing agent powder for controlling fluidity are further mixed. desirable.
<실험예><Experimental example>
본 발명의 실시예에 의한 3D 프린팅용 시멘트계 조성물에 물을 혼합한 후 믹싱하여 페이스트를 만들고, 직경 3~10mm의 노즐을 갖는 3D 프린터를 이용하여 한 층씩 적층함으로써 도 1의 사진과 같이 적층 구조를 갖는 제품을 얻었다. 이때 시멘트 450g, 플라이애시 50g, 실리카샌드 500g, 메칠셀룰로우즈 20g, 칼슘포메이트 5g, 카르복실계 유동화제 3g와 에틸렌비닐아세테이트 45g이나 에틸렌비닐클로라이드 45g과 물 250g을 혼합하여 3D 프린팅용 시멘트계 조성물을 제조하였으며, 이렇게 제조된 조성물에 의한 적층시 안정적으로 형상을 유지하는 것을 확인할 수 있었다.After mixing water in the cement-based composition for 3D printing according to an embodiment of the present invention, mixing to make a paste, and laminating layer by layer using a 3D printer having a nozzle having a diameter of 3 to 10 mm, as shown in the photo of FIG. I got a product with At this time, 450 g of cement, 50 g of fly ash, 500 g of silica sand, 20 g of methyl cellulose, 5 g of calcium formate, 3 g of a carboxyl-based fluidizer and 45 g of ethylene vinyl acetate or 45 g of ethylene vinyl chloride and 250 g of water are mixed with a cement-based composition for 3D printing. was produced, and it was confirmed that the composition stably maintained its shape during lamination by the thus-prepared composition.
계속해서 아래에서는 각각의 시험체에 대하여 성분 배합에 따라 발현되는 특성을 확인한 결과를 설명한다. 각 실험체에 따른 성분의 배합은 표 1과 같다. 각 성분의 배합은 강제식 모르타르 믹서를 이용하였으며, 각 성분의 균질성을 위하여 선 비빔을 실시하여 제작하였다. Subsequently, the results of confirming the characteristics expressed according to the component formulation for each test specimen will be described below. Table 1 shows the composition of the components according to each test specimen. For the mixing of each component, a forced mortar mixer was used, and for the homogeneity of each component, it was prepared by performing pre-bibeam.
plasticizerSuper
본 실험에 사용한 시멘트는 S사의 보통 포틀랜드 시멘트이고 혼합재로는 N사의 플라이애시를 사용하였고 골재는 실리카샌드 8호사를 사용하였다. 플라이애시는 시멘트 대체의 혼화재로 사용되며 주성분이 실리카(SiO2)와 알루미나(Al2O3)로 포졸란 반응으로 밀실한 구조를 형성하고 경량성 및 내화학성이 우수하다. 파우더 형태의 수지는 W사의 EVA를 사용하였다. 메칠셀룰로우즈를 증점제(Thickener)로 사용하고, 카르복실계 유동화제를 유동화제(Super plasticizer)로 사용하였다. 각 성분의 직경분포는 도 2와 같다. The cement used in this experiment was normal Portland cement of S company, fly ash of N company was used as a mixture, and silica sand No. 8 company was used as aggregate. Fly ash is used as an admixture to replace cement, and its main components are silica (SiO 2 ) and alumina (Al 2 O 3 ), which form a closed structure through a pozzolan reaction and have excellent light weight and chemical resistance. As the powder-type resin, W's EVA was used. Methylcellulose was used as a thickener, and a carboxyl-based fluidizer was used as a superplasticizer. The diameter distribution of each component is shown in FIG. 2 .
각 시험체들의 유동성을 비교하여 살펴보면 도 3의 유동성 그래프에서 볼 수 있는 것처럼 EVA 분말수지나 유동화제 없이 증점제만을 혼합한 50-0-1만이 유동성이 결여되어 있고 다른 시험체들의 경우 양호한 유동성을 갖는 것으로 나타났다. Comparing the fluidity of each specimen, as can be seen in the fluidity graph of FIG. 3, only 50-0-1, in which only a thickener was mixed without EVA powder resin or a fluidizing agent, lacked fluidity, and other specimens showed good fluidity. .
각 시험체들의 밀도를 비교하여 살펴보면 도 4의 밀도 그래프에서 볼 수 있는 것처럼 각 시험체들이 전반적으로 유사한 밀도를 갖는 것으로 나타났는데, EVA 분말수지나 유동화제 없이 증점제만을 혼합한 50-0-1만 근소하게 낮은 밀도를 갖는 것으로 나타났다. Comparing the densities of each specimen, as can be seen in the density graph of FIG. 4 , it was found that each specimen had an overall similar density. Only 50-0-1 mixed with only a thickener without EVA powder resin or a fluidizing agent was slightly reduced. It was found to have a low density.
각 시험체들의 압축강도를 비교하여 살펴보면 도 5의 밀도 그래프에서 볼 수 있는 것처럼 EVA 분말수지의 혼합량이 많아지거나 증점제가 혼합된 경우 상대적으로 압축강도가 낮게 나타났다. 반면, 과도하지 않은 적정량의 EVA 분말수지와 유동화제는 압축강도를 높이는 것으로 나타났다. Comparing the compressive strength of each specimen, as can be seen from the density graph of FIG. 5 , when the mixing amount of the EVA powder resin increased or when a thickener was mixed, the compressive strength was relatively low. On the other hand, it was found that an appropriate amount of EVA powder resin and fluidizing agent that is not excessively increased the compressive strength.
계속해서, 또 다른 실험예를 설명하기로 한다. 또 다른 실험을 위하여 기본 배합비는 하기 표 2와 같다. Continuing, another experimental example will be described. For another experiment, the basic mixing ratio is shown in Table 2 below.
icizerSuperplast
icizer
accelerationHardening
acceleration
혼화재료는 재료별 특성에 맞는 함량으로 설정하였고, 기본 재료의 수준을 설정하고 실험에 사용한 배합비는 아래의 표 3과 같다. 본 발명의 실시예에 의한 3D 프린팅용 시멘트계 조성물에 해당하는 것은 C 시리즈의 실험체로서 상대적으로 적층에 적합한 강도를 갖는 것으로 나타났다. The admixture material was set to a content suitable for the characteristics of each material, the level of the basic material was set, and the mixing ratio used in the experiment is shown in Table 3 below. Corresponding to the cement-based composition for 3D printing according to an embodiment of the present invention, it was found that the C series specimen had relatively suitable strength for lamination.
icizerSuperplast
icizer
A=0.50
B=0.60
C=0.55Series
A=0.50
B=0.60
C=0.55
배합은 혼화재료의 3D 프린팅 적용 가능성을 알아보기 위한 기초실험으로 점도확인을 위한 플로테이블과 경량성 확보를 위한 밀도, 기본물성인 압축강도 실험을 실시하였다. 적층 가능성을 알아보기 위한 간이실험으로 짤주머니를 사용한 손으로 적층 실험실시하였다. 배합의 물-시멘트 비는 3가지 수준으로 결정하였으며 결합재 사용은 번호로 구분하였다. 유동화제 및 증점제는 1중량% 이하 수준으로 설정하였으며 실험에서는 2가지 수준으로 실시하였다. 폴리머는 1, 3, 5, 10중량%의 4가지 수준으로 배합하여 설계하였다. The formulation was a basic experiment to check the applicability of 3D printing of the admixture material, and a flow table to check the viscosity and density and compressive strength tests were conducted to secure lightness. As a simple experiment to check the possibility of lamination, lamination was carried out by hand using a pastry bag. The water-cement ratio of the formulation was determined at three levels, and the use of the binder was classified by number. The fluidizing agent and thickening agent were set at a level of 1% by weight or less, and two levels were performed in the experiment. The polymer was designed by blending in 4 levels of 1, 3, 5, and 10 wt%.
유동시험은 각 시험체들의 점도를 알아보는 기본실험으로 반죽의 지름 평균으로 측정하였다. 적층은 짤주머니를 사용한 간이실험으로 손으로 짜내어 적층가능성을 확인하고자 한 것이다. 도 6a 내지 도 6c는 유동시험 시 각 시험체들의 사진과 플로값을 비교한 것이고, 도 7은 각 시험체들의 적층 가능 여부를 비교하여 나타낸 사진이다. The flow test is a basic test to find out the viscosity of each specimen, and it was measured as the average diameter of the dough. Lamination was a simple experiment using a pastry bag to confirm the possibility of lamination by squeezing it by hand. 6A to 6C are photographs and flow values of each specimen compared during the flow test, and FIG. 7 is a photograph showing whether each specimen can be stacked.
시리즈 A의 경우 낮은 물비로 적층은 가능할 것으로 판단되나 손을 이용하는 간이 실험에서는 손으로 짜는데 한계가 있어 적층에 어려움이 있었다. In the case of series A, lamination was possible with a low water ratio, but in a simple experiment using hands, there was a limitation in hand weaving, so lamination was difficult.
실험결과 물비는 55%가 적당하다 판단되며 50%이하에서는 혼합이 어려웠으며, 유동성은 물비가 높을수록 높고 EVCL 혼입량이 증가할수록 증가하였다. As a result of the experiment, 55% of the water ratio was judged to be appropriate, and mixing was difficult below 50%, and the fluidity was higher as the water ratio was higher and increased as the EVCL mixing amount increased.
유동화제는 소량 첨가하여도 재료분리가 발생하며 매우 적은량을 첨가하여 점도 개선으로 사용하는 것이 적합하다고 판단되었다. Material separation occurs even when a small amount of the fluidizing agent is added, and it was judged that it is suitable to use a very small amount to improve the viscosity.
증점제의 사용은 반죽 및 몰드 성형이 어렵고 플로가 낮게나와 점도개선은 상당히 효과적이며 물비 및 혼화재료에 따른 적당량 설정으로 사용 가능한 것으로 판단되었다. The use of the thickener is difficult to knead and molded, and the flow is low, so the viscosity improvement is quite effective, and it is judged that it can be used by setting an appropriate amount according to the water ratio and admixture material.
EVCL 및 유동화제는 반죽 내 기포를 많이 형성하여 반죽을 부드럽고 점도가 낮아져 유동이 증가하였으며, 증점제와 EVCL의 경우 적층이 가능하며 EVCL은 표면이 매끄럽고 반죽이 부드러우며 증점제의 경우 반죽이 질지만 적층할 경우에는 표면이 매끄럽고 적층된 시험체의 아래층에 처짐이 없어서 어 적층에 유리한 것으로 나타났다. EVCL and fluidizer form a lot of bubbles in the dough, making the dough softer and lowering the viscosity to increase the flow. In the case of thickeners and EVCL, lamination is possible. In this case, it was found that the surface was smooth and there was no sagging in the lower layer of the laminated specimen, which was advantageous for lamination.
도 8은 시험체의 시리즈 간 플로값을 비교하여 정리한 것인데, 배합에 상관없이 물의 증가는 유동성을 증가시키며 EVCL의 혼입량이 증가할수록 유동성이 증가하는 것을 나타났다.8 is a summary of flow values between series of test specimens, and it was shown that, regardless of the formulation, the increase in water increases the fluidity, and the fluidity increases as the amount of EVCL mixed increases.
도 9는 시험체의 시리즈 간 압축강도를 비교하여 나타낸 것이다. 압축강도는 물비 55%에서 가장 높게 나타났으며 EVCL의 함량이 증가할수록 강도가 저하되었다. A 배합의 경우 반죽이 잘 이루어지지 않아 혼화재료가 없을 경우 오히려 강도가 저하되는 것으로 나타났다. 9 shows a comparison of the compressive strength between series of specimens. The compressive strength was highest at 55% water ratio, and the strength decreased as the EVCL content increased. In the case of formulation A, it was found that the kneading was not performed well, and the strength was rather reduced in the absence of an admixture material.
증점제는 점도로 인해 시험체 성형이 어려워 강도가 낮게 나타났으며 유동화제는 다량이 기포가 혼입되어 강도를 저하시키는 것으로 나타났다. 압축강도는 EVCL의 혼입량 증가에 따라 현저하게 낮아지며 5%이상 혼입되었을 경우 강도 발현에 한계가 있는 것으로 나타났다. The thickener showed low strength because it was difficult to mold the specimen due to its viscosity, and the fluidizing agent was found to lower the strength due to the incorporation of air bubbles in a large amount. Compressive strength is significantly lowered as the amount of EVCL mixed increases, and when more than 5% of EVCL is mixed, there is a limit to strength expression.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다. Although preferred embodiments of the present invention have been described above, various changes, modifications and equivalents may be used in the present invention. It is clear that the present invention can be equally applied by appropriately modifying the above embodiments. Accordingly, the above description is not intended to limit the scope of the present invention, which is defined by the limits of the following claims.
Claims (12)
상기 시멘트는 보통 포틀랜드 시멘트와 백색 포틀랜드 시멘트를 혼합하여 사용하거나 백색 포틀랜드 시멘트를 사용하며,
상기 실리카샌드는 0.05~0.17mm의 평균입경인 것이며,
상기 플라이애시는 메타카올린 및 실리카퓸 분말 중 적어도 하나를 첨가하여 사용하는 것을 특징으로 하는 3D 프린팅용 시멘트계 조성물.Cement 20-60 wt%, fly ash 5-20 wt%, silica sand No. 8 30-70 wt% powder, EVA powder resin 1-10 wt%, methylcellulose 0.5-3 wt%, calcium formate powder 0.5 to 3% by weight, including 01 to 2% by weight of carboxyl fluidizing agent powder,
The cement is usually used by mixing Portland cement and white Portland cement or using white Portland cement,
The silica sand will have an average particle diameter of 0.05 to 0.17 mm,
The fly ash is a cement-based composition for 3D printing, characterized in that it is used by adding at least one of metakaolin and silica fume powder.
상기 플라이애시는 점도 조절 및 강도 증진을 위해 미분으로 분쇄한 것을 특징으로 하는 3D 프린팅용 시멘트계 조성물.According to claim 1,
The fly ash is a cement-based composition for 3D printing, characterized in that it is pulverized into fine powder for viscosity control and strength enhancement.
상기 실리카샌드는 점도 조절을 위해 미분으로 분쇄한 것을 특징으로 하는 하는 3D 프린팅용 시멘트계 조성물.According to claim 1,
The silica sand is a cement-based composition for 3D printing, characterized in that it is pulverized into fine powder to control the viscosity.
상기 EVA 분말수지는 시멘트 혼화용 수성 폴리머 및 재유화형 분말수지 중 적어도 하나를 혼합하여 사용하는 것을 특징으로 하는 3D 프린팅용 시멘트계 조성물.According to claim 1,
The EVA powder resin is a cement-based composition for 3D printing, characterized in that it is used by mixing at least one of an aqueous polymer for cement admixture and a re-emulsifying powder resin.
직경 3~10mm의 노즐을 갖는 3D 프린터를 이용하여 한 층씩 적층하여 제조하는 것을 특징으로 하는 건축재.7. After mixing water with the cement-based composition for 3D printing of any one of claims 1 and 4 to 6, mix to make a paste,
A building material, characterized in that it is manufactured by laminating one layer at a time using a 3D printer having a nozzle having a diameter of 3 to 10 mm.
시멘트 20~60중량%, 플라이애시 5~20중량%, 실리카샌드 8호사 30~70중량%의 분말과 EVA 분말수지 1~10중량%, 메칠셀룰로우즈 0.5~3중량%, 칼슘포메이트 분말 0.5~3중량%, 카르복실 유동화제 분말 0.1~2중량%를 혼합하여 제조하되,
상기 시멘트는 보통 포틀랜드 시멘트와 백색 포틀랜드 시멘트를 혼합하여 사용하거나 백색 포틀랜드 시멘트를 사용하며,
상기 실리카샌드는 0.05~0.17mm의 평균입경인 것을 사용하며,
상기 플라이애시는 메타카올린 및 실리카퓸 분말 중 적어도 하나를 첨가하여 제조하는 것을 특징으로 하는 3D 프린팅용 시멘트계 조성물의 제조방법.A method of manufacturing a cement-based composition for 3D printing for manufacturing a laminated architectural exterior panel and a sculpture,
Cement 20-60 wt%, fly ash 5-20 wt%, silica sand No. 8 30-70 wt% powder, EVA powder resin 1-10 wt%, methylcellulose 0.5-3 wt%, calcium formate powder 0.5 to 3% by weight, but prepared by mixing 0.1 to 2% by weight of carboxyl fluidizing agent powder,
The cement is usually used by mixing Portland cement and white Portland cement or using white Portland cement,
The silica sand uses an average particle diameter of 0.05 to 0.17 mm,
The fly ash is a method of manufacturing a cement-based composition for 3D printing, characterized in that it is prepared by adding at least one of metakaolin and silica fume powder.
상기 실리카샌드는 점도 조절을 위해 미분으로 분쇄한 것을 특징으로 하는 3D 프린팅용 시멘트계 조성물의 제조방법.9. The method of claim 8,
The method for producing a cement-based composition for 3D printing, characterized in that the silica sand is pulverized into fine powder to control the viscosity.
상기 EVA 분말수지는 시멘트 혼화용 수성 폴리머 및 재유화형 분말수지 중 적어도 하나를 혼합하여 사용하는 것을 특징으로 하는 3D 프린팅용 시멘트계 조성물의 제조방법.9. The method of claim 8,
The method of manufacturing a cement-based composition for 3D printing, characterized in that the EVA powder resin is used by mixing at least one of an aqueous polymer for cement admixture and a re-emulsifying powder resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180171655 | 2018-12-28 | ||
KR1020180171655 | 2018-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200088193A KR20200088193A (en) | 2020-07-22 |
KR102270193B1 true KR102270193B1 (en) | 2021-06-29 |
Family
ID=71893286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190005435A KR102270193B1 (en) | 2018-12-28 | 2019-01-15 | Cement-based composition and additive manufacturing method for 3D printing architectural exterior finishing materials |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102270193B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112125618B (en) * | 2020-10-26 | 2022-03-01 | 济南大学 | High-thixotropy 3D printing cement-based material and preparation method and application thereof |
WO2023016946A1 (en) * | 2021-08-13 | 2023-02-16 | Sika Technology Ag | Fire-resistant light-weight thermal insulation panel |
KR102398854B1 (en) * | 2022-02-11 | 2022-05-16 | 서울시립대학교 산학협력단 | 3D Additive Manufacturing Method of Recycled Oyster Shell Powder Mixture |
WO2023192618A1 (en) * | 2022-03-31 | 2023-10-05 | Mahmoud Reda Taha | Sustainable concrete mixes incorporating carbon black & methods of making |
WO2024200708A1 (en) * | 2023-03-29 | 2024-10-03 | Sika Technology Ag | A floor slab for prefabricated modular bathroom pods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101620075B1 (en) * | 2015-03-27 | 2016-05-13 | 동산콘크리트산업(주) | Mortar for 3D Printing, Concrete and Manufacturing Method of the Concrete using it |
JP2018122539A (en) * | 2017-02-02 | 2018-08-09 | 太平洋セメント株式会社 | Additional production method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008043516A1 (en) * | 2008-11-06 | 2010-05-12 | Wacker Chemie Ag | Method for the application of polymer-modified wet concrete mixtures |
BR112017028393A2 (en) * | 2015-11-04 | 2018-08-28 | Imerys Filtration Minerals Inc | compositions and methods for additive manufacturing |
KR101921622B1 (en) | 2016-06-15 | 2018-11-23 | 이승준 | Method of manufacturing for cementitious structure using 3d prining and cementitious structure |
-
2019
- 2019-01-15 KR KR1020190005435A patent/KR102270193B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101620075B1 (en) * | 2015-03-27 | 2016-05-13 | 동산콘크리트산업(주) | Mortar for 3D Printing, Concrete and Manufacturing Method of the Concrete using it |
JP2018122539A (en) * | 2017-02-02 | 2018-08-09 | 太平洋セメント株式会社 | Additional production method |
Also Published As
Publication number | Publication date |
---|---|
KR20200088193A (en) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102270193B1 (en) | Cement-based composition and additive manufacturing method for 3D printing architectural exterior finishing materials | |
EP1791900B1 (en) | Flexible hydraulic compositions | |
CN108715531B (en) | High-thixotropy 3D printing concrete and preparation method thereof | |
Afridi et al. | Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars | |
Pasupathy et al. | Enhancing the properties of foam concrete 3D printing using porous aggregates | |
CN105503052A (en) | Anti-cracking high-performance concrete and preparation method thereof | |
CN112723829A (en) | Color 3D printing mortar and preparation method thereof | |
DE2333317A1 (en) | RAW DIMENSIONS FOR THE MANUFACTURE OF POROESE BUILDING MATERIALS AND THE PROCESS FOR THEIR MANUFACTURING | |
CN108996969B (en) | White self-compacting clear water C40 pump concrete | |
CN109384437B (en) | Hybrid fiber cement-based composite material for 3D printing and preparation method thereof | |
KR102270181B1 (en) | Composition for cement-based 3d printing exterior material having lightweight and flame retardant preformance | |
CN111377699A (en) | Gypsum powder for 3D printing | |
CN108585698B (en) | Special joint filling mortar for light partition wall board | |
CN115108775B (en) | High-strength concrete and preparation method thereof | |
KR102286044B1 (en) | Cement-based composition for ultra-light, non-flammable 3d printing for material extrusion method additive manufacturing of architectural finishing panels and sculptures | |
US20230150877A1 (en) | Dry cementitious material mixture for 3d-printing | |
CN109265117A (en) | Specific density light aggregate foam concrete with heat insulation function and preparation method thereof | |
KR102237816B1 (en) | SBR Latex Modified Polymer Cement Mixtures for 3D Concrete Printing and Its Manufacturing Method | |
DE102005010307A1 (en) | Putty with lightweight aggregate | |
EP4151408A1 (en) | Dry cementitious material mixture for 3d-printing | |
CN114560667B (en) | Light energy-saving foam concrete and preparation method thereof | |
EP4151409A1 (en) | Dry cementitious material mixture for 3d-printing | |
KR101111664B1 (en) | Concrete manufacturing method for improving impact resistance | |
JP3458193B2 (en) | Manufacturing method of lightweight cellular concrete | |
Seo | Strength Characteristics of 3D Printing Concrete for Exterior materials using Accelerating agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |