KR102267067B1 - Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof - Google Patents

Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof Download PDF

Info

Publication number
KR102267067B1
KR102267067B1 KR1020200005909A KR20200005909A KR102267067B1 KR 102267067 B1 KR102267067 B1 KR 102267067B1 KR 1020200005909 A KR1020200005909 A KR 1020200005909A KR 20200005909 A KR20200005909 A KR 20200005909A KR 102267067 B1 KR102267067 B1 KR 102267067B1
Authority
KR
South Korea
Prior art keywords
diethylcyanophosphonate
compound
dmhn1
fluorescence
fluorescent probe
Prior art date
Application number
KR1020200005909A
Other languages
Korean (ko)
Inventor
김도경
정유나
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020200005909A priority Critical patent/KR102267067B1/en
Application granted granted Critical
Publication of KR102267067B1 publication Critical patent/KR102267067B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes

Abstract

The present invention relates to a fluorescent probe compound for detection of diethyl cyanophosphonate and uses thereof, wherein the fluorescent probe compound has high sensitivity to diethyl cyanophosphonate and a fast reaction time to be environmentally used, and in particular, the fluorescent probe compound can be usefully used to check the presence or absence of nerve agents in the environment and all related research fields in that it is possible to monitor the detection of diethyl cyanophosphonate in real time under a given environmental condition.

Description

다이에틸싸이아노포스포네이트 검출용 형광 프로브 화합물 및 이의 용도{Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof}Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof

본 발명은 다이에틸싸이아노포스포네이트 검출용 형광 프로브 화합물 및 이의 용도에 관한 것이다.The present invention relates to a fluorescent probe compound for detecting diethylcyanophosphonate and uses thereof.

신경작용제는 유기화합물의 일종으로 신경전달물질인 아세틸콜린(acetylcholine)을 조절할 수 있는 효소인 아세틸콜린에스터레이스(AChE)를 차단함으로서 중추신경계의 균형을 파괴한다). 그 중에서도 G-시리즈의 유기인산화합물 유도체(organophosphonate derivatives, R

Figure 112020005081246-pat00001
O(P=O)R₂OR₃)인 사린(GB), 소만(GD), 타분(GA)는 극도로 낮은 농도에서도 높은 독성을 나타내기 때문에 인체유해물질로 알려져 있다. 이러한 이유로 인해, 신경작용제를 선택적이고 민감하게 감지할 수 있는 여러 분석 기술이 개발되고 있으며 이를 이용한 방어체계, 해독 및 안전관리법들이 꾸준히 개발되고 있다(Chem. Soc. Rev. 2013, 42, 9251; Chem. Soc. Rev. 2008, 37, 470; Chem. Soc. Rev. 2017, 46, 3357). Nerve agents are a kind of organic compound that disrupts the balance of the central nervous system by blocking acetylcholinesterase (AChE), an enzyme that can control the neurotransmitter acetylcholine). Among them, the G-series organophosphonate derivatives (R)
Figure 112020005081246-pat00001
Sarin (GB), Soman (GD), and Tabun (GA), which are O(P=O)R₂OR₃), are known to be harmful to the human body because they show high toxicity even at extremely low concentrations. For this reason, various analytical techniques that can selectively and sensitively detect nerve agents have been developed, and defense systems, detoxification and safety management methods using them have been continuously developed (Chem. Soc. Rev. 2013, 42, 9251; Chem. Soc. Rev. 2008, 37, 470; Chem. Soc. Rev. 2017, 46, 3357).

신경작용제의 대표적인 분석방법으로는 질량분석법(mass spectrometry), 이온이동성분광법(ion mobility spectrometry), 광자결정(photonic crystal) 등의 장비기반 분석기술들이 알려져 있다. 하지만 기존 분석 방법의 경우 낮은 민감도와 선택성, 복잡한 기기 사용법과 추가적인 전처리 과정, 값비싼 분석비용과 더불어 큰 부피로 인해 휴대가 어려워 현장에서 실시간 검출 방법으로 사용되기에는 제한이 있다는 점에 문제점이 있다.As a representative analysis method of a nerve agent, equipment-based analysis techniques such as mass spectrometry, ion mobility spectrometry, and photonic crystal are known. However, in the case of the existing analysis method, there is a problem in that it is difficult to carry as a real-time detection method in the field due to low sensitivity and selectivity, complicated instrument usage, additional pre-processing, expensive analysis cost, and large volume.

이에, 이러한 문제점을 획기적으로 개선할 수 있는 방법으로 형광 프로브를 이용하여 신경작용제를 검출하는 기술의 개발이 활발하게 이루어지고 있다(Chem. Soc. Rev. 2015, 115, 7893; Chem. Soc. Rev. 2015, 115, 7944). Accordingly, the development of a technique for detecting a nerve agent using a fluorescent probe as a method capable of remarkably improving this problem is being actively developed (Chem. Soc. Rev. 2015, 115, 7893; Chem. Soc. Rev. (2015, 115, 7944).

현재까지 다이에틸싸이아노포스포네이트(DNCP, diethylcyanophosphonate)를 특이적으로 감지할 수 있다고 알려진 형광 프로브 시스템은 (i) 다이에틸싸이오노포스포네이트에 의한 피리딘(pyridine), 알킬-알코올(alkyl-alcohol), 페놀릭-알코올(phenolic-alcohol), 아민(amine)과 같은 작용기의 인산화 반응에 따른 형광 변화, (ii) 다이에틸싸이오노포스포네이트에 의한 하이드록시-이민(hydroxy-imine) 작용기의 나이트릴(nitrile)로 치환되는 반응에 따른 형광 변화와 같은 화학 반응 기반의 작동 메커니즘을 가진다. Fluorescent probe systems known to be able to specifically detect diethylcyanophosphonate (DNCP) are (i) pyridine, alkyl-alcohol by diethylthionophosphonate. Fluorescence change due to phosphorylation of functional groups such as alcohol), phenolic-alcohol, and amine, (ii) hydroxy-imine functional group by diethylthionophosphonate It has a chemical reaction-based mechanism of action, such as a change in fluorescence according to the reaction of being replaced with a nitrile.

하지만, 다이에틸싸이아노포스포네이트에 대한 높은 민감도와 선택성을 가지는 것과 동시에 환경 내 실시간 검출을 할 수 있는 형광 프로브는 그 중요성에도 불구하고 아직까지 개발된 바 없다.However, a fluorescent probe capable of real-time detection in the environment while having high sensitivity and selectivity to diethylcyanophosphonate has not yet been developed despite its importance.

이에, 본 발명자들은 합성의 과정이 용이하고, 인체에 높은 독성을 가지는 다이에틸싸이아노포스포네이트와 상호작용하여 형광을 발하고, 표적물질만을 특이적으로 검출할 수 있는 형광 프로브 화합물을 개발하였다. 이 형광 프로브 화합물은 정량적으로 표적물질의 양에 따른 형광세기의 증가를 보이며, 알려진 다른 신경작용제들과 다이에틸싸이아노포스포네이트를 구분하여 감지할 수 있는 선택성을 가진다. 또한 개발된 형광 프로브 화합물은 표적물질과의 빠른 반응시간으로 현장에서 실시간으로 활용이 가능한 검출 키트로 이용될 수 있음을 밝힘으로써, 본 발명을 완성하였다.Accordingly, the present inventors have developed a fluorescent probe compound that is easy to synthesize, interacts with diethylcyanophosphonate, which is highly toxic to the human body, emits fluorescence, and can specifically detect only the target material. . This fluorescent probe compound quantitatively shows an increase in fluorescence intensity according to the amount of the target material, and has selectivity to distinguish and detect diethylcyanophosphonate from other known nerve agents. In addition, the present invention was completed by revealing that the developed fluorescent probe compound can be used as a detection kit that can be utilized in real time in the field due to a fast reaction time with a target material.

본 발명의 목적은 오쏘(ortho)-히드록시(hydroxy)-벤즈알데하이드(benzaldehyde) 나프탈렌 기반 화합물을 이용하여 신경작용제 타분(Tabun, GA)의 유사체인 다이에틸싸이아노포스포네이트(DNCP, diethylcyanophosphonate)를 선택적으로 감지하기 위한 형광 프로브 화합물 및 이를 포함하는 다이에틸싸이아노포스포네이트 검출 키트를 제공하는 것이다.An object of the present invention is ortho-hydroxy (hydroxy)-benzaldehyde (benzaldehyde) diethylcyanophosphonate (DNCP, diethylcyanophosphonate) analog of the nerve agent Tabun (Tabun, GA) using a naphthalene-based compound To provide a fluorescent probe compound for selectively detecting the and diethylcyanophosphonate detection kit comprising the same.

또한, 본 발명의 또 다른 목적은 상기 형광 프로브 화합물을 이용한 다이에틸싸이아노포스포네이트의 검출 방법을 제공하는 것이다. Another object of the present invention is to provide a method for detecting diethylcyanophosphonate using the fluorescent probe compound.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명은 하기 화학식 1로 표시되는 다이에틸싸이아노포스포네이트 (diethylcyanophosphonate) 검출용 형광 프로브 화합물을 제공한다:The present invention provides a fluorescent probe compound for detecting diethylcyanophosphonate represented by the following formula (1):

[화학식 1][Formula 1]

Figure 112020005081246-pat00002
Figure 112020005081246-pat00002

본 발명의 일 구현예에 있어서, 상기 상기 형광 프로브 화합물은 화합물 내에 오쏘(ortho)-히드록시(hydroxy)-벤즈알데하이드(benzaldehyde) 구조를 포함하는 것을 특징으로 한다.In one embodiment of the present invention, the fluorescent probe compound is characterized in that it contains an ortho-hydroxy-benzaldehyde structure in the compound.

본 발명의 다른 구현예에 있어서, 상기 형광 프로브 화합물은 다이에틸싸이아노포스포네이트와의 친핵성 치환 반응을 통해 오쏘-히드록시-벤즈알데하이드의 구조 내 들뜬 상태 분자 내 양성자 전이(Excited-State Intramolecular Proton Transfer)에 의한 ??칭(quenching) 효과가 깨어질 때 형광을 나타내는 것을 특징으로 한다.In another embodiment of the present invention, the fluorescent probe compound is an excited-state intramolecular proton transition (Excited-State Intramolecular) in the structure of ortho-hydroxy-benzaldehyde through a nucleophilic substitution reaction with diethylcyanophosphonate. It is characterized in that it exhibits fluorescence when the quenching effect by Proton Transfer is broken.

또한, 본 발명은 상기 형광 프로브 화합물을 포함하는 다이에틸싸이아노포스포네이트 검출용 키트를 제공한다. In addition, the present invention provides a kit for detecting diethylcyanophosphonate comprising the fluorescent probe compound.

또한, 본 발명은 상기 형광 프로브 화합물을 이용한 다이에틸싸이아노포스포네이트의 검출 방법을 제공한다.In addition, the present invention provides a method for detecting diethylcyanophosphonate using the fluorescent probe compound.

본 발명의 일 구현예에 있어서, 상기 검출 방법은 형광 프로프 화합물에 다이에틸싸이아노포스포네이트를 포함하는 시료를 첨가하고, UV 광을 조사하는 단계를 포함하는 것을 특징으로 한다. In one embodiment of the present invention, the detection method is characterized in that it comprises the step of adding a sample containing diethylcyanophosphonate to the fluorescent probe compound, and irradiating UV light.

본 발명의 형광 프로브 화합물은 신경작용제 타분(Tabun, GA)의 유사체인 다이에틸싸이아노포스포네이트를 선택적으로 감지하여 형광 신호를 제공할 수 있다. 또한, 상기 형광 프로브 화합물을 이용하여 다이에틸싸이아노포스포네이트를 포함하고 있는 임의의 환경 내 분석물을 채취하여 실시간으로 분석할 수 있다.The fluorescent probe compound of the present invention can provide a fluorescent signal by selectively detecting diethylcyanophosphonate, which is an analog of the nerve agent Tabun (Tabun, GA). In addition, an analyte in an arbitrary environment containing diethylcyanophosphonate may be collected and analyzed in real time using the fluorescent probe compound.

특히, 본 발명의 형광 프로브 화합물은 합성의 단계가 용이하며, 양극성의 나프탈렌 구조인 오쏘(ortho)-하이드록시(hydroxy)-벤즈알데하이드(benzaldehyde) 화합물의 구조적 특성에 의한 들뜬 상태 분자내 양성자 전이(ESIPT, Excited-State Intramolecular Proton Transfer) 현상을 가진다. 신경작용제인 다이에틸싸이아노포스포네이트는 화합물의 구조 내의 들뜬 상태 분자내 양성자 전이현상을 억제시키며 분자 프로브 화합물의 형광을 켜짐(turn-on)하게 되며, 이는 유사한 구조의 G-시리즈인 신경작용제들의 간섭 없이 특이적으로 형광의 증가를 보인다는 점에서 기존의 낮은 선택성을 가지는 형광 프로브의 문제점을 극복하였다. In particular, the fluorescent probe compound of the present invention is easy to synthesize, and proton transfer in an excited state molecule due to the structural characteristics of an ortho-hydroxy-benzaldehyde compound having a bipolar naphthalene structure ( ESIPT, Excited-State Intramolecular Proton Transfer). Diethylcyanophosphonate, a nerve agent, inhibits proton transfer in an excited state in the structure of the compound and turns on the fluorescence of the molecular probe compound, which is a G-series nerve agent with a similar structure. It overcomes the problem of conventional fluorescent probes with low selectivity in that they show a specific increase in fluorescence without their interference.

또한, 본 발명의 형광 프로브 화합물은 토양과 같은 환경조건에서도 다이에틸싸이아노포스포네이트를 감지할 수 있고, 휴대가 간편한 검출 키트의 형태로 제 자리에서 짧은 시간 내에 다이에틸싸이아노포스포네이트의 감지가 가능한 새로운 방법을 제공하여 실제 군사적 용도(전쟁)나 대테러 예방 도구, 환경 내 분포여부와 같은 여러 분야에서 유용하게 활용될 수 있다.In addition, the fluorescent probe compound of the present invention can detect diethyl cyanophosphonate even in environmental conditions such as soil, and in the form of a portable detection kit, it is possible to detect diethyl cyanophosphonate in a short time in situ. By providing a new method for detection, it can be usefully used in various fields such as actual military use (war), as a counter-terrorism prevention tool, and whether or not it is distributed in the environment.

도 1은 본 발명에 따른 화합물(DMHN1)의 흡수 및 형광 그래프를 주어진 용매조건 하에서 측정한 결과를 나타낸 것이다.
도 2는 고해상도 질량분석기(High resolution mass spectra; JMS-700 spctrometer, JEOL, Tokyo, Japan)를 이용하여 반응이 종료된 생성물의 질량을 측정한 결과를 나타낸 것이다.
도 3은 본 발명에 따른 화합물(DMHN1)의 다이에틸싸이아노포스포네이트에 대한 반응 메커니즘을 나타낸 것이다.
도 4는 본 발명에 따른 화합물(DMHN1)과 다이에틸싸이아노포스포네이트를 반응시켰을 때 다이에틸싸이아노포스포네이트 농도에 따른 형광의 증가 여부를 확인한 결과를 나타낸 것이다.
도 5는 최대 형광 파장대에서의 다이에틸싸이아노포스포네이트의 농도(0 내지 1 mM)에 대한 본 발명에 따른 화합물(DMHN1)의 형광세기의 상관관계 분석 결과를 나타낸 것이다.
도 6은 낮은 농도에서의 다이에틸싸이아노포스포네이트(0 내지 10 μM)에 대한 본 발명에 따른 화합물(DMHN1)의 형광세기의 상관관계 분석 결과를 나타낸 것이다.
도 7은 본 발명에 따른 화합물(DMHN1)의 다이에틸싸이아노포스포네이트에 대한 선택성을 형광 변화를 통해 확인한 결과이다.
도 8은 본 발명에 따른 화합물(DMHN1)과 다이에틸싸이아노포스포네이트의 반응이 3분간 진행되었을 때의 최대 형광파장(486 nm)을 기준으로 형광세기의 증가량을 분석한 결과이다.
도 9는 본 발명에 따른 화합물(DMHN1)의 토양 조건 하에서 다이에틸싸이아노포스포네이트 검출여부를 확인한 결과를 사진으로 나타낸 것이다.
도 10은 본 발명에 따른 화합물(DMHN1)의 토양 조건 하에서 다이에틸싸이아노포스포네이트와의 반응시간에 따른 형광세기의 변화를 측정하여 그래프로 나타낸 것이다.
도 11은 다이에틸싸이아노포스포네이트를 포함하는 각 흙의 종류에 따른 본 발명에 따른 화합물(DMHN1)의 시간별 형광세기 변화를 사진으로 나타낸 것이다.
도 12는 다이에틸싸이아노포스포네이트를 포함하는 각 흙의 종류에 따른 본 발명에 따른 화합물(DMHN1)의 시간별 형광세기 변화를 그래프로 나타낸 것이다.
도 13은 본 발명에 따른 화합물(DMHN1)을 이용한 다이에틸싸이아노포스포네이트의 실시간 현장검출 과정을 나타낸 것이다.
도 14는 본 발명에 따른 화합물(DMHN1)을 현장검출 키트로 제작하여 다이에틸싸이아노포스포네이트를 실시간으로 검출한 결과를 나타낸 것이다.
1 shows the absorption and fluorescence graphs of the compound (DMHN1) according to the present invention measured under given solvent conditions.
2 shows the results of measuring the mass of the product after the reaction was completed using a high resolution mass spectra (JMS-700 spctrometer, JEOL, Tokyo, Japan).
3 shows the reaction mechanism of the compound (DMHN1) according to the present invention to diethylcyanophosphonate.
4 shows the results of confirming whether the fluorescence increases according to the concentration of diethylcyanophosphonate when the compound (DMHN1) according to the present invention is reacted with diethylcyanophosphonate.
5 shows the correlation analysis results of the fluorescence intensity of the compound (DMHN1) according to the present invention with respect to the concentration (0 to 1 mM) of diethylcyanophosphonate in the maximum fluorescence wavelength band.
6 shows the results of correlation analysis of the fluorescence intensity of the compound (DMHN1) according to the present invention to diethylcyanophosphonate (0 to 10 μM) at a low concentration.
7 is a result of confirming the selectivity of the compound (DMHN1) according to the present invention to diethylcyanophosphonate through a change in fluorescence.
8 is a result of analyzing the increase in fluorescence intensity based on the maximum fluorescence wavelength (486 nm) when the reaction of the compound (DMHN1) according to the present invention and diethyl cyanophosphonate proceeded for 3 minutes.
9 is a photograph showing the result of confirming whether diethylcyanophosphonate was detected under soil conditions of the compound (DMHN1) according to the present invention.
10 is a graph showing the change in fluorescence intensity according to the reaction time of the compound (DMHN1) according to the present invention with diethylcyanophosphonate under soil conditions.
11 is a photograph showing the change in fluorescence intensity over time of the compound (DMHN1) according to the present invention according to the type of each soil containing diethylcyanophosphonate.
12 is a graph showing the change in fluorescence intensity over time of the compound (DMHN1) according to the present invention according to the type of each soil containing diethylcyanophosphonate.
13 shows a real-time in situ detection process of diethylcyanophosphonate using the compound (DMHN1) according to the present invention.
14 shows the results of real-time detection of diethylcyanophosphonate by manufacturing the compound (DMHN1) according to the present invention with a field detection kit.

본 발명은 하기 화학식 1로 표시되는 다이에틸싸이아노포스포네이트 (DNCP, diethylcyanophosphonate) 검출용 형광 프로브 화합물을 제공한다.The present invention provides a fluorescent probe compound for detecting diethylcyanophosphonate (DNCP, diethylcyanophosphonate) represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112020005081246-pat00003
Figure 112020005081246-pat00003

본 발명의 상기 형광 프로브 화합물은 오쏘(ortho)-히드록시(hydroxy)-벤즈알데하이드 (benzaldehyde) 구조를 포함하는 것을 특징으로 한다.The fluorescent probe compound of the present invention is characterized in that it includes an ortho-hydroxy-benzaldehyde structure.

또한, 상기 형광 프로브 화합물은 다이에틸싸이아노포스포네이트와의 친핵성 치환 반응을 통해 오쏘-히드록시-벤즈알데하이드의 구조 내 들뜬 상태 분자 내 양성자 전이(ESIPT, Excited-State Intramolecular Proton Transfer)에 의한 ??칭(quenching) 효과가 깨어질 때 형광을 나타낼 수 있다.In addition, the fluorescent probe compound is an ortho-hydroxy-benzaldehyde through a nucleophilic substitution reaction with diethylcyanophosphonate by proton transfer (ESIPT, Excited-State Intramolecular Proton Transfer) in the structure of benzaldehyde. Fluorescence may be exhibited when the quenching effect is broken.

본 발명의 일 실시예에서, 본 발명에서 개발된 상기 화학식 1의 화합물의 DMHN1의 감지 메커니즘을 규명하였으며, 이는 DMHN1과 다이에틸싸이아노포스포네이트 사이의 친핵성 치환 반응 (nucleophilic substitutions)을 통해 오쏘-하이드록시-벤즈알데하이드의 구조 내 들뜬 상태 분자 내 양성자 전이(ESIPT, Excited-State Intramolecular Proton Transfer)에 의한 ??칭(quenching)효과가 깨어지면서 형광을 나타내는 것임을 확인하였다(실시예 3).In one embodiment of the present invention, the detection mechanism of DMHN1 of the compound of Formula 1 developed in the present invention was investigated, which is ortho through nucleophilic substitutions between DMHN1 and diethylcyanophosphonate. It was confirmed that the quenching effect caused by the excited-state intramolecular proton transfer (ESIPT) in the structure of -hydroxy-benzaldehyde was broken while exhibiting fluorescence (Example 3).

본 발명의 일 실시예에서, 본 발명에서 개발된 상기 화학식 1의 화합물을 형광 프로브로 이용하여 형광 특성 확인 등을 수행 하였으며, 이를 통해 본 발명의 화학식 1의 화합물이 다이에틸싸이아노포스포네이트를 포함하는 시료에 대하여 선택적으로 형광 켜짐 현상(fluorescence turn-on)을 나타냄을 확인하였다(실시예 5).In one embodiment of the present invention, the fluorescence characteristics were checked using the compound of Formula 1 developed in the present invention as a fluorescent probe, and through this, the compound of Formula 1 of the present invention was converted to diethylcyanophosphonate. It was confirmed that the containing sample selectively exhibited fluorescence turn-on (Example 5).

또한, 본 발명은 상기 형광 프로브 화합물을 포함하는 다이에틸싸이아노포스포네이트 검출용 키트를 제공한다. In addition, the present invention provides a kit for detecting diethylcyanophosphonate comprising the fluorescent probe compound.

본 발명의 일 실시예에서, 본 발명에서 개발된 상기 화학식 1의 화합물에 토양시료를 첨가하여 토양시료에 포함된 다이에틸싸이아노포스포네이트를 검출할 수 있음을 확인함으로써, 실시간 현장검출 키트로의 적용할 수 있음을 확인하였다(실시예 6 및 7).In one embodiment of the present invention, by adding a soil sample to the compound of Formula 1 developed in the present invention to confirm that diethylcyanophosphonate contained in the soil sample can be detected, a real-time on-site detection kit was confirmed to be applicable (Examples 6 and 7).

또한, 본 발명은 상기 형광 프로브 화합물을 이용한 다이에틸싸이아노포스포네이트의 검출 방법을 제공한다.In addition, the present invention provides a method for detecting diethylcyanophosphonate using the fluorescent probe compound.

본 발명의 상기 검출 방법은 형광 프로프 화합물에 다이에틸싸이아노포스포네이트를 포함하는 시료를 첨가하고, UV 광을 조사하는 단계를 포함할 수 있으나, 이에 한정되는 것은 아니다. The detection method of the present invention may include adding a sample containing diethylcyanophosphonate to the fluorescent probe compound and irradiating UV light, but is not limited thereto.

본 발명의 일 실시예에서, 상기 화학식 1의 화합물의 다이에틸싸이아노포스포네이트의 검출 방법이 유효함을 확인하였다(실시예 7).In one embodiment of the present invention, it was confirmed that the method for detecting diethylcyanophosphonate of the compound of Formula 1 is effective (Example 7).

따라서, 본 발명에 따른 화학식 1의 화합물은 다이에틸싸이아노포스포네이트에 대한 높은 민감도와 빠른 반응시간을 가지기 때문에 화합물을 이용한 환경적 활용이 가능하며, 특히, 주어진 환경조건 하에서 실시간으로 다이에틸싸이아노포스포네이트의 검출을 모니터링 할 수 있다는 점에서 신경작용제의 환경 내 유무확인 및 이와 관련된 모든 응용 연구분야에 유용하게 활용될 수 있다.Therefore, since the compound of Formula 1 according to the present invention has high sensitivity and fast reaction time to diethylcyanophosphonate, it is possible to use the compound in an environment, and in particular, under given environmental conditions, diethylcyanophosphonate in real time In that the detection of annophosphonate can be monitored, it can be usefully used for checking the presence or absence of a nerve agent in the environment and all related research fields.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

실시예 1. 형광 프로브 화합물(DMHN1)의 합성 및 구조 분석Example 1. Synthesis and structural analysis of fluorescent probe compound (DMHN1)

본 발명자들은 나프톨(naphtol)이 다이에틸싸이아노와 친핵성 치환 반응을 통해 형광 프로브 내의 들뜬 상태 분자 내 양성자 전이를 종결시킨다는데 착안하여, 다이에틸싸이아노포스포네이트와 친책성 치환 반응을 할 때 광학적 성질에 변화를 가져올 수 있는 형광 프로브를 개발하기 위하여, 하기 도식 1에 따라 화학식1의 화합물을 합성하게 되었다. The present inventors paid attention to that naphtol terminates the proton transfer in the excited state molecule in the fluorescent probe through a nucleophilic substitution reaction with diethylcyano. In order to develop a fluorescent probe capable of bringing about a change in optical properties, a compound of Formula 1 was synthesized according to Scheme 1 below.

[도식 1][Scheme 1]

Figure 112020005081246-pat00004
Figure 112020005081246-pat00004

(1) 7-(다이메틸아미노)나프탈렌-2-올 (7-(dimethylamino)naphthalen-2-ol)(상기 도식 1에서 1번 화합물)의 합성(1) Synthesis of 7- (dimethylamino) naphthalen-2-ol (7- (dimethylamino) naphthalen-2-ol) (compound No. 1 in Scheme 1)

7-(다이메틸아미노)나프탈렌-2-올; 7-(dimethylamino) naphthalen-2-ol 의 합성을 수행하였다.7-(dimethylamino)naphthalen-2-ol; The synthesis of 7-(dimethylamino)naphthalen-2-ol was performed.

구체적으로, 합성 출발 물질인 상기 도식 1에서 1번 화합물(1 g, 6.243 mmol, Sigma-aldrich, D116408)과 소디움 메타바이설파이트(Na2S2O5, 2.374 g, 12.486 mmol)가 들어있는 밀폐유리용기(sealed-tube)에 다이메틸아민 수용액(dimethylamine solution, 40 % in H2O, 3.95 mL, 31.215 mmol)과 물(H2O, 2.67 mL)을 첨가한 다음 뚜껑, 테플론 및 절연테이프를 이용해 용기의 입구를 막았다. 이 혼합물을 실리콘 오일 용기를 이용하여 150 ℃에서 4시간 동안 교반시켰다. 반응을 종결시키기 위해 먼저 상온(25 ℃)으로 반응물의 온도를 낮춘 후 용기를 열어 에틸 아세테이트(ethylacetate, 100 mL), 물(100 mL), 포화 소금물(30 mL)을 넣고 분별 깔때기를 이용하여 유기층을 추출하였다. 추출을 통해 얻어진 에틸아세테이트 유기층 내 존재하는 물을 무수황산나트륨(Na2SO4, 1 g)으로 건조하고, 흡기기(evaporator)를 이용하여 농축하였다. 이렇게 얻어지는 옅은 갈색의 고체 화합물을 실리카겔을 이용한 컬럼 크로마토그래피(column chromatograph)를 이용하여 분리(전개 액: 20 % EtOAc/Hexane)하여 흰색 고체의 상기 도식 1에서 2번 화합물(710 mg, 60 %)을 얻었다. 생성된 화합물을 박막 크로마토그래피(TLC, thin layer chromatography, silical gel 60F-254 glass plate, Merck)로 분석하면 Rf = 0.25(20 % EtOAc/Hexane - 1회 전개)의 전개 값을 갖는다. Specifically, compound 1 (1 g, 6.243 mmol, Sigma-aldrich, D116408) and sodium metabisulfite (Na 2 S 2 O 5 , 2.374 g, 12.486 mmol) in Scheme 1 as a starting material for synthesis In a sealed-tube, dimethylamine solution (40 % in H 2 O, 3.95 mL, 31.215 mmol) and water (H 2 O, 2.67 mL) were added, and then a lid, Teflon and insulating tape were added. was used to block the entrance to the container. The mixture was stirred at 150° C. for 4 hours using a silicone oil container. To terminate the reaction, first lower the temperature of the reactant to room temperature (25 ℃), open the container, put ethyl acetate (ethylacetate, 100 mL), water (100 mL), and saturated brine (30 mL), and use a separatory funnel to add the organic layer was extracted. Water present in the organic layer of ethyl acetate obtained through extraction was dried over anhydrous sodium sulfate (Na 2 SO 4 , 1 g), and concentrated using an evaporator. The pale brown solid compound thus obtained was separated using column chromatography using silica gel (eluent: 20 % EtOAc/Hexane) to form a white solid compound No. 2 in Scheme 1 (710 mg, 60 %) got When the resulting compound is analyzed by thin layer chromatography (TLC, thin layer chromatography, silical gel 60F-254 glass plate, Merck), it has a developing value of R f = 0.25 (20 % EtOAc/Hexane - one run).

1H NMR (CDCl3, 300MHz, 293K):δ 7.66-7.59(m, 2H), 7.05-7.02(m, 1H), 6.96-6.95(d, 1H), 6.85-6.82(m, 1H), 6.78-6.77(d, 1H), 5.10(s, 1H), 3.05(s, 6H). 1 H NMR (CDCl 3 , 300 MHz, 293K): δ 7.66-7.59 (m, 2H), 7.05-7.02 (m, 1H), 6.96-6.95 (d, 1H), 6.85-6.82 (m, 1H), 6.78 -6.77 (d, 1H), 5.10 (s, 1H), 3.05 (s, 6H).

13C NMR(CDCl3, 75MHz, 293K): δ153.88, 149.17, 136.24, 129.39, 128.61, 122.44, 114.22, 113.80, 108.02, 105.32, 40.91. 13 C NMR (CDCl3, 75 MHz, 293K): δ153.88, 149.17, 136.24, 129.39, 128.61, 122.44, 114.22, 113.80, 108.02, 105.32, 40.91.

HRMS: m/z calcd. for C12H13NO 187.0997 found 187.0999. HRMS: m/z calcd. for C 12 H 13 NO 187.0997 found 187.0999.

(2) 7-(메톡시메톡시)-N,N-다이메틸나프탈렌-2-아민(7-(methoxymethoxy)-N,N-dimethyl naphthalen-2-amine) 의 합성 (2) Synthesis of 7-(methoxymethoxy)-N,N -dimethylnaphthalen-2-amine (7-(methoxymethoxy) -N,N- dimethyl naphthalen-2-amine)

7-(메톡시메톡시)-N,N-다이메틸나프탈렌-2-아민(상기 도식 1에서 2번 화합물)의 합성을 수행하였다.The synthesis of 7-(methoxymethoxy) -N,N -dimethylnaphthalen-2-amine (compound No. 2 in Scheme 1 above) was performed.

구체적으로, 다이메틸포름아마이드(DMF, N,N-dimethylformamide, 5 mL) 용매에 소디움 하이드라이드(NaH, sodium hydride, 235 mg, 5.875 mmol)를 넣고 아르곤(argon) 풍선을 꽂아 준 후, 포화 소금물과 얼음을 이용하여 -15 ℃로 온도를 낮추어 주었다. 이 혼합 용액에 2번 화합물(1 g, 5.34 mmol)을 DMF (5 mL)에 녹인 후, 온도를 유지한 상태에서 약 5분간 서서히 한 방울씩 넣어주었다. 이 과정에서 수소 기체(H2 gas)가 발생하게 되는데, 이를 실리콘오일 트랩(silicon oil trap)을 거치게 하여 옥외로 배출시켰다. 동일한 온도에서 1시간 교반 시킨 후, 트랩에서 방울(H2 gas)이 더 이상 발생하지 않는 것을 확인하였다. 이어서, 클로로메틸 메틸 에테르(chloromethyl methyl ether, 0.4 mL, 5.34 mmol)를 약 5분간 서서히 한 방울씩 넣어주었다. 주입이 완료되면, 온도를 상온 (25 ℃)으로 바꾸어주고, 6시간을 교반시켰다. 6시간 후, 물(100 mL)를 넣어주고, 에틸아세테이트(EtOAc, 200 mL)를 이용하여 추출을 수행하였다. 추출을 통해 얻어진 에틸아세테이트 유기층 내 존재하는 물을 무수황산나트륨(10 g)으로 건조하고, 건조된 에틸아세테이트 유기층을 흡기기를 이용해 농축하였다. 이렇게 얻어진 옅은 갈색의 액체 화합물은 실리카겔을 이용한 컬럼 크로마토그래피 방법을 통하여 분리(전개 액: 5 % EtOAc/Hexane)하며, 흰색의 고체 화합물(상기 도식 1에서 3번 화합물)(988 mg, 80 %)을 얻었다. 생성된 화합물을 박막 크로마토그래피로 분석하면 Rf = 0.45(20% EtOAc/Hexane - 1회 전개)의 전개 값을 갖는다.Specifically, sodium hydride (NaH, sodium hydride, 235 mg, 5.875 mmol) was added to a dimethylformamide (DMF, N,N-dimethylformamide, 5 mL) solvent, and an argon balloon was inserted, followed by saturated brine. and ice was used to lower the temperature to -15 °C. Compound No. 2 (1 g, 5.34 mmol) was dissolved in DMF (5 mL) in this mixed solution, and then slowly added dropwise for about 5 minutes while maintaining the temperature. In this process, hydrogen gas (H 2 gas) is generated, which is discharged outdoors through a silicon oil trap. After stirring at the same temperature for 1 hour, it was confirmed that no more droplets (H 2 gas) were generated in the trap. Then, chloromethyl methyl ether (chloromethyl methyl ether, 0.4 mL, 5.34 mmol) was slowly added dropwise for about 5 minutes. When the injection was completed, the temperature was changed to room temperature (25° C.), and the mixture was stirred for 6 hours. After 6 hours, water (100 mL) was added, and extraction was performed using ethyl acetate (EtOAc, 200 mL). Water present in the organic layer of ethyl acetate obtained through extraction was dried over anhydrous sodium sulfate (10 g), and the dried organic layer of ethyl acetate was concentrated using a suction device. The light brown liquid compound thus obtained was separated by column chromatography using silica gel (eluent: 5 % EtOAc/Hexane), and a white solid compound (compound No. 3 in Scheme 1) (988 mg, 80%) got Analysis of the resulting compound by thin layer chromatography has a developing value of R f =0.45 (20% EtOAc/Hexane - one run).

1H NMR (CDCl3, 300MHz, 293K): δ 7.75(d, 1H), 7.72(d, 1H), 7.40-7.39(d, 1H), 7.15-7.08(m, 2H), 6.98-6.97(d, 1H), 5.39(s, 2H), 3.69(s, 3H), 3.11(s, 6H). 1 H NMR (CDCl 3 , 300 MHz, 293K): δ 7.75 (d, 1H), 7.72 (d, 1H), 7.40-7.39 (d, 1H), 7.15-7.08 (m, 2H), 6.98-6.97 (d) , 1H), 5.39 (s, 2H), 3.69 (s, 3H), 3.11 (s, 6H).

13C NMR(CDCl3, 75MHz, 293K): δ 155.75, 149.16, 136.23, 129.11, 128.55, 123.00, 114.99, 114.58, 108.69, 105.96, 94.62, 56.07, 40.83. 13 C NMR (CDCl 3 , 75 MHz, 293K): δ 155.75, 149.16, 136.23, 129.11, 128.55, 123.00, 114.99, 114.58, 108.69, 105.96, 94.62, 56.07, 40.83.

HRMS: m/z calcd. for C14H17NO2 231.1259 found 231.1262.HRMS: m/z calcd. for C1 4 H 17 NO 2 231.1259 found 231.1262.

(3) 6-(다이메틸아미노)-3-(메톡시메톡시)-2-나프트알데하이드(6-(dimethylamino)-3-(methoxymethoxy)-2-naphthaldehyde) 의 합성(3) Synthesis of 6-(dimethylamino)-3-(methoxymethoxy)-2-naphthaldehyde (6-(dimethylamino)-3-(methoxymethoxy)-2-naphthaldehyde)

6-(다이메틸아미노)-3-(메톡시메톡시)-2-나프트알데하이드)(상기 도식 1에서 3번 화합물)의 합성을 수행하였다.The synthesis of 6-(dimethylamino)-3-(methoxymethoxy)-2-naphthaldehyde) (compound 3 in Scheme 1 above) was carried out.

구체적으로, 100 mL 라운드 바텀 플라스크(round-bottom flask)에 3번 화합물(2.2606 g, 9.774 mmol)을 넣은 후, 아르곤 풍선을 꽂아주었다. 이어서 다이에틸 에테르(Et2O, 50 mL)을 넣어주고, 포화된 소금물과 얼음을 이용하여 온도를 -20 ℃로 낮추었다. 온도 확인 후, 3차 부틸리튬(tert-BuLi, 8.6 mL, 14.66 mmol)을 약 30분에 걸쳐 서서히 한 방울씩 넣어주었다. 이때 색깔은 서서히 짙은 갈색으로 바뀌며, 주입이 완료되면 같은 온도에서 2시간을 교반시켰다. 2시간 교반 후, DMF(1.3 mL, 16.62 mmol)를 약 5분에 걸쳐 서서히 한 방울씩 넣어주었다. 주입이 완료되면 동일한 온도에서 1시간을 교반하였다. 이때 색깔은 점차 밝은 노란색으로 변하였다. 1시간 교반 후, 4N HCl(10 mL)와 1차 증류수(10 mL)를 넣어주고 10분간 교반하였다. 10분 후, 에틸아세테이트(300 mL)와 포화 소금물(100 mL), 물(200 mL)를 이용하여 추출과정을 수행하였다. 추출을 통해 얻어진 에틸아세테이트 유기층 내 존재하는 물을 무수황산나트륨(15 g)으로 건조하고, 흡기기를 이용하여 농축하였다. 이렇게 얻어지는 밝은 노란색의 고체 화합물은 실리카겔을 이용한 컬럼 크로마토그래피 방법을 이용하여 분리(전개 액: 20 % EtOAc/Hexane)하여 밝은 노란색의 고체 상기 도식 1에서 4번 화합물(1.27 g, 50 %)을 얻었다. 생성된 화합물을 박막 크로마토그래피로 분석하면 Rf = 0.25(20% EtOAc/Hexane - 1회 전개)의 전개 값을 갖는다.Specifically, after putting compound 3 (2.2606 g, 9.774 mmol) in a 100 mL round-bottom flask, an argon balloon was inserted. Then, diethyl ether (Et 2 O, 50 mL) was added, and the temperature was lowered to -20 °C using saturated brine and ice. After checking the temperature, tertiary butyl lithium (tert-BuLi, 8.6 mL, 14.66 mmol) was slowly added dropwise over about 30 minutes. At this time, the color gradually changed to dark brown, and when injection was completed, the mixture was stirred at the same temperature for 2 hours. After stirring for 2 hours, DMF (1.3 mL, 16.62 mmol) was slowly added dropwise over about 5 minutes. When the injection was completed, the mixture was stirred for 1 hour at the same temperature. At this time, the color gradually changed to bright yellow. After stirring for 1 hour, 4N HCl (10 mL) and primary distilled water (10 mL) were added and stirred for 10 minutes. After 10 minutes, the extraction process was performed using ethyl acetate (300 mL), saturated brine (100 mL), and water (200 mL). Water present in the organic layer of ethyl acetate obtained through extraction was dried over anhydrous sodium sulfate (15 g), and concentrated using an aspirator. The light yellow solid compound thus obtained was separated by column chromatography using silica gel (eluent: 20 % EtOAc/Hexane) to obtain a light yellow solid compound No. 4 in Scheme 1 (1.27 g, 50 %). . Analysis of the resulting compound by thin layer chromatography has a developing value of R f = 0.25 (20% EtOAc/Hexane - one run).

1H NMR (CDCl3, 300MHz, 293K): δ 10.49(s, 1H), 8.25(s, 1H), 7.75-7.73(d, 1H), 7.29-7.24(d, 1H), 7.05-7.03(dd, 1H), 6.77-6.76(d, 1H), 5.40(s, 2H), 3.59(s, 3H), 3.12(s, 6H). 1 H NMR (CDCl 3 , 300 MHz, 293K): δ 10.49(s, 1H), 8.25(s, 1H), 7.75-7.73(d, 1H), 7.29-7.24(d, 1H), 7.05-7.03(dd , 1H), 6.77-6.76 (d, 1H), 5.40 (s, 2H), 3.59 (s, 3H), 3.12 (s, 6H).

13C NMR(CDCl3, 75MHz, 293K): δ 189.61, 155.99, 150.71, 139.74, 131.16, 130.89, 122.26, 121.29, 114.76, 107.66, 104.30, 94.75, 56.39, 40.32. 13 C NMR (CDCl 3 , 75 MHz, 293K): δ 189.61, 155.99, 150.71, 139.74, 131.16, 130.89, 122.26, 121.29, 114.76, 107.66, 104.30, 94.75, 56.39, 40.32.

HRMS: m/z calcd. for C15H17NO3 259.1208 found 259.1211. HRMS: m/z calcd. for C 15 H 17 NO 3 259.1208 found 259.1211.

(4) 6-(다이메틸아미노)-3-하이드록시-2-나프트알데하이드(6-(dimethylamino)-3-hydroxy -2-naphthaldehyde)(화학식 1의 화합물) 의 합성(4) Synthesis of 6-(dimethylamino)-3-hydroxy-2-naphthaldehyde (6-(dimethylamino)-3-hydroxy-2-naphthaldehyde) (compound of formula 1)

6-(다이메틸아미노)-3-하이드록시-2-나프트알데하이드의 합성을 수행하였다.The synthesis of 6-(dimethylamino)-3-hydroxy-2-naphthaldehyde was performed.

구체적으로, 25 mL 라운드 바텀 플라스크에 상기 도식 1에서 4번 화합물(195 mg, 0.75 mmol)과 아이소프로필 알콜(isopropyl alcohol, 10 mL), 5M HCl (5 mL)를 넣어준 후 60 ℃에서 3시간을 교반하였다. 3시간 후, 상온으로 플라스크를 식힌 후 아이소프로필 알콜은 흡기기에서 제거하고, 에틸 아세테이트(100 mL)와 물(100 mL)를 이용하여 추출과정을 수행하였다. 추출을 통해 얻어진 에틸아세테이트 유기층 내 존재하는 물을 무수황산나트륨(3 g)으로 건조하고, 흡기기를 이용하여 농축하였다. 이렇게 얻어지는 노란색의 고체 화합물을 실리카겔을 이용한 관 크로마토그래피방법을 이용하여 분리(전개 액: 20 % EtOAc/Hexane)하여 노란색의 하기 화학식 1의 화합물(113 mg, 70%)을 얻었다. Specifically, after putting compound 4 (195 mg, 0.75 mmol), isopropyl alcohol, 10 mL), and 5M HCl (5 mL) in Scheme 1 in a 25 mL round-bottom flask, 3 hours at 60 ° C. was stirred. After 3 hours, after cooling the flask to room temperature, isopropyl alcohol was removed from the aspirator, and extraction was performed using ethyl acetate (100 mL) and water (100 mL). Water present in the organic layer of ethyl acetate obtained through extraction was dried over anhydrous sodium sulfate (3 g), and concentrated using a suction device. The yellow solid compound thus obtained was separated by column chromatography using silica gel (eluent: 20% EtOAc/Hexane) to obtain a yellow compound of Formula 1 (113 mg, 70%).

[화학식 1][Formula 1]

Figure 112020005081246-pat00005
Figure 112020005081246-pat00005

상기 화학식 1의 화합물을 박막 크로마토그래피로 분석하면 Rf = 0.35(20 % EtOAc/Hexane - 1회 전개)의 전개 값을 갖는다. When the compound of Formula 1 was analyzed by thin layer chromatography, it had a developing value of R f = 0.35 (20 % EtOAc/Hexane - one run).

1H NMR (CDCl3, 300 MHz, 293K): δ 10.54(s, 1H), 9.89(s, 1H), 7.90(s, 1H), 7.70-7.67(d, 1H), 7.02-6.98(m, 2H), 6.66-6.65(d, 1H), 3.13(s, 6H). 1 H NMR (CDCl 3 , 300 MHz, 293K): δ 10.54(s, 1H), 9.89(s, 1H), 7.90(s, 1H), 7.70-7.67(d, 1H), 7.02-6.98(m, 2H), 6.66-6.65 (d, 1H), 3.13 (s, 6H).

13C NMR (CDCl3, 75 MHz, 293K): δ 195.26, 156.83, 151.39, 140.62, 137.75, 130.87, 120.63, 119.03, 114.18, 108.73, 103.22, 40.26. 13 C NMR (CDCl3, 75 MHz, 293K): δ 195.26, 156.83, 151.39, 140.62, 137.75, 130.87, 120.63, 119.03, 114.18, 108.73, 103.22, 40.26.

HRMS: m/z calcd. for C13H13NO2 215.0946 found 259.0946. HRMS: m/z calcd. for C 13 H 13 NO 2 215.0946 found 259.0946.

이때, 본 발명에서 개발된 상기 화학식 1의 화합물을 DMHN1이라 명명하였다.At this time, the compound of Formula 1 developed in the present invention was named DMHN1.

실시예 2. 형광 프로브 화합물(DMHN1)의 흡수 및 형광 특성 확인Example 2. Confirmation of absorption and fluorescence properties of fluorescent probe compound (DMHN1)

아래의 주어진 용매조건 하에서 DMHN1의 흡수 및 형광 그래프를 측정하였으며, 그 결과를 도 1에 나타내었다. The absorption and fluorescence graphs of DMHN1 were measured under the solvent conditions given below, and the results are shown in FIG. 1 .

물질의 흡광특성(absorbance)을 분석하기 위해서 흡수 분광광도계 (UV/Vis spectrophotometer; Agilent Technologies Cary 8454, USA)를 사용하였고, 형광세기(fluorescence intensity)를 측정하기 위해서 형광기(spectro-fluorophotometer; SHIMADZU CORP. RF-6000, Japan)를 사용하였다. 흡광과 형광 스펙트럼 측정 시에 사용되는 유리 큐벳(cuvette)으로는 사면이 1 cm 두께를 가진 표준 석영셀 (standard quartz cell; interanl volume= 0.1 cm, Hellma Analytics, Jena, Germany)을 이용하였다. An absorption spectrophotometer (UV/Vis spectrophotometer; Agilent Technologies Cary 8454, USA) was used to analyze the absorbance of the material, and a spectro-fluorophotometer (SHIMADZU CORP) was used to measure the fluorescence intensity. (RF-6000, Japan) was used. A standard quartz cell (interanl volume = 0.1 cm, Hellma Analytics, Jena, Germany) having a thickness of 1 cm on all sides was used as a glass cuvette used for measuring absorption and fluorescence spectra.

도 1의 그래프는 용매가 아세토나이트릴 (acetonitrile, 99%)과 트리에틸아민(triethylamine, 1 %)인 조건하에서 DMHN1의 흡수 및 형광 그래프를 각각 나타낸 것으로, 해당 조건하에서 DMHN1은 흡수 스펙트럼(도 1에서 (a)) 390 nm에서 최고 흡수 값을 나타내었다. 하지만, 형광 스펙트럼(도 1에서 (b))에서 DMHN1은 매우 낮은 형광을 나타내었다.The graph of FIG. 1 shows the absorption and fluorescence graphs of DMHN1 under the conditions that the solvent is acetonitrile (acetonitrile, 99%) and triethylamine (1%), respectively, under the conditions DMHN1 is an absorption spectrum (FIG. 1). (a)) showed the highest absorption value at 390 nm. However, DMHN1 showed very low fluorescence in the fluorescence spectrum (FIG. 1 (b)).

실시예 3. 형광 프로브 화합물(DMHN1)의 다이에틸싸이아노포스포네이트 반응 메커니즘Example 3. Mechanism of Diethylcyanophosphonate Reaction of Fluorescent Probe Compound (DMHN1)

DMHN1의 다이에틸싸이아노포스포네이트에 대한 반응 메커니즘을 확인하기 위하여, 고해상도 질량분석기(High resolution mass spectra; JMS-700 spctrometer, JEOL, Tokyo, Japan)로 반응이 종료된 생성물의 질량을 측정하였으며, 그 결과를 도 2에 나타내었다. 또한, 도 3에 DMHN1의 다이에틸싸이아노포스포네이트에 대한 반응 메커니즘을 나타내었다. In order to confirm the reaction mechanism of DMHN1 to diethylcyanophosphonate, the mass of the finished product was measured with a high resolution mass spectra (JMS-700 spctrometer, JEOL, Tokyo, Japan), The results are shown in FIG. 2 . In addition, FIG. 3 shows the reaction mechanism of DMHN1 to diethylcyanophosphonate.

이 결과를 통해 DMHN1의 감지 메커니즘을 규명하였으며, 이는 DMHN1과 다이에틸싸이아노포스포네이트 사이의 친핵성 치환 반응 (nucleophilic substitutions)을 통해 오쏘-하이드록시-벤즈알데하이드의 구조 내 들뜬 상태 분자 내 양성자 전이(ESIPT, Excited-State Intramolecular Proton Transfer)에 의한 ??칭(quenching)효과가 깨어지면서 형광을 나타내는 것임을 확인하였다.Through these results, the detection mechanism of DMHN1 was identified, which is a proton transfer in the excited state molecule in the structure of ortho-hydroxy-benzaldehyde through nucleophilic substitutions between DMHN1 and diethylcyanophosphonate. It was confirmed that the quenching effect by (ESIPT, Excited-State Intramolecular Proton Transfer) is broken and shows fluorescence.

실시예 4. 형광 프로브 화합물(DMHN1)의 다이에틸싸이아노포스포네이트 감지 민감도 확인Example 4. Confirmation of sensitivity to detection of diethylcyanophosphonate of the fluorescent probe compound (DMHN1)

주어진 용매조건에서 DMHN1의 다이에틸싸이아노포스포네이트 감지 특성 및 민감도를 형광 변화 관찰을 기반으로 분석하였으며, 그 결과를 도 4 내지 6에 나타내었다.The diethylcyanophosphonate detection characteristics and sensitivity of DMHN1 in a given solvent condition were analyzed based on the observation of fluorescence changes, and the results are shown in FIGS. 4 to 6 .

구체적으로, DMHN1이 다이에틸싸이아노포스포네이트의 양에 따른 형광변화를 보이는지, 그리고 미량의 다이에틸싸이아노포스포네이트 검출이 가능한지 여부를 확인하기 위하여, 일정 당량의 다이에틸싸이아노포스포네이트를 이용해 고농도에서의 형광 변화와 낮은 농도에서의 형광 변화 정도를 확인하였다. 측정에 사용된 용매는 아세토나이트릴 (acetonitrile, 99 %)과 트리에틸아민(triethylamine, 1 %)으로, 실온(25 ℃)에서 반응시간은 3분 미만으로 고정하여 분석하였다. DMHN1은 10 mM로 다이메틸 설폭사이드(dimethyl sulfoxide, DMSO)에 녹여서 사용하였으며, 최종으로 사용되는 용매조건에서 다이메틸 설폭사이드의 양이 동일하도록 제어하였다.Specifically, in order to determine whether DMHN1 shows a fluorescence change according to the amount of diethyl cyanophosphonate and whether it is possible to detect a trace amount of diethylcyanophosphonate, a certain equivalent of diethylcyanophosphonate was used to check the degree of fluorescence change at high concentration and fluorescence change at low concentration. The solvent used for the measurement was acetonitrile (acetonitrile, 99%) and triethylamine (triethylamine, 1%), and the reaction time at room temperature (25 ℃) was fixed to less than 3 minutes and analyzed. DMHN1 was used by dissolving 10 mM in dimethyl sulfoxide (DMSO), and the amount of dimethyl sulfoxide was controlled to be the same in the final solvent condition.

도 4의 그래프를 통하여 다이에틸싸이아노포스포네이트의 농도(0 내지 1 mM 고농도 범위)가 증가하는 경우 DMHN1의 형광이 증가하는 것을 확인할 수 있다. 도 5는 최대 형광 파장대에서의 다이에틸싸이아노포스포네이트의 농도와 DMHN1의 형광 세기 간의 상관관계 분석 결과를 나타낸 것이다. 도 4 및 5의 그래프를 통하여 표적물질(다이에틸싸이아노포스포네이트)의 농도가 증가함에 따라 선형적으로 형광의 세기가 증가함을 확인할 수 있다. Through the graph of FIG. 4 , it can be confirmed that the fluorescence of DMHN1 increases when the concentration of diethylcyanophosphonate (0 to 1 mM high concentration range) increases. 5 shows the correlation analysis results between the concentration of diethylcyanophosphonate and the fluorescence intensity of DMHN1 in the maximum fluorescence wavelength band. 4 and 5, it can be confirmed that the intensity of fluorescence linearly increases as the concentration of the target material (diethylcyanophosphonate) increases.

낮은 농도에서의 다이에틸싸이아노포스포네이트(0 내지 10 μM) 감지 가능여부를 확인하기 위해 각 농도에 따른 분석물의 수를 3 개씩 늘려서 평균값으로 상관관계 그래프를 확인하였다. 모든 실험에서 DMHN1의 농도는 10 μM로 동일하게 고정하여 분석하였고, 모든 형광세기는 25 ℃에서 3분 미만으로 반응시켜 형광기로 측정하였다. 그 결과 도 6에 나타난 바와 같이, DMHN1의 다이에틸싸이아노포스포네이트에 대한 민감도는 8.16 ppm에 해당함을 확인하였다.In order to check whether diethylcyanophosphonate (0 to 10 μM) can be detected at a low concentration, the number of analytes according to each concentration was increased by three, and a correlation graph was confirmed as an average value. In all experiments, the concentration of DMHN1 was fixed at 10 μM and analyzed, and all fluorescence intensities were measured with a fluorescence device by reacting at 25° C. for less than 3 minutes. As a result, as shown in FIG. 6, it was confirmed that the sensitivity of DMHN1 to diethylcyanophosphonate was 8.16 ppm.

실시예 5. 형광 프로브 화합물(DMHN1)의 다이에틸싸이아노포스포네이트 선택성 확인Example 5. Confirmation of diethylcyanophosphonate selectivity of fluorescent probe compound (DMHN1)

DMHN1의 다이에틸싸이아노포스포네이트에 대한 선택성을 형광 변화를 통해 확인하였으며, 그 결과를 도 7 및 8에 나타내었다.The selectivity of DMHN1 to diethylcyanophosphonate was confirmed through fluorescence change, and the results are shown in FIGS. 7 and 8 .

구체적으로, DMHN1이 다이에틸싸이아노포스포네이트에 선택적으로 결합하는지의 여부를 확인하기 위하여, 반응에 영향을 줄 수 있는 산성 물질과 다이에틸싸이아노포스포네이트와 유사한 기능을 가진 신경작용제들을 이용하여 각 물질에 대한 DMHN1의 형광 변화 여부를 확인하였다. 실험에 사용된 용매는 아세토나이트릴 (acetonitrile, 99 %)과 트리에틸아민(triethylamine, 1 %)으로, 각 신경작용제 유사체들은 TCI(Tokyo chemical industry Co., Ltd) 사의 제품을 사용하였다. DMHN1은 10 mM의 농도로 다이메틸 설폭사이드 용액에 녹여서 사용되었으며, 최종적으로 사용되는 용매 조건에서 DMHN1의 농도는 10 μM로 다이메틸 설폭사이드의 양이 각 물질별로 동일할 수 있도록 통제하였다. Specifically, in order to determine whether DMHN1 selectively binds to diethyl cyanophosphonate, an acidic substance that can affect the reaction and a nerve agent having a function similar to that of diethylcyanophosphonate are used. Thus, it was confirmed whether the fluorescence of DMHN1 was changed for each material. The solvents used in the experiment were acetonitrile (99%) and triethylamine (1%), and each nerve agent analogue was manufactured by TCI (Tokyo chemical industry Co., Ltd). DMHN1 was dissolved in dimethyl sulfoxide solution at a concentration of 10 mM, and the concentration of DMHN1 in the final solvent condition was 10 μM, so that the amount of dimethyl sulfoxide was controlled so that the amount of dimethyl sulfoxide was the same for each substance.

도 7에서 안쪽의 사진은 365 nm 파장대를 가지는 형광장비 안에서 카메라로 촬영한 사진으로, DMHN1(사진의 좌측)은 형광이 거의 발하지 않음을 보여준다. 하지만 DMHN1을 다이에틸싸이아노포스포네이트(1 mM)이 포함된 아세토나이트릴(acetonitrile, 99 %)과 트리에틸아민(triethylamine, 1 %) 혼합용매에 넣어주고 25 ℃에서 약 3분간 반응시켜주었을 때 강한 청색의 형광이 켜짐을 확인 할 수 있다. The inner photo in FIG. 7 is a photo taken with a camera in a fluorescence device having a wavelength of 365 nm, showing that DMHN1 (left side of the photo) hardly emits fluorescence. However, DMHN1 was put in a mixed solvent of acetonitrile (99%) and triethylamine (1%) containing diethylcyanophosphonate (1 mM) and reacted at 25 ° C for about 3 minutes. It can be confirmed that strong blue fluorescence is turned on when

도 8은 DMHN1과 다이에틸싸이아노포스포네이트의 반응이 3분간 진행되었을 때의 최대 형광파장(486 nm)을 기준으로 형광세기의 증가량을 분석한 결과이다. 도 8에서 DMHN1과 반응하지 않은 신경작용제 유사체들의 형광 세기는 모두 그래프의 하단에 모여서 나타났으며, 다이에틸싸이아노포스포네이트와 반응한 물질의 경우(붉은선) 형광이 증가함을 보였다. DMHN1의 농도는 10 μM로 고정하였으며, 각 유사체들의 농도는 1 mM로 통일하여 측정하였다. 도 8에 나타낸 그래프의 가로축에 표시된 신경작용제 유사체들의 종류는 다음과 같다.8 is a result of analyzing the increase in fluorescence intensity based on the maximum fluorescence wavelength (486 nm) when the reaction of DMHN1 and diethyl cyanophosphonate proceeded for 3 minutes. In FIG. 8 , the fluorescence intensity of the nerve agent analogs that did not react with DMHN1 were all clustered at the bottom of the graph, and the fluorescence increased in the case of the substance reacted with diethylcyanophosphonate (red line). The concentration of DMHN1 was fixed at 10 μM, and the concentration of each analogue was uniformly measured at 1 mM. The types of nerve agent analogs indicated on the horizontal axis of the graph shown in FIG. 8 are as follows.

(A) DMHN1 (화학식 1의 화합물);(A) DMHN1 (compound of formula 1);

(B) DMHN1 with diethylcyanophosphonate;(B) DMHN1 with diethylcyanophosphonate;

(C) DMHN1 with diethyl chlorophosphate (C) DMHN1 with diethyl chlorophosphate

(D) DMHN1 with dimethyl methylphosphate; (D) DMHN1 with dimethyl methylphosphate;

(E) DMHN1 with triphenylphosphate; (E) DMHN1 with triphenylphosphate;

(F) DMHN1 with triethylphosphate; (F) DMHN1 with triethylphosphate;

(G) DMHN1 with acetic acid; (G) DMHN1 with acetic acid;

그 결과, 도 8에 나타난 바와 같이 DMHN1은 다이에틸싸이아노포스포네이트가 존재하는 조건에서만 형광이 선택적으로 증가됨을 확인하였다. 따라서 본 발명에 따른 DMHN1은 다이에틸싸이아포스포네이트에서만 선택적으로 반응성을 가짐을 알 수 있다. As a result, as shown in FIG. 8 , it was confirmed that DMHN1 selectively increased fluorescence only in the presence of diethylcyanophosphonate. Therefore, it can be seen that DMHN1 according to the present invention has selective reactivity only with diethyl thiaphosphonate.

실시예 6. 토양 조건 하에서 다이에틸싸이아노포스포네이트 검출여부 확인Example 6. Confirmation of detection of diethyl cyanophosphonate under soil conditions

DMHN1의 토양 조건 하에서 다이에틸싸이아노포스포네이트의 검출 여부를 확인하기 위하여 세 종류의 흙을 이용해 해당 환경에서의 DMHN1의 형광변화를 확인하였다. In order to confirm whether diethyl cyanophosphonate was detected under soil conditions of DMHN1, the fluorescence change of DMHN1 in the corresponding environment was confirmed using three types of soil.

구체적으로, 1 g의 모래(Sand), 진흙(Clay), 밭흙(Field)을 알루미늄 접시에 덜어준 다음 아세토나이트릴에 분산된 100 mM의 다이에틸싸이아노포스포네이트를 처리해주었다. 마지막으로 다이에틸싸이아노포스포네이트가 처리된 각 종류의 흙 (1 g)을 아세토나이트릴 (acetonitrile, 99 %)과 트리에틸아민(triethylamine, 1 %) 혼합용매에 10 μM의 농도로 포함된 DMHN1(3 mL)에 첨가해준 후 형광 변화를 관찰하였다. 반응물은 25 ℃ 조건에서 60분 동안 형광의 변화를 관찰하였으며, 다이에틸싸이아노포스포네이트와의 반응이 10분이 지난 후 365 nm 형광기 안에서 사진을 촬영하였다. 그 결과를 도 9에 나타내었다. Specifically, 1 g of sand, clay, and field were added to an aluminum dish and then treated with 100 mM diethylcyanophosphonate dispersed in acetonitrile. Finally, each type of soil (1 g) treated with diethyl cyanophosphonate was added to a mixed solvent of acetonitrile (acetonitrile, 99%) and triethylamine (1%) at a concentration of 10 μM. After addition to DMHN1 (3 mL), the change in fluorescence was observed. The change in fluorescence was observed for the reactant at 25 °C for 60 minutes, and after 10 minutes of reaction with diethylcyanophosphonate, a picture was taken in a 365 nm fluorescence device. The results are shown in FIG. 9 .

또한 상기 언급한 바와 같이 다이에틸싸이아노포스포네이트와 DMHN1의 반응시간에 따른 형광세기의 변화를 측정하여 도 10에 나타내었다. 도 9 및 도 10에 나타난 바와 같이, 상기 실험을 통하여 해당 환경에서 다이에틸싸이아노포스포네이트 존재시 DMHN1의 형광변화를 나타냄을 확인할 수 있다.In addition, as mentioned above, the change in fluorescence intensity according to the reaction time of diethylcyanophosphonate and DMHN1 was measured and shown in FIG. 10 . As shown in FIGS. 9 and 10 , it can be confirmed that DMHN1 exhibits a fluorescence change in the presence of diethylcyanophosphonate in the corresponding environment through the above experiment.

도 11에는 각 흙의 종류에 따른 시간별 형광세기 변화를 사진으로 나타내었다. 또한, 도 12에는 각 흙의 종류에 따른 시간별 형광세기 변화를 그래프로 나타내었다. 도 11 및 도 12에 나타난 바와 같이, DMHN1이 토양 조건 하에서도 다이에틸싸이아노포스포네이트를 단 시간 내에 빠르게 검출할 수 있다는 것을 확인할 수 있다.11 is a photograph showing the change in fluorescence intensity over time according to the type of each soil. In addition, FIG. 12 graphically shows the change in fluorescence intensity over time according to the type of each soil. 11 and 12, it can be confirmed that DMHN1 can rapidly detect diethylcyanophosphonate in a short time even under soil conditions.

상기와 같은 결과를 통하여 본 별명에 따른 DMHN1이 환경조건 내에서 활용 가능함을 확인할 수 있다.Through the above results, it can be confirmed that DMHN1 according to this nickname can be utilized within environmental conditions.

실시예 7. 다이에틸싸이아노포스포네이트 실시간 현장검출 키트로의 적용Example 7. Application to diethylcyanophosphonate real-time in situ detection kit

DMHN1을 이용한 다이에틸싸이아노포스포네이트의 실시간 현장검출 키트로의 개발가능성을 간소화된 키트를 제작하여 검증하였다.The possibility of developing a real-time in-situ detection kit of diethyl cyanophosphonate using DMHN1 was verified by manufacturing a simplified kit.

다이에틸싸이아노포스포네이트의 실시간 현장검출 과정은 도 13에 나타내었다. 구체적으로, 휴대성에 대한 평가를 위해 시중에서 실제로 판매되고 있는 자외선 손전등(UV light, 365 nm, 3W)을 준비하였고, 10 μM의 DMHN1이 용해된 세토나이트릴(acetonitrile, 99 %)과 트리에틸아민(triethylamine, 1 %) 혼합용매 1 mL을 고해상도 액체크로마토그래피 바이알(2 mL 사이즈)에 준비하였다. 키트의 구성은 DMHN1을 포함한 바이알과 모세관(캐필러리), 자외선 손전등으로 구성된다. 모세관으로 다이에틸싸이아노포스포네이트 원액(약 20 μL)채취하여 DMHN1을 포함한 바이알에 꽂아주었다. 실험 결과는 도 14에 나타내었다. The real-time in situ detection process of diethylcyanophosphonate is shown in FIG. 13 . Specifically, for the evaluation of portability, a commercially available ultraviolet flashlight (UV light, 365 nm, 3W) was prepared, and 10 μM DMHN1 was dissolved in cetonitrile (acetonitrile, 99%) and triethylamine. (triethylamine, 1 %) 1 mL of a mixed solvent was prepared in a high-resolution liquid chromatography vial (2 mL size). The kit consists of a vial containing DMHN1, a capillary tube (capillary), and an ultraviolet flashlight. The diethyl cyanophosphonate stock solution (about 20 μL) was collected through a capillary tube and inserted into a vial containing DMHN1. The experimental results are shown in FIG. 14 .

도 14에 나타난 바와 같이, 30초 이내의 단 시간에 DMHN1의 형광변화를 확인할 수 있다.As shown in FIG. 14 , a change in fluorescence of DMHN1 can be confirmed in a short time within 30 seconds.

상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The description of the present invention stated above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. There will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (6)

하기 화학식 1의 화합물을 포함하는, 다이에틸싸이아노포스포네이트 (diethylcyanophosphonate) 검출용 형광 프로브:
[화학식 1]
Figure 112021065948515-pat00006
A fluorescent probe for detecting diethylcyanophosphonate, comprising a compound of Formula 1 below:
[Formula 1]
Figure 112021065948515-pat00006
제 1 항에 있어서,
상기 화합물은 화합물 내에 오쏘(ortho)-히드록시(hydroxy)-벤즈알데하이드(benzaldehyde) 구조를 포함하는 것을 특징으로 하는, 형광 프로브.
The method of claim 1,
The compound is characterized in that it contains an ortho-hydroxy (hydroxy)-benzaldehyde structure in the compound, a fluorescent probe.
◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈◈Claim 3 was abandoned when paying the registration fee.◈ 제 1 항에 있어서,
상기 화합물은 다이에틸싸이아노포스포네이트와의 친핵성 치환 반응을 통해 오쏘-히드록시-벤즈알데하이드의 구조 내 들뜬 상태 분자 내 양성자 전이(Excited-State Intramolecular Proton Transfer)에 의한 ??칭(quenching) 효과가 깨어질 때 형광을 나타내는 것을 특징으로 하는, 형광 프로브.
The method of claim 1,
The compound is quenched by excited-state intramolecular proton transfer in the structure of ortho-hydroxy-benzaldehyde through a nucleophilic substitution reaction with diethylcyanophosphonate. A fluorescent probe, characterized in that it exhibits fluorescence when the effect is broken.
하기 화학식 1의 화합물을 포함하는 다이에틸싸이아노포스포네이트 검출용 키트:
[화학식 1]
Figure 112021065948515-pat00021
A kit for detecting diethylcyanophosphonate comprising a compound of Formula 1 below:
[Formula 1]
Figure 112021065948515-pat00021
하기 화학식 1의 화합물을 이용한 다이에틸싸이아노포스포네이트의 검출 방법:
[화학식 1]
Figure 112021065948515-pat00022
A method for detecting diethylcyanophosphonate using a compound of Formula 1 below:
[Formula 1]
Figure 112021065948515-pat00022
제 5 항에 있어서,
상기 검출 방법은,
상기 화학식 1의 화합물에 다이에틸싸이아노포스포네이트를 포함하는 시료를 첨가하고, UV 광을 조사하는 단계를 포함하는 것을 특징으로 하는 다이에틸싸이아노포스의 검출 방법.
6. The method of claim 5,
The detection method is
A method of detecting diethyl cyanophosphos comprising adding a sample containing diethylcyanophosphonate to the compound of Formula 1 and irradiating UV light.
KR1020200005909A 2020-01-16 2020-01-16 Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof KR102267067B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200005909A KR102267067B1 (en) 2020-01-16 2020-01-16 Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200005909A KR102267067B1 (en) 2020-01-16 2020-01-16 Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof

Publications (1)

Publication Number Publication Date
KR102267067B1 true KR102267067B1 (en) 2021-06-21

Family

ID=76600099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200005909A KR102267067B1 (en) 2020-01-16 2020-01-16 Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof

Country Status (1)

Country Link
KR (1) KR102267067B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005871A (en) * 2020-07-07 2022-01-14 경희대학교 산학협력단 Composition for detecting hydrazine and Method for detecting hydrazine using the same
WO2023287208A1 (en) * 2021-07-15 2023-01-19 동우 화인켐 주식회사 Compound, and composition, molded body, dyed product, optical layer, and laminate each comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076979A1 (en) * 2000-11-16 2004-04-22 Daniel Belik Dye pair for flourescence resonance energy transfer (fret) measurements
US20140377791A1 (en) * 2012-05-17 2014-12-25 Postech Academy - Industry Foundation Novel two-photon absorbing fluorescent substance, and substrate sensing method using same
US20160116455A1 (en) * 2013-05-10 2016-04-28 Postech Academy-Industry Foundation Fluorescent probe sensing tyrosine kinase and use thereof
KR20180106005A (en) * 2017-03-17 2018-10-01 울산대학교 산학협력단 Visible light sensitive colorimetric sensor for nerve agent detection, and detection method of nerve agent using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076979A1 (en) * 2000-11-16 2004-04-22 Daniel Belik Dye pair for flourescence resonance energy transfer (fret) measurements
US20140377791A1 (en) * 2012-05-17 2014-12-25 Postech Academy - Industry Foundation Novel two-photon absorbing fluorescent substance, and substrate sensing method using same
US20160116455A1 (en) * 2013-05-10 2016-04-28 Postech Academy-Industry Foundation Fluorescent probe sensing tyrosine kinase and use thereof
KR20180106005A (en) * 2017-03-17 2018-10-01 울산대학교 산학협력단 Visible light sensitive colorimetric sensor for nerve agent detection, and detection method of nerve agent using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005871A (en) * 2020-07-07 2022-01-14 경희대학교 산학협력단 Composition for detecting hydrazine and Method for detecting hydrazine using the same
KR102551871B1 (en) 2020-07-07 2023-07-05 경희대학교 산학협력단 Composition for detecting hydrazine and Method for detecting hydrazine using the same
WO2023287208A1 (en) * 2021-07-15 2023-01-19 동우 화인켐 주식회사 Compound, and composition, molded body, dyed product, optical layer, and laminate each comprising same

Similar Documents

Publication Publication Date Title
Xia et al. BODIPY-based fluorescent sensor for the recognization of phosgene in solutions and in gas phase
Roy et al. Highly selective sub-ppm naked-eye detection of hydrazine with conjugated-1, 3-diketo probes: imaging hydrazine in drosophila larvae
Tsui et al. Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion
Hu et al. An AIE+ TICT activated colorimetric and ratiometric fluorescent sensor for portable, rapid, and selective detection of phosgene
Yang et al. A fluorescein-based fluorogenic and chromogenic chemodosimeter for the sensitive detection of sulfide anion in aqueous solution
Khan et al. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic
Malval et al. A highly selective fluorescent molecular sensor for potassium based on a calix [4] bisazacrown bearing boron-dipyrromethene fluorophores
CN109761978A (en) A kind of near infrared fluorescent probe detecting benzenethiol and its synthetic method and application
Hao et al. A highly selective long-wavelength fluorescent probe for hydrazine and its application in living cell imaging
KR102267067B1 (en) Fluorescent probes compound for the detection of diethylcyanophosphonate and use thereof
Ma et al. A water-soluble tetraphenylethene based probe for luminescent carbon dioxide detection and its biological application
CN109761853A (en) A kind of near infrared fluorescent probe detecting benzenethiol and its synthetic method and application
Huang et al. A novel anthracene-based receptor: highly sensitive fluorescent and colorimetric receptor for fluoride
Kumar et al. Rhodamine appended thiacalix [4] arene of 1, 3-alternate conformation for nanomolar detection of Hg2+ ions
Dai et al. A highly selective fluorescent sensor for mercury ion (II) based on azathia‐crown ether possessing a dansyl moiety
Ganjali et al. Selective recognition of Ni2+ ion based on fluorescence enhancement chemosensor
WO2016025382A2 (en) Probes for quantitative imaging of thiols in various environments
Wang et al. A novel and efficient chromophore reaction based on a lactam-fused aza-BODIPY for polyamine detection
CN109776591A (en) A kind of the colorimetric fluorescence probe compound and its synthetic method of Rapid Detection phosgene
Xue et al. Sensitive and selective detections of mustard gas and its analogues by 4-mercaptocoumarins as fluorescent chemosensors in both solutions and gas phase
Yang et al. A highly sensitive colorimetric and ratiometric fluorescent probe based on 3-hydroxyphthalimide for detection of Hg2+ in aqueous solution and its application in real sample analysis
Devendhiran et al. Synthesis and physical studies of coumarin-based chemosensor for cyanide ions
Miao et al. Colorimetric and ratiometric pH responses by the protonation of phenolate within hemicyanine
Ahamed et al. A PET and ESIPT-communicated ratiometric, turn-on chromo-fluorogenic sensor for rapid and sensitive detection of sarin gas mimic, diethylchlorophosphate
Ye et al. 5G smartphone-adaptable fluorescence sensing platform for simultaneous detection of toxic formaldehyde and phosgene in different emission channels

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant