KR102260033B1 - Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data - Google Patents

Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data Download PDF

Info

Publication number
KR102260033B1
KR102260033B1 KR1020190026357A KR20190026357A KR102260033B1 KR 102260033 B1 KR102260033 B1 KR 102260033B1 KR 1020190026357 A KR1020190026357 A KR 1020190026357A KR 20190026357 A KR20190026357 A KR 20190026357A KR 102260033 B1 KR102260033 B1 KR 102260033B1
Authority
KR
South Korea
Prior art keywords
arsenic content
arsenic
pine
hyperspectral
image
Prior art date
Application number
KR1020190026357A
Other languages
Korean (ko)
Other versions
KR20200107351A (en
Inventor
유재형
신지혜
정용식
배성지
김지은
임정화
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020190026357A priority Critical patent/KR102260033B1/en
Publication of KR20200107351A publication Critical patent/KR20200107351A/en
Application granted granted Critical
Publication of KR102260033B1 publication Critical patent/KR102260033B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 소나무 내 특정 물질의 분포 및 함량을 탐사하는 기술에 관한 것으로, 더욱 상세하게는 초분광계를 이용하여 취득된 영상을 분석하여 소나무 내 특정 원소 특히 비소 함량을 측정하게 되는 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법에 관한 것이다.The present invention relates to a technique for exploring the distribution and content of specific substances in pine trees, and more particularly, using hyperspectral data to measure the content of specific elements, particularly arsenic, in pine trees by analyzing images acquired using a hyperspectrometer. It relates to an apparatus and method for detecting arsenic content in pine trees.

Description

초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법{Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data}Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data}

본 발명은 소나무 내 특정 물질의 분포 및 함량을 탐사하는 기술에 관한 것으로, 더욱 상세하게는 초분광계를 이용하여 취득된 영상을 분석하여 소나무 내 특정 원소 특히 비소 함량을 측정하게 되는 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법에 관한 것이다.The present invention relates to a technique for exploring the distribution and content of specific substances in pine trees, and more particularly, using hyperspectral data to measure the content of specific elements, particularly arsenic, in pine trees by analyzing images acquired using a hyperspectrometer. It relates to an apparatus and method for detecting arsenic content in pine trees.

토양 오염이란 토양 속에 오염물질이 함유되는 현상이며, 오염물질이 섞인 폐수, 하수, 폐기물이 토양에 버려지거나 토양 주변의 광화작용을 통해 토양이 오염되기도 한다. 주요 토양오염물질로는 카드뮴, 수은, 납, 아연, 비소, 육가크로뮴 등을 들 수 있다. 위와 같은 토양오염물질은 농작물의 생육장애를 초래하며, 먹이연쇄계를 거치는 동안 사람과 가축에까지 해를 끼친다. 따라서 토양 오염도 탐사를 통해 토양 오염 실태를 파악하고, 이를 개선하기 위한 기술의 개발이 요구되고 있다.Soil pollution is a phenomenon in which contaminants are contained in the soil, and wastewater, sewage, and waste mixed with contaminants are thrown into the soil or the soil is contaminated through mineralization around the soil. Major soil pollutants include cadmium, mercury, lead, zinc, arsenic, and hexavalent chromium. Soil pollutants such as above cause growth disorders of crops and harm people and livestock while passing through the food chain. Therefore, there is a demand for the development of technology to identify the actual condition of soil contamination through soil contamination survey and to improve it.

종래에는 토양 오염도 탐사를 위해 현장에서 시료채취 및 화학분석을 통하여 오염원의 분포나 함량을 분석하였다. 일예로 채취된 토양을 산분해 또는 전처리하고, 불꽃을 주입하여 원자화한 후 원자에 의해서 흡수된 자외선 또는 가시광선의 양을 측정하여 시료의 화합물을 판별하는 원자흡수분광광도법이나, 시료를 고주파유도코일에 의해 형성된 아르곤 플라즈마에 주입하여 6000K~8000K로 가열 시 원자가 방출하는 발광선 및 발광각도를 측정하여 원소의 정성 및 정량 분석을 수행하는 유도결합플라즈마-원자발광분광법 등이 있다. Conventionally, for soil contamination level exploration, the distribution or content of pollutants was analyzed through sampling and chemical analysis in the field. For example, the atomic absorption spectroscopy method, which determines the compound in the sample by measuring the amount of ultraviolet or visible light absorbed by atoms, after acid decomposition or pretreatment of the collected soil, atomization by injecting a flame, or the sample in a high-frequency induction coil There is an inductively coupled plasma-atomic emission spectroscopy method that performs qualitative and quantitative analysis of elements by measuring the emission lines and emission angles emitted by atoms when heated to 6000K to 8000K by injecting into an argon plasma formed by

위와 같은 종래의 토양 오염도 분석 방식은 분석 과정이 복잡하여 분석 시간이 오래걸리고 비용이 증가하는 단점이 있고, 결정적으로 토양의 오염도 분포를 파악하기 위해서는 단위 구역 마다 시료를 각각 채취하여야 하기 때문에 넓은 지역의 오염도 분포를 측정하기 어려운 문제가 있었다. The conventional soil contamination analysis method as described above has the disadvantage of taking a long analysis time and increasing the cost due to the complicated analysis process. There was a problem in that it was difficult to measure the pollution degree distribution.

최근에는 분광촬영기와 분광영상센서를 사용하여 수광된 빛을 백 개 내지 수백 개의 파장정보로 분리하여 영상을 취득함으로써 시료의 물성, 형질 등을 매우 정확하게 식별할 수 있도록 하는 분광영상기술이 개발되었다.Recently, a spectroscopic imaging technology has been developed that allows the physical properties and characteristics of a sample to be identified very accurately by dividing the received light into hundreds to hundreds of wavelength information using a spectrophotometer and a spectral image sensor to acquire an image.

이러한 분광영상기술은 처음에는 군사용으로 항공기나 위성에 탑재하여 표적물 식별용으로 활용되었으며, 민수용으로는 농작물의 경작상태, 광물의 분포, 지구 환경조사 등의 원격탐사 분야와 종사선별, 세포분석 분야에 이용되고 있다.This spectroscopic imaging technology was initially used for target identification by being mounted on aircraft or satellites for military use, and for civilian use in remote sensing fields such as crop cultivation status, mineral distribution, global environmental survey, job selection, and cell analysis fields. is being used for

기존의 중금속 오염 탐사는 측정 범위가 너무 광범위하고, 특정 물질을 정확히 탐지하지 못하고, 대략적인 혼합물의 원소 분포만 측정 가능하기 때문에 특정 원소의 분포 탐지가 취약하여 정밀한 탐사가 불가한 문제가 있어 토양 내 특정 물질의 함유량을 탐사하기 위한 기술의 개발이 요구된다.Existing heavy metal contamination exploration has a problem that precise exploration is impossible because the measurement range is too wide, it cannot accurately detect a specific substance, and can only measure the element distribution of an approximate mixture. The development of technology to explore the content of specific substances is required.

특히 항공 촬영을 통한 중금속 오염 탐사는 식생으로 피복된 지역의 경우 토양이 노출되지 않아 토양을 활용한 중금속 오염탐사가 불가한 단점이 있다. In particular, heavy metal pollution exploration through aerial photography has a disadvantage in that heavy metal pollution exploration using soil is not possible because the soil is not exposed in areas covered with vegetation.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 초분광계를 이용해 획득한 소나무의 초분광 영상자료를 분석하여 소나무의 비소 함량을 측정할 수 있는 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법을 제공함에 있다. The present invention has been devised to solve the above problems, and an object of the present invention is to analyze hyperspectral image data of pine trees obtained using a hyperspectral meter to measure the arsenic content of pine trees using hyperspectral data. To provide an apparatus and method for detecting arsenic content.

또한, 휴대용 분광계를 이용하여 현장에서 즉시 소나무 내 비소의 함량을 분석할 수 있는 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법을 제공함에 있다. Another object of the present invention is to provide an apparatus and method for detecting arsenic content in pine trees using hyperspectral data that can immediately analyze the content of arsenic in pine trees in the field using a portable spectrometer.

특히 중금속 원소 중 비소에 오염된 소나무가 나타내는 분광학적 특성을 바탕으로 소나무 잎의 비소 함량을 휴대용 분광계를 활용하여 정확히 탐지할 수 있는 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법을 제공함에 있다. In particular, based on the spectroscopic characteristics of pines contaminated with arsenic among heavy metal elements, it is to provide a device and method for detecting arsenic content in pine trees using hyperspectral data that can accurately detect the arsenic content of pine leaves using a portable spectrometer. .

본 발명의 일실시 예에 따른 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치는, 특정 파장 영역으로 소나무 잎에 조사되는 빛이 반사된 초분광계 영상의 반사도를 이용하여 소나무 내 비소의 함량을 측정하는 것을 특징으로 한다. The apparatus for detecting arsenic content in pine trees using hyperspectral data according to an embodiment of the present invention measures the arsenic content in a pine tree using the reflectivity of a hyperspectral image in which light irradiated to a pine leaf in a specific wavelength region is reflected. characterized in that

또한, 상기 탐사 장치는, 소나무에 광원을 조사하여 반사되는 초분광계 영상을 획득하는, 탐지부; 및 상기 탐지부의 초분광계 영상을 분석하여 소나무 내 비소의 함량을 분석하는 분석부를 포함한다. In addition, the exploration device, irradiating a light source to the pine tree to obtain a reflected hyperspectral image, a detector; and an analysis unit for analyzing the content of arsenic in the pine tree by analyzing the hyperspectral image of the detection unit.

또한, 상기 탐지부는, 상기 초분광계 영상을 유선 또는 무선으로 상기 분석부에 송신하는 광정보 전송부를 포함하고, 상기 분석부는, 상기 광정보 전송부를 통해 송신되는 초분광계 영상을 수신하는 광정보 수신부를 포함한다. In addition, the detector includes an optical information transmitter that transmits the hyperspectral image to the analyzer by wire or wirelessly, and the analyzer includes an optical information receiver configured to receive the hyperspectral image transmitted through the optical information transmitter. include

또한, 상기 탐지부는 휴대용 패키지로 구성되며, 상기 초분광계 영상이 유선으로 전송되는 경우 상기 분석부는 상기 탐지부와 일체로 구성되며, 무선으로 전송되는 경우 상기 분석부는 중계기에 설치되는 것을 특징으로 한다. In addition, the detection unit is configured as a portable package, and when the hyperspectral image is transmitted over a wire, the analysis unit is integrally configured with the detection unit, and when transmitted wirelessly, the analysis unit is installed in a repeater.

또한, 상기 탐사 장치는 550~600nm 또는 675~725nm 영역의 파장을 통해 반사되는 빛의 반사도를 통해 비소의 함량 또는 분포를 측정하는 것을 특징으로 한다. In addition, the exploration device is characterized in that it measures the content or distribution of arsenic through the reflectivity of light reflected through a wavelength of 550 ~ 600nm or 675 ~ 725nm region.

본 발명의 일실시 예에 따른 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치를 이용한 탐사 방법은, 소나무에 광원을 조사하는 광원 조사단계(S10); 소나무에 조사된 광원이 반사된 초분광계 영상을 획득하는 초분광계 영상 획득 단계(S20); 상기 초분광계 영상을 저장하는 영상 저장 단계(S40); 저장된 초분광계 영상을 분석하여 소나무 내 비소 함량을 연산하는 비소 함량 연산 단계(S50); 및 연산된 비소의 함량을 제공하는 비소 함량 제공단계(S60)를 포함한다. An exploration method using an arsenic content exploration apparatus in a pine tree using hyperspectral data according to an embodiment of the present invention includes: a light source irradiation step (S10) of irradiating a light source to the pine tree; A hyperspectral image acquisition step (S20) of acquiring a hyperspectral image in which the light source irradiated to the pine tree is reflected; an image storage step of storing the hyperspectrometer image (S40); an arsenic content calculation step (S50) of analyzing the stored hyperspectrometer image to calculate the arsenic content in the pine tree; and an arsenic content providing step (S60) of providing the calculated arsenic content.

또한, 상기 탐사 방법은, 탐지부(10)에서 획득한 초분광계 영상을 분석부(20)로 유선 또는 무선 전송하는 영상 전송 단계(S30)를 더 포함한다. In addition, the exploration method further includes an image transmission step (S30) of wire or wirelessly transmitting the hyperspectral image acquired by the detection unit 10 to the analysis unit 20 .

또한, 상기 비소 함량은 소나무 샘플의 초분광계 영상의 흡광 깊이를 통해 산출되며 상기 흡광 깊이는 아래의 식을 통해 도출되는 것을 특징으로 한다. In addition, the arsenic content is calculated through the absorption depth of the hyperspectral image of the pine tree sample, and the absorption depth is characterized in that it is derived through the following equation.

Figure 112019023551707-pat00001
Figure 112019023551707-pat00001

또한, 상기 비소 함량은, 아래 식을 통해 도출되는 것을 특징으로 한다. In addition, the arsenic content is characterized in that it is derived through the following equation.

Figure 112019023551707-pat00002
Figure 112019023551707-pat00002

상기와 같은 구성에 의한 본 발명의 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치 및 방법은, 초분광계 영상을 통해 소나무에 함유된 비소를 탐지하여 소나무의 중금속 오염 정도를 탐사할 수 있는 효과가 있다. The apparatus and method for detecting arsenic content in pine trees using hyperspectral data of the present invention according to the above configuration has an effect of detecting arsenic contained in pine trees through hyperspectral images to explore the degree of contamination of heavy metals in pine trees. .

특히 휴대용 분광계를 이용하여 소나무의 비소 오염도를 탐사하기 때문에 현장에서 즉시 광범위한 지역의 오염도 분석이 가능한 효과가 있다.In particular, since the arsenic contamination level of pine trees is investigated using a portable spectrometer, it is possible to immediately analyze the contamination level of a wide area at the site.

나아가 식생으로 인해 토양의 항공촬영을 이용한 오염도 탐사가 불가한 지역에서 소나무의 중금속 오염 정도를 탐지하여 주변 토양의 중금속 요염 정도를 정량적으로 유추할 수 있는 효과가 있다.Furthermore, there is an effect of quantitatively inferring the degree of heavy metal lure in the surrounding soil by detecting the level of heavy metal contamination of pine trees in an area where it is impossible to explore soil contamination using aerial photography due to vegetation.

도 1은 본 발명의 일실시 예에 따른 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치의 블록도
도 2는 본 발명의 일실시 예에 따른 초분광 자료를 이용한 소나무 내 비소 함량 탐사 방법의 순서도
도 3는 빛의 파장에 따라 소나무 잎에서 반사되는 빛의 반사도를 나타낸 그래프
도 4는 소나무 샘플의 파장에 따른 선체지수 곡선을 나타낸 그래프
1 is a block diagram of an apparatus for detecting arsenic content in pine trees using hyperspectral data according to an embodiment of the present invention;
2 is a flowchart of a method for exploring arsenic content in pine trees using hyperspectral data according to an embodiment of the present invention;
3 is a graph showing the reflectance of light reflected from a pine leaf according to the wavelength of light;
4 is a graph showing the hull index curve according to the wavelength of the pine tree sample

본 발명을 설명하기에 앞서 본 발명의 기본원리에 대하여 간단히 설명하기로 한다. 토양 내에 비소가 포함된 경우 이 토양에서 자라는 식물은 비소로 인해 엽록소 함량의 변이가 발생하고 잎의 내부 구조가 파괴되어 분광학적 특성이 변화하게 된다. 토양의 비소 함유 유무 및 함량에 따라 특정 파장대에 노출된 잎의 반사도가 급격히 변화하는 구간이 발생하기 때문에 이를 이용하여 소나무 내 특정물질의 분포나 함량을 측정하도록 하였다.Before describing the present invention, the basic principle of the present invention will be briefly described. When arsenic is contained in the soil, the chlorophyll content of plants growing in the soil changes due to arsenic, and the internal structure of the leaf is destroyed, resulting in changes in spectroscopic properties. Since there is a section in which the reflectivity of leaves exposed to a specific wavelength band changes rapidly depending on the presence or absence of arsenic content in the soil, this was used to measure the distribution or content of specific substances in pine trees.

이는 식생으로 피복된 지역의 경우 토양이 노출되어 있지 않아 항공촬영 등과 같은 방법으로 토양의 중금속 오염탐사가 불가하기 때문에 식물의 잎의 비소 함량에 따란 분광학적 특성을 이용하여 토양의 금속오염 지시자로 활용이 가능하다.This is because the soil is not exposed in the case of the area covered with vegetation, so heavy metal contamination of the soil cannot be investigated by methods such as aerial photography, so it is used as an indicator of metal contamination of the soil by using the spectroscopic characteristics according to the arsenic content of the leaves of the plant. This is possible.

특히 대한민국은 약 64%가 임야로 대부분의 영토가 식생으로 피복되어 있고, 소나무는 대한민국에서 가장 많이 자생하는 수종이다. 따라서 소나무 잎의 비소 함량을 측정한다면, 그 지역의 토양의 금속오염 탐사가 가능할 것으로 기대된다. In particular, about 64% of Korea is forest, and most of the territory is covered with vegetation, and pine is the most native tree species in Korea. Therefore, if the arsenic content of pine leaves is measured, it is expected that it will be possible to explore the metal contamination of the soil in that area.

이하, 상기와 같은 본 발명의 일실시예에 대하여 도면을 참조하여 상세히 설명한다. 도 1에는 본 발명의 일실시 예에 따른 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치(100, 이하 '탐사 장치')의 블록도가 도시되어 있다.Hereinafter, an embodiment of the present invention as described above will be described in detail with reference to the drawings. 1 is a block diagram of an arsenic content exploration apparatus 100 in a pine tree using hyperspectral data according to an embodiment of the present invention (hereinafter, 'exploring apparatus').

도시된 바와 같이 탐사 장치(100)는 소나무의 초분광 영상 획득을 위한 탐지부(10)와, 탐지부(10)를 통해 획득된 영상을 이용하여 소나무 내 비소 함량을 분석하는 분석부(20)로 구성된다. As shown, the exploration device 100 includes a detection unit 10 for acquiring a hyperspectral image of a pine tree, and an analysis unit 20 for analyzing the arsenic content in the pine tree using the image acquired through the detection unit 10 . is composed of

본 발명의 탐사 장치(100)는 소나무가 비소를 포함하는 경우 엽록소의 함량에 변이를 일으키게 되고, 이는 분광학적 특성으로 나타나기 때문에 이를 통해 소나무의 초분광계 영상을 이용하여 소나무 내 함유된 비소의 함량을 탐지하는 것을 특징으로 한다. The exploration device 100 of the present invention causes a variation in the content of chlorophyll when the pine tree contains arsenic, which is shown as a spectroscopic characteristic. Through this, the content of arsenic contained in the pine tree is determined using a hyperspectral image of the pine tree. characterized by detection.

보다 구체적으로 탐지부(10)는 소나무에 빛을 조사하는 광원부(11)와, 광원부(11)에서 조사된 빛이 소나무에서 반사되어 반사된 초분광 영상을 수광하는 반사도 측정부(12)와, 반사도 측정부(12)를 통해 수광된 초분광 영상을 분석부(20)로 무선 또는 유선 전송하는 광정보 전송부(13)를 포함하여 구성된다. More specifically, the detection unit 10 includes a light source unit 11 for irradiating light on the pine tree, and a reflectivity measurement unit 12 for receiving a hyperspectral image in which the light irradiated from the light source unit 11 is reflected and reflected from the pine tree; It is configured to include an optical information transmission unit 13 for wirelessly or wired transmission of the hyperspectral image received through the reflectivity measurement unit 12 to the analysis unit 20 .

광원부(11)는, 측정대상이 되는 토양에 가시광선, 적외선, 단파적외선(350~2500nm)까지의 영역을 할로겐 조명 소스(halogen light source)로 빛을 조사하도록 구성된다.The light source unit 11 is configured to irradiate visible light, infrared light, and a region up to short wave infrared (350-2500 nm) to the soil to be measured with a halogen light source.

반사도 측정부(12)는, 광원부(11)에서 조사된 빛이 소나무 잎에서 반사되어 반사된 분광 영상을 수광하도록 구성된다. 반사도 측정부(12)는, black-surface 위에 소나무의 잎 시료를 일정한 두께로, 평행하게 배열하여 수직으로 맞대어 반사도를 측정할 수 있도록 구성될 수 있다. 반사도 측정부(12)는 측정한 영상정보를 최적화하고 화이트밸런스(white-balance) 하여 정확한 정보를 획득할 수 있도록 구성될 수 있다. 반사도 측정부(12)는, 수광정보를 350~1000nm, 1000~1800nm, 1800~2500nm의 세 영역 범위로 나누고 3~6nm의 해상도로 측정한 광정보를 1nm 단위의 반사도 값으로 재정리하여 광정보가 전송되도록 구성될 수 있다. 수광정보를 세 영역으로 나누는 이유는 비소 함량에 민감한 파장영역을 탐지하기 위함이다. 일예로, 식물이 비소를 체내에 축적함에 따라 발생할 수 있는 광학적인 특성은 엽록소 양의 감소에 기인한다. 상기 광학적 특성의 변화는 가시광선-근적외선 대역(350~1000nm)에서 뚜렷하게 발생한다. 소나무 내 비소 함량에 있어 요구되는 파장영역은 후술되는, 비소 함량 탐사 방법에서 상세히 설명한다.The reflectivity measurement unit 12 is configured to receive a spectral image reflected by the light irradiated from the light source unit 11 by being reflected from the pine leaf. The reflectivity measuring unit 12 may be configured to measure the reflectivity by vertically arranging a leaf sample of a pine tree to a predetermined thickness and in parallel on a black-surface. The reflectivity measuring unit 12 may be configured to optimize and white-balance the measured image information to obtain accurate information. The reflectivity measurement unit 12 divides the light reception information into three domain ranges of 350 to 1000 nm, 1000 to 1800 nm, and 1800 to 2500 nm, and rearranges the light information measured with a resolution of 3 to 6 nm into reflectance values in units of 1 nm, so that the optical information is may be configured to be transmitted. The reason for dividing the light reception information into three regions is to detect a wavelength region sensitive to arsenic content. For example, the optical properties that may occur as plants accumulate arsenic in the body are due to a decrease in the amount of chlorophyll. The change in the optical properties clearly occurs in the visible-near-infrared band (350-1000 nm). The wavelength range required for the arsenic content in pine will be described in detail in the arsenic content exploration method, which will be described later.

광정보 전송부(13)는, 반사도 측정부(12)를 통해 수광된 분광 영상을 분석부(20)로 무선 또는 유선 전송하도록 구성된다. 광정보 전송부(13)가 유선으로 구성되는 경우 탐지부(10)와 분석부(20)를 연결하는 광섬유케이블(Fiber-optic cable)일 수 있고, 탐지부(10)와 분석부(20)에 연결되어 일체로 구성될 수 있다.The optical information transmission unit 13 is configured to wirelessly or wiredly transmit the spectral image received through the reflectivity measurement unit 12 to the analysis unit 20 . When the optical information transmission unit 13 is configured as a wire, it may be a fiber-optic cable connecting the detection unit 10 and the analysis unit 20 , and the detection unit 10 and the analysis unit 20 . connected to and may be integrally configured.

탐지부(10)는 휴대용으로 구성되어 소나무에 근접한 상태로 초분광 영상의 획득이 가능하도록 구성될 수 있다. 탐지부(10)와 분석부(20)가 유선으로 연결되는 경우 탐지부(10)와 분석부(20)가 일체로 구성될 수도 있고, 탐지부(10)와 분석부(20)가 무선으로 연결되는 경우 분석부(20)는 이동수단과 같은 중계기의 내부에 설치될 수 있다. The detector 10 may be configured to be portable and may be configured to obtain a hyperspectral image in a state close to a pine tree. When the detection unit 10 and the analysis unit 20 are connected by wire, the detection unit 10 and the analysis unit 20 may be integrally configured, and the detection unit 10 and the analysis unit 20 are wirelessly connected. When connected, the analysis unit 20 may be installed inside a repeater such as a moving means.

분석부(20)는 기존에 구축한 또는 사용자로부터 입력받은 소나무 내 비소 함량 예측식을 토대로 측정한 파장영역 중 최적파장 영역을 추출하여 표준 회귀식 또는 예측식에 적용한다. 이에 따라 비소 함량 예측값이 도출되며 이 정보는 사용자에게 제공할 수 있다. 분석부(20)는, 광정보 전송부(13)에서 전송되는 초분광 영상을 수신하는 광정보 수신부(21)와, 광정보 수신부(21)를 통해 수신된 초분광 영상을 저장하는 데이터베이스(22)와, 데이터베이스(22)에 저장된 초분광 영상을 이용하여 소나무 내 비소의 함량을 연산하는 비소 함량 연산부(23)와, 비소 함량 연산부(23)를 통해 연산된 비소 함량 분석 결과를 사용자에게 제공하는 디스플레이부(24) 및 위 광정보 수신부(21), 데이터베이스(22), 비소 함량 연산부(23) 및 디스플레이부(24)를 총괄하여 제어하는 제어부(25)를 포함하여 구성된다. The analysis unit 20 extracts the optimal wavelength region from the wavelength region measured based on the arsenic content prediction equation in the pine tree that has been built or input from the user and applies it to the standard regression equation or the prediction equation. Accordingly, an arsenic content predicted value is derived and this information can be provided to the user. The analysis unit 20 includes an optical information receiving unit 21 for receiving the hyperspectral image transmitted from the optical information transmitting unit 13 and a database 22 for storing the hyperspectral image received through the optical information receiving unit 21 . ) and the arsenic content calculation unit 23 that calculates the arsenic content in the pine tree using the hyperspectral image stored in the database 22, and the arsenic content analysis result calculated through the arsenic content calculation unit 23 to the user The display unit 24 and the light information receiving unit 21, the database 22, the arsenic content calculation unit 23, and is configured to include a control unit 25 to control the display unit 24 as a whole.

데이터베이스부(22)는, 기존에 구축한 서버에서 제공하는 소나무 내의 비소 함량 예측 표준 회귀식을 제공받거나, 사용자가 직접 입력하도록 구성될 수 있다. 데이터베이스부(22)는, 탐지부(10)가 측정한 분광정보와 예측 비소 함량을 저장할 수 있다. 비소 함량 연산부(23)는, 분광정보를 평활화(smoothing), 1차미분곡선(first derivative of reflectance), 및 선체지수(Hull-quotient) 곡선 또는 흡광특성 변형 등으로 수학적 변형을 수행한다. 그 후 수학적으로 변형된 수광정보를 대상으로 소나무 시료 내 비소 함량과 관련 있는 파장대역을 추출한다. 마지막으로 추출한 파장대역을 통해 소나무 내 비소 함량에 대한 연산식을 도출한다. 본 발명의 일실시예에 따르면 측정된 분광반사도는 선체지수 곡선으로 변형되었으며, 576~700nm 영역 내의 흡광깊이와 흡광넓이를 산출하여 소나무 내 비소 함량을 예측할 수 있다. 디스플레이부(24)는, 비소 함량 연산부(23)이 계산한 소나무 내 비소 함량을 사용자에게 제공한다. 이때 식물에 대한 세계 각 국의 비소 함량 기준치와 비교하여 소나무 내 비소 함량에 따른 주변환경의 오염도를 평가하도록 제공될 수 있다. 제어부(25)는, 광정보 수신부(21), 데이터베이스(22), 비소 함량 연산부(23) 및 디스플레이부(24)를 총괄하여 제어하며, 문제가 발생했을 시 디스플레이부에 오류메시지를 나타냄으로써 정확한 함량을 예측하도록 구성될 수 있다. 제어부(25)는, 광정보 수신부(21)에서 받는 수광정보가 적합하게 설치되어 측정되었는지, 최적화 작업이 적합하게 수행되었는지, 수신된 수광정보 내 오류정보가 존재하는지 여부를 판정할 수 있도록 구성될 수 있다. 제어부(25)는, 데이터베이스부(22)의 메모리가 충분한지, 기존 구축한 서버와 분석부가 정상적으로 연결되어있는지 여부를 확인하도록 구성될 수 있다. 아울러 제어부(25)는, 비소 함량 연산부(23)가 소나무 내 비소 함량을 도출하여 디스플레이부(24)에 전송하기 전 중금속의 정성 및 정량평가에 대한 신뢰도 및 오류평가를 포함 할 수 있다.The database unit 22 may be configured to receive a standard regression equation for predicting arsenic content in pine trees provided by an existing server, or directly input by a user. The database unit 22 may store the spectral information and the predicted arsenic content measured by the detection unit 10 . The arsenic content calculating unit 23 performs mathematical transformations on the spectral information by smoothing, a first derivative of reflectance, and a Hull-quotient curve or light absorption characteristic transformation. Then, the wavelength band related to the arsenic content in the pine sample is extracted from the mathematically transformed light reception information. Finally, the calculation formula for the arsenic content in the pine tree is derived through the extracted wavelength band. According to an embodiment of the present invention, the measured spectral reflectivity is transformed into a hull index curve, and the arsenic content in the pine tree can be predicted by calculating the absorption depth and absorption area in the 576-700 nm region. The display unit 24 provides the arsenic content in the pine tree calculated by the arsenic content calculating unit 23 to the user. In this case, it may be provided to evaluate the pollution degree of the surrounding environment according to the arsenic content in the pine tree by comparing it with the arsenic content standard value of each country in the world. The control unit 25 controls the optical information receiving unit 21, the database 22, the arsenic content calculating unit 23 and the display unit 24 as a whole, and when a problem occurs, an error message is displayed on the display unit to provide accurate It can be configured to predict the content. The control unit 25 is configured to be able to determine whether the light reception information received by the light information receiving unit 21 is properly installed and measured, whether the optimization work is properly performed, and whether there is error information in the received light reception information. can The control unit 25 may be configured to check whether the memory of the database unit 22 is sufficient, and whether the previously constructed server and the analysis unit are normally connected. In addition, the control unit 25 may include reliability and error evaluation for the qualitative and quantitative evaluation of heavy metals before the arsenic content calculating unit 23 derives the arsenic content in the pine tree and transmits it to the display unit 24 .

이하, 상기와 같은 본 발명의 일실시예에 따른 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치를 이용한 소나무 내 비소 함량 탐사 방법에 대하여 도면을 참조하여 상세히 설명한다. 도 2에는, 본 발명의 일실시 예에 따른 휴대용 분광계를 이용한 토양 내 아연 및 카드뮴 탐사 방법의 순서도가 도시되어 있고, 도 3에는 빛의 파장에 따라 소나무 잎에서 반사되는 빛의 반사도를 나타낸 그래프가 도시되어 있다. Hereinafter, a method for detecting arsenic content in a pine tree using an apparatus for detecting an arsenic content in a pine tree using hyperspectral data according to an embodiment of the present invention as described above will be described in detail with reference to the drawings. 2 is a flowchart of a method for detecting zinc and cadmium in soil using a portable spectrometer according to an embodiment of the present invention, and FIG. 3 is a graph showing the reflectance of light reflected from pine leaves according to the wavelength of light is shown.

우선 탐지부(10)의 광원부(11)를 이용하여 소나무에 광원을 조사하는 광원 조사단계(S10)를 수행한다. First, the light source irradiation step (S10) of irradiating the light source to the pine tree using the light source unit 11 of the detection unit 10 is performed.

다음으로, 소나무에 조사된 광원이 반사된 초분광계 영상을 반사도 측정부(12)를 통해 획득하는 초분광계 영상 획득 단계(S20)를 수행한다. Next, a hyperspectral image acquisition step (S20) of acquiring a hyperspectral image reflected by the light source irradiated on the pine tree through the reflectivity measuring unit 12 is performed.

다음으로, 광정보 전송부(13)를 통해 초분광계 영상을 분석부(20)로 송신하고, 분석부(20)의 광정보 수신부(21)를 통해 수신하는 영상 전송 단계(S30)를 수행한다. Next, an image transmission step (S30) of transmitting the hyperspectral image to the analyzing unit 20 through the optical information transmitting unit 13 and receiving it through the optical information receiving unit 21 of the analyzing unit 20 is performed. .

다음으로, 수신된 영상을 데이터베이스(22)에 저장하는 영상 저장 단계(S40)를 수행한다. Next, an image storage step ( S40 ) of storing the received image in the database 22 is performed.

다음으로 저장된 초분광계 영상을 분석하여 소나무 내 비소 함량을 연산하는 비소 함량 연산 단계(S50)를 수행한다. Next, the arsenic content calculation step (S50) of calculating the arsenic content in the pine tree by analyzing the stored hyperspectrometer image is performed.

도 3을 참조하면, 비소의 함량이 많은 소나무 잎일수록 파장에 따라 반사도가 높게 나타나며, 특히 550~600nm 대 또는 675~725nm 대의 파장영역에서 비소 함량에 따라 파장대역이 유의하게 변화함을 알 수 있다. Referring to FIG. 3 , the higher the arsenic content, the higher the reflectivity according to the wavelength appears, and the wavelength band significantly changes according to the arsenic content in the wavelength range of 550 to 600 nm or 675 to 725 nm. .

따라서 550~600nm 대 또는 675~725nm 대의 파장영역에서의 반사도를 분석하여 소나무 내 비소 함유 여부 및 함량 측정이 가능하다.Therefore, it is possible to measure the arsenic content and content of pine trees by analyzing the reflectivity in the wavelength range of 550~600nm or 675~725nm.

비소 함량에 따라 유의하게 변화하는 파장대역은 통계분석을 사용하여 추출할 수 있다. 본 실시예에 따르면 비소 함량에 따라 통계적으로 유의하게 변화하는 파장영역은 약 576nm와 700nm에 해당한다. 상기 파장영역에서 반사도의 증가는 비소 함량이 식물체 내 엽록소의 감소와 같은 식물의 생리학적 변화를 초래하였음을 지시한다.Wavelength bands that change significantly depending on the arsenic content can be extracted using statistical analysis. According to the present embodiment, the wavelength region that is statistically significantly changed according to the arsenic content corresponds to about 576 nm and 700 nm. The increase in reflectivity in the wavelength region indicates that the arsenic content caused physiological changes in the plant, such as a decrease in chlorophyll in the plant.

앞서 추출한 파장은 식물의 생리학적인 변화를 강조하기 위해 평활화(smoothing), 1차미분곡선(first derivative of reflectance), 선체지수 곡선 또는 흡광특성 변형 등으로 수학적 변형을 수행할 수 있다. 본 실시예는 선체지수 곡선을 사용하여 576nm와 700nm사이의 흡광깊이(Depth)를 산출하여 소나무 내 비소 함량을 아래 식으로부터 연산할 수 있다. The previously extracted wavelength may be subjected to mathematical transformation such as smoothing, first derivative of reflectance, hull index curve, or absorption characteristic transformation in order to emphasize physiological changes in plants. This embodiment calculates the absorption depth (Depth) between 576 nm and 700 nm using the hull index curve, and the arsenic content in the pine tree can be calculated from the following equation.

도 4에는 소나무 샘플의 파장에 따른 반사도의 선체지수 보정곡선을 나타낸 그래프가 도시되어 있다. 4 is a graph showing the hull index correction curve of the reflectivity according to the wavelength of the pine tree sample.

도시된 바와 같이 (1) 소나무 샘플에서 측정된 350~2500nm까지의 파장의 반사도를 선체지수 곡선으로 변형한다. (2) 선체지수 곡선 상에 576nm와 700nm 지점 포인트를 이은 직선의 방정식을 구한다. 본 실시예의 경우 직선의 방정식은 아래 식 1과 같이 나타낼 수 있다. 식 1에서 x는 파장의 위치, y는 선체지수 값에 해당하며, HQ는 선체지수 곡선을 의미한다.As shown (1), the reflectivity of wavelengths of 350 to 2500 nm measured in the pine tree sample is transformed into a hull index curve. (2) Find the equation of a straight line connecting the points of 576nm and 700nm on the hull index curve. In the case of the present embodiment, the equation of the straight line may be expressed as Equation 1 below. In Equation 1, x is the position of the wavelength, y is the hull index value, and HQ means the hull index curve.

Figure 112019023551707-pat00003
Figure 112019023551707-pat00003

(3) 576~700nm의 선체지수 값 중에서 최솟값을 갖는 지점(

Figure 112019023551707-pat00004
)을 구한다. (4) 최솟값을 갖는 파장(
Figure 112019023551707-pat00005
)이 576nm와 700nm지점을 지은 직선의 방정식 상에 존재하는 위치(
Figure 112019023551707-pat00006
)를 구한다. (5) 최종적으로 흡광깊이는 식 2를 통해 산출될 수 있다.(3) The point with the minimum value among the hull index values of 576~700nm (
Figure 112019023551707-pat00004
) to find (4) the wavelength with the minimum (
Figure 112019023551707-pat00005
) exists on the equation of the straight line connecting the points 576 nm and 700 nm (
Figure 112019023551707-pat00006
) to find (5) Finally, the absorption depth can be calculated through Equation 2.

Figure 112019023551707-pat00007
Figure 112019023551707-pat00007

아울러 위 식을 통해 흡광깊이(Depth)를 산출한 후 소나무 내 비소 함량은 아래 식 3으로부터 연산할 수 있다.In addition, after calculating the absorption depth (Depth) through the above equation, the arsenic content in the pine tree can be calculated from the following equation (3).

Figure 112019023551707-pat00008
Figure 112019023551707-pat00008

위 계수들은 실험에서 사용된 데이터를 사용해서 산출된 경험식으로, 식 3은 회귀분석을 통해 도출된 값이다. The above coefficients are empirical formulas calculated using data used in the experiment, and Equation 3 is a value derived through regression analysis.

일예로, 576~700nm의 선체지수 값 중 최솟값을 갖는 파장이 670nm이고,

Figure 112019023551707-pat00009
가 0.10이라고 가정하면, 식 1의 직선의 방정식에서
Figure 112019023551707-pat00010
은 0.276,
Figure 112019023551707-pat00011
은 0.40라고 가정할 때, 최솟값을 갖는 파장인 670nm에서의
Figure 112019023551707-pat00012
는 0.306 이다. 식 2를 이용하면 흡광깊이는 0.206로 산출될 수 있다. 이 값을 식 3에 대입하여 비소의 함량을 유추하면, 예측된 비소의 함량은 0.949mg/kg임을 알 수 있다.For example, the wavelength having the minimum value among the hull index values of 576 to 700 nm is 670 nm,
Figure 112019023551707-pat00009
Assuming that is 0.10, in the equation of the straight line in Equation 1,
Figure 112019023551707-pat00010
is 0.276,
Figure 112019023551707-pat00011
Assuming that is 0.40, at 670 nm, the wavelength with the minimum value,
Figure 112019023551707-pat00012
is 0.306. Using Equation 2, the absorption depth can be calculated as 0.206. When the arsenic content is inferred by substituting this value into Equation 3, it can be seen that the predicted arsenic content is 0.949 mg/kg.

마지막으로 디스플레이부(24)를 통해 연산된 비소의 함량을 제공하는 비소 함량 제공단계(S60)를 수행한다. Finally, the arsenic content providing step S60 of providing the calculated arsenic content through the display unit 24 is performed.

본 발명의 상기한 실시 예에 한정하여 기술적 사상을 해석해서는 안 된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.The technical idea should not be construed as being limited to the above-described embodiment of the present invention. Various modifications can be made at the level of those skilled in the art without departing from the gist of the present invention as claimed in the claims. Accordingly, such improvements and modifications fall within the protection scope of the present invention as long as it is apparent to those skilled in the art.

100 : 소나무 내 비소 함량 탐사 장치
10 : 탐지부
11 : 광원부
12 : 반사도 측정부
13 : 광정보 전송부
20 : 분석부
21 : 광정보 수신부
22 : 데이터베이스
23 : 비소 함량 연산부
24 : 디스플레이부
25 : 제어부
100: arsenic content exploration device in pine
10: detection unit
11: light source unit
12: reflectance measuring unit
13: optical information transmission unit
20: analysis unit
21: optical information receiving unit
22: database
23: arsenic content calculation unit
24: display unit
25: control unit

Claims (9)

특정 파장 영역으로 소나무 잎에 조사되는 빛이 반사된 초분광계 영상의 반사도를 이용하여 소나무 내 비소의 함량을 측정하도록
소나무에 광원을 조사하여 반사되는 초분광계 영상을 획득하는, 탐지부; 및
상기 탐지부의 초분광계 영상을 분석하여 소나무 내 비소의 함량을 분석하는 분석부; 를 포함하고,
상기 분석부는,
소나무 샘플에서 측정된 350~2500nm까지의 파장의 반사도를 선체지수 곡선으로 변형한 후 상기 선체지수 곡선 상에 특정 두 지점 사이의 선체지수 값 중 최솟값을 갖는 제1 지점과, 상기 최솟값을 갖는 파장이 상기 특정 두 지점을 이은 직선의 방정식 상에 존재하는 제2 지점을 구하고, 상기 제2 지점과 상기 제1 지점의 차이를 흡광 깊이로 정의하여 상기 흡광 깊이를 통해 비소 함량을 산출하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치.
To measure the content of arsenic in a pine tree using the reflectivity of a hyperspectral image in which light irradiated to a pine leaf in a specific wavelength region is reflected.
A detection unit for obtaining a reflected hyperspectral image by irradiating a light source to the pine tree; and
an analysis unit analyzing the hyperspectral image of the detection unit to analyze the content of arsenic in the pine tree; including,
The analysis unit,
After transforming the reflectivity of wavelengths from 350 to 2500 nm measured in the pine tree sample to the Hull Index curve, the first point having the minimum value among the Hull Index values between two specific points on the Hull Index curve, and the wavelength having the minimum value Hyperspectral data for calculating the arsenic content through the absorption depth by obtaining the second point existing on the equation of the straight line connecting the specific two points, and defining the difference between the second point and the first point as the absorption depth Arsenic content exploration device in pine trees using
삭제delete 제 1항에 있어서,
상기 탐지부는,
상기 초분광계 영상을 유선 또는 무선으로 상기 분석부에 송신하는 광정보 전송부를 포함하고,
상기 분석부는,
상기 광정보 전송부를 통해 송신되는 초분광계 영상을 수신하는 광정보 수신부를 포함하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치.
The method of claim 1,
The detection unit,
and an optical information transmitter for transmitting the hyperspectrometer image to the analyzer by wire or wirelessly,
The analysis unit,
Arsenic content exploration apparatus in a pine tree using hyperspectral data, including an optical information receiver for receiving a hyperspectral image transmitted through the optical information transmitter.
제 3항에 있어서,
상기 탐지부는 휴대용 패키지로 구성되며,
상기 초분광계 영상이 유선으로 전송되는 경우 상기 분석부는 상기 탐지부와 일체로 구성되며, 무선으로 전송되는 경우 상기 분석부는 중계기에 설치되는 것을 특징으로 하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치
4. The method of claim 3,
The detection unit is configured in a portable package,
When the hyperspectral image is transmitted by wire, the analysis unit is integrally configured with the detection unit, and when transmitted wirelessly, the analysis unit is installed in a repeater. An apparatus for detecting arsenic content in pine trees using hyperspectral data
제 1항에 있어서,
상기 탐사 장치는 550~600nm 또는 675~725nm 영역의 파장을 통해 반사되는 빛의 반사도를 통해 비소의 함량 또는 분포를 측정하는 것을 특징으로 하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 장치.
The method of claim 1,
The arsenic content exploration device in a pine tree using hyperspectral data, characterized in that the exploration device measures the content or distribution of arsenic through the reflectivity of light reflected through a wavelength of 550 to 600 nm or 675 to 725 nm.
소나무에 광원을 조사하는 광원 조사단계(S10);
소나무에 조사된 광원이 반사된 초분광계 영상을 획득하는 초분광계 영상 획득 단계(S20);
상기 초분광계 영상을 저장하는 영상 저장 단계(S40);
저장된 초분광계 영상을 분석하여 소나무 내 비소 함량을 연산하는 비소 함량 연산 단계(S50); 및
연산된 비소의 함량을 제공하는 비소 함량 제공단계(S60); 를 포함하고,
상기 비소 함량 연산 단계(S50)는,
소나무 샘플에서 측정된 350~2500nm까지의 파장의 반사도를 선체지수 곡선으로 변형한 후 상기 선체지수 곡선 상에 특정 두 지점 사이의 선체지수 값 중 최솟값을 갖는 제1 지점과, 상기 최솟값을 갖는 파장이 상기 특정 두 지점을 이은 직선의 방정식 상에 존재하는 제2 지점을 구하고, 상기 제2 지점과 상기 제1 지점의 차이를 흡광 깊이로 정의하여 상기 흡광 깊이를 통해 비소 함량을 산출하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 방법.
Light source irradiation step of irradiating a light source to the pine tree (S10);
A hyperspectral image acquisition step (S20) of acquiring a hyperspectral image in which the light source irradiated to the pine tree is reflected;
an image storage step of storing the hyperspectrometer image (S40);
an arsenic content calculation step (S50) of analyzing the stored hyperspectrometer image to calculate the arsenic content in the pine tree; and
an arsenic content providing step of providing the calculated arsenic content (S60); including,
The arsenic content calculation step (S50) is,
After transforming the reflectivity of wavelengths from 350 to 2500 nm measured in the pine tree sample to the Hull Index curve, the first point having the minimum value among the Hull Index values between two specific points on the Hull Index curve, and the wavelength having the minimum value Hyperspectral data for calculating the arsenic content through the absorption depth by obtaining the second point existing on the equation of the straight line connecting the specific two points, and defining the difference between the second point and the first point as the absorption depth A method of arsenic content exploration in pine trees using
제 6항에 있어서,
상기 탐사 방법은,
탐지부(10)에서 획득한 초분광계 영상을 분석부(20)로 유선 또는 무선 전송하는 영상 전송 단계(S30);
를 더 포함하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 방법.
7. The method of claim 6,
The exploration method is
an image transmission step (S30) of wire or wirelessly transmitting the hyperspectral image acquired by the detection unit 10 to the analysis unit 20;
Further comprising, arsenic content exploration method in pine using hyperspectral data.
제 6항에 있어서,
상기 비소 함량은 소나무 샘플의 초분광계 영상의 흡광 깊이를 통해 산출되며 상기 흡광 깊이는 아래의 식을 통해 도출되는 것을 특징으로 하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 방법.
Figure 112019023551707-pat00013

7. The method of claim 6,
The arsenic content is calculated through the absorption depth of the hyperspectral image of the pine tree sample, and the absorption depth is derived through the following equation, arsenic content exploration method in pine trees using hyperspectral data.
Figure 112019023551707-pat00013

제 8항에 있어서,
상기 비소 함량은, 아래 식을 통해 도출되는 것을 특징으로 하는, 초분광 자료를 이용한 소나무 내 비소 함량 탐사 방법.
Figure 112019023551707-pat00014
9. The method of claim 8,
The arsenic content is, characterized in that derived through the following formula, arsenic content exploration method in pine trees using hyperspectral data.
Figure 112019023551707-pat00014
KR1020190026357A 2019-03-07 2019-03-07 Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data KR102260033B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190026357A KR102260033B1 (en) 2019-03-07 2019-03-07 Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190026357A KR102260033B1 (en) 2019-03-07 2019-03-07 Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data

Publications (2)

Publication Number Publication Date
KR20200107351A KR20200107351A (en) 2020-09-16
KR102260033B1 true KR102260033B1 (en) 2021-06-03

Family

ID=72670045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190026357A KR102260033B1 (en) 2019-03-07 2019-03-07 Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data

Country Status (1)

Country Link
KR (1) KR102260033B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049305A (en) * 2003-07-31 2005-02-24 Yamamoto Co Ltd Method and apparatus for discriminating wood containing heavy-metal
KR101760474B1 (en) 2017-03-31 2017-07-25 (주)아세아항측 Progression method of aerial hyperspectral images for detection of hotspots in soil containing heavy metals
KR101948836B1 (en) 2018-07-17 2019-02-15 한국지질자원연구원 Method and system for exploring magnesite ore deposit using hyperspectral imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651921B1 (en) * 2014-11-13 2016-08-30 대한민국 Apple tree leaf diagnosing method and apple tree leaf diagnosing apparatus using the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049305A (en) * 2003-07-31 2005-02-24 Yamamoto Co Ltd Method and apparatus for discriminating wood containing heavy-metal
KR101760474B1 (en) 2017-03-31 2017-07-25 (주)아세아항측 Progression method of aerial hyperspectral images for detection of hotspots in soil containing heavy metals
KR101948836B1 (en) 2018-07-17 2019-02-15 한국지질자원연구원 Method and system for exploring magnesite ore deposit using hyperspectral imaging

Also Published As

Publication number Publication date
KR20200107351A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
Clevers et al. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3
Yu et al. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula
Yin et al. A near-infrared reflectance sensor for soil surface moisture measurement
Bian et al. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels
CN101382488B (en) Method for detecting nitrogen content in fresh tea by visible light-near infrared diffuse reflection spectrum technology
Eitel et al. Assessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology
Adamchuk et al. Proximal soil and plant sensing
CN112634212A (en) Hyperspectral unmanned aerial vehicle-based disease latent tree detection method and system
Wang et al. Wavelet-based coupling of leaf and canopy reflectance spectra to improve the estimation accuracy of foliar nitrogen concentration
Øvergaard et al. Comparisons of two hand-held, multispectral field radiometers and a hyperspectral airborne imager in terms of predicting spring wheat grain yield and quality by means of powered partial least squares regression
González-Fernández et al. Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards
Wang et al. Automatic detection of rice disease using near infrared spectra technologies
Diago et al. Future opportunities of proximal near infrared spectroscopy approaches to determine the variability of vineyard water status
Wang et al. Rapid detection of chlorophyll content and distribution in citrus orchards based on low-altitude remote sensing and bio-sensors
Zarco-Tejada et al. Optical indices as bioindicators of forest condition from hyperspectral CASI data
Sandak et al. Near infrared spectroscopy as a tool for in-field determination of log/biomass quality index in mountain forests
Tripathi et al. Developing Vegetation Health Index from biophysical variables derivedusing MODIS satellite data in the Trans-Gangetic plains of India
KR102260033B1 (en) Arsenic Exploration Apparatus and Method in Pine Trees Based on Hyper-Spectral data
Rinaldi et al. Leaf area index retrieval using high resolution remote sensing data
KR102194472B1 (en) Zinc and Cadmium Exploration Device in Contaminated Soil using Portable Spectrometer and Method of the Same
Lu et al. Predicting cherry leaf chlorophyll concentrations based on foliar reflectance spectra variables
Bin et al. Exploration on precision farming pollution detection using THz technology
Vibhute et al. Assessment of soil organic matter through hyperspectral remote sensing data (VNIR spectroscopy) using PLSR method
Zhang et al. Noise-resistant spectral features for retrieving foliar chemical parameters
Lee et al. Exploring correlations between hyper-spectral signatures acquired in the laboratory and in-situ observation for heavy metal concentrations in soil

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right