KR102261400B1 - Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof - Google Patents

Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof Download PDF

Info

Publication number
KR102261400B1
KR102261400B1 KR1020200172338A KR20200172338A KR102261400B1 KR 102261400 B1 KR102261400 B1 KR 102261400B1 KR 1020200172338 A KR1020200172338 A KR 1020200172338A KR 20200172338 A KR20200172338 A KR 20200172338A KR 102261400 B1 KR102261400 B1 KR 102261400B1
Authority
KR
South Korea
Prior art keywords
heat conduction
conduction plate
heating
ceramic
manufacturing
Prior art date
Application number
KR1020200172338A
Other languages
Korean (ko)
Inventor
양동준
양동원
Original Assignee
양동원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양동원 filed Critical 양동원
Priority to KR1020200172338A priority Critical patent/KR102261400B1/en
Application granted granted Critical
Publication of KR102261400B1 publication Critical patent/KR102261400B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

The present invention relates to a ceramic heat conduction plate for heating having excellent thermal conductivity, and a method for manufacturing the same. According to the present invention, provided is a heat conduction plate which is made of a ceramic material, has excellent thermal conductivity, is easy to construct, and is cost effective. Accordingly, in case of heating, the entire floor can be uniformly heated in a short period of time, thereby saving energy.

Description

난방용 세라믹 열전도판 및 이의 제조방법{Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof}A ceramic heat conduction plate for heating and a manufacturing method thereof {Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof}

본 발명은 난방용 세라믹 열전도판 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 세라믹 소재로 구성되어 열전도도가 우수한 동시에 시공성이 용이한 난방용 세라믹 열전도판 및 그 제조방법에 관한 것이다. The present invention relates to a ceramic heat conduction plate for heating and a method for manufacturing the same, and more particularly, to a ceramic heat conduction plate for heating that is made of a ceramic material and has excellent thermal conductivity and is easy to construct, and a method for manufacturing the same.

일반적으로 주택 또는 아파트의 온돌구조는 콘크리트 슬래브 형태의 바닥면에 스틸파이프, 동파이프 또는 강화플라스틱으로 이루어진 엑셀파이프 등을 깔고 그사이에 자갈, 모래등을 깔고 이 위에 시멘트 몰타르를 바른 구조이거나, 시멘트 몰타르의 균열을 방지하기 위하여 시멘트 몰타르 밑에 철사로 엮어진 그물 형태의 매시(Mesh)를 깔은 구조로 되어있다. In general, the ondol structure of a house or apartment is a structure in which a steel pipe, a copper pipe, or an excel pipe made of reinforced plastic is laid on the bottom surface of a concrete slab, and gravel, sand, etc. are laid in between, and cement mortar is applied on it. It has a structure in which mesh in the form of a net woven with wire is laid under the cement mortar to prevent cracks in the cement mortar.

그러나 상기와 같은 온돌구조는 파이프가 지나가는 부분과 그렇지 않은 부분의 온도차가 심하고, 난방을 위하여 지나치게 많은 에너지를 필요로 할 뿐만 아니라 반복되는 가열 및 냉각으로 인하여 바닥의 균열이 쉽게 발생하는 등의 문제점을 발생하였다.However, the ondol structure as described above has a large temperature difference between the part through which the pipe passes and the part that does not, requires too much energy for heating, and easily cracks the floor due to repeated heating and cooling. occurred.

최근 이를 보완하여 열전도도가 높은 동 또는 알루미늄 등의 금속재를 사용한 방열판 또는 열전도판이 개발되어 난방 파이프와 시멘트 몰타르 사이에 설치함으로써, 난방효과가 뛰어나 적은 에너지로도 바닥을 빠른 시간내 고르게 난방을 할 수 있을 뿐만 아니라 바닥이 쉽게 균열되는 것을 방지할 수 있는 구조로 되어 있다.Recently, a heat sink or heat conduction plate using a metal material such as copper or aluminum with high thermal conductivity has been developed to supplement this and installed between the heating pipe and cement mortar. Not only that, but it has a structure that can prevent the floor from being easily cracked.

그러나, 상기와 같은 종래 동 재질의 방열판의 경우 몰타르와의 화학반응은 비교적 적어 안전성은 양호하나 동재질의 높은 비중(8.95)으로 인하여 단위면적당 중량이 높아 비경제적일 뿐만 아니라 비교적 무겁고 연성이 부족하여 시공성이 나쁜 단점이 있다.However, in the case of the conventional copper heat sink as described above, the chemical reaction with mortar is relatively low, so the safety is good, but due to the high specific gravity (8.95) of the copper material, the weight per unit area is high, so it is not economical as well as relatively heavy and lacking in ductility. It has the disadvantage of poor constructability.

또한, 기존의 알루미늄 재질의 방열판은 재질 자체의 비중이 약 2.8정도로 낮아 비교적 가벼워 단위중량당 면적이 많아 동재질의 방열판에 비해 경제적이고 취급이 용이하지만, 알루미늄 재질을 그대로 사용하기 때문에 pH 11~13 정도의 알칼리성의 시멘트 몰타르와 반응하여 기포를 발생하여 시공시 냄새가 발생하고, 시공 안전성에 문제가 있을 뿐만 아니라 시공 후 바닥면에 기포 발생으로 인한 다수의 핀 홀이 남게되어 이를 제거하기 위하여 재 미장을 해야 하는 등의 많은 문제점을 안고 있다.In addition, the conventional aluminum heat sink has a low specific gravity of about 2.8 and is relatively light and has a large area per unit weight, so it is economical and easy to handle compared to a copper heat sink, but since aluminum material is used as it is, pH 11~13 It reacts with the alkaline cement mortar to generate air bubbles, causing odors during construction, and there is a problem in construction safety. After construction, many pinholes are left on the floor due to air bubbles. There are many problems such as having to

본 발명의 주된 목적은 세라믹 소재로 구성되어 우수한 열전도도를 가지며, 동시에 시공성이 용이한 난방용 세라믹 열전도판의 제조방법을 제공하는데 있다. The main object of the present invention is to provide a method of manufacturing a ceramic heat conduction plate for heating that is made of a ceramic material and has excellent thermal conductivity and is easy to construct.

본 발명의 또 다른 목적은 상기 제조방법에 의하여 제조된 열전도도가 우수한 난방용 세라믹 열전도판을 제공하는데 있다. Another object of the present invention is to provide a ceramic heat conduction plate for heating excellent in thermal conductivity manufactured by the above manufacturing method.

본 발명은 일 실시예에서,The present invention in one embodiment,

a) 알루미늄볼 30~45 중량%, 구리볼 10~15 중량%, 마그네슘볼 10~15 중량%, 에폭시 수지 5~15 중량%, 다이메틸폼아마이드 10~30 중량%, 이미다졸 0.01~0.5 중량%를 균일하게 혼합하여 세라믹 조성물을 제조하는 단계; a) 30-45 wt% of aluminum balls, 10-15 wt% of copper balls, 10-15 wt% of magnesium balls, 5-15 wt% of epoxy resin, 10-30 wt% of dimethylformamide, 0.01-0.5 wt% of imidazole % to uniformly mix to prepare a ceramic composition;

b) 상기 세라믹 조성물의 점도를 조절하는 단계;b) adjusting the viscosity of the ceramic composition;

c) 상기 세라믹 조성물을 금형에 넣고 경화시켜 블록을 형성하는 단계; 및c) placing the ceramic composition in a mold and curing it to form a block; and

d) 상기 블록의 표면을 숯 코팅하는 단계를 포함하는 난방용 세라믹 열전도판의 제조방법을 제공한다. d) provides a method of manufacturing a ceramic heat conduction plate for heating comprising the step of charcoal coating the surface of the block.

본 발명은 또한 일 실시예에서, 상기 제조방법에 의하여 제조된 열전도도가 우수한 난방용 세라믹 열전도판을 제공한다. The present invention also provides, in one embodiment, a ceramic heat conduction plate for heating excellent in thermal conductivity manufactured by the above manufacturing method.

본 발명에 따르면, 세라믹 소재를 구성되어 우수한 열전도도를 갖는 동시에 시공성이 용이하고, 비용면에서도 경제적인 열전도판을 제공한다. 따라서 난방 시 바닥 전체를 빠른 시간내 균일하게 난방 가능하여 에너지를 절감할 수 있다. Advantageous Effects of Invention According to the present invention, a heat conduction plate is provided that is made of a ceramic material and has excellent thermal conductivity, and is easy to construct and economical in terms of cost. Therefore, when heating, the entire floor can be heated uniformly in a short time, saving energy.

도 1은 본 발명의 일 실시예에 따라 제조된 세라믹 열전도판의 단면을 나타내는 모식도이다.
도 2는 본 발명의 일 실시예에 따라 제조된 세라믹 열전도판을 이용하여 제작된 열전도판 프레임을 나타내는 모식도이다.
도 3은 본 발명의 일 실시예에 따라 제조된 세라믹 열전도판의 실제 모습을 촬영한 사진이다.
1 is a schematic diagram showing a cross-section of a ceramic heat conduction plate manufactured according to an embodiment of the present invention.
2 is a schematic diagram illustrating a heat conduction plate frame manufactured using a ceramic heat conduction plate manufactured according to an embodiment of the present invention.
3 is a photograph of an actual state of a ceramic heat conduction plate manufactured according to an embodiment of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 난방용 세라믹 열전도판 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 우수한 열전도도를 갖는 세라믹 소재로 구성되어 난방 시 바닥 전체를 빠른 시간내 균일하게 난방 가능하여 에너지를 절감할 수 있으며, 가열과 냉각으로 인한 바닥 균열을 방지할 수 있도록 한 난방용 세라믹 열전도판 및 그 제조방법에 관한 것이다. The present invention relates to a ceramic heat conduction plate for heating and a method for manufacturing the same, and more particularly, it is composed of a ceramic material having excellent thermal conductivity, so that the entire floor can be heated uniformly in a short time during heating, thereby saving energy, and heating It relates to a ceramic heat conduction plate for heating that can prevent floor cracking due to overcooling and a method for manufacturing the same.

본 발명에 따른 세라믹 열전도판의 제조방법은, a) 알루미늄볼 30~45 중량%, 구리볼 10~15 중량%, 마그네슘볼 10~15 중량%, 에폭시 수지 5~15 중량%, 다이메틸폼아마이드 10~30 중량%, 이미다졸 0.01~0.5 중량%를 균일하게 혼합하여 세라믹 조성물을 제조하는 단계; b) 상기 세라믹 조성물의 점도를 조절하는 단계; c) 상기 세라믹 조성물을 금형에 넣고 경화시켜 블록을 형성하는 단계; 및 d) 상기 블록의 표면을 숯 코팅하는 단계를 포함한다. The method of manufacturing a ceramic heat conduction plate according to the present invention comprises: a) 30 to 45 wt% of aluminum balls, 10 to 15 wt% of copper balls, 10 to 15 wt% of magnesium balls, 5 to 15 wt% of epoxy resin, dimethylformamide Preparing a ceramic composition by uniformly mixing 10 to 30% by weight and 0.01 to 0.5% by weight of imidazole; b) adjusting the viscosity of the ceramic composition; c) placing the ceramic composition in a mold and curing it to form a block; and d) charcoal coating the surface of the block.

상기 a) 단계에서 알루미늄볼은 입경이 서로 다른 2가지의 볼을 혼합하여 사용한다. 바람직하게는 제1 알루미늄볼과 제2 알루미늄볼이 약 50~100배의 차이를 갖는 것일 수 있다. 이렇게 서로 다른 입경의 볼을 혼합하여 사용할 때 세라믹 조성물의 밀도를 높일 수 있다. 본 발명의 일 실시예에서는 입경이 10 내지 50 mm인 제1 알루미늄볼과 입경이 0.1 내지 0.5 mm인 제2 알루미늄볼을 1:1.5 내지 1:2의 중량비로 혼합하여 사용할 수 있다. 바람직하게는 제1 알루미늄볼과 제2 알루미늄볼을 1:1.5 내지 1:1.7의 중량비로 혼합하여 사용할 수 있다. In step a), the aluminum balls are used by mixing two balls having different particle diameters. Preferably, the first aluminum ball and the second aluminum ball may have a difference of about 50 to 100 times. When the balls of different particle diameters are mixed and used in this way, the density of the ceramic composition can be increased. In an embodiment of the present invention, a first aluminum ball having a particle diameter of 10 to 50 mm and a second aluminum ball having a particle diameter of 0.1 to 0.5 mm may be mixed in a weight ratio of 1:1.5 to 1:2 and used. Preferably, the first aluminum ball and the second aluminum ball may be mixed and used in a weight ratio of 1:1.5 to 1:1.7.

또한, 상기 a) 단계에서 포함되는 구리볼 내지 마그네슘볼 역시 조성물의 밀도를 향상시키기 위하여, 또 다른 입경 사이즈의 구리볼을 포함할 수 있다. 본 발명의 일 실시예에서는 평균 입경이 1 내지 5 mm 인 구리볼과 평균 입경이 1 내지 10 ㎛인 마그네슘볼을 사용할 수 있다. In addition, the copper balls or magnesium balls included in step a) may also include copper balls having another particle size in order to improve the density of the composition. In an embodiment of the present invention, copper balls having an average particle diameter of 1 to 5 mm and magnesium balls having an average particle diameter of 1 to 10 μm may be used.

이 때, 상기 a) 단계에서 알루미늄볼, 구리볼 및 마그네슘볼의 함량에 따라 상기 조성물로부터 제조된 열전도판의 열확산도, 비열 및 밀도에 밀접한 영향을 미칠 수 있다. 상기 3가지 특성을 모두 향상시킬 수 있는 함량이면 가장 바람직하나, 종래 알루미늄과 구리로 이루어진 열전도판이 갖는 단점을 보완하기 위하여 이들을 혼합하였을 때 열전도도(열확산도, 비열, 밀도)의 특성은 물론이고, 시공성과 비용면을 고려하여 혼합하는 것이 바람직하다. At this time, according to the content of aluminum balls, copper balls and magnesium balls in step a), the thermal diffusivity, specific heat and density of the heat conduction plate prepared from the composition may be closely affected. It is most preferable if the content can improve all three characteristics, but when they are mixed to compensate for the disadvantages of the conventional heat conduction plate made of aluminum and copper, the characteristics of thermal conductivity (thermal diffusivity, specific heat, density) as well as, It is preferable to mix in consideration of constructability and cost.

이에 따라, 본 발명의 일 실시예에서는 상기 알루미늄볼과 구리볼 및 마그네슘볼을 3:1:1의 중량비로 포함할 수 있다. 만약 알루미늄볼이 상기 범위를 초과하여 포함되는 경우, 열전도판의 비중이 낮아 밀도가 낮아지고 이는 열전도도 특성으로 이어지게 된다. 또한 알칼리성이 높아져 기포가 발생하는 등 시공에 어려움이 따른다. 반대로 알루미늄볼이 상기 범위보다 적게 포함되는 경우, 열확산도의 감소로 열전도도 특성에 영향을 준다. 뿐만 아니라 열전도판의 연성이 저하되어 바닥 균열의 취약할 수 있으며, 단가 비용이 증가하게 된다. Accordingly, in an embodiment of the present invention, the aluminum ball, the copper ball, and the magnesium ball may be included in a weight ratio of 3:1:1. If the aluminum ball is included in excess of the above range, the specific gravity of the heat conduction plate is low and the density is lowered, which leads to thermal conductivity characteristics. In addition, there are difficulties in construction, such as the generation of bubbles due to increased alkalinity. Conversely, when the aluminum ball is included less than the above range, the thermal conductivity property is affected by a decrease in thermal diffusivity. In addition, the ductility of the heat conduction plate may be lowered, which may lead to the vulnerability of floor cracks, and the unit cost increases.

한편, 상기 b) 단계에서는 세라믹 조성물 내 포함된 용매를 휘발시켜 점도를 조절할 수 있다. 점도 조절을 통해 상기 조성물 내 포함된 세라믹볼의 배향성을 규칙적으로 확보할 수 있으며, 이러한 배향성의 확보가 열전도도 특성을 향상시킨다. 본 발명의 일 실시예에서는 상기 세라믹 조성물의 점도를 20,000 내지 25,000 cPs 로 조절할 수 있다. 점도 조절 방법은 바람직하게는 진공 상태에서 수행되는 것이 효율적이나, 이에 한정되는 것은 아니다. Meanwhile, in step b), the viscosity may be adjusted by volatilizing the solvent included in the ceramic composition. The orientation of the ceramic balls included in the composition can be regularly secured through viscosity control, and the securing of such orientation improves thermal conductivity properties. In an embodiment of the present invention, the viscosity of the ceramic composition may be adjusted to 20,000 to 25,000 cPs. The viscosity control method is preferably performed in a vacuum state, but is not limited thereto.

이어, 상기 c) 단계에서는 점도가 조절된 상기 세라믹 조성물을 금형 틀에 넣고 경화시켜 블록을 형성할 수 있다. 이 때 경화는 150~180 ℃에서 15~20 시간 가열하여 수행될 수 있다. Then, in step c), the ceramic composition having the adjusted viscosity may be put into a mold and cured to form a block. At this time, curing may be performed by heating at 150 to 180 ° C for 15 to 20 hours.

상기 d) 단계에서는 상기 형성된 블록의 표면을 숯으로 코팅하여 열전도도를 더 향상시킬 수 있다. 상기 사용되는 숯은 10 내지 500 nm 사이즈의 숯 가루를 분사하여 코팅하는 방법이나, 이에 한정되는 것은 아니다. In step d), the surface of the formed block may be coated with charcoal to further improve thermal conductivity. The charcoal used is a method of coating by spraying charcoal powder having a size of 10 to 500 nm, but is not limited thereto.

상기 전술한 세라믹 열전도판의 제조방법에 의하여 제조된 세라믹 열전도판은 220 내지 250 W/m·k 의 열전도도 특성을 갖는다. The ceramic heat conduction plate manufactured by the above-described method for manufacturing the ceramic heat conduction plate has a thermal conductivity of 220 to 250 W/m·k.

이하, 본 발명의 실시예를 통하여 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples of the present invention.

실시예 1 내지 2. 세라믹 조성물의 제조 Examples 1 to 2. Preparation of ceramic compositions

제1 알루미늄볼(입경 50 mm)와 제2 알루미늄볼(입경 0.5 mm)를 1 : 1.5 의 중량비로 혼합하여 혼합 알루미늄볼을 준비하였다. 상기 준비한 혼합 알루미늄볼에, 구리볼(입경 5 mm), 마그네슘볼을 3 :1 :1의 중량비로 배합하고, 여기에 수지와 이미다졸, 그리고 DMF 용매를 첨가한 후, 균일하게 혼합하여 세라믹 조성물을 제조하였다. 각 물질의 구체적인 함량은 하기 표 1에 나타내었다. A mixed aluminum ball was prepared by mixing the first aluminum ball (particle diameter of 50 mm) and the second aluminum ball (particle diameter of 0.5 mm) in a weight ratio of 1:1.5. In the prepared mixed aluminum ball, copper balls (particle diameter 5 mm) and magnesium balls were mixed in a weight ratio of 3:1:1, and a resin, imidazole, and DMF solvent were added thereto, and then uniformly mixed to form a ceramic composition. was prepared. The specific content of each material is shown in Table 1 below.

구분division 조성(wt%)Composition (wt%) 제1 Al :
제2 Al
(중량비)
first Al :
2nd Al
(weight ratio)
Al: Cu: Mg
(중량비)
Al: Cu: Mg
(weight ratio)
Al-ball Al-ball Cu-ball (Cu-ball ( Mg-ballMg-ball resinresin DMFDMF ImidazoleImidazole 실시예 1Example 1 4545 1515 1515 1010 14.914.9 0.10.1 1:1.51:1.5 3 :1 :13:1 :1 실시예 2Example 2 4545 1515 1515 1010 14.914.9 0.10.1 1:1.71:1.7 3 :1 :13:1 :1 실시예 3Example 3 4545 1515 1515 1010 14.914.9 0.10.1 1:21:2 3 :1 :13:1 :1 비교예 1Comparative Example 1 4545 1515 1515 1010 14.914.9 0.10.1 1:0.81:0.8 3 :1 :13:1 :1 비교예 2Comparative Example 2 4545 1515 1515 1010 14.914.9 0.10.1 1:11:1 3 :1 :13:1 :1 비교예 3Comparative Example 3 4545 1515 1515 1010 14.914.9 0.10.1 1:1.21:1.2 3 :1 :13:1 :1 비교예 4Comparative Example 4 2525 2525 2525 1010 14.914.9 0.10.1 1:1.51:1.5 1 :1 :11:1 :1 비교예 5Comparative Example 5 37.537.5 18.7518.75 18.7518.75 1010 14.914.9 0.10.1 1:1.51:1.5 2 :1 :12:1 :1 비교예 6Comparative Example 6 50.050.0 12.512.5 12.512.5 1010 14.914.9 0.10.1 1:1.51:1.5 4 :1 :14 :1 :1

비교예 1 내지 6. Comparative Examples 1 to 6.

제1 알루미늄볼 제2 알루미늄볼의 혼합 중량비를 변경한 것을 제외하고는, 상기 일 실시예의 조성물과 동일하게 배합하여 비교예 1 내지 3의 조성물을 준비하였다. Except for changing the mixing weight ratio of the first aluminum ball and the second aluminum ball, the compositions of Comparative Examples 1 to 3 were prepared in the same manner as in the composition of the first embodiment.

또한, 알루미늄볼, 구리볼 및 마그네슘볼 혼합 중량비를 변경한 것을 제외하고는, 상기 일 실시예의 조성물과 동일하게 배합하여 비교예 4 내지 7의 조성물을 준비하였다. In addition, the compositions of Comparative Examples 4 to 7 were prepared in the same manner as in the composition of Example 1, except that the mixing weight ratio of the aluminum ball, copper ball and magnesium ball was changed.

실험예 1. 세라믹 열전도판의 제작Experimental Example 1. Fabrication of a ceramic heat conduction plate

상기 일 실시예에서 제조한 세라믹 조성물을 진공 점도 조절 장치를 이용하여 조성물 내 용매를 휘발시켜 약 20,000 내지 25,000 cPs의 점도가 되도록 하였다. The ceramic composition prepared in Example 1 was volatilized using a vacuum viscosity control device to have a viscosity of about 20,000 to 25,000 cPs.

이어, 상기 조성물을 금형 틀에 넣고 160 ℃에서 20 시간 동안 가열하여 경화시켜 60 x 60 x 10 cm 크기의 블럭을 제작하였다. 상기 블럭 표면에 10 내지 500 nm 사이즈의 숯가루를 스프레이 코팅하여 세라믹 열전도판을 제작하였다. Then, the composition was put into a mold and cured by heating at 160° C. for 20 hours to prepare a block having a size of 60 x 60 x 10 cm. A ceramic heat conduction plate was prepared by spray-coating charcoal powder with a size of 10 to 500 nm on the surface of the block.

실험예 2. 열전도도 분석Experimental Example 2. Thermal conductivity analysis

상기 일 실시예에서 제작한 세라믹 열전도판의 열전도도를 분석하기 위하여, Netzsch LFA 477 측정기(Netzsch 사)를 이용하여 25 ℃의 온도에서 ASTM E1461에 따라 열확산도를 측정하였고, MDSC 측정기(TA instrument 사)를 이용하여 ASTM E1952에 따라 비열을 측정하였으며, Gas Pycnometer(Protech 사)를 이용하여 ASTM D6226에 따라 밀도를 측정하였다. 각 고분자 조성물 펠렛의 측정된 열확산도, 비열, 및 밀도로부터 하기 식 1을 이용하여 열전도를 계산하였고 그 결과를 하기 표 2에 나타내었다.In order to analyze the thermal conductivity of the ceramic heat conduction plate manufactured in the above embodiment, the thermal diffusivity was measured according to ASTM E1461 at a temperature of 25 ° C using a Netzsch LFA 477 measuring instrument (Netzsch Co., Ltd.), and an MDSC measuring device (TA instrument Co., Ltd.) ) was used to measure specific heat according to ASTM E1952, and density was measured according to ASTM D6226 using a Gas Pycnometer (Protech). The thermal conductivity was calculated using Equation 1 below from the measured thermal diffusivity, specific heat, and density of each polymer composition pellet, and the results are shown in Table 2 below.

<식 1> 열전도도(κ) = 열확산도(α) × 비열(Cp) × 밀도(ρ)<Equation 1> Thermal conductivity (κ) = thermal diffusivity (α) × specific heat (Cp) × density (ρ)

구분division 열확산도
(cm2/s)
thermal diffusivity
(cm 2 /s)
비열
(J/gk)
specific heat
(J/gk)
밀도
(g/cm3)
density
(g/cm 3 )
열전도도
(W/mk)
thermal conductivity
(W/mk)
실시예 1Example 1 82.982.9 0.3910.391 7.547.54 244.40244.40 실시예 2Example 2 82.682.6 0.3590.359 7.667.66 227.15227.15 실시예 3Example 3 82.182.1 0.3570.357 7.637.63 223.63223.63 비교예 1Comparative Example 1 78.278.2 0.3610.361 6.156.15 173.62173.62 비교예 2Comparative Example 2 79.079.0 0.3400.340 6.326.32 169.76169.76 비교예 3Comparative Example 3 81.281.2 0.3480.348 6.926.92 195.54195.54 비교예 4Comparative Example 4 79.979.9 0.3130.313 7.897.89 197.32197.32 비교예 5Comparative Example 5 80.580.5 0.3260.326 7.957.95 208.63208.63 비교예 6Comparative Example 6 80.580.5 0.3960.396 5.955.95 189.67189.67

표 2에서 볼 수 있는 바와 같이, 본 발명에 따른 실시예 1 및 2의 세라믹 조성물은 220 내지 250 W/m·k 의 수준으로 나타난 반면, 동일한 세라믹 함량에도 불구하고, 알루미늄볼, 구리볼, 마그네슘볼의 함량비를 다르게 조성한 비교예 1 내지 6의 경우, 실시예 대비 열전도도가 현저히 낮은 결과를 보인다. As can be seen in Table 2, the ceramic compositions of Examples 1 and 2 according to the present invention showed a level of 220 to 250 W/m·k, whereas, despite the same ceramic content, aluminum balls, copper balls, and magnesium In the case of Comparative Examples 1 to 6 in which the content ratio of the balls was different, the thermal conductivity was significantly lower than that of the Example.

이러한 열전도도 결과는 열확산도, 비열 및 밀도를 모두 향상시키기 위한 최적의 함량비를 찾는 것이 중요하다. 이에 따라, 본 발명에 따른 세라믹 조성물은 열전도도가 매우 우수하여 난방용 열전도판으로 사용하기에 적합하다.For these thermal conductivity results, it is important to find an optimal content ratio to improve all of the thermal diffusivity, specific heat, and density. Accordingly, the ceramic composition according to the present invention has very good thermal conductivity and is suitable for use as a heat conduction plate for heating.

실험예 3. 열전도판 프레임 제작Experimental Example 3. Fabrication of heat conduction plate frame

상기 일 실시예에서 제조된 세라믹 열전도판을 이용하여 열전도판 프레임을 제작하였다(도 2 및 3 참조).A heat conduction plate frame was manufactured using the ceramic heat conduction plate manufactured in the above embodiment (see FIGS. 2 and 3 ).

도 2 및 3에서 볼 수 있는 바와 같이, 내부에는 전선 케이블이 관통할 수 있도록 하였으며, 프레임끼리 맞물릴 수 있도록 홈을 형성하여 제작하였다. As can be seen in FIGS. 2 and 3 , the inside of the wire cable was allowed to pass through, and a groove was formed so that the frames could be engaged.

실험예 4. 시공성 평가Experimental Example 4. Evaluation of constructability

상기 실험예 3에서 제작된 열전도판 프레임을 바닥 난방용 자재로 시공하고, 종래 알루미늄바로 시공 시 나타나는 문제점인 기포 발생 여부를 평가하였다. 그 결과를 하기 표 3에 나타내었다. The heat conduction plate frame manufactured in Experimental Example 3 was constructed as a material for floor heating, and the occurrence of bubbles, which is a problem that occurs when constructing a conventional aluminum bar, was evaluated. The results are shown in Table 3 below.

구분division 기포발생 여부Bubbles 실시예 1Example 1 기포 발생 없음No bubble generation 실시예 2Example 2 기포 발생 없음No bubble generation 실시예 3Example 3 기포 발생 없음No bubble generation 비교예 6Comparative Example 6 약간의 기포 발생slight bubble formation

표 3에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따라 제조된 열전도판 프레임에서는 전혀 기포가 발생하는 현상이 관찰되지 않았다. 반면, 비교예 6에 따라 제조된 열전도판 프레임은 약간의 기포가 발생하는 것이 관찰되었다. As can be seen in Table 3, no bubble generation was observed in the heat conduction plate frame manufactured according to an embodiment of the present invention. On the other hand, in the heat conduction plate frame manufactured according to Comparative Example 6, it was observed that some air bubbles were generated.

이로 인해, 본 발명에 따라 제조된 열전도판 프레임은 알루미늄을 포함하고 있음에도 불구하고, 구리볼 및 마그네슘볼의 특정 비율에 따른 혼합 조성으로 인하여 종래 알루미늄 열전도판이 갖는 시공의 문제점은 해결한 동시에 알루미늄이 갖는 높은 열전도도 특성은 발휘된 것을 알 수 있다. For this reason, despite the fact that the heat conduction plate frame manufactured according to the present invention contains aluminum, due to the mixed composition according to a specific ratio of copper balls and magnesium balls, the problem of the construction of the conventional aluminum heat conduction plate is solved at the same time as aluminum has It turns out that the high thermal conductivity characteristic was exhibited.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention.

10 : 제1 알루미늄볼
20 : 구리볼
30 : 제2 알루미늄볼
40 : 마그네슘볼
10: first aluminum ball
20: copper ball
30: second aluminum ball
40: magnesium ball

Claims (10)

a) 알루미늄볼 30~45 중량%, 구리볼 10 ~15 중량%, 마그네슘볼 10~15 중량%, 에폭시 수지 5~15 중량%, 다이메틸폼아마이드 10~30 중량%, 이미다졸 0.01~0.5 중량%를 균일하게 혼합하여 세라믹 조성물을 제조하는 단계;
b) 상기 세라믹 조성물의 점도를 조절하는 단계;
c) 상기 세라믹 조성물을 금형에 넣고 경화시켜 블록을 형성하는 단계; 및
d) 상기 블록의 표면을 숯 코팅하는 단계를 포함하는 난방용 세라믹 열전도판의 제조방법.
a) 30 to 45 wt% of aluminum balls, 10 to 15 wt% of copper balls, 10 to 15 wt% of magnesium balls, 5 to 15 wt% of epoxy resin, 10 to 30 wt% of dimethylformamide, 0.01 to 0.5 wt% of imidazole % to uniformly mix to prepare a ceramic composition;
b) adjusting the viscosity of the ceramic composition;
c) placing the ceramic composition in a mold and curing it to form a block; and
d) A method of manufacturing a ceramic heat conduction plate for heating comprising the step of charcoal coating the surface of the block.
제1항에 있어서,
상기 a) 단계에서 알루미늄볼은 평균 입경이 10 내지 50 mm인 제1 알루미늄볼과 평균 입경이 0.1 내지 0.5 mm인 제2 알루미늄볼을 1:1.5 내지 1:2의 중량비로 혼합한 것인, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
In step a), the aluminum ball is a mixture of a first aluminum ball having an average particle diameter of 10 to 50 mm and a second aluminum ball having an average particle diameter of 0.1 to 0.5 mm in a weight ratio of 1:1.5 to 1:2, for heating A method of manufacturing a ceramic heat conduction plate.
제1항에 있어서,
상기 a) 단계에서 구리볼은 평균 입경이 1 내지 5 mm인, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
The copper balls in step a) have an average particle diameter of 1 to 5 mm, a method of manufacturing a ceramic heat conduction plate for heating.
제1항에 있어서,
상기 a) 단계에서 마그네슘볼은 평균 입경이 1 내지 10 ㎛인, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
In step a), the magnesium balls have an average particle diameter of 1 to 10 μm, a method of manufacturing a ceramic heat conduction plate for heating.
제1항에 있어서,
상기 a) 단계에서 세라믹 조성물은 알루미늄볼, 구리볼 및 마그네슘볼을 3:1:1의 중량비로 포함하는, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
In step a), the ceramic composition comprises an aluminum ball, a copper ball, and a magnesium ball in a weight ratio of 3:1:1, a method of manufacturing a ceramic heat conduction plate for heating.
제1항에 있어서,
상기 b) 단계에서 세라믹 조성물의 점도는 20,000 내지 25,000 cPs 인, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
The viscosity of the ceramic composition in step b) is 20,000 to 25,000 cPs, a method of manufacturing a ceramic heat conduction plate for heating.
제1항에 있어서,
상기 c) 단계에서 경화는 150~180 ℃에서 15~20 시간 수행되는 것인, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
The curing in step c) is performed at 150 to 180 ℃ for 15 to 20 hours, the method of manufacturing a ceramic heat conduction plate for heating.
제1항에 있어서,
상기 d) 단계에서 숯 코팅은 10 내지 500 nm 사이즈의 숯 가루를 분사하여
코팅하는 것인, 난방용 세라믹 열전도판의 제조방법.
According to claim 1,
In step d), the charcoal coating is performed by spraying charcoal powder with a size of 10 to 500 nm.
A method of manufacturing a ceramic heat conduction plate for heating, which is to be coated.
제1항 내지 제8항 중 어느 한 항의 제조방법에 의하여 제조된 난방용 세라믹 열전도판.
A ceramic heat conduction plate for heating manufactured by the manufacturing method of any one of claims 1 to 8.
제9항에 있어서,
상기 열전도판은 열전도도가 220 내지 250 W/m·k 인 난방용 세라믹 열전도판.
10. The method of claim 9,
The heat conduction plate is a ceramic heat conduction plate for heating having a thermal conductivity of 220 to 250 W/m·k.
KR1020200172338A 2020-12-10 2020-12-10 Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof KR102261400B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200172338A KR102261400B1 (en) 2020-12-10 2020-12-10 Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200172338A KR102261400B1 (en) 2020-12-10 2020-12-10 Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof

Publications (1)

Publication Number Publication Date
KR102261400B1 true KR102261400B1 (en) 2021-06-08

Family

ID=76399167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200172338A KR102261400B1 (en) 2020-12-10 2020-12-10 Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof

Country Status (1)

Country Link
KR (1) KR102261400B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037741A (en) * 1998-07-24 2000-02-08 Hot Service Sha:Kk Heat-conductive resin plate and floor heating mat using the resin plate
KR20040096419A (en) * 2003-05-07 2004-11-16 폴리마테크 컴퍼니 리미티드 Thermally-conductive epoxy resin molded article and method of producing the same
KR20070054152A (en) * 2007-04-13 2007-05-28 채차식 The manufacturing method of calorific board and the calorific board, for heating
KR20150142927A (en) * 2014-06-12 2015-12-23 (주) 웹스 Thermal diffusion sheet having a flexible layer of ceramic-carbon composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037741A (en) * 1998-07-24 2000-02-08 Hot Service Sha:Kk Heat-conductive resin plate and floor heating mat using the resin plate
KR20040096419A (en) * 2003-05-07 2004-11-16 폴리마테크 컴퍼니 리미티드 Thermally-conductive epoxy resin molded article and method of producing the same
KR20070054152A (en) * 2007-04-13 2007-05-28 채차식 The manufacturing method of calorific board and the calorific board, for heating
KR20150142927A (en) * 2014-06-12 2015-12-23 (주) 웹스 Thermal diffusion sheet having a flexible layer of ceramic-carbon composite

Similar Documents

Publication Publication Date Title
CN103130452B (en) Artificial marble raw material composition and artificial marble
CN107963850A (en) A kind of cracking resistance high heat conduction mortar and its preparation method and application
CN105418149A (en) Stone material surface bee-hole double-layer regeneration material
KR102270181B1 (en) Composition for cement-based 3d printing exterior material having lightweight and flame retardant preformance
KR102261400B1 (en) Aluminum thermionic conduction panel using hypocaustand manufacturing process thereof
KR20130128635A (en) Composition for high-fire-resistance light-weight wall and light-weight wall construction method using the same
CN107522448A (en) A kind of composite fire-proof material and preparation method thereof
CN108249843A (en) The cement-base composite material and manufacturing method that a kind of nanometer titanium dioxide silica aerogel assorted fibre is modified
CN110054917A (en) A kind of inorganic heat preservation coating composition, inorganic heat preservation coating
CN107226996A (en) A kind of epoxy resin foam material base material and its preparation technology
CN100413803C (en) Fireproofing, humid conserving boards for building, and preparation method
KR101477108B1 (en) Lightweight Concrete Composition With High Insulation Effect
Yu et al. Study on char reinforcing of different inorganic fillers for expandable fire resistance silicone rubber
CN102649636B (en) Pearlife heat-insulating board and preparation method thereof
KR102286044B1 (en) Cement-based composition for ultra-light, non-flammable 3d printing for material extrusion method additive manufacturing of architectural finishing panels and sculptures
KR102357249B1 (en) Ultra lightweight high strength low temperature self-hardening inorganic nonflammable board and its manufacturing method
JPH0517593A (en) Heat-conductive molded article
RU2284335C1 (en) Process of producing organomineral compositions
JPS5927739B2 (en) Additive for improving properties of lightweight concrete
KR100758203B1 (en) Paint composition
KR20120077898A (en) Organic and inorganic complex blowing form composition using polyurethane
JP6949697B2 (en) Safe room construction panel and its manufacturing method
CN112500078A (en) A-grade inorganic slurry permeable fireproof heat-insulating material and preparation method and application thereof
KR101386548B1 (en) Method for Preparing Lightweight Aggregate with Fuction of Thermal Storage
JP3163414B2 (en) Composite refractory coating composition, composite refractory coating layer and method of forming the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant