KR102266099B1 - ESS operating system and method for small power brokerage transactions - Google Patents

ESS operating system and method for small power brokerage transactions Download PDF

Info

Publication number
KR102266099B1
KR102266099B1 KR1020200124127A KR20200124127A KR102266099B1 KR 102266099 B1 KR102266099 B1 KR 102266099B1 KR 1020200124127 A KR1020200124127 A KR 1020200124127A KR 20200124127 A KR20200124127 A KR 20200124127A KR 102266099 B1 KR102266099 B1 KR 102266099B1
Authority
KR
South Korea
Prior art keywords
time period
variable
amount
control
function
Prior art date
Application number
KR1020200124127A
Other languages
Korean (ko)
Inventor
심진용
Original Assignee
주식회사 아이티맨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티맨 filed Critical 주식회사 아이티맨
Priority to KR1020200124127A priority Critical patent/KR102266099B1/en
Application granted granted Critical
Publication of KR102266099B1 publication Critical patent/KR102266099B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Abstract

The present invention relates to a method for generating an ESS charge/discharge schedule to reduce a peak load and maximize economic benefits, and a system thereof. To this end, the system comprises: a data collection unit receiving and storing power data including price variables for each time period; an environment setting unit setting variables including a control variable, a state variable, and an output variable and functions including an output function and a cost function on the basis of the data stored in the data collection unit; and a predictive control calculation unit generating control variables for each time period by using the variables and functions set in the environment setting unit. The environment setting unit sets a battery charge/discharge amount (BAT(k)) for each time period as a control variable, sets the amount of electricity input to the grid for each time period as a state variable (GRID(k)), sets a saving amount for each time period based on a state variable as an output variable (SAVE(k)), and sets a target function (Rs) for a saving amount and an output function (Y) including the saving amount for each time period. The predictive control calculation unit calculates a difference of the control variable for each time period so that the cost function is minimized on the basis of a cost function (J), which uses a difference between the target function and the output function and a difference of the control variable for each time period, thereby generating a control value for each time period. Accordingly, a problem of time inconsistency between power generation and use in an ESS is systematically solved, thereby providing advantages of reducing a peak load and maximizing benefit against cost.

Description

소규모 전력 중개거래를 위한 ESS운영시스템 및 방법{ESS operating system and method for small power brokerage transactions}ESS operating system and method for small power brokerage transactions

본 발명은 소규모 전력 중개거래를 위한 ESS운영시스템 및 방법에 관한 것이며, 구체적으로 첨두부하를 경감시키고 경제적 이득을 극대화시킨 소규모 전력 중개거래를 위한 ESS운영시스템 및 방법에 관한 것이다.The present invention relates to an ESS operating system and method for a small-scale power brokerage transaction, and more specifically, to an ESS operating system and method for a small-scale power brokerage transaction that reduces peak loads and maximizes economic benefits.

통신 및 전력사용이 스마트화되어 가고, 전력 단절 없이 안정된 전력을 공급하는 것이 사업자에 중요한 요소 중에 하나이다. 이러한 측면에서 전력운영적인 측면에서 저렴한 비용으로 전력저장 장치를 구축하고 전력 단절 없이 전력을 공급이 요구되고 있다.Communication and power use are getting smarter, and supplying stable power without power cut is one of the important factors for operators. In this aspect, in terms of power operation, it is required to build a power storage device at a low cost and supply power without power interruption.

이에 따라 대규모 ESS시장과 더불어 소규모기업, 건물 등으로 ESS장치가 많이 확대될 것으로 예측되고 있으며 이를 운영할 수 있는 모니터링과 제어를 위한 스마트환경에 맞는 다양한 기능과 에너지 저장장치 상호 운영성 및 확장성을 위한 가진 전력공급장치가 요구되고 있다.Accordingly, it is predicted that ESS devices will be expanded to small businesses and buildings along with the large-scale ESS market, and various functions suitable for the smart environment for monitoring and control that can operate them, as well as interoperability and scalability of energy storage devices There is a demand for an excitation power supply device for

한편, 태양광 발전량 예측치와 당일 실시간 급전량에 차이가 많이 나는 경우, LNG발전기를 추가로 가동하거나 정지해야 하므로 예상치 못한 추가비용이 발생한다. 더구나, 태양광 등 재생에너지는 발전량 예측의무가 없어 급전 당일의 발전량을 예상하기가 어려운 문제점이 있다.On the other hand, if there is a large difference between the predicted solar power generation amount and the real-time power supply amount on the same day, the LNG generator must be additionally operated or stopped, resulting in unexpected additional costs. Moreover, there is a problem in that it is difficult to predict the amount of power generated on the day of power delivery because renewable energy such as solar power has no obligation to predict the amount of power generation.

종래의 ESS의 에너지 관리시스템으로서, 공개특허 제10-2019-0112441호를 참조하면, 에너지 관리시스템은 전력수요보정부 및 운영스케쥴 갱신부를 구비하며, 전력수요보정부에서는 전력수요데이터와 실제부하간 차이가 기준치를 초과하면 전력수요데이터를 소정의 값만큼 상향 또는 하향시키는 방식으로 보정한다.As an energy management system of a conventional ESS, referring to Patent Publication No. 10-2019-0112441, the energy management system includes a power demand correction unit and an operation schedule update unit. If the difference exceeds the reference value, the power demand data is corrected in such a way that it increases or decreases by a predetermined value.

또한, 운영스케쥴 갱신부는 전력수요 보정데이터 및 동일 시간대에 해당하는 배터리 충방전상태를 에너지저장장치로부터 수집하여 추출된 전력수요 보정데이터와 수집된 충방전상태 데이터를 고려하여 충방전 운영 스케쥴을 갱신한다.In addition, the operation schedule update unit updates the charge/discharge operation schedule in consideration of the power demand correction data and the collected charge/discharge state data extracted by collecting the electric power demand correction data and the battery charge/discharge state corresponding to the same time period from the energy storage device. .

이러한 방법으로 갱신된 충방전 운영 스케쥴을 통해 전력수요에 대해 어느정도 대비는 가능하나 실시간으로 계속하여 갱신을 해주어야 하므로 서버에 부하가 많이 걸리고 그때그때 갱신을 하므로 미래예측에 대해 체계적이지 못한 문제점이 있다.Although it is possible to prepare for electricity demand through the updated charge/discharge operation schedule in this way, it has to be continuously updated in real time, so it takes a lot of load on the server, and it is updated on a timely basis, so there is a problem that the future forecast is not systematic.

또한, 상기와 같은 종래기술은 전력수요에 대한 대비만 할 뿐 발전량예측치의 오차를 최대한 저감시키는 방법에 대해서는 고려되고 있지 않다.In addition, the prior art as described above does not consider a method of maximally reducing the error of the generation amount prediction value only to prepare for the power demand.

본 발명은 상기한 문제점을 해결하기 위한 것이며, 구체적으로 적어도 24시간 이후의 실시간 발전량과 발전량예측치와의 오차를 최소로 줄이고 발전소득을 최대화할 수 있는 소규모 전력 중개거래를 위한 ESS운영시스템을 제공하기 위한 것이다.The present invention is to solve the above problems, and specifically, to provide an ESS operating system for small-scale power brokerage transactions that can minimize the error between the real-time generation amount and the generation amount predicted value after at least 24 hours and maximize the generation income. it is for

상기한 목적을 달성하기 위하여 본 발명은, 시간대별 가격변수를 포함하는 전력데이터를 전송받아 저장하는 데이터수집부; 상기 데이터수집부에 저장된 데이터를 기초로 하여 제어변수, 상태변수, 출력변수를 포함하는 변수 및 출력함수, 비용함수를 포함하는 함수를 설정하는 환경설정부; 상기 환경설정부에서 설정된 변수 및 함수를 이용하여 시간대별 제어변수를 생성하는 예측제어산출부를 포함하여 구성되며,In order to achieve the above object, the present invention provides a data collection unit for receiving and storing power data including a price variable for each time period; an environment setting unit for setting a variable including a control variable, a state variable, an output variable, an output function, and a function including a cost function based on the data stored in the data collection unit; It is configured to include a predictive control calculation unit for generating control variables for each time period using the variables and functions set in the environment setting unit,

상기 환경설정부는,The environment setting unit,

컬럼벡터 (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k))T를 제어변수로, 컬럼벡터 (aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k))T를 상태변수로, 상기 상태변수 기초한 시간대별 절약금액을 출력변수 SAVE(k)로 설정하고, 절약금액에 대한 목표함수 Rs및 상기 시간대별 절약금액을 포함하는 출력함수 Y를 설정하며, 상기 예측제어산출부는 상기 목표함수 및 출력함수의 차 및 시간대별 제어변수의 차를 이용한 비용함수 J에 기초하여 상기 비용함수가 최소로 되도록 하는 시간대별 제어변수의 차를 산출하여 시간대별 제어변수를 생성하는 ESS 충방전스케줄 생성시스템을 제공한다.Column vector (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k)) T as control variable, column vector (aBAT(k), aGRID(k), aLOAD(k) ), aPV(k), aSELL(k)) T as the state variables, and the time-saving amount based on the state variable is set as the output variable SAVE(k), and the target function Rs for the savings amount and the time-saving amount Sets an output function Y including, and the predictive control calculation unit is a control variable for each time period that minimizes the cost function based on a cost function J using the difference between the target function and the output function and the difference of the control variable for each time period It provides an ESS charge/discharge schedule generation system that generates control variables for each time period by calculating the difference between

상기 비용함수 J는 The cost function J is

J = (Rs - Y)T(Rs - Y) + ΔUTRwΔU로 설정되고,J = (Rs - Y) T (Rs - Y) + ΔU T RwΔU,

상기 예측제어산출부에서는 비용변화함수를 ΔU = (ΦTΦ+Rw)-1ΦT(Rs-FX(k))로 산출하는 것이 바람직하다.Preferably, the predictive control calculator calculates the cost change function as ΔU = (Φ T Φ+Rw) -1 Φ T (Rs-FX(k)).

상기 제어변수와 상태변수의 관계식은The relation between the control variable and the state variable is

aGRID(k+1) = aGRID(k) + GRID(k)×CHARGE(k)aGRID(k+1) = aGRID(k) + GRID(k)×CHARGE(k)

aBAT(k+1) = aBAT(k)+BAT(k)aBAT(k+1) = aBAT(k)+BAT(k)

aLOAD(k+1) = aLOAD(k) + LOAD(k)×CHARGE(k)aLOAD(k+1) = aLOAD(k) + LOAD(k)×CHARGE(k)

aPV(k+1) = aPV(k) + PV(k)×CHARGE(k)aPV(k+1) = aPV(k) + PV(k)×CHARGE(k)

aSELL(k+1) = aSELL(k) + SELL(k)×SMPREC(k)aSELL(k+1) = aSELL(k) + SELL(k)×SMPREC(k)

로 설정될 수 있다.can be set to

상기 출력변수는The output variable is

SAVE(k) = aBAT(k)×CONV - aGRID(k) + aLOAD(k) + aSELL(k)로 설정되며, 출력함수는SAVE(k) = aBAT(k)×CONV - aGRID(k) + aLOAD(k) + aSELL(k) is set, and the output function is

Y = [SAVE(k+1|k) SAVE(k+2|k) … SAVE(k+Np|k)]T로 설정되는 것이 바람직하다.Y = [SAVE(k+1|k) SAVE(k+2|k) … SAVE(k+Np|k)] T is preferably set.

상기 목표함수 Rs는 The target function Rs is

Figure 112020101968977-pat00001
Figure 112020101968977-pat00001

(LOAD(k)는 시간대별 예측부하 전력량, CHARGE(k)는 시간대별 kWh당 전력요금, Np는 예측샘플링수)로 설정되는 것이 바람직하다.(LOAD(k) is the predicted load power for each time period, CHARGE(k) is the electricity rate per kWh for each time period, and Np is the predicted number of samples).

또한, 본 발명에 의하면, 데이터수집부에서 시간대별 가격변수를 포함하는 전력데이터를 전송받아 저장하는 단계; 환경설정부에 의하여 상기 데이터수집부에 저장된 데이터를 기초로 하여 제어변수, 상태변수, 출력변수를 포함하는 변수 및 출력함수, 비용함수를 포함하는 함수를 설정하는 단계; 예측제어산출부에 의하여 상기 환경설정부에서 설정된 변수 및 함수를 이용하여 시간대별 제어변수를 생성하는 단계를 수행하며,In addition, according to the present invention, the data collecting unit comprising the steps of receiving and storing the power data including the price variable for each time period; setting, by an environment setting unit, a variable including a control variable, a state variable, an output variable, an output function, and a cost function, based on the data stored in the data collection unit; performing the step of generating control variables for each time period using the variables and functions set in the environment setting unit by the predictive control calculation unit,

상기 환경설정부는,The environment setting unit,

컬럼벡터 (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k))T를 제어변수로, 컬럼벡터 Column vector (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k)) T as control variable, column vector

(aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k))T를 상태변수로, 상기 상태변수 기초한 시간대별 절약금액을 출력변수 SAVE(k)로 설정하고, 절약금액에 대한 목표함수 Rs및 상기 시간대별 절약금액을 포함하는 출력함수 Y를 설정하며, 상기 예측제어산출부는 상기 목표함수 및 출력함수의 차 및 시간대별 제어변수의 차를 이용한 비용함수 J에 기초하여 상기 비용함수가 최소로 되도록 하는 시간대별 제어변수의 차를 산출하여 시간대별 제어변수를 생성하는 ESS 충방전스케줄 생성방법을 제공한다.(aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k)) Set T as the state variable, and the amount of time savings based on the state variable as the output variable SAVE(k), , a target function Rs for the savings amount and an output function Y including the savings amount for each time period, and the predictive control calculation unit is a cost function J using the difference between the target function and the output function and the difference between the control variables for each time period. It provides a method for generating an ESS charge/discharge schedule for generating a control variable for each time period by calculating the difference of the control variable for each time period based on which the cost function is minimized.

본 발명에 의하면, ESS에서 전력생산과 사용의 시간적 불일치 문제를 체계적으로 해결하여 첨두부하를 경감시키고 비용이득을 최대화할 수 있는 이점이 있다.According to the present invention, there is an advantage in that the peak load can be reduced and cost benefits can be maximized by systematically solving the problem of time inconsistency between power generation and use in the ESS.

또한, 일(day) 단위로 시간대별 예측 제어변수를 생성하여 서버의 부하를 줄이고 비교적 장기적이고 체계적인 제어를 수행할 수 있는 이점이 있다.In addition, there is an advantage in that it is possible to reduce the load on the server and perform relatively long-term and systematic control by generating predictive control variables for each time period in units of days.

도 1은 본 발명에 의한 ESS 충방전스케줄 생성시스템의 구성을 나타내는 구성도;
도 2는 이틀간 시간대별 예측부하 및 예측태양광발전량을 나타내는 예시 그래프;
도 3은 이틀간 시간대별 계통인입 전력량 및 배터리 충방전량을 나타내는 예측제어 그래프;
도 4는 도 3에 기초하여 상태변수의 변화를 나타내는 예측 그래프;
도 5는 도 3에 기초하여 누적배터리충전량의 변화를 나타내는 예측 그래프;
도 6은 이틀간 목표함수 및 출력변수를 나타내는 결과 그래프.
1 is a block diagram showing the configuration of an ESS charge/discharge schedule generation system according to the present invention;
2 is an exemplary graph showing the predicted load and predicted solar power generation by time for two days;
3 is a predictive control graph showing the amount of power input into the grid and the amount of battery charge/discharge for each time period for two days;
4 is a prediction graph showing a change in a state variable based on FIG. 3;
5 is a prediction graph showing a change in the accumulated battery charge amount based on FIG. 3;
6 is a graph of results showing the target function and output variables for two days.

본 발명에 의한 구체적인 실시예의 구성 및 작용에 대하여 도면을 참조하여 상세하게 설명한다.The configuration and operation of specific embodiments according to the present invention will be described in detail with reference to the drawings.

도 1을 참조하면, 본 발명에 의한 ESS 충방전스케줄을 생성하는 ESS 운영시스템은 ESS에 연결되어 ESS를 제어하도록 구비될 수 있으며, 데이터수집부(100), 환경설정부(200), 예측제어산출부(300)를 포함하여 구성된다.Referring to FIG. 1 , the ESS operating system for generating the ESS charging/discharging schedule according to the present invention may be connected to the ESS and provided to control the ESS, the data collection unit 100, the environment setting unit 200, the predictive control It is configured to include a calculation unit (300).

상기 데이터수집부(100)에서는 ESS충방전데이터, 예측부하데이터, 비용데이터 등 여러가지 형태의 데이터들이 전송되어 저장된다. 상기 데이터수집부에 저장되는 데이터는 외부로부터 전송되어 저장되는 데이터도 있고 사용자에 의해 입력된 데이터도 있을 수 있다.In the data collection unit 100, various types of data such as ESS charge/discharge data, predicted load data, and cost data are transmitted and stored. The data stored in the data collection unit may include data transmitted and stored from the outside and data input by a user.

도 2를 참조하면, 전력요금은 시간대별로 달라지며, 본 발명에서는 이러한 시간대별 전력요금을 이용하여 요금이득을 최대화할 수 있는 방법을 제시한다.Referring to FIG. 2 , the electricity rate varies by time period, and the present invention proposes a method for maximizing the rate gain by using the electricity rate for each time period.

도 3을 참조하면, 상기 예측부하데이터는 시간대별로 저장될 수 있으며, 예를 들어 과거의 데이터로부터 가공된 데이터로 이루어질 수 있다. 즉, 과거의 데이터를 기초로 하여 시간대별 평균 또는 추이를 보간하여 이루어진 데이터로 이루어질 수 있다.Referring to FIG. 3 , the predicted load data may be stored for each time period, for example, may be made of data processed from past data. That is, the data may be formed by interpolating an average or trend for each time period based on past data.

상기 예측부하데이터는 정해진 시간간격에 따른 데이터로 이루어지는 것이 바람직하다. 예를 들어, 상기 시간간격은 15분이 될 수 있으며, 하루 24시를 기준으로 96개의 데이터로 이루어질 수 있다. 도 2에서 세로축은 kW, 가로축 1은 15분을 의미하며 이틀 길이의 데이터를 보여준다.It is preferable that the prediction load data consists of data according to a predetermined time interval. For example, the time interval may be 15 minutes, and may consist of 96 pieces of data based on 24 hours a day. In FIG. 2 , the vertical axis indicates kW, and the horizontal axis 1 indicates 15 minutes, showing two days of data.

상기 환경설정부(200) 및 예측제어산출부(300)는 MPC(Model Predictive Control)를 기초로 하여 ESS 최적 충방전데이터를 생성한다.The environment setting unit 200 and the predictive control calculation unit 300 generate ESS optimal charging/discharging data based on MPC (Model Predictive Control).

구체적으로, 상기 환경설정부(200)는 제어변수설정부(210), 상태변수설정부(220), 출력변수설정부(230), 목표함수설정부(240), 출력함수설정부(250), 비용함수설정부(260)를 포함하여 구성된다.Specifically, the environment setting unit 200 includes a control variable setting unit 210 , a state variable setting unit 220 , an output variable setting unit 230 , a target function setting unit 240 , and an output function setting unit 250 . , and a cost function setting unit 260 .

상기 제어변수설정부(210)에서는 컬럼벡터로 이루어지며, 구체적으로 The control variable setting unit 210 consists of a column vector, specifically

(BAT(k), GRID(k), LOAD(k), PV(k), SELL(k))T를 제어변수로 설정한다. 여기서, T는 transpose를 의미한다.(BAT(k), GRID(k), LOAD(k), PV(k), SELL(k)) Set T as a control variable. Here, T means transpose.

상기 BAT(k)는 시간대별 배터리충방전량을 나타낸다. 여기서, k는 시간에따른 순서를 나타내며, 예를 들어 샘플링수가 96이라면 k는 1,2,3,…,96 중 하나의 값을 가질 수 있으며, 하루 24시간 동안의 데이터라면 k는 15분 간격의 데이터를 나타낼 수 있다.The BAT(k) represents a battery charge/discharge amount for each time period. Here, k represents an order according to time. For example, if the number of samples is 96, k is 1,2,3,… ,96, and if data is for 24 hours a day, k may represent data at 15-minute intervals.

상기 제어변수는 실제로 시스템에서 제어하는 물리량을 의미하며, BAT(k)는 시간에 따른 배터리의 충전량 또는 방전량을 나타낸다. 예를 들어, BAT(k)가 +이면 배터리의 충전을 의미하고, BAT(k)가 -이면 배터리의 방전을 의미할 수 있다.The control variable refers to a physical quantity actually controlled by the system, and BAT(k) indicates the amount of charge or discharge of the battery according to time. For example, when BAT(k) is +, it may mean charging of the battery, and when BAT(k) is -, it may mean discharging of the battery.

상기 GRID(k)는 시간대별 계통인입 전력량을 나타내며, LOAD(k)는 시간대별 예측부하 전력량을 나타낸다. 상기 LOAD(k)는 데이터수집부(100)에서 전송받거나 사용자로부터 입력받을 수 있다.The GRID(k) represents the amount of grid input power for each time period, and LOAD(k) represents the predicted load power amount for each time period. The LOAD(k) may be transmitted from the data collection unit 100 or input from the user.

상기 PV(k)는 시간대별 예측 태양광발전량을 의미하며, SELL(k)는 시간대별 태양광 발전 판매량을 의미한다.The PV(k) means the predicted solar power generation amount for each time period, and SELL(k) means the solar power generation sales volume for each time period.

상기 상태변수설정부(220)에서는 역시 컬럼벡터 In the state variable setting unit 220, the column vector is also

(aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k))T를 상태변수로 설정한다.(aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k)) Set T as a state variable.

상기 상태변수는 특정 시간에서의 제어변수에 따라 이후 시간에서 변하게 되는 물리량으로서, aBAT(k)는 누적 배터리 충방전량을 나타내고, aGRID(k)는 누적 계통인입 전력요금을 나타내며, aLOAD(k)는 누적 예측부하 전력요금을 나타낸다. 또한, aPV(k)는 누적 예측태양광 발전량을 의미하며, aSELL(k)는 누적 태양광 발전 판매량을 의미한다.The state variable is a physical quantity that changes from time to time according to the control variable at a specific time. aBAT(k) represents the accumulated battery charge/discharge amount, aGRID(k) represents the accumulated grid incoming electricity charge, and aLOAD(k) is It represents the cumulative predicted load power rate. In addition, aPV(k) means the cumulative predicted solar power generation amount, and aSELL(k) means the cumulative solar power generation sales volume.

환경설정부에서는 제어변수와 상태변수의 관계식이In the environment setting section, the relation between the control variable and the state variable is

aGRID(k+1) = aGRID(k) + GRID(k)×CHARGE(k) (1)aGRID(k+1) = aGRID(k) + GRID(k)×CHARGE(k) (1)

aBAT(k+1) = aBAT(k)+BAT(k) (2)aBAT(k+1) = aBAT(k)+BAT(k) (2)

aLOAD(k+1) = aLOAD(k) + LOAD(k)×CHARGE(k) (3)aLOAD(k+1) = aLOAD(k) + LOAD(k)×CHARGE(k) (3)

aPV(k+1) = aPV(k) + PV(k)×CHARGE(k) (4)aPV(k+1) = aPV(k) + PV(k)×CHARGE(k) (4)

aSELL(k+1) = aSELL(k) + SELL(k)×SMPREC(k) (5)aSELL(k+1) = aSELL(k) + SELL(k)×SMPREC(k) (5)

로 되도록 설정될 수 있다. 여기서, CHARGE(k)는 도 1에 나타낸 것과 같은 시간대별 kWh당 전력요금이며, SMPREC(k)는 시간대별 kWh당 판매금액을 의미한다.It can be set to be Here, CHARGE(k) is the electricity rate per kWh per time period as shown in FIG. 1 , and SMPREC(k) refers to the sales amount per kWh per time period.

상기 출력변수설정부(230)에서는 시간대별 절약금액 SAVE(k)를 출력변수로 설정한다. 상기 출력변수는 상태변수에 따라 변하게 되는 변수로서 SAVE(k)는 ESS 배터리의 충방전으로 인해 k번째 시간까지 누적된 절약비용을 의미한다. 즉,The output variable setting unit 230 sets the saving amount SAVE(k) for each time period as an output variable. The output variable is a variable that changes according to the state variable, and SAVE(k) means the accumulated saving cost up to the k-th time due to the charging and discharging of the ESS battery. In other words,

SAVE(k) = aBAT(k)×CONV - aGRID(k) + aLOAD(k) + aSELL(k) (6)SAVE(k) = aBAT(k)×CONV - aGRID(k) + aLOAD(k) + aSELL(k) (6)

로 설정될 수 있다. 여기서, CONV는 배터리에 남아 있는 잔량에 대한 kWh당 전력요금으로서 CHARGE(k)중 가장 큰 금액, 즉 max(CHARGE(k))로 설정될 수 있다.can be set to Here, CONV may be set as the largest amount of CHARGE(k), ie, max(CHARGE(k)), as a power rate per kWh for the remaining amount of the battery.

상기 목표함수설정부(240)에서는 절약금액에 대한 이상적인 데이터를 설정하며, r(k)가 k번째 시간에서의 목표절약금액이라면 목표함수 Rs는 다음과 같이 나타낼 수 있다.The target function setting unit 240 sets ideal data for the saving amount, and if r(k) is the target saving amount at the k-th time, the target function Rs can be expressed as follows.

RsT = [1 1 1 … 1]r(k) (7)Rs T = [1 1 1 … 1]r(k) (7)

여기서 T는 전치행렬(Transpose)을 의미하며, 열(column) 개수는 예측샘플링수 Np와 같다. 상기 예측샘플링수는 한번 예측제어를 할 때 몇 개의 시간간격을 포함하는지를 나타내는 수로서, 예를 들어 한번 예측제어를 할 때 하루 24시간을 하고 15분마다 예측제어를 한다면 예측샘플링수 Np는 24×60÷15 = 96이 된다.Here, T denotes a transpose matrix, and the number of columns is equal to the number of predicted samples Np. The number of prediction samples is a number indicating how many time intervals are included when predictive control is performed once. For example, if prediction control is performed for 24 hours a day and prediction control is performed every 15 minutes when prediction control is performed once, the number of prediction samples Np is 24 × 60÷15 = 96.

상기 출력함수설정부(250)에서는 각 시간간격에 따른 출력변수를 이용하여 벡터형태로 출력함수 Y를 나타낸다. 즉,The output function setting unit 250 represents the output function Y in the form of a vector using an output variable according to each time interval. In other words,

Y = [SAVE(k+1|k) SAVE(k+2|k) … SAVE(k+Np|k)]T (8)Y = [SAVE(k+1|k) SAVE(k+2|k) … SAVE(k+Np|k)] T (8)

로 설정될 수 있다. 여기서, SAVE(k+m|k)는 k시간에서 예측되어진 출력변수로서, k+m시간에서의 절약금액을 의미한다.can be set to Here, SAVE(k+m|k) is an output variable predicted at time k, and means the amount of savings at time k+m.

환경설정부(200)에서는 상기한 설정을 기초로 하여 충방전제어식을 구성한다. 구체적으로, 환경설정부에서는 다음과 같은 행렬식을 구성한다.The environment setting unit 200 configures a charge/discharge control formula based on the above settings. Specifically, the environment setting unit configures the following determinant.

X(k+1) = A(k)X(k) +B(k)U(k) (9)X(k+1) = A(k)X(k) +B(k)U(k) (9)

Y(k) = C(k)X(k) (10)Y(k) = C(k)X(k) (10)

여기서,here,

Figure 112020101968977-pat00002
,
Figure 112020101968977-pat00003
Figure 112020101968977-pat00002
,
Figure 112020101968977-pat00003

Figure 112020101968977-pat00004
,
Figure 112020101968977-pat00004
,

Figure 112020101968977-pat00005
Figure 112020101968977-pat00005

Figure 112020101968977-pat00006
,
Figure 112020101968977-pat00007
Figure 112020101968977-pat00006
,
Figure 112020101968977-pat00007

로 구성된다.is composed of

상기 비용함수설정부(260)에서는 목표함수와 출력함수를 이용하여 그 차이에 대한 비용함수 J를 구성한다. The cost function setting unit 260 configures a cost function J for the difference using the target function and the output function.

J = (Rs - Y)T(Rs - Y) (11)J = (Rs - Y) T (Rs - Y) (11)

또한, 비용함수설정부(260)에서는 비용변화함수 ΔU를 직접적으로 포함하여 설정될 수도 있다.In addition, the cost function setting unit 260 may be set by including the cost change function ΔU directly.

J = (Rs - Y)T(Rs - Y) + ΔUTRwΔU (12)J = (Rs - Y) T (Rs - Y) + ΔU T RwΔU (12)

여기서, ΔU = [ΔU(k) ΔU(k+1) ΔU(k+2) … ΔU(k+Nc-1)]T이고,where ΔU = [ΔU(k) ΔU(k+1) ΔU(k+2) ... ΔU(k+Nc-1)] T ,

ΔU(k+1) = U(k+1) - U(k), Nc는 한번 예측제어를 할 때 몇 번의 제어를 하는지를 나타내는 수로서, Nc≤Np이다.ΔU(k+1) = U(k+1) - U(k), Nc is a number indicating how many times control is performed when predictive control is performed once, and Nc≤Np.

또한, Rw = rwI(I는 Nc x Nc 단위행렬)이고, rw(≥0)는 조절파라미터로서 비용함수에서 (Rs - Y)T(Rs - Y)항과 ΔUTRwΔU항의 비중을 결정한다.In addition, Rw = rwI (I is Nc x Nc identity matrix), and rw (≥0) is a control parameter that determines the weight of (Rs - Y) T (Rs - Y) and ΔU T RwΔU terms in the cost function.

환경설정부(200)에 의해 비용함수가 결정되면 예측제어산출부(300)에서는 상기 비용함수를 이용하여 예측샘플링수 만큼의 예측제어변수 U(k)를 산출한다.When the cost function is determined by the environment setting unit 200, the predictive control calculation unit 300 calculates a predictive control variable U(k) equal to the number of predicted samples by using the cost function.

또한, 환경설정부(200)에서는 아래와 같은 식이 제약조건으로 설정될 수 있다.In addition, the environment setting unit 200 may set the following expression as a constraint condition.

Figure 112020101968977-pat00008
(13)
Figure 112020101968977-pat00008
(13)

0≤GRID(k)≤PEAK_LIMIT (PEAK_LIMIT는 제한 피크전력)0≤GRID(k)≤PEAK_LIMIT (PEAK_LIMIT is the limiting peak power)

이하 예측제어산출부(300)에서의 구체적인 예측제어변수 산출과정에 대하여 설명한다.Hereinafter, a detailed prediction control variable calculation process in the prediction control calculation unit 300 will be described.

(9)식에 의해(9) by the formula

X(k+1|k) = AX(k) + BΔU(k)X(k+1|k) = AX(k) + BΔU(k)

X(k+2|k) = A2X(k) + ABΔU(k) + BΔU(k+1)X(k+2|k) = A 2 X(k) + ABΔU(k) + BΔU(k+1)

SAVE(k+1|k) = CAX(k) + CBΔU(k) SAVE(k+1|k) = CAX(k) + CBΔU(k)

SAVE(k+2|k) = CA2X(k) + CABΔU(k) +CBΔU(k+1) SAVE(k+2|k) = CA 2 X(k) + CABΔU(k) +CBΔU(k+1)

SAVE(k+3|k) = CA3X(k) + CA2BΔU(k) +CABΔU(k+1) + CBΔU(k+2)SAVE(k+3|k) = CA 3 X(k) + CA 2 BΔU(k) +CABΔU(k+1) + CBΔU(k+2)

로 되고,become,

ΔU = [ΔU(k) ΔU(k+1) ΔU(k+2) … ΔU(k+Nc-1)]T ΔU = [ΔU(k) ΔU(k+1) ΔU(k+2) … ΔU(k+Nc-1)] T

로 표시하면,If indicated as

Y = FX(k) + ΦΔU (14)Y = FX(k) + ΦΔU (14)

형태로 정리된다.organized in the form

여기서,here,

F = [CA CA2 CA3 … CANp]T F = [CA CA 2 CA 3 … CA Np ] T

Figure 112020101968977-pat00009
Figure 112020101968977-pat00009

이다.to be.

예측제어산출부(300)에서는 비용함수 In the predictive control calculation unit 300, the cost function

J = (Rs - Y)T(Rs - Y) + ΔUTRwΔU를 ΔU로 편미분하여 최적화된 ΔU의 값을 계산한다. 즉,J = (Rs - Y) T (Rs - Y) + ΔU T Calculate the optimized value of ΔU by partial differentiation of RwΔU with ΔU. In other words,

Figure 112020101968977-pat00010
Figure 112020101968977-pat00010

을 계산하면,If you calculate

ΔU = (ΦTΦ+Rw)-1ΦT(Rs-FX(k)) (15)ΔU = (Φ T Φ+Rw) -1 Φ T (Rs-FX(k)) (15)

이 산출된다.This is calculated

예측제어산출부(300)에서는 위 식을 이용하여 최적화된 ΔU를 계산하며, 이에 따라 하나의 예측제어 샘플링수에 따른 ΔU(k+1)가 자동적으로 계산된다.The predictive control calculation unit 300 calculates the optimized ΔU using the above equation, and accordingly, ΔU(k+1) according to one predictive control sampling number is automatically calculated.

도 4는 예측제어산출부(300)에서 이와 같은 과정을 통해 생성된 예측제어 그래프를 나타낸다. 배터리 그래프에서 0보다 작은 경우는 방전, 0보다 큰 경우는 충전스케줄을 나타낸다.4 shows a prediction control graph generated through such a process in the prediction control calculation unit 300 . In the battery graph, if it is less than 0, it indicates discharge, and if it is greater than 0, it indicates the charging schedule.

여기서, 도 3에서 부하예측 값이 제한설정값(2.199kW)을 넘는 전 구간(T1~T6)에서 도 4의 GRID(k) 값이 피크값을 넘지 않는 것을 확인할 수 있다. 이것은, 본 발명에 따른 예측제어변수에 의한 배터리 충방전 스케줄로 인해 첨두부하(peak load)를 효과적으로 경감시켰음을 의미한다.Here, it can be seen that the GRID(k) value of FIG. 4 does not exceed the peak value in all sections (T1 to T6) in which the load prediction value exceeds the limit set value (2.199kW) in FIG. 3 . This means that the peak load is effectively reduced due to the battery charge/discharge schedule by the predictive control variable according to the present invention.

한편, 본 실시예에서 목표함수는On the other hand, in this embodiment, the target function is

Figure 112020101968977-pat00011
(16)
Figure 112020101968977-pat00011
(16)

로 설정된다.is set to

한편, 제어변수설정부에서는 aBAT(k)의 최대값 Cap값이 설정될 수 있으며, 0 ≤ aBAT(k)≤ Cap이 된다. 또한, 본 실시예에서 Cap은 6kWh ≤ Cap ≤ 60kWh로 설정되었다.Meanwhile, in the control variable setting unit, the maximum value Cap of aBAT(k) may be set, and 0 ≤ aBAT(k) ≤ Cap. In addition, in this embodiment, Cap was set to 6 kWh ≤ Cap ≤ 60 kWh.

상기 Rs가 설정되면, 제어변수 aU(k)는 출력변수인 절약금액 SAVE(k)가 도 6과 같이 Rs와의 차이가 최대한 작아지도록 제어가 된다. 따라서, 본 발명에 의하면, 예측제어변수에 의해 첨두부하를 경감시킴과 동시에 절약금액을 최대로 제어할 수 있다.When Rs is set, the control variable aU(k) is controlled such that the difference between the output variable and the saving amount SAVE(k) with Rs is as small as possible as shown in FIG. 6 . Therefore, according to the present invention, it is possible to reduce the peak load and control the saving amount to the maximum by the predictive control variable.

도 2 내지 도 6은 본 실시예에 의한 ESS 충방전스케줄 생성시스템을 이용하여 ESS충방전스케줄을 생성한 시뮬레이션 실험을 나타내며, 이와 함께 운영이득(SAVE)이 얼마나 발생하는지를 알아보았다.2 to 6 show a simulation experiment in which an ESS charge/discharge schedule is generated using the ESS charge/discharge schedule generation system according to this embodiment, and together with this, how much operation gain (SAVE) occurs was investigated.

본 실험에서 도 2와 같이 예측부하전력량과 예측태양광발전량을 설정하였고, 제한 피크전력은 최대부하의 90%인 30.609kW로 설정하였다.In this experiment, the predicted load power and the predicted solar power generation were set as shown in FIG. 2, and the limit peak power was set to 30.609 kW, which is 90% of the maximum load.

그 결과, 도 3과 같이 예측제어산출부에서는 ESS 배터리에 대한 예측제어그래프를 생성하였으며, 상기 그래프에서 배터리가 0보다 작은 경우는 방전, 0보다 큰 경우는 충전스케줄을 나타낸다.As a result, as shown in FIG. 3 , the predictive control calculation unit generated a predictive control graph for the ESS battery. In the graph, when the battery is less than 0, it indicates a discharge, and when it is greater than 0, the charging schedule is indicated.

도 4는 그 결과 상태변수에 대한 예측그래프를 나타내고 도 5는 누적 배터리량을 나타낸다. 그리고, 도 6은 목표함수(SET-POINT)와 출력변수의 차이를 나타내는 그래프를 나타낸다.4 shows a prediction graph for the resulting state variables, and FIG. 5 shows the accumulated battery capacity. And, FIG. 6 shows a graph showing the difference between the target function (SET-POINT) and the output variable.

이와 같이 본 실험에 의하면, 예측제어산출부에서는 제약조건 (13)을 만족시키는 ESS 충방전스케줄을 생성하며, 운영이득을 최대화하는 ESS 최적 운영기법을 제공한다.As described above, according to this experiment, the predictive control calculation unit generates an ESS charge/discharge schedule that satisfies the constraint (13) and provides an ESS optimal operation technique that maximizes the operating profit.

상기에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the embodiments of the present invention, those of ordinary skill in the art can variously modify and modify the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. You will understand that it can be changed.

100 : 데이터수집부 200 : 환경설정부
210 : 제어변수설정부 220 : 상태변수설정부
230 : 출력변수설정부 240 : 목표함수설정부
250 : 출력함수설정부 260 : 비용함수설정부
300 : 예측제어산출부
100: data collection unit 200: environment setting unit
210: control variable setting unit 220: state variable setting unit
230: output variable setting unit 240: target function setting unit
250: output function setting unit 260: cost function setting unit
300: predictive control calculation unit

Claims (5)

시간대별 가격변수를 포함하는 전력데이터를 전송받아 저장하는 데이터수집부;
상기 데이터수집부에 저장된 데이터를 기초로 하여 제어변수, 상태변수, 출력변수를 포함하는 변수 및 출력함수, 비용함수를 포함하는 함수를 설정하는 환경설정부;
상기 환경설정부에서 설정된 변수 및 함수를 이용하여 시간대별 제어변수를 생성하는 예측제어산출부를 포함하여 구성되며,
상기 환경설정부는,
BAT(k)를 시간대별 배터리충방전량, GRID(k)를 시간대별 계통인입 전력량, LOAD(k)를 시간대별 예측부하 전력량, aBAT(k)를 누적 배터리 충방전량, aGRID(k)를 누적 계통인입 전력요금, aLOAD(k)를 누적 예측부하 전력요금, k를 시간에 따른 샘플링 순서를 나타내는 변수, PV(k)는 시간대별 예측 태양광발전량, SELL(k)는 시간대별 태양광 발전 판매량, aPV(k)는 누적 예측태양광 발전량, aSELL(k)는 누적 태양광 발전 판매량으로 하여
컬럼벡터 (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k))T를 실제로 시스템에서 제어하는 제어변수로, 컬럼벡터 (aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k))T를 상기 제어변수에 따라 변하게 되는 물리량인 상태변수로, 상기 상태변수에 기초한 시간대별 절약금액을 출력변수 SAVE(k)로 설정하고,
절약금액에 대한 목표함수 Rs및 상기 시간대별 절약금액을 포함하는 출력함수 Y를 설정하며,
상기 예측제어산출부는 상기 목표함수 및 출력함수의 차 및 시간대별 제어변수의 차를 이용한 비용함수 J에 기초하여 상기 비용함수가 최소로 되도록 하는 시간대별 제어변수의 차를 산출하여 시간대별 제어변수를 생성하는 ESS 운영시스템.
a data collection unit for receiving and storing power data including price variables for each time period;
an environment setting unit for setting a variable including a control variable, a state variable, an output variable, an output function, and a function including a cost function based on the data stored in the data collection unit;
It is configured to include a predictive control calculation unit for generating control variables for each time period using the variables and functions set in the environment setting unit,
The environment setting unit,
BAT(k) is the amount of battery charge/discharge by time period, GRID(k) is the amount of electricity input to the grid by time period, LOAD(k) is the predicted load energy by time period, aBAT(k) is the accumulated battery charge/discharge amount, and aGRID(k) is the accumulated system Incoming electricity rate, aLOAD(k) is the cumulative predicted load electricity rate, k is a variable representing the sampling sequence according to time, PV(k) is the predicted solar power generation amount by time period, SELL(k) is the solar power generation sales volume by time period, aPV(k) is the cumulative predicted solar power generation, and aSELL(k) is the cumulative solar power generation sales.
Column vectors (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k)) T is a control variable that is actually controlled by the system, and column vectors (aBAT(k), aGRID(k) ), aLOAD(k), aPV(k), aSELL(k)) T are state variables that are physical quantities that change according to the control variable, and the amount of time saved based on the state variable is set as the output variable SAVE(k) and,
Setting a target function Rs for the savings amount and an output function Y including the savings amount for each time period,
The predictive control calculation unit calculates the difference between the control variables for each time period so that the cost function is minimized based on the cost function J using the difference between the target function and the output function and the difference between the control variables for each time period, and calculates the control variable for each time period. ESS operating system to create.
제1항에 있어서,
상기 환경설정부는,
상기 제어변수와 상태변수의 관계식을
aGRID(k+1) = aGRID(k) + GRID(k)×CHARGE(k)
aBAT(k+1) = aBAT(k)+BAT(k)
aLOAD(k+1) = aLOAD(k) + LOAD(k)×CHARGE(k)
aPV(k+1) = aPV(k) + PV(k)×CHARGE(k)
aSELL(k+1) = aSELL(k) + SELL(k)×SMPREC(k)
(CHARGE(k)는 시간대별 kWh당 전력요금, SMPREC(k)는 시간대별 kWh당 판매금액)로 설정하는 것을 특징으로 하는 ESS 운영시스템.
According to claim 1,
The environment setting unit,
The relation between the control variable and the state variable
aGRID(k+1) = aGRID(k) + GRID(k)×CHARGE(k)
aBAT(k+1) = aBAT(k)+BAT(k)
aLOAD(k+1) = aLOAD(k) + LOAD(k)×CHARGE(k)
aPV(k+1) = aPV(k) + PV(k)×CHARGE(k)
aSELL(k+1) = aSELL(k) + SELL(k)×SMPREC(k)
(CHARGE(k) is the electricity rate per kWh per hour, SMPREC(k) is the sales amount per kWh per hour).
제1항에 있어서,
상기 출력변수는
SAVE(k) = aBAT(k)×CONV - aGRID(k) + aLOAD(k) + aSELL(k)
로 설정되며, 출력함수는
Y = [SAVE(k+1|k) SAVE(k+2|k) … SAVE(k+Np|k)]T
(SAVE(k+1|k)는 k시간에서 예측되어진 k+1시간에서의 절약금액, Np는 예측제어를 할 때 1회당 예측샘플링수, CONV는 배터리에 남아 있는 잔량에 대한 kWh당 전력요금)로 설정되는 것을 특징으로 하는 ESS 운영시스템.
According to claim 1,
The output variable is
SAVE(k) = aBAT(k)×CONV - aGRID(k) + aLOAD(k) + aSELL(k)
is set, and the output function is
Y = [SAVE(k+1|k) SAVE(k+2|k) … SAVE(k+Np|k)] T
(SAVE(k+1|k) is the amount of saving in k+1 hours predicted in k hours, Np is the number of predicted samples per one time when predictive control is performed, and CONV is the electricity charge per kWh for the remaining amount of the battery. ) ESS operating system, characterized in that set to.
제1항에 있어서,
상기 목표함수 Rs는
Figure 112020101968977-pat00012

(LOAD(k)는 시간대별 예측부하 전력량, CHARGE(k)는 시간대별 kWh당 전력요금, Np는 예측샘플링수)로 설정되는 것을 특징으로 하는 ESS 운영시스템.
According to claim 1,
The target function Rs is
Figure 112020101968977-pat00012

(LOAD(k) is the predicted load power by time period, CHARGE(k) is the electricity rate per kWh for each time period, Np is the predicted number of samples).
데이터수집부에서 시간대별 가격변수를 포함하는 전력데이터를 전송받아 저장하는 단계;
환경설정부에 의하여 상기 데이터수집부에 저장된 데이터를 기초로 하여 제어변수, 상태변수, 출력변수를 포함하는 변수 및 출력함수, 비용함수를 포함하는 함수를 설정하는 단계;
예측제어산출부에 의하여 상기 환경설정부에서 설정된 변수 및 함수를 이용하여 시간대별 제어변수를 생성하는 단계를 수행하며,
상기 환경설정부는,
BAT(k)를 시간대별 배터리충방전량, GRID(k)를 시간대별 계통인입 전력량, LOAD(k)를 시간대별 예측부하 전력량, aBAT(k)를 누적 배터리 충방전량, aGRID(k)를 누적 계통인입 전력요금, aLOAD(k)를 누적 예측부하 전력요금, k를 시간에 따른 샘플링 순서를 나타내는 변수, PV(k)는 시간대별 예측 태양광발전량, SELL(k)는 시간대별 태양광 발전 판매량, aPV(k)는 누적 예측태양광 발전량, aSELL(k)는 누적 태양광 발전 판매량으로 하여
컬럼벡터 (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k))T를 실제로 시스템에서 제어하는 제어변수로, 컬럼벡터
(aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k))T를 상기 제어변수에 따라 변하게 되는 물리량인 상태변수로, 상기 상태변수에 기초한 시간대별 절약금액을 출력변수 SAVE(k)로 설정하고,
절약금액에 대한 목표함수 Rs및 상기 시간대별 절약금액을 포함하는 출력함수 Y를 설정하며,
상기 예측제어산출부는 상기 목표함수 및 출력함수의 차 및 시간대별 제어변수의 차를 이용한 비용함수 J에 기초하여 상기 비용함수가 최소로 되도록 하는 시간대별 제어변수의 차를 산출하여 시간대별 제어변수를 생성하는 ESS 운영방법.
receiving and storing power data including price variables for each time from the data collection unit;
setting a variable including a control variable, a state variable, an output variable, an output function, and a function including a cost function based on the data stored in the data collection unit by the environment setting unit;
performing the step of generating control variables for each time period using the variables and functions set in the environment setting unit by the predictive control calculation unit,
The environment setting unit,
BAT(k) is the amount of battery charge/discharge by time period, GRID(k) is the amount of electricity input to the grid by time period, LOAD(k) is the predicted load energy by time period, aBAT(k) is the accumulated battery charge/discharge amount, and aGRID(k) is the accumulated system Incoming electricity rate, aLOAD(k) is the cumulative predicted load electricity rate, k is a variable representing the sampling sequence according to time, PV(k) is the predicted solar power generation amount by time period, SELL(k) is the solar power generation sales volume by time period, aPV(k) is the cumulative predicted solar power generation, and aSELL(k) is the cumulative solar power generation sales.
Column vector (BAT(k), GRID(k), LOAD(k), PV(k), SELL(k)) T is a control variable that the system actually controls.
(aBAT(k), aGRID(k), aLOAD(k), aPV(k), aSELL(k)) T is a state variable that is a physical quantity that changes according to the control variable. is set as the output variable SAVE(k),
Setting a target function Rs for the savings amount and an output function Y including the savings amount for each time period,
The predictive control calculation unit calculates the difference between the control variables for each time period so that the cost function is minimized based on the cost function J using the difference between the target function and the output function and the difference between the control variables for each time period, and calculates the control variable for each time period. ESS operation method to create.
KR1020200124127A 2020-09-24 2020-09-24 ESS operating system and method for small power brokerage transactions KR102266099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200124127A KR102266099B1 (en) 2020-09-24 2020-09-24 ESS operating system and method for small power brokerage transactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200124127A KR102266099B1 (en) 2020-09-24 2020-09-24 ESS operating system and method for small power brokerage transactions

Publications (1)

Publication Number Publication Date
KR102266099B1 true KR102266099B1 (en) 2021-06-18

Family

ID=76623684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200124127A KR102266099B1 (en) 2020-09-24 2020-09-24 ESS operating system and method for small power brokerage transactions

Country Status (1)

Country Link
KR (1) KR102266099B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116029532A (en) * 2023-02-23 2023-04-28 国网江西省电力有限公司经济技术研究院 Energy storage planning method for lifting bearing capacity of power distribution network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
모델예측제어 프레임워크를 이용한 ESS 최적 충방전스케줄 생성기법, 전력전자학회 추계학술대회 (2019.11.22) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116029532A (en) * 2023-02-23 2023-04-28 国网江西省电力有限公司经济技术研究院 Energy storage planning method for lifting bearing capacity of power distribution network

Similar Documents

Publication Publication Date Title
JP7320503B2 (en) Systems and methods for optimal control of energy storage systems
Parisio et al. Energy efficient microgrid management using model predictive control
CN107248751B (en) A kind of energy storage station dispatch control method for realizing distribution network load power peak load shifting
Parisio et al. A mixed integer linear formulation for microgrid economic scheduling
EP2190097B1 (en) Method for operating an energy storage system
CN103825304A (en) Method of controlling power network
CN105375479A (en) Model predicative control based energy management method of distributed energy resource system
CN107017625B (en) Method and apparatus for dynamic energy scheduling for independent micro-grids
KR102266099B1 (en) ESS operating system and method for small power brokerage transactions
CN117077974A (en) Virtual power plant resource optimal scheduling method, device, equipment and storage medium
Alqurashi et al. Model predictive control to two-stage stochastic dynamic economic dispatch problem
Yang et al. A comparison study of dispatching various battery technologies in a hybrid PV and wind power plant
CN113690885A (en) Power supply control method and power supply platform
Lu et al. Two-stage robust scheduling and real-time load control of community microgrid with multiple uncertainties
Bonthu et al. Energy cost optimization in microgrids using model predictive control and mixed integer linear programming
KR102266098B1 (en) ESS charging/discharging shchedule producing method and system
WO2022054442A1 (en) Power regulation method and power regulation device
Bliman et al. Controlling aggregates of deferrable loads for power system regulation
KR101899052B1 (en) Real-Time Demand Bidding method and system for Energy Management in Discrete Manufacturing Facilities
CN116073448B (en) Low-carbon benefit-based power distribution system source network load storage collaborative peak shaving method
Zhuo Control of wind power smoothing with battery energy storage system and thermostatically controlled loads
Khani et al. Energy storage in an open electricity market with contribution to transmission congestion relief
CN117353349B (en) Power supply state control method of energy storage system, storage medium and electronic equipment
JP7416041B2 (en) Operation plan creation device, operation plan creation method, and operation plan creation program
Das et al. A case study of horizon window in receding horizon control for renewable energy integration

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant