KR102269637B1 - Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same - Google Patents

Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same Download PDF

Info

Publication number
KR102269637B1
KR102269637B1 KR1020190151321A KR20190151321A KR102269637B1 KR 102269637 B1 KR102269637 B1 KR 102269637B1 KR 1020190151321 A KR1020190151321 A KR 1020190151321A KR 20190151321 A KR20190151321 A KR 20190151321A KR 102269637 B1 KR102269637 B1 KR 102269637B1
Authority
KR
South Korea
Prior art keywords
arginine
citrulline
argf
strain
mutant strain
Prior art date
Application number
KR1020190151321A
Other languages
Korean (ko)
Other versions
KR20200081230A (en
Inventor
이동석
최태열
권영덕
박석현
한재갑
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Publication of KR20200081230A publication Critical patent/KR20200081230A/en
Application granted granted Critical
Publication of KR102269637B1 publication Critical patent/KR102269637B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1018Carboxy- and carbamoyl transferases (2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03003Ornithine carbamoyltransferase (2.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/05Carbon-nitrogen ligases with glutamine as amido-N-donor (6.3.5)
    • C12Y603/05005Carbamoyl-phosphate synthase (glutamine-hydrolysing) (6.3.5.5)

Abstract

본 발명은 L-시트룰린 또는 L-아르기닌 생산능이 향상된 변이 균주 및 이를 이용한 L-시트룰린 또는 L-아르기닌의 제조 방법에 관한 것으로, 본 발명의 일 구체예에 따른 변이 균주는 오르니틴 카바모일트랜스퍼라제 및 카바모일 인산 합성효소의 활성이 강화되어 L-시트룰린 또는 L-아르기닌의 생산능이 우수하므로, 상기 변이 균주를 이용하면 보다 효과적으로 L-시트룰린 또는 L-아르기닌을 제조할 수 있다.The present invention relates to a mutant strain having improved L-citrulline or L-arginine production ability and a method for producing L-citrulline or L-arginine using the same, and the mutant strain according to one embodiment of the present invention comprises ornithine carbamoyltransferase and Since the activity of carbamoyl phosphate synthetase is enhanced and the production ability of L-citrulline or L-arginine is excellent, L-citrulline or L-arginine can be more effectively produced by using the mutant strain.

Description

L-시트룰린 또는 L-아르기닌 생산능이 향상된 변이 균주 및 이를 이용한 L-시트룰린 또는 L-아르기닌의 제조 방법{Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same}Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using L-citrulline or L-arginine-producing ability improved mutant strain and method for producing L-citrulline or L-arginine using the same the same}

본 발명은 L-시트룰린 또는 L-아르기닌의 생산능이 향상된 변이 균주 및 이를 이용한 L-시트룰린 또는 L-아르기닌의 제조 방법에 관한 것으로, 보다 구체적으로는 오르니틴 카바모일트랜스퍼라제(ornithine carbamoyltransferase) 및 카바모일 인산 합성효소(carbamoyl phosphate synthetase)의 활성이 강화되어 L-시트룰린 또는 L-아르기닌의 생산능이 향상된 코리네박테리움 속(Corynebacterium sp.) 변이 균주 및 이를 이용하는 L-시트룰린 또는 L-아르기닌의 제조방법에 관한 것이다.The present invention relates to a mutant strain having improved L-citrulline or L-arginine production ability and a method for producing L-citrulline or L-arginine using the same, and more particularly, ornithine carbamoyltransferase and carbamoyl Corynebacterium sp. mutant strain with enhanced L-citrulline or L-arginine production ability by enhancing the activity of carbamoyl phosphate synthetase and a method for producing L-citrulline or L-arginine using the same it's about

시트룰린(citrulline)은 비필수 아미노산 중의 하나로, 시트룰린에는 암모니아 대사 촉진이나 혈관 확장에 의한 혈류 개선, 혈압 저하, 신경 전달, 면역력 증진, 활성 산소 소거 등의 유용한 작용이 있다는 점이 알려져 있다. 신장에서 시트룰린은 아르기닌으로 대사되며, NO(nitric oxide)를 생성시킨다. 즉, 시트룰린은 생체 내의 단백질을 구성하는 아미노산은 아니지만, 요소 사이클의 중간체 중 하나로, 아르기닌으로부터 혈관 확장 작용을 갖는 물질로 알려진 NO와 함께 생성되고, 추가로 아스파라긴산과 축합하여 아르기닌으로 재생된다.Citrulline is one of the non-essential amino acids, and it is known that citrulline has useful effects such as promoting ammonia metabolism or improving blood flow by dilating blood vessels, lowering blood pressure, neurotransmission, enhancing immunity, and scavenging free radicals. In the kidneys, citrulline is metabolized to arginine, producing nitric oxide (NO). That is, citrulline is not an amino acid constituting a protein in a living body, but as one of the intermediates of the urea cycle, it is generated from arginine together with NO, which is known as a substance having a vasodilatory action, and is further condensed with aspartic acid to be regenerated into arginine.

아르기닌(arginine)은 식물 등에 유리 상태로 함유되어 있는 것으로 알려져 있다. 아르기닌은 비필수 아미노산의 하나이나, 성장기 어린이 및 스트레스 상태, 외상, 암 등의 특이 상태일 경우에는 필수적으로 공급해주어야 하는 반필수 아미노산(semi-essential amino acid)이고, 아미노산류 강화제, 의약품, 식품 등의 성분으로 널리 이용되고 있다. 의약용으로는 간 기능 촉진제, 뇌기능 촉진제, 남성 불임 치료제, 종합 아미노산 제제 등에 사용되고 있으며, 식품용으로는 어묵 첨가제, 건강 음료 첨가제, 고혈압 환자의 식염 대체용으로 사용되고 있다. L-시트룰린 및 L-아르기닌을 배합하여 경구 섭취하는 경우 혈장 L-아르기닌의 농도가 급격히 증가하고 NO 생체 이용률(bioavailability)이 증가한다는 점이 알려져 있다.Arginine (arginine) is known to be contained in a free state in plants and the like. Arginine is one of the non-essential amino acids, but it is a semi-essential amino acid that must be supplied in case of special conditions such as growing children, stress, trauma, and cancer. It is widely used as a component of For medicine, it is used as a liver function enhancer, brain function enhancer, male infertility treatment, and general amino acid formulation. It is known that the concentration of plasma L-arginine sharply increases and NO bioavailability increases when L-citrulline and L-arginine are combined orally ingested.

한편, 미생물에서 L-아르기닌의 생합성은 선형 단계와 고리형 단계의 서로 다른 두개의 경로를 통해, L-글루타메이트(L-glutamate)로부터 8번의 효소 단계를 거쳐서 이루어진다. 선형 단계에서, L-아르기닌은 L-글루타메이트에서 N-아세틸글루타메이트(N-acetylglutamate), N-아세틸오르니틴(N-acetylornithine), 오르니틴(ornithine), 시트룰린(citrulline), 그리고 아르기니노숙시네이트(argininosuccinate)를 거쳐서 합성 된다. L-아르기닌의 생합성의 중간 단계로서 오르니틴 카바모일트랜스퍼라제에 의해 L-오르니틴과 카바모일 인산(carbamoyl phosphate)이 결합하여 L-시트룰린를 생성이 촉매되며, 인산기(phosphate)가 부반응산물로 생성된다. 생성된 L-시트룰린은 알지니노숙신산 신타아제(ArgG), 알지니노숙신산 라이에이즈(ArgH) 효소반응에 의해 최종적으로 L-아르기닌으로 합성된다. L-아르기닌의 생합성 단계 중에서 카바모일 인산 합성효소는 글루타민으로부터 카바모일 인산의 합성을 촉매하는 효소를 의미하고, 카바모일 인산 합성효소에 의해 생성된 카바모일 인산은 전술한 바와 같이 L-시트룰린을 생성하는데 사용될 수 있다.On the other hand, biosynthesis of L-arginine in microorganisms is made through two different pathways, a linear step and a cyclic step, through eight enzymatic steps from L-glutamate. In the linear phase, L-arginine is converted from L-glutamate to N-acetylglutamate, N-acetylornithine, ornithine, citrulline, and argininosuccinate. It is synthesized through argininosuccinate. As an intermediate step in the biosynthesis of L-arginine, L-ornithine and carbamoyl phosphate are combined by ornithine carbamoyltransferase to catalyze the production of L-citrulline, and phosphate is generated as a by-product . The produced L-citrulline is finally synthesized into L-arginine by the enzyme reaction of argininosuccinic acid synthase (ArgG) and argininosuccinic acid lyase (ArgH). Among the biosynthetic steps of L-arginine, carbamoyl phosphate synthase refers to an enzyme that catalyzes the synthesis of carbamoyl phosphate from glutamine, and carbamoyl phosphate produced by carbamoyl phosphate synthase produces L-citrulline as described above. can be used to

이에 본 출원의 발명자들은 오르니틴 카바모일트랜스퍼라제(ornithine carbamoyltransferase) 및 카바모일 인산 합성효소(carbamoyl phosphate synthetase)의 활성을 강화시킨 변이 균주를 제작하고, 상기 변이 균주가 L-시트룰린 또는 L-아르기닌의 생산능이 우수한 것을 확인하여 본 발명을 완성하였다.Accordingly, the inventors of the present application prepared a mutant strain with enhanced activity of ornithine carbamoyltransferase and carbamoyl phosphate synthetase, and the mutant strain is L-citrulline or L-arginine The present invention was completed by confirming that the productivity was excellent.

대한민국 등록특허 제10-1138289호Republic of Korea Patent No. 10-1138289

본 발명의 목적은 오르니틴 카바모일트랜스퍼라제(ornithine carbamoyltransferase) 및 카바모일 인산 합성 효소(carbamoyl phosphate synthetase)의 활성이 강화된 L-시트룰린 또는 L-아르기닌의 생산능이 향상된 코리네박테리움 속(Corynebacterium sp.) 변이 균주를 제공하는 것이다.An object of the present invention is ornithine carbamoyltransferase (ornithine carbamoyltransferase) and carbamoyl phosphate synthetase (Carbamoyl phosphate synthetase) activity of the enhanced L-citrulline or L-arginine production ability is improved Corynebacterium genus ( Corynebacterium sp) ) to provide a mutant strain.

본 발명의 또 다른 목적은 Another object of the present invention is

(a) 코리네박테리움 속 변이 균주를 배지에서 배양하는 단계; 및(a) culturing a mutant strain of the genus Corynebacterium in a medium; and

(b) 배양된 변이 균주 또는 배양 배지에서 L-시트룰린 또는 L-아르기닌을 회수하는 단계를 포함하는 L-시트룰린 또는 L-아르기닌의 제조 방법을 제공하는 것이다.(b) to provide a method for producing L-citrulline or L-arginine, comprising the step of recovering L-citrulline or L-arginine from the cultured mutant strain or culture medium.

본 발명의 일 양상은 오르니틴 카바모일트랜스퍼라제(ornithine carbamoyltransferase) 및 카바모일 인산 합성 효소(carbamoyl phosphate synthetase)의 활성이 강화된 L-시트룰린 또는 L-아르기닌의 생산능이 향상된 코리네박테리움 속(Corynebacterium sp.) 변이 균주를 제공한다.One aspect of the present invention is ornithine carbamoyltransferase (ornithine carbamoyltransferase) and carbamoyl phosphate synthetase (carbamoyl phosphate synthetase) activity of the enhanced L- citrulline or L- arginine production ability is improved Corynebacterium genus ( Corynebacterium) sp. ) provides a mutant strain.

본 발명의 일 구체예에 따르면, 상기 변이 균주는 L-시트룰린 및 L-아르기닌의 생산능이 동시에 향상된 것일 수 있다.According to one embodiment of the present invention, the mutant strain may have improved production ability of L-citrulline and L-arginine at the same time.

본 발명에서, "오르니틴 카바모일트랜스퍼라제"란, L-오르니틴(L-ornithine)과 카바모일 인산(carbamoyl phosphate)이 결합하여 L-시트룰린(L-citrullline) 및 인산기(phosphate)를 반응산물로 생성하는 것을 촉매하는 효소를 의미한다.In the present invention, "ornithine carbamoyltransferase" refers to the reaction product of L-ornithine and carbamoyl phosphate by combining L-citrullline and phosphate. enzymes that catalyze the production of

본 발명에서, "카바모일 인산 합성 효소"란, 글루타민 또는 암모니아 및 중탄산염으로부터 카바모일 인산의 합성을 촉매하는 효소를 의미한다. 카바모일 인산은 L-오르니틴과 결합하여, L-시트룰린을 합성하는데 사용될 수 있다.In the present invention, "carbamoyl phosphate synthase" means an enzyme that catalyzes the synthesis of carbamoyl phosphate from glutamine or ammonia and bicarbonate. Carbamoyl phosphate can be combined with L-ornithine to synthesize L-citrulline.

본 발명에서, "생산능이 향상된" 균주는 모균주에 비해 L-시트룰린 및/또는 L-아르기닌의 생산성이 증가된 것을 의미한다.In the present invention, the "improved production capacity" strain means that the productivity of L- citrulline and / or L- arginine is increased compared to the parent strain.

본 발명에서,"모균주"는 변이의 대상이 되는 야생형 또는 변이 균주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에 있어서, 모균주는 야생형 코리네박테리움 글루타미쿰 균주 또는 야생형으로부터 변이된 균주일 수 있다. 본 발명의 일 구체예에 따르면 모균주는 코리네박테리움 글루타미쿰 ATCC13032 균주일 수 있다.In the present invention, "parent strain" means a wild-type or mutated strain to be mutated, and includes a target to be directly mutated or transformed with a recombinant vector or the like. In the present invention, the parent strain may be a wild-type Corynebacterium glutamicum strain or a strain mutated from the wild-type. According to one embodiment of the present invention, the parent strain may be a Corynebacterium glutamicum ATCC13032 strain.

본 발명의 일 구체예에 따르면, 상기 오르니틴 카바모일트랜스퍼라제의 활성 강화는 오르니틴 카바모일트랜스퍼라제를 암호화하는argF(ornithine carbamoyltransferase) 유전자 발현의 증가에 의한 것일 수 있다. 본 발명의 일 구체예에 따르면, argF 유전자는 NCBI 데이터베이스에 NCgl1344로 등록되어 있다. 본 발명의 일 구체예에 따르면 argF 유전자는 서열번호 19의 뉴클레오티드 서열로 이루어져 있다. According to one embodiment of the present invention, the enhancement of the activity of ornithine carbamoyltransferase may be due to an increase in the expression of ornithine carbamoyltransferase ( argF) gene encoding ornithine carbamoyltransferase. According to one embodiment of the present invention, the argF gene is registered as NCgl1344 in the NCBI database. According to one embodiment of the present invention, the argF gene consists of the nucleotide sequence of SEQ ID NO: 19.

본 발명의 일 구체예에 따르면, 상기 카바모일 인산 합성효소의 활성 강화는 카바모일 인산 합성효소를 암호화하는 carA(carbamoyl phosphate synthase small subunit) 유전자 및 carB(carbamoyl phosphate synthase large subunit) 유전자 발현의 증가에 의한 것일 수 있다. 본 발명의 일 구체예에 따르면, carA 유전자는 NCBI 데이터베이스에 NCgl1548로 등록되어 있고, carB 유전자는 NCBI 데이터베이스에 NCgl1547로 등록되어 있다. 본 발명의 일 구체예에 따르면 상기 carA 는 서열번호 20의 뉴클레오티드 서열로 이루어져 있고, 상기carB 는 서열번호 21의 뉴클레오티드 서열로 이루어져 있다.The increase in accordance with one embodiment, the cover active strengthening together phosphate synthase cover carA (carbamoyl phosphate synthase small subunit) gene and carB (carbamoyl phosphate synthase large subunit) to encrypt together phosphate synthase gene expression may be due to According to one embodiment of the present invention, the carA gene is registered as NCgl1548 in the NCBI database, and the carB gene is registered as NCgl1547 in the NCBI database. According to one embodiment of the invention the carA is consisting of a nucleotide sequence of SEQ ID NO: 20, the carB consists of a nucleotide sequence of SEQ ID NO: 21.

본 발명에서 "활성 강화" 또는 "활성이 강화된" 것이란, 단백질 자체의 활성이 새로 도입되거나 증대되어 본래 기능 이상의 효과를 도출하는 것을 포함할 뿐만 아니라, 내재적 유전자 활성의 증가, 내부 또는 외부 요인으로부터 내재적 유전자 증폭, 상기 유전자 발현의 억제 조절 인자의 결실, 유전자 카피수 증가, 외부로부터의 유전자 도입, 발현조절서열의 변형, 특히 프로모터 교체 또는 변형 및 유전자 내 돌연변이에 의한 효소 활성의 증가 등과 같은 조작이 이루어지기 전의 미생물이 가지는 활성에 비하여 조작이 이루어진 이후의 미생물이 가지고 있는 활성이 증가된 상태를 의미한다.In the present invention, "activity enhancement" or "enhanced activity" means that the activity of a protein itself is newly introduced or increased to derive an effect beyond its original function, as well as an increase in intrinsic gene activity, from internal or external factors. Manipulations such as endogenous gene amplification, deletion of inhibitory regulatory factors for gene expression, gene copy number increase, gene introduction from outside, modification of expression control sequences, in particular, promoter replacement or modification and increase in enzymatic activity by mutations in genes It refers to a state in which the activity of the microorganism after the operation is increased compared to the activity of the microorganism before the operation is made.

본 발명의 일 구체예에 따르면, 오르니틴 카바모일트랜스퍼라제 및 카바모일 인산 합성효소 활성의 강화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 효소의 활성을 강화 또는 증가시키는 방법은 당해 분야에서 잘 알려진 다양한 방법의 적용이 가능하다. 그 방법의 예는, 이로 제한되는 것은 아니지만, 해당 효소들을 암호화하는 염기서열을 포함하는 폴리뉴클레오타이드를 추가로 염색체에 삽입하는 방법 또는 상기 폴리뉴클레오타이드를 벡터 시스템에 도입하는 방법 등에 의하여 효소들을 암호화하는 염기서열의 카피수를 증가시키는 방법, 효소들의 프로모터를 강한 프로모터로 교체하는 방법, 구체적으로 프로모터에 변이를 도입하는 방법이 포함될 수 있으며 유전자 변이에 의해 활성이 강한 효소로 변이시키는 방법 등이 있다.According to one embodiment of the present invention, the enhancement of ornithine carbamoyltransferase and carbamoyl phosphatase activity can be achieved by applying various methods well known in the art. The method for enhancing or increasing the activity of the enzyme can be applied to various methods well known in the art. Examples of the method include, but are not limited to, a base encoding enzymes by a method of additionally inserting a polynucleotide comprising a nucleotide sequence encoding the enzymes into a chromosome or a method of introducing the polynucleotide into a vector system. A method of increasing the copy number of a sequence, a method of replacing the promoter of enzymes with a strong promoter, a method of specifically introducing a mutation into the promoter, and a method of mutating into an enzyme with strong activity by gene mutation.

본 발명의 일 구체예에 따르면, 오르니틴 카바모일트랜스퍼라제 활성을 강화시키는 것은 아르기닌 오페론에 존재하는 효소의 프로모터를 변이 또는 치환을 통해 네이티브 프로모터(native promoter)에 비하여 강한 프로모터로 변이시킬 수 있다. 상기 내재적 효소의 프로모터 대신 염기치환 변이를 갖는 개량형 프로모터 또는 이종 프로모터가 연결될 수 있는데, 상기 이종 프로모터의 예로는 pcj7 프로모터, lysCP1 프로모터, efTu 프로모터, groEL 프로모터, aceA 프로모터, aceB 프로모터 등이 있으나 이에 한정되는 것은 아니다.According to one embodiment of the present invention, enhancing ornithine carbamoyltransferase activity may change the promoter of the enzyme present in the arginine operon to a stronger promoter than the native promoter through mutation or substitution. An improved promoter having a base substitution mutation or a heterologous promoter may be linked instead of the promoter of the endogenous enzyme, and examples of the heterologous promoter include pcj7 promoter, lysCP1 promoter, efTu promoter, groEL promoter, aceA promoter, aceB promoter, etc., but are limited thereto. it is not

본 발명에서, "프로모터"는 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산서열, 즉, 폴리머라제가 결합하여 유전자의 전사를 개시하도록 하는 DNA 영역을 말하며, mRNA 전사 개시부위의 5' 부위에 위치한다.In the present invention, the "promoter" includes an untranslated nucleic acid sequence upstream of the coding region that includes a binding site for polymerase and has transcription initiation activity to mRNA of a gene downstream of the promoter, that is, the polymerase binds to Refers to a DNA region that initiates transcription of a gene, and is located at the 5' site of the mRNA transcription initiation site.

본 발명의 일 구체예에 따르면, 오르니틴 카바모일트랜스퍼라제 활성을 강화시키는 것은 오르니틴 카바모일트랜스퍼라제를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터를 균주에 형질전환하는 것을 통해 이루어지는 것일 수 있다.According to one embodiment of the present invention, enhancing ornithine carbamoyltransferase activity may be achieved by transforming the strain with an expression vector including a polynucleotide encoding ornithine carbamoyltransferase.

본 발명의 일 구체예에 따르면, 카바모일 인산 합성효소의 활성을 강화시키는 것은 카바모일 인산 합성효소를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터를 균주에 형질전환하는 것을 통해 이루어지는 것일 수 있다.According to one embodiment of the present invention, enhancing the activity of carbamoyl phosphate synthase may be achieved by transforming the strain with an expression vector including a polynucleotide encoding carbamoyl phosphate synthase.

본 발명에서, "벡터"는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제 가능한, 임의의 유전적 단위(예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 말한다. 본 발명에 있어서 벡터는 숙주 중에서 복제 가능한 것이면 특별히 한정되지 않으며 당업계에 알려진 임의의 벡터를 이용할 수 있다. 상기 재조합 벡터의 제작에 사용된 벡터는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지일 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ 벡터, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있으나, 이에 한정되지 않는다.In the present invention, "vector" refers to any medium for cloning and/or transfer of a base to a host cell. A vector may be a replicator capable of binding other DNA fragments to bring about replication of the bound fragment. "Replication unit" refers to any genetic unit (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as a self-unit of DNA replication in vivo, that is, is capable of replicating under its own control. . In the present invention, the vector is not particularly limited as long as it can replicate in a host, and any vector known in the art may be used. The vector used for the construction of the recombinant vector may be a plasmid, a cosmid, a virus or a bacteriophage in a natural state or a recombinant state. For example, pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ vectors, pBR-based, pUC-based plasmid vectors may be used. , pBluescript II-based, pGEM-based, pTZ-based, pCL-based, pET-based and the like can be used. The usable vector is not particularly limited and a known expression vector may be used, but is not limited thereto.

본 발명에서, "형질전환"은 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것이며, 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다. 본 발명의 일 구체예에 따르면 형질전환시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 사용될 수 있으나, 이에 한정되지 않는다.In the present invention, "transformation" refers to introducing a gene into a host cell so that it can be expressed in the host cell, and if the transformed gene can be expressed in the host cell, it is inserted into the chromosome of the host cell or located outside the chromosome Anything may be included without limitation. According to one embodiment of the present invention, the transformation method includes any method of introducing a nucleic acid into a cell, and may be performed by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and lithium acetate -DMSO method and the like may be used, but is not limited thereto.

본 발명의 일 구체예에 따르면, 카바모일 인산 합성효소 발현의 증가는 상기 carAcarB 유전자를 포함하는 carAB오페론에 존재하는 유전자 클러스터의 프로모터가 efTu 프로모터 또는 슈퍼옥사이드 디스뮤테이즈(superoxide dismutase; sod)를 코딩하는 유전자의 프로모터로 치환되어 실시되는 것일 수 있다.According to one embodiment of the present invention, the increase in carbamoyl phosphate synthase expression is caused by the efTu promoter or superoxide dismutase (sod) promoter of a gene cluster present in the carAB operon including the carA and carB genes. It may be carried out by being substituted with the promoter of the gene encoding it.

본 발명의 일 구체예에 따르면, 상기 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인 것일 수 있다.According to one embodiment of the present invention, the strain may be Corynebacterium glutamicum.

본 발명의 일 구체예에 따르면, 상기 코리네박테리움 속 균주는 코리네박테리움 암모니아 게네스(Corynebacterium ammoniagenes), 코리네박테리움 아세토액시도필럼(Corynebacterium acetoacidophilum), 코리네박테리움 아세토글루타미쿰(Corynebacterium acetoglutamicum), 코리네박테리움 알카노리티쿰(Corynebacterium alkanolyticum), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 릴리움(Corynebacterium lilium), 코리네박테리움 멜라쎄콜라(Corynebacterium melassecola), 코리네 박테리움 써모아미노게네스(Corynebacterium thermoaminogenes), 코리네박테리움 에피시엔스(Corynebacterium efficiens), 또는 코리네박테리움 헤르쿨리스(Corynebacterium herculis) 등일 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the Corynebacterium sp. strain is Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium acetoacidophilum ( Corynebacterium acetoacidophilum ), Corynebacterium acetoglutamicum ( Corynebacterium acetoglutamicum ), Corynebacterium alkanolyticum ), Corynebacterium callunae ), Corynebacterium lilium ( Corynebacterium lilium ), Corynebacterium melassecola Coryne ), Corynebacterium thermoaminogenes ( Corynebacterium thermoaminogenes ), Corynebacterium efficiens ( Corynebacterium efficiens ), or Corynebacterium herculis ( Corynebacterium herculis ) It may be, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 코리네박테리움 속 균주는 코리네박테리움 글루타미쿰 ATCC13032일 수 있다.According to one embodiment of the present invention, the Corynebacterium sp. strain may be Corynebacterium glutamicum ATCC13032.

본 발명의 다른 양상은Another aspect of the present invention is

(a) 상기 코리네박테리움 속 변이 균주를 배지에서 배양하는 단계; 및 (a) culturing the mutant strain of the genus Corynebacterium in a medium; and

(b) 배양된 변이 균주 또는 배양 배지에서 L-시트룰린 또는 L-아르기닌을 회수하는 단계를 포함하는 L-시트룰린 또는 L-아르기닌의 제조 방법을 제공한다.(b) provides a method for producing L-citrulline or L-arginine, comprising the step of recovering L-citrulline or L-arginine from the cultured mutant strain or culture medium.

본 발명의 일 구체예에 따르면, 상기 배양은 당업계에 알려진 적절한 배지와 배양조건에 따라 이루어질 수 있고 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the culture can be made according to an appropriate medium and culture conditions known in the art, and those skilled in the art can easily adjust the medium and culture conditions for use. Specifically, the medium may be a liquid medium, but is not limited thereto. The culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다. 코리네박테리아 속 균주에 대한 배양 배지는 공지된 문헌(Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981)을 참조할 수 있으나, 이에 한정되는 것은 아니다. According to one embodiment of the present invention, the medium should meet the requirements of a specific strain in an appropriate manner, and may be appropriately modified by a person skilled in the art. The culture medium for the Corynebacteria sp. strain may refer to the known literature (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981), but is not limited thereto.

본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the medium may include various carbon sources, nitrogen sources and trace element components. Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto. Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean wheat and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. The nitrogen source may also be used individually or as a mixture, but is not limited thereto. Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. In addition, the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto. In addition, essential growth substances such as amino acids and vitamins may be included. In addition, precursors suitable for the culture medium may be used. The medium or individual components may be added batchwise or continuously by an appropriate method to the culture medium during the culturing process, but is not limited thereto.

본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃ 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.According to one embodiment of the present invention, it is possible to adjust the pH of the culture medium by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microorganism culture medium in an appropriate manner during culture. In addition, the use of an antifoaming agent such as fatty acid polyglycol ester during culture can suppress the formation of bubbles. Additionally, in order to maintain the aerobic state of the culture medium, oxygen or oxygen-containing gas (eg, air) may be injected into the culture medium. The temperature of the culture medium may be usually 20 °C to 45 °C, for example, 25 °C to 40 °C. The incubation period may be continued until a useful substance is obtained in a desired yield, for example, it may be 10 to 160 hours.

본 발명의 일 구체예에 따르면, 상기 배양된 변이 균주 및 배양 배지에서 L-시트룰린 또는 L-아르기닌을 회수하는 단계는 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 L-시트룰린 또는 L-아르기닌을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나 이에 제한되지 않는다.According to one embodiment of the present invention, the step of recovering L-citrulline or L-arginine from the cultured mutant strain and the culture medium is L- produced from the medium using a suitable method known in the art according to the culture method. Citrulline or L-arginine may be collected or recovered. e.g. centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (e.g. ammonium sulfate precipitation), chromatography (e.g. ion exchange, affinity, hydrophobicity and size exclusion ) can be used, but is not limited thereto.

본 발명의 일 구체예에 따르면, L-시트룰린 또는 L-아르기닌을 회수하는 단계는 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 이온교환 크로마토그래피를 통하여 분리할 수 있다.According to one embodiment of the present invention, in the step of recovering L-citrulline or L-arginine, the culture may be centrifuged at low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography.

본 발명의 일 구체예에 따르면, 상기 L-시트룰린 또는 L-아르기닌을 회수하는 단계는 L-시트룰린 또는 L-아르기닌을 정제하는 공정을 포함할 수 있다.According to one embodiment of the present invention, the step of recovering L-citrulline or L-arginine may include a step of purifying L-citrulline or L-arginine.

본 발명의 일 구체예에 따른 변이 균주는 오르니틴 카바모일트랜스퍼라제 및 카바모일 인산 합성효소의 활성이 강화되어 L-시트룰린 또는 L-아르기닌 생산능이 우수하므로, 상기 변이 균주를 이용하면 보다 효과적으로 L-시트룰린 또는 L-아르기닌을 제조할 수 있다.The mutant strain according to an embodiment of the present invention has excellent L-citrulline or L-arginine production ability due to enhanced activity of ornithine carbamoyltransferase and carbamoyl phosphate synthase. Citrulline or L-arginine can be prepared.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.

실시예 1. 오르니틴 카바모일트랜스퍼라제 및/또는 카바모일 인산 합성효소의 활성이 강화된 균주의 L-시트룰린 생산성 증가 확인Example 1. Confirmation of increase in L-citrulline productivity of strains with enhanced activity of ornithine carbamoyltransferase and/or carbamoyl phosphate synthase

실시예 1-1. eftu 프로모터 치환을 위한 삽입 벡터의 제작Example 1-1. Construction of insertion vector for eftu promoter substitution

L-시트룰린의 생산을 위해 필요한 카바모일 인산(carbamoyl phosphate)을 생성하는 효소인 카바모일 인산 합성효소를 강화하기 위하여 carAcarB의 발현 증가를 통해 이 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터를 eftu 프로모터로 교체하고자 하였다.To enhance the carbamoyl phosphate synthase, an enzyme that produces carbamoyl phosphate required for the production of L-citrulline, by increasing the expression of carA and carB , these genes eftu the native promoter at the top of the operon. It was intended to be replaced with a promoter.

Wizard® Genomic DNA Purification Kit(Promega, 미국)를 이용하여 제조사의 매뉴얼에 따라 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC13032 균주로부터 게놈 DNA를 분리하였다.Genomic DNA was isolated from the Corynebacterium glutamicum ATCC13032 strain according to the manufacturer's manual using the Wizard ® Genomic DNA Purification Kit (Promega, USA).

프라이머 이름Primer name 서열(5'->3')sequence (5'->3') 서열번호SEQ ID NO: primer 1primer 1 5'- gcctggaaacctacgacgcg-3'5'- gcctggaaacctacgacgcg-3' 서열번호 1SEQ ID NO: 1 primer 2primer 2 5'-taagtagggtattcattgcattatatg-3'5'-taagtagggtattcattgcattatatg-3' 서열번호 2SEQ ID NO: 2 primer 3primer 3 5'-tgcaatgaataccctacttagctgccaatt-3'5'-tgcaatgaataccctacttagctgccaatt-3' 서열번호 3SEQ ID NO: 3 primer 4primer 4 5'-ctttactcacgggtaaaaaatcctttcgta-3'5'-ctttactcacgggtaaaaaatcctttcgta-3' 서열번호 4SEQ ID NO: 4 primer 5primer 5 5' -ttttttacccgtgagtaaagacaccaccacc-3'5' -ttttttacccgtgagtaaagacaccaccacc-3' 서열번호 5SEQ ID NO: 5 primer 6primer 6 5'-cgtaggtttcatcagcagag-3'5'-cgtaggtttcatcagcagag-3' 서열번호 6SEQ ID NO: 6

분리한 게놈 DNA를 주형으로 tuf 유전자(elongation factor Tu; NCgl0480) 의 상단 200bp 및 carA 유전자(carbamoyl phosphate synthase small subunit; NCgl1548)와 상위 유전자인 pyrC 유전자(dihydroorotase; NCgl1547)의 ORF(open reading frame)가 포함된 DNA 절편 560bp, 569bp을 PrimeSTAR® Max DNA Polymerase(Takara, 일본)를 이용하여 PCR을 수행하였다. Tuf gene with a genomic DNA template; gene top 200bp and carA of (elongation factor Tu NCgl0480) (carbamoyl phosphate synthase small subunit; NCgl1548) and the parent gene pyrC gene; ORF (open reading frame) of (dihydroorotase NCgl1547) is The included DNA fragments 560bp and 569bp were subjected to PCR using PrimeSTAR ® Max DNA Polymerase (Takara, Japan).

프라이머(primer) 1-2, 3-4, 5-6세트를 각각 사용하여 98℃에서 10초, 55℃에서 5초, 72℃에서 1분의 조건으로 31 사이클을 반복하여 PCR을 수행하고, 얻어진 PCR 산물을 1% 아가로즈 겔에서 전기영동 후 각각 560, 220, 569bp의 사이즈를 갖는 밴드를 용출 후 각각의 PCR 산물을 주형으로 하여 프라이머 1-6세트를 사용하여 같은 조건으로 PCR을 수행하여 1309bp 사이즈의 carAcarB를 포함하는 PCR 산물을 수득하였다. 사용한 프라이머 서열은 상기 표 1에 기재하였다.PCR was performed by repeating 31 cycles under the conditions of 10 seconds at 98°C, 5 seconds at 55°C, and 1 minute at 72°C using primers 1-2, 3-4, and 5-6 sets, respectively, After electrophoresis of the obtained PCR product on a 1% agarose gel, bands having a size of 560, 220, and 569 bp, respectively, were eluted, and then PCR was performed under the same conditions using each PCR product as a template and 1-6 sets of primers. A PCR product containing carA and carB of 1309 bp size was obtained. The primer sequences used are shown in Table 1 above.

삽입벡터로 사용할 pK19mobsacB 플라스미드(Gene, 145: 69-73, 1994)를 제한효소 HindIII, XbaI 제한효소(Takara, 일본)로 절단하였다. 상기에서 수득한 PCR 산물과 절단된 플라스미드를 In-Fusion® HD Cloning Kit(Takara, 일본)를 이용하여 제조사의 매뉴얼에 따라 연결하여, 삽입 벡터를 제작하고 이를 “pK19mobsacB-Peftu-carAB”으로 명명하였다.The pK19mobsacB plasmid (Gene, 145: 69-73, 1994) to be used as an insertion vector was digested with restriction enzymes Hind III and Xba I (Takara, Japan). The PCR product obtained above and the cleaved plasmid were ligated using the In-Fusion ® HD Cloning Kit (Takara, Japan) according to the manufacturer's manual to construct an insertion vector and named it “pK19mobsacB-Peftu-carAB”. .

실시예 1-2. Example 1-2. argFargF 과발현 벡터 제작 Construction of overexpression vectors

Wizard® Genomic DNA Purification Kit(Promega, 미국)를 이용하여 제조사의 매뉴얼에 따라 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC13032 균주로부터 게놈 DNA를 분리하였다.Genomic DNA was isolated from the Corynebacterium glutamicum ATCC13032 strain according to the manufacturer's manual using the Wizard ® Genomic DNA Purification Kit (Promega, USA).

분리한 게놈 DNA를 주형으로 sodA(NCgl2826) 유전자의 상단 200bp와 argF 유전자의 ORF가 포함된 DNA 절편 960bp를 PrimeSTAR® Max DNA Polymerase(Takara, 일본)를 이용하여 PCR을 수행하였다. SodA (NCgl2826) using the isolated genomic DNA as a template PCR was performed using PrimeSTAR ® Max DNA Polymerase (Takara, Japan) for 960 bp of the DNA fragment including the top 200 bp of the gene and the ORF of the argF gene.

프라이머 이름Primer name 서열(5'-3')sequence (5'-3') 서열번호SEQ ID NO: primer 7primer 7 5'- GTCGACtagctgccaattattccgg-3',5'-GTCGACtagctgccaattattccgg-3', 서열번호 7SEQ ID NO: 7 primer 8primer 8 5'- tggttgtgaagtcatatgaaaatcctttcg-3'5'-tggttgtgaagtcatatgaaaatcctttcg-3' 서열번호 8SEQ ID NO: 8 primer 9primer 9 5'- cgaaaggattttcatatgacttcacaacca-3'5'-cgaaaggattttcatatgacttcacaacca-3' 서열번호 9SEQ ID NO: 9 primer 10primer 10 5'- GGATCCttacctcggctggttggccag-3'5'-GGATCCttacctcggctggttggccag-3' 서열번호 10SEQ ID NO: 10

프라이머 7-8, 9-10세트를 각각 사용하여 98℃에서 10초, 55℃에서 5초, 72℃에서 1분의 조건으로 31 사이클을 반복하여 PCR을 수행하고, 얻어진 PCR 산물을 1% 아가로즈 겔에서 전기영동 후 각각 200bp와 960bp의 사이즈를 갖는 밴드를 용출하여 soda 프로모터와 argF 단편을 수득하였다. 사용한 프라이머 서열은 상기 표 2에 기재하였다.Using primers 7-8 and 9-10 sets, respectively, 31 cycles were repeated under the conditions of 98°C for 10 sec, 55°C for 5 sec, and 72°C for 1 min. PCR was performed, and the obtained PCR product was subjected to 1% agar After electrophoresis on a rose gel, bands having a size of 200 bp and 960 bp, respectively, were eluted to obtain a soda promoter and an argF fragment. The primer sequences used are shown in Table 2 above.

상기에서 증폭하여 분리된 PCR 산물과 pK19mobsacB 플라스미드를 제한효소 SalI과 BamHI 제한효소(Takara, 일본)로 절단하였다. 절단된 플라스미드 및 PCR 산물을 T4 ligase(Bioneer, 한국)를 이용하여 연결하여, argF를 과발현시키기 위한 재조합 벡터를 제작하고 이를 “pA'-Psod-argF”로 명명하였다.The amplified and isolated PCR product and pK19mobsacB plasmid were digested with restriction enzymes Sal I and BamHI restriction enzymes (Takara, Japan). The cleaved plasmid and PCR product were ligated using T4 ligase (Bioneer, Korea) to construct a recombinant vector for overexpressing argF, which was named “pA'-Psod-argF”.

실시예 1-3. 코리네박테리움 글루타미쿰의 변이 균주의 제작Examples 1-3. Production of mutant strains of Corynebacterium glutamicum

코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC13032 균주(이하, ATCC13032 균주)에 상기 실시예 1-1에서 제작한 pK19mobsacB-Peftu-carAB 및 실시예 1-2에서 제작한 pA'-Psod-argF를 전기충격요법(electroporation)으로 도입하였다. Corynebacterium glutamicum ( Corynebacterium glutamicum ) pK19mobsacB-Peftu-carAB prepared in Example 1-1 and pA'-Psod-argF prepared in Example 1-2 to ATCC13032 strain (hereinafter, ATCC13032 strain) It was introduced by electroporation.

구체적으로, RG배지(Beef extract 10g/L, BHI 40g/L, 소비톨30g/L) 100㎖에서 ATCC13032 균주를 1차 배양하고, 동일배지에 2.5g/L glycine, 400mg/L isoniazid, 0.1㎖/L Tween80을 첨가한 배지를 제조하였다. 그 다음, OD610값이 0.3이 되게 종배양액을 접종한 후, 30℃ , 180rpm으로 3 내지 5시간 배양하여 OD610값이 1.6 내지 1.8가 되도록 하였다. 얼음에서 30분간 방치 한 후, 4℃, 3500 rpm으로 15분간 원심분리하였다. 그 후 상등액을 버리고 침전된 ATCC13032 균주를 10% 글리세롤 용액으로 4회 세척하고, 최종적으로 10% 글리세롤 용액 0.5㎖에 재현탁하였다. 전기충격요법(Electroporation)은 바이오-라드(Bio-Rad) 일렉트로포레이터(electroporator)를 사용하여 수행하였다. 일렉트로포레이션 큐벳(0.2 mm)에 상기 방법으로 제조한 컴피턴트 셀(competent cell)을 넣고 실시예 1-1에서 제조한 pK19mobsacB-Peftu-carAB 벡터 또는 실시예 1-2에서 제작한 pA'-Psod-argF를 첨가한 후, 2.5kV, 200Ω 및 12.5㎌의 조건으로 전기충격을 가하였다. 전기충격이 끝난 즉시 재생(Regeneration) 배지(Brain Heart infusion 18.5 g/l 소비톨 0.5 M) 1㎖을 첨가하고 46℃에서 6분간 열처리하였다. 그 후 실온에서 식힌 뒤 15㎖ 캡 튜브로 옮겨 30℃에서 2시간 배양하고 카나마이신(kanamycine) 30㎍/㎖이 포함된 고체배지(Brainheart infusion 40g/L, D-소비톨 30g/L, Beef extract 10g/L, Agar 20g/L)에 도말하였다. 30℃에서 3 내지 4일간 배양하여 1차 재조합주를 선별하고 2YT 액체배지(Tryptone 16g/L, Yeast extract 10g/L, NaCl 5g/L)에서 12시간 배양후 2YT-10%sucrose 고체배지(Tryptone 16g/L, Yeast extract 10g/L, NaCl 5g/L, sucrose 100g/L)에 도말하여 2차 재조합 유도하였다. 2YT-10%sucrose 고체배지에서 배양된 콜로니를 2YT-Km 배지(Tryptone 16g/L, Yeast extract 10g/L, NaCl 5g/L, 카나마이신 30㎍/㎖와 2YT-10%sucrose에 패칭(patching)하여 카나마이신에 저항성을 가지고, 10% sucrose 배지에서 생육이 가능한 균주를 최종적으로 선별하였다.Specifically, the ATCC13032 strain was first cultured in 100 ml of RG medium (Beef extract 10 g/L, BHI 40 g/L, sorbitol 30 g/L), and 2.5 g/L glycine, 400 mg/L isoniazid, 0.1 ml in the same medium. A medium to which /L Tween80 was added was prepared. Then, the seed culture was inoculated so that the OD 610 value was 0.3, and then incubated at 30° C. and 180 rpm for 3 to 5 hours so that the OD 610 value was 1.6 to 1.8. After standing on ice for 30 minutes, centrifugation was performed at 4°C and 3500 rpm for 15 minutes. Thereafter, the supernatant was discarded and the precipitated ATCC13032 strain was washed 4 times with a 10% glycerol solution, and finally resuspended in 0.5 ml of a 10% glycerol solution. Electroporation was performed using a Bio-Rad electroporator. The competent cell prepared by the above method was put into an electroporation cuvette (0.2 mm) and the pK19mobsacB-Peftu-carAB vector prepared in Example 1-1 or the pA′-Psod prepared in Example 1-2 After adding -argF, an electric shock was applied under the conditions of 2.5 kV, 200 Ω and 12.5 μF. Immediately after the electric shock, 1 ml of regeneration medium (Brain Heart infusion 18.5 g/l sorbitol 0.5 M) was added, and heat treatment was performed at 46° C. for 6 minutes. After cooling at room temperature, transfer to a 15ml cap tube, incubate at 30℃ for 2 hours, and a solid medium containing 30㎍/ml of kanamycine (Brainheart infusion 40g/L, D-sorbitol 30g/L, Beef extract 10g /L, Agar 20g/L). The primary recombinant strain was selected by culturing at 30° C. for 3 to 4 days, and after 12 hours incubation in 2YT liquid medium (Tryptone 16g/L, Yeast extract 10g/L, NaCl 5g/L), 2YT-10% sucrose solid medium (Tryptone 16g/L, Yeast extract 10g/L, NaCl 5g/L, sucrose 100g/L) to induce secondary recombination. Colonies cultured in 2YT-10% sucrose solid medium were patched in 2YT-Km medium (Tryptone 16g/L, Yeast extract 10g/L, NaCl 5g/L, kanamycin 30㎍/㎖ and 2YT-10%sucrose) by patching. A strain that has resistance to kanamycin and can grow in 10% sucrose medium was finally selected.

모균주로서 사용된 ATCC13032 균주를 "CIT 1" 균주로 명명하였다. PCR 및 서열분석을 통해 Peftu-carAB가 재조합 균주의 염색체내에 정상적으로 삽입되었는지를 확인하여, carAcarB 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터가 eftu 프로모터로 교체되었는지 여부를 확인하고, 이를 "CIT-2" 균주로 명명하였다.The ATCC13032 strain used as the parent strain was named "CIT 1" strain. By confirming whether Peftu-carAB was normally inserted into the chromosome of the recombinant strain through PCR and sequencing, it was confirmed whether the native promoter at the top, in which the carA and carB genes were present as operons, was replaced with the eftu promoter, and this 2" strain.

또한 argF을 과발현시키기 위하여 pA'-Psod-argF 벡터로 형질전환된 균주를 선택하고 이를 "CIT-1/pA'-Psod-argF" 균주로 명명하였다. In addition, in order to overexpress argF, a strain transformed with the pA'-Psod-argF vector was selected and named "CIT-1/pA'-Psod-argF" strain.

상기 CIT-2 균주에 argF를 과발현시키기 위하여 pA'-Psod-argF벡터를 이용하여 상기와 같은 방법으로 CIT-2 균주를 형질전환키고, 이를 "CIT-2/pA'-Psod-argF" 균주로 명명하였다.In order to overexpress argF in the CIT-2 strain, the CIT-2 strain was transformed in the same manner as above using the pA'-Psod-argF vector, and this was transformed into a "CIT-2/pA'-Psod-argF" strain. named.

실시예 1-4. 코리네박테리움 글루타미쿰의 변이 균주에서 argF, carA, 및 carB 발현양 분석Examples 1-4. Analysis of argF, carA, and carB expression levels in a mutant strain of Corynebacterium glutamicum

모균주로서 코리네박테리움 글루타미쿰 ATCC13032(이하, CIT-1), 상기 실시예 1-3에서 제조된 CIT-2, CIT-1/pA'-Psod-argF 및 CIT-2/pA'-Psod-argF 균주에 대해서 argF carA, carB 의 RNA 발현양을 RT-qPCR을 통하여 분석하였다.Corynebacterium glutamicum ATCC13032 (hereinafter, CIT-1) as the parent strain, CIT-2, CIT-1/pA'-Psod-argF and CIT-2/pA'- For the Psod-argF strain, RNA expression levels of argF , carA, and carB were analyzed by RT-qPCR.

CIT-1, CIT-2, CIT-1/pA'-Psod-argF 또는 CIT-2/pA'-Psod-argF 균주를 각각 플라스크 10㎖의 종배지((/L): 95% Glucose 10.5g, Beef extract 10g, Yeast extract 10g, Polypeptone 10g, NaCl 2.5g, Arginine 100mg)에서 30℃, 160rpm의 조건으로 24시간 동안 배양하였다. 배양된 각각의 균주를 50㎖의 플라스크 역가배지((/L): 95% Glucose 105.3g, MgSO4 1g, YPA 4g, KH2PO4 0.8g, Na2HPO4 1.2g, (NH4)2SO4 30g, FeSO4 20mg, MnSO4 20mg, ZnSO4 10mg, Arginine 100mg, Biotin 10㎍, Thiamine 200㎍)에 접종하여 30℃, 140rpm, 20시간 동안 배양하였다.CIT-1, CIT-2, CIT-1/pA'-Psod-argF or CIT-2/pA'-Psod-argF strains were each prepared in a flask of 10 ml of seed medium ((/L): 95% Glucose 10.5 g, Beef extract 10g, yeast extract 10g, Polypeptone 10g, NaCl 2.5g, Arginine 100mg) was cultured at 30°C and 160rpm for 24 hours. Each strain cultured in a flask of 50 ml titer medium ((/L): 95% Glucose 105.3 g, MgSO 4 1 g, YPA 4 g, KH 2 PO 4 0.8 g, Na 2 HPO 4 1.2 g, (NH 4 ) 2 SO 4 30g, FeSO 4 20mg, MnSO 4 20mg, ZnSO 4 10mg, Arginine 100mg, Biotin 10㎍, Thiamine 200㎍) was inoculated and cultured at 30℃, 140rpm, for 20 hours.

배양 종료액을 같은 농도로 집적하여 Rneasy Mini Kit(QIAGEN, 독일)를 이용하여 사용 매뉴얼에 따라 RNA 를 추출하였다.RNA was extracted according to the instruction manual using the Rneasy Mini Kit (QIAGEN, Germany) by collecting the culture termination solution at the same concentration.

iScript cDNA Systhesis Kit(Bio-Rad Laboratories, Hercules, 미국)를 이용하여 500ng의 RNA를 주형으로 cDNA를 합성한 후 iQTM SYBR Green Supermix(Bio-Rad Laboratories, Hercules, 미국)를 이용하여 Real-time quantitative PCR(RT-qPCR; CFX96 Real-Time PCR, Bio-Rad, 미국)을 수행하였다. 95℃에서 1분 동안 cDNA를 전변성(pre-denaturation)시킨 뒤 95℃ 15초, 60℃ 15초, 72℃ 45초로 온도 및 시간을 변화시키며 40사이클을 반복하였다. 72℃에서 정보가 수집되었으며, 사용된 프라이머의 melt curve를 확인하기 위하여 0.5℃씩 65℃에서 95℃까지 온도를 증가시켰고, 온도가 변화할 때마다 정보를 수집하였다. 프라이머는 모두 95~100%의 efficiency를 보이는 것으로 선별하여 사용하였다. 16s rRNA 유전자를 endogenous control로 사용하여 argF, carA, carB 의 발현을 정규화하여 그 결과값을 표 3에 기재하였다. 표 3에서 car AB 발현양은 carA 발현 및 carB의 발현양의 평균값을 나타낸다. 유전자를 증폭하기 위하여 사용한 프라이머를 하기 표 4에 기재하였다.After synthesizing cDNA with 500 ng of RNA as a template using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, USA), real-time quantitative analysis using iQ TM SYBR Green Supermix (Bio-Rad Laboratories, Hercules, USA) PCR (RT-qPCR; CFX96 Real-Time PCR, Bio-Rad, USA) was performed. After pre-denaturation of cDNA at 95°C for 1 minute, 40 cycles were repeated while changing the temperature and time to 95°C for 15 seconds, 60°C for 15 seconds, and 72°C for 45 seconds. Information was collected at 72°C, and the temperature was increased from 65°C to 95°C by 0.5°C to confirm the melt curve of the primer used, and information was collected whenever the temperature was changed. All of the primers were selected and used to show an efficiency of 95 to 100%. The expression of argF, carA, and carB was normalized using the 16s rRNA gene as an endogenous control, and the results are shown in Table 3. In Table 3, the expression level of car AB represents the average value of the expression level of carA and the expression level of carB. The primers used to amplify the gene are shown in Table 4 below.

FlaskFlask 상대적인 carAB 발현양Relative carAB expression level 상대적인 argF 발현양Relative argF expression level CIT-1CIT-1 1.001.00 1.001.00 CIT-2CIT-2 4.514.51 1.221.22 CIT-1/pA’-Psod-argFCIT-1/pA’-Psod-argF 0.960.96 15.0515.05 CIT-2/pA’-Psod-argFCIT-2/pA’-Psod-argF 5.125.12 17.8417.84

표 3에 나타난 결과와 같이, carAcarB 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터가 eftu 프로모터로 치환된 균주인 CIT-2에서는 모균주인 CIT-1 대비 carAB 발현양(carA 및 carB 발현양의 평균)이 4.5배 정도 현저히 증가하였고, argF가 과발현된 균주인 CIT-1/pA'-Psod-argF 는 CIT-1대비 argF의 발현양이 15배 정도 현저히 증가하였으며, carAcarB 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터가 eftu 프로모터로 치환되고 argF가 과발현된 CIT-2/pA'-Psod-argF 균주에서는 CIT-1 대비 carAB발현이 5.12배 증가하였고, argF의 발현양이 17.84배 증가한 것을 확인하였다. 따라서, RT-qPCR을 수행하여 carAB 및 argF의 발현양이 증가된 것을 확인하였으므로, 실시예 1-1및 1-2에서 생성된 균주는 carA, carB 유전자 발현 및/또는 argF 유전자 발현의 증가에 의해서 카바모일 인산 합성 효소 및/또는 오르니틴 카바모일트랜스퍼라제의 활성이 강화된 것을 알 수 있다.As shown in Table 3, in CIT-2, a strain in which the upper native promoter in which the carA and carB genes exist as operons is substituted with the eftu promoter, carAB expression levels ( average) was significantly increased by 4.5 times in the strain overexpressing the argF CIT-1 / pA'-Psod- argF was the expression of argF prepare CIT-1 significantly increased by 15 times, the carA and carB genes operon In the CIT-2/pA'-Psod-argF strain in which the existing upper native promoter was substituted with the eftu promoter and argF was overexpressed, it was confirmed that the expression of carAB increased by 5.12 times compared to CIT-1 and the expression amount of argF increased by 17.84 times. did. Therefore, since it was confirmed that the expression levels of carAB and argF were increased by performing RT-qPCR, the strains generated in Examples 1-1 and 1-2 were obtained by increasing carA, carB gene expression and/or argF gene expression. It can be seen that the activity of carbamoyl phosphate synthase and/or ornithine carbamoyltransferase is enhanced.

프라이머 이름Primer name 서열(5'->3')sequence (5'->3') 서열번호SEQ ID NO: carAcarA ForwardForward 5'- acgtaccttcaccggatttg-3'5'-acgtaccttcaccggatttg-3' 서열번호 11SEQ ID NO: 11 ReverseReverse 5'-gaaggatcggtcatggtttct-3'5'-gaaggatcggtcatggtttct-3' 서열번호 12SEQ ID NO: 12 carBcarB ForwardForward 5'-gccggaatacatcgacaaga-3'5'-gccggaatacatcgacaaga-3' 서열번호 13SEQ ID NO: 13 ReverseReverse 5'-agctggatagctgcgttaag-3'5'-agctggatagctgcgttaag-3' 서열번호 14SEQ ID NO: 14 argFargF ForwardForward 5'-cttcaactcgtactcgcttctc-3'5'-cttcaactcgtactcgcttctc-3' 서열번호 15SEQ ID NO: 15 ReverseReverse 5'-actcgcccttacccatct-3'5'-actcgcccttacccatct-3' 서열번호 16SEQ ID NO: 16 16s rRNA16s rRNA ForwardForward 5'-acccttgtcttatgttgccag-3'5'-acccttgtcttatgttgccag-3' 서열번호 17SEQ ID NO: 17 ReverseReverse 5'-tgtaccgaccattgtagcatg-3'5'-tgtaccgaccattgtagcatg-3' 서열번호 18SEQ ID NO: 18

실시예 1-5. 코리네박테리움 글루타미쿰의 변이 균주의 L-시트룰린 생산성 확인.Examples 1-5. Confirmation of L-citrulline productivity of a mutant strain of Corynebacterium glutamicum.

모균주로서 코리네박테리움 글루타미쿰 ATCC13032(이하, CIT-1), 실시예 1-3에서 제작한 CIT-2, 또는CIT-1/pA'-Psod-argF 균주를 각각 플라스크 종배지 고체배지((/L): 95% Glucose 10.5g, Beef extract 10g, Yeast extract 10g, Polypeptone 10g, NaCl 2.5g, Arginine 100mg)에 패칭(patching)하여 30℃에서 24시간 동안 배양하였다. CIT-2/pA'-Psod-argF 균주는 카나마이신 30mg/㎖이 함유된 플라스크 종배지 고체배지에 패칭하여 30℃에서 24시간 동안 배양하였다. 배양된 콜로니를 10㎖의 플라스크 역가배지((/L): 95% Glucose 105.3g, MgSO4 1g, YPA 4g, KH2PO4 0.8g, Na2HPO4 1.2g, (NH4)2SO4 30g, FeSO4 20mg, MnSO4 20mg, ZnSO4 10mg, Arginine 100mg, Biotin 100㎍, Thiamine 200㎍)에 접종하여 30℃, 160rpm, 30시간 동안 배양하였다.As the parent strain, Corynebacterium glutamicum ATCC13032 (hereinafter, CIT-1), CIT-2 prepared in Examples 1-3, or CIT-1/pA'-Psod-argF strains were used in flask seed medium solid medium, respectively. ((/L): 95% Glucose 10.5g, Beef extract 10g, Yeast extract 10g, Polypeptone 10g, NaCl 2.5g, Arginine 100mg) was patched and cultured at 30° C. for 24 hours. The CIT-2/pA'-Psod-argF strain was patched into a flask seed medium containing 30 mg/ml of kanamycin and cultured at 30° C. for 24 hours. Cultured colonies in a flask of 10 ml titer medium ((/L): 95% Glucose 105.3 g, MgSO 4 1 g, YPA 4 g, KH 2 PO 4 0.8 g, Na 2 HPO 4 1.2 g, (NH 4 ) 2 SO 4 30g, FeSO 4 20mg, MnSO 4 20mg, ZnSO 4 10mg, Arginine 100mg, Biotin 100㎍, Thiamine 200㎍) was inoculated and cultured at 30℃, 160rpm, for 30 hours.

배양 종료 후 배양액에 있는 배양액을 증류수로 100배 희석하고 0.45um 필터로 여과한 다음 컬럼(DionexIonPacTM CS12A)과 자외선 검출기(195mm)가 장착된 고성능 액체크로마토그래피(HPLC; agilent technologies 1260 infinity, agilent technologies, 미국)를 이용하여 L-시트룰린 생산량을 분석하였다. CIT-1, CIT-2, CIT-1/pA'-Psod-argF 또는 CIT-2/pA'-Psod-argF 균주가 생산한 L-시트룰린 생산량을 하기 표 5에 나타내었다. 표 5에서 CIT(%)는 각 균주에 의해 생산된 시트룰린의 생산량의 백분율를 의미하고 발효수율(Yp/s)은 소모한 당 대비 생산된 L-시트룰린의 양을 나타낸다. After completion of the culture, the culture solution in the culture solution was diluted 100 times with distilled water and filtered through a 0.45um filter. Then, high-performance liquid chromatography (HPLC; agilent technologies 1260 infinity, agilent technologies, USA) was used to analyze L-citrulline production. The L-citrulline production amount produced by the CIT-1, CIT-2, CIT-1/pA'-Psod-argF or CIT-2/pA'-Psod-argF strains is shown in Table 5 below. In Table 5, CIT (%) means the percentage of the production of citrulline produced by each strain, and the fermentation yield (Yp/s) indicates the amount of L-citrulline produced relative to the consumed sugar.

균주strain CIT(%)CIT (%) 발효수율(Yp/s)Fermentation yield (Yp/s) CIT-1CIT-1 1.281.28 28.328.3 CIT-2CIT-2 1.381.38 32.232.2 CIT-1/pA’-Psod-argFCIT-1/pA’-Psod-argF 1.381.38 33.233.2 CIT-2/pA’-Psod-argFCIT-2/pA’-Psod-argF 1.621.62 38.738.7

표 5에 나타난 바와 같이, 모균주인 CIT-1 대비 carA 및 carB의 발현양이 증가된 CIT-2 및 argF의 발현양이 증가된 CIT-1/pA’-Psod-argF의 L-시트룰린 생산량(%) 및 발효 수율이 증가하였음을 알 수 있다.As shown in Table 5, L-citrulline production of CIT-1/pA'-Psod-argF with increased expression of CIT-2 and argF with increased expression of carA and carB compared to the parent strain CIT-1 ( %) and it can be seen that the fermentation yield increased.

한편, argF, carA 및 carB의 발현양이 증가된 CIT-2/pA’-Psod-argF균주에서 CIT-2 및 CIT-1/pA’-Psod-argF보다도 L-시트룰린 생산량(%) 및 발효 수율이 증가되었고, 이로부터 carA, carB 유전자의 발현 및 argF유전자의 발현이 증가된 것에 의하여 상승적으로 L-시트룰린의 생산량이 증가하였음을 알 수 있다. On the other hand, in the CIT-2/pA'-Psod-argF strain with increased expression of argF, carA and carB, the L-citrulline production (%) and fermentation yield compared to CIT-2 and CIT-1/pA'-Psod-argF. was increased, and from this, it can be seen that the production of L-citrulline synergistically increased due to the increase in the expression of carA, carB gene, and the expression of argF gene.

전술한 바와 같이 L-시트룰린은 L-아르기닌의 전구체로서 L-시트룰린의 생산능이 향상된 균주에서는 L-아르기닌의 생산능도 향상되었음이 합리적으로 예상될 수 있다. 상기 실시예의 변이 균주는 L-시트룰린의 생산량이 모균주보다 증가되었으므로, L-아르기닌의 생산능 향상도 기대될 수 있다.As described above, L-citrulline is a precursor of L-arginine, and in the strain having improved L-citrulline production ability, it can be reasonably expected that the production ability of L-arginine is also improved. Since the mutant strain of the above example increased the production of L-citrulline than the parent strain, an improvement in the production ability of L-arginine can also be expected.

실시예 2. 오르니틴 카바모일트랜스퍼라제 및/또는 카바모일 인산 합성효소의 활성이 강화된 균주의 L-아르기닌 생산성 증가 확인Example 2. Confirmation of increased L-arginine productivity of strains with enhanced activity of ornithine carbamoyltransferase and/or carbamoyl phosphate synthase

실시예 2-1. sodA 프로모터 치환을 위한 삽입 벡터의 제작Example 2-1. Construction of insertion vector for sodA promoter substitution

카바모일 인산 합성효소를 발현하는 carA 및 carB 유전자의 발현 증가를 위해 네이티브 프로모터를 sodA 프로모터(슈퍼옥사이드 디스뮤테이즈(superoxide dismutase; sod)를 코딩하는 유전자의 프로모터)로 교체하고자 하였다. tuf유전자의 상단 200bp 대신 sodA 유전자 상단 200bp를 이용하는 것과 하기 표 6의 프라이머 1-11, 3-12, 5-13 세트를 사용하여 PCR 산물을 얻는 것을 제외하면 상기 실시예 1-1과 동일한 방법으로 벡터를 제작하였다. 제조된 삽입 벡터는 “pK19mobsacB-Psod-carAB”으로 명명하였다. To increase the expression of carA and carB genes expressing carbamoyl phosphate synthase, the native promoter was replaced with the sodA promoter (promoter of the gene encoding superoxide dismutase; sod). In the same manner as in Example 1-1, except for using the upper 200 bp of the sodA gene instead of the upper 200 bp of the tuf gene and obtaining a PCR product using the primers 1-11, 3-12, and 5-13 sets of Table 6 A vector was constructed. The prepared insertion vector was named “pK19mobsacB-Psod-carAB”.

프라이머 이름Primer name 서열(5'->3')sequence (5'->3') 서열번호SEQ ID NO: primer 1primer 1 5'- gcctggaaacctacgacgcg-3'5'- gcctggaaacctacgacgcg-3' 서열번호 1SEQ ID NO: 1 primer 11primer 11 5'-catataatgcaatgaataccctactta-3'5'-catataatgcaatgaataccctactta-3' 서열번호 22(서열번호 2의 상보서열)SEQ ID NO: 22 (complementary sequence of SEQ ID NO: 2) primer 3primer 3 5'-tgcaatgaataccctacttagctgccaatt-3'5'-tgcaatgaataccctacttagctgccaatt-3' 서열번호 3SEQ ID NO: 3 primer 12primer 12 5'-tacgaaaggattttttacccgtgagtaaag-3'5'-tacgaaaggattttttacccgtgagtaaag-3' 서열번호 23
(서열번호 4의 상보서열)
SEQ ID NO:23
(Complementary sequence of SEQ ID NO: 4)
primer 5primer 5 5' -ttttttacccgtgagtaaagacaccaccacc-3'5' -ttttttacccgtgagtaaagacaccaccacc-3' 서열번호 5SEQ ID NO: 5 primer 13primer 13 5'- ctctgctgatgaaacctacg -3'5'-ctctgctgatgaaacctacg -3' 서열번호 24
(서열번호 6의 상보서열)
SEQ ID NO: 24
(Complementary sequence of SEQ ID NO: 6)

실시예 2-2. Example 2-2. argFargF 과발현 벡터 제작 Construction of overexpression vectors

상기 실시예 1-2와 동일한 방법으로 soda 프로모터가 연결된 argF 과발현 벡터를 제작하고, “pA'-Psod-argF”로 명명하였다. An argF overexpression vector linked to the soda promoter was prepared in the same manner as in Example 1-2, and was named “pA'-Psod-argF”.

실시예 2-3. 코리네박테리움 글루타미쿰의 변이 균주의 제작Example 2-3. Production of mutant strains of Corynebacterium glutamicum

코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC13032 균주(이하, ATCC13032 균주)에 상기 실시예 2-1에서 제작한 pK19mobsacB-Psod-carAB 및 실시예 2-2에서 제작한 pA'-Psod-argF를 전기충격요법(electroporation)으로 도입하였다. 변이 균주 제작에 사용 및 선별에 방법 및 배지는 상기 실시예 1-3과 동일하다. Corynebacterium glutamicum ( Corynebacterium glutamicum ) pK19mobsacB-Psod-carAB prepared in Example 2-1 and pA'-Psod-argF prepared in Example 2-2 to ATCC13032 strain (hereinafter, ATCC13032 strain) It was introduced by electroporation. The method and medium for use and selection for mutant strain production are the same as in Examples 1-3.

모균주로서 사용된 ATCC13032 균주를 "AXR-5" 균주로 명명하였다. PCR 및 서열분석을 통해 Psod-carAB가 재조합 균주의 염색체내에 정상적으로 삽입되었는지를 확인하여, carAcarB 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터가 sodA 프로모터로 교체되었는지 여부를 확인하고, 이를 "AXR-6" 균주로 명명하였다. The ATCC13032 strain used as the parent strain was named "AXR-5" strain. By confirming whether Psod-carAB was normally inserted into the chromosome of the recombinant strain through PCR and sequencing, it was confirmed whether the native promoter at the top of which carA and carB genes were present as operons was replaced with the sodA promoter, and this It was designated as a 6" strain.

또한 모균주인 AXR-5를 pA'-Psod-argF 벡터로 형질전환된 균주를 선택하고 이를 "AXR-5/pA'-Psod-argF" 균주로 명명하였다. 상기 AXR-6 균주에 pA'-Psod-argF벡터를 이용하여 동일한 방법으로 형질전환시킨 균주를 "AXR-6/pA'-Psod-argF" 균주로 명명하였다.In addition, a strain transformed with the parent strain AXR-5 with the pA'-Psod-argF vector was selected and named "AXR-5/pA'-Psod-argF" strain. The strain transformed by the same method using the pA'-Psod-argF vector to the AXR-6 strain was named "AXR-6/pA'-Psod-argF" strain.

실시예 2-4. 코리네박테리움 글루타미쿰의 변이 균주에서 argF, carA, 및 carB 발현양 분석Example 2-4. Analysis of argF, carA, and carB expression levels in a mutant strain of Corynebacterium glutamicum

모균주로서 코리네박테리움 글루타미쿰 ATCC13032(이하, AXR-5), 상기 실시예 2-3에서 제조된 AXR-6, AXR-5/pA'-Psod-argF 및 AXR-6/pA'-Psod-argF 균주에 대해서 argF carA, carB 의 RNA 발현양을 RT-qPCR을 통하여 분석하였다.Corynebacterium glutamicum ATCC13032 (hereinafter, AXR-5) as a parent strain, AXR-6, AXR-5/pA'-Psod-argF and AXR-6/pA'- For the Psod-argF strain, RNA expression levels of argF , carA, and carB were analyzed by RT-qPCR.

AXR-5, AXR-6, AXR-5/pA'-Psod-argF, 및 AXR-6/pA'-Psod-argF 균주 균주를 각각 플라스크 10㎖의 종배지((/L): 95% Glucose 36.8g, MgSO4 1g, FeSO4 10mg, MnSO4 10mg, KH2PO4 1g, K2HPO4 1g, YSP 20g, Urea 1.5g, (NH4)SO4 5g, Biotin 100μg, Thiamine 100μg, CPN 100mg, Cysteine 50mg)에서 30℃, 160rpm의 조건으로 20시간 동안 배양하였다. 배양된 각각의 균주를 50㎖의 플라스크 역가배지((/L): 95% Glucose 52.6g, Sucrose 50g, MgSO4 1g, KH2PO4 2g, (NH4)2SO4 40g, FeSO4 20mg, MnSO4 20mg, Biotin 100ug, Thiamine 100 ug, YSP 4g, Urea 2g, Arginine 40g)에 접종하여 30℃, 140rpm, 20시간 동안 배양하였다.AXR-5, AXR-6, AXR-5/pA'-Psod-argF, and AXR-6/pA'-Psod-argF strains were each prepared in a flask of 10 ml of seed medium ((/L): 95% Glucose 36.8 g, MgSO 4 1 g, FeSO 4 10 mg, MnSO 4 10 mg, KH 2 PO 4 1 g, K 2 HPO 4 1 g, YSP 20 g, Urea 1.5 g, (NH 4 )SO 4 5 g, Biotin 100 μg, Thiamine 100 μg, CPN 100 mg, Cysteine 50mg) incubated for 20 hours at 30°C and 160rpm. Each strain cultured in a flask of 50 ml titer medium ((/L): 95% Glucose 52.6g, Sucrose 50g, MgSO 4 1g, KH 2 PO 4 2g, (NH 4 ) 2 SO 4 40g, FeSO 4 20mg, MnSO 4 20mg, Biotin 100ug, Thiamine 100ug, YSP 4g, Urea 2g, Arginine 40g) was inoculated and cultured at 30℃, 140rpm, for 20 hours.

배양 종료액을 같은 농도로 집적하여 Rneasy Mini Kit(QIAGEN, 독일)를 이용하여 사용 매뉴얼에 따라 RNA 를 추출하였다. cDNA 제작 및 RT-qPCR 진행은 상기 실시예 1-4와 동일하다. RNA was extracted according to the instruction manual using the Rneasy Mini Kit (QIAGEN, Germany) by collecting the culture termination solution at the same concentration. cDNA production and RT-qPCR are the same as in Examples 1-4.

16s rRNA 유전자를 endogenous control로 사용하여 argF, carA, carB 의 발현을 정규화하여 그 결과값을 표 7에 기재하였다. 표 7에서 car AB 발현양은 carA 발현 및 carB의 발현양의 평균값을 나타낸다. 유전자를 증폭하기 위하여 사용한 프라이머는 상기 표 4와 동일하다. The expression of argF, carA, and carB was normalized using the 16s rRNA gene as an endogenous control, and the results are shown in Table 7. In Table 7, the expression level of car AB represents the average value of the expression level of carA and carB. The primers used to amplify the gene are the same as in Table 4 above.

FlaskFlask carAB 발현량 상대치Relative value of carAB expression level argF 발현량 상대치Relative value of argF expression level AXR-5AXR-5 1.001.00 1.001.00 AXR-6AXR-6 3.623.62 0.990.99 AXR-5/pA’-Psod-argFAXR-5/pA’-Psod-argF 1.101.10 20.1320.13 AXR-6/pA’-Psod-argFAXR-6/pA’-Psod-argF 4.684.68 15.2215.22

표 7에 나타난 결과와 같이, carAcarB 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터가 sodA 프로모터로 치환된 균주인 AXR-6에서는 모균주인 AXR-5 대비 carAB 발현양(carA 및 carB 발현양의 평균)이 3.62배 정도 현저히 증가하였고, argF가 과발현된 균주인 AXR-5/pA'-Psod-argF 는 AXR-5 대비 argF의 발현양이 20.13배 정도 현저히 증가하였으며, carAcarB 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터가 sodA 프로모터로 치환되고 argF가 과발현된 AXR-6/pA'-Psod-argF 균주에서는 AXR-5 대비 carAB발현이 4.68배 증가하였고, argF의 발현양이 15.22배 증가한 것을 확인하였다. 따라서, RT-qPCR을 수행하여 carAB 및 argF의 발현양이 증가된 것을 확인하였으므로, 실시예 2-1 내지 2-3을 통해 제작된 균주는 carA, carB 유전자 발현 및/또는 argF 유전자 발현의 증가에 의해서 카바모일 인산 합성 효소 및/또는 오르니틴 카바모일트랜스퍼라제의 활성이 강화된 것을 알 수 있다.As shown in Table 7, in AXR-6, a strain in which the upper native promoter in which the carA and carB genes are present as an operon is substituted with the sodA promoter, the carAB expression level (carA and carB expression levels of the parent strain AXR-5) avg) was significantly increased by the 3.62-fold, was argF is the expression of the overexpressed strain AXR-5 / pA'-Psod- argF is compared AXR argF-5 significantly increased by 20.13 times, the carA and carB genes operon In the AXR-6/pA'-Psod-argF strain in which the existing upper native promoter was substituted with the sodA promoter and argF was overexpressed, it was confirmed that the expression of carAB increased by 4.68 times compared to AXR-5, and the expression amount of argF increased by 15.22 times. did. Therefore, since it was confirmed that the expression levels of carAB and argF were increased by performing RT-qPCR, the strains prepared in Examples 2-1 to 2-3 showed an increase in carA, carB gene expression and/or argF gene expression. It can be seen that the activity of carbamoyl phosphate synthetase and/or ornithine carbamoyltransferase is enhanced.

실시예 2-5. 코리네박테리움 글루타미쿰의 변이 균주의 L-아르기닌 생산성 확인Example 2-5. Confirmation of L-arginine productivity of mutant strains of Corynebacterium glutamicum

모균주로서 코리네박테리움 글루타미쿰 ATCC13032(이하, AXR-5), 실시예 2-3에서 제작한 AXR-6, AXR-5/pA'-Psod-argF, 및 AXR-6/pA'-Psod-argF 균주를 각각 플라스크 종배지 고체배지((/L): 95% Glucose 36.8g, MgSO4 1g, FeSO4 10mg, MnSO4 10mg, KH2PO4 1g, K2HPO4 1g, YSP 20g, Urea 1.5g, (NH4)SO4 5g, Biotin 100μg, Thiamine 100μg, CPN 100mg, Cysteine 50mg)에 패칭(patching)하여 30℃에서 24시간 동안 배양하였다. 배양된 콜로니를 10㎖의 플라스크 역가배지((/L): 95% Glucose 52.6g, Sucrose 50g, MgSO4 1g, KH2PO4 2g, (NH4)2SO4 40g, FeSO4 20mg, MnSO4 20mg, Biotin 100μg, Thiamine 100 μg, YSP 4g, Urea 2g, Arginine 40g)에 접종하여 30℃ 160rpm, 30시간 동안 배양하였다.Corynebacterium glutamicum ATCC13032 (hereinafter, AXR-5) as a parent strain, AXR-6, AXR-5/pA'-Psod-argF, and AXR-6/pA'- Each of the Psod-argF strains was treated with a flask seed medium solid medium ((/L): 95% Glucose 36.8 g, MgSO 4 1 g, FeSO 4 10 mg, MnSO 4 10 mg, KH 2 PO 4 1 g, K 2 HPO 4 1 g, YSP 20 g, Urea 1.5g, (NH 4 )SO 4 5g, Biotin 100μg, Thiamine 100μg, CPN 100mg, Cysteine 50mg) was patched (patching) and incubated at 30 ℃ for 24 hours. Cultured colonies in a flask of 10 ml titer medium ((/L): 95% Glucose 52.6 g, Sucrose 50 g, MgSO 4 1 g, KH 2 PO 4 2 g, (NH 4 ) 2 SO 4 40 g, FeSO 4 20 mg, MnSO 4 20mg, Biotin 100μg, Thiamine 100μg, YSP 4g, Urea 2g, Arginine 40g) and incubated at 30℃ 160rpm, 30 hours.

배양 종료 후 배양액에 있는 배양액을 증류수로 100배 희석하고 0.45μm 필터로 여과한 다음 컬럼(DionexIonPacTM CS12A)과 자외선 검출기(195mm)가 장착된 고성능 액체크로마토그래피(HPLC; agilent technologies 1260 infinity, agilent technologies, 미국)를 이용하여 L-아르기닌 생산량을 분석하였다.After completion of the culture, the culture solution in the culture solution was diluted 100 times with distilled water, filtered through a 0.45 μm filter, and then high-performance liquid chromatography (HPLC; agilent technologies 1260 infinity, agilent technologies, USA) was used to analyze L-arginine production.

AXR-5, AXR-6, AXR-5/pA'-Psod-argF, 및 AXR-6/pA'-Psod-argF 균주가 생산한 L-시트룰린 생산량을 하기 표 8에 나타내었다. 표 에서 ARG(%)는 각 균주에 의해 생산된 아르기닌의 생산량의 백분율를 의미하고 발효수율(Yp/s)은 소모한 당 대비 생산된 L-아르기닌의 양을 나타낸다.Table 8 below shows the L-citrulline production produced by the AXR-5, AXR-6, AXR-5/pA'-Psod-argF, and AXR-6/pA'-Psod-argF strains. In the table, ARG (%) means the percentage of the production of arginine produced by each strain, and the fermentation yield (Yp/s) indicates the amount of L-arginine produced relative to the consumed sugar.

균주strain ARG(%)ARG (%) 수율(Yp/s)Yield (Yp/s) AXR-5AXR-5 0.820.82 16.3616.36 AXR-6AXR-6 0.900.90 17.9917.99 AXR-5/pA’-Psod-argFAXR-5/pA’-Psod-argF 0.950.95 18.5518.55 AXR-6/pA’-Psod-argFAXR-6/pA’-Psod-argF 1.251.25 20.2320.23

표 8에 나타난 바와 같이, 모균주인 AXR-5 대비 carA 및 carB의 발현양이 증가된 AXR-6 및 argF의 발현양이 증가된 AXR-5/pA’-Psod-argF의 L-아르기닌 생산량(%) 및 발효 수율이 증가하였음을 알 수 있다.As shown in Table 8, L-arginine production of AXR-5/pA'-Psod-argF with increased expression of AXR-6 and argF with increased expression of carA and carB compared to parent strain AXR-5 ( %) and it can be seen that the fermentation yield increased.

한편, argF, carA 및 carB의 발현양이 증가된 AXR-6/pA’-Psod-argF균주에서 AXR-5 및 AXR-5/pA’-Psod-argF보다도 L-아르기닌 생산량(%) 및 발효 수율이 증가되었고, 이로부터 carA, carB 유전자의 발현 및 argF유전자의 발현이 증가된 것에 의하여 상승적으로 L-아르기닌의 생산량이 증가하였음을 알 수 있다. On the other hand, in the AXR-6/pA'-Psod-argF strain with increased expression levels of argF, carA and carB, L-arginine production (%) and fermentation yield compared to AXR-5 and AXR-5/pA'-Psod-argF was increased, and from this, it can be seen that the production of L-arginine was synergistically increased by the increase in the expression of the carA, carB gene and the expression of the argF gene.

<110> DAESANG CORPORATION <120> Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same <130> PN180440 <150> KR 1020180169862 <151> 2018-12-26 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer 1 <400> 1 gcctggaaac ctacgacgcg 20 <210> 2 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 2 <400> 2 taagtagggt attcattgca ttatatg 27 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 3 <400> 3 tgcaatgaat accctactta gctgccaatt 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 4 <400> 4 ctttactcac gggtaaaaaa tcctttcgta 30 <210> 5 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer 5 <400> 5 ttttttaccc gtgagtaaag acaccaccac c 31 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer 6 <400> 6 cgtaggtttc atcagcagag 20 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer 7 <400> 7 gtcgactagc tgccaattat tccgg 25 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 8 <400> 8 tggttgtgaa gtcatatgaa aatcctttcg 30 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 9 <400> 9 cgaaaggatt ttcatatgac ttcacaacca 30 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 10 <400> 10 ggatccttac ctcggctggt tggccag 27 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> carA_Forward <400> 11 acgtaccttc accggatttg 20 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> carA_Reverse <400> 12 gaaggatcgg tcatggtttc t 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> carB_Forward <400> 13 gccggaatac atcgacaaga 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> carB_Reverse <400> 14 agctggatag ctgcgttaag 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> argF_Forward <400> 15 cttcaactcg tactcgcttc tc 22 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> argF_Reverse <400> 16 actcgccctt acccatct 18 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 16S rRNA_Forward <400> 17 acccttgtct tatgttgcca g 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 16S rRNA_Reverse <400> 18 tgtaccgacc attgtagcat g 21 <210> 19 <211> 960 <212> DNA <213> Corynebacterium glutamicum <400> 19 atgacttcac aaccacaggt tcgccatttt ctggctgatg atgatctcac ccctgcagag 60 caggcagagg ttttgaccct agccgcaaag ctcaaggcag cgccgttttc ggagcgtcca 120 ctcgagggac caaagtccgt tgcagttctt tttgataaga cttcaactcg tactcgcttc 180 tccttcgacg cgggcatcgc tcatttgggt ggacacgcca tcgtcgtgga ttccggtagc 240 tcacagatgg gtaagggcga gtccctgcag gacaccgcag ctgtattgtc ccgctacgtg 300 gaagcaattg tgtggcgcac ctacgcacac agcaatttcc acgccatggc ggagacgtcc 360 actgtgccgc tggtgaactc cttgtccgat gatctgcacc catgccagat tctggctgat 420 ctgcagacta tcgtggaaaa cctcagccct gaagaaggcc cagcaggcct taagggtaag 480 aaggctgtgt acctgggcga tggcgacaac aacatggcca actcctacat gattggcttt 540 gccaccgcgg gcatggatat ttccatcatc gctcctgaag ggttccagcc tcgtgcggaa 600 ttcgtggagc gcgcggaaaa gcgtggccag gaaaccggcg cgaaggttgt tgtcaccgac 660 agcctcgacg aggttgccgg cgccgatgtt gtcatcaccg atacctgggt atccatgggt 720 atggaaaacg acggcatcga tcgcaccaca cctttcgttc cttaccaggt caacgatgag 780 gtcatggcga aagctaacga cggcgccatc ttcctgcact gccttcctgc ctaccgtggc 840 aaagaagtgg cagcctccgt gattgatgga ccagcgtcca aagttttcga tgaagcagaa 900 aaccgcctcc acgctcagaa agcactgctg gtgtggctgc tggccaacca gccgaggtaa 960 960 <210> 20 <211> 1182 <212> DNA <213> Corynebacterium glutamicum <400> 20 gtgagtaaag acaccaccac ctaccaggga gtcaccgaga tcggatccgt tccggcatac 60 ctggttcttg cagacggacg taccttcacc ggatttggct ttggagctat cggcaccacc 120 cttggtgagg cagtgttcac taccgccatg accggttacc aagaaaccat gaccgatcct 180 tcctatcacc gccagattgt tgtggctacc gcaccacaga tcggcaacac cggctggaac 240 gatgaggaca acgagtcccg cgacggcaag atttgggttg caggccttgt tatccgcgac 300 ctcgcagcac gtgtgtccaa ctggcgcgcc accacctcct tgcagcagga aatggcaggc 360 cagggcatcg tcggcatcgg cggaatcgac acccgcgcac tggttcgcca cctgcgcaat 420 gaaggttcca ttgcagcggg catcttctcc ggcgctgacg cacagcgccc agttgaagaa 480 ctcgtagaga tcgtcaagaa tcagccagca atgaccggcg caaacctctc cgttgaggtc 540 tctgctgatg aaacctacgt catcgaagct gaaggcgaag agcgccacac cgtcgtggcc 600 tacgacctgg gcattaagca aaacacccca cgtcgtttct ctgcacgcgg tgttcgcacc 660 gtcatcgtgc ctgctgaaac cccattcgag gatatcaagc agtacaaccc atcaggcgtg 720 ttcatctcca acggccctgg cgatcctgca gcagcagacg tcatggttga tatcgtccgc 780 gaagttcttg aagccgacat tccattcttt ggcatctgct tcggcaacca gattcttggc 840 cgcgcattcg gcatggagac ctacaagctg aagttcggcc accgcggcat caacgttcca 900 gtgaagaacc acatcaccgg caagatcgac atcaccgccc agaaccacgg cttcgcactc 960 aagggtgaag caggccagga attcgagacc gatttcggca ctgcaattgt cacccacacc 1020 tgcctcaacg acggcgtcgt tgaaggtatt gcgctgaagt ccggacgcgc atactccgtt 1080 cagtaccacc cagaggccgc tgccggccca aatgatgcaa gccccctgtt tgaccagttt 1140 gttgagctga tggatgcaga cgctcagaag aaaggcgcat aa 1182 <210> 21 <211> 3342 <212> DNA <213> Corynebacterium glutamicum <400> 21 atgccaaagc gttcagatat taaccacgtc ctcgtcatcg gttccggccc catcgtcatt 60 ggccaggcat gtgaattcga ctactccggc acccaggctt gccgcgtgct gaaggaagag 120 ggactgcgcg tcaccctcat caactccaac ccagcaacga tcatgaccga cccagaaatg 180 gctgaccaca cctacgtgga gccaatcgag ccggaataca tcgacaagat tttcgctaag 240 gaaatcgagc agggccaccc aatcgacgcc gtcctggcaa cccttggtgg ccagactgca 300 cttaacgcag ctatccagct ggatcgcctc ggcatcctgg aaaagtacgg cgttgaactc 360 atcggtgcag acatcgatgc cattgagcgc ggcgaagatc gccagaagtt caaggatatt 420 gtcaccacca tcggtggcga atccgcgcgt tcccgcgtct gccacaacat ggaagaagtc 480 cacgagactg tcgcagaact cggccttcca gtagtcgtgc gtccatcctt cactatgggt 540 ggcctgggct ccggtcttgc atacaacacc gaagaccttg agcgcatcgc tggtggcgga 600 cttgctgcat ctcctgaagc aaacgtcttg atcgaagaat ccatccttgg ttggaaggaa 660 ttcgagctcg agctcatgcg cgataccgca gacaacgttg tggttatctg ctccattgaa 720 aacgtcgacg cactgggcgt gcacaccggc gactctgtca ccgtggcacc tgccctgacc 780 ctgactgacc gtgaattcca gaagatgcgc gatcagggta tcgccatcat ccgcgaggtc 840 ggcgtggaca ccggtggatg taacatccag ttcgccatca acccagttga tggccgcatc 900 atcaccattg agatgaaccc acgtgtgtct cgttcctccg ctctggcatc caaggcaacg 960 ggcttcccaa ttgccaagat ggctgccaag ctggctatcg gatacaccct ggatgagatc 1020 accaacgaca tcactggtga aaccccagct gcgtttgagc ccaccatcga ctacgtcgtg 1080 gtcaaggccc cacgctttgc tttcgagaag tttgtcggcg ctgatgacac tttgaccacc 1140 accatgaagt ccgtcggtga ggtcatgtcc ctgggccgca actacattgc agcactgaac 1200 aaggcactgc gttccctgga aaccaagcag cagggtttct ggaccaagcc tgatgagttc 1260 ttcgcagggg agcgcgctac cgataaggca gctgttctgg aagatctcaa gcgcccaacc 1320 gaaggccgcc tctacgacgt tgagctggca atgcgccttg gcgcaagcgt ggaagaactc 1380 tacgaagcat cttctattga tccttggttc ctcgccgagc ttgaagctct cgtgcagttc 1440 cgccagaagc tcgttgacgc accattccta aacgaagatc tcctgcgcga agcaaagttc 1500 atgggtctgt ccgacctgca gatcgcagcc cttcgcccag agttcgctgg cgaagacggc 1560 gtacgcacct tgcgtctgtc cctaggcatc cgcccagtat tcaagactgt ggatacctgt 1620 gcagcagagt ttgaagctaa gactccgtac cactactccg catacgagct ggatccagca 1680 gctgagtctg aggtcgcacc acagactgag cgtgaaaagg tcctgatctt gggctccggt 1740 ccaaaccgca tcggccaggg catcgagttc gactactcct gtgttcacgc agctcttgag 1800 ctctcccgcg tcggctacga aactgtcatg gtcaactgca acccagagac cgtgtccacc 1860 gactacgaca ccgctgaccg cctgtacttc gagccactga ccttcgaaga cgtcatggag 1920 gtctaccacg ctgaggcgca gtccggcacc gtcgcaggtg ttatcgtcca gcttggtggc 1980 cagactcctc tgggcttggc agatcgtttg aagaaggctg gcgtccctgt cattggtacc 2040 tccccagagg caatcgacat ggctgaggac cgtggcgagt tcggtgcact gctgaaccgc 2100 gagcagcttc ctgctccagc attcggcacc gcaacctctt tcgaagaggc tcgcacagta 2160 gccgatgaga tcagctaccc agtgctggtt cgcccttcct acgtcttggg tggccgtggc 2220 atggagattg tctacgatga ggcttccctc gaggattaca tcaaccgcgc aactgagttg 2280 tcttctgacc acccagtgct ggttgaccgc ttcctagaca acgctattga gatcgacgtc 2340 gacgcactgt gcgacggcga cgaggtctac ctggcaggcg tcatggagca catcgaggaa 2400 gccggcattc actccggtga ctccgcatgt gcacttcctc caatgacttt gggcgcacag 2460 gacatcgaga aggtccgcga agcaaccaag aagctggctc tgggcatcgg tgtacagggc 2520 ctgatgaacg tccagtacgc actcaaggac gacatcctct acgtcatcga ggcaaaccca 2580 cgtgcatccc gcaccgtgcc gttcgtctcc aaggcaacgg gcgtcaacct ggccaaggca 2640 gcatcccgta tcgcagtggg cgccaccatc aaggatctcc aagatgaggg catgattcct 2700 accgagtacg acggcggctc cttgccactg gacgctccaa tcgctgtgaa ggaagcagtg 2760 ttgccgttca accgcttccg tcgcccagat ggaaagaccc tggacaccct gctttcccca 2820 gagatgaagt ccactggcga ggtcatgggc ttggccaaca acttcggcgc tgcatatgca 2880 aaggctgaag ctggcgcgtt tggtgcattg ccaaccgaag gcaccgtctt cgtgaccgtg 2940 gctaaccgcg acaagcgcac cctgatcctg ccaatccagc gcctggcgtt gatgggctac 3000 aagatcctcg ccaccgaagg caccgcaggc atgctgcgcc gcaacggcat tgagtgtgaa 3060 gttgtgctca aggcttccga catccgcgaa ggtgtagagg gcaagtccat cgtggatcgt 3120 atccgcgaag gcgaagttga cctcatcctc aacaccccag ctggttctgc tggcgctcgc 3180 cacgatggct acgatatccg cgcagcagca gtgaccgtgg gtgttccgct gatcaccact 3240 gttcagggtg tcaccgcagc tgtccagggc atagaggccc tgcgtgaggg cgttgtcagc 3300 gtccgcgcgc tgcaggaact cgaccacgca gtcaaggctt aa 3342 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 11 <400> 22 catataatgc aatgaatacc ctactta 27 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 12 <400> 23 tacgaaagga ttttttaccc gtgagtaaag 30 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer 13 <400> 24 ctctgctgat gaaacctacg 20 <110> DAESANG CORPORATION <120> Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same <130> PN180440 <150> KR 1020180169862 <151> 2018-12-26 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer 1 <400> 1 gcctggaaac ctacgacgcg 20 <210> 2 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 2 <400> 2 taagtagggt attcattgca ttatatg 27 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 3 <400> 3 tgcaatgaat accctactta gctgccaatt 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 4 <400> 4 ctttactcac gggtaaaaaa tcctttcgta 30 <210> 5 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer 5 <400> 5 ttttttaccc gtgagtaaag acaccaccac c 31 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer 6 <400> 6 cgtaggtttc atcagcagag 20 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer 7 <400> 7 gtcgactagc tgccaattat tccgg 25 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 8 <400> 8 tggttgtgaa gtcatatgaa aatcctttcg 30 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 9 <400> 9 cgaaaggatt ttcatatgac ttcacaacca 30 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 10 <400> 10 ggatccttac ctcggctggt tggccag 27 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> carA_Forward <400> 11 acgtaccttc accggatttg 20 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> carA_Reverse <400> 12 gaaggatcgg tcatggtttc t 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> carB_Forward <400> 13 gccggaatac atcgacaaga 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> carB_Reverse <400> 14 agctggatag ctgcgttaag 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> argF_Forward <400> 15 cttcaactcg tactcgcttc tc 22 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> argF_Reverse <400> 16 actcgccctt acccatct 18 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 16S rRNA_Forward <400> 17 acccttgtct tatgttgcca g 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 16S rRNA_Reverse <400> 18 tgtaccgacc attgtagcat g 21 <210> 19 <211> 960 <212> DNA <213> Corynebacterium glutamicum <400> 19 atgacttcac aaccacaggt tcgccatttt ctggctgatg atgatctcac ccctgcagag 60 caggcagagg ttttgaccct agccgcaaag ctcaaggcag cgccgttttc ggagcgtcca 120 ctcgagggac caaagtccgt tgcagttctt tttgataaga cttcaactcg tactcgcttc 180 tccttcgacg cgggcatcgc tcatttgggt ggacacgcca tcgtcgtgga ttccggtagc 240 tcacagatgg gtaagggcga gtccctgcag gacaccgcag ctgtattgtc ccgctacgtg 300 gaagcaattg tgtggcgcac ctacgcacac agcaatttcc acgccatggc ggagacgtcc 360 actgtgccgc tggtgaactc cttgtccgat gatctgcacc catgccagat tctggctgat 420 ctgcagacta tcgtggaaaa cctcagccct gaagaaggcc cagcaggcct taagggtaag 480 aaggctgtgt acctgggcga tggcgacaac aacatggcca actcctacat gattggcttt 540 gccaccgcgg gcatggatat ttccatcatc gctcctgaag ggttccagcc tcgtgcggaa 600 ttcgtggagc gcgcggaaaa gcgtggccag gaaaccggcg cgaaggttgt tgtcaccgac 660 agcctcgacg aggttgccgg cgccgatgtt gtcatcaccg atacctgggt atccatgggt 720 atggaaaacg acggcatcga tcgcaccaca cctttcgttc cttaccaggt caacgatgag 780 gtcatggcga aagctaacga cggcgccatc ttcctgcact gccttcctgc ctaccgtggc 840 aaagaagtgg cagcctccgt gattgatgga ccagcgtcca aagttttcga tgaagcagaa 900 aaccgcctcc acgctcagaa agcactgctg gtgtggctgc tggccaacca gccgaggtaa 960 960 <210> 20 <211> 1182 <212> DNA <213> Corynebacterium glutamicum <400> 20 gtgagtaaag acaccaccac ctaccaggga gtcaccgaga tcggatccgt tccggcatac 60 ctggttcttg cagacggacg taccttcacc ggatttggct ttggagctat cggcaccacc 120 cttggtgagg cagtgttcac taccgccatg accggttacc aagaaaccat gaccgatcct 180 tcctatcacc gccagattgt tgtggctacc gcaccacaga tcggcaacac cggctggaac 240 gatgaggaca acgagtcccg cgacggcaag atttgggttg caggccttgt tatccgcgac 300 ctcgcagcac gtgtgtccaa ctggcgcgcc accacctcct tgcagcagga aatggcaggc 360 cagggcatcg tcggcatcgg cggaatcgac acccgcgcac tggttcgcca cctgcgcaat 420 gaaggttcca ttgcagcggg catcttctcc ggcgctgacg cacagcgccc agttgaagaa 480 ctcgtagaga tcgtcaagaa tcagccagca atgaccggcg caaacctctc cgttgaggtc 540 tctgctgatg aaacctacgt catcgaagct gaaggcgaag agcgccacac cgtcgtggcc 600 tacgacctgg gcattaagca aaacacccca cgtcgtttct ctgcacgcgg tgttcgcacc 660 gtcatcgtgc ctgctgaaac cccattcgag gatatcaagc agtacaaccc atcaggcgtg 720 ttcatctcca acggccctgg cgatcctgca gcagcagacg tcatggttga tatcgtccgc 780 gaagttcttg aagccgacat tccattcttt ggcatctgct tcggcaacca gattcttggc 840 cgcgcattcg gcatggagac ctacaagctg aagttcggcc accgcggcat caacgttcca 900 gtgaagaacc acatcaccgg caagatcgac atcaccgccc agaaccacgg cttcgcactc 960 aagggtgaag caggccagga attcgagacc gatttcggca ctgcaattgt cacccacacc 1020 tgcctcaacg acggcgtcgt tgaaggtatt gcgctgaagt ccggacgcgc atactccgtt 1080 cagtaccacc cagaggccgc tgccggccca aatgatgcaa gccccctgtt tgaccagttt 1140 gttgagctga tggatgcaga cgctcagaag aaaggcgcat aa 1182 <210> 21 <211> 3342 <212> DNA <213> Corynebacterium glutamicum <400> 21 atgccaaagc gttcagatat taaccacgtc ctcgtcatcg gttccggccc catcgtcatt 60 ggccaggcat gtgaattcga ctactccggc acccaggctt gccgcgtgct gaaggaagag 120 ggactgcgcg tcaccctcat caactccaac ccagcaacga tcatgaccga cccagaaatg 180 gctgaccaca cctacgtgga gccaatcgag ccggaataca tcgacaagat tttcgctaag 240 gaaatcgagc agggccaccc aatcgacgcc gtcctggcaa cccttggtgg ccagactgca 300 cttaacgcag ctatccagct ggatcgcctc ggcatcctgg aaaagtacgg cgttgaactc 360 atcggtgcag acatcgatgc cattgagcgc ggcgaagatc gccagaagtt caaggatatt 420 gtcaccacca tcggtggcga atccgcgcgt tcccgcgtct gccacaacat ggaagaagtc 480 cacgagactg tcgcagaact cggccttcca gtagtcgtgc gtccatcctt cactatgggt 540 ggcctgggct ccggtcttgc atacaacacc gaagaccttg agcgcatcgc tggtggcgga 600 cttgctgcat ctcctgaagc aaacgtcttg atcgaagaat ccatccttgg ttggaaggaa 660 ttcgagctcg agctcatgcg cgataccgca gacaacgttg tggttatctg ctccattgaa 720 aacgtcgacg cactgggcgt gcacaccggc gactctgtca ccgtggcacc tgccctgacc 780 ctgactgacc gtgaattcca gaagatgcgc gatcagggta tcgccatcat ccgcgaggtc 840 ggcgtggaca ccggtggatg taacatccag ttcgccatca acccagttga tggccgcatc 900 atcaccattg agatgaaccc acgtgtgtct cgttcctccg ctctggcatc caaggcaacg 960 ggcttcccaa ttgccaagat ggctgccaag ctggctatcg gatacaccct ggatgagatc 1020 accaacgaca tcactggtga aaccccagct gcgtttgagc ccaccatcga ctacgtcgtg 1080 gtcaaggccc cacgctttgc tttcgagaag tttgtcggcg ctgatgacac tttgaccacc 1140 accatgaagt ccgtcggtga ggtcatgtcc ctgggccgca actacattgc agcactgaac 1200 aaggcactgc gttccctgga aaccaagcag cagggtttct ggaccaagcc tgatgagttc 1260 ttcgcagggg agcgcgctac cgataaggca gctgttctgg aagatctcaa gcgcccaacc 1320 gaaggccgcc tctacgacgt tgagctggca atgcgccttg gcgcaagcgt ggaagaactc 1380 tacgaagcat cttctattga tccttggttc ctcgccgagc ttgaagctct cgtgcagttc 1440 cgccagaagc tcgttgacgc accattccta aacgaagatc tcctgcgcga agcaaagttc 1500 atgggtctgt ccgacctgca gatcgcagcc cttcgcccag agttcgctgg cgaagacggc 1560 gtacgcacct tgcgtctgtc cctaggcatc cgcccagtat tcaagactgt ggatacctgt 1620 gcagcagagt ttgaagctaa gactccgtac cactactccg catacgagct ggatccagca 1680 gctgagtctg aggtcgcacc acagactgag cgtgaaaagg tcctgatctt gggctccggt 1740 ccaaaccgca tcggccaggg catcgagttc gactactcct gtgttcacgc agctcttgag 1800 ctctcccgcg tcggctacga aactgtcatg gtcaactgca acccagagac cgtgtccacc 1860 gactacgaca ccgctgaccg cctgtacttc gagccactga ccttcgaaga cgtcatggag 1920 gtctaccacg ctgaggcgca gtccggcacc gtcgcaggtg ttatcgtcca gcttggtggc 1980 cagactcctc tgggcttggc agatcgtttg aagaaggctg gcgtccctgt cattggtacc 2040 tccccagagg caatcgacat ggctgaggac cgtggcgagt tcggtgcact gctgaaccgc 2100 gagcagcttc ctgctccagc attcggcacc gcaacctctt tcgaagaggc tcgcacagta 2160 gccgatgaga tcagctaccc agtgctggtt cgcccttcct acgtcttggg tggccgtggc 2220 atggagattg tctacgatga ggcttccctc gaggattaca tcaaccgcgc aactgagttg 2280 tcttctgacc acccagtgct ggttgaccgc ttcctagaca acgctattga gatcgacgtc 2340 gacgcactgt gcgacggcga cgaggtctac ctggcaggcg tcatggagca catcgaggaa 2400 gccggcattc actccggtga ctccgcatgt gcacttcctc caatgacttt gggcgcacag 2460 gacatcgaga aggtccgcga agcaaccaag aagctggctc tgggcatcgg tgtacagggc 2520 ctgatgaacg tccagtacgc actcaaggac gacatcctct acgtcatcga ggcaaaccca 2580 cgtgcatccc gcaccgtgcc gttcgtctcc aaggcaacgg gcgtcaacct ggccaaggca 2640 gcatcccgta tcgcagtggg cgccaccatc aaggatctcc aagatgaggg catgattcct 2700 accgagtacg acggcggctc cttgccactg gacgctccaa tcgctgtgaa ggaagcagtg 2760 ttgccgttca accgcttccg tcgcccagat ggaaagaccc tggacaccct gctttcccca 2820 gagatgaagt ccactggcga ggtcatgggc ttggccaaca acttcggcgc tgcatatgca 2880 aaggctgaag ctggcgcgtt tggtgcattg ccaaccgaag gcaccgtctt cgtgaccgtg 2940 gctaaccgcg acaagcgcac cctgatcctg ccaatccagc gcctggcgtt gatgggctac 3000 aagatcctcg ccaccgaagg caccgcaggc atgctgcgcc gcaacggcat tgagtgtgaa 3060 gttgtgctca aggcttccga catccgcgaa ggtgtagagg gcaagtccat cgtggatcgt 3120 atccgcgaag gcgaagttga cctcatcctc aacaccccag ctggttctgc tggcgctcgc 3180 cacgatggct acgatatccg cgcagcagca gtgaccgtgg gtgttccgct gatcaccact 3240 gttcagggtg tcaccgcagc tgtccagggc atagaggccc tgcgtgaggg cgttgtcagc 3300 gtccgcgcgc tgcaggaact cgaccacgca gtcaaggctt aa 3342 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 11 <400> 22 catataatgc aatgaatacc ctactta 27 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 12 <400> 23 tacgaaagga ttttttaccc gtgagtaaag 30 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer 13 <400> 24 ctctgctgat gaaacctacg 20

Claims (5)

argF(ornithine carbamoyltransferase), carA(carbamoyl phosphate synthase small subunit) 및 carB(carbamoyl phosphate synthase large subunit) 유전자 발현이 증가됨으로써 오르니틴 카바모일트랜스퍼라제(ornithine carbamoyltransferase) 및 카바모일 인산 합성효소(carbamoyl phosphate synthetase)의 활성이 강화된 L-시트룰린 또는 L-아르기닌의 생산능이 향상된 코리네박테리움 속(Corynebacterium sp.) 변이 균주.
argF (ornithine carbamoyltransferase), carA (carbamoyl phosphate synthase small subunit) and carB (carbamoyl phosphate synthase large subunit) gene expression is increased, so that ornithine carbamoyltransferase Corynebacterium sp. mutant strain with improved activity of L-citrulline or L-arginine with enhanced activity.
청구항 1에 있어서, 상기 argF 유전자의 발현 증가는 과발현 벡터 도입에 의한 것인, 코리네박테리움 속 변이 균주.
The mutant strain of the genus Corynebacterium according to claim 1, wherein the increase in expression of the argF gene is due to introduction of an overexpression vector.
청구항 1에 있어서, 상기 carA 및 carB 유전자 발현 증가는 프로모터 교체에 의해 증가한 것인, 코리네박테리움 속 변이 균주.
The method according to claim 1, wherein the increase in carA and carB gene expression is increased by a promoter replacement, Corynebacterium mutant strain.
청구항 1 내지 3 중 어느 한 항에 있어서, 상기 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인 것인 코리네박테리움 속 변이 균주.
The mutant strain of any one of claims 1 to 3, wherein the strain is Corynebacterium glutamicum .
(a) 청구항 1 내지 3 중 어느 한 항에 따른 코리네박테리움 속 변이 균주를 배지에서 배양하는 단계; 및
(b) 상기 배양된 변이 균주 또는 배양 배지에서 L-시트룰린 또는 L-아르기닌을 회수하는 단계를 포함하는 L-시트룰린 또는 L-아르기닌의 제조 방법.

(a) culturing the mutant strain of the genus Corynebacterium according to any one of claims 1 to 3 in a medium; and
(b) a method for producing L-citrulline or L-arginine, comprising the step of recovering L-citrulline or L-arginine from the cultured mutant strain or culture medium.

KR1020190151321A 2018-12-26 2019-11-22 Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same KR102269637B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180169862 2018-12-26
KR1020180169862 2018-12-26

Publications (2)

Publication Number Publication Date
KR20200081230A KR20200081230A (en) 2020-07-07
KR102269637B1 true KR102269637B1 (en) 2021-06-28

Family

ID=71603054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190151321A KR102269637B1 (en) 2018-12-26 2019-11-22 Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same

Country Status (1)

Country Link
KR (1) KR102269637B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4310180A1 (en) 2022-07-21 2024-01-24 Daesang Corporation A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same
EP4310179A1 (en) 2022-07-21 2024-01-24 Daesang Corporation A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830290B1 (en) * 2007-01-18 2008-05-16 씨제이제일제당 (주) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854234B1 (en) * 2006-07-13 2008-08-25 씨제이제일제당 (주) A nucleotide sequence of a mutant argF with increased activity and a method for producing L-arginine using a transformed cell containing the same
KR101138289B1 (en) 2009-09-29 2012-04-24 대상 주식회사 Microorganism having glutamic acid-producing activity and process for producing glutamic acid using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830290B1 (en) * 2007-01-18 2008-05-16 씨제이제일제당 (주) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nature communications 5, 제4618권, 제1-9면(2014. 8. 5. 공개)*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4310180A1 (en) 2022-07-21 2024-01-24 Daesang Corporation A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same
EP4310179A1 (en) 2022-07-21 2024-01-24 Daesang Corporation A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same
KR20240013961A (en) 2022-07-21 2024-01-31 대상 주식회사 A microorganism of Corynebacterium genus having enhanced L-arginine or L-citrulline productivity and a method for producing L-arginine or L-citrulline using the same
KR20240013960A (en) 2022-07-21 2024-01-31 대상 주식회사 A microorganism of Corynebacterium genus having enhanced L-arginine or L-citrulline productivity and a method for producing L-arginine or L-citrulline using the same

Also Published As

Publication number Publication date
KR20200081230A (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6679803B2 (en) New promoter and its use
CN113544141B (en) Microorganism comprising mutant LysE and method for producing L-amino acid using the same
ES2833104T3 (en) Strain that has an increased productivity of l-valine and method of production of L-valine by using it
ES2724000T3 (en) Microorganism of the genus Corynebacterium to produce L-arginine and method of production of L-arginine using the same
JP2023071883A (en) Mutant strain having enhanced l-glutamic acid producing ability, and l-glutamic acid preparation method using same
KR102269637B1 (en) Mutant strain with enhanced L-citrulline or L-Arginine productivity and method for preparing L-citrulline or L-Arginine using the same
ES2761590T3 (en) Microorganism of Corynebacterium sp. having improved L-arginine productivity and L-arginine production procedure by using it
KR102617168B1 (en) Shewanella oneidensis-Drived Protein Expressing Microorganism and Method of L-Amino Acid Production Using the Same
KR102433234B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-citrulline productivity and method for preparing L-citrulline using the same
WO2008088149A1 (en) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same
JP7447294B2 (en) Microorganism expressing protein derived from Schwanella atlantica and L-amino acid production method using the same
CN114008206B (en) Microorganism having enhanced cytochrome C activity for producing L-amino acid and method for producing L-amino acid using the same
EP4083064A1 (en) Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same
EP4310180A1 (en) A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same
KR20240017394A (en) Mutant of Corynebacterium glutamicum with enhanced L-citrulline productivity and method for preparing L-citrulline using the same
CN117431197A (en) Corynebacterium microorganism having enhanced L-arginine or L-citrulline productivity and method related thereto
KR20230165734A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20230175159A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20240000419A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant