KR102256001B1 - Novel ribonucleic acid and pharmaceutical composition based on the same - Google Patents

Novel ribonucleic acid and pharmaceutical composition based on the same Download PDF

Info

Publication number
KR102256001B1
KR102256001B1 KR1020200037711A KR20200037711A KR102256001B1 KR 102256001 B1 KR102256001 B1 KR 102256001B1 KR 1020200037711 A KR1020200037711 A KR 1020200037711A KR 20200037711 A KR20200037711 A KR 20200037711A KR 102256001 B1 KR102256001 B1 KR 102256001B1
Authority
KR
South Korea
Prior art keywords
ribonucleic acid
delete delete
hsrna
dsrna
cancer
Prior art date
Application number
KR1020200037711A
Other languages
Korean (ko)
Other versions
KR20210003660A (en
Inventor
김동호
강명수
Original Assignee
주식회사 엔에이백신연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔에이백신연구소 filed Critical 주식회사 엔에이백신연구소
Priority to AU2020299074A priority Critical patent/AU2020299074B2/en
Priority to BR112021026720A priority patent/BR112021026720A2/en
Priority to EP20835409.2A priority patent/EP3994265A4/en
Priority to PCT/KR2020/008623 priority patent/WO2021002688A1/en
Priority to MX2022000134A priority patent/MX2022000134A/en
Priority to CN202080047844.5A priority patent/CN114761558A/en
Priority to JP2021578257A priority patent/JP2022543735A/en
Priority to CA3145628A priority patent/CA3145628A1/en
Publication of KR20210003660A publication Critical patent/KR20210003660A/en
Priority to KR1020210064141A priority patent/KR102490068B1/en
Application granted granted Critical
Publication of KR102256001B1 publication Critical patent/KR102256001B1/en
Priority to US17/510,536 priority patent/US20220193112A1/en
Priority to JP2023091537A priority patent/JP2023110031A/en
Priority to AU2024200631A priority patent/AU2024200631A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

본 발명은 임의의 서열과 임의의 길이를 가지며 완전한 상보성을 가지는 TLR3 리간드로 작용하는 이중가닥 리보핵산 (dsRNA) 부위가 가운데 위치하고, 임의의 서열 (바람직하게, TLR7 리간드 서열)과 임의의 길이를 가지는 단일가닥 리보핵산 (ssRNA)이 이중가닥 리보핵산의 양쪽 3' 말단에 연결된 혼합 구조 리보핵산 (hetero structured RNA, hsRNA)에 관한 것이다. 또한 이를 포함하는 바이러스 또는 세균 감염, 암 예방 및 치료를 위한 조성물에 관한 것이다.The present invention has an arbitrary length and a double-stranded ribonucleic acid (dsRNA) site that acts as a TLR3 ligand having complete complementarity with an arbitrary sequence, is located in the middle, and has an arbitrary length with an arbitrary sequence (preferably, a TLR7 ligand sequence). A single-stranded ribonucleic acid (ssRNA) relates to a hetero structured RNA (hsRNA) linked to both 3'ends of a double-stranded ribonucleic acid. In addition, it relates to a composition for preventing and treating viral or bacterial infections and cancers comprising the same.

Description

신규한 리보핵산 및 이를 기반으로 하는 약제학적 조성물 {NOVEL RIBONUCLEIC ACID AND PHARMACEUTICAL COMPOSITION BASED ON THE SAME}Novel ribonucleic acid and pharmaceutical composition based on it {NOVEL RIBONUCLEIC ACID AND PHARMACEUTICAL COMPOSITION BASED ON THE SAME}

본 발명은 Poly(I:C)의 문제점을 극복한 신규한 리보핵산에 관한 것이다. 구체적으로, 임의의 서열과 임의의 길이를 가지며 완전한 상보성을 가지고 TLR3 리간드로 작용하는 이중가닥 리보핵산 (dsRNA) 부위가 가운데 위치하고, 상기 dsRNA 양쪽 3' 말단에 임의의 서열과 임의의 길이를 가지고 TLR7-유사 리간드로 작용하는 단일가닥 리보핵산 (ssRNA)이 연결된 혼합 구조 리보핵산 (hetero structured RNA, hsRNA)에 관한 것으로, 생성된 혼합 구조 리보핵산의 길이가 고도로 균질하고 혼합 구조 리보핵산은 높은 선천면멱 활성 기능을 가지며 안정한 장점을 갖는다.The present invention relates to a novel ribonucleic acid overcoming the problems of Poly(I:C). Specifically, a double-stranded ribonucleic acid (dsRNA) site that has complete complementarity with an arbitrary sequence and acts as a TLR3 ligand is located in the middle, and has an arbitrary sequence and an arbitrary length at both 3'ends of the dsRNA. -It relates to a mixed structured ribonucleic acid (hsRNA) linked to a single-stranded ribonucleic acid (ssRNA) acting as a similar ligand, and the length of the resulting mixed structured ribonucleic acid is highly homogeneous and the mixed structure ribonucleic acid has a high congenital profile. It has an active function and has a stable advantage.

또한 본 발명은 상기 혼합 구조 리보핵산 또는 이중가닥 리보핵산을 포함하는 바이러스 또는 세균 감염, 암 예방 및 치료를 위한 조성물에 관한 것이다.In addition, the present invention relates to a composition for preventing and treating viral or bacterial infection, cancer, and treatment comprising the mixed structure ribonucleic acid or double-stranded ribonucleic acid.

A) 선천면역 활성제로서의 TLR3 리간드A) TLR3 ligand as an innate immune activator

TLR3은 DC (dendritic cell, 수지상세포), B 세포, 단핵세포 유래 대식세포 및 많은 종양 조직상의 엔도좀 (endosome) 구획에서 정상적으로 발현되며 dsRNA를 감지한다. dsRNA는 바이러스나 세균 또는 비정상적인 세포로부터 유래될 수 있다. TLR3 수용체가 dsRNA를 인식하면 제 I형 인터페론과 전염증성 사이토카인 (proinflammatory cytokines) 분비를 자극한다. DC가 성숙한 항원 제시세포 (APC)로 활성화되어 항원 에피토프가 MHC-1 분자상에 로딩되어 나이브 T 세포에 제공된다. TLR3 효소에 의한 DC의 활성화는 미생물 병원체에 대한 선천면역 반응 및 적응면역 반응의 유도에 기여할 뿐만 아니라, CD8+ T 세포와 자연살해 (NK) 세포를 활성화한다 (비특허문헌 1). TLR3에 결합하여 이량체화를 유도할 수 있는 dsRNA의 최소 길이는 45 mer인 것으로 알려져 있다. 150 내지 540 bp dsRNA는 시험관 내에서 DC를 활성화시키는 길이로 알려져 있다 (비특허문헌 1). 하지만 시험관 내에서 수지상 전구세포를 FLT3 리간드 또는 GM-CSF로 처리한 세포를 대상으로 상기 dsRNA를 처치한 분석은 생체 내 기능을 분석했다고 볼 수 없다. TLR3 is normally expressed in DC (dendritic cells), B cells, monocyte-derived macrophages, and endosome compartments on many tumor tissues and detects dsRNA. dsRNA can be derived from viruses, bacteria or abnormal cells. When the TLR3 receptor recognizes dsRNA, it stimulates the secretion of type I interferons and proinflammatory cytokines. DCs are activated into mature antigen presenting cells (APCs), and antigenic epitopes are loaded onto the MHC-1 molecule and provided to naive T cells. Activation of DC by the TLR3 enzyme not only contributes to the induction of innate and adaptive immune responses to microbial pathogens, but also activates CD8+ T cells and natural killer (NK) cells (Non-Patent Document 1). It is known that the minimum length of dsRNA capable of binding to TLR3 and inducing dimerization is 45 mer. 150 to 540 bp dsRNA is known to be a length that activates DC in vitro (Non-Patent Document 1). However, in vitro dendritic progenitor cells were treated with FLT3 ligand or GM-CSF, and the dsRNA-treated cells could not be considered to have analyzed the function in vivo.

dsRNA 유사체인 Poly(I:C)를 감염 및 종양에 적용한 보고가 있다 (특허문헌 1-14). 한 가지 예로 쥐에서 Poly(I:C)가 DC, NK 및 CTL (cytotoxic lymphocyte)을 자극하여 종양의 성장이 매우 억제되었지만 (비특허문헌 2), Poly(I:C) 자체가 높은 독성을 가지며 또한 이를 일정한 길이로 생산하는 것이 불가능하기 때문에, 임상 분야에 적용하는 것이 매우 제한된다는 문제점이 있다. 종종 Poly(I:C)는 길이에 따라 독특한 세포 반응을 보여주는데, 더 짧은 형태는 TLR3를 활성화하고 더 긴 형태는 각각 TLR3과 MDA5 활성을 통해 선천면역을 활성화한다 (비특허문헌 1). There is a report of applying Poly(I:C), which is a dsRNA analogue, to infections and tumors (Patent Documents 1-14). For example, in mice, Poly(I:C) stimulated DC, NK, and CTL (cytotoxic lymphocyte) to inhibit tumor growth very much (Non-Patent Literature 2), but Poly(I:C) itself has high toxicity. In addition, since it is impossible to produce it in a certain length, there is a problem that its application to the clinical field is very limited. Often, Poly(I:C) exhibits unique cellular responses along its length, with shorter forms activating TLR3 and longer forms activating innate immunity through TLR3 and MDA5 activities, respectively (Non-Patent Document 1).

B) 선천면역에서 TLR7/TLR8 리간드 역할을 하는 ssRNAB) ssRNA that acts as a TLR7/TLR8 ligand in innate immunity

구아노신 (G) 및 우리딘 (U)을 포함하는 (바람직하게는 'GUU'가 반복되는 서열을 가지는) ssRNA는 DC 및 대식세포를 자극하여 NF-λB 활성화, 사이토카인 분비 및 선천면역에서 MYD88 및 TRAF6을 통한 염증 반응을 유도한다. TLR7 및 TLR8는 엔도좀의 막 상에 존재하며 ssRNA를 인식한다. TLR7은 구아노신 및 우리딘을 포함하는 ssRNA에 대한 이중 수용체인데 결합 제1부위는 작은 리간드 결합에 사용되고 제2부위는 ssRNA 결합에 사용된다. 즉, 제1부위가 구아노신을 우선적으로 감지하고, 제2부위는 ssRNA의 우리딘 부분에 특이적으로 결합한다.SsRNA containing guanosine (G) and uridine (U) (preferably having a repeating sequence of'GUU') stimulates DC and macrophages to activate NF-λB, secrete cytokines, and MYD88 in innate immunity. And induces an inflammatory response through TRAF6. TLR7 and TLR8 exist on the membrane of endosomes and recognize ssRNA. TLR7 is a dual receptor for ssRNA including guanosine and uridine. The first site of binding is used for binding small ligands and the second site is used for binding ssRNA. That is, the first site detects guanosine preferentially, and the second site specifically binds to the uridine portion of the ssRNA.

C) Poly (I:C) 계열 dsRNA의 극심한 길이 비균질성 및 독성C) Extreme length heterogeneity and toxicity of poly (I:C) family dsRNA

생체 내외에서 TLR3 의존적 방식으로 DC를 활성화시키는 dsRNA 길이를 보다 정확하게 정의할 필요가 있다. 몇 가지 리보핵산 유도체가 백신 아쥬번트 후보 물질로 제시되었지만 (특허문헌 1-18), 동일성 및 균질성을 보장할 수 없다. 이러한 점 때문에 활성이 불안정하고 안전성이 없어 제한적으로 사용된다 (특허문헌 1-14). dsRNA 유사체인 Poly(I:C) 계열 물질의 제조과정과 그에 따른 문제점은 아래와 같다. There is a need to more accurately define the dsRNA length that activates DC in a TLR3-dependent manner in vitro and in vitro. Although several ribonucleic acid derivatives have been suggested as vaccine adjuvant candidates (Patent Document 1-18), identity and homogeneity cannot be guaranteed. Because of this, the activity is unstable and there is no safety, so it is used for limited (Patent Documents 1-14). The manufacturing process of the poly(I:C)-based material, which is a dsRNA analogue, and its problems are as follows.

Poly(I:C)은 합성 dsRNA 유사체로 이노신 호모폴리머 (동형중합체) (inosine homopolymer) 가닥 Poly(I)과 시티딜 호모폴리머 (cytidyl homopolymer) 가닥 Poly(C)의 상보적 결합으로 구성되어 있다. 각 가닥은 폴리 뉴클레오티드 인산화 효소 (Polynucleotide phosphorylase, PNPase)를 이용하여 말단에 위치한 염기에 새로운 염기를 추가하는 방식으로 효소적으로 합성되기 때문에 생성된 호모폴리머의 길이가 매우 다양하다. 더욱이 긴 호모폴리머 서열 (예, 평균 400 base Poly(I))에 상보적인 긴 호모폴리머 (예, 평균 400 base Poly(C))를 대응시켜 어닐링(annealing)을 시키면 무작위적인 위치에서 상보적 결합이 이루어지고, 결합한 후에도 가닥이 좌우로 미끄러져 (slippage) 두 가닥의 체인 양쪽 끝에 제 각각의 다양한 길이를 가지는 단일가닥으로 남는 부위가 발생하며, 이 부위에 상보적인 가닥이 다시 결합하여 체인 확장 (extension)이 이루어지고, 수십 ~ 수백 kbp 이상 극심하게 다양한 길이로 만들어진다. 뿐만 아니라 체인 확장 후, 인접하는 가닥 간에 인산 다이에스터 결합이 일어나지 않아 특정할 수 없는 위치에 특정할 수 없는 개수의 닉 (nick)이 존재한다. 따라서 닉이 존재하는 위치를 인식하여 절단하는 RNase T1을 처리하면 길이가 무작위적으로 줄어드는 결과를 얻게 된다 (도 8c 참조). Poly(I:C) is a synthetic dsRNA analog consisting of a complementary bond of an inosine homopolymer (inosine homopolymer) strand Poly(I) and a cytidyl homopolymer strand Poly(C). Since each strand is enzymatically synthesized by adding a new base to a base located at the end using polynucleotide phosphorylase (PNPase), the length of the resulting homopolymer is very variable. In addition, when annealing is performed by matching a long homopolymer (e.g., an average of 400 base Poly(C)) to a long homopolymer sequence (e.g., an average of 400 base Poly(I)) and annealing, complementary binding at a random position is achieved. Even after bonding, the strands slide from side to side (slippage), resulting in a portion remaining as a single strand having different lengths at each end of the chain of the two strands, and the complementary strands recombine to this site to expand the chain. ) Is made, and it is made in extremely various lengths over tens to hundreds of kbps. In addition, after chain expansion, phosphate diester bonds do not occur between adjacent strands, so that an unspecified number of nicks exist at unspecified positions. Therefore, when RNase T1, which recognizes the location of the nick and cuts it, is treated, the length is randomly reduced (see FIG. 8C).

Poly(I:C)-L-라이신-메틸셀룰로스 (Poly(I:C)-LC)는 Poly(I:C) 유도체 중 하나로 혈청 내에서 RNase에 의한 분해에는 덜 민감하나, 제조방식은 poly(I:C)와 본질적으로 동일하므로, 길이가 일정하지 않은 동일한 문제점을 갖는다 (특허문헌 1-14). Poly(I:C)-LC는 IFN-γ 분비를 유도하고 CTL 반응 및 항원 특이 항체를 증가시킨다. Poly(I:C)-LC는 다소 완화된 독성을 지니고 있으나 임상시험시 여전히 부작용을 나타낸다. 또 다른 Poly(I:C) 유도체인 PIKA 역시 길이가 일정하지 않은 Poly(I:C)의 형태를 갖는다 (비특허문헌 3 및 비특허문헌 4).Poly(I:C)-L-lysine-methylcellulose (Poly(I:C)-LC) is one of the poly(I:C) derivatives and is less sensitive to degradation by RNase in serum, but the manufacturing method is poly( Since it is essentially the same as I:C), it has the same problem that the length is not constant (Patent Documents 1-14). Poly(I:C)-LC induces IFN-γ secretion and increases CTL response and antigen specific antibodies. Poly(I:C)-LC has somewhat moderate toxicity, but still exhibits side effects in clinical trials. PIKA, which is another Poly(I:C) derivative, also has a form of Poly(I:C) whose length is not constant (Non-Patent Document 3 and Non-Patent Document 4).

Poly(I:C12U)는 Poly(I:C)의 또 다른 유도체로 시티딘 (C) 12개마다 우리딘 (U)이 하나씩 추가되어 Poly(I)가닥과 부분적으로 불일치한 부위를 가지고 있어 상보적인 결합이 일어나지 않고, 단일 가닥에 다수의 닉이 있어 RNase T1에 의한 분해에 민감하다. 따라서, 이는 Poly(I:C)보다 반감기가 짧고 Myd88이 아닌 TRIF에 대한 선택도가 높아 Poly(I:C)의 부작용이 개선된 형태이다. 그러나 여전히 길이가 일정하지 않아 극심한 다양성을 갖는다는 점을 극복하지 못하고 있다. Poly(I:C12U)는 캐나다와 아르헨티나에서 인간에게 사용할 수 있도록 승인되었으며 2000년에는 유럽 연합에서 만성 피로 증후군 (CFS) 치료를 위한 orphan drug으로 허가 받았으나 미국 FDA의 승인은 이루어지지 않았다. 이외에도 길이를 조절하는 부분이 개선된 Poly(I:C)가 존재하지만 근본적인 길이 다양성 문제는 여전히 남아 있다. 긴 체인 (예, 평균 344 base Poly(C) 400)에 짧은 체인 (예, 평균 108 base Poly(I) 100)을 상보 결합시키는 방식으로 Poly(I:C) (100~400)을 제작하는 방법이 고안되었다. 이 방법으로 평균 길이가 400 bp에 근접하는 dsRNA가 제조되었으나, 평균 길이가 400bp에 근접한다고 해도 전체 길이 범위는 매우 넓고 (100~2000 base), Poly(I:C)가 갖고 있는 길이 다양성 문제는 여전히 극복되지 않았다. 즉, 짧은 호모폴리머 서열 (예, Poly(I) 100)이 긴 호모폴리머 (예, Poly(C) 400)에 상보적으로 결합하며 체인 미끄러짐과 체인 확장이 발생하는 것을 막을 수 없었다. 요약하면, Poly (I:C) 계열의 dsRNA 유사체는 일정한 길이를 갖지 못하고, dsRNA 내부의 특정할 수 없는 위치에 특정할 수 없는 개수의 닉이 존재하고 있어 RNase T1에 대한 안정성이 매우 낮다 (특허문헌 3, 비특허문헌 2, 비특허문헌 5).Poly(I:C12U) is another derivative of Poly(I:C), and uridine (U) is added for every 12 cytidine (C), which is complementary because it has a partly inconsistent site with the Poly(I) strand. It is sensitive to degradation by RNase T1 because there is no natural binding and there are multiple nicks on a single strand. Therefore, it has a shorter half-life than Poly(I:C) and has a higher selectivity for TRIF other than Myd88, resulting in improved side effects of Poly(I:C). However, it still has not been able to overcome the fact that the length is not constant and has extreme diversity. Poly(I:C12U) was approved for use in humans in Canada and Argentina. In 2000, it was approved by the European Union as an orphan drug for the treatment of chronic fatigue syndrome (CFS), but it was not approved by the US FDA. In addition, there is Poly(I:C) with improved length control, but the fundamental length diversity problem still remains. A method of making Poly(I:C) (100~400) by complementary bonding a short chain (e.g., an average of 108 base Poly(I) 100) to a long chain (e.g., an average of 344 base Poly(C) 400) Was devised. In this way, dsRNA with an average length close to 400 bp was prepared, but even if the average length is close to 400 bp, the entire length range is very wide (100-2000 base), and the length diversity problem of Poly(I:C) is Still not overcome. That is, the short homopolymer sequence (eg, Poly(I) 100) binds complementarily to the long homopolymer (eg, Poly(C) 400), and chain slippage and chain expansion could not be prevented from occurring. In summary, the poly (I:C) family of dsRNA analogues does not have a certain length, and because there are an unspecified number of nicks at an unspecified position inside the dsRNA, the stability against RNase T1 is very low (patent Document 3, Non-Patent Document 2, Non-Patent Document 5).

D) 암 미세환경에서 OX40와 PD-1 분자의 역할D) Role of OX40 and PD-1 molecules in the cancer microenvironment

선천 면역 반응 및 적응 면역 반응은 모두 종양의 성장과 제어에 관여한다 (비특허문헌 7). 면역기능이 억제된 종양 미세환경에서 T 세포의 활성을 증진시키는 여러가지 방법 즉, T 세포 억제 수용체에 대한 길항제 또는 T 세포 활성 수용체에 대한 자극제를 사용하는 전략이 제시되었다 (비특허문헌 8).Both the innate immune response and the adaptive immune response are involved in tumor growth and control (Non-Patent Document 7). Various methods for enhancing the activity of T cells in a tumor microenvironment in which immune function is suppressed, that is, a strategy using an antagonist for a T cell inhibitory receptor or a stimulator for a T cell activating receptor has been proposed (Non-Patent Document 8).

OX40, OX40R, CD134, TNFRSF4, TXGP1L, ACT35 및 ACT-4은 종양 괴사 인자 수용체 수퍼 패밀리 OX40의 구성원으로, 나이브 T 세포에서는 발현되지 않지만, 항원이 T 세포 수용체 (TCR)에 결합한 후에 유도 증가된다 (비특허문헌 9). 뿐만 아니라 OX40은 활성 B 세포, 활성 수지상 세포, 활성 호산구, 자연 살해 T (NKT) 세포 및 NK 세포에서 발현되어 이들 세포의 기능을 조절하는 주요 활성 수용체다 (비특허문헌 9). OX40에 결합하는 OX40 리간드인 OX40L은 주로 항원 제시 세포에서 발현된다. OX40은 활성화된 CD4+ T 세포, 활성화된 CD8+ T 세포, 기억 T 세포 및 조절 T 세포에서 높게 발현된다. OX40의 신호 전달 과정은 CD4 및 CD8 T 세포에 공동 자극 신호를 제공하여, 세포 증식, 생존, 효과기 기능 및 이동을 향상시킨다. 또한 OX40 신호는 기억 T 세포 발달 및 기능 향상을 유도하여 암 조직 내외부의 면역 억제 환경을 극복하게 할 수 있다. 생체 내 연구 결과에 의하면 OX40L-OX40의 자극을 통해 항원-특이 T 세포들이 우선적으로 확장된다.OX40, OX40R, CD134, TNFRSF4, TXGP1L, ACT35 and ACT-4 are members of the tumor necrosis factor receptor superfamily OX40, which are not expressed on naive T cells, but are induced to increase after antigen binds to T cell receptor (TCR) ( Non-Patent Document 9). In addition, OX40 is a major active receptor that is expressed in active B cells, active dendritic cells, active eosinophils, natural killer T (NKT) cells, and NK cells to regulate the function of these cells (Non-Patent Document 9). OX40L, an OX40 ligand that binds to OX40, is primarily expressed in antigen presenting cells. OX40 is highly expressed on activated CD4+ T cells, activated CD8+ T cells, memory T cells and regulatory T cells. The signaling process of OX40 provides a co-stimulatory signal to CD4 and CD8 T cells, enhancing cell proliferation, survival, effector function and migration. In addition, the OX40 signal can induce memory T cell development and function enhancement to overcome the immune suppression environment inside and outside cancer tissues. According to the results of in vivo studies, antigen-specific T cells are preferentially expanded through stimulation of OX40L-OX40.

수지상 세포와 같은 항원 제시 세포가 성숙되면, B7 패밀리 (예, CD80 및 CD86)뿐만 아니라, OX40L를 포함하는 공동 자극 인자들이 증가하는데, 이는 실질적인 기억세포 분화뿐만 아니라, T 세포 면역 반응의 동역학 및 규모를 정하는데 도움을 준다. 또한 B 세포, 혈관 내피세포, 비만 세포 및 일부 경우 활성화된 T 세포 역시 OX40L를 유도한다 (비특허문헌 10).When antigen presenting cells such as dendritic cells mature, co-stimulatory factors including OX40L as well as the B7 family (e.g., CD80 and CD86) increase, which is not only substantial memory cell differentiation, but also the kinetics and scale of T cell immune responses. Help you decide. In addition, B cells, vascular endothelial cells, mast cells, and in some cases activated T cells also induce OX40L (Non-Patent Document 10).

OX40:OX40L 결합연계 (상호작용)는 삼중가 수용체 (trimer)를 형성하여 더 고차적인 클러스터링 (clustering) 및 후속 신호 전달을 유도한다 (비특허문헌 11). 마우스 OX40 자극 랫 (rat) 유래 항체 (anti-mOX40 rat agonist Ab)는 마우스 모델에서 종양 거부 반응을 유도할 수 있다는 것이 입증되었고 (비특허문헌 12, 비특허문헌 13), 인간 OX40 자극 마우스 유래 항체 (anti-hOX40mouse agonist Ab) 역시 암 환자에서 암면역 기능을 증진시키는 것으로 나타났다 (비특허문헌 14). 또한 OX40:OX40L 상호작용은 이식편대-숙주 질병 (예, 장기 이식 거부 반응), 천식/아토피, 뇌척수염, 류마티스성 관절염, 대장염/염증성 장 질환, 무비만 당뇨병 마우스의 당뇨병 및 죽상동맥경화증, 루푸스, 염증성 및 자가면역 질병 및 장애에서 면역 반응과도 관련되어 있다 (비특허문헌 15).The OX40:OX40L binding linkage (interaction) forms a trivalent receptor (trimer) to induce higher-order clustering and subsequent signaling (Non-Patent Document 11). It has been demonstrated that mouse OX40-stimulated rat-derived antibody (anti-mOX40 rat agonist Ab) can induce tumor rejection in a mouse model (Non-Patent Document 12, Non-Patent Document 13), and human OX40-stimulated mouse-derived antibody (anti-hOX40mouse agonist Ab) has also been shown to enhance cancer immune function in cancer patients (Non-Patent Document 14). In addition, the OX40:OX40L interaction is associated with graft versus host disease (e.g. organ transplant rejection), asthma/atopic, encephalomyelitis, rheumatoid arthritis, colitis/inflammatory bowel disease, diabetes and atherosclerosis, lupus, It is also associated with the immune response in inflammatory and autoimmune diseases and disorders (Non-Patent Document 15).

PD-L1은 많은 암에서 과발현되며 종종 나쁜 예후와 연관이 있다 (비특허문헌 16, 비특허문헌 17). 흥미롭게도, 종양 침윤성 T 림프구의 대부분은, 정상 조직 및 말초 혈액 T 림프구와는 대조적으로, PD-1을 주로 발현하는데, 이는 종양-반응성 T 세포에서 PD-1의 이러한 상향 조절이 종양 면역반응의 손상에 기여할 수 있음을 나타낸다 (비특허문헌 18). 또한 종양 침윤성 T 세포상의 PD-1과 종양세포상의 PD-L1의 상호 작용으로 인한 신호 전달이 T 세포를 약화시키는 것으로 알려져 있다 (비특허문헌 19, 비특허문헌 20). 따라서 PD-1:PD-L1 (또는 PD-L2) 상호 작용의 억제는 CD8+ T 세포가 약화되는 것을 막아 암이나 급성 및 만성 감염을 치료하는데 도움을 줄 수 있다. 하지만 최적의 치료를 위해서는, 이러한 PD-1 수용체와 리간드의 상호 작용 차단 외에도 추가적인 면역 증강요법의 개발이 필요하다.PD-L1 is overexpressed in many cancers and is often associated with poor prognosis (Non-Patent Document 16, Non-Patent Document 17). Interestingly, the majority of tumor-infiltrating T lymphocytes, in contrast to normal tissue and peripheral blood T lymphocytes, primarily express PD-1, which indicates that this upregulation of PD-1 in tumor-reactive T cells is responsible for the tumor immune response. It shows that it can contribute to damage (Non-Patent Document 18). In addition, it is known that signal transduction due to the interaction between PD-1 on tumor infiltrating T cells and PD-L1 on tumor cells weakens T cells (Non-Patent Document 19, Non-Patent Document 20). Thus, inhibition of the PD-1:PD-L1 (or PD-L2) interaction can help to treat cancer or acute and chronic infections by preventing weakening of CD8+ T cells. However, for optimal treatment, in addition to blocking the interaction between the PD-1 receptor and the ligand, it is necessary to develop additional immune enhancing therapy.

Double-stranded ribonucleic acid for adjuvants; US 20150307884 A1Double-stranded ribonucleic acid for adjuvants; US 20150307884 A1 Adjuvant compositions; WO 2003028656 A2: shorter form of Poly(I:C)Adjuvant compositions; WO 2003028656 A2: shorter form of Poly(I:C) Clinical method for the immunomodulatory and vaccine adjuvant use of poly-ICLC and other dsRNAs; US 7834064 B2Clinical method for the immunomodulatory and vaccine adjuvant use of poly-ICLC and other dsRNAs; US 7834064 B2 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants; US 20070224219 A1dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants; US 20070224219 A1 Process for the maturation of dendritic cells and a vaccine; US 7981673 B2Process for the maturation of dendritic cells and a vaccine; US 7981673 B2 Topically active compositions of mismatched dsRNAs; US 5712257 ATopically active compositions of mismatched dsRNAs; US 5712257 A Treatment of hepatitis with mismatched dsRNA; US 5906980 ATreatment of hepatitis with mismatched dsRNA; US 5906980 A Double-stranded PolyC: Poly (G/I) RNA for immunostimulation and cancer treatment; EP 3083962 A1Double-stranded PolyC: Poly (G/I) RNA for immunostimulation and cancer treatment; EP 3083962 A1 Methods and formulations to achieve tumor targeted double stranded 리보핵산 mediated cell death; WO 2014165296 A1Methods and formulations to achieve tumor targeted double stranded ribonucleic acid mediated cell death; WO 2014165296 A1 Polyinosinic acid-polycytidylic acid-based adjuvant; US 20070160632 A1Polyinosinic acid-polycytidylic acid-based adjuvant; US 20070160632 A1 In-situ cancer autovaccination with intra tumoral stabilized dsRNA viral mimic; US 20090088401 A1In-situ cancer autovaccination with intra tumoral stabilized dsRNA viral mimic; US 20090088401 A1 Double-stranded ribonucleic acids with rugged physico-chemical structure and highly specific biologic activity; EP 2340307 A2Double-stranded ribonucleic acids with rugged physico-chemical structure and highly specific biologic activity; EP 2340307 A2 Improved treatment of cancer using tlr3 agonists in combination with another therapeutic agent; WO 2009130301 A1Improved treatment of cancer using tlr3 agonists in combination with another therapeutic agent; WO 2009130301 A1 Clinical method for the immunomodulatory and vaccine adjuvant use of poly-ICLC and other dsRNAs; US 7834064 B2Clinical method for the immunomodulatory and vaccine adjuvant use of poly-ICLC and other dsRNAs; US 7834064 B2 Double-stranded ribonucleic acids with rugged physico-chemical structure and highly specific biologic activity; WO 2010047835 A2Double-stranded ribonucleic acids with rugged physico-chemical structure and highly specific biologic activity; WO 2010047835 A2 Immunization strategy to prevent H1N1 infection; EP 2477652 A4Immunization strategy to prevent H1N1 infection; EP 2477652 A4 Novel nucleic acid having adjuvant activity and use thereof; WO 2012014945 ANovel nucleic acid having adjuvant activity and use thereof; WO 2012014945 A Double-Stranded Ribonucleic Acid Conjugates And Their Use; US 20170107517 A1Double-Stranded Ribonucleic Acid Conjugates And Their Use; US 20170107517 A1

Jelinek I et al., (2011) J Immunol 186 (4):2422-9 Jelinek I et al., (2011) J Immunol 186 (4):2422-9 Mian MF et al., (2013) J Leukoc Biol 94 (5):1025-36 Mian MF et al., (2013) J Leukoc Biol 94 (5):1025-36 Zhang Y et al., (2016) Virology 489:165-72 Zhang Y et al., (2016) Virology 489:165-72 Lau YF et al., (2010) Virology 406 (1):80-7 Lau YF et al., (2010) Virology 406 (1):80-7 Nakano T et al., (2018) Biosci Biotechnol Biochem 82 (11):1889-1901 Nakano T et al., (2018) Biosci Biotechnol Biochem 82 (11): 1889-1901 Matsumoto M et al., (2015) 6:6280 Matsumoto M et al., (2015) 6:6280 Vesely MD et al., (2011) Annu Rev Immunol 29: 235-271 Vesely MD et al., (2011) Annu Rev Immunol 29: 235-271 Mellman I et al., (2011) Nature 480: 480-489 Mellman I et al., (2011) Nature 480: 480-489 Sugamura K et al., (2004) Nat Rev Immunol 4: 420-431 Sugamura K et al., (2004) Nat Rev Immunol 4: 420-431 Soroosh P et al., (2006) J Immunol 176: 5975-5987 Soroosh P et al., (2006) J Immunol 176: 5975-5987 Compaan DM et al., (2006) Structure 14: 1321-1330 Compaan DM et al., (2006) Structure 14: 1321-1330 Weinberg AD et al., (2000) J Immunol 164: 2160-2169 Weinberg AD et al., (2000) J Immunol 164: 2160-2169 Piconese S et al., (2008) J Exp Med 205: 825-839 Piconese S et al., (2008) J Exp Med 205: 825-839 Curti BD et al., (2013) Cancer Res 73: 7189-7198 Curti BD et al., (2013) Cancer Res 73: 7189-7198 Croft M et al., (2009) Immunol Rev 229(1): 173-191 Croft M et al., (2009) Immunol Rev 229(1): 173-191 Okazaki T et al., Intern. Immun 2007 19 (7): 813 Okazaki T et al., Intern. Immun 2007 19 (7): 813 Thompson RH et al., Cancer Res 2006, 66 (7): 3381 Thompson RH et al., Cancer Res 2006, 66 (7): 3381 Ahmadzadeh M et al., Blood. 2009 Aug 20;114(8):1537-44 Ahmadzadeh M et al., Blood. 2009 Aug 20;114(8):1537-44 Sharpe et al., Nat Rev 2002 Sharpe et al., Nat Rev 2002 Keir ME et al., 2008 Annu. Rev. Immunol. 26: 677 Keir ME et al., 2008 Annu. Rev. Immunol. 26: 677

1) 리보핵산 기반 아쥬번트가 가지는 극심한 길이의 비균질성 극복1) Overcoming the extreme length heterogeneity of ribonucleic acid-based adjuvants

약학적 조성물은 일관된 재현성 및 균질성을 가져야 한다. dsRNA 유사체인 Poly(I:C)와 그 유도체의 적용을 임상 용도에서 제한하는 가장 큰 이유는, 극심한 길이의 비균질성을 비롯해 생산시 재현성 부족, 예측 불가능한 약물 동태 및 일관성 없는 효능 때문이다 (비특허문헌 3, 비특허문헌 6). 이러한 특성 외에도 대부분의 임상 시험에서 Poly(I:C)의 적용을 조기 종료하는 주된 이유는 관절통, 발열, 홍반 및 내독소 유사 쇼크 (특허문헌 15 및 17) 등의 증상을 일으키는 심각한 독성 때문이다. 따라서 일관된 효능, 재현성 있는 생산 가능성 및 적은 독성을 가지면서, 보다 명확하게 특정된 길이 및 조성을 갖는 dsRNA의 대체 형태가 필수적으로 요구된다. 지금까지 dsRNA 유사체로는 Poly(I:C), Poly(I:C)-LC와 Poly(I:C12U)가 있는데 모두 두 가닥의 호모폴리머 (동형중합체) 간의 상보적 결합으로 제작되기 때문에 본질적으로 리보핵산의 길이가 극심하게 다양하다. 즉, PNPase에 근거하여 제조한 호모폴리머 어닐링 방식으로 일정한 길이의 dsRNA 유사체를 제조하는 것이 본질적으로 불가능하다. The pharmaceutical composition should have consistent reproducibility and homogeneity. The main reasons for limiting the application of the dsRNA analog, Poly(I:C) and its derivatives in clinical use, are due to the extreme length heterogeneity, lack of reproducibility in production, unpredictable pharmacokinetics, and inconsistent efficacy (Non-Patent Literature 3, non-patent document 6). In addition to these characteristics, the main reason for early termination of the application of Poly(I:C) in most clinical trials is due to severe toxicity that causes symptoms such as joint pain, fever, erythema and endotoxin-like shock (Patent Documents 15 and 17). Therefore, there is an essential need for an alternative form of dsRNA having a more clearly specified length and composition, while having consistent efficacy, reproducible production potential and less toxicity. So far, dsRNA analogues include Poly(I:C), Poly(I:C)-LC, and Poly(I:C12U), but all of them are made by complementary bonds between two-stranded homopolymers (homopolymers). The length of ribonucleic acid varies extremely. That is, it is essentially impossible to prepare a dsRNA analog of a certain length by a homopolymer annealing method prepared based on PNPase.

본 발명은 Poly(I:C)가 갖는 극심한 길이의 비균질성과 독성, 대량생산 제조시의 문제점을 해결할 수 있는 신규한 hsRNA를 제공하고자 한다. 본 발명의 hsRNA는 필요에 따라 RNase T1를 처리하여 ssRNA 영역을 제거하고 dsRNA 부위만을 선택적으로 추출할 수 있다. 또한 본 발명의 hsRNA는 정확한 전체 길이, ssRNA의 정확한 길이와 위치 및 dsRNA의 정확한 길이와 위치를 특정할 수 있는 특장점을 가지며, 이러한 특성으로 기존의 Poly(I:C) 및 그 유도체의 문제를 극복할 수 있는 것이다.The present invention is to provide a novel hsRNA capable of solving the problems of poly(I:C) in heterogeneity and toxicity of extreme length and mass production. If necessary, the hsRNA of the present invention may be treated with RNase T1 to remove the ssRNA region and selectively extract only the dsRNA region. In addition, the hsRNA of the present invention has the advantage of specifying the exact overall length, the exact length and position of the ssRNA, and the exact length and position of the dsRNA, and overcomes the problems of the existing Poly(I:C) and its derivatives with these characteristics. It can be done.

2) 백신에서 필요한 항원 사용량 감소 2) Reduce the amount of antigen required in vaccines

본 발명은 백신에서 요구되는 필요 항원 양을 감소시키면서 더 강력한 방어면역을 유도할 수 있는 hsRNA와 dsRNA를 제공하고자 한다. 인플루엔자 백신 접종은 인플루엔자 바이러스에 대한 가장 효과적인 방어방법 중 하나이지만, 현재 사용되는 계절성 3가 또는 4가 백신의 경우 효과적인 예방 면역을 위하여 예측되는 한 가지 바이러스마다 백신 항원 1 회당 최소 15㎍을 필요로 한다. 이 경우 대량의 항원을 필요로 하며, 이로 인해 생산이 지연되어 백신이 부족하게 될 잠재적 가능성이 존재하므로, 백신의 항원 필요 양을 절감할 필요가 있다. 다양한 아쥬번트가 존재함에도 불구하고 미국에서 현재 65세 미만의 사람을 대상으로 승인된 인플루엔자 백신에는 어떠한 아쥬번트도 포함되어 있지 않다. 2015년 미국에서 승인된 MF59 (스쿠알렌 수중유 에멀젼) 아쥬번트 백신인 FLUAD 독감 백신은 65세 이상의 사람들을 대상으로 승인되었으며, 필요 항원 양을 감소시키고 효능을 증진시키기 위한 백신이 승인된 예는 아직까지 없다.The present invention is to provide hsRNA and dsRNA capable of inducing a stronger protective immunity while reducing the amount of antigen required in a vaccine. Influenza vaccination is one of the most effective defenses against influenza virus, but the currently used seasonal trivalent or tetravalent vaccine requires at least 15 µg per vaccine antigen for each predicted virus for effective prophylactic immunity. . In this case, a large amount of antigen is required, and there is a potential possibility that the production is delayed and the vaccine is insufficient, so there is a need to reduce the amount of antigen required for the vaccine. Despite the presence of various adjuvants, no adjuvants are included in the influenza vaccine currently approved for people under the age of 65 in the United States. The FLUAD flu vaccine, an MF59 (squalene oil-in-water emulsion) adjuvant vaccine approved in the U.S. in 2015, was approved for people over the age of 65, and there are still examples of vaccines that have been approved to reduce the amount of antigen required and improve efficacy. none.

3) 항암 효능이 증강된 암 백신 조성물 제공3) Providing a cancer vaccine composition with enhanced anticancer efficacy

본 발명은 생체 내에서 수지상 세포를 일관성 있고 강력하게 활성화시키는 hsRNA와 OX40 항체 및/또는 PD-1 항체 복합체를 포함하는 암 백신 조성물을 제공함으로써, 원발성암뿐만 아니라, 원격 전이암의 예방 또는 치료에도 사용할 수 있는 암 백신 조성물을 제공하고자 한다. The present invention provides a cancer vaccine composition comprising a complex of hsRNA and OX40 antibody and/or PD-1 antibody that consistently and strongly activates dendritic cells in vivo, so as to prevent or treat not only primary cancer, but also distant metastatic cancer. It is intended to provide a cancer vaccine composition that can be used.

본 발명의 hsRNA는 암세포의 사멸을 촉진하고, 암세포 내에 존재하는 암 연관 항원의 유출을 촉진하며, 수지상 세포 및 자연살해세포를 포함하는 선천 면역 세포를 활성화시킨다. OX40 아고니스트 항체는, 기능적으로 OX40의 리간드인 OX40L 역할을 하며, 면역 T 세포의 표면에 존재하는 인간 OX40에 특이적으로 결합한 후, OX40 활성을 증진시켜 암세포를 용해한다. PD-1 길항제 항체는 면역 세포 표면의 억제성 수용체인 PD-1에 결합하여 T 종양 특이적인 면역 세포를 활성화시킨다.The hsRNA of the present invention promotes the death of cancer cells, promotes the outflow of cancer-associated antigens present in the cancer cells, and activates innate immune cells including dendritic cells and natural killer cells. The OX40 agonist antibody functionally plays a role of OX40L, a ligand of OX40, specifically binds to human OX40 present on the surface of immune T cells, and then increases OX40 activity to dissolve cancer cells. PD-1 antagonist antibodies activate T tumor-specific immune cells by binding to PD-1, an inhibitory receptor on the surface of immune cells.

1) 본 발명은 양방향 합성을 통하여 고도의 균질성과 안정성을 갖춘 리보핵산을 제공한다.1) The present invention provides ribonucleic acid having a high degree of homogeneity and stability through bidirectional synthesis.

본 발명은 Poly(I:C)가 가지는 극심한 길이의 다양성과 이로 인한 독성을 극복하기 위해, 완벽한 균질성 및 실온에서 높은 안정성을 갖는 특정한 길이의 hsRNA 및 dsRNA에 관한 것이다.The present invention relates to hsRNA and dsRNA of a specific length having perfect homogeneity and high stability at room temperature in order to overcome the extreme diversity of lengths and toxicity resulting from Poly(I:C).

본 발명의 hsRNA를 제조하는 방법은 다음과 같다. 임의의 플라스미드 벡터에 제조하고자 하는 표적 RNA의 전사를 지시할 수 있는 DNA 절편을 삽입한다. 상기 DNA 절편을 PCR로 증폭한 뒤 정제하여 in vitro에서 RNA로 전사하기 위한 주형으로 사용한다. 이 때 DNA 절편의 양쪽 5' 말단에 T7 프로모터 서열을 첨가한다. 필요시 T7 프로모터 서열의 5' 말단에 TLR7 리간드 서열을 가지는 절편 또는 임의의 길이 및 임의의 서열을 가지는 절편을 추가할 수 있다. 동일한 T7 중합 효소를 동일한 DNA를 주형으로 삼아 in vitro에서 전사를 진행하면 완벽한 상보성을 가지는 상 하단의 ssRNA가 거의 비슷한 몰 비율로 생성되기 때문에, 이들을 실온에서 방치해도 ssRNA는 거의 남아 있지 않고 거의 모두 상보 결합하여 고도의 순수한 hsRNA를 제조할 수 있다. 상기 hsRNA 또는 dsRNA는 단백질을 암호화하지 않으나 임의로 암호화할 수도 있다. 즉, 동일 반복서열이 아닌 헤테로폴리머 서열로 구성된 DNA의 양쪽 5' 말단에 프로모터를 붙인 DNA 주형을 이용하여, 시험관 내에서 리보핵산 중합 효소 매개 전사를 통해 특정 길이의 리보핵산을 제조할 수 있다. 이때 추가적인 서열을 T7 프로모터 프라이머 부위의 5' 말단에 추가하여 더 길고 안정된 구조로 만들 수 있다. 양방향 전사 후 서로 상보 결합을 하면, 특정 중간 영역에 100% 상보적인 특정 서열과 길이를 가지는 dsRNA가 위치하고, 3' 말단에 역시 특정 서열과 길이를 가지는 ssRNA가 위치하는 hsRNA가 생성된다. 일례로, ssRNA는 무작위 서열이거나 GUU 반복서열을 포함할 수 있으나 반드시 이에 한정되지는 않으며 RNase T1을 처리하여 임의대로 ssRNA를 제거할 수 있다. The method of preparing hsRNA of the present invention is as follows. A DNA fragment capable of directing transcription of the target RNA to be prepared is inserted into an arbitrary plasmid vector. The DNA fragment is amplified by PCR, purified, and used as a template for transcription into RNA in vitro. At this time, a T7 promoter sequence is added to both 5'ends of the DNA fragment. If necessary, a fragment having a TLR7 ligand sequence or a fragment having an arbitrary length and an arbitrary sequence may be added to the 5'end of the T7 promoter sequence. When the same T7 polymerase is used as a template for in vitro transcription, ssRNAs at the top and bottom with perfect complementarity are produced at almost the same molar ratio, so even if they are left at room temperature, almost no ssRNA remains and almost all of them are complementary. By combining, highly pure hsRNA can be prepared. The hsRNA or dsRNA does not encode a protein, but may optionally encode it. That is, ribonucleic acid having a specific length can be prepared through ribonucleic acid polymerase-mediated transcription in vitro using a DNA template with a promoter attached to both 5'ends of DNA composed of a heteropolymer sequence other than the same repeat sequence. At this time, an additional sequence can be added to the 5'end of the T7 promoter primer site to make a longer and more stable structure. When complementary binding is performed after bidirectional transcription, a dsRNA having a specific sequence and length that is 100% complementary to each other is located in a specific intermediate region, and an hsRNA in which an ssRNA having a specific sequence and length is also located at the 3'end is generated. For example, the ssRNA may be a random sequence or may include a GUU repeat sequence, but is not limited thereto, and ssRNA may be arbitrarily removed by treatment with RNase T1.

지금까지 생체 내에서 DC 및 면역계를 활성화하기 위한 최소 및 최적의 길이를 갖는 dsRNA는 규명되지 않았는데, 이는 하나의 염기쌍 길이만큼 차이나는 dsRNA들을 제조하기 어렵기 때문이었다. 본 발명의 제조방법으로 제조한 가변 길이를 가진 각 리보핵산을 이용하면 생체 내외에서 최적의 면역활성화를 나타내는 리보핵산의 길이 또는 구조를 찾을 수 있다. 이로부터 TLR3의 활성화에 필요한 최적의 dsRNA 길이와 서열을 규명할 수 있다. Until now, dsRNAs having minimum and optimal lengths for activating DC and immune systems in vivo have not been identified, because it is difficult to prepare dsRNAs that differ by one base pair length. When each ribonucleic acid having a variable length prepared by the production method of the present invention is used, it is possible to find the length or structure of ribonucleic acid that exhibits optimal immune activation in vitro and in vivo. From this, the optimal dsRNA length and sequence required for TLR3 activation can be identified.

2) 본 발명은 항원 필요사용량을 감소시킬 수 있는 리보핵산을 포함하는 감염 예방 및 치료 백신 조성물을 제공한다.2) The present invention provides a vaccine composition for preventing and treating infections comprising ribonucleic acid capable of reducing the required amount of antigen used.

본 발명은 면역원 및 아쥬번트로서 상기 hsRNA 또는 dsRNA를 포함하는 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물을 제공한다. 또한 본 발명은 상기 hsRNA 또는 dsRNA를 포함하는 바이러스 또는 세균 감염 예방 또는 치료용 약학 조성물을 제공한다. The present invention provides a vaccine composition for preventing or treating viral or bacterial infections comprising the hsRNA or dsRNA as an immunogen and an adjuvant. In addition, the present invention provides a pharmaceutical composition for preventing or treating viral or bacterial infections comprising the hsRNA or dsRNA.

음전하를 강하게 띠는 리보핵산은 많은 대형 항원을 효과적으로 수용하여 VLP (virus-like particle)에 필적할 만한 나노 복합체를 만들 수 있다. 적절한 제형으로 항원을 캡슐화 한 나노 복합체는 수지상 세포 또는 대식세포에 포획되어 B 세포 및 T 세포에서 항원이 제시되는 것을 효과적으로 유도한다. 이와 동시에 사이토카인이 분비되어 결과적으로 효율적인 적응 면역 반응이 활성화된다. 본 발명의 감염 예방 및 치료 백신 조성물은 병원체의 단백질, 재조합 단백질, 서브유닛 (subunit), 스플릿 (split) 단백질 항원, 당단백질, 펩티드, 다당류, 지질다당류, 폴리뉴클레오티드 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되지 않는다. Ribonucleic acid, which is strongly negatively charged, can effectively accept many large antigens, making nanocomposites comparable to virus-like particles (VLPs). The nanocomposite encapsulating the antigen in an appropriate formulation is captured by dendritic cells or macrophages, effectively inducing the presentation of the antigen in B cells and T cells. At the same time, cytokines are secreted, resulting in activation of an efficient adaptive immune response. Infection prevention and treatment vaccine composition of the present invention is a group consisting of pathogen proteins, recombinant proteins, subunits, split protein antigens, glycoproteins, peptides, polysaccharides, lipopolysaccharides, polynucleotides, and combinations thereof. It may be selected from, but is not limited thereto.

3) 본 발명의 리보핵산 아쥬번트를 포함하는 암 백신 조성물 및 리보핵산과 항체를 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다. 3) It provides a cancer vaccine composition comprising the ribonucleic acid adjuvant of the present invention and a pharmaceutical composition for preventing or treating cancer comprising ribonucleic acid and an antibody.

본 발명은 면역원 및 아쥬번트로서 상기 hsRNA 또는 dsRNA를 포함하는 암 예방 또는 치료용 백신 조성물을 제공한다. 또한 본 발명은 상기 hsRNA 또는 dsRNA를 포함하는 암 예방 또는 치료용 약학 조성물, 및 OX40 항체 또는 PD-1 항체를 추가로 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다.The present invention provides a vaccine composition for preventing or treating cancer comprising the hsRNA or dsRNA as an immunogen and an adjuvant. In addition, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the hsRNA or dsRNA, and a pharmaceutical composition for preventing or treating cancer further comprising an OX40 antibody or a PD-1 antibody.

본 발명의 hsRNA는, Poly(I:C)가 가지는 극심한 길이의 다양성과 조성의 비균질성을 극복하고, 정확한 전체 길이와 서열로 특정될 수 있는 장점을 제공하며 hsRNA에서 ssRNA부위를 제거할 경우 완전히 상보적인 서열을 가지고 정확한 길이를 균질하게 나타내는, 개선된 면역반응을 유도하는 dsRNA로 제조될 수 있다. The hsRNA of the present invention overcomes the extreme diversity of length and composition heterogeneity of Poly(I:C), provides the advantage of being able to specify the exact overall length and sequence, and is completely complementary when the ssRNA site is removed from the hsRNA. It can be prepared with dsRNA that induces an improved immune response, which has a homogeneous sequence and exhibits the correct length.

또한 본 발명의 hsRNA에 특정 항원을 탑재한 복합체를 제조할 경우, 항원 제시 세포 내부로 항원 복합체가 전달되어 T 세포 및 B 세포에 항원을 효율적으로 제시할 수 있다. 나아가 본 발명의 hsRNA 또는 dsRNA는 필요 항원 양을 감소시킬 수 있으며, 바이러스 또는 세균 감염과 암에 대한 방어면역 효과를 유도할 수 있다. In addition, when a complex containing a specific antigen is prepared in the hsRNA of the present invention, the antigen complex is delivered into the antigen-presenting cell, so that the antigen can be efficiently presented to T cells and B cells. Furthermore, the hsRNA or dsRNA of the present invention may reduce the amount of antigen required, and may induce a protective immune effect against viral or bacterial infection and cancer.

결과적으로 본 발명의 리보핵산 아쥬번트는 (1) 항원에 대한 적응면역을 강화하고, (2) 백신의 필요 항원 양을 감소시키고, (3) 항원 특이적인 Th1-극성화된 교차 방어반응을 향상시키고, (4) 항원 없이 단독으로 사용할 경우 선천면역을 강화하는 활성을 나타낸다. As a result, the ribonucleic acid adjuvant of the present invention (1) strengthens the adaptive immunity to the antigen, (2) reduces the amount of antigen required for the vaccine, and (3) improves the antigen-specific Th1-polarized cross-protection reaction. And (4) when used alone without an antigen, it exhibits an activity that enhances innate immunity.

또한 본 발명의 hsRNA를 단독으로, 또는 hsRNA와 OX40 항체 또는 PD-1 항체를 포함하는 암 백신 조성물은, 원발성 암 및 원격성 암 모두에 대한 항암 효능을 나타낸다. 또한 본 발명의 암 백신 조성물은 PD-1 항체와 같은 면역 관문 억제제를 단독으로 처리할 경우에 반응하지 않는 불응성 암을 반응성 암으로 전환시켜, 보다 우수한 항암 효과를 나타낸다.In addition, the hsRNA of the present invention alone or a cancer vaccine composition comprising hsRNA and an OX40 antibody or PD-1 antibody exhibits anticancer efficacy against both primary and distant cancers. In addition, the cancer vaccine composition of the present invention converts a refractory cancer that does not respond to a reactive cancer when treated with an immune checkpoint inhibitor such as a PD-1 antibody alone, thereby exhibiting a more excellent anticancer effect.

도 1은 DC를 활성화시키는 리보핵산 기반 물질에 대한 생체 내 (in vivo) 활성 검증의 모식도 및 결과를 나타낸다 (실시예 1).
도 1a는 각 3마리의 C57BL/6 마우스에 NA를 복강 내 (i.p.) 경로로 주사하고 24시간이 지난 후, 비장 세포를 분리하여, 리니지 (CD3, Thy1.1, B220, Gr1, CD49b, TER-119) 음성 CD11c+ 세포군 즉, Lin-CD11c+을 DC군 cDC로 정의한 그림이다. DC 분리를 위해 전방 산란 및 측방 산란에 기초한 단핵 세포에 대한 게이팅 (gating)을 수행한 다음, cDCs로 정의된 Lineage-CD11c+ 세포에 추가 게이팅 (gating)을 실시하여 CD8α+/CD11c+ 및 CD8α-/CD11c+ cDCs로 더 나누었다.
도 1b는 CD11c+ DC 세포 중 보조 자극 인자 (CD40, CD86) 및 MHCII의 양성 세포수에 대하여 평균 형광강도 (MFI)를 측정한 결과로서 NA가 CD40, CD86, MHC-II의 DC의 마커를 증가시킴을 보여준다. NA는 Poly (I:C) 100 μg에 비해 유의하게 강력한 DC 활성화를 나타낸다.
도 1c는 NA가 Poly (I:C)와 비교해 IL-6, IL-12, TNF-α의 분비를 더 강하게 유도하는 것을 보여주는 그래프이다.
도 1d는 NA가 Th2 사이토카인 (IL-4) 및 Th17 사이토카인 (IL-17A)이 아닌, Th1 세포 마커 T-bet 및 Th1 세포 사이토카인인 인터페론-감마 (IFN-γ) mRNA를 유도하는 것을 보여주는 qRT-PCR 결과이다. 각 데이터는 세 가지의 독립적인 분석의 평균값이다.
도 2는 본 발명의 hsRNA 길이에 따른 생체 내 DC의 활성도를 보여주는 결과이다 (실시예 2).
도 2a는 인공서열(Backbone Group 1)에서 제조한 hsRNA 시리즈 1의 시험관 내 합성 결과로, 각각 140 염기 길이 hsRNA (NA1001), 190 염기 길이 (NA1501), 240 염기 길이 (NA 2001), 340 염기 길이 (NA3001), 440 염기 길이 (NA4001), 540 염기 길이 (NA5001), 640 염기 길이 (NA6001), 및 840 염기 길이 (NA8001)를 나타낸다.
도 2b는 토마토서열 (Backbone Group 2)에서 유래한 hsRNA 시리즈 2의 시험관 내 합성 결과로, 각각 140 염기 길이 (NA1002), 190 염기 길이 (NA1502), 240 염기 길이 (NA2002), 340 염기 길이 (NA3002), 440 염기 길이 (NA4002), 540 염기 길이 (NA5002), 640 염기 길이 (NA6002), 740 염기 길이 (NA7002) 및 840 염기 길이 (NA8002)를 나타낸다.
도 2c는 도 2a에 표시된 hsRNA 각각을 5㎍ 주사 시 나타나는 CD40 및 CD86 표면 발현의 MFI를 보여주고 있다. 각 데이터는 평균 세 번의 독립적 분석의 평균값이다.
도 2d는 도 2b에 표시된 hsRNA 각각을 5㎍ 주사 시 나타나는 CD40 및 CD86 표면 발현의 MFI를 보여주고 있다. 각 데이터는 평균 세 번의 독립적 분석의 평균값이다.
도 3은 본 발명의 hsRNA의 선천면역 활성 지표 및 면역 반응 결과를 나타낸다 (실시예 3).
도 3a는 본 발명의 hsRNA의 hsRNA (R1 내지 R11, VP10)를 제조한 후, 길이를 확인하기 위하여 1% 아가로즈겔에서 전기 영동 한 그림이다.
도 3b는 추가적인 서열이 HEK 293에서 24시간이 경과한 후 보정한 IFN-β 프로모터-Luciferase 활성치를 나타낸 값이다.
도 3c는 hsRNA가 착화된 오브알부민 (OVA)을 모델항원으로 사용하여 마우스 근육 내 주사하고, 2주 후 부스팅을 하고, 다시 1주일이 지난 이후에 혈청에서 Th2 매개된 Anti-OVA IgG1 및 Th1 매개 Anti-OVA IgG2a의 수준을 보여주는 그래프이다. 본 발명의 NAR7 (R7)가 R3, R5, R10 보다 Th1 (IgG2a) 및 Th2 (IgG1) 반응을 강화시켰다.
도 4는 본 발명의 hsRNA 중 하나인 NA (NVT)의 물리 화학적 특성을 나타낸다 (실시예 4).
도 4a는 HPLC로 측정한 결과로, 정제 후 NA 길이가 단일하게 일정한 것을 나타낸다. 도 4a의 내부 그림은 hsRNA 및 RNase T1를 처리한 dsRNA 길이의 균질성을 보여주고, 또한 dsRNA 부위가 잘 보존되는 것을 보여준다.
도 4b는 NA를 45℃에서 150일 이상 보관시에도 안정성이 유지됨을 보여주는 결과이다.
도 4c는 NA가 100% 송아지 혈청 (Serum)에서 10 분 미만의 짧은 반감기를 가지는 것을 보여주는 실험 결과이다.
도 4d는 NA와 복합체를 형성한 항원의 경우 유효기간이 긴 것을 보여준다.
도 5는 본 발명의 hsRNA와 dsRNA를 피하 (s.c.) 주사한 후 선천면역활성 지표의 양상을 나타내는 것이다 (실시예 5).
도 5a는 NVT 4 (NVT IV, VP20과 동일)에 RNase T1을 처리하지 않은 hsRNA (NVT 4 - T1)와, 처리한 dsRNA (NVT 4 + T1) 간의 활성을 비교한 것이다.
도 5b는 피하 주사 24시간 경과 후, hsRNA와 dsRNA 모두 DC를 활성화 (CD86 유도)를 시킨 결과이다.
도 5c는 24시간과 48시간이 지난 후, 드레인 림프절 (dLN)에서 면역세포의 수를 비교한 것으로, 48시간 경과 시 dsRNA가 hsRNA가 비해 면역활성도가 높은 것으로 나타났다.
도 5d는 dsRNA가 hsRNA에 비해 TNF-α, IFN-β, IL-6를 더 높게 유도한 결과로, dsRNA가 더 강하게 선천면역을 유도하는 반면, hsRNA는 안전성에 유리한 물질임을 시사한다.
도 6은 NA (NVT)가 착화된 Ova 백신이 다른 아쥬번트에 비해 Th1 극성화 면역반응을 더 강하게 유도하는 것을 나타낸다 (실시예 6).
도 6a는 BalB/c 마우스에 아쥬번트가 착화된 백신을 0일과 14일, 2회에 걸쳐 근육 내로 각각 프라이밍과 부스팅을 하고 21일째 말초혈액과 비장세포를 추출하여 항체와 유세포분석을 실시하는 전체 과정을 나타낸다.
도 6b 및 6c는 NA (NVT)가 다른 아쥬번트와 Th2 면역반응 (IgG1)을 활성화시킨 정도는 비슷했으나, Th1 반응 (IgG2c)은 다른 아쥬번트 보다 높게 활성화시키고, 비장에서 IFN-γ를 분비하는 CD8 T 세포와 CD4 T 세포 수 역시 가장 많이 증가시킨 결과를 나타낸다.
도 7은 본 발명의 hsRNA중에 선택된 NA (NVT)와 NVT+SE (스쿠알렌 에멀젼) (NVT II)에 의한 선천면역 활성 유도와 적응면역 유도 실험을 나타낸다 (실시예 7).
도 7a는 NVT와 NVT II의 근육 내 주사를 통한 활성 검증 방법이다.
도 7b는 주사 후 24시간째 PBS (생리식염수), NVT 및 NVT II가 서혜부 림프절 (iLN)에서 DC 활성을 유도하는 것을 보여준다.
도 7c는 NVT와 NVT II가 모두 혈청에서 중화항체를 유도하지만 NVT보다 NVT II가 2배 이상 강하게 유도한 결과를 나타낸다.
도 8은 본 발명의 hsRNA의 구조 특이성과 길이 균질성이 경쟁 약물인 Poly(I:C)에 비해 우수함을 보여주는 그림이다 (실시예 8).
도 8a는 본 발명에 따른 hsRNA의 모식도이다. 가운데에 임의의 길이와 임의의 서열을 가지는 완전한 상보성을 지닌 dsRNA 부위가 위치하고 dsRNA의 양쪽 3' 말단에 임의의 길이와 TLR7/8을 잠재적 리간드로 작용할 수 있는 ssRNA가 결합되어 있다. dsRNA는 인공서열일수도 있고 자연서열일 수도 있으나 단백질을 암호화하지는 않는다. dsRNA에 RNase III를 처리하면 평균적으로 20 내지 25 bp의 dsRNA 조각으로 절단된다. dsRNA에는 작용하지 않고 ssRNA에만 작용하는 RNAse T1을 처리하면 ssRNA 부위는 완전히 분해되어 사라진다. 본 발명은 효소적 합성 방법으로는 효과적으로 합성하기 어려운 길이 (>100bp)의 dsRNA를 in vitro에서 T7 RNA 중합효소를 이용하여, DNA의 양 가닥으로부터 유래한 두 종류의 ssRNA를 비슷한 몰 비율로 대량 합성할 수 있다는 이점을 제공한다.
본 발명은 인산기로 인한 세포내 반응을 감소시키기 위하여 5’말단 P (인산기)를 제거한 구조적 특징을 갖는다. 또한 ssRNA 부위는 단순한 돌출부가 아니라, 특정 TLR7/8 리간드로 작용할 수 있는 특정 길이와 서열 (TLR7 리간드 서열인 GU를 다수 포함하는 서열)로 이루어진 것을 특징으로 한다. 추가적으로 ssRNA 부위는 dsRNA의 말단이 분해되는 것을 방지하는 기능을 가질 수 있으며, 제조과정의 특성상 완벽한 상보결합을 하는 상단 및 하단의 단일 가닥이 동일한 몰 비율로 생성되기 때문에 실온에서도 완벽한 상보결합을 이룬 hsRNA를 형성하고, 미결합의 단일 가닥이 남아 있지 않는 특징을 갖는다.
도 8b는 hsRNA를 RNase A, RNase III 및 RNAse III+RNAse T1으로 소화시킨 결과물을 나타낸다. dsRNA 및 ssRNA를 모두 분해할 수 있는 RNase A를 처리하면 모든 RNA가 분해되어 band가 나타나지 않고, dsRNA를 20 내지 25bp 길이로 절단하는 RNase III를 처리할 경우 25 bp 정도 길이를 갖는 절편의 band가 가장 많이 나타났다. RNase III 처리 시 분해되지 않고 남게 되는 양쪽 말단의 ssRNA 절편들 (51, 58 base)이 25 bp 주위에 겹쳐 나타나므로 band가 약간 퍼져보이게 된다. RNase III 및 RNAse T1을 동시에 처리하면 상기 ssRNA 절편들 (51, 58base)이 완전히 분해되어 사라지고 25 bp의 band만이 선명하게 나타난다.
도 8c는 NA (533 base, dsRNA 부위 424 bp)를 DNase I 과 RNase T1으로 처리하기 전과 처리한 후에 아가로즈겔에서 분리한 것으로, 특정 길이로 단일한 결과물이 나타남을 보여주는 그림이다. 시험관 내에서 제조 후 DNase I을 처리하여 반응물에 잔존하는 DNA 절편을 제거하면 hsRNA만 남는다. RNase T1으로 hsRNA에 존재하는 ssRNA 부위를 제거하면 dsRNA 부위만 남는다. 만약에 dsRNA 부위 내부에 닉이 1개 이상 존재하면 RNase T1이 그 부위를 절단해서 두 개 이상의 dsRNA 절편으로 나타날 것이나, 그렇지 않고 단일 크기의 하나의 절편만 보이는 것은 dsRNA 부위 내에 닉이 전혀 없고 ssRNA는 hsRNA의 양쪽 3' 말단에만 존재함을 증명해주고 있다.
도 8d는 타발명의 경쟁약물인 Poly(I:C)가 극심한 길이 다양성으로 인해 비균질성을 갖는 것을 나타내고, 이러한 점은 제조 단계에서부터 발생하는 것으로 제조 후 분획을 마친 후에도 극복할 수 없는 문제점이다 (비특허 문헌 2).
도 8e는 타발명의 경쟁약물인 Poly(I:C)의 기본구조를 나타낸 것으로 특정 길이가 아닌 평균길이로만 표시될 수 있다. 예를 들어 평균 ~ 389 base인 PolyI와 이에 상보적인 평균 344 base PolyC를 각각 합성하여 서로 상보결합을 시키면 dsRNA가 제조된다. 그러나, 예측할 수 없는 비특정 부위에 상보결합이 발생되는 체인 미끄러짐 (chain slippage)이 발생하기 때문에, 결국 예측 불가능한 간극을 갖는 닉 (nick)이 예측 불가능한 수로 발생하게 된다. 이러한 닉뿐만 아니라, 양쪽 말단에 상보결합이 추가로 발생되는, 즉 체인 반복 (chain repeat)이 발생하게 되면 길이가 수백 kb이상으로 연장된다.
본 발명의 hsRNA는 3' 말단에만 정해진 길이 또는 서열을 갖는 ssRNA의 돌출부(overhang)를 형성하도록 설계할 수 있으나, 기존의 Poly(I:C)는 ssRNA 부위가 5' 말단 및 3' 말단 모두에 산발적으로 형성되며, 이러한 문제를 제어할 수 없었고 (비특허 문헌 2), 개선된 제조방법에서도 상기 문제는 여전히 남아있었다 (비특허 문헌 5). 또한 제조 과정에 PNPase를 사용하므로 5' 말단에 인산기(P) 가 항상 붙어있어 수율이 낮다 (비특허 문헌 2, 비특허 문헌 5).
도 9는 본 발명의 NA (NVT)에 착화된 불활화 인플루엔자 전백신 (iPR8)을 비강(i.n.) 내로 투여한 후의 면역 반응을 나타낸 것이다 (실시예 9).
도 9a는 시험방법을 도식화한 것이다.
도 9b는 NA와 iPR8+NA를 투여한 경우 폐포 세척액에서 총 세포 수, 폐포 대식세포 수, 호중구 수, 자연살해세포 수가 프라이밍 후 24시간까지 증가한 후, 24시간이 경과하는 시점부터 감소하는 양상을 보여주고 있다.
도 9c는 24시간 경과 후 IL-6, IL-12, TNF-α의 현격한 증가를 나타낸다.
도 9d는 7일째에 종격동 림프절 (mLN)에서 germinal center B (GCB) 세포와 follicular helper T cell (TFH)의 증가를 나타낸다.
도 9e는 iPR8+NVT를 투여한 경우에만 21일이 지난 후 혈청 Anti-iPR8 IgG가 증가하는 것을 나타낸다.
도 9f는 21일째 비강 세척액에서 IgA의 증가를 나타낸다.
도 10은 본 발명의 hsRNA인 NA (NVT)에 의한 인플루엔자 백신 (4IIV, QIV, Vaxigrip, 2018/2019 계절성 4가 인플루엔자 백신)의 강화 및 항원 절감효과에 관한 것이다 (실시예 10).
도 10a는 시험방법을 도식화한 것이다.
도 10b에는 Vaxigrip을 단독으로 사용한 경우에 비해, NA (NVT) 또는 NA+SE (NVT II)를 혼합하여 사용할 경우 IgG를 유도하는데 필요한 항원 사용량을 각각 약 1/5와 약 1/25 이하로 감소시킬 수 있으며, 중화항체 역시 증가된 것을 나타낸다.
도 10c는 백신 접종 후 17주까지 Vaxigrip에 대한 총 IgG의 양이 높게 유지되는 것을 보여준다.
도 10d는 중화항체의 양과 비례하여 17주차에 이르기까지 IAV H1N1와 IBV 감염에 대한 방어면역 지표인 HAI titer가 40 이상으로 높게 유지되고 있음을 나타낸다.
도 11은 본 발명의 NVT II가 착화된 뇌수막염 알세균 백신 항원에 대하여 중화 항체 IgG 증강 유도를 확인한 것이다 (실시예 11).
도 11a는 시험방법을 도식화한 것이다.
도 11b 및 11c는 프라이밍 이후 14일과 21일이 경과한 때 컨쥬게이션된 항원 Menactra 백신에 대한 항체뿐만 아니라 N. Meningitidis 항원 (본 실험에서는 4가지 항원 type 중 A type을 사용)에 대한 항체의 증가를 나타낸다.
도 12는 본 발명의 NVT II가 제공하는 항원성 복원 효능을 나타낸 것이다 (실시예 12).
도 12a는 시험방법을 도식화한 것이다.
도 12b는 Vaxigrip 단독으로는 IgG 유도하는 면역원성을 완전히 소실하였지만, 면역원성을 소실한 Vaxigrip에 NVT II를 혼입하면 항원성이 복원되었음을 나타낸다.
도 12c는 NVT II가 혼입된 백신에서, 18주째에 IAV인 H1N1과 IBV에 대한 방어면역 지표인 HAI titer가 40가 이상으로 증가되어 있음을 보여주고 있다.
도 13은 본 발명의 리보핵산 단독 면역증강 효과가 흑색종 퇴행에 미치는 영향을 나타낸다 (실시예 13).
도 13a는 7 주 령의 암컷 C57BL/6 마우스에 B16F10-OVA 흑색종 세포를 피하 이식한 후 6, 8, 10일째 NA (NVT)를 종양 내 (i.t.) 또는 근육 내로 주사하면서 종괴를 관찰하는 시험방법을 나타낸다.
도 13b는 본 발명의 hsRNA가 야기하는 종양 퇴행의 모습을 나타낸다.
도 13c는 실제 생존율을 나타낸다.
도 14는 본 발명의 리보핵산 단독 면역증강 효과가 대장암과 폐암 퇴행에 미치는 영향을 보여준다 (실시예 14).
도 15는 본 발명의 리보핵산 단독 면역증강 효과가 삼중음성 유방암 (TNBC) 퇴행과 전이억제에 미치는 영향을 보여준다 (실시예 15).
도 15a는 시험방법을 도식화한 것이다. 7 주 령의 암컷 C57BL/6 마우스에 4T1 삼중음성 유방암 (TNBC) 세포주를 유선지방조직 피하 이식 후, 8일째부터 2일에 한 번씩 총 9회에 걸쳐 종양 내 (i.t.)로 NA (NVT) 리보핵산을 단독으로 투여하고 종괴를 측정하였다.
도 15b는 NA (NVT)에 의한 원발성 유방암이 약 60% 퇴행한 결과를 나타낸다.
도 15c는 NA (NVT) 투여 마우스에서 원발성 유방암의 폐로의 전이가 현격하게 감소된 모습을 나타낸다.
도 16은 본 발명의 hsRNA 단독 또는 hsRNA가 착화된 암항원 백신의 복강 내 투여 시 비장에서 간으로의 흑색종 세포 전이 억제 효과를 나타낸다 (실시예 14).
도 16a는 시험방법을 도식화한 것이다.
도 16b는 18일째에 비장 및 간의 크기를 측정한 것이다.
도 16c는 18일째에 비장 및 간 중량의 평균을 나타낸다.
도 16d는 간으로 전이된 종양 결절의 수를 나타낸다. NA 단독 또는 NA+ OVA 처리군에서는 간으로 전이가 억제되었음을 나타낸다.
도 17은 본 발명의 hsRNA와 OX40 항체를 포함하는 암 백신 조성물에 의한 원발성 암 및 원격성 암 억제 효과를 나타낸다 (실시예 17).
도 17a는 시험방법을 도식화한 것이다.
도 17b는 PD-1 항체와 IR cell+NVT+OX40 Ab 조성물이 원발암의 성장을 상당히 억제하였음을 나타낸다.
도 17c는 IR cell 없이 NVT+OX40 Ab 만으로도 원발암을 충분히 억제하였음을 나타낸다.
도 17d는 NVT+OX40 Ab 만으로도 B16F10/Ova 원격암과 EG7/Ova 원격암의 성장이 억제됨을 나타낸다.
도 18은 본 발명의 hsRNA에 PD-1 항체 또는 OX40 항체를 혼입한 경우 흑색종 억제 효과를 비교한 결과를 나타낸다 (실시예 18).
도 18a는 시험방법을 도식화한 것이다.
도 18b는 NA+PD-1 조성물의 원발암 종양 억제 효과가 NA+OX40 Ab 조성물과 대체적으로 비슷한 결과를 나타낸다.
도 18c는 원격암의 종양에도 두 가지 조성물이 비슷한 억제효과를 갖는 것을 나타낸다.
1 shows a schematic diagram and results of verification of in vivo activity for a ribonucleic acid-based substance that activates DC (Example 1).
Figure 1a shows that each of the three C57BL/6 mice was injected with NA by the intraperitoneal (ip) route, and after 24 hours, spleen cells were isolated, and Lineage (CD3, Thy1.1, B220, Gr1, CD49b, TER -119) This is a picture that defines the negative CD11c+ cell group, that is, Lin-CD11c+, as the DC group cDC. For DC separation, gating on mononuclear cells based on forward and lateral scattering was performed, followed by additional gating on Lineage-CD11c+ cells, defined as cDCs, to CD8α+/CD11c+ and CD8α-/CD11c+. Divided further by cDCs.
Figure 1b is a result of measuring the mean fluorescence intensity (MFI) for the number of positive cells of the co-stimulatory factor (CD40, CD86) and MHCII among CD11c+ DC cells. NA increases the DC markers of CD40, CD86, and MHC-II. Show. NA shows significantly stronger DC activation compared to 100 μg of Poly (I:C).
1C is a graph showing that NA strongly induces the secretion of IL-6, IL-12, and TNF-α compared to Poly (I:C).
1D shows that NA induces Th1 cell marker T-bet and Th1 cell cytokine interferon-gamma (IFN-γ) mRNA, not Th2 cytokine (IL-4) and Th17 cytokine (IL-17A). This is the qRT-PCR result showing. Each data is the average of three independent analyzes.
Figure 2 is a result showing the activity of DC in vivo according to the length of the hsRNA of the present invention (Example 2).
Figure 2a is a result of in vitro synthesis of hsRNA series 1 prepared by artificial sequence (Backbone Group 1), respectively, 140 bases long hsRNA (NA1001), 190 bases length (NA1501), 240 bases length (NA 2001), 340 bases length (NA3001), 440 bases length (NA4001), 540 bases length (NA5001), 640 bases length (NA6001), and 840 bases length (NA8001).
Figure 2b is a result of in vitro synthesis of hsRNA series 2 derived from tomato sequence (Backbone Group 2), respectively, 140 bases length (NA1002), 190 bases length (NA1502), 240 bases length (NA2002), 340 bases length (NA3002) ), 440 bases length (NA4002), 540 bases length (NA5002), 640 bases length (NA6002), 740 bases length (NA7002) and 840 bases length (NA8002).
FIG. 2C shows the MFI of CD40 and CD86 surface expressions that appear when 5 μg of each of the hsRNAs shown in FIG. 2A is injected. Each data is an average of three independent analyzes.
FIG. 2D shows the MFI of CD40 and CD86 surface expressions that appear when 5 μg of each of the hsRNAs shown in FIG. 2B is injected. Each data is an average of three independent analyzes.
Figure 3 shows the innate immune activity index and immune response results of the hsRNA of the present invention (Example 3).
Figure 3a is a picture of the preparation of the hsRNA of the present invention (R1 to R11, VP10), and then electrophoresis on a 1% agarose gel to determine the length.
3B is a value showing the corrected IFN-β promoter-Luciferase activity value after 24 hours elapsed in HEK 293 of the additional sequence.
Figure 3c is a mouse intramuscular injection using hsRNA complexed ovalbumin (OVA) as a model antigen, boosting after 2 weeks, and Th2-mediated Anti-OVA IgG1 and Th1 mediated in serum after 1 week again It is a graph showing the level of Anti-OVA IgG2a. The NAR7 (R7) of the present invention enhanced Th1 (IgG2a) and Th2 (IgG1) reactions than R3, R5, and R10.
4 shows the physicochemical properties of NA (NVT), one of the hsRNAs of the present invention (Example 4).
4A shows that the NA length is uniformly constant after purification as a result of measurement by HPLC. Figure 4a shows the homogeneity of the length of the dsRNA treated with hsRNA and RNase T1, and also shows that the dsRNA site is well preserved.
4B is a result showing that stability is maintained even when NA is stored at 45° C. for 150 days or longer.
4C is an experimental result showing that NA has a short half-life of less than 10 minutes in 100% calf serum (Serum).
4D shows that the antigen complexed with NA has a long shelf life.
Figure 5 shows the aspect of the innate immune activity index after subcutaneous (sc) injection of the hsRNA and dsRNA of the present invention (Example 5).
5A is a comparison of the activity between hsRNA (NVT 4-T1) not treated with RNase T1 in NVT 4 (same as NVT IV, VP20) and dsRNA treated (NVT 4 + T1).
5B is a result of activating DC (CD86 induction) of both hsRNA and dsRNA after 24 hours of subcutaneous injection.
Figure 5c is a comparison of the number of immune cells in the drain lymph node (dLN) after 24 hours and 48 hours, and after 48 hours, dsRNA showed higher immunological activity than hsRNA.
5D is a result of dsRNA inducing higher TNF-α, IFN-β, and IL-6 than hsRNA, suggesting that while dsRNA induces innate immunity more strongly, hsRNA is a material that is advantageous for safety.
6 shows that the Ova vaccine complexed with NA (NVT) induces a stronger Th1 polarized immune response compared to other adjuvants (Example 6).
6A is a whole in which an adjuvant-complexed vaccine in BalB/c mice was primed and boosted intramuscularly over days 0 and 14, respectively, and peripheral blood and splenocytes were extracted on the 21st day, followed by antibody and flow cytometric analysis. Indicate the process.
6b and 6c show that NA (NVT) activates Th2 immune response (IgG1) with other adjuvants, but the Th1 response (IgG2c) activates higher than other adjuvants and secretes IFN-γ from the spleen. The number of CD8 T cells and CD4 T cells also showed the greatest increase.
Fig. 7 shows an experiment for induction of innate immunity and induction of adaptive immunity by NA (NVT) and NVT+SE (squalene emulsion) (NVT II) selected from the hsRNA of the present invention (Example 7).
7A is a method for verifying activity through intramuscular injection of NVT and NVT II.
7B shows that PBS (physiological saline), NVT and NVT II induce DC activity in the inguinal lymph nodes (iLN) 24 hours after injection.
7C shows the result that both NVT and NVT II induce neutralizing antibodies in serum, but NVT II induces more than twice as strong as NVT.
8 is a diagram showing that the structure specificity and length homogeneity of the hsRNA of the present invention is superior to that of the competing drug Poly(I:C) (Example 8).
8A is a schematic diagram of hsRNA according to the present invention. A dsRNA site having complete complementarity with an arbitrary length and an arbitrary sequence is located in the center, and ssRNA that can act as a potential ligand of any length and TLR7/8 is bound to both 3'ends of the dsRNA. The dsRNA may be an artificial or natural sequence, but it does not encode a protein. When dsRNA is treated with RNase III, it is cut into dsRNA fragments of 20 to 25 bp on average. If RNAse T1, which does not act on dsRNA, but only acts on ssRNA, is treated, the ssRNA site is completely degraded and disappeared. In the present invention, dsRNA of a length (>100bp) that is difficult to synthesize effectively by enzymatic synthesis is mass-synthesized in vitro using T7 RNA polymerase, and two types of ssRNA derived from both strands of DNA are synthesized in a similar molar ratio. It offers the advantage of being able to do it.
The present invention has a structural feature in which the 5'terminal P (phosphate group) is removed in order to reduce the intracellular reaction due to the phosphate group. In addition, the ssRNA site is not a simple overhang, but is characterized by consisting of a specific length and sequence (a sequence including a plurality of GU, which is a TLR7 ligand sequence) that can act as a specific TLR7/8 ligand. In addition, the ssRNA site may have a function of preventing the end of dsRNA from being degraded, and due to the nature of the manufacturing process, the single strands at the top and bottom are produced at the same molar ratio. And has the characteristic that unbound single strands do not remain.
Figure 8b shows the result of digestion of hsRNA with RNase A, RNase III and RNAse III + RNAse T1. If RNase A, which can degrade both dsRNA and ssRNA, is treated, all RNA is degraded and no band appears.If RNase III, which cleaves dsRNA to a length of 20 to 25 bp, is treated, the band of a fragment having a length of about 25 bp is the most. A lot appeared. When RNase III treatment, the ssRNA fragments (51, 58 base) at both ends that remain undigested are overlapped around 25 bp, so the band is slightly spread out. When RNase III and RNAse T1 are treated at the same time, the ssRNA fragments (51, 58base) are completely degraded and disappeared, and only the 25 bp band clearly appears.
FIG. 8C is a diagram showing that NA (533 base, dsRNA site 424 bp) was separated from an agarose gel before and after treatment with DNase I and RNase T1, and a single result with a specific length appears. After preparation in vitro, when DNA fragments remaining in the reaction product are removed by treatment with DNase I, only hsRNA remains. When the ssRNA site present in hsRNA is removed with RNase T1, only the dsRNA site remains. If there is more than one nick inside the dsRNA site, RNase T1 will cut the site and appear as two or more dsRNA fragments. Otherwise, if only one fragment of a single size is visible, there is no nick in the dsRNA site and ssRNA is It proves that it is present only at the 3'ends of the hsRNA.
8D shows that Poly(I:C), a competing drug of the other invention, has heterogeneity due to extreme length diversity, and this is a problem that cannot be overcome even after fractionation is completed after production as it occurs from the manufacturing stage (non Patent document 2).
8E shows the basic structure of Poly(I:C), a competing drug of another invention, and may be displayed only as an average length, not a specific length. For example, dsRNA is produced by synthesizing an average of ~ 389 base PolyI and an average of 344 base PolyC complementary thereto and making them complementary to each other. However, since chain slippage occurs in which complementary bonding occurs at unpredictable non-specific regions, nicks having unpredictable gaps eventually occur in an unpredictable number. In addition to these nicks, when complementary bonds are additionally generated at both ends, that is, chain repeats occur, the length is extended to hundreds of kb or more.
The hsRNA of the present invention can be designed to form an overhang of an ssRNA having a predetermined length or sequence only at the 3'end, but in the existing Poly(I:C), the ssRNA site is at both the 5'end and the 3'end. It formed sporadically, and this problem could not be controlled (Non-Patent Document 2), and the above problem still remained in the improved manufacturing method (Non-Patent Document 5). In addition, since PNPase is used in the manufacturing process, a phosphoric acid group (P) is always attached to the 5'end, so the yield is low (Non-Patent Document 2, Non-Patent Document 5).
Fig. 9 shows the immune response after administration of the inactivated influenza whole vaccine (iPR8) complexed to the NA (NVT) of the present invention intranasally (in) (Example 9).
Figure 9a is a schematic diagram of the test method.
Figure 9b shows a pattern in which the total number of cells, the number of alveolar macrophages, the number of neutrophils, and the number of natural killer cells in the alveolar lavage solution increase up to 24 hours after priming, and then decrease from the point when 24 hours have elapsed when NA and iPR8+NA are administered. Is showing.
9C shows a marked increase in IL-6, IL-12, and TNF-α after 24 hours.
9D shows an increase in germinal center B (GCB) cells and follicular helper T cells (T FH ) in mediastinal lymph nodes (mLN) on day 7.
9E shows that serum Anti-iPR8 IgG increases after 21 days only when iPR8+NVT is administered.
9F shows an increase in IgA in nasal lavage on day 21.
Figure 10 relates to the potentiation and antigen reduction effect of influenza vaccines (4IIV, QIV, Vaxigrip, 2018/2019 seasonal tetravalent influenza vaccine) by NA (NVT), an hsRNA of the present invention (Example 10).
Figure 10a is a schematic diagram of the test method.
Figure 10b shows that compared to the case of using Vaxigrip alone, when using a mixture of NA (NVT) or NA+SE (NVT II), the amount of antigen required to induce IgG is reduced to about 1/5 and less than about 1/25, respectively. And neutralizing antibodies are also increased.
Figure 10c shows that up to 17 weeks after vaccination, the amount of total IgG against Vaxigrip is maintained high.
Figure 10d shows that the HAI titer, which is an indicator of protective immunity against IAV H1N1 and IBV infection, is maintained as high as 40 or higher until the 17th week in proportion to the amount of neutralizing antibodies.
11 shows the induction of a neutralizing antibody IgG enhancement against the meningitis ovarian bacteria vaccine antigen complexed with NVT II of the present invention (Example 11).
Figure 11a is a schematic diagram of the test method.
11B and 11C show the increase of antibodies against the conjugated antigen Menactra vaccine as well as the N. Meningitidis antigen (type A is used in this experiment) when 14 and 21 days have elapsed after priming. Show.
12 shows the antigenic restoration efficacy provided by the NVT II of the present invention (Example 12).
Figure 12a is a schematic diagram of the test method.
12B shows that Vaxigrip alone completely lost IgG-induced immunogenicity, but when NVT II was incorporated into Vaxigrip, which lost immunogenicity, antigenicity was restored.
Figure 12c shows that in the vaccine incorporating NVT II, the HAI titer, an indicator of protective immunity against IAV H1N1 and IBV, is increased to 40 or more at 18 weeks.
13 shows the effect of the ribonucleic acid alone immunity enhancing effect of the present invention on melanoma regression (Example 13).
13A is a test for observing a mass while injecting NA (NVT) intratumorally (it) or intramuscularly on days 6, 8, and 10 after subcutaneous transplantation of B16F10-OVA melanoma cells into 7-week-old female C57BL/6 mice. Indicate the way.
13B shows the state of tumor regression caused by the hsRNA of the present invention.
13C shows the actual survival rate.
14 shows the effect of the ribonucleic acid alone immunity enhancing effect of the present invention on the regression of colon cancer and lung cancer (Example 14).
15 shows the effect of the ribonucleic acid alone immunity enhancing effect of the present invention on triple negative breast cancer (TNBC) regression and metastasis inhibition (Example 15).
Figure 15a is a schematic diagram of the test method. 7-week-old female C57BL/6 mice were transplanted with a 4T1 triple-negative breast cancer (TNBC) cell line subcutaneously with mammary adipose tissue, followed by intratumoral (it) NA (NVT) ribolysis over a total of 9 times once every 2 days from the 8th day. The nucleic acid was administered alone and the mass was measured.
15B shows the results of about 60% regression of primary breast cancer by NA (NVT).
Fig. 15c shows a remarkably reduced metastasis of primary breast cancer to the lung in NA (NVT)-administered mice.
Figure 16 shows the effect of inhibiting melanoma cell metastasis from the spleen to the liver when the hsRNA of the present invention alone or the hsRNA complexed cancer antigen vaccine is administered intraperitoneally (Example 14).
Figure 16a is a schematic diagram of the test method.
16B is a measurement of the size of the spleen and liver on the 18th day.
16C shows the average of spleen and liver weights on day 18.
16D shows the number of tumor nodules that have metastasized to the liver. In the NA alone or NA+ OVA treatment group, metastasis to the liver was inhibited.
17 shows the inhibitory effect of primary cancer and distant cancer by the cancer vaccine composition comprising the hsRNA and OX40 antibody of the present invention (Example 17).
Figure 17a is a schematic diagram of the test method.
Figure 17b shows that the PD-1 antibody and IR cell + NVT + OX40 Ab composition significantly inhibited the growth of primary cancer.
Figure 17c shows that only NVT + OX40 Ab without IR cells sufficiently inhibited primary cancer.
17D shows that only NVT+OX40 Ab inhibits the growth of B16F10/Ova remote cancer and EG7/Ova remote cancer.
18 shows the results of comparing the melanoma inhibitory effect when the PD-1 antibody or the OX40 antibody was mixed with the hsRNA of the present invention (Example 18).
Figure 18a is a schematic diagram of the test method.
FIG. 18B shows the results of the NA+PD-1 composition generally similar to that of the NA+OX40 Ab composition in inhibiting primary cancer tumors.
Fig. 18c shows that the two compositions have similar inhibitory effects on tumors of distant cancer.

이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시태양 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 형태로 구현될 수 있으며 여기에서 설명하는 실시태양 및 실시예에 한정되지 않는다. Hereinafter, embodiments and examples of the present disclosure will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present disclosure. However, the present application may be implemented in various forms and is not limited to the embodiments and examples described herein.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the entire specification of the present application, when a certain part "includes" a certain constituent element, it means that other constituent elements may be further included rather than excluding other constituent elements unless otherwise specified.

본 발명은 TLR3 리간드로 작용하는 이중 가닥 리보핵산 (dsRNA) 및 단일 가닥 리보핵산 (ssRNA)을 포함하는 혼합 구조 리보핵산 (hsRNA)에 있어서, 상기 이중 가닥 리보핵산 (dsRNA)은 상보성을 가지고, 상기 단일 가닥 리보핵산 (ssRNA)은 상기 이중 가닥 리보핵산 (dsRNA)의 양쪽 3'-말단에 각각 위치하며 임의의 길이와 서열을 갖는 것을 특징으로 하는, 혼합 구조 리보핵산 (hsRNA)을 제공한다.The present invention relates to a mixed structure ribonucleic acid (hsRNA) comprising a double-stranded ribonucleic acid (dsRNA) and a single-stranded ribonucleic acid (ssRNA) acting as a TLR3 ligand, wherein the double-stranded ribonucleic acid (dsRNA) has complementarity, and the Single-stranded ribonucleic acid (ssRNA) is located at both 3'-ends of the double-stranded ribonucleic acid (dsRNA), and characterized in that it has an arbitrary length and sequence, it provides a mixed structure ribonucleic acid (hsRNA).

상기 단일 가닥 리보핵산 (ssRNA)은 TLR7 리간드 또는 TLR8 리간드로 작용할 수 있고, TLR7 리간드로 작용하는 G/U 서열, 바람직하게는 GUU 반복서열을 가질 수 있고, 10 base 이상의 길이, 바람직하게는 15 내지 80 base의 길이, 더욱 바람직하게는 17 내지 75 base의 길이를 가질 수 있다.The single-stranded ribonucleic acid (ssRNA) may act as a TLR7 ligand or a TLR8 ligand, and may have a G/U sequence that acts as a TLR7 ligand, preferably a GUU repeat, and a length of 10 bases or more, preferably 15 to It may have a length of 80 base, more preferably a length of 17 to 75 base.

본 발명의 혼합 구조 리보핵산 (hsRNA)은 목적하는 길이로 균일하게 제조될 수 있으며, 높은 안정성을 갖는다.The mixed structure ribonucleic acid (hsRNA) of the present invention can be uniformly prepared to a desired length and has high stability.

구체적으로, 본 발명의 혼합 구조 리보핵산은 기존의 리보핵산과 달리 제조시 체인 미끄러짐 또는 체인 확장이 발생하지 않으므로, 일정한 길이로 균일하게 제조 가능하다. "체인 미끄러짐"이란 긴 호모폴리머 리보핵산 가닥이 임의의 위치에서 상보적으로 결합한 후 결합 위치 주변의 동일한 서열로 인해 결합이 고정되지 않고 결합 부위가 앞뒤로 이동하는 것을 의미하고, "체인 확장"이란 상보적으로 결합한 두 가닥의 말단이 정확하게 일치하지 않아 단일가닥으로 돌출된 부위에 다른 가닥이 다시 상보적으로 결합하여 전체적으로 길이의 연장이 일어나는 것을 의미한다.Specifically, the mixed structure of the ribonucleic acid of the present invention does not cause chain slippage or chain expansion during manufacture, unlike conventional ribonucleic acid, so it can be uniformly manufactured with a certain length. "Chain slip" means that after a long homopolymer ribonucleic acid strand is complementarily bound at an arbitrary position, the binding is not fixed due to the same sequence around the binding site and the binding site moves back and forth, and "chain extension" is complementary It means that the ends of the two strands bonded together do not exactly match, so that the other strand is complementarily bonded to the protruding site as a single strand, and the length of the entire length is extended.

또한 본 발명은 하기의 단계를 포함하는 혼합 구조 리보핵산의 제조방법을 제공한다:In addition, the present invention provides a method for preparing a mixed structure ribonucleic acid comprising the following steps:

1) 양쪽 5' 말단에 프로모터 서열이 첨가된 주형 DNA 절편을 임의의 플라스미드 벡터에 삽입하는 단계;1) inserting a template DNA fragment with a promoter sequence added at both 5'ends into an arbitrary plasmid vector;

2) 프로모터 서열을 인식하는 RNA 중합 효소를 이용하여 주형 DNA로부터 RNA를 양방향으로 전사하는 단계;2) transcribing RNA from the template DNA in both directions using an RNA polymerase that recognizes a promoter sequence;

3) 주형 DNA의 양 가닥에서 유래한 서로 상보적이며 길이가 동일한 두 종류의 ssRNA를 수득하는 단계; 및3) obtaining two types of ssRNAs that are complementary to each other and have the same length derived from both strands of the template DNA; And

4) 상기 ssRNA를 상보적으로 결합시키는 단계.4) Complementary binding of the ssRNA.

이때, 상기 프로모터 서열의 5' 말단에는 추가의 서열이 첨가될 수 있고, 상기 1) 단계는 주형 DNA 절편을 PCR로 증폭한 뒤 정제하여 사용하는 것일 수 있다. 또한, 상기 2) 단계의 프로모터는 T7 프로모터일 수 있고, RNA 중합효소는 T7 중합효소일 수 있다.At this time, an additional sequence may be added to the 5'end of the promoter sequence, and the step 1) may be used after amplifying the template DNA fragment by PCR and then purifying it. In addition, the promoter of step 2) may be a T7 promoter, and the RNA polymerase may be a T7 polymerase.

또한 본 발명은, 하기의 단계를 포함하는 혼합 구조 리보핵산의 제조방법을 제공한다:In addition, the present invention provides a method for preparing a mixed structure ribonucleic acid comprising the following steps:

1) 양쪽 5' 말단에 T7 프로모터 서열이 첨가된 주형 DNA 절편을 임의의 플라스미드 벡터에 삽입하는 단계;1) inserting a template DNA fragment to which a T7 promoter sequence is added to both 5'ends into an arbitrary plasmid vector;

2) 프로모터 서열의 5' 말단에 추가적인 서열을 첨가하는 단계;2) adding an additional sequence to the 5'end of the promoter sequence;

3) T7 중합 효소를 이용하여 주형 DNA로부터 RNA를 양방향으로 전사하는 단계;3) bidirectional transcription of RNA from template DNA using T7 polymerase;

4) 주형 DNA의 양 가닥에서 유래한 서로 상보적이며 길이가 동일한 두 종류의 ssRNA를 수득하는 단계; 및4) obtaining two types of ssRNAs that are complementary to each other and have the same length derived from both strands of the template DNA; And

5) 상기 ssRNA를 상보적으로 결합시키는 단계.5) Complementary binding of the ssRNA.

본 발명의 hsRNA는 TLR3 리간드로 작용할 수 있고, 140 내지 1682 base의 염기 길이를 가질 수 있으며, 바람직하게는 200 내지 1500 base, 더욱 바람직하게는 300 내지 1000 base, 가장 바람직하게는 400 내지 900 base일 수 있으나 이에 한정되지는 않는다.The hsRNA of the present invention may act as a TLR3 ligand, may have a base length of 140 to 1682 base, preferably 200 to 1500 base, more preferably 300 to 1000 base, most preferably 400 to 900 base. It can be, but is not limited thereto.

hsRNA의 효과는 염기의 길이가 길수록 높은 수지상세포 활성화 수준을 나타내는 경향을 가지나, 염기의 길이가 길어질수록 제조비용이 증가하고 대량생산이 어려운 문제가 발생할 수 있다.The effect of hsRNA tends to show a higher level of dendritic cell activation as the length of the base increases. However, as the length of the base increases, the manufacturing cost increases and mass production may be difficult.

마찬가지로, 본 발명의 dsRNA 부분의 염기 길이는 106 내지 1648 bp일 수 있으며, 바람직하게는 200 내지 1500 bp, 더욱 바람직하게는 300 내지 1000 bp, 가장 바람직하게는 400 내지 900 bp일 수 있으나 이에 한정되지는 않는다.Likewise, the base length of the dsRNA portion of the present invention may be 106 to 1648 bp, preferably 200 to 1500 bp, more preferably 300 to 1000 bp, and most preferably 400 to 900 bp, but is not limited thereto. Does not.

상기 hsRNA 또는 dsRNA의 염기 길이는 20% 범위 내에서 증가 또는 감소될 수 있다.The base length of the hsRNA or dsRNA may be increased or decreased within the range of 20%.

본 발명은 서열번호 63 내지 93으로 이루어지는 군으로부터 선택되는 어느 하나의 염기 서열을 포함하고, TLR3 리간드로 작용하는 것을 특징으로 하는 dsRNA를 제공한다. 상기 dsRNA의 염기 길이는 106, 156, 206, 306, 319, 397, 406, 424,466, 506, 588, 606, 664, 706, 733, 806, 822, 885, 1032, 1153 또는 1648 bp일 수 있다.The present invention provides a dsRNA characterized in that it contains any one nucleotide sequence selected from the group consisting of SEQ ID NOs: 63 to 93 and acts as a TLR3 ligand. The base length of the dsRNA may be 106, 156, 206, 306, 319, 397, 406, 424,466, 506, 588, 606, 664, 706, 733, 806, 822, 885, 1032, 1153 or 1648 bp.

본 발명에서 사용하는 리보핵산의 명칭과 기본정보는 하기 표 1 및 2에 나타내었다. 표 2에 나타낸 바와 같이, 본 발명에서 동일한 길이와 서열을 가지나 여러 명칭으로 기재된 것이 있는데 NA, NVT (Next Adjuvant의 약어), VP1, VP10, VP11이 그 한 예이다. 다만 VP11은 VP10 hsRNA를 RNase T1으로 처리한 dsRNA이다. 또한 NVT IV (NVT 4)와 VP20은 동일한 리보핵산을 의미한다.The names and basic information of ribonucleic acid used in the present invention are shown in Tables 1 and 2 below. As shown in Table 2, the present invention has the same length and sequence, but has been described by several names. NA, NVT (abbreviation for Next Adjuvant), VP1, VP10, and VP11 are examples. However, VP11 is a dsRNA treated with VP10 hsRNA with RNase T1. In addition, NVT IV (NVT 4) and VP20 refer to the same ribonucleic acid.

상기 hsRNA 또는 dsRNA는 하기 표 1에 나타난 서열번호의 염기서열로 이루어지는 것일 수 있다. 하기 표 1은 본 발명의 실시예에 기재된 각 hsRNA 또는 dsRNA와 서열의 대응관계를 나타낸 것이다. The hsRNA or dsRNA may be composed of the nucleotide sequence of the sequence number shown in Table 1 below. Table 1 below shows the correspondence between each hsRNA or dsRNA and sequence described in the examples of the present invention.

명칭designation hsRNA를 구성하는 서열번호Sequence number constituting hsRNA dsRNA 부분의 서열번호Sequence number of dsRNA part NA1001NA1001 서열번호 1 및 서열번호 32의 결합Binding of SEQ ID NO: 1 and SEQ ID NO: 32 서열번호 63SEQ ID NO: 63 NA1501NA1501 서열번호 2 및 서열번호 33의 결합Binding of SEQ ID NO: 2 and SEQ ID NO: 33 서열번호 64SEQ ID NO: 64 NA2001NA2001 서열번호 3 및 서열번호 34의 결합Binding of SEQ ID NO: 3 and SEQ ID NO: 34 서열번호 65SEQ ID NO: 65 NA3001NA3001 서열번호 4 및 서열번호 35의 결합Binding of SEQ ID NO: 4 and SEQ ID NO: 35 서열번호 66SEQ ID NO: 66 NA4001NA4001 서열번호 5 및 서열번호 36의 결합Binding of SEQ ID NO: 5 and SEQ ID NO: 36 서열번호 67SEQ ID NO: 67 NA5001NA5001 서열번호 6 및 서열번호 37의 결합Binding of SEQ ID NO: 6 and SEQ ID NO: 37 서열번호 68SEQ ID NO: 68 NA6001NA6001 서열번호 7 및 서열번호 38의 결합Conjugation of SEQ ID NO: 7 and SEQ ID NO: 38 서열번호 69SEQ ID NO: 69 NA7001NA7001 서열번호 8 및 서열번호 39의 결합Binding of SEQ ID NO: 8 and SEQ ID NO: 39 서열번호 70SEQ ID NO: 70 NA8001NA8001 서열번호 9 및 서열번호 40의 결합Conjugation of SEQ ID NO: 9 and SEQ ID NO: 40 서열번호 71SEQ ID NO: 71 NA1002NA1002 서열번호 10 및 서열번호 41의 결합Binding of SEQ ID NO: 10 and SEQ ID NO: 41 서열번호 72SEQ ID NO: 72 NA1502NA1502 서열번호 11 및 서열번호 42의 결합Binding of SEQ ID NO: 11 and SEQ ID NO: 42 서열번호 73SEQ ID NO: 73 NA2002NA2002 서열번호 12 및 서열번호 43의 결합Conjugation of SEQ ID NO: 12 and SEQ ID NO: 43 서열번호 74SEQ ID NO: 74 NA3002NA3002 서열번호 13 및 서열번호 44의 결합Conjugation of SEQ ID NO: 13 and SEQ ID NO: 44 서열번호 75SEQ ID NO: 75 NA4002NA4002 서열번호 14 및 서열번호 45의 결합Conjugation of SEQ ID NO: 14 and SEQ ID NO: 45 서열번호 76SEQ ID NO: 76 NA5002NA5002 서열번호 15 및 서열번호 46의 결합Combination of SEQ ID NO: 15 and SEQ ID NO: 46 서열번호 77SEQ ID NO: 77 NA6002NA6002 서열번호 16 및 서열번호 47의 결합Conjugation of SEQ ID NO: 16 and SEQ ID NO: 47 서열번호 78SEQ ID NO: 78 NA7002NA7002 서열번호 17 및 서열번호 48의 결합Conjugation of SEQ ID NO: 17 and SEQ ID NO: 48 서열번호 79SEQ ID NO: 79 NA8002NA8002 서열번호 18 및 서열번호 49의 결합Conjugation of SEQ ID NO: 18 and SEQ ID NO: 49 서열번호 80SEQ ID NO: 80 R1R1 서열번호 19 및 서열번호 50의 결합Conjugation of SEQ ID NO: 19 and SEQ ID NO: 50 서열번호 81SEQ ID NO: 81 R2R2 서열번호 20 및 서열번호 51의 결합Conjugation of SEQ ID NO: 20 and SEQ ID NO: 51 서열번호 82SEQ ID NO: 82 R3R3 서열번호 21 및 서열번호 52의 결합Combination of SEQ ID NO: 21 and SEQ ID NO: 52 서열번호 83SEQ ID NO: 83 R4R4 서열번호 22 및 서열번호 53의 결합Conjugation of SEQ ID NO: 22 and SEQ ID NO: 53 서열번호 84SEQ ID NO: 84 R5R5 서열번호 23 및 서열번호 54의 결합Conjugation of SEQ ID NO: 23 and SEQ ID NO: 54 서열번호 85SEQ ID NO: 85 R6R6 서열번호 24 및 서열번호 55의 결합Conjugation of SEQ ID NO: 24 and SEQ ID NO: 55 서열번호 86SEQ ID NO: 86 R7R7 서열번호 25 및 서열번호 56의 결합Conjugation of SEQ ID NO: 25 and SEQ ID NO: 56 서열번호 87SEQ ID NO: 87 R8R8 서열번호 26 및 서열번호 57의 결합Combination of SEQ ID NO: 26 and SEQ ID NO: 57 서열번호 88SEQ ID NO: 88 R9R9 서열번호 27 및 서열번호 58의 결합Conjugation of SEQ ID NO: 27 and SEQ ID NO: 58 서열번호 89SEQ ID NO: 89 R10R10 서열번호 28 및 서열번호 59의 결합Conjugation of SEQ ID NO: 28 and SEQ ID NO: 59 서열번호 90SEQ ID NO: 90 R11R11 서열번호 29 및 서열번호 60의 결합Conjugation of SEQ ID NO: 29 and SEQ ID NO: 60 서열번호 91SEQ ID NO: 91 NA,
NVT,
VP1,
VP10
NA,
NVT,
VP1,
VP10
서열번호 30 및 서열번호 61의 결합Conjugation of SEQ ID NO: 30 and SEQ ID NO: 61 서열번호 92SEQ ID NO: 92
NVT IV,
NVT 4,
VP20
NVT IV,
NVT 4,
VP20
서열번호 31 및 서열번호 62의 결합Conjugation of SEQ ID NO: 31 and SEQ ID NO: 62 서열번호 93SEQ ID NO: 93

상기 hsRNA 또는 dsRNA는 수지상 세포, 호중구, B 세포, 대식세포, T 세포, 비만세포 및 자연살해세포를 포함하는 면역 세포를 활성화시킬 수 있다. The hsRNA or dsRNA may activate immune cells including dendritic cells, neutrophils, B cells, macrophages, T cells, mast cells, and natural killer cells.

본 발명은 상기 hsRNA 또는 dsRNA, 및 면역원을 포함하는 것을 특징으로 하는, 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물을 제공한다. 상기 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물은 인플루엔자 바이러스 또는 뇌수막염알균 감염 예방 또는 치료용 백신 조성물일 수 있다.The present invention provides a vaccine composition for preventing or treating viral or bacterial infection, comprising the hsRNA or dsRNA, and an immunogen. The vaccine composition for preventing or treating viral or bacterial infection may be a vaccine composition for preventing or treating influenza virus or meningococcal infection.

상기 면역원은 3가 계절성 인플루엔자 백신, 4가 계절성 인플루엔자 백신, 불활화 인플루엔자 백신 또는 뇌수막염알균 (Neisseria meningitidis groups A, C, Y and W-135) 백신일 수 있으며, 동종 또는 이종 아형의 바이러스에 대한 방어 효과를 나타낼 수 있다.The immunogen may be a trivalent seasonal influenza vaccine, a tetravalent seasonal influenza vaccine, an inactivated influenza vaccine, or a Neisseria meningitidis groups A, C, Y and W-135 vaccine, and protection against viruses of allogeneic or heterogeneous subtypes It can have an effect.

상기 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물은 상기 hsRNA 또는 dsRNA이 없는 백신 조성물과 비교하여, 면역원의 필요사용량을 감소시킬 수 있다. 상기 필요사용량은, 예를 들어, 2배 이상, 3배 이상, 5배 이상, 10배 이상, 25배 이상, 50배 이상 또는 100배 이상 감소될 수 있다.The vaccine composition for preventing or treating viral or bacterial infection may reduce the required amount of immunogen compared to the vaccine composition without the hsRNA or dsRNA. The required usage may be reduced, for example, by 2 times or more, 3 times or more, 5 times or more, 10 times or more, 25 times or more, 50 times or more, or 100 times or more.

상기 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물은 면역원의 항원성을 증강시키거나 유지 또는 복원시킬 수 있다.The vaccine composition for preventing or treating viral or bacterial infection may enhance, maintain or restore the antigenicity of an immunogen.

상기 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물은 추가의 아쥬번트를 포함할 수 있다. 상기 추가의 아쥬번트는 수중유 에멀젼 아쥬번트, 알루미늄 염, 프로인드 아쥬번트 (Freund adjuvant), 및 DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 상기 수중유 에멀젼 아쥬번트는 스쿠알렌(Squalene) 수중유 에멀젼일 수 있다.The vaccine composition for preventing or treating viral or bacterial infection may include an additional adjuvant. The additional adjuvant may be one or more selected from the group consisting of oil-in-water emulsion adjuvant, aluminum salt, Freund adjuvant, and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), The oil-in-water emulsion adjuvant may be a squalene oil-in-water emulsion.

또한 본 발명은 상기 hsRNA 또는 dsRNA를 포함하는 바이러스 또는 세균 감염 예방 또는 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating viral or bacterial infections comprising the hsRNA or dsRNA.

상기 바이러스 또는 세균 감염 예방 또는 치료용 약학 조성물은 추가의 아쥬번트를 포함할 수 있다. 상기 추가의 아쥬번트는 수중유 에멀젼 아쥬번트, 알루미늄 염, 프로인드 아쥬번트 (Freund adjuvant), 및 DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 상기 수중유 에멀젼 아쥬번트는 스쿠알렌 (Squalene) 수중유 에멀젼일 수 있다.The pharmaceutical composition for preventing or treating viral or bacterial infection may include an additional adjuvant. The additional adjuvant may be one or more selected from the group consisting of oil-in-water emulsion adjuvant, aluminum salt, Freund adjuvant, and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), The oil-in-water emulsion adjuvant may be a squalene oil-in-water emulsion.

본 발명은 상기 hsRNA 또는 dsRNA, 및 면역원을 포함하는 암 예방 또는 치료용 백신 조성물을 제공한다.The present invention provides a vaccine composition for preventing or treating cancer comprising the hsRNA or dsRNA, and an immunogen.

상기 면역원은 펩티드, 항원, 불활화 또는 살아있는 약독화 생물체, 세포로부터 유래된 것, 불활성화된 암 조직 또는 인간으로부터 분리된 암 조직을 방사선 조사해 불활성화 시킨 암 조직, 생체 외에서 배양한 암세포를 방사선 조사해 불활성화 시킨 암세포, 생체 외에서 배양한 암세포를 용매에 용해한 암세포질, 암 연관 항원 단백질 또는 암 연관 항원내의 면역결정기 (에피토프), 및 상기 단백질을 암호화하는 DNA 또는 mRNA로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다.The immunogen is a peptide, antigen, inactivated or living attenuated organism, a cell-derived, inactivated cancer tissue or cancer tissue isolated from a human being irradiated to inactivate cancer tissue, and cancer cells cultured in vitro are irradiated with radiation. It may be selected from the group consisting of inactivated cancer cells, cancer cytoplasm obtained by dissolving cancer cells cultured in vitro in a solvent, cancer-associated antigen proteins or immunodeterminants (epitopes) in cancer-associated antigens, and DNA or mRNA encoding the protein. , Is not limited thereto.

상기 암 예방 또는 치료용 백신 조성물은 상기 hsRNA 또는 dsRNA이 없는 백신 조성물과 비교하여, 면역원의 필요사용량을 감소시킬 수 있다. 상기 필요사용량은, 예를 들어, 2배 이상, 3배 이상, 5배 이상, 10배 이상, 25배 이상, 50배 이상 또는 100배 이상 감소될 수 있다.The vaccine composition for preventing or treating cancer may reduce the required dose of the immunogen compared to the vaccine composition without the hsRNA or dsRNA. The required usage may be reduced, for example, by 2 times or more, 3 times or more, 5 times or more, 10 times or more, 25 times or more, 50 times or more, or 100 times or more.

상기 암 예방 또는 치료용 백신 조성물은 면역원의 항원성을 증강시키거나 유지 또는 복원시킬 수 있다.The vaccine composition for preventing or treating cancer may enhance, maintain or restore the antigenicity of an immunogen.

상기 암 예방 또는 치료용 백신 조성물은 추가의 아쥬번트를 포함할 수 있다. 상기 추가의 아쥬번트는 수중유 에멀젼 아쥬번트, 알루미늄 염, 프로인드 아쥬번트 (Freund adjuvant), 및 DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 상기 수중유 에멀젼 아쥬번트는 스쿠알렌 (Squalene) 수중유 에멀젼일 수 있다.The vaccine composition for preventing or treating cancer may include an additional adjuvant. The additional adjuvant may be one or more selected from the group consisting of oil-in-water emulsion adjuvant, aluminum salt, Freund adjuvant, and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), The oil-in-water emulsion adjuvant may be a squalene oil-in-water emulsion.

또한 본 발명은 상기 hsRNA 또는 dsRNA를 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the hsRNA or dsRNA.

상기 암은 암종, 림프종, 백혈병, 모세포종 및 육종을 포함하나, 이에 제한되는 것은 아니다. 암의 더 구체적인 예로는 편평 세포 암종, 골수종, 폐암, 소세포 폐암, 비-소세포폐암, 대장암, 신경아교종, 호지킨 림프종, 비-호지킨 림프종, 급성 골수성 백혈병 (AML), 다발성 골수종, 위장관암, 신장암, 난소암, 간암, 림프모세포성 백혈병, 림프구성 백혈병, 결장직장암, 자궁내막암, 신장암, 전립선암, 갑상선암, 흑색종, 연골육종,신경모세포종, 췌장암, 다형성 아교모세포종, 자궁경부암, 뇌암, 위암, 방광암, 간세포암, 유방암, 결장 암종, 두경부암, 또는 이의 전이암이 포함되나, 이에 제한되는 것은 아니다.The cancer includes, but is not limited to, carcinoma, lymphoma, leukemia, blastoma and sarcoma. More specific examples of cancer include squamous cell carcinoma, myeloma, lung cancer, small cell lung cancer, non-small cell lung cancer, colon cancer, glioma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, acute myelogenous leukemia (AML), multiple myeloma, gastrointestinal cancer. , Kidney cancer, ovarian cancer, liver cancer, lymphoblastic leukemia, lymphocytic leukemia, colorectal cancer, endometrial cancer, kidney cancer, prostate cancer, thyroid cancer, melanoma, chondrosarcoma, neuroblastoma, pancreatic cancer, glioblastoma polymorphic, cervical cancer , Brain cancer, gastric cancer, bladder cancer, hepatocellular carcinoma, breast cancer, colon carcinoma, head and neck cancer, or metastatic cancer thereof, but are not limited thereto.

상기 암 예방 또는 치료용 백신 조성물은 암 전이 억제 효과를 나타낼 수 있다.The vaccine composition for preventing or treating cancer may exhibit a cancer metastasis inhibitory effect.

본 발명은 상기 hsRNA 또는 dsRNA, 및 OX40 항체 또는 PD-1 항체를 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating cancer comprising the hsRNA or dsRNA, and OX40 antibody or PD-1 antibody.

상기 OX40 항체는 OX40 아고니스트 항체일 수 있으며, PD-1 항체는 PD-1 길항제 항체일 수 있다. 또한 상기 OX40 항체는 OX40과 특이적으로 결합하는 모노클로날 항체 또는 이의 항원 결합성 단편일 수 있으며, PD-1 항체는 PD-1과 특이적으로 결합하는 모노클로날 항체 또는 이의 항원 결합성 단편일 수 있다. 구체적으로 상기 OX40 항체 또는 PD-1 항체는 인간 항체, 인간화 항체, 키메라 항체 또는 마우스 항체일 수 있으며, 인간 불변 영역을 포함할 수 있다. 상기 인간 불변 영역은 IgG1, IgG2, IgG3 및 IgG4 불변 영역으로 이루어진 군에서 선택되며, 바람직하게는 IgG1 또는 IgG4 불변 영역이다. 일 실시 태양에서, 상기 항원 결합성 단편은 Fab, Fab'-SH, F(ab')2, scFv 및 Fv 단편으로 이루어진 군에서 선택된다. 상기 PD-1 길항제 항체로 사용될 수 있는 특이적 인간 PD-1 모노클로날 항체의 예로는 펨브롤리주맙(pembrolizumab), 니볼루맙(nivolumab), 아벨루맙(avelumab), 피딜리주맙(pidilizumab) 등이 있으나, 이에 제한되지 않는다.The OX40 antibody may be an OX40 agonist antibody, and the PD-1 antibody may be a PD-1 antagonist antibody. In addition, the OX40 antibody may be a monoclonal antibody or antigen-binding fragment thereof that specifically binds to OX40, and the PD-1 antibody is a monoclonal antibody or antigen-binding fragment thereof that specifically binds to PD-1. Can be Specifically, the OX40 antibody or PD-1 antibody may be a human antibody, a humanized antibody, a chimeric antibody, or a mouse antibody, and may include a human constant region. The human constant region is selected from the group consisting of an IgG1, IgG2, IgG3 and IgG4 constant region, preferably an IgG1 or IgG4 constant region. In one embodiment, the antigen binding fragment is selected from the group consisting of Fab, Fab'-SH, F(ab')2, scFv and Fv fragments. Examples of specific human PD-1 monoclonal antibodies that can be used as the PD-1 antagonist antibody include pembrolizumab, nivolumab, avelumab, and pidilizumab. However, it is not limited thereto.

본 발명의 실시예에서 사용된 4가지 다른 백본의 벡터에서 유래한 hsRNA를 표 2에 열거하였다. 이하 실시예에서는 각 hsRNA를 각 명칭으로 지칭한다.Table 2 lists hsRNAs derived from four different backbone vectors used in the examples of the present invention. In the following examples, each hsRNA is referred to by its name.

명칭designation hsRNA (base)hsRNA (base) dsRNA (bp)dsRNA (bp) Upper ssRNA (base)Upper ssRNA (base) Lower ssRNA (base)Lower ssRNA (base) hsRNA-20% (base)hsRNA-20% (base) hsRNA+ 20% (base)hsRNA+ 20% (base) dsRNA- 20% (base)dsRNA-20% (base) dsRNA+ 20% (base)dsRNA+ 20% (base) Backbone GroupBackbone Group NA1001NA1001 140140 106106 1717 1717 112 112 168 168 85 85 127 127 1One NA1501NA1501 190190 156156 1717 1717 152 152 228 228 125 125 187 187 1One NA2001NA2001 240240 206206 1717 1717 192 192 288 288 165 165 247 247 1One NA3001NA3001 340340 306306 1717 1717 272 272 408 408 245 245 367 367 1One NA4001NA4001 440440 406406 1717 1717 352 352 528 528 325 325 487 487 1One NA5001NA5001 540540 506506 1717 1717 432 432 648 648 405 405 607 607 1One NA6001NA6001 640640 606606 1717 1717 512 512 768 768 485 485 727 727 1One NA7001NA7001 740740 706706 1717 1717 592 592 888 888 565 565 847 847 1One NA8001NA8001 840840 806806 1717 1717 672 672 1008 1008 645 645 967 967 1One NA1002NA1002 140140 106106 1717 1717 112 112 168 168 85 85 127 127 22 NA1502NA1502 190190 156156 1717 1717 152 152 228 228 125 125 187 187 22 NA2002NA2002 240240 206206 1717 1717 192 192 288 288 165 165 247 247 22 NA3002NA3002 340340 306306 1717 1717 272 272 408 408 245 245 367 367 22 NA4002NA4002 440440 406406 1717 1717 352 352 528 528 325 325 487 487 22 NA5002NA5002 540540 506506 1717 1717 432 432 648 648 405 405 607 607 22 NA6002NA6002 640640 606606 1717 1717 512 512 768 768 485 485 727 727 22 NA7002NA7002 740740 706706 1717 1717 592 592 888 888 565 565 847 847 22 NA8002NA8002 840840 806806 1717 1717 672 672 1008 1008 645 645 967 967 22 R1R1 353353 319319 1717 1717 282 282 424 424 255 255 383 383 33 R2R2 431431 397397 1717 1717 345 345 517 517 318 318 476 476 33 R3R3 500500 466466 1717 1717 400 400 600 600 373 373 559 559 33 R4R4 622622 588588 1717 1717 498 498 746 746 470 470 706 706 33 R5R5 698698 664664 1717 1717 558 558 838 838 531 531 797 797 33 R6R6 767767 733733 1717 1717 614 614 920 920 586 586 880 880 33 R7R7 856856 822822 1717 1717 685 685 1027 1027 658 658 986 986 33 R8R8 919919 885885 1717 1717 735 735 1103 1103 708 708 1062 1062 33 R9R9 10661066 10321032 1717 1717 853 853 1279 1279 826 826 1238 1238 33 R10R10 11871187 11531153 1717 1717 950 950 1424 1424 922 922 1384 1384 33 R11R11 16821682 16481648 1717 1717 13461346 20182018 1318 1318 1978 1978 33 NA, NVT, VP1, VP10NA, NVT, VP1, VP10 533533 424424 5151 5858 426 426 640 640 339 339 509 509 44 NVT IV,
NVT 4,
VP20
NVT IV,
NVT 4,
VP20
568568 424424 7575 6969 454 454 682 682 339 339 509 509 44
* VP11 is Rnase T1-treated VP10 (VP1)* VP11 is Rnase T1-treated VP10 (VP1)

이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원 발명의 범위를 한정하고자 하는 것은 아니다.The present invention is to be described in more detail through the following examples, but the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

리보핵산 (RNA) 아쥬번트의 생체 내 수지상 세포 (DC) 활성화 시험In vivo dendritic cell (DC) activation test of ribonucleic acid (RNA) adjuvant

본 실시예는 C57BL/6 마우스의 복강 내로 NA (NVT 또는 VP10과 동일)를 주사한 뒤 리보핵산 NA가 가지는 생체 내 선천면역 활성도를 확인하였다 (도 1a).In this example, after injection of NA (same as NVT or VP10) into the intraperitoneal cavity of C57BL/6 mice, the innate immunity activity of ribonucleic acid NA was confirmed in vivo (FIG. 1A ).

그 결과, 본 발명의 NA가 Poly (I:C) 100㎍과 비교하여 동등 이상으로 수지상 세포 마커 (CD40, CD86, MHC-II)의 분화를 유도하였고 (도 1b), 나이브 CD4 T 세포를 Th1 CD4 T 세포쪽으로 유도하는 1형 인터페론 베타 (IFN-β) 유도 및 IL-6, IL-12의 분비를 더 많이 증가시킨 것을 확인하였다 (도 1c). 또한, Th1 세포 마커인 T-bet, 분비 마커인 IFN-γ를 증가시켰다. 그러나, Th2 사이토카인 (IL-4) 및 Th17 사이토카인 (IL-17A)에는 거의 영향을 나타내지 않았다 (도 1d).As a result, the NA of the present invention induced the differentiation of dendritic cell markers (CD40, CD86, MHC-II) equal or higher than that of 100 μg of Poly (I:C) (Fig. 1b), and naive CD4 T cells were Th1 It was confirmed that the induction of type 1 interferon beta (IFN-β) and the secretion of IL-6 and IL-12 were further increased toward CD4 T cells (FIG. 1C). In addition, T-bet, a Th1 cell marker, and IFN-γ, a secretion marker, were increased. However, there was little effect on the Th2 cytokine (IL-4) and the Th17 cytokine (IL-17A) (Fig. 1D).

결국, 본 발명의 NA가 Poly (I:C) 양성 대조군과 비교하여 강하게 DC를 활성화하는 것을 알 수 있다. 또한, 리보핵산의 길이가 약 100 base에서 400 base 까지 길어질수록 활성이 증가하고, 400 base 길이 이상의 경우 우수한 활성을 나타내는 것을 확인하였다.As a result, it can be seen that the NA of the present invention strongly activates DC compared to the Poly (I:C) positive control. In addition, it was confirmed that the activity increased as the length of ribonucleic acid increased from about 100 base to 400 base, and excellent activity was observed when the length of the ribonucleic acid was longer than 400 base.

hsRNA의 길이에 따른 생체 내 DC 활성화 시험DC activation test in vivo according to the length of hsRNA

2 종류의 벡터에서 유래한 hsRNA를 다양한 길이로 제조하고 (도 2a 및 2b), 이를 마우스 복강 내로 주사하여 생체 내에서 야기되는 비장 DC 활성을 분석하였다. HsRNAs derived from two types of vectors were prepared in various lengths (FIGS. 2a and 2b), and they were injected into the intraperitoneal cavity of mice to analyze splenic DC activity caused in vivo.

CD40와 CD86 발현 유도능을 검사한 결과, 비장에서의 DC 활성화 수준은 리보핵산의 길이가 길수록 증가하였고, 400~900 base 에서 높은 활성을 나타내는 것을 확인하였다 (도 2c 및 2d). As a result of examining the ability to induce CD40 and CD86 expression, the level of DC activation in the spleen increased as the length of ribonucleic acid increased, and it was confirmed that the activity was high in 400-900 bases (FIGS. 2c and 2d).

또한, 본 발명의 모든 hsRNA는 양성대조군인 Poly (I:C) TLR3 리간드보다 더 우수한 활성을 나타내는 것을 확인하였다.In addition, it was confirmed that all hsRNAs of the present invention exhibited more excellent activity than the positive control Poly (I:C) TLR3 ligand.

또한, 비장에서의 DC 활성화 수준은 dsRNA 부위 길이가 증가할수록 활성화 수준이 증가하는 경향을 나타내었고, dsRNA 부위의 길이가 약 406~806 bp일 때 높은 활성을 나타내는 것을 확인하였다.In addition, the level of DC activation in the spleen showed a tendency to increase as the length of the dsRNA site increased, and it was confirmed that the level of the dsRNA site exhibited high activity when the length of the dsRNA site was about 406 to 806 bp.

높은 활성을 나타내는 540 hsRNA (506bp dsRNA)를 다양한 농도 (0.5 ~ 20 ㎍)에서 재검사한 결과 10 ㎍에서 최대 활성을 나타냈으며, 생체 내에서 Poly (I:C)와 비교하여 10배 내지 20배 높은 활성을 나타냈다.As a result of retesting 540 hsRNA (506bp dsRNA) showing high activity at various concentrations (0.5 ~ 20 μg), it showed maximum activity at 10 μg. In vivo, it was 10 to 20 times higher than that of Poly (I:C). Showed activity.

hsRNA 길이에 따른 IFN-β 프로모터 활성화와 항원 특이 항체유도능 시험IFN-β promoter activation and antigen-specific antibody induction test according to hsRNA length

다른 백본의 벡터에서 유래한 더 넓은 범위의 리보핵산 (353 ~ 1682 base)을 제조하여 선천면역 활성지표 및 항원과 혼합하여 면역 반응을 조사하였다. A wider range of ribonucleic acid (353 ~ 1682 base) derived from a vector of another backbone was prepared and mixed with innate immune activity indicators and antigens to investigate the immune response.

추가로 제조한 hsRNA의 길이를 확인하고 (도 3a), 추가적인 서열로 인한 HEK 293에서의 IFN-β 프로모터 활성화를 확인하였다 (도 3b). 이들 중 몇 가지 (R3, R5, R7, R10)를 OVA 항원과 혼합하여 근육 내에 주사한 후 만들어지는 Anti-OVA IgG1 및 Th1 매개 Anti-OVA IgG2 수준을 정량한 결과, R5 (dsRNA 길이 664 bp) 부근에서 상대적으로 높은 활성을 나타냈다 (도 3c).The length of the additionally prepared hsRNA was confirmed (Fig. 3a), and activation of the IFN-β promoter in HEK 293 due to the additional sequence was confirmed (Fig. 3b). Several of these (R3, R5, R7, R10) were mixed with OVA antigen and injected intramuscularly, and the levels of Anti-OVA IgG1 and Th1-mediated Anti-OVA IgG2 were quantified. R5 (dsRNA length 664 bp) It showed a relatively high activity in the vicinity (Fig. 3c).

상기 결과로부터 DC의 활성화 정도는 리보핵산의 특정 서열에 의존적인 것이 아니라, hsRNA와 dsRNA의 길이에 비례하고, 특히 dsRNA 부위의 길이가 406 bp ~ 806 bp일 때, DC가 높은 활성을 나타내는 것을 확인하였다.From the above results, the degree of DC activation is not dependent on the specific sequence of ribonucleic acid, but is proportional to the length of hsRNA and dsRNA, and it is confirmed that DC exhibits high activity, especially when the length of the dsRNA site is 406 bp to 806 bp. I did.

이를 통하여 본 발명에서 제시한 각각의 RNA의 특정한 길이 이외에도 140에서 1682 사이의 염기길이를 가지는 hsRNA와 106에서 1648 bp 사이의 염기길이를 가지는 dsRNA가 우수한 효과를 나타내는 것을 알 수 있다.Through this, in addition to the specific length of each RNA presented in the present invention, it can be seen that hsRNA having a base length between 140 and 1682 and dsRNA having a base length between 106 and 1648 bp exhibit excellent effects.

따라서 본 발명은 본 발명에서 시험된 각각의 hsRNA 외에도 20% 범위 내에서 짧아지거나 길어지는 hsRNA 길이 (112~2018 base)를 가지는 것을 특징으로 하는 리보핵산을 포함한다. 또한 서열번호 63 내지 93으로 선택되어진 각각의 dsRNA 외에도 이들의 20% 범위 내에서 짧아지거나 길어지는 dsRNA 길이(85 ~1977 bp)인 것을 특징으로 하는 리보핵산을 포함한다.Accordingly, the present invention includes ribonucleic acid, which is characterized by having a shorter or longer hsRNA length (112 to 2018 base) within a 20% range in addition to each hsRNA tested in the present invention. In addition, in addition to each dsRNA selected from SEQ ID NOs: 63 to 93, it includes a ribonucleic acid characterized in that the dsRNA length (85 to 1977 bp) is shorter or longer within the range of 20% thereof.

hsRNA의 물리 화학적 특성 분석Physicochemical characterization of hsRNA

hsRNA를 HPLC를 이용해 분석하고, 아가로즈 젤에서 길이 분리를 실시하였다. 그 결과 hsRNA는 단일한 길이로 균일하다는 것을 알 수 있었다 (도 4a). 이는 주형 비의존적 효소 합성으로 생산되는 Poly (I:C)가 본질적으로 고도의 이질성을 가질 수밖에 없는 것과 대조적이다 (도 8c).hsRNA was analyzed using HPLC, and length separation was performed on an agarose gel. As a result, it was found that the hsRNA was uniform in a single length (Fig. 4a). This is in contrast to the fact that Poly (I:C) produced by template-independent enzyme synthesis is essentially bound to have a high degree of heterogeneity (Fig. 8c).

본 발명의 dsRNA는 45℃에서 150일 이상 방치해도 분해되지 않았으나 (도 4b), 각종 RNAse가 많이 존재하는 혈청 배지에서는 매우 짧은 반감기를 가졌다 (도 4c). NA에 착화된 항원 복합체는 실온에서 장기간 보존이 가능하였다 (도 4d).The dsRNA of the present invention was not degraded even when left at 45° C. for 150 days or more (FIG. 4B), but had a very short half-life in the serum medium in which a lot of various RNAse were present (FIG. 4C). The antigen complex complexed to NA could be stored for a long time at room temperature (Fig. 4d).

hsRNA와 dsRNA의 면역세포 및 사이토카인 유도 차이 시험Difference between hsRNA and dsRNA induction of immune cells and cytokines

하기와 같이 구성된 두가지 경우의 NVT 4 (NVT IV 및 VP20과 동일)가 유도하는 DC 활성화의 정도를 24, 48시간이 지난 후 생체 내에서 비교하였다.The degree of DC activation induced by NVT 4 (same as NVT IV and VP20) in two cases configured as follows was compared in vivo after 24 and 48 hours elapsed.

(i) RNase T1을 처리하지 않은 hsRNA (NVT 4 - T1)(i) hsRNA not treated with RNase T1 (NVT 4-T1)

(ii) RNaseT1을 처리하여 단일가닥 부분이 모두 분해되고 남은 dsRNA (NVT 4 +T1) (ii) dsRNA remaining after all single-stranded parts were degraded by treatment with RNaseT1 (NVT 4 +T1)

그 결과 hsRNA와 dsRNA 모두 DC를 활성화를 유도하였으나 dsRNA가 hsRNA가 비해 면역세포(특히 B 세포와 호중구)의 수를 유의미하게 증가시켰고 TNF-α, IFN-β, IL-6 또한 이와 비례하여 더 높게 유도하였다 (도 5).As a result, both hsRNA and dsRNA induced DC activation, but dsRNA significantly increased the number of immune cells (especially B cells and neutrophils) compared to hsRNA, and TNF-α, IFN-β, and IL-6 were also proportionally higher. Induced (Fig. 5).

이러한 결과를 통해 dsRNA가 더 강하게 선천면역을 유도하지만, hsRNA가 낮은 호중구의 수, IL-6 및 TNF-α의 수준을 갖기 때문에 안전성에 유리한 물질임을 알 수 있다.These results show that dsRNA strongly induces innate immunity, but hsRNA has a low number of neutrophils and levels of IL-6 and TNF-α, which is advantageous for safety.

NA와 다른 아쥬번트의 Th1 극성화 면역반응 유도능 비교Comparison of the ability of NA and other adjuvants to induce Th1 polarization immune response

모델항원 OVA를 본 발명의 NA, Alum, 스쿠알렌 (SE), IFA, Poly(I:C)에 착화시킨 후 근육 내로 투여 (도 6a)하여 면역반응 유도능을 비교하였다.Model antigen OVA was complexed to NA, Alum, squalene (SE), IFA, and Poly(I:C) of the present invention, and then administered intramuscularly (Fig. 6A) to compare the ability to induce immune responses.

그 결과 Th2 면역반응 (IgG1)의 활성은 비슷했지만 Th1 반응 (IgG2c)은 다른 아쥬번트에 비해 NA가 더욱 높게 활성화시켰다 (도 6b). 비장에서 IFN-γ를 분비하는 CD8 T 세포와 CD4 T 세포 수 역시 증가하였다 (도 6c). 비강으로 투여하였을 시에도 체액 (눈물, 비강 및 배액)과 혈청에서 NA가 기타 다른 아쥬번트에 비해 점막 IgA와 점막 IgG를 더 강하게 유도하였다.As a result, the activity of the Th2 immune response (IgG1) was similar, but the Th1 response (IgG2c) was activated with a higher NA than that of other adjuvants (FIG. 6B ). The number of CD8 T cells and CD4 T cells secreting IFN-γ in the spleen also increased (Fig. 6c). Even when administered intranasally, NA in body fluids (tears, nasal and drainage) and serum induced mucosal IgA and mucosal IgG more strongly than other adjuvants.

hsRNA 및 추가의 아쥬번트를 포함하는 조성물의 면역 유도능 비교Comparison of immune-inducing ability of compositions comprising hsRNA and additional adjuvants

하기와 같이 구성된 두 가지 경우의 NVT (NVT 또는 NVTII)를 근육 내 투여하여 유도된 DC 활성화 정도를 생체 내에서 비교하였다 (도 7a).The degree of DC activation induced by intramuscular administration of NVT (NVT or NVTII) in two cases configured as follows was compared in vivo (FIG. 7A ).

(i) NVT ; NVT (NA) 단독(i) NVT; NVT (NA) alone

(ii) NVTII ; NVT (NA)+SE (스쿠알렌 에멀젼)(ii) NVTII; NVT (NA)+SE (Squalene Emulsion)

그 결과, 서혜부 림프절 (iLN)에서 DC 활성을 유도하였고 NVT에 비해 NVTII의 경우 DC의 활성이 더 높았다 (도 7b).As a result, DC activity was induced in the inguinal lymph node (iLN), and the activity of DC was higher in the case of NVTII than in NVT (Fig. 7b).

또한 하기와 같이 구성된 경우 항체 반응 유도를 비교하였다.In addition, antibody response induction was compared when configured as follows.

(i) OVA 단독(i) OVA alone

(ii) OVA+NVT(ii) OVA+NVT

(iii) OVA+NVTII(iii) OVA+NVTII

마우스 근육 내로 주사한 뒤 Anti-OVA IgG1, IgG2a를 측정한 결과 OVA 단독 주사한 경우보다 OVA+NVT가 주사된 경우 약 100배 강한 항체 반응을 유도하였다. OVA+NVTII의 경우는 OVA+NVT의 경우에 비해 2배 이상 강한 항체 반응을 유도하였다 (도 7c).Anti-OVA IgG1 and IgG2a were measured after injection into the mouse muscle. As a result, when OVA+NVT was injected, about 100 times stronger antibody response was induced than when OVA alone was injected. In the case of OVA+NVTII, the antibody response was more than twice as strong as in the case of OVA+NVT (Fig. 7c).

NVT를 비강 내로 투여하는 경우 종격동 림프절 (mLN)에서 DC를 활성화하였고, 폐포 세척액 (BALF)에서 IL-6, IL-12 및 TNF-α를 유도하였다. When NVT was administered intranasally, DC was activated in mediastinal lymph nodes (mLN), and IL-6, IL-12 and TNF-α were induced in alveolar lavage fluid (BALF).

hsRNA의 구조 및 길이의 균질성Homogeneity of structure and length of hsRNA

본 발명의 hsRNA는 dsRNA의 양쪽 3' 말단이 돌출된 3'-오버행 (overhang) 구조를 갖는다. 본 발명에서 상기 구조를 가진 리보핵산을 hsRNA라고 기술한다.The hsRNA of the present invention has a 3'-overhang structure in which both 3'ends of the dsRNA protrude. In the present invention, the ribonucleic acid having the above structure is described as hsRNA.

임의의 길이와 임의의 서열을 가지며 완전히 상보적인 dsRNA 부분은 인공서열일 수 있고 자연서열일 수 있으나 단백질을 암호화하지는 않는다. 임의의 길이와 임의의 서열을 가지는 단일가닥 ssRNA는 dsRNA의 3' 말단에 인산 다이에스터 결합으로 결합되어 있으며 TLR7/8 잠재적 리간드에 해당한다 (도 8a). 본 발명의 dsRNA 부위가 서열이나 길이와 무관하게 완전한 상보성을 가지고 있으며 내부에 닉(nick)이 없고 균일한 길이를 가진다는 점은 하기의 실험을 통해 확인할 수 있다.The dsRNA portion that has any length and any sequence and is completely complementary may be an artificial sequence or a natural sequence, but does not encode a protein. Single-stranded ssRNA having an arbitrary length and arbitrary sequence is bound to the 3'end of the dsRNA by a phosphate diester bond and corresponds to a TLR7/8 potential ligand (FIG. 8A). It can be confirmed through the following experiment that the dsRNA site of the present invention has complete complementarity regardless of sequence or length, and that there is no nick inside and has a uniform length.

RNase T1를 처리할 경우 ssRNA는 완전히 분해된다. RNase III를 짧은 시간 처리하면 dsRNA는 평균 20 내지 25 bp의 조각으로 절단되고, 더 오래 처리하면 12bp 이하의 길이를 가지는 조각으로 절단된다. 이러한 각종 RNase의 작용 방식과 정확하게 일치하는 결과를 실험적으로 확인할 수 있다. 즉, 양쪽 3' 말단에 51 base와 58 base ssRNA 돌출부를 가지는 hsRNA에 RNAse III를 처리하면 20 내지 25 bp의 dsRNA 조각들과 약 50 base의 ssRNA 조각을 band를 통해 확인할 수 있다. 상기 hsRNA에 RNAse III 및 RNAse T1를 동시에 처리할 경우 ssRNA는 완전히 분해되고 20 내지 25 bp의 dsRNA 조각만이 남는 것을 band를 통해 확인할 수 있다. RNase A를 처리하면 ssRNA와 dsRNA를 포함한 모든 RNA들이 완전히 분해되므로 band가 나타나지 않는다 (도 8b).When RNase T1 is treated, ssRNA is completely degraded. When RNase III is treated for a short time, dsRNA is cut into fragments of an average of 20 to 25 bp, and when treated for a longer time, fragments having a length of 12 bp or less are cut. It is possible to experimentally confirm the results exactly consistent with the mode of action of these various RNases. That is, when RNAse III is treated on hsRNA having 51 base and 58 base ssRNA protrusions at both 3'ends, 20 to 25 bp dsRNA fragments and about 50 base ssRNA fragments can be identified through the band. When the hsRNA is treated with RNAse III and RNAse T1 at the same time, it can be confirmed through the band that ssRNA is completely degraded and only a 20 to 25 bp dsRNA fragment remains. When RNase A is treated, all RNAs including ssRNA and dsRNA are completely degraded, so no band appears (Fig. 8b).

또한 hsRNA에 RNase T1을 처리할 경우, 처리 전후로 아가로즈 젤에서 band가 하나만 나타나는 것을 통해 dsRNA의 부위의 상보성과 안정성이 증명된다 (도 8c).In addition, when the hsRNA is treated with RNase T1, the complementarity and stability of the dsRNA site is demonstrated through the fact that only one band appears in the agarose gel before and after the treatment (Fig. 8c).

특정 hsRNA의 길이가 고도의 균질성을 갖는 것은 앞서 상기 실시예에서 여러 번 확인된 바이다 (도 2a, 도 3a, 및 도 4a).It has been confirmed several times in the above examples that the length of a specific hsRNA has a high degree of homogeneity (FIGS. 2A, 3A, and 4A).

다른 구체적 예로 폴리우리딘 (U) 염기를 함유하는 임의의 단일가닥 (≥17 base)을 dsRNA 양쪽에 추가할 수 있다. 또한 헤어핀 구조나 회문 고리구조와 같은 내부 dsRNA를 형성할 수 있도록 특정 서열을 추가하여 안정성을 지니도록 단일가닥을 디자인할 수 있다.As another specific example, any single strand (≥17 base) containing a polyuridine (U) base can be added to both sides of the dsRNA. In addition, a single strand can be designed to have stability by adding a specific sequence to form an internal dsRNA such as a hairpin structure or a palindromic ring structure.

하지만 이와 대조적으로, 경쟁 약물인 Poly(I:C)는 극심한 길이 다양성을 가지며 일정한 길이로 제조가 불가능하고 ssRNA stretch 부위가 실질적으로 존재하지 않는다. Poly(I:C)의 길이 다양성은 체인내 미끄러짐 (slippage)과 체인 확장 (chain extension)으로 발생하기 때문이다. 그 결과 dsRNA 부위 내 또는 말단에 위치와 개수를 특정할 수 없는 닉이 존재하여 RNase T1을 처리하면 다양한 길이로 절단됨을 알 수 있다 (도 8c). Poly(I:C)는 체인 확장 등으로 인해 상단과 하단 가닥을 각각 형성하는 체인의 개수를 특정할 수 없고, 인접한 가닥끼리 인산 다이에스터 결합이 이루어지지 않아 닉이 보충되지 않으므로, RNase T1에 의해 소화되기 쉽다.However, in contrast, the competing drug, Poly(I:C), has extreme length diversity, cannot be prepared with a constant length, and ssRNA stretch sites are practically absent. This is because the length diversity of Poly(I:C) arises from slippage and chain extension in the chain. As a result, it can be seen that nicks for which the position and number cannot be specified exist in the dsRNA site or at the ends, so that when RNase T1 is treated, it is cut into various lengths (FIG. 8C). Poly(I:C) cannot specify the number of chains each forming the upper and lower strands due to chain expansion, etc., and nicks are not supplemented because phosphate diester bonds are not made between adjacent strands. Easy to digest

본 발명의 hsRNA와 dsRAN와는 대조적으로, 기존의 Poly(I:C)-L (long species)와 Poly(I:C)-S (short species)에 RNase III를 처리한 결과, 본래보다 짧지만 일정하지 않은 nicked dsRNA가 많이 생성되었다 (도 8d). 이는 Poly(I:C)가 dsRNA 내부의 특정할 수 없는 위치에 불특정한 닉이 있어, RNase III에 의해 소화되는 부위가 일정하지 않게 나타나는 것이다 (비특허문헌 2). 긴 PolyI (평균 400 base인 P400)에 짧은 PolyC (평균 100 base인 P100)을 대응하는 방식으로 상보적 결합을 유도하여 이런 문제점을 개선한 경우도 있었으나 여전히 길이는 100bp에서 100kbp까지 다양하게 나타났다 (비특허문헌 5).In contrast to the hsRNA and dsRAN of the present invention, as a result of treatment with RNase III on the existing Poly(I:C)-L (long species) and Poly(I:C)-S (short species), it is shorter than the original but constant Many unnicked dsRNAs were generated (FIG. 8D). This is because Poly(I:C) has an unspecified nick at an unspecified position inside the dsRNA, and the site digested by RNase III is not uniform (Non-Patent Document 2). There were cases where this problem was improved by inducing complementary binding by inducing complementary binding in a way that corresponds to long PolyI (P400 with an average of 400 base) and short PolyC (P100 with an average of 100 base), but the length was still varied from 100 bp to 100 kbp. Patent Document 5).

본 발명의 리보핵산은 기존 발명과는 다음의 사항에 있어 본질적인 차이점을 갖는다.The ribonucleic acid of the present invention has an essential difference from the existing invention in the following matters.

Poly(I:C)과 비교하여, 본 발명의 리보핵산은 1) 제조과정의 본질적 차이로 인한 길이에 있어 고도의 균질성을 갖고, 서열의 비동형중합체이고, 완전한 상보성으로 dsRNA내에 닉을 갖지 않고, 5' 말단에 인산기를 갖지 않고, 2) TLR3 리간드와 TLR7 유사 리간드로 작용할 수 있다.Compared with Poly(I:C), the ribonucleic acid of the present invention 1) has a high degree of homogeneity in length due to the essential difference in the manufacturing process, is a non-homopolymer of sequence, and does not have nicks in dsRNA with complete complementarity. , It does not have a phosphoric acid group at the 5'end, and 2) can act as a TLR3 ligand and a TLR7-like ligand.

siRNA과 비교하여, 본 발명의 리보핵산은 1) 합성되는 siRNA과 비교하여 제조과정에서 본질적 차이를 가지며 2) siRNA가 갖는 특정 유전자를 표적 저해하는 기능을 갖지 않고, 3) siRNA의 길이가 21-25 bp로 짧아 TLR3를 자극할 수 없는데 반하여, 본 발명의 리보핵산의 길이는 45 bp 이상이므로 충분한 활성을 나타내는 TLR3 리간드로 작용할 수 있고 (비특허문헌 1), 4) siRNA 말단에 굉장히 짧은 3'-돌출부는 기능이 없는 단순한 잔존서열에 해당하나, 본 발명의 ssRNA는 특정 길이 이상 (예를 들어, 17 base 이상)의 특정 서열을 가지며 TLR7 및 TLR7 유사 리간드의 역할을 한다. 실제로, 상기 서열을 추가한 hsRNA는 in vivo에서 서열을 추가하지 않은 dsRNA과 비교하여 낮은 독성지표를 나타내었다(실시예 5).Compared to siRNA, the ribonucleic acid of the present invention 1) has an essential difference in the manufacturing process compared to the synthesized siRNA, 2) does not have a function of targeting a specific gene of siRNA, and 3) the length of siRNA is 21- As short as 25 bp, TLR3 cannot be stimulated, whereas the length of the ribonucleic acid of the present invention is 45 bp or more, so it can act as a TLR3 ligand that exhibits sufficient activity (Non-Patent Document 1), and 4) a very short 3'at the end of siRNA. -The protrusion corresponds to a simple residual sequence without a function, but the ssRNA of the present invention has a specific sequence of a specific length or more (eg, 17 bases or more) and serves as a TLR7 and TLR7-like ligand. In fact, hsRNA to which the above sequence was added showed a low toxicity index in vivo compared to dsRNA to which the sequence was not added (Example 5).

dsRNA에 착화된 불활화 인플루엔자 전백신(iPR8)을 비강으로 투여한 후의 면역반응 및 hsRNA의 항원 비의존적 면역 강화 효과Immune response after nasal administration of inactivated influenza whole vaccine (iPR8) complexed with dsRNA and antigen-independent immunity enhancing effect of hsRNA

BalB/c 마우스에 NVT를 iPR8과 함께 투여하는 경우, 24시간이 지난 후 종격동 림프절에서 mDC와 rDC 세포수가 증가되었고 DC (CD80, CD86)가 활성화되었다가 96시간에 이르면 기저 수준으로 감소하였다. 또한 iPR8과 함께 NVT를 처치하면 폐포 세척액에서도 총 세포, 폐포 대식세포, 호중구 및 자연살해세포가 증가하고 이는 IL-6, IL-12 및 TNF-α의 증가와 비례하였다. 이러한 선천면역 지표의 증가는 germinal center B (GCB) 세포와 follicular helper T cell (TFH) 그리고 혈청과 비강 세척액에서의 IgG와 IgA의 증가와 동반되어 나타났다 (도 9d, e).When NVT was administered with iPR8 to BalB/c mice, the number of mDC and rDC cells in the mediastinal lymph node increased after 24 hours, and DC (CD80, CD86) was activated and then decreased to the basal level at 96 hours. In addition, when NVT was treated with iPR8, total cells, alveolar macrophages, neutrophils and natural killer cells increased in the alveolar lavage solution, which was proportional to the increase of IL-6, IL-12 and TNF-α. This increase in innate immunity indicators was accompanied by an increase in IgG and IgA in germinal center B (GCB) cells, follicular helper T cells (T FH ), and serum and nasal lavage (Fig. 9d, e).

본 발명의 hsRNA중 하나로 선택된 NA의 항원 비의존적 면역 강화 효과를 관찰한 결과, 항원이 존재하지 않는 조건에서 본 발명의 NA 아쥬번트 단독으로도 치명적인 생바이러스 감염에 보호 효과가 있음을 확인하였다. NA를 마우스 비강 내로 여러 회 투여 시 평균 4일 이상의 수명 연장을 나타냈으며, 바이러스 감염 (viremia) 관련 치사율이 약 20% 감소하였다. 즉, 항원 또는 앵커 펩타이드와 복합체를 형성하지 않은 본 발명의 NA 아쥬번트 단독으로도 강한 면역 강화 작용이 나타났다. As a result of observing the antigen-independent immunity enhancing effect of the NA selected as one of the hsRNAs of the present invention, it was confirmed that the NA adjuvant of the present invention alone has a protective effect against deadly live virus infection in the absence of the antigen. Multiple administrations of NA into the nasal cavity of the mouse resulted in an average life span of more than 4 days, and the mortality associated with viral infection was reduced by about 20%. That is, even with the NA adjuvant of the present invention that did not form a complex with an antigen or an anchor peptide, a strong immune enhancing action was exhibited.

결국, 본 발명의 리보핵산은 단독으로도 바이러스에 의한 치사율 저감효과가 있으므로, 급박한 감염병에 대해 수명 연장효과를 달성하기 위한 수단이 될 수 있다.As a result, the ribonucleic acid of the present invention alone has the effect of reducing the mortality rate due to the virus, and thus can serve as a means for achieving the effect of prolonging the lifespan of an urgent infectious disease.

hsRNA에 의한 상업용 인플루엔자 스플릿 백신 항원 감소 효과Commercial Influenza Split Vaccine Antigen Reduction Effect by hsRNA

암컷 Balb/c 마우스에 하기와 같이 구성된 경우를 각각 투여하여 항원 사용량을 비교하였다 (도 10a).The amount of antigen used was compared by administering each of the cases configured as follows to female Balb/c mice (FIG. 10A ).

(i) 4가 불활성화 인플루엔자 백신 (4IIV(QIV), Vaxigrip, Sanofi Pasteur)(i) tetravalent inactivated influenza vaccine (4IIV (QIV), Vaxigrip, Sanofi Pasteur)

(ii) 4IIV와 NVT (NA)의 혼합(ii) Mixing of 4IIV and NVT (NA)

(iii) 4IIV와 NVTII (NA+SE)의 혼합(iii) Mixing of 4IIV and NVTII (NA+SE)

그 결과, 항원을 단독으로 접종한 (i) 경우와 비교하여 (ii)는 약 5배, (iii)은 약 25배까지 항원 사용량을 감소시킬 수 있음이 확인되었다 (도 10b). 이러한 효과는 주사 후 최소 17주까지 지속되었다 (도 10c). 상기 결과로부터 NA가 항원에 착화된 경우, 필요한 면역력을 확보하는데 필요한 백신 항원의 양을 상당히 감소시킬 수 있음을 알 수 있다. As a result, compared to the case of (i) inoculating the antigen alone, it was confirmed that the amount of antigen used in (ii) can be reduced by about 5 times and (iii) by about 25 times (FIG. 10B). This effect lasted up to at least 17 weeks after injection (FIG. 10C). From the above results, it can be seen that when NA is complexed to an antigen, the amount of vaccine antigen required to secure the necessary immunity can be significantly reduced.

이러한 중화항체의 증가는 혈구 응집소 저해능 (hema aggultination inhibition, HAI) 타이터(titer)가 40 이상 증가하는 것과 밀접하게 연관되어 있어 개체 방어능을 제공하는 것으로 판단되었다. 즉 NVT나 NVT II를 사용하면 인플루엔자 바이러스에 대한 방어면역 지표 (COP)인 HAI titer 값이 3배 정도 증가하고 감염이 50% 감소하는 방어면역 지표인 'HAI titer≥40'을 충족시켰다 (도 10d).The increase of these neutralizing antibodies was closely related to an increase in hemagglutinin inhibition (HAI) titer by 40 or more, and thus it was judged to provide individual defense. That is, when using NVT or NVT II, the HAI titer value, which is a protective immunity index (COP) against influenza virus, increased by about three times and met the'HAI titer≥40', which is a protective immunity index that decreases infection by 50% (Fig. ).

hsRNA에 의한 상업용 뇌수막염 백신의 항원 감소 효과Antigen reduction effect of commercial meningitis vaccine by hsRNA

마우스에 Menactra 백신을 투여하면서, 아쥬번트로 NA를 사용하였다 (도 11a).While administering the Menactra vaccine to mice, NA was used as an adjuvant (FIG. 11A).

Menactra 백신은 뇌수막염 알균 (Meningococcus)인 Neisseria meningitidis groups (A, C, Y and W-135)에 대한 백신이다. 구체적으로는 디프테리아 독소인 CRM197에 해당 다당류 항원을 공유결합으로 연결한 백신이다. 본 발명의 NVT II에 뇌수막염 백신을 착화시킨 신규한 백신 제형은 Menactra 특이 항체를 5배 이상 강하게 유도하였다 (도 11b 및 11c).Menactra vaccine is a vaccine against Neisseria meningitidis groups (A, C, Y and W-135), which are Meningococcus. Specifically, it is a vaccine in which the polysaccharide antigen is covalently linked to CRM197, which is a diphtheria toxin. The novel vaccine formulation complexed with the meningitis vaccine to NVT II of the present invention induced Menactra-specific antibodies 5 times or more strongly (FIGS. 11b and 11c).

NVT II의 면역원성 복원 효과Immunogenic Restoration Effect of NVT II

2018/2019 계절성 4가 인플루엔자 백신 Vaxigrip (QIV)을 37℃에서 5주간 방치하여 면역원성을 완전히 소실시킨 후 NVT II와 혼합하여 근육 내 (i.m.) 주사하였다. 3주 경과 후 IgG 유도량을 측정하고 18주 경과 후 HAI assay를 수행하였다 (도 12a).The 2018/2019 seasonal tetravalent influenza vaccine Vaxigrip (QIV) was left at 37°C for 5 weeks to completely lose its immunogenicity, and then mixed with NVT II and injected intramuscularly (i.m.). After 3 weeks, the amount of IgG induced was measured, and after 18 weeks, HAI assay was performed (FIG. 12A).

그 결과 Vaxigrip에 대한 중화항체가 현격하게 증가되어 면역원성이 복원되었음을 알 수 있다 (도 12b). 또한 최소 10배의 항원 절감효과가 있었다. 18주째에 H1N1과 IBV에 대한 방어면역 지표인 HAI titer가 40 이상으로 증가된 것은 상기 결과와 일치한다 (도 12c).As a result, it can be seen that the neutralizing antibody against Vaxigrip was remarkably increased and immunogenicity was restored (FIG. 12B). In addition, there was an antigen reduction effect of at least 10 times. It is consistent with the above results that the HAI titer, which is a protective immunity index for H1N1 and IBV, increased to 40 or more at week 18 (Fig. 12c).

또 다른 실험에서 Vaxigrip만을 단독으로 37℃에서 5주간 방치하면 항원성을 완전히 소실한 반면, Vaxigrip을 NVTII에 먼저 혼합하여 37℃에서 5주간 방치하는 경우 항원성이 완전히 유지되었고 HAI titer도 40가 이상으로 증가되었다. In another experiment, when only Vaxigrip was left alone at 37°C for 5 weeks, antigenicity was completely lost, whereas when Vaxigrip was first mixed with NVTII and left at 37°C for 5 weeks, antigenicity was completely maintained and the HAI titer was 40 or higher. Was increased to.

hsRNA 단독 사용시 항원 비의존적 종양 퇴화 효과Antigen-independent tumor regression effect when hsRNA alone is used

암 항원 부재 하에서도 NA가 종양 퇴행을 야기하며 생존율을 증가시킴을 확인하기 위해 7주 령의 암컷 C57BL/6 마우스에 B16F10-OVA 흑색종 세포를 피하 이식한 뒤 6일째부터 NA를 종양 내 (i.t.) 또는 근육 내로 2일 간격으로 3회에 걸쳐 투여하였다 (도 13a). To confirm that NA induces tumor regression and increases survival even in the absence of cancer antigens, B16F10-OVA melanoma cells were subcutaneously transplanted into 7-week-old female C57BL/6 mice, and then NA was injected intratumorally from day 6 (it ) Or intramuscularly, administered three times at 2-day intervals (FIG. 13A).

그 결과 대조군에 비하여 NA를 투여한 마우스에서 종양 성장이 더 억제되었고 더 오래 생존하였다 (도 13 b 및 13c).As a result, tumor growth was more inhibited in mice administered with NA compared to the control group and survived longer (FIGS. 13 b and 13c ).

hsRNA의 단독 면역증강 효과가 대장암과 폐암 퇴행에 미치는 영향The effect of hsRNA alone on the regression of colon cancer and lung cancer

7주 령의 암컷 C57BL/6 마우스에 CT26 대장암과 LL/2 폐암을 피하 이식한 후, 이틀에 한 번 총 8회에 걸쳐 NVT 단독으로 피하 종양 조직 내 (i.t.) 또는 근육 내 (i.m.)에 투여한 뒤 암 종괴의 퇴행을 확인하였다.After subcutaneous transplantation of CT26 colorectal cancer and LL/2 lung cancer into 7-week-old female C57BL/6 mice, NVT alone was used in subcutaneous tumor tissue (it) or intramuscular (im) once every two days. After administration, the regression of the cancer mass was confirmed.

그 결과, 원발성 대장암과 폐암이 억제되는 것을 확인하였다 (도 14).As a result, it was confirmed that primary colon cancer and lung cancer were suppressed (FIG. 14).

hsRNA의 단독 면역증강 효과가 삼중음성 유방암 (TNBC) 퇴행과 전이억제에 미치는 영향The effect of hsRNA alone on immune enhancing effect on triple negative breast cancer (TNBC) regression and metastasis inhibition

7주 령의 암컷 C57BL/6 마우스에 4T1 삼중음성 유방암 (TNBC) 세포주를 유선지방조직 피하 이식 후, 8일째부터 NA 단독으로 종양조직 내 (i.t.)로 2일 간격으로 9번 투여하였다 (도 15a).A 7-week-old female C57BL/6 mouse was transplanted with a 4T1 triple-negative breast cancer (TNBC) cell line subcutaneously from mammary adipose tissue, and then administered 9 times at 2-day intervals from day 8 into tumor tissue (it) alone (Fig. 15A). ).

그 결과 원발성 유방암이 60% 퇴행하였으며(도 15b), 이러한 퇴행은 폐로의 원격전이가 현격하게 감소된 모습과 일치하였다(도 15c).As a result, primary breast cancer regressed by 60% (FIG. 15B), and this regression was consistent with the remarkably reduced distant metastasis to the lung (FIG. 15C).

hsRNA 단독 또는 hsRNA가 착화된 TAA 백신의 항전이 활성 평가Evaluation of anti-metastatic activity of hsRNA alone or hsRNA complexed TAA vaccine

C57BL/6 마우스에 하기와 같은 암 백신 조성물을 투여한 뒤 비장에 B16F10/Ova 흑색종 세포를 이식하고, 3일째에 동일한 백신 조성물을 투여한 뒤 비장에서 간으로 전이되는 정도를 조사하였다 (도 16a).After administering the following cancer vaccine composition to C57BL/6 mice, B16F10/Ova melanoma cells were transplanted into the spleen, and the degree of metastasis from the spleen to the liver was investigated after administration of the same vaccine composition on the third day (Fig. ).

(i) PBS (생리식염수)(i) PBS (physiological saline)

(ii) OVA(ii) OVA

(iii) NA(iii) NA

(iv) OVA+NA(iv) OVA+NA

OVA+NA를 처리한 경우 외에는 14일째부터 죽기 시작하여 모든 마우스가 18일 이내에 사망한 반면, OVA+NA 처리군은 24일째부터 죽기 시작하여 모든 마우스가 28일 이내에 사망하였다. 각 마우스의 간과 비장을 적출하여 크기 및 무게를 측정한 결과, NA 처리군 및 OVA+NA 처리군 마우스가 대조군 및 OVA 단독 처리군 마우스에 비해 전이된 정도가 낮은 것을 확인하였다 (도 16b 및 16c). 또한 18일째에 간으로 전이된 종양 결절의 수를 측정하였다. 흑색종 세포가 비장에서 간으로 전이하는 것을 NA 단독으로는 약 50%, NA가 암항원 (예, OVA)에 착화된 OVA+NA의 경우 90%이상 억제하였다 (도 16d). Except in the case of OVA+NA treatment, all mice started to die from day 14 and died within 18 days, whereas the OVA+NA treatment group started to die from day 24 and all mice died within 28 days. As a result of measuring the size and weight of the liver and spleen of each mouse, it was confirmed that the NA treatment group and OVA + NA treatment group mice had a lower degree of metastasis compared to the control and OVA alone treatment group mice (Figs. 16b and 16c). . In addition, the number of tumor nodules metastasized to the liver on the 18th day was measured. The metastasis of melanoma cells from the spleen to the liver was inhibited by about 50% by NA alone and by 90% or more in the case of OVA+NA complexed with a cancer antigen (eg, OVA) in NA (FIG. 16D).

이러한 결과는 NA 단독 또는 NA가 착화된 OVA+NA 백신을 복강 내로 비장 내부로 투여 시 흑색종 세포의 간으로의 전이를 상당히 감소시킴을 의미한다.These results indicate that when NA alone or NA complexed OVA+NA vaccine was administered intraperitoneally into the spleen, metastasis of melanoma cells to the liver was significantly reduced.

hRNA 및 OX40 항체 복합체의 원발성 및 원격성 흑색종 억제 효과 Inhibitory Effects of hRNA and OX40 Antibody Complexes on Primary and Distant Melanoma

B16F10/Ova 흑색종 세포를 5ⅹ105 cell의 양으로 C57BL/6 마우스의 왼쪽 옆구리에 피하 주사하여, 마우스 내에 종양을 이식한 후 6일 동안 암 종괴를 성장시켰다. 종양 이식 후 6일, 8일, 10일, 12일째 원발암 조직 내로 하기와 같은 암 백신 조성물을 각각 4회 투여하였다 (도 17a). 그 후 22일째까지 암 조직의 크기를 측정하여, 암 조직의 성장 정도를 조사하였다.B16F10/Ova melanoma cells were injected subcutaneously into the left flank of C57BL/6 mice in an amount of 5x10 5 cells, and cancerous masses were grown for 6 days after implantation of the tumor in the mice. On the 6th, 8th, 10th, and 12th days after tumor transplantation, the following cancer vaccine compositions were each administered 4 times into the primary cancer tissues (FIG. 17A). Thereafter, the size of the cancer tissue was measured until the 22nd day, and the degree of growth of the cancer tissue was investigated.

(i) PBS (생리식염수)(i) PBS (physiological saline)

(ii) PD-1 Ab(ii) PD-1 Ab

(iii) IR 세포 (방사선을 조사한 암세포)(iii) IR cells (cancer cells irradiated with radiation)

(iv) IR 세포 + NA + OX40 Ab(iv) IR cells + NA + OX40 Ab

그 결과 면역 관문 항암제 항체인 PD-1 항체만으로는 원발암 성장이 약 50% 억제되었고, 암항원으로써 방사선 조사한 암세포 (Irradiated cell, IR Cell)만을 투여한 경우에는 약 원발암 성장이 20% 억제되었다. 반면, IR 세포와 함께 NA 및 OX40 항체를 포함하는 암백신 조성물 (IR cell + NA + OX40 Ab)를 투여한 경우에는, 원발암의 성장이 약 90% 이상 억제되었다 (도 17b).As a result, only the PD-1 antibody, an immune checkpoint anticancer antibody, inhibited the primary cancer growth by about 50%, and when only irradiated cancer cells (IR Cells) were administered as a cancer antigen, the primary cancer growth was suppressed by about 20%. On the other hand, when the cancer vaccine composition (IR cell + NA + OX40 Ab) containing NA and OX40 antibodies together with IR cells was administered, the growth of primary cancer was inhibited by about 90% or more (FIG. 17B).

또한, IR 세포의 항원을 사용하지 않고, NA 및 OX40 항체를 포함하는 암 백신 조성물 (NA + OX40 Ab)만을 투여한 경우에도, IR 세포 항원을 사용한 경우와 거의 동일한 수준으로 원발성 암의 성장이 억제되었다 (도 17c). In addition, even when only the cancer vaccine composition (NA + OX40 Ab) containing NA and OX40 antibodies is administered without using the antigen of IR cells, the growth of primary cancer is suppressed at almost the same level as when using the IR cell antigen. Became (Fig. 17c).

상기 마우스 실험군을 선택하여, 15일 째에 반대편 오른쪽 복부에 동종 유래의 두가지 암 (흑색종 (B16F10/Ova) 및 T 세포 림프종 (EG7/Ova))을 2차 이식하였다 (2nd implantation). 그 후 더 이상 치료용 백신 조성물을 투여하지 않은 상태로 16일간 암 조직의 성장 정도를 측정하였다. The mouse experimental group was selected, and on the 15th day, two allogeneic cancers (melanoma (B16F10/Ova) and T-cell lymphoma (EG7/Ova)) were implanted in the second right abdomen on the 15th day (2nd implantation). After that, the degree of growth of the cancer tissue was measured for 16 days in a state in which the vaccine composition for treatment was no longer administered.

그 결과 본 발명의 암 백신 조성물 (NA + OX40 Ab)을 처리한 군의 경우, 모든 그룹에서 2차 이식한 원격성 암이 거의 성장하지 않았다. 이에 반해 OX40 Ab 대신 다른 isotype Ab를 NA와 함께 사용한 경우에는, 약 10일 이후 암이 급속도로 성장하여 해당 마우스가 갑자가 사망하였다. 따라서 종괴의 크기는 그림에 표시하지 않았다 (도 17d).As a result, in the case of the group treated with the cancer vaccine composition (NA + OX40 Ab) of the present invention, the secondary transplanted distant cancer hardly grew in all groups. On the other hand, when other isotype Abs instead of OX40 Ab were used together with NA, cancer rapidly grew after about 10 days and the corresponding mouse died suddenly. Therefore, the size of the mass was not indicated in the figure (Fig. 17D).

이상의 결과를 요약하면 PD-1 항체만으로는 원발성 흑색종의 성장을 약 50% 억제하였고, IR 세포만으로는 약 20% 억제하였으나, 본 발명의 조성물인 IR 세포 + NA + OX40 Ab은 원발성 흑색종의 성장을 90% 이상 억제하였다. In summary, PD-1 antibody alone inhibited the growth of primary melanoma by about 50%, and IR cells alone inhibited the growth of primary melanoma by about 20%, but the composition of the present invention, IR cells + NA + OX40 Ab, inhibited the growth of primary melanoma. It was suppressed more than 90%.

또한 IR 세포 없이 NA + OX40 Ab 조성물만을 투여한 경우에도, 원발암과 이차 이식한 원격암이 억제되었다. 이는 NA + OX40 Ab 조성물에 의해 원발암에서 유도된 암 면역이 새로 이식한 암에도 영향을 미치고 있음을 보여준다.In addition, even when only the NA + OX40 Ab composition was administered without IR cells, primary cancer and secondary transplanted distant cancer were suppressed. This shows that cancer immunity induced in primary cancer by the NA + OX40 Ab composition also affects newly transplanted cancers.

hsRNA 및 PD-1 항체 또는 OX40 복합체의 원발성 및 원격성 흑색종 억제 효과Inhibitory effect of hsRNA and PD-1 antibody or OX40 complex on primary and distant melanoma

B16F10/Ova 흑색종 세포를 5ⅹ105 cell의 양으로 C57BL/6 마우스의 오른쪽 및 왼쪽 복강에 동시에 피하 주사하여 이식한 후, 약 5일 동안 암 종괴를 성장시켰다. 그 후 오른쪽 복강의 암 조직 내로 하기와 같이 구성된 암 백신 조성물을 각각 2일 간격으로 4회 투여하였다 (도 18a). 암 조직의 크기를 측정하여, 오른쪽 암(백신 조성물을 투여한 암, Vaccinated Tumor) 및 왼쪽 암 (원격성 암, Remote Tumor) 조직 각각의 성장 정도를 조사하였다.B16F10/Ova melanoma cells were implanted by simultaneously subcutaneous injection into the right and left abdominal cavity of C57BL/6 mice in an amount of 5x10 5 cells, and then cancerous masses were grown for about 5 days. Thereafter, the cancer vaccine composition constituted as follows into the cancer tissue of the right abdominal cavity was administered four times at intervals of 2 days, respectively (FIG. 18A). The size of the cancer tissue was measured, and the degree of growth of each of the right cancer (cancer administered with the vaccine composition, Vaccinated Tumor) and the left cancer (remote cancer, Remote Tumor) tissue was investigated.

(i) PBS (생리식염수)(i) PBS (physiological saline)

(ii) NA(ii) NA

(iii) NA + OX40 항체 (OX40 Ab) (clone OX-86, Rat IgG1, InvivoGen)(iii) NA + OX40 Antibody (OX40 Ab) (clone OX-86, Rat IgG1, InvivoGen)

(iv) NA + PD-1 항체 (PD-1 Ab) (clone RMP1-14, Rat IgG2a/λ, InvoGen)(iv) NA + PD-1 antibody (PD-1 Ab) (clone RMP1-14, Rat IgG2a/λ, InvoGen)

그 결과 hsRNA 및 PD-1 항체를 포함하는 암 백신 조성물(NA + PD-1 Ab)의 원발성 암 및 원격성 암에 대한 억제 효과는, hsRNA 및 OX40 항체를 포함하는 암 백신 조성물(NA + OX40 Ab)과 유사하거나 이보다 우수하였다. 또한 본 발명의 암 백신 조성물(NA + PD-1 Ab 및 NA + OX40 Ab)을 주사한 부위의 원발성 암에 대한 억제 효과는, 백신 조성물을 주사하지 않은 원격성 암에 비해 더 우수하였고, 원발성 암 및 원격성 암을 모두 억제하는 효과를 나타냄을 확인하였다 (도 18b 및 18c). As a result, the inhibitory effect of the cancer vaccine composition (NA + PD-1 Ab) containing hsRNA and PD-1 antibody on primary and distant cancers is a cancer vaccine composition containing hsRNA and OX40 antibody (NA + OX40 Ab). ) Was similar to or better. In addition, the inhibitory effect on primary cancer at the site injected with the cancer vaccine composition (NA + PD-1 Ab and NA + OX40 Ab) of the present invention was better than that of distant cancer without injection of the vaccine composition, and primary cancer And it was confirmed that it shows the effect of inhibiting both distant cancer (FIGS. 18B and 18C ).

또한 PD-1 항체만을 처리한 경우에는 원발성 암의 성장이 약 50% 정도만 억제된 것으로 확인되었으나, hsRNA 및 PD1 항체를 함께 처리한 경우 (NA + PD-1 Ab)에는, 약 90% 이상의 억제 효과를 나타내는 NA + OX40 Ab과 유사하거나 또는 이보다 더 우수한 억제 효과를 나타내었다. In addition, when only PD-1 antibody was treated, it was confirmed that only about 50% of the growth of primary cancer was inhibited, but when hsRNA and PD1 antibody were treated together (NA + PD-1 Ab), it had an inhibitory effect of about 90% or more. It showed an inhibitory effect similar to or better than that of NA + OX40 Ab.

이로부터 hsRNA 및 PD-1 항체를 함께 처리시, PD-1 항체의 면역 관문 억제제에 반응하지 않는 불응성 암을 반응성 암으로 전환시켜, 보다 우수한 항암 효과를 나타내는 것이 확인되었다. From this, it was confirmed that when the hsRNA and the PD-1 antibody were treated together, refractory cancer that did not respond to the immune checkpoint inhibitor of the PD-1 antibody was converted into a reactive cancer, thereby exhibiting a more excellent anticancer effect.

<110> NA Vaccine Institute <120> NOVEL RIBONUCLEIC ACID AND PHARMACEUTICAL COMPOSITION BASED ON THE SAME <130> NAVI19P-0001-KR-PRI2 <160> 93 <170> KoPatentIn 3.0 <210> 1 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1001 <400> 1 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgcccuaua gugagucgua 120 uua 123 <210> 2 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1501 <400> 2 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcccuaua gugagucgua uua 173 <210> 3 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2001 <400> 3 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auacccuaua gugagucgua uua 223 <210> 4 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3001 <400> 4 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uaucccuaua gugagucgua uua 323 <210> 5 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4001 <400> 5 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caacccuaua gugagucgua 420 uua 423 <210> 6 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5001 <400> 6 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guucccuaua gugagucgua uua 523 <210> 7 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6001 <400> 7 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cuccccuaua gugagucgua uua 623 <210> 8 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7001 <400> 8 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcucccuaua gugagucgua 720 uua 723 <210> 9 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8001 <400> 9 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcuuccucgc ucacugacuc 720 gcugcgcucg gucguucggc ugcggcgagc gguaucagcu cacucaaagg cgguaauacg 780 guuauccaca gaaucagggg auacccuaua gugagucgua uua 823 <210> 10 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1002 <400> 10 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uuccccuaua gugagucgua 120 uua 123 <210> 11 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1502 <400> 11 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aaccccuaua gugagucgua uua 173 <210> 12 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2002 <400> 12 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gaucccuaua gugagucgua uua 223 <210> 13 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3002 <400> 13 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggacccuaua gugagucgua uua 323 <210> 14 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4002 <400> 14 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucccuaua gugagucgua 420 uua 423 <210> 15 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5002 <400> 15 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucgcccuaua gugagucgua uua 523 <210> 16 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6002 <400> 16 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuucccuaua gugagucgua uua 623 <210> 17 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7002 <400> 17 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aaccccuaua gugagucgua 720 uua 723 <210> 18 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8002 <400> 18 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aacuauuccu uggaaaugca 720 ggaacagcaa ugcguccguu gacagcagca guuacuguag cuggaggaca uucaagauau 780 guucuugaug gaguuccuag gaucccuaua gugagucgua uua 823 <210> 19 <211> 336 <212> RNA <213> Artificial Sequence <220> <223> R1 <400> 19 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugcccu auagugaguc guauua 336 <210> 20 <211> 414 <212> RNA <213> Artificial Sequence <220> <223> R2 <400> 20 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccuau agugagucgu auua 414 <210> 21 <211> 483 <212> RNA <213> Artificial Sequence <220> <223> R3 <400> 21 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccuaua gugagucgua 480 uua 483 <210> 22 <211> 605 <212> RNA <213> Artificial Sequence <220> <223> R4 <400> 22 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuacccua uagugagucg 600 uauua 605 <210> 23 <211> 681 <212> RNA <213> Artificial Sequence <220> <223> R5 <400> 23 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccuauagu gagucguauu a 681 <210> 24 <211> 750 <212> RNA <213> Artificial Sequence <220> <223> R6 <400> 24 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccuauagug agucguauua 750 <210> 25 <211> 839 <212> RNA <213> Artificial Sequence <220> <223> R7 <400> 25 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac ccuauaguga gucguauua 839 <210> 26 <211> 902 <212> RNA <213> Artificial Sequence <220> <223> R8 <400> 26 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccuauag ugagucguau 900 ua 902 <210> 27 <211> 1049 <212> RNA <213> Artificial Sequence <220> <223> R9 <400> 27 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac ccuauaguga gucguauua 1049 <210> 28 <211> 1170 <212> RNA <213> Artificial Sequence <220> <223> R10 <400> 28 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau cccuauagug agucguauua 1170 <210> 29 <211> 1665 <212> RNA <213> Artificial Sequence <220> <223> R11 <400> 29 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau cccgucuauc cagucucgug gucuguucgg ugcuaucgcu gguuucaucg 1200 aaggugguug gaccgguaug aucgacgguu gguacgguua ccaccaccag aacgaacagg 1260 guucugguua cgcugcugac cagaaaucua cccagaacgc uaucaacggu aucaccaaca 1320 aaguuaacac cguuaucgaa aaaaugaaca uccaguucac cgcuguuggu aaagaauuca 1380 acaaacugga aaaacguaug gaaaaccuga acaaaaaagu ugacgacggu uuccuggaca 1440 ucuggaccua caacgcugaa cugcugguuc ugcuggaaaa cgaacguacc cuggacuucc 1500 acgacucuaa cguuaaaaac cuguacgaaa aaguuaaauc ucagcugaaa aacaacgcua 1560 aagaaaucgg uaacgguugc uucgaauucu accacaaaug cgacaacgaa ugcauggaau 1620 cuguucguaa cgguaccuac gacuacccua uagugagucg uauua 1665 <210> 30 <211> 482 <212> RNA <213> Artificial Sequence <220> <223> NA,NVT,VP1,VP10 <400> 30 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gcccuauagu gagucguauu agucgacugc agaggccugc augcaagcuu ggcguaauca 480 ug 482 <210> 31 <211> 493 <212> RNA <213> Artificial Sequence <220> <223> NVT IV,NVT 4,VP20 <400> 31 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gcccuauagu gagucguauu agucgacugc agaggccugc augcaagcuu uguuguuguu 480 guuguuguug uug 493 <210> 32 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1001 <400> 32 gggcgggcuu gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc 60 ugcauguguc agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua 120 uua 123 <210> 33 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1501 <400> 33 gggcauaguu aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu 60 gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc 120 agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 173 <210> 34 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2001 <400> 34 ggguauuuca caccgcauau ggugcacucu caguacaauc ugcucugaug ccgcauaguu 60 aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu gucugcuccc 120 ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc agagguuuuc 180 accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 223 <210> 35 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3001 <400> 35 gggauagcga agaggcccgc accgaucgcc cuucccaaca guugcgcagc cugaauggcg 60 aauggcgccu gaugcgguau uuucuccuua cgcaucugug cgguauuuca caccgcauau 120 ggugcacucu caguacaauc ugcucugaug ccgcauaguu aagccagccc cgacacccgc 180 caacacccgc ugacgcgccc ugacgggcuu gucugcuccc ggcauccgcu uacagacaag 240 cugugaccgu cuccgggagc ugcauguguc agagguuuuc accgucauca ccgaaacgcg 300 cgacccuaua gugagucgua uua 323 <210> 36 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4001 <400> 36 ggguuggcac uggccgucgu uuuacaacgu cgugacuggg aaaacccugg cguuacccaa 60 cuuaaucgcc uugcagcaca ucccccuuuc gccagcuggc guaauagcga agaggcccgc 120 accgaucgcc cuucccaaca guugcgcagc cugaauggcg aauggcgccu gaugcgguau 180 uuucuccuua cgcaucugug cgguauuuca caccgcauau ggugcacucu caguacaauc 240 ugcucugaug ccgcauaguu aagccagccc cgacacccgc caacacccgc ugacgcgccc 300 ugacgggcuu gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc 360 ugcauguguc agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua 420 uua 423 <210> 37 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5001 <400> 37 gggaacaauu ucacacagga aacagcuaug accaugauua cgaacucguc cucgguuccc 60 ggcgauccuc uggagauaau cguccacuug ccgucaugcu ucuuuggcac uggccgucgu 120 uuuacaacgu cgugacuggg aaaacccugg cguuacccaa cuuaaucgcc uugcagcaca 180 ucccccuuuc gccagcuggc guaauagcga agaggcccgc accgaucgcc cuucccaaca 240 guugcgcagc cugaauggcg aauggcgccu gaugcgguau uuucuccuua cgcaucugug 300 cgguauuuca caccgcauau ggugcacucu caguacaauc ugcucugaug ccgcauaguu 360 aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu gucugcuccc 420 ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc agagguuuuc 480 accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 523 <210> 38 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6001 <400> 38 ggggagcgca acgcaauuaa ugugaguuag cucacucauu aggcacccca ggcuuuacac 60 uuuaugcuuc cggcucguau guugugugga auugugagcg gauaacaauu ucacacagga 120 aacagcuaug accaugauua cgaacucguc cucgguuccc ggcgauccuc uggagauaau 180 cguccacuug ccgucaugcu ucuuuggcac uggccgucgu uuuacaacgu cgugacuggg 240 aaaacccugg cguuacccaa cuuaaucgcc uugcagcaca ucccccuuuc gccagcuggc 300 guaauagcga agaggcccgc accgaucgcc cuucccaaca guugcgcagc cugaauggcg 360 aauggcgccu gaugcgguau uuucuccuua cgcaucugug cgguauuuca caccgcauau 420 ggugcacucu caguacaauc ugcucugaug ccgcauaguu aagccagccc cgacacccgc 480 caacacccgc ugacgcgccc ugacgggcuu gucugcuccc ggcauccgcu uacagacaag 540 cugugaccgu cuccgggagc ugcauguguc agagguuuuc accgucauca ccgaaacgcg 600 cgacccuaua gugagucgua uua 623 <210> 39 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7001 <400> 39 gggagcggaa gagcgcccaa uacgcaaacc gccucucccc gcgcguuggc cgauucauua 60 augcagcugg cacgacaggu uucccgacug gaaagcgggc agugagcgca acgcaauuaa 120 ugugaguuag cucacucauu aggcacccca ggcuuuacac uuuaugcuuc cggcucguau 180 guugugugga auugugagcg gauaacaauu ucacacagga aacagcuaug accaugauua 240 cgaacucguc cucgguuccc ggcgauccuc uggagauaau cguccacuug ccgucaugcu 300 ucuuuggcac uggccgucgu uuuacaacgu cgugacuggg aaaacccugg cguuacccaa 360 cuuaaucgcc uugcagcaca ucccccuuuc gccagcuggc guaauagcga agaggcccgc 420 accgaucgcc cuucccaaca guugcgcagc cugaauggcg aauggcgccu gaugcgguau 480 uuucuccuua cgcaucugug cgguauuuca caccgcauau ggugcacucu caguacaauc 540 ugcucugaug ccgcauaguu aagccagccc cgacacccgc caacacccgc ugacgcgccc 600 ugacgggcuu gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc 660 ugcauguguc agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua 720 uua 723 <210> 40 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8001 <400> 40 ggguaucccc ugauucugug gauaaccgua uuaccgccuu ugagugagcu gauaccgcuc 60 gccgcagccg aacgaccgag cgcagcgagu cagugagcga ggaagcggaa gagcgcccaa 120 uacgcaaacc gccucucccc gcgcguuggc cgauucauua augcagcugg cacgacaggu 180 uucccgacug gaaagcgggc agugagcgca acgcaauuaa ugugaguuag cucacucauu 240 aggcacccca ggcuuuacac uuuaugcuuc cggcucguau guugugugga auugugagcg 300 gauaacaauu ucacacagga aacagcuaug accaugauua cgaacucguc cucgguuccc 360 ggcgauccuc uggagauaau cguccacuug ccgucaugcu ucuuuggcac uggccgucgu 420 uuuacaacgu cgugacuggg aaaacccugg cguuacccaa cuuaaucgcc uugcagcaca 480 ucccccuuuc gccagcuggc guaauagcga agaggcccgc accgaucgcc cuucccaaca 540 guugcgcagc cugaauggcg aauggcgccu gaugcgguau uuucuccuua cgcaucugug 600 cgguauuuca caccgcauau ggugcacucu caguacaauc ugcucugaug ccgcauaguu 660 aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu gucugcuccc 720 ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc agagguuuuc 780 accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 823 <210> 41 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1002 <400> 41 ggggaaaaug guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau 60 ggaguccaau gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua 120 uua 123 <210> 42 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1502 <400> 42 gggguucuug gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug 60 guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau 120 gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 173 <210> 43 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2002 <400> 43 gggaucugug ccauuucuug ugaaaaacuu caguuuuucc acucucucuc uguguucuug 60 gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag 120 guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau gucagcuuca 180 ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 223 <210> 44 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3002 <400> 44 ggguccaaag aagagagaau uugaaacaag aggacccuuu uguguuuuag aaagauugga 60 ggaauucaga cuaagggucu guaucccuug ugccaugcua cuaaucugug ccauuucuug 120 ugaaaaacuu caguuuuucc acucucucuc uguguucuug gaguuguuug aagaccaaau 180 uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag guagauugaa gggagauggg 240 guuaggcaau uaagcagaau ggaguccaau gucagcuuca ccaaccaccu uuugucggaa 300 uuccccuaua gugagucgua uua 323 <210> 45 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4002 <400> 45 gggaugcaga aauccuaaaa gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa 60 acaccccuaa ugauuuugcu gaaauuuggg uuaguuucuu ugauccaaag aagagagaau 120 uugaaacaag aggacccuuu uguguuuuag aaagauugga ggaauucaga cuaagggucu 180 guaucccuug ugccaugcua cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc 240 acucucucuc uguguucuug gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu 300 gaagaaaaug guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau 360 ggaguccaau gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua 420 uua 423 <210> 46 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5002 <400> 46 gggcgauugg aaagggauuu cgaaccgggu aauuuaacag uaccagauau aucuuugaug 60 gguucuagca caaucucaug ggguuucucu gcaguagcca cugaugcaga aauccuaaaa 120 gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa acaccccuaa ugauuuugcu 180 gaaauuuggg uuaguuucuu ugauccaaag aagagagaau uugaaacaag aggacccuuu 240 uguguuuuag aaagauugga ggaauucaga cuaagggucu guaucccuug ugccaugcua 300 cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc acucucucuc uguguucuug 360 gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag 420 guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau gucagcuuca 480 ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 523 <210> 47 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6002 <400> 47 gggaaguguu uucaacgcac caagcaugua augaaugucg ucacuacuca guaaauuguc 60 aacaacaguc cuucccucag aaagggcagc aagaaggaga auacgauugg aaagggauuu 120 cgaaccgggu aauuuaacag uaccagauau aucuuugaug gguucuagca caaucucaug 180 ggguuucucu gcaguagcca cugaugcaga aauccuaaaa gaugacuucc ucaccacccu 240 caaaacugaa ucuuucuuaa acaccccuaa ugauuuugcu gaaauuuggg uuaguuucuu 300 ugauccaaag aagagagaau uugaaacaag aggacccuuu uguguuuuag aaagauugga 360 ggaauucaga cuaagggucu guaucccuug ugccaugcua cuaaucugug ccauuucuug 420 ugaaaaacuu caguuuuucc acucucucuc uguguucuug gaguuguuug aagaccaaau 480 uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag guagauugaa gggagauggg 540 guuaggcaau uaagcagaau ggaguccaau gucagcuuca ccaaccaccu uuugucggaa 600 uuccccuaua gugagucgua uua 623 <210> 48 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7002 <400> 48 gggguuggau uucuuccuca gacuuuuuac cgacaggaaa cugcccacca caaccuucca 60 caauugcucg uugguuuuca uugucaucuu caacaugaag uccaaguguu uucaacgcac 120 caagcaugua augaaugucg ucacuacuca guaaauuguc aacaacaguc cuucccucag 180 aaagggcagc aagaaggaga auacgauugg aaagggauuu cgaaccgggu aauuuaacag 240 uaccagauau aucuuugaug gguucuagca caaucucaug ggguuucucu gcaguagcca 300 cugaugcaga aauccuaaaa gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa 360 acaccccuaa ugauuuugcu gaaauuuggg uuaguuucuu ugauccaaag aagagagaau 420 uugaaacaag aggacccuuu uguguuuuag aaagauugga ggaauucaga cuaagggucu 480 guaucccuug ugccaugcua cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc 540 acucucucuc uguguucuug gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu 600 gaagaaaaug guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau 660 ggaguccaau gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua 720 uua 723 <210> 49 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8002 <400> 49 gggauccuag gaacuccauc aagaacauau cuugaauguc cuccagcuac aguaacugcu 60 gcugucaacg gacgcauugc uguuccugca uuuccaagga auaguuggau uucuuccuca 120 gacuuuuuac cgacaggaaa cugcccacca caaccuucca caauugcucg uugguuuuca 180 uugucaucuu caacaugaag uccaaguguu uucaacgcac caagcaugua augaaugucg 240 ucacuacuca guaaauuguc aacaacaguc cuucccucag aaagggcagc aagaaggaga 300 auacgauugg aaagggauuu cgaaccgggu aauuuaacag uaccagauau aucuuugaug 360 gguucuagca caaucucaug ggguuucucu gcaguagcca cugaugcaga aauccuaaaa 420 gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa acaccccuaa ugauuuugcu 480 gaaauuuggg uuaguuucuu ugauccaaag aagagagaau uugaaacaag aggacccuuu 540 uguguuuuag aaagauugga ggaauucaga cuaagggucu guaucccuug ugccaugcua 600 cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc acucucucuc uguguucuug 660 gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag 720 guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau gucagcuuca 780 ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 823 <210> 50 <211> 336 <212> RNA <213> Artificial Sequence <220> <223> R1 <400> 50 gggcacaguu uaccguugug agagucuucc agcagguuaa cagagugggu aacgguaacg 60 uuuuuuucca gaacgguguc aacggugucg guagaguugu uagcguggua accgaugcag 120 auggugucag cgucagcagc agccagagcg cacagcagaa ccagcagguu agcuuucaug 180 agcucggcuc ccccggaacc gccaccggcc uuucccucua gguaugccac cacgcugggu 240 uucuccagca gugauguuac cauccgacuu accguuaguu uugccuuguu uaggcaagcg 300 ugcagguugu cgaggucccu auagugaguc guauua 336 <210> 51 <211> 414 <212> RNA <213> Artificial Sequence <220> <223> R2 <400> 51 gggucgcauu ccggguuacc cagcagccaa ccagcgaugu ugcauuuacc cagcugcagc 60 ggagcgauac cuuucagacg gcacaguuua ccguugugag agucuuccag cagguuaaca 120 gaguggguaa cgguaacguu uuuuuccaga acggugucaa cggugucggu agaguuguua 180 gcgugguaac cgaugcagau ggugucagcg ucagcagcag ccagagcgca cagcagaacc 240 agcagguuag cuuucaugag cucggcuccc ccggaaccgc caccggccuu ucccucuagg 300 uaugccacca cgcuggguuu cuccagcagu gauguuacca uccgacuuac cguuaguuuu 360 gccuuguuua ggcaagcgug cagguugucg aggucccuau agugagucgu auua 414 <210> 52 <211> 483 <212> RNA <213> Artificial Sequence <220> <223> R3 <400> 52 ggguagcaga uaccguuuuc agaguucggg guuucaacga uguaagacca agaacgaacc 60 ggcagcagcg ggucgcauuc cggguuaccc agcagccaac cagcgauguu gcauuuaccc 120 agcugcagcg gagcgauacc uuucagacgg cacaguuuac cguugugaga gucuuccagc 180 agguuaacag aguggguaac gguaacguuu uuuuccagaa cggugucaac ggugucggua 240 gaguuguuag cgugguaacc gaugcagaug gugucagcgu cagcagcagc cagagcgcac 300 agcagaacca gcagguuagc uuucaugagc ucggcucccc cggaaccgcc accggccuuu 360 cccucuaggu augccaccac gcuggguuuc uccagcagug auguuaccau ccgacuuacc 420 guuaguuuug ccuuguuuag gcaagcgugc agguugucga ggucccuaua gugagucgua 480 uua 483 <210> 53 <211> 605 <212> RNA <213> Artificial Sequence <220> <223> R4 <400> 53 ggguaacacc guugguguug ugguucggcc aagaagauuc uuucgggaag auuucgaaac 60 guucgaaaga agaaacagaa gacagcuguu cacgcaguuc uucguagucg augaagucac 120 ccggguagca gauaccguuu ucagaguucg ggguuucaac gauguaagac caagaacgaa 180 ccggcagcag cgggucgcau uccggguuac ccagcagcca accagcgaug uugcauuuac 240 ccagcugcag cggagcgaua ccuuucagac ggcacaguuu accguuguga gagucuucca 300 gcagguuaac agagugggua acgguaacgu uuuuuuccag aacgguguca acggugucgg 360 uagaguuguu agcgugguaa ccgaugcaga uggugucagc gucagcagca gccagagcgc 420 acagcagaac cagcagguua gcuuucauga gcucggcucc cccggaaccg ccaccggccu 480 uucccucuag guaugccacc acgcuggguu ucuccagcag ugauguuacc auccgacuua 540 ccguuaguuu ugccuuguuu aggcaagcgu gcagguuguc gaggucccua uagugagucg 600 uauua 605 <210> 54 <211> 681 <212> RNA <213> Artificial Sequence <220> <223> R5 <400> 54 ggguaagaac cuucuuuuuc ggucagccac agcagguuac gguagaaaga agauuuaccu 60 ucgugagagc aagcagcggu aacaccguug guguuguggu ucggccaaga agauucuuuc 120 gggaagauuu cgaaacguuc gaaagaagaa acagaagaca gcuguucacg caguucuucg 180 uagucgauga agucacccgg guagcagaua ccguuuucag aguucggggu uucaacgaug 240 uaagaccaag aacgaaccgg cagcagcggg ucgcauuccg gguuacccag cagccaacca 300 gcgauguugc auuuacccag cugcagcgga gcgauaccuu ucagacggca caguuuaccg 360 uugugagagu cuuccagcag guuaacagag uggguaacgg uaacguuuuu uuccagaacg 420 gugucaacgg ugucgguaga guuguuagcg ugguaaccga ugcagauggu gucagcguca 480 gcagcagcca gagcgcacag cagaaccagc agguuagcuu ucaugagcuc ggcucccccg 540 gaaccgccac cggccuuucc cucuagguau gccaccacgc uggguuucuc cagcagugau 600 guuaccaucc gacuuaccgu uaguuuugcc uuguuuaggc aagcgugcag guugucgagg 660 ucccuauagu gagucguauu a 681 <210> 55 <211> 750 <212> RNA <213> Artificial Sequence <220> <223> R6 <400> 55 ggguggugga uaccccacag aaccagaacu ucuuuaccuu uuuuguuaac guaagaguuu 60 uucaguuucg gguaagaacc uucuuuuucg gucagccaca gcagguuacg guagaaagaa 120 gauuuaccuu cgugagagca agcagcggua acaccguugg uguugugguu cggccaagaa 180 gauucuuucg ggaagauuuc gaaacguucg aaagaagaaa cagaagacag cuguucacgc 240 aguucuucgu agucgaugaa gucacccggg uagcagauac cguuuucaga guucgggguu 300 ucaacgaugu aagaccaaga acgaaccggc agcagcgggu cgcauuccgg guuacccagc 360 agccaaccag cgauguugca uuuacccagc ugcagcggag cgauaccuuu cagacggcac 420 aguuuaccgu ugugagaguc uuccagcagg uuaacagagu ggguaacggu aacguuuuuu 480 uccagaacgg ugucaacggu gucgguagag uuguuagcgu gguaaccgau gcagauggug 540 ucagcgucag cagcagccag agcgcacagc agaaccagca gguuagcuuu caugagcucg 600 gcucccccgg aaccgccacc ggccuuuccc ucuagguaug ccaccacgcu ggguuucucc 660 agcagugaug uuaccauccg acuuaccguu aguuuugccu uguuuaggca agcgugcagg 720 uugucgaggu cccuauagug agucguauua 750 <210> 56 <211> 839 <212> RNA <213> Artificial Sequence <220> <223> R7 <400> 56 gggugaaacg acgguuguag uuagagguaa caacagaaac guaagcguuu ucguucuggu 60 acagguucug cuguucuuua gaguucggcg ggugguggau accccacaga accagaacuu 120 cuuuaccuuu uuuguuaacg uaagaguuuu ucaguuucgg guaagaaccu ucuuuuucgg 180 ucagccacag cagguuacgg uagaaagaag auuuaccuuc gugagagcaa gcagcgguaa 240 caccguuggu guugugguuc ggccaagaag auucuuucgg gaagauuucg aaacguucga 300 aagaagaaac agaagacagc uguucacgca guucuucgua gucgaugaag ucacccgggu 360 agcagauacc guuuucagag uucgggguuu caacgaugua agaccaagaa cgaaccggca 420 gcagcggguc gcauuccggg uuacccagca gccaaccagc gauguugcau uuacccagcu 480 gcagcggagc gauaccuuuc agacggcaca guuuaccguu gugagagucu uccagcaggu 540 uaacagagug gguaacggua acguuuuuuu ccagaacggu gucaacggug ucgguagagu 600 uguuagcgug guaaccgaug cagauggugu cagcgucagc agcagccaga gcgcacagca 660 gaaccagcag guuagcuuuc augagcucgg cucccccgga accgccaccg gccuuucccu 720 cuagguaugc caccacgcug gguuucucca gcagugaugu uaccauccga cuuaccguua 780 guuuugccuu guuuaggcaa gcgugcaggu ugucgagguc ccuauaguga gucguauua 839 <210> 57 <211> 902 <212> RNA <213> Artificial Sequence <220> <223> R8 <400> 57 ggguccagua guaguucaua cgaccagccu ggucacgaac uuucggacgu ucagcgauuu 60 ccggggugaa acgacgguug uaguuagagg uaacaacaga aacguaagcg uuuucguucu 120 gguacagguu cugcuguucu uuagaguucg gcggguggug gauaccccac agaaccagaa 180 cuucuuuacc uuuuuuguua acguaagagu uuuucaguuu cggguaagaa ccuucuuuuu 240 cggucagcca cagcagguua cgguagaaag aagauuuacc uucgugagag caagcagcgg 300 uaacaccguu gguguugugg uucggccaag aagauucuuu cgggaagauu ucgaaacguu 360 cgaaagaaga aacagaagac agcuguucac gcaguucuuc guagucgaug aagucacccg 420 gguagcagau accguuuuca gaguucgggg uuucaacgau guaagaccaa gaacgaaccg 480 gcagcagcgg gucgcauucc ggguuaccca gcagccaacc agcgauguug cauuuaccca 540 gcugcagcgg agcgauaccu uucagacggc acaguuuacc guugugagag ucuuccagca 600 gguuaacaga guggguaacg guaacguuuu uuuccagaac ggugucaacg gugucgguag 660 aguuguuagc gugguaaccg augcagaugg ugucagcguc agcagcagcc agagcgcaca 720 gcagaaccag cagguuagcu uucaugagcu cggcuccccc ggaaccgcca ccggccuuuc 780 ccucuaggua ugccaccacg cuggguuucu ccagcaguga uguuaccauc cgacuuaccg 840 uuaguuuugc cuuguuuagg caagcgugca gguugucgag gucccuauag ugagucguau 900 ua 902 <210> 58 <211> 1049 <212> RNA <213> Artificial Sequence <220> <223> R9 <400> 58 gggucuggca uuugguguug cauucgugca uagaagcguu agaggugaug auaccagaac 60 cgaaaccacg agacagagcg aaagcguaca ucggagcgau cagguuaccg uuagcuucga 120 agaugauggu gucacccggu uucagcaggg uccaguagua guucauacga ccagccuggu 180 cacgaacuuu cggacguuca gcgauuuccg gggugaaacg acgguuguag uuagagguaa 240 caacagaaac guaagcguuu ucguucuggu acagguucug cuguucuuua gaguucggcg 300 ggugguggau accccacaga accagaacuu cuuuaccuuu uuuguuaacg uaagaguuuu 360 ucaguuucgg guaagaaccu ucuuuuucgg ucagccacag cagguuacgg uagaaagaag 420 auuuaccuuc gugagagcaa gcagcgguaa caccguuggu guugugguuc ggccaagaag 480 auucuuucgg gaagauuucg aaacguucga aagaagaaac agaagacagc uguucacgca 540 guucuucgua gucgaugaag ucacccgggu agcagauacc guuuucagag uucgggguuu 600 caacgaugua agaccaagaa cgaaccggca gcagcggguc gcauuccggg uuacccagca 660 gccaaccagc gauguugcau uuacccagcu gcagcggagc gauaccuuuc agacggcaca 720 guuuaccguu gugagagucu uccagcaggu uaacagagug gguaacggua acguuuuuuu 780 ccagaacggu gucaacggug ucgguagagu uguuagcgug guaaccgaug cagauggugu 840 cagcgucagc agcagccaga gcgcacagca gaaccagcag guuagcuuuc augagcucgg 900 cucccccgga accgccaccg gccuuucccu cuagguaugc caccacgcug gguuucucca 960 gcagugaugu uaccauccga cuuaccguua guuuugccuu guuuaggcaa gcgugcaggu 1020 ugucgagguc ccuauaguga gucguauua 1049 <210> 59 <211> 1170 <212> RNA <213> Artificial Sequence <220> <223> R10 <400> 59 gggauguuac gcagaccggu aaccauacgc aguuuagcag aacgaacgua uuucgggcau 60 ucaccgaugg uaaccgggug gauguucugg uacggcagag aagaguugau agcacccagc 120 ggggucuggc auuugguguu gcauucgugc auagaagcgu uagaggugau gauaccagaa 180 ccgaaaccac gagacagagc gaaagcguac aucggagcga ucagguuacc guuagcuucg 240 aagaugaugg ugucacccgg uuucagcagg guccaguagu aguucauacg accagccugg 300 ucacgaacuu ucggacguuc agcgauuucc ggggugaaac gacgguugua guuagaggua 360 acaacagaaa cguaagcguu uucguucugg uacagguucu gcuguucuuu agaguucggc 420 ggguggugga uaccccacag aaccagaacu ucuuuaccuu uuuuguuaac guaagaguuu 480 uucaguuucg gguaagaacc uucuuuuucg gucagccaca gcagguuacg guagaaagaa 540 gauuuaccuu cgugagagca agcagcggua acaccguugg uguugugguu cggccaagaa 600 gauucuuucg ggaagauuuc gaaacguucg aaagaagaaa cagaagacag cuguucacgc 660 aguucuucgu agucgaugaa gucacccggg uagcagauac cguuuucaga guucgggguu 720 ucaacgaugu aagaccaaga acgaaccggc agcagcgggu cgcauuccgg guuacccagc 780 agccaaccag cgauguugca uuuacccagc ugcagcggag cgauaccuuu cagacggcac 840 aguuuaccgu ugugagaguc uuccagcagg uuaacagagu ggguaacggu aacguuuuuu 900 uccagaacgg ugucaacggu gucgguagag uuguuagcgu gguaaccgau gcagauggug 960 ucagcgucag cagcagccag agcgcacagc agaaccagca gguuagcuuu caugagcucg 1020 gcucccccgg aaccgccacc ggccuuuccc ucuagguaug ccaccacgcu ggguuucucc 1080 agcagugaug uuaccauccg acuuaccguu aguuuugccu uguuuaggca agcgugcagg 1140 uugucgaggu cccuauagug agucguauua 1170 <210> 60 <211> 1665 <212> RNA <213> Artificial Sequence <220> <223> R11 <400> 60 ggguagucgu agguaccguu acgaacagau uccaugcauu cguugucgca uuugugguag 60 aauucgaagc aaccguuacc gauuucuuua gcguuguuuu ucagcugaga uuuaacuuuu 120 ucguacaggu uuuuaacguu agagucgugg aaguccaggg uacguucguu uuccagcaga 180 accagcaguu cagcguugua gguccagaug uccaggaaac cgucgucaac uuuuuuguuc 240 agguuuucca uacguuuuuc caguuuguug aauucuuuac caacagcggu gaacuggaug 300 uucauuuuuu cgauaacggu guuaacuuug uuggugauac cguugauagc guucugggua 360 gauuucuggu cagcagcgua accagaaccc uguucguucu ggugguggua accguaccaa 420 ccgucgauca uaccggucca accaccuucg augaaaccag cgauagcacc gaacagacca 480 cgagacugga uagacgggau guuacgcaga ccgguaacca uacgcaguuu agcagaacga 540 acguauuucg ggcauucacc gaugguaacc ggguggaugu ucugguacgg cagagaagag 600 uugauagcac ccagcggggu cuggcauuug guguugcauu cgugcauaga agcguuagag 660 gugaugauac cagaaccgaa accacgagac agagcgaaag cguacaucgg agcgaucagg 720 uuaccguuag cuucgaagau gaugguguca cccgguuuca gcagggucca guaguaguuc 780 auacgaccag ccuggucacg aacuuucgga cguucagcga uuuccggggu gaaacgacgg 840 uuguaguuag agguaacaac agaaacguaa gcguuuucgu ucugguacag guucugcugu 900 ucuuuagagu ucggcgggug guggauaccc cacagaacca gaacuucuuu accuuuuuug 960 uuaacguaag aguuuuucag uuucggguaa gaaccuucuu uuucggucag ccacagcagg 1020 uuacgguaga aagaagauuu accuucguga gagcaagcag cgguaacacc guugguguug 1080 ugguucggcc aagaagauuc uuucgggaag auuucgaaac guucgaaaga agaaacagaa 1140 gacagcuguu cacgcaguuc uucguagucg augaagucac ccggguagca gauaccguuu 1200 ucagaguucg ggguuucaac gauguaagac caagaacgaa ccggcagcag cgggucgcau 1260 uccggguuac ccagcagcca accagcgaug uugcauuuac ccagcugcag cggagcgaua 1320 ccuuucagac ggcacaguuu accguuguga gagucuucca gcagguuaac agagugggua 1380 acgguaacgu uuuuuuccag aacgguguca acggugucgg uagaguuguu agcgugguaa 1440 ccgaugcaga uggugucagc gucagcagca gccagagcgc acagcagaac cagcagguua 1500 gcuuucauga gcucggcucc cccggaaccg ccaccggccu uucccucuag guaugccacc 1560 acgcuggguu ucuccagcag ugauguuacc auccgacuua ccguuaguuu ugccuuguuu 1620 aggcaagcgu gcagguuguc gaggucccua uagugagucg uauua 1665 <210> 61 <211> 475 <212> RNA <213> Artificial Sequence <220> <223> NA,NVT,VP1,VP10 <400> 61 gggcgaucuc acuuucacuc ucauuuuaga uucugcucua auccccguag ccugcgcccu 60 acuaacauua ucugccuuau cauaaucagu uaccgguaaa uaggcgcuag ccguauuucu 120 ccgcauaaca guaucauaua uauaaggcac agugaaaugu acugauuuuu guucucccaa 180 guggaacguu uuaguauaag uugaguguga cugacacuca uccguauuag uagaugaucg 240 auuauacucc gcugauauaa ucacuguucc agugugaaac gcauuugaaa caaaaucaaa 300 acguaacucu auuggcccug accaaaaguu auacaaccca guuacauauu ccauuggggu 360 uauuuguccu ucauaguccu gaucauaaaa ucucacaccu gaguccaaaa cuguauuauc 420 gcccuauagu gagucguauu aggauccgau aucuagaugc auucgcgagg uaccg 475 <210> 62 <211> 499 <212> RNA <213> Artificial Sequence <220> <223> NVT IV,NVT 4,VP20 <400> 62 gggcgaucuc acuuucacuc ucauuuuaga uucugcucua auccccguag ccugcgcccu 60 acuaacauua ucugccuuau cauaaucagu uaccgguaaa uaggcgcuag ccguauuucu 120 ccgcauaaca guaucauaua uauaaggcac agugaaaugu acugauuuuu guucucccaa 180 guggaacguu uuaguauaag uugaguguga cugacacuca uccguauuag uagaugaucg 240 auuauacucc gcugauauaa ucacuguucc agugugaaac gcauuugaaa caaaaucaaa 300 acguaacucu auuggcccug accaaaaguu auacaaccca guuacauauu ccauuggggu 360 uauuuguccu ucauaguccu gaucauaaaa ucucacaccu gaguccaaaa cuguauuauc 420 gcccuauagu gagucguauu aggauccgau aucuagaugc auucgcgagg uaccguuguu 480 guuguuguug uuguuguug 499 <210> 63 <211> 106 <212> RNA <213> Artificial Sequence <220> <223> NA1001 <400> 63 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgccc 106 <210> 64 <211> 156 <212> RNA <213> Artificial Sequence <220> <223> NA1501 <400> 64 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augccc 156 <210> 65 <211> 206 <212> RNA <213> Artificial Sequence <220> <223> NA2001 <400> 65 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccc 206 <210> 66 <211> 306 <212> RNA <213> Artificial Sequence <220> <223> NA3001 <400> 66 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauccc 306 <210> 67 <211> 406 <212> RNA <213> Artificial Sequence <220> <223> NA4001 <400> 67 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaccc 406 <210> 68 <211> 506 <212> RNA <213> Artificial Sequence <220> <223> NA5001 <400> 68 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuccc 506 <210> 69 <211> 606 <212> RNA <213> Artificial Sequence <220> <223> NA6001 <400> 69 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucccc 606 <210> 70 <211> 706 <212> RNA <213> Artificial Sequence <220> <223> NA7001 <400> 70 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcuccc 706 <210> 71 <211> 806 <212> RNA <213> Artificial Sequence <220> <223> NA8001 <400> 71 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcuuccucgc ucacugacuc 720 gcugcgcucg gucguucggc ugcggcgagc gguaucagcu cacucaaagg cgguaauacg 780 guuauccaca gaaucagggg auaccc 806 <210> 72 <211> 106 <212> RNA <213> Artificial Sequence <220> <223> NA1002 <400> 72 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucccc 106 <210> 73 <211> 156 <212> RNA <213> Artificial Sequence <220> <223> NA1502 <400> 73 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacccc 156 <210> 74 <211> 206 <212> RNA <213> Artificial Sequence <220> <223> NA2002 <400> 74 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauccc 206 <210> 75 <211> 306 <212> RNA <213> Artificial Sequence <220> <223> NA3002 <400> 75 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaccc 306 <210> 76 <211> 406 <212> RNA <213> Artificial Sequence <220> <223> NA4002 <400> 76 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug cauccc 406 <210> 77 <211> 506 <212> RNA <213> Artificial Sequence <220> <223> NA5002 <400> 77 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucgccc 506 <210> 78 <211> 606 <212> RNA <213> Artificial Sequence <220> <223> NA6002 <400> 78 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuccc 606 <210> 79 <211> 706 <212> RNA <213> Artificial Sequence <220> <223> NA7002 <400> 79 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aacccc 706 <210> 80 <211> 806 <212> RNA <213> Artificial Sequence <220> <223> NA8002 <400> 80 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aacuauuccu uggaaaugca 720 ggaacagcaa ugcguccguu gacagcagca guuacuguag cuggaggaca uucaagauau 780 guucuugaug gaguuccuag gauccc 806 <210> 81 <211> 319 <212> RNA <213> Artificial Sequence <220> <223> R1 <400> 81 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccc 319 <210> 82 <211> 397 <212> RNA <213> Artificial Sequence <220> <223> R2 <400> 82 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgaccc 397 <210> 83 <211> 466 <212> RNA <213> Artificial Sequence <220> <223> R3 <400> 83 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuaccc 466 <210> 84 <211> 588 <212> RNA <213> Artificial Sequence <220> <223> R4 <400> 84 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccc 588 <210> 85 <211> 664 <212> RNA <213> Artificial Sequence <220> <223> R5 <400> 85 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 accc 664 <210> 86 <211> 733 <212> RNA <213> Artificial Sequence <220> <223> R6 <400> 86 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca ccc 733 <210> 87 <211> 822 <212> RNA <213> Artificial Sequence <220> <223> R7 <400> 87 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cc 822 <210> 88 <211> 885 <212> RNA <213> Artificial Sequence <220> <223> R8 <400> 88 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gaccc 885 <210> 89 <211> 1032 <212> RNA <213> Artificial Sequence <220> <223> R9 <400> 89 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cc 1032 <210> 90 <211> 1153 <212> RNA <213> Artificial Sequence <220> <223> R10 <400> 90 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau ccc 1153 <210> 91 <211> 1648 <212> RNA <213> Artificial Sequence <220> <223> R11 <400> 91 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau cccgucuauc cagucucgug gucuguucgg ugcuaucgcu gguuucaucg 1200 aaggugguug gaccgguaug aucgacgguu gguacgguua ccaccaccag aacgaacagg 1260 guucugguua cgcugcugac cagaaaucua cccagaacgc uaucaacggu aucaccaaca 1320 aaguuaacac cguuaucgaa aaaaugaaca uccaguucac cgcuguuggu aaagaauuca 1380 acaaacugga aaaacguaug gaaaaccuga acaaaaaagu ugacgacggu uuccuggaca 1440 ucuggaccua caacgcugaa cugcugguuc ugcuggaaaa cgaacguacc cuggacuucc 1500 acgacucuaa cguuaaaaac cuguacgaaa aaguuaaauc ucagcugaaa aacaacgcua 1560 aagaaaucgg uaacgguugc uucgaauucu accacaaaug cgacaacgaa ugcauggaau 1620 cuguucguaa cgguaccuac gacuaccc 1648 <210> 92 <211> 424 <212> RNA <213> Artificial Sequence <220> <223> NA,NVT,VP1,VP10 <400> 92 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gccc 424 <210> 93 <211> 424 <212> RNA <213> Artificial Sequence <220> <223> NVT IV, NVT 4, VP20 <400> 93 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gccc 424 <110> NA Vaccine Institute <120> NOVEL RIBONUCLEIC ACID AND PHARMACEUTICAL COMPOSITION BASED ON THE SAME <130> NAVI19P-0001-KR-PRI2 <160> 93 <170> KoPatentIn 3.0 <210> 1 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1001 <400> 1 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgcccuaua gugagucgua 120 uua 123 <210> 2 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1501 <400> 2 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcccuaua gugagucgua uua 173 <210> 3 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2001 <400> 3 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auacccuaua gugagucgua uua 223 <210> 4 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3001 <400> 4 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uaucccuaua gugagucgua uua 323 <210> 5 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4001 <400> 5 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caacccuaua gugagucgua 420 uua 423 <210> 6 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5001 <400> 6 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guucccuaua gugagucgua uua 523 <210> 7 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6001 <400> 7 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cuccccuaua gugagucgua uua 623 <210> 8 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7001 <400> 8 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcucccuaua gugagucgua 720 uua 723 <210> 9 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8001 <400> 9 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcuuccucgc ucacugacuc 720 gcugcgcucg gucguucggc ugcggcgagc gguaucagcu cacucaaagg cgguaauacg 780 guuauccaca gaaucagggg auacccuaua gugagucgua uua 823 <210> 10 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1002 <400> 10 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uuccccuaua gugagucgua 120 uua 123 <210> 11 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1502 <400> 11 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aaccccuaua gugagucgua uua 173 <210> 12 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2002 <400> 12 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gaucccuaua gugagucgua uua 223 <210> 13 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3002 <400> 13 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggacccuaua gugagucgua uua 323 <210> 14 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4002 <400> 14 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucccuaua gugagucgua 420 uua 423 <210> 15 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5002 <400> 15 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucgcccuaua gugagucgua uua 523 <210> 16 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6002 <400> 16 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuucccuaua gugagucgua uua 623 <210> 17 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7002 <400> 17 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aaccccuaua gugagucgua 720 uua 723 <210> 18 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8002 <400> 18 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aacuauuccu uggaaaugca 720 ggaacagcaa ugcguccguu gacagcagca guuacuguag cuggaggaca uucaagauau 780 guucuugaug gaguuccuag gaucccuaua gugagucgua uua 823 <210> 19 <211> 336 <212> RNA <213> Artificial Sequence <220> <223> R1 <400> 19 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugcccu auagugaguc guauua 336 <210> 20 <211> 414 <212> RNA <213> Artificial Sequence <220> <223> R2 <400> 20 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccuau agugagucgu auua 414 <210> 21 <211> 483 <212> RNA <213> Artificial Sequence <220> <223> R3 <400> 21 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccuaua gugagucgua 480 uua 483 <210> 22 <211> 605 <212> RNA <213> Artificial Sequence <220> <223> R4 <400> 22 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuacccua uagugagucg 600 uauua 605 <210> 23 <211> 681 <212> RNA <213> Artificial Sequence <220> <223> R5 <400> 23 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccuauagu gagucguauu a 681 <210> 24 <211> 750 <212> RNA <213> Artificial Sequence <220> <223> R6 <400> 24 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccuauagug agucguauua 750 <210> 25 <211> 839 <212> RNA <213> Artificial Sequence <220> <223> R7 <400> 25 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac ccuauaguga gucguauua 839 <210> 26 <211> 902 <212> RNA <213> Artificial Sequence <220> <223> R8 <400> 26 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccuauag ugagucguau 900 ua 902 <210> 27 <211> 1049 <212> RNA <213> Artificial Sequence <220> <223> R9 <400> 27 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac ccuauaguga gucguauua 1049 <210> 28 <211> 1170 <212> RNA <213> Artificial Sequence <220> <223> R10 <400> 28 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau cccuauagug agucguauua 1170 <210> 29 <211> 1665 <212> RNA <213> Artificial Sequence <220> <223> R11 <400> 29 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau cccgucuauc cagucucgug gucuguucgg ugcuaucgcu gguuucaucg 1200 aaggugguug gaccgguaug aucgacgguu gguacgguua ccaccaccag aacgaacagg 1260 guucugguua cgcugcugac cagaaaucua cccagaacgc uaucaacggu aucaccaaca 1320 aaguuaacac cguuaucgaa aaaaugaaca uccaguucac cgcuguuggu aaagaauuca 1380 acaaacugga aaaacguaug gaaaaccuga acaaaaaagu ugacgacggu uuccuggaca 1440 ucuggaccua caacgcugaa cugcugguuc ugcuggaaaa cgaacguacc cuggacuucc 1500 acgacucuaa cguuaaaaac cuguacgaaa aaguuaaauc ucagcugaaa aacaacgcua 1560 aagaaaucgg uaacgguugc uucgaauucu accacaaaug cgacaacgaa ugcauggaau 1620 cuguucguaa cgguaccuac gacuacccua uagugagucg uauua 1665 <210> 30 <211> 482 <212> RNA <213> Artificial Sequence <220> <223> NA,NVT,VP1,VP10 <400> 30 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gcccuauagu gagucguauu agucgacugc agaggccugc augcaagcuu ggcguaauca 480 ug 482 <210> 31 <211> 493 <212> RNA <213> Artificial Sequence <220> <223> NVT IV,NVT 4,VP20 <400> 31 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gcccuauagu gagucguauu agucgacugc agaggccugc augcaagcuu uguuguuguu 480 guuguuguug uug 493 <210> 32 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1001 <400> 32 gggcgggcuu gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc 60 ugcauguguc agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua 120 uua 123 <210> 33 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1501 <400> 33 gggcauaguu aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu 60 gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc 120 agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 173 <210> 34 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2001 <400> 34 ggguauuuca caccgcauau ggugcacucu caguacaauc ugcucugaug ccgcauaguu 60 aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu gucugcuccc 120 ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc agagguuuuc 180 accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 223 <210> 35 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3001 <400> 35 gggauagcga agaggcccgc accgaucgcc cuucccaaca guugcgcagc cugaauggcg 60 aauggcgccu gaugcgguau uuucuccuua cgcaucugug cgguauuuca caccgcauau 120 ggugcacucu caguacaauc ugcucugaug ccgcauaguu aagccagccc cgacacccgc 180 caacacccgc ugacgcgccc ugacgggcuu gucugcuccc ggcauccgcu uacagacaag 240 cugugaccgu cuccgggagc ugcauguguc agagguuuuc accgucauca ccgaaacgcg 300 cgacccuaua gugagucgua uua 323 <210> 36 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4001 <400> 36 ggguuggcac uggccgucgu uuuacaacgu cgugacuggg aaaacccugg cguuacccaa 60 cuuaaucgcc uugcagcaca ucccccuuuc gccagcuggc guaauagcga agaggcccgc 120 accgaucgcc cuucccaaca guugcgcagc cugaauggcg aauggcgccu gaugcgguau 180 uuucuccuua cgcaucugug cgguauuuca caccgcauau ggugcacucu caguacaauc 240 ugcucugaug ccgcauaguu aagccagccc cgacacccgc caacacccgc ugacgcgccc 300 ugacgggcuu gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc 360 ugcauguguc agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua 420 uua 423 <210> 37 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5001 <400> 37 gggaacaauu ucacacagga aacagcuaug accaugauua cgaacucguc cucgguuccc 60 ggcgauccuc uggagauaau cguccacuug ccgucaugcu ucuuuggcac uggccgucgu 120 uuuacaacgu cgugacuggg aaaacccugg cguuacccaa cuuaaucgcc uugcagcaca 180 ucccccuuuc gccagcuggc guaauagcga agaggcccgc accgaucgcc cuucccaaca 240 guugcgcagc cugaauggcg aauggcgccu gaugcgguau uuucuccuua cgcaucugug 300 cgguauuuca caccgcauau ggugcacucu caguacaauc ugcucugaug ccgcauaguu 360 aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu gucugcuccc 420 ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc agagguuuuc 480 accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 523 <210> 38 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6001 <400> 38 ggggagcgca acgcaauuaa ugugaguuag cucacucauu aggcacccca ggcuuuacac 60 uuuaugcuuc cggcucguau guugugugga auugugagcg gauaacaauu ucacacagga 120 aacagcuaug accaugauua cgaacucguc cucgguuccc ggcgauccuc uggagauaau 180 cguccacuug ccgucaugcu ucuuuggcac uggccgucgu uuuacaacgu cgugacuggg 240 aaaacccugg cguuacccaa cuuaaucgcc uugcagcaca ucccccuuuc gccagcuggc 300 guaauagcga agaggcccgc accgaucgcc cuucccaaca guugcgcagc cugaauggcg 360 aauggcgccu gaugcgguau uuucuccuua cgcaucugug cgguauuuca caccgcauau 420 ggugcacucu caguacaauc ugcucugaug ccgcauaguu aagccagccc cgacacccgc 480 caacacccgc ugacgcgccc ugacgggcuu gucugcuccc ggcauccgcu uacagacaag 540 cugugaccgu cuccgggagc ugcauguguc agagguuuuc accgucauca ccgaaacgcg 600 cgacccuaua gugagucgua uua 623 <210> 39 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7001 <400> 39 gggagcggaa gagcgcccaa uacgcaaacc gccucucccc gcgcguuggc cgauucauua 60 augcagcugg cacgacaggu uucccgacug gaaagcgggc agugagcgca acgcaauuaa 120 ugugaguuag cucacucauu aggcacccca ggcuuuacac uuuaugcuuc cggcucguau 180 guugugugga auugugagcg gauaacaauu ucacacagga aacagcuaug accaugauua 240 cgaacucguc cucgguuccc ggcgauccuc uggagauaau cguccacuug ccgucaugcu 300 ucuuuggcac uggccgucgu uuuacaacgu cgugacuggg aaaacccugg cguuacccaa 360 cuuaaucgcc uugcagcaca ucccccuuuc gccagcuggc guaauagcga agaggcccgc 420 accgaucgcc cuucccaaca guugcgcagc cugaauggcg aauggcgccu gaugcgguau 480 uuucuccuua cgcaucugug cgguauuuca caccgcauau ggugcacucu caguacaauc 540 ugcucugaug ccgcauaguu aagccagccc cgacacccgc caacacccgc ugacgcgccc 600 ugacgggcuu gucugcuccc ggcauccgcu uacagacaag cugugaccgu cuccgggagc 660 ugcauguguc agagguuuuc accgucauca ccgaaacgcg cgacccuaua gugagucgua 720 uua 723 <210> 40 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8001 <400> 40 ggguaucccc ugauucugug gauaaccgua uuaccgccuu ugagugagcu gauaccgcuc 60 gccgcagccg aacgaccgag cgcagcgagu cagugagcga ggaagcggaa gagcgcccaa 120 uacgcaaacc gccucucccc gcgcguuggc cgauucauua augcagcugg cacgacaggu 180 uucccgacug gaaagcgggc agugagcgca acgcaauuaa ugugaguuag cucacucauu 240 aggcacccca ggcuuuacac uuuaugcuuc cggcucguau guugugugga auugugagcg 300 gauaacaauu ucacacagga aacagcuaug accaugauua cgaacucguc cucgguuccc 360 ggcgauccuc uggagauaau cguccacuug ccgucaugcu ucuuuggcac uggccgucgu 420 uuuacaacgu cgugacuggg aaaacccugg cguuacccaa cuuaaucgcc uugcagcaca 480 ucccccuuuc gccagcuggc guaauagcga agaggcccgc accgaucgcc cuucccaaca 540 guugcgcagc cugaauggcg aauggcgccu gaugcgguau uuucuccuua cgcaucugug 600 cgguauuuca caccgcauau ggugcacucu caguacaauc ugcucugaug ccgcauaguu 660 aagccagccc cgacacccgc caacacccgc ugacgcgccc ugacgggcuu gucugcuccc 720 ggcauccgcu uacagacaag cugugaccgu cuccgggagc ugcauguguc agagguuuuc 780 accgucauca ccgaaacgcg cgacccuaua gugagucgua uua 823 <210> 41 <211> 123 <212> RNA <213> Artificial Sequence <220> <223> NA1002 <400> 41 ggggaaaaug guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau 60 ggaguccaau gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua 120 uua 123 <210> 42 <211> 173 <212> RNA <213> Artificial Sequence <220> <223> NA1502 <400> 42 gggguucuug gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug 60 guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau 120 gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 173 <210> 43 <211> 223 <212> RNA <213> Artificial Sequence <220> <223> NA2002 <400> 43 gggaucugug ccauuucuug ugaaaaacuu caguuuuucc acucucucuc uguguucuug 60 gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag 120 guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau gucagcuuca 180 ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 223 <210> 44 <211> 323 <212> RNA <213> Artificial Sequence <220> <223> NA3002 <400> 44 ggguccaaag aagagagaau uugaaacaag aggacccuuu uguguuuuag aaagauugga 60 ggaauucaga cuaagggucu guaucccuug ugccaugcua cuaaucugug ccauuucuug 120 ugaaaaacuu caguuuuucc acucucucuc uguguucuug gaguuguuug aagaccaaau 180 uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag guagauugaa gggagauggg 240 guuaggcaau uaagcagaau ggaguccaau gucagcuuca ccaaccaccu uuugucggaa 300 uuccccuaua gugagucgua uua 323 <210> 45 <211> 423 <212> RNA <213> Artificial Sequence <220> <223> NA4002 <400> 45 gggaugcaga aauccuaaaa gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa 60 acaccccuaa ugauuuugcu gaaauuuggg uuaguuucuu ugauccaaag aagagagaau 120 uugaaacaag aggacccuuu uguguuuuag aaagauugga ggaauucaga cuaagggucu 180 guaucccuug ugccaugcua cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc 240 acucucucuc uguguucuug gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu 300 gaagaaaaug guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau 360 ggaguccaau gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua 420 uua 423 <210> 46 <211> 523 <212> RNA <213> Artificial Sequence <220> <223> NA5002 <400> 46 gggcgauugg aaagggauuu cgaaccgggu aauuuaacag uaccagauau aucuuugaug 60 gguucuagca caaucucaug ggguuucucu gcaguagcca cugaugcaga aauccuaaaa 120 gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa acaccccuaa ugauuuugcu 180 gaaauuuggg uuaguuucuu ugauccaaag aagagagaau uugaaacaag aggacccuuu 240 uguguuuuag aaagauugga ggaauucaga cuaagggucu guaucccuug ugccaugcua 300 cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc acucucucuc uguguucuug 360 gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag 420 guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau gucagcuuca 480 ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 523 <210> 47 <211> 623 <212> RNA <213> Artificial Sequence <220> <223> NA6002 <400> 47 gggaaguguu uucaacgcac caagcaugua augaaugucg ucacuacuca guaaauuguc 60 aacaacaguc cuucccucag aaagggcagc aagaaggaga auacgauugg aaagggauuu 120 cgaaccgggu aauuuaacag uaccagauau aucuuugaug gguucuagca caaucucaug 180 ggguuucucu gcaguagcca cugaugcaga aauccuaaaa gaugacuucc ucaccacccu 240 caaaacugaa ucuuucuuaa acaccccuaa ugauuuugcu gaaauuuggg uuaguuucuu 300 ugauccaaag aagagagaau uugaaacaag aggacccuuu uguguuuuag aaagauugga 360 ggaauucaga cuaagggucu guaucccuug ugccaugcua cuaaucugug ccauuucuug 420 ugaaaaacuu caguuuuucc acucucucuc uguguucuug gaguuguuug aagaccaaau 480 uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag guagauugaa gggagauggg 540 guuaggcaau uaagcagaau ggaguccaau gucagcuuca ccaaccaccu uuugucggaa 600 uuccccuaua gugagucgua uua 623 <210> 48 <211> 723 <212> RNA <213> Artificial Sequence <220> <223> NA7002 <400> 48 gggguuggau uucuuccuca gacuuuuuac cgacaggaaa cugcccacca caaccuucca 60 caauugcucg uugguuuuca uugucaucuu caacaugaag uccaaguguu uucaacgcac 120 caagcaugua augaaugucg ucacuacuca guaaauuguc aacaacaguc cuucccucag 180 aaagggcagc aagaaggaga auacgauugg aaagggauuu cgaaccgggu aauuuaacag 240 uaccagauau aucuuugaug gguucuagca caaucucaug ggguuucucu gcaguagcca 300 cugaugcaga aauccuaaaa gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa 360 acaccccuaa ugauuuugcu gaaauuuggg uuaguuucuu ugauccaaag aagagagaau 420 uugaaacaag aggacccuuu uguguuuuag aaagauugga ggaauucaga cuaagggucu 480 guaucccuug ugccaugcua cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc 540 acucucucuc uguguucuug gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu 600 gaagaaaaug guuaugguag guagauugaa gggagauggg guuaggcaau uaagcagaau 660 ggaguccaau gucagcuuca ccaaccaccu uuugucggaa uuccccuaua gugagucgua 720 uua 723 <210> 49 <211> 823 <212> RNA <213> Artificial Sequence <220> <223> NA8002 <400> 49 gggauccuag gaacuccauc aagaacauau cuugaauguc cuccagcuac aguaacugcu 60 gcugucaacg gacgcauugc uguuccugca uuuccaagga auaguuggau uucuuccuca 120 gacuuuuuac cgacaggaaa cugcccacca caaccuucca caauugcucg uugguuuuca 180 uugucaucuu caacaugaag uccaaguguu uucaacgcac caagcaugua augaaugucg 240 ucacuacuca guaaauuguc aacaacaguc cuucccucag aaagggcagc aagaaggaga 300 auacgauugg aaagggauuu cgaaccgggu aauuuaacag uaccagauau aucuuugaug 360 gguucuagca caaucucaug ggguuucucu gcaguagcca cugaugcaga aauccuaaaa 420 gaugacuucc ucaccacccu caaaacugaa ucuuucuuaa acaccccuaa ugauuuugcu 480 gaaauuuggg uuaguuucuu ugauccaaag aagagagaau uugaaacaag aggacccuuu 540 uguguuuuag aaagauugga ggaauucaga cuaagggucu guaucccuug ugccaugcua 600 cuaaucugug ccauuucuug ugaaaaacuu caguuuuucc acucucucuc uguguucuug 660 gaguuguuug aagaccaaau uguuuuuuug agaaaauuuu gaagaaaaug guuaugguag 720 guagauugaa gggagauggg guuaggcaau uaagcagaau ggaguccaau gucagcuuca 780 ccaaccaccu uuugucggaa uuccccuaua gugagucgua uua 823 <210> 50 <211> 336 <212> RNA <213> Artificial Sequence <220> <223> R1 <400> 50 gggcacaguu uaccguugug agagucuucc agcagguuaa cagagugggu aacgguaacg 60 uuuuuuucca gaacgguguc aacggugucg guagaguugu uagcguggua accgaugcag 120 auggugucag cgucagcagc agccagagcg cacagcagaa ccagcagguu agcuuucaug 180 agcucggcuc ccccggaacc gccaccggcc uuucccucua gguaugccac cacgcugggu 240 uucuccagca gugauguuac cauccgacuu accguuaguu uugccuuguu uaggcaagcg 300 ugcagguugu cgaggucccu auagugaguc guauua 336 <210> 51 <211> 414 <212> RNA <213> Artificial Sequence <220> <223> R2 <400> 51 gggucgcauu ccggguuacc cagcagccaa ccagcgaugu ugcauuuacc cagcugcagc 60 ggagcgauac cuuucagacg gcacaguuua ccguugugag agucuuccag cagguuaaca 120 gaguggguaa cgguaacguu uuuuuccaga acggugucaa cggugucggu agaguuguua 180 gcgugguaac cgaugcagau ggugucagcg ucagcagcag ccagagcgca cagcagaacc 240 agcagguuag cuuucaugag cucggcuccc ccggaaccgc caccggccuu ucccucuagg 300 uaugccacca cgcuggguuu cuccagcagu gauguuacca uccgacuuac cguuaguuuu 360 gccuuguuua ggcaagcgug cagguugucg aggucccuau agugagucgu auua 414 <210> 52 <211> 483 <212> RNA <213> Artificial Sequence <220> <223> R3 <400> 52 ggguagcaga uaccguuuuc agaguucggg guuucaacga uguaagacca agaacgaacc 60 ggcagcagcg ggucgcauuc cggguuaccc agcagccaac cagcgauguu gcauuuaccc 120 agcugcagcg gagcgauacc uuucagacgg cacaguuuac cguugugaga gucuuccagc 180 agguuaacag aguggguaac gguaacguuu uuuuccagaa cggugucaac ggugucggua 240 gaguuguuag cgugguaacc gaugcagaug gugucagcgu cagcagcagc cagagcgcac 300 agcagaacca gcagguuagc uuucaugagc ucggcucccc cggaaccgcc accggccuuu 360 cccucuaggu augccaccac gcuggguuuc uccagcagug auguuaccau ccgacuuacc 420 guuaguuuug ccuuguuuag gcaagcgugc agguugucga ggucccuaua gugagucgua 480 uua 483 <210> 53 <211> 605 <212> RNA <213> Artificial Sequence <220> <223> R4 <400> 53 ggguaacacc guugguguug ugguucggcc aagaagauuc uuucgggaag auuucgaaac 60 guucgaaaga agaaacagaa gacagcuguu cacgcaguuc uucguagucg augaagucac 120 ccggguagca gauaccguuu ucagaguucg ggguuucaac gauguaagac caagaacgaa 180 ccggcagcag cgggucgcau uccggguuac ccagcagcca accagcgaug uugcauuuac 240 ccagcugcag cggagcgaua ccuuucagac ggcacaguuu accguuguga gagucuucca 300 gcagguuaac agagugggua acgguaacgu uuuuuuccag aacgguguca acggugucgg 360 uagaguuguu agcgugguaa ccgaugcaga uggugucagc gucagcagca gccagagcgc 420 acagcagaac cagcagguua gcuuucauga gcucggcucc cccggaaccg ccaccggccu 480 uucccucuag guaugccacc acgcuggguu ucuccagcag ugauguuacc auccgacuua 540 ccguuaguuu ugccuuguuu aggcaagcgu gcagguuguc gaggucccua uagugagucg 600 uauua 605 <210> 54 <211> 681 <212> RNA <213> Artificial Sequence <220> <223> R5 <400> 54 ggguaagaac cuucuuuuuc ggucagccac agcagguuac gguagaaaga agauuuaccu 60 ucgugagagc aagcagcggu aacaccguug guguuguggu ucggccaaga agauucuuuc 120 gggaagauuu cgaaacguuc gaaagaagaa acagaagaca gcuguucacg caguucuucg 180 uagucgauga agucacccgg guagcagaua ccguuuucag aguucggggu uucaacgaug 240 uaagaccaag aacgaaccgg cagcagcggg ucgcauuccg gguuacccag cagccaacca 300 gcgauguugc auuuacccag cugcagcgga gcgauaccuu ucagacggca caguuuaccg 360 uugugagagu cuuccagcag guuaacagag uggguaacgg uaacguuuuu uuccagaacg 420 gugucaacgg ugucgguaga guuguuagcg ugguaaccga ugcagauggu gucagcguca 480 gcagcagcca gagcgcacag cagaaccagc agguuagcuu ucaugagcuc ggcucccccg 540 gaaccgccac cggccuuucc cucuagguau gccaccacgc uggguuucuc cagcagugau 600 guuaccaucc gacuuaccgu uaguuuugcc uuguuuaggc aagcgugcag guugucgagg 660 ucccuauagu gagucguauu a 681 <210> 55 <211> 750 <212> RNA <213> Artificial Sequence <220> <223> R6 <400> 55 ggguggugga uaccccacag aaccagaacu ucuuuaccuu uuuuguuaac guaagaguuu 60 uucaguuucg gguaagaacc uucuuuuucg gucagccaca gcagguuacg guagaaagaa 120 gauuuaccuu cgugagagca agcagcggua acaccguugg uguugugguu cggccaagaa 180 gauucuuucg ggaagauuuc gaaacguucg aaagaagaaa cagaagacag cuguucacgc 240 aguucuucgu agucgaugaa gucacccggg uagcagauac cguuuucaga guucgggguu 300 ucaacgaugu aagaccaaga acgaaccggc agcagcgggu cgcauuccgg guuacccagc 360 agccaaccag cgauguugca uuuacccagc ugcagcggag cgauaccuuu cagacggcac 420 aguuuaccgu ugugagaguc uuccagcagg uuaacagagu ggguaacggu aacguuuuuu 480 uccagaacgg ugucaacggu gucgguagag uuguuagcgu gguaaccgau gcagauggug 540 ucagcgucag cagcagccag agcgcacagc agaaccagca gguuagcuuu caugagcucg 600 gcucccccgg aaccgccacc ggccuuuccc ucuagguaug ccaccacgcu ggguuucucc 660 agcagugaug uuaccauccg acuuaccguu aguuuugccu uguuuaggca agcgugcagg 720 uugucgaggu cccuauagug agucguauua 750 <210> 56 <211> 839 <212> RNA <213> Artificial Sequence <220> <223> R7 <400> 56 gggugaaacg acgguuguag uuagagguaa caacagaaac guaagcguuu ucguucuggu 60 acagguucug cuguucuuua gaguucggcg ggugguggau accccacaga accagaacuu 120 cuuuaccuuu uuuguuaacg uaagaguuuu ucaguuucgg guaagaaccu ucuuuuucgg 180 ucagccacag cagguuacgg uagaaagaag auuuaccuuc gugagagcaa gcagcgguaa 240 caccguuggu guugugguuc ggccaagaag auucuuucgg gaagauuucg aaacguucga 300 aagaagaaac agaagacagc uguucacgca guucuucgua gucgaugaag ucacccgggu 360 agcagauacc guuuucagag uucgggguuu caacgaugua agaccaagaa cgaaccggca 420 gcagcggguc gcauuccggg uuacccagca gccaaccagc gauguugcau uuacccagcu 480 gcagcggagc gauaccuuuc agacggcaca guuuaccguu gugagagucu uccagcaggu 540 uaacagagug gguaacggua acguuuuuuu ccagaacggu gucaacggug ucgguagagu 600 uguuagcgug guaaccgaug cagauggugu cagcgucagc agcagccaga gcgcacagca 660 gaaccagcag guuagcuuuc augagcucgg cucccccgga accgccaccg gccuuucccu 720 cuagguaugc caccacgcug gguuucucca gcagugaugu uaccauccga cuuaccguua 780 guuuugccuu guuuaggcaa gcgugcaggu ugucgagguc ccuauaguga gucguauua 839 <210> 57 <211> 902 <212> RNA <213> Artificial Sequence <220> <223> R8 <400> 57 ggguccagua guaguucaua cgaccagccu ggucacgaac uuucggacgu ucagcgauuu 60 ccggggugaa acgacgguug uaguuagagg uaacaacaga aacguaagcg uuuucguucu 120 gguacagguu cugcuguucu uuagaguucg gcggguggug gauaccccac agaaccagaa 180 cuucuuuacc uuuuuuguua acguaagagu uuuucaguuu cggguaagaa ccuucuuuuu 240 cggucagcca cagcagguua cgguagaaag aagauuuacc uucgugagag caagcagcgg 300 uaacaccguu gguguugugg uucggccaag aagauucuuu cgggaagauu ucgaaacguu 360 cgaaagaaga aacagaagac agcuguucac gcaguucuuc guagucgaug aagucacccg 420 gguagcagau accguuuuca gaguucgggg uuucaacgau guaagaccaa gaacgaaccg 480 gcagcagcgg gucgcauucc ggguuaccca gcagccaacc agcgauguug cauuuaccca 540 gcugcagcgg agcgauaccu uucagacggc acaguuuacc guugugagag ucuuccagca 600 gguuaacaga guggguaacg guaacguuuu uuuccagaac ggugucaacg gugucgguag 660 aguuguuagc gugguaaccg augcagaugg ugucagcguc agcagcagcc agagcgcaca 720 gcagaaccag cagguuagcu uucaugagcu cggcuccccc ggaaccgcca ccggccuuuc 780 ccucuaggua ugccaccacg cuggguuucu ccagcaguga uguuaccauc cgacuuaccg 840 uuaguuuugc cuuguuuagg caagcgugca gguugucgag gucccuauag ugagucguau 900 ua 902 <210> 58 <211> 1049 <212> RNA <213> Artificial Sequence <220> <223> R9 <400> 58 gggucuggca uuugguguug cauucgugca uagaagcguu agaggugaug auaccagaac 60 cgaaaccacg agacagagcg aaagcguaca ucggagcgau cagguuaccg uuagcuucga 120 agaugauggu gucacccggu uucagcaggg uccaguagua guucauacga ccagccuggu 180 cacgaacuuu cggacguuca gcgauuuccg gggugaaacg acgguuguag uuagagguaa 240 caacagaaac guaagcguuu ucguucuggu acagguucug cuguucuuua gaguucggcg 300 ggugguggau accccacaga accagaacuu cuuuaccuuu uuuguuaacg uaagaguuuu 360 ucaguuucgg guaagaaccu ucuuuuucgg ucagccacag cagguuacgg uagaaagaag 420 auuuaccuuc gugagagcaa gcagcgguaa caccguuggu guugugguuc ggccaagaag 480 auucuuucgg gaagauuucg aaacguucga aagaagaaac agaagacagc uguucacgca 540 guucuucgua gucgaugaag ucacccgggu agcagauacc guuuucagag uucgggguuu 600 caacgaugua agaccaagaa cgaaccggca gcagcggguc gcauuccggg uuacccagca 660 gccaaccagc gauguugcau uuacccagcu gcagcggagc gauaccuuuc agacggcaca 720 guuuaccguu gugagagucu uccagcaggu uaacagagug gguaacggua acguuuuuuu 780 ccagaacggu gucaacggug ucgguagagu uguuagcgug guaaccgaug cagauggugu 840 cagcgucagc agcagccaga gcgcacagca gaaccagcag guuagcuuuc augagcucgg 900 cucccccgga accgccaccg gccuuucccu cuagguaugc caccacgcug gguuucucca 960 gcagugaugu uaccauccga cuuaccguua guuuugccuu guuuaggcaa gcgugcaggu 1020 ugucgagguc ccuauaguga gucguauua 1049 <210> 59 <211> 1170 <212> RNA <213> Artificial Sequence <220> <223> R10 <400> 59 gggauguuac gcagaccggu aaccauacgc aguuuagcag aacgaacgua uuucgggcau 60 ucaccgaugg uaaccgggug gauguucugg uacggcagag aagaguugau agcacccagc 120 ggggucuggc auuugguguu gcauucgugc auagaagcgu uagaggugau gauaccagaa 180 ccgaaaccac gagacagagc gaaagcguac aucggagcga ucagguuacc guuagcuucg 240 aagaugaugg ugucacccgg uuucagcagg guccaguagu aguucauacg accagccugg 300 ucacgaacuu ucggacguuc agcgauuucc ggggugaaac gacgguugua guuagaggua 360 acaacagaaa cguaagcguu uucguucugg uacagguucu gcuguucuuu agaguucggc 420 ggguggugga uaccccacag aaccagaacu ucuuuaccuu uuuuguuaac guaagaguuu 480 uucaguuucg gguaagaacc uucuuuuucg gucagccaca gcagguuacg guagaaagaa 540 gauuuaccuu cgugagagca agcagcggua acaccguugg uguugugguu cggccaagaa 600 gauucuuucg ggaagauuuc gaaacguucg aaagaagaaa cagaagacag cuguucacgc 660 aguucuucgu agucgaugaa gucacccggg uagcagauac cguuuucaga guucgggguu 720 ucaacgaugu aagaccaaga acgaaccggc agcagcgggu cgcauuccgg guuacccagc 780 agccaaccag cgauguugca uuuacccagc ugcagcggag cgauaccuuu cagacggcac 840 aguuuaccgu ugugagaguc uuccagcagg uuaacagagu ggguaacggu aacguuuuuu 900 uccagaacgg ugucaacggu gucgguagag uuguuagcgu gguaaccgau gcagauggug 960 ucagcgucag cagcagccag agcgcacagc agaaccagca gguuagcuuu caugagcucg 1020 gcucccccgg aaccgccacc ggccuuuccc ucuagguaug ccaccacgcu ggguuucucc 1080 agcagugaug uuaccauccg acuuaccguu aguuuugccu uguuuaggca agcgugcagg 1140 uugucgaggu cccuauagug agucguauua 1170 <210> 60 <211> 1665 <212> RNA <213> Artificial Sequence <220> <223> R11 <400> 60 ggguagucgu agguaccguu acgaacagau uccaugcauu cguugucgca uuugugguag 60 aauucgaagc aaccguuacc gauuucuuua gcguuguuuu ucagcugaga uuuaacuuuu 120 ucguacaggu uuuuaacguu agagucgugg aaguccaggg uacguucguu uuccagcaga 180 accagcaguu cagcguugua gguccagaug uccaggaaac cgucgucaac uuuuuuguuc 240 agguuuucca uacguuuuuc caguuuguug aauucuuuac caacagcggu gaacuggaug 300 uucauuuuuu cgauaacggu guuaacuuug uuggugauac cguugauagc guucugggua 360 gauuucuggu cagcagcgua accagaaccc uguucguucu ggugguggua accguaccaa 420 ccgucgauca uaccggucca accaccuucg augaaaccag cgauagcacc gaacagacca 480 cgagacugga uagacgggau guuacgcaga ccgguaacca uacgcaguuu agcagaacga 540 acguauuucg ggcauucacc gaugguaacc ggguggaugu ucugguacgg cagagaagag 600 uugauagcac ccagcggggu cuggcauuug guguugcauu cgugcauaga agcguuagag 660 gugaugauac cagaaccgaa accacgagac agagcgaaag cguacaucgg agcgaucagg 720 uuaccguuag cuucgaagau gaugguguca cccgguuuca gcagggucca guaguaguuc 780 auacgaccag ccuggucacg aacuuucgga cguucagcga uuuccggggu gaaacgacgg 840 uuguaguuag agguaacaac agaaacguaa gcguuuucgu ucugguacag guucugcugu 900 ucuuuagagu ucggcgggug guggauaccc cacagaacca gaacuucuuu accuuuuuug 960 uuaacguaag aguuuuucag uuucggguaa gaaccuucuu uuucggucag ccacagcagg 1020 uuacgguaga aagaagauuu accuucguga gagcaagcag cgguaacacc guugguguug 1080 ugguucggcc aagaagauuc uuucgggaag auuucgaaac guucgaaaga agaaacagaa 1140 gacagcuguu cacgcaguuc uucguagucg augaagucac ccggguagca gauaccguuu 1200 ucagaguucg ggguuucaac gauguaagac caagaacgaa ccggcagcag cgggucgcau 1260 uccggguuac ccagcagcca accagcgaug uugcauuuac ccagcugcag cggagcgaua 1320 ccuuucagac ggcacaguuu accguuguga gagucuucca gcagguuaac agagugggua 1380 acgguaacgu uuuuuuccag aacgguguca acggugucgg uagaguuguu agcgugguaa 1440 ccgaugcaga uggugucagc gucagcagca gccagagcgc acagcagaac cagcagguua 1500 gcuuucauga gcucggcucc cccggaaccg ccaccggccu uucccucuag guaugccacc 1560 acgcuggguu ucuccagcag ugauguuacc auccgacuua ccguuaguuu ugccuuguuu 1620 aggcaagcgu gcagguuguc gaggucccua uagugagucg uauua 1665 <210> 61 <211> 475 <212> RNA <213> Artificial Sequence <220> <223> NA,NVT,VP1,VP10 <400> 61 gggcgaucuc acuuucacuc ucauuuuaga uucugcucua auccccguag ccugcgcccu 60 acuaacauua ucugccuuau cauaaucagu uaccgguaaa uaggcgcuag ccguauuucu 120 ccgcauaaca guaucauaua uauaaggcac agugaaaugu acugauuuuu guucucccaa 180 guggaacguu uuaguauaag uugaguguga cugacacuca uccguauuag uagaugaucg 240 auuauacucc gcugauauaa ucacuguucc agugugaaac gcauuugaaa caaaaucaaa 300 acguaacucu auuggcccug accaaaaguu auacaaccca guuacauauu ccauuggggu 360 uauuuguccu ucauaguccu gaucauaaaa ucucacaccu gaguccaaaa cuguauuauc 420 gcccuauagu gagucguauu aggauccgau aucuagaugc auucgcgagg uaccg 475 <210> 62 <211> 499 <212> RNA <213> Artificial Sequence <220> <223> NVT IV,NVT 4,VP20 <400> 62 gggcgaucuc acuuucacuc ucauuuuaga uucugcucua auccccguag ccugcgcccu 60 acuaacauua ucugccuuau cauaaucagu uaccgguaaa uaggcgcuag ccguauuucu 120 ccgcauaaca guaucauaua uauaaggcac agugaaaugu acugauuuuu guucucccaa 180 guggaacguu uuaguauaag uugaguguga cugacacuca uccguauuag uagaugaucg 240 auuauacucc gcugauauaa ucacuguucc agugugaaac gcauuugaaa caaaaucaaa 300 acguaacucu auuggcccug accaaaaguu auacaaccca guuacauauu ccauuggggu 360 uauuuguccu ucauaguccu gaucauaaaa ucucacaccu gaguccaaaa cuguauuauc 420 gcccuauagu gagucguauu aggauccgau aucuagaugc auucgcgagg uaccguuguu 480 guuguuguug uuguuguug 499 <210> 63 <211> 106 <212> RNA <213> Artificial Sequence <220> <223> NA1001 <400> 63 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgccc 106 <210> 64 <211> 156 <212> RNA <213> Artificial Sequence <220> <223> NA1501 <400> 64 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augccc 156 <210> 65 <211> 206 <212> RNA <213> Artificial Sequence <220> <223> NA2001 <400> 65 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccc 206 <210> 66 <211> 306 <212> RNA <213> Artificial Sequence <220> <223> NA3001 <400> 66 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauccc 306 <210> 67 <211> 406 <212> RNA <213> Artificial Sequence <220> <223> NA4001 <400> 67 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaccc 406 <210> 68 <211> 506 <212> RNA <213> Artificial Sequence <220> <223> NA5001 <400> 68 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuccc 506 <210> 69 <211> 606 <212> RNA <213> Artificial Sequence <220> <223> NA6001 <400> 69 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucccc 606 <210> 70 <211> 706 <212> RNA <213> Artificial Sequence <220> <223> NA7001 <400> 70 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcuccc 706 <210> 71 <211> 806 <212> RNA <213> Artificial Sequence <220> <223> NA8001 <400> 71 gggucgcgcg uuucggugau gacggugaaa accucugaca caugcagcuc ccggagacgg 60 ucacagcuug ucuguaagcg gaugccggga gcagacaagc ccgucagggc gcgucagcgg 120 guguuggcgg gugucggggc uggcuuaacu augcggcauc agagcagauu guacugagag 180 ugcaccauau gcggugugaa auaccgcaca gaugcguaag gagaaaauac cgcaucaggc 240 gccauucgcc auucaggcug cgcaacuguu gggaagggcg aucggugcgg gccucuucgc 300 uauuacgcca gcuggcgaaa gggggaugug cugcaaggcg auuaaguugg guaacgccag 360 gguuuuccca gucacgacgu uguaaaacga cggccagugc caaagaagca ugacggcaag 420 uggacgauua ucuccagagg aucgccggga accgaggacg aguucguaau cauggucaua 480 gcuguuuccu gugugaaauu guuauccgcu cacaauucca cacaacauac gagccggaag 540 cauaaagugu aaagccuggg gugccuaaug agugagcuaa cucacauuaa uugcguugcg 600 cucacugccc gcuuuccagu cgggaaaccu gucgugccag cugcauuaau gaaucggcca 660 acgcgcgggg agaggcgguu ugcguauugg gcgcucuucc gcuuccucgc ucacugacuc 720 gcugcgcucg gucguucggc ugcggcgagc gguaucagcu cacucaaagg cgguaauacg 780 guuauccaca gaaucagggg auaccc 806 <210> 72 <211> 106 <212> RNA <213> Artificial Sequence <220> <223> NA1002 <400> 72 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucccc 106 <210> 73 <211> 156 <212> RNA <213> Artificial Sequence <220> <223> NA1502 <400> 73 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacccc 156 <210> 74 <211> 206 <212> RNA <213> Artificial Sequence <220> <223> NA2002 <400> 74 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauccc 206 <210> 75 <211> 306 <212> RNA <213> Artificial Sequence <220> <223> NA3002 <400> 75 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaccc 306 <210> 76 <211> 406 <212> RNA <213> Artificial Sequence <220> <223> NA4002 <400> 76 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug cauccc 406 <210> 77 <211> 506 <212> RNA <213> Artificial Sequence <220> <223> NA5002 <400> 77 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucgccc 506 <210> 78 <211> 606 <212> RNA <213> Artificial Sequence <220> <223> NA6002 <400> 78 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuccc 606 <210> 79 <211> 706 <212> RNA <213> Artificial Sequence <220> <223> NA7002 <400> 79 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aacccc 706 <210> 80 <211> 806 <212> RNA <213> Artificial Sequence <220> <223> NA8002 <400> 80 ggggaauucc gacaaaaggu gguuggugaa gcugacauug gacuccauuc ugcuuaauug 60 ccuaacccca ucucccuuca aucuaccuac cauaaccauu uucuucaaaa uuuucucaaa 120 aaaacaauuu ggucuucaaa caacuccaag aacacagaga gagaguggaa aaacugaagu 180 uuuucacaag aaauggcaca gauuaguagc auggcacaag ggauacagac ccuuagucug 240 aauuccucca aucuuucuaa aacacaaaag gguccucuug uuucaaauuc ucucuucuuu 300 ggaucaaaga aacuaaccca aauuucagca aaaucauuag ggguguuuaa gaaagauuca 360 guuuugaggg uggugaggaa gucaucuuuu aggauuucug caucaguggc uacugcagag 420 aaaccccaug agauugugcu agaacccauc aaagauauau cugguacugu uaaauuaccc 480 gguucgaaau cccuuuccaa ucguauucuc cuucuugcug cccuuucuga gggaaggacu 540 guuguugaca auuuacugag uagugacgac auucauuaca ugcuuggugc guugaaaaca 600 cuuggacuuc auguugaaga ugacaaugaa aaccaacgag caauugugga agguuguggu 660 gggcaguuuc cugucgguaa aaagucugag gaagaaaucc aacuauuccu uggaaaugca 720 ggaacagcaa ugcguccguu gacagcagca guuacuguag cuggaggaca uucaagauau 780 guucuugaug gaguuccuag gauccc 806 <210> 81 <211> 319 <212> RNA <213> Artificial Sequence <220> <223> R1 <400> 81 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccc 319 <210> 82 <211> 397 <212> RNA <213> Artificial Sequence <220> <223> R2 <400> 82 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgaccc 397 <210> 83 <211> 466 <212> RNA <213> Artificial Sequence <220> <223> R3 <400> 83 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuaccc 466 <210> 84 <211> 588 <212> RNA <213> Artificial Sequence <220> <223> R4 <400> 84 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccc 588 <210> 85 <211> 664 <212> RNA <213> Artificial Sequence <220> <223> R5 <400> 85 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 accc 664 <210> 86 <211> 733 <212> RNA <213> Artificial Sequence <220> <223> R6 <400> 86 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca ccc 733 <210> 87 <211> 822 <212> RNA <213> Artificial Sequence <220> <223> R7 <400> 87 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cc 822 <210> 88 <211> 885 <212> RNA <213> Artificial Sequence <220> <223> R8 <400> 88 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gaccc 885 <210> 89 <211> 1032 <212> RNA <213> Artificial Sequence <220> <223> R9 <400> 89 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cc 1032 <210> 90 <211> 1153 <212> RNA <213> Artificial Sequence <220> <223> R10 <400> 90 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau ccc 1153 <210> 91 <211> 1648 <212> RNA <213> Artificial Sequence <220> <223> R11 <400> 91 gggaccucga caaccugcac gcuugccuaa acaaggcaaa acuaacggua agucggaugg 60 uaacaucacu gcuggagaaa cccagcgugg uggcauaccu agagggaaag gccgguggcg 120 guuccggggg agccgagcuc augaaagcua accugcuggu ucugcugugc gcucuggcug 180 cugcugacgc ugacaccauc ugcaucgguu accacgcuaa caacucuacc gacaccguug 240 acaccguucu ggaaaaaaac guuaccguua cccacucugu uaaccugcug gaagacucuc 300 acaacgguaa acugugccgu cugaaaggua ucgcuccgcu gcagcugggu aaaugcaaca 360 ucgcugguug gcugcugggu aacccggaau gcgacccgcu gcugccgguu cguucuuggu 420 cuuacaucgu ugaaaccccg aacucugaaa acgguaucug cuacccgggu gacuucaucg 480 acuacgaaga acugcgugaa cagcugucuu cuguuucuuc uuucgaacgu uucgaaaucu 540 ucccgaaaga aucuucuugg ccgaaccaca acaccaacgg uguuaccgcu gcuugcucuc 600 acgaagguaa aucuucuuuc uaccguaacc ugcuguggcu gaccgaaaaa gaagguucuu 660 acccgaaacu gaaaaacucu uacguuaaca aaaaagguaa agaaguucug guucuguggg 720 guauccacca cccgccgaac ucuaaagaac agcagaaccu guaccagaac gaaaacgcuu 780 acguuucugu uguuaccucu aacuacaacc gucguuucac cccggaaauc gcugaacguc 840 cgaaaguucg ugaccaggcu ggucguauga acuacuacug gacccugcug aaaccgggug 900 acaccaucau cuucgaagcu aacgguaacc ugaucgcucc gauguacgcu uucgcucugu 960 cucgugguuu cgguucuggu aucaucaccu cuaacgcuuc uaugcacgaa ugcaacacca 1020 aaugccagac cccgcugggu gcuaucaacu cuucucugcc guaccagaac auccacccgg 1080 uuaccaucgg ugaaugcccg aaauacguuc guucugcuaa acugcguaug guuaccgguc 1140 ugcguaacau cccgucuauc cagucucgug gucuguucgg ugcuaucgcu gguuucaucg 1200 aaggugguug gaccgguaug aucgacgguu gguacgguua ccaccaccag aacgaacagg 1260 guucugguua cgcugcugac cagaaaucua cccagaacgc uaucaacggu aucaccaaca 1320 aaguuaacac cguuaucgaa aaaaugaaca uccaguucac cgcuguuggu aaagaauuca 1380 acaaacugga aaaacguaug gaaaaccuga acaaaaaagu ugacgacggu uuccuggaca 1440 ucuggaccua caacgcugaa cugcugguuc ugcuggaaaa cgaacguacc cuggacuucc 1500 acgacucuaa cguuaaaaac cuguacgaaa aaguuaaauc ucagcugaaa aacaacgcua 1560 aagaaaucgg uaacgguugc uucgaauucu accacaaaug cgacaacgaa ugcauggaau 1620 cuguucguaa cgguaccuac gacuaccc 1648 <210> 92 <211> 424 <212> RNA <213> Artificial Sequence <220> <223> NA,NVT,VP1,VP10 <400> 92 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gccc 424 <210> 93 <211> 424 <212> RNA <213> Artificial Sequence <220> <223> NVT IV, NVT 4, VP20 <400> 93 gggcgauaau acaguuuugg acucaggugu gagauuuuau gaucaggacu augaaggaca 60 aauaacccca auggaauaug uaacuggguu guauaacuuu uggucagggc caauagaguu 120 acguuuugau uuuguuucaa augcguuuca cacuggaaca gugauuauau cagcggagua 180 uaaucgauca ucuacuaaua cggaugagug ucagucacac ucaacuuaua cuaaaacguu 240 ccacuuggga gaacaaaaau caguacauuu cacugugccu uauauauaug auacuguuau 300 gcggagaaau acggcuagcg ccuauuuacc gguaacugau uaugauaagg cagauaaugu 360 uaguagggcg caggcuacgg ggauuagagc agaaucuaaa augagaguga aagugagauc 420 gccc 424

Claims (38)

이중 가닥 리보핵산 (dsRNA) 및 단일 가닥 리보핵산 (ssRNA)을 포함하는 혼합 구조 리보핵산 (hsRNA)에 있어서, 상기 이중 가닥 리보핵산 (dsRNA)은 상보성을 가지고, 상기 단일 가닥 리보핵산 (ssRNA)은 상기 이중 가닥 리보핵산 (dsRNA)의 양쪽 3'-말단에 각각 위치하는 것을 특징으로 하는, 하기에서 선택되는 혼합 구조 리보핵산 (hsRNA):
(1) 서열번호 30의 염기서열과 서열번호 61의 염기서열이 상보적으로 결합한 결과로 형성된 이중 가닥 리보핵산과 단일 가닥 리보핵산을 포함하는 혼합 구조 리보핵산; 및
(2) 서열번호 31의 염기서열과 서열번호 62의 염기서열이 상보적으로 결합한 결과로 형성된 이중 가닥 리보핵산과 단일 가닥 리보핵산을 포함하는 혼합 구조 리보핵산.
In the mixed structure ribonucleic acid (hsRNA) comprising double-stranded ribonucleic acid (dsRNA) and single-stranded ribonucleic acid (ssRNA), the double-stranded ribonucleic acid (dsRNA) has complementarity, and the single-stranded ribonucleic acid (ssRNA) is A mixed structure ribonucleic acid (hsRNA) selected from the following, characterized in that it is located at both 3'-ends of the double-stranded ribonucleic acid (dsRNA):
(1) a mixed structure ribonucleic acid comprising a double-stranded ribonucleic acid and a single-stranded ribonucleic acid formed as a result of complementary binding between the nucleotide sequence of SEQ ID NO: 30 and the nucleotide sequence of SEQ ID NO: 61; And
(2) A mixed structure ribonucleic acid comprising a double-stranded ribonucleic acid and a single-stranded ribonucleic acid formed as a result of complementary bonding of the nucleotide sequence of SEQ ID NO: 31 and the nucleotide sequence of SEQ ID NO: 62.
제1항의 혼합 구조 리보핵산 (hsRNA) 및 면역원을 포함하며, 상기 혼합 구조 리보핵산 (hsRNA)은 TLR3 및 TLR7/8 리간드로 작용하는 것을 특징으로 하는, 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물.
A vaccine composition for preventing or treating viral or bacterial infection, comprising the mixed structure ribonucleic acid (hsRNA) and immunogen of claim 1, wherein the mixed structure ribonucleic acid (hsRNA) acts as a TLR3 and TLR7/8 ligand.
제2항에 있어서, 상기 면역원은 3가 계절성 인플루엔자 백신, 4가 계절성 인플루엔자 백신, 불활화 인플루엔자 백신 또는 뇌수막염알균 (Neisseria meningitidis groups A, C, Y and W-135) 백신을 포함하는 것을 특징으로 하는, 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물.
The method of claim 2, wherein the immunogen comprises a trivalent seasonal influenza vaccine, a tetravalent seasonal influenza vaccine, an inactivated influenza vaccine, or a Neisseria meningitidis groups A, C, Y and W-135 vaccine. , Virus or bacterial infection prevention or treatment vaccine composition.
제2항에 있어서, 추가의 아쥬번트를 포함하는 것을 특징으로 하는, 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물.
The vaccine composition for preventing or treating viral or bacterial infection according to claim 2, which comprises an additional adjuvant.
제4항에 있어서, 상기 추가의 아쥬번트는 수중유 에멀젼 아쥬번트, 알루미늄 염, 프로인드 아쥬번트 (Freund adjuvant), 및 DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 바이러스 또는 세균 감염 예방 또는 치료용 백신 조성물.
The method of claim 4, wherein the additional adjuvant is one from the group consisting of oil-in-water emulsion adjuvant, aluminum salt, Freund adjuvant, and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane). Vaccine composition for preventing or treating viral or bacterial infection, characterized in that it is selected above.
제1항의 혼합 구조 리보핵산 (hsRNA)을 포함하는 암 예방 또는 치료용 백신 조성물.
A vaccine composition for preventing or treating cancer comprising the mixed structure ribonucleic acid (hsRNA) of claim 1.
제6항에 있어서, 면역원을 추가로 포함하는 것을 특징으로 하는 암 예방 또는 치료용 백신 조성물.
The vaccine composition for preventing or treating cancer according to claim 6, further comprising an immunogen.
제7항에 있어서, 상기 면역원은 합성 펩티드, 전체 또는 일부를 포함하는 재조합 항원, 불활화 또는 살아있는 약독화 생물체, 세포로부터 유래된 것, 및 항원 단백질을 암호화하는 DNA 또는 mRNA로 이루어지는 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 암 예방 또는 치료용 백신 조성물.
The method of claim 7, wherein the immunogen is one or more from the group consisting of synthetic peptides, recombinant antigens including all or part of them, inactivated or living attenuated organisms, those derived from cells, and DNA or mRNA encoding antigenic proteins. Characterized in that selected, cancer prevention or treatment vaccine composition.
제6항 또는 제7항에 있어서, 추가의 아쥬번트를 포함하는 것을 특징으로 하는, 암 예방 또는 치료용 백신 조성물.
The vaccine composition for preventing or treating cancer according to claim 6 or 7, characterized in that it contains an additional adjuvant.
제9항에 있어서, 상기 추가의 아쥬번트는 수중유 에멀젼 아쥬번트, 알루미늄 염, 프로인드 아쥬번트 (Freund adjuvant), 및 DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 암 예방 또는 치료용 백신 조성물.
The method of claim 9, wherein the additional adjuvant is one from the group consisting of oil-in-water emulsion adjuvant, aluminum salt, Freund adjuvant, and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane). A vaccine composition for preventing or treating cancer, characterized in that it is selected above.
제1항의 혼합 구조 리보핵산 (hsRNA); 및 OX40 항체 또는 PD-1 항체를 포함하는 암 예방 또는 치료용 약학 조성물.
The mixed structure ribonucleic acid (hsRNA) of claim 1; And a pharmaceutical composition for preventing or treating cancer comprising an OX40 antibody or a PD-1 antibody.
제11항에 있어서, OX40 항체는 OX40 아고니스트 항체인 것을 특징으로 하는, 암 예방 또는 치료용 약학 조성물.
The pharmaceutical composition for preventing or treating cancer according to claim 11, wherein the OX40 antibody is an OX40 agonist antibody.
제11항에 있어서, PD-1 항체는 PD-1 길항제 항체인 것을 특징으로 하는, 암 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 11, wherein the PD-1 antibody is a PD-1 antagonist antibody. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200037711A 2019-07-02 2020-03-27 Novel ribonucleic acid and pharmaceutical composition based on the same KR102256001B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2021578257A JP2022543735A (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical compositions based thereon
EP20835409.2A EP3994265A4 (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical composition based on the same
PCT/KR2020/008623 WO2021002688A1 (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical composition based on the same
MX2022000134A MX2022000134A (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical composition based on the same.
CN202080047844.5A CN114761558A (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical compositions based thereon
CA3145628A CA3145628A1 (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical composition based on the same
AU2020299074A AU2020299074B2 (en) 2019-07-02 2020-07-01 Novel ribonucleic acid and pharmaceutical composition based on the same
BR112021026720A BR112021026720A2 (en) 2019-07-02 2020-07-01 heterostructured RNA, homogeneous dsrna, pharmaceutical composition, homogeneous pharmaceutical agent and therapeutic agent for cancer
KR1020210064141A KR102490068B1 (en) 2019-07-02 2021-05-18 Novel ribonucleic acid and pharmaceutical composition based on the same
US17/510,536 US20220193112A1 (en) 2019-07-02 2021-10-26 Hetero-structured ribonucleic acid and use thereof
JP2023091537A JP2023110031A (en) 2019-07-02 2023-06-02 Novel ribonucleic acid, and pharmaceutical composition based on the same
AU2024200631A AU2024200631A1 (en) 2019-07-02 2024-02-01 Novel ribonucleic acid and pharmaceutical composition based on the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190079470 2019-07-02
KR20190079470 2019-07-02
KR20190153760 2019-11-26
KR1020190153760 2019-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210064141A Division KR102490068B1 (en) 2019-07-02 2021-05-18 Novel ribonucleic acid and pharmaceutical composition based on the same

Publications (2)

Publication Number Publication Date
KR20210003660A KR20210003660A (en) 2021-01-12
KR102256001B1 true KR102256001B1 (en) 2021-05-26

Family

ID=74129882

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020200037711A KR102256001B1 (en) 2019-07-02 2020-03-27 Novel ribonucleic acid and pharmaceutical composition based on the same
KR1020210064141A KR102490068B1 (en) 2019-07-02 2021-05-18 Novel ribonucleic acid and pharmaceutical composition based on the same
KR1020220167055A KR20230002140A (en) 2019-07-02 2022-12-02 Novel ribonucleic acid and pharmaceutical composition based on the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020210064141A KR102490068B1 (en) 2019-07-02 2021-05-18 Novel ribonucleic acid and pharmaceutical composition based on the same
KR1020220167055A KR20230002140A (en) 2019-07-02 2022-12-02 Novel ribonucleic acid and pharmaceutical composition based on the same

Country Status (1)

Country Link
KR (3) KR102256001B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003099298A1 (en) * 2002-05-24 2003-12-04 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003099298A1 (en) * 2002-05-24 2003-12-04 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules

Also Published As

Publication number Publication date
KR20210003660A (en) 2021-01-12
KR20210065905A (en) 2021-06-04
KR20230002140A (en) 2023-01-05
KR102490068B1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US20180207295A1 (en) Rna containing composition for treatment of tumor diseases
AU2017222687B2 (en) Recombinant MVA or MVADELE3L expressing human Flt3L and use thereof as immuno-therapeutic agents against solid tumors
EP3119419B1 (en) Combination for use in a method of treating cancer
Heidegger et al. RIG-I activating immunostimulatory RNA boosts the efficacy of anticancer vaccines and synergizes with immune checkpoint blockade
Matijevic Glavan et al. The exploitation of Toll-like receptor 3 signaling in cancer therapy
KR20140014077A (en) Therapeutic composition for treatment of glioblastoma
KR20230147758A (en) Immune adjuvant for cancer
Villarreal et al. Combination GITR targeting/PD-1 blockade with vaccination drives robust antigen-specific antitumor immunity
EP3824097A1 (en) Major histocompatibility complex class ii-expressing cancer cell vaccine and methods of use for producing integrated immune responses
US10688165B2 (en) Medicament for use in a method of inducing or extending a cellular cytotoxic immune response
KR102256001B1 (en) Novel ribonucleic acid and pharmaceutical composition based on the same
EP3068428B1 (en) Annexin ii variant compositions and methods
JP2023110031A (en) Novel ribonucleic acid, and pharmaceutical composition based on the same
US20230201341A1 (en) Tlr3 and tlr9 agonists as vaccine adjuvants for anti-cancer dna vaccines
US20210386843A1 (en) mRNA Vaccine
CN114981436A (en) Novel TLR9 agonists
CN116948005A (en) Novel cytokine delivered by virus and application thereof in tumor treatment
US20180055920A1 (en) Vaccine, therapeutic composition and methods for treating or inhibiting cancer
CN102458456A (en) Use of vectors expressing intracellular polynucleotide binding proteins as adjuvants

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant