KR102259349B1 - 병원성 유전자 변이 발생률 정보를 활용한 신약후보물질 안전성 예측 시스템 - Google Patents
병원성 유전자 변이 발생률 정보를 활용한 신약후보물질 안전성 예측 시스템 Download PDFInfo
- Publication number
- KR102259349B1 KR102259349B1 KR1020200185184A KR20200185184A KR102259349B1 KR 102259349 B1 KR102259349 B1 KR 102259349B1 KR 1020200185184 A KR1020200185184 A KR 1020200185184A KR 20200185184 A KR20200185184 A KR 20200185184A KR 102259349 B1 KR102259349 B1 KR 102259349B1
- Authority
- KR
- South Korea
- Prior art keywords
- new drug
- safety
- pathogenic
- drug candidate
- patients
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002547 new drug Substances 0.000 title claims abstract description 77
- 229940000406 drug candidate Drugs 0.000 title claims abstract description 67
- 230000001717 pathogenic effect Effects 0.000 title claims abstract description 57
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 62
- 208000024891 symptom Diseases 0.000 claims abstract description 41
- 206010064571 Gene mutation Diseases 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 10
- 230000035772 mutation Effects 0.000 claims description 9
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 3
- 230000007918 pathogenicity Effects 0.000 claims 1
- 239000003814 drug Substances 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000009509 drug development Methods 0.000 description 6
- 238000011076 safety test Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012362 drug development process Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/50—Molecular design, e.g. of drugs
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
- G16B30/10—Sequence alignment; Homology search
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Data Mining & Analysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Computing Systems (AREA)
- Bioethics (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Genetics & Genomics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Evolutionary Computation (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
도 2는 본 발명에 따른 신약후보물질의 안전성 판단을 설명하기 위한 도면이다.
도 3은 본 발명의 다른 실시예에 따른 신약후보물질 안전성 예측 시스템의 구성도이다.
도 4는 본 발명의 또 다른 실시예에 따른 신약후보물질 안전성 예측 시스템의 구성도이다.
500: 계산부 700: 판단부
800: 증상 특정부 900: 환자군 특정부
1000: 신약후보물질 안전성 예측 시스템
Claims (7)
- 안전성을 판단하고자 하는 신약후보물질의 타겟 유전자(Gi)에 대해서, 특정 증상(Sk)이 발현되는 환자들로 구성된 실험군의 전체 환자(n1) 중 상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이 발생률과 건강한 일반인으로 구성된 대조군의 전체 일반인(n2) 중 상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이 발생률을 비교하여 상기 신약후보물질의 안전성을 판단하되,
상기 신약후보물질의 타겟이 되는 상기 타겟 유전자(Gi)를 특정하는 유전자 특정부;
특정 증상(Sk)이 발현되는 환자들로 구성된 상기 실험군과 건강한 일반인으로 구성된 상기 대조군을 구분하는 분리부;
상기 실험군의 전체 환자(n1) 중에서 상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이(pathogenic variant)를 가지고 있는 환자의 개수(m1)와, 상기 대조군의 전체 일반인(n2) 중에서 상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이(pathogenic variant)를 가지고 있는 일반인의 개수(m2)를 계산하는 계산부; 및
상기 실험군에서의 병원성 유전자 변이 발생률과 상기 대조군에서의 병원성 유전자 변이 발생률을 비교하여 상기 신약후보물질의 안전성을 판단하는 안정성 판단부를 포함하고,
상기 판단부는 상기 실험군에서의 병원성 유전자 변이 발생률(dP1)을 하기 식1과 같이 계산하고, 상기 대조군에서의 병원성 유전자 변이 발생률(dP2)을 하기 식2와 같이 계산하는 것을 특징으로 하는 신약후보물질 안전성 예측 시스템.
식 1
(여기서, n1은 상기 실험군의 전체 환자 수이고, m1은 상기 실험군의 전체 환자(n1) 중에서 상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이(pathogenic variant)를 가지고 있는 환자의 개수이고, L은 상기 타겟 유전자(Gi)의 염기서열 길이이다)
식 2
(여기서, n2는 상기 대조군의 전체 일반인 수이고, m2는 상기 대조군의 전체 일반인(n2) 중에서 상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이(pathogenic variant)를 가지고 있는 환자의 개수이고, L은 상기 타겟 유전자(Gi)의 염기서열 길이이다) - 삭제
- 삭제
- 삭제
- 제1항에 있어서,
상기 타겟 유전자(Gi)에 대한 병원성 유전자 변이에 의해 유발되어 안전성 부적합 판정의 이유가 되는 증상을 미리 특정하는 증상 특정부를 더 포함하는 것을 특징으로 하는 신약후보물질 안전성 예측 시스템. - 제4항에 있어서,
상기 신약후보물질의 안전성이 적합 판정 되더라도 상기 문턱치에 가까운 증상을 가지는 환자군을 미리 특정하는 환자군 특정부를 더 포함하는 것을 특징으로 하는 신약후보물질 안전성 예측 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200185184A KR102259349B1 (ko) | 2020-12-28 | 2020-12-28 | 병원성 유전자 변이 발생률 정보를 활용한 신약후보물질 안전성 예측 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200185184A KR102259349B1 (ko) | 2020-12-28 | 2020-12-28 | 병원성 유전자 변이 발생률 정보를 활용한 신약후보물질 안전성 예측 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102259349B1 true KR102259349B1 (ko) | 2021-06-01 |
Family
ID=76376124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200185184A Active KR102259349B1 (ko) | 2020-12-28 | 2020-12-28 | 병원성 유전자 변이 발생률 정보를 활용한 신약후보물질 안전성 예측 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102259349B1 (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120059594A1 (en) * | 2010-08-02 | 2012-03-08 | Population Diagnostics, Inc. | Compositions and methods for discovery of causative mutations in genetic disorders |
KR20180124840A (ko) * | 2015-12-12 | 2018-11-21 | 싸이퍼롬, 인코퍼레이티드 | 컴퓨터로-구현된 집단에 대한 약물 안전성의 평가 |
KR102026871B1 (ko) | 2018-12-24 | 2019-11-04 | 주식회사 메디리타 | 신약 후보 물질의 효과 및 안전성 예측을 위한 데이터 처리 장치 및 방법 |
-
2020
- 2020-12-28 KR KR1020200185184A patent/KR102259349B1/ko active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120059594A1 (en) * | 2010-08-02 | 2012-03-08 | Population Diagnostics, Inc. | Compositions and methods for discovery of causative mutations in genetic disorders |
KR20180124840A (ko) * | 2015-12-12 | 2018-11-21 | 싸이퍼롬, 인코퍼레이티드 | 컴퓨터로-구현된 집단에 대한 약물 안전성의 평가 |
KR102026871B1 (ko) | 2018-12-24 | 2019-11-04 | 주식회사 메디리타 | 신약 후보 물질의 효과 및 안전성 예측을 위한 데이터 처리 장치 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Batiuk et al. | Upper cortical layer–driven network impairment in schizophrenia | |
Irwin et al. | Healthy aging and dementia: two roads diverging in midlife? | |
Obi-Nagata et al. | Synaptic functions and their disruption in schizophrenia: From clinical evidence to synaptic optogenetics in an animal model | |
Ducat et al. | Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia | |
Soto et al. | APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction | |
Liu et al. | Substance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus | |
Maras et al. | Sculpting the hippocampus from within: stress, spines, and CRH | |
Yasumatsu et al. | Principles of long-term dynamics of dendritic spines | |
Adams et al. | Hippocampal dependent learning ability correlates with N‐methyl‐D‐aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats | |
Sanhueza et al. | Network analyses reveal novel aspects of ALS pathogenesis | |
Sidana et al. | Impact of minimal residual negativity using next generation flow cytometry on outcomes in light chain amyloidosis | |
Pereira et al. | Influenza A virus NS1 protein promotes efficient nuclear export of unspliced viral M1 mRNA | |
Gregory et al. | Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis | |
Petruccelli et al. | Alcohol causes lasting differential transcription in Drosophila mushroom body neurons | |
Smith et al. | Postreplication roles of the Brucella VirB type IV secretion system uncovered via conditional expression of the VirB11 ATPase | |
Kehrmann et al. | Depletion of Foxp3+ regulatory T cells is accompanied by an increase in the relative abundance of Firmicutes in the murine gut microbiome | |
Čopíková et al. | Expanding the phenotype spectrum associated with pathogenic variants in the COL2A1 and COL11A1 genes | |
Tie et al. | Transcriptome‐wide study of the response of human trabecular meshwork cells to the substrate stiffness increase | |
Gerber et al. | Specific proteomes of hippocampal regions CA2 and CA1 reveal proteins linked to the unique physiology of area CA2 | |
Bliim et al. | Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons | |
KR102259349B1 (ko) | 병원성 유전자 변이 발생률 정보를 활용한 신약후보물질 안전성 예측 시스템 | |
Moya et al. | Unique molecular features and cellular responses differentiate two populations of motor cortical layer 5b neurons in a preclinical model of ALS | |
Bramel et al. | Postnatal Smad3 inactivation in murine smooth muscle cells elicits a temporally and regionally distinct transcriptional response | |
Ryu et al. | Multiple cis-acting signals, some weak by necessity, collectively direct robust transport of oskar mRNA to the oocyte | |
Beckley et al. | Phenotype‐dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20201228 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20210106 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20201228 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210210 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210525 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210526 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210526 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240320 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20250331 Start annual number: 5 End annual number: 5 |