KR102255898B1 - method for recovering lithium from used anode of lithium ion secondary battery - Google Patents

method for recovering lithium from used anode of lithium ion secondary battery Download PDF

Info

Publication number
KR102255898B1
KR102255898B1 KR1020200154862A KR20200154862A KR102255898B1 KR 102255898 B1 KR102255898 B1 KR 102255898B1 KR 1020200154862 A KR1020200154862 A KR 1020200154862A KR 20200154862 A KR20200154862 A KR 20200154862A KR 102255898 B1 KR102255898 B1 KR 102255898B1
Authority
KR
South Korea
Prior art keywords
cathode material
lithium
waste cathode
secondary battery
ion secondary
Prior art date
Application number
KR1020200154862A
Other languages
Korean (ko)
Inventor
박영구
김민찬
서장현
박지윤
박건용
Original Assignee
(주)세화이에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세화이에스 filed Critical (주)세화이에스
Priority to KR1020200154862A priority Critical patent/KR102255898B1/en
Application granted granted Critical
Publication of KR102255898B1 publication Critical patent/KR102255898B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for recovering lithium from waste cathode material of a lithium-ion secondary battery, and more specifically, to a method for recovering lithium from waste cathode material of a lithium-ion secondary battery which can efficiently recover the lithium contained in the waste cathode material of the lithium-ion secondary battery in a simple and easy way. The method includes: a first step of preparing the waste cathode material of the lithium-ion secondary battery; a second step of crushing the prepared waste cathode material of the lithium-ion secondary battery to prepare a waste cathode material powder having an average particle size of 80 to 120μm; a third step of dissolving the waste cathode material powder in water to prepare a meltage; a fourth step of acid-treating the meltage at a temperature of 40 to 70°C. to prepare an acid-treated meltage; and a fifth step of removing an insoluble precipitate contained in the acid-treated meltage.

Description

리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법{method for recovering lithium from used anode of lithium ion secondary battery}Method for recovering lithium from used anode of lithium ion secondary battery

본 발명은 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법에 관한 것으로써, 보다 상세하게는 단순 용이한 방법으로 리튬이온 이차전지의 폐 양극재에 포함되어 있는 리튬을 효율적으로 회수할 수 있는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법에 관한 것이다.The present invention relates to a method of recovering lithium from a waste cathode material of a lithium ion secondary battery, and more particularly, it is possible to efficiently recover lithium contained in a waste cathode material of a lithium ion secondary battery by a simple and easy method. The present invention relates to a method of recovering lithium from a waste cathode material of a lithium ion secondary battery.

IT 산업, 전지자동차, 에너지 저장 장치(ESS)이 활발하게 발전하면서 리튬이온 이차전지의 수요가 증가하고 있다. 이러한 시장 동향과 함께 리튬이온 이차전지에 사용되는 유가금속의 사용량 또한 증가하고 있는 추세이다. 리튬이온 이차전지의 사용량이 증가함과 동시에 폐 리튬 전지 및 공정상에서 발생하는 폐 스크랩의 양은 나날이 증가하고 있다. 이러한 리튬 이차 전지의 원가에서 60% 이상을 차지하는 양극은 양극재로서 가역성(reversibility)이 우수하고, 낮은 자가방전율, 고용량, 고에너지 밀도를 갖고, 합성에 용이한 리튬코발트산화물(LiCoO2)과 고가인 코발트의 사용량을 줄이기 위해 Ni, Mn 등이 함께 포함된 Li(Ni, Co, Mn)O2 같은 복합 산화물 형태로 사용되고 있다. 이와 같은 양극재에는 약 5~7%의 리튬을 함유하고 있어 리튬이온 이차전지 제조 공정 중 발생하는 폐 양극재로부터 리튬 화합물을 회수하고자 하는 방법에 많은 관심이 주목되고 있다.As the IT industry, battery vehicles, and energy storage devices (ESS) are actively developing, the demand for lithium-ion secondary batteries is increasing. Along with this market trend, the use of valuable metals used in lithium-ion secondary batteries is also increasing. As the usage of lithium-ion secondary batteries increases, the amount of waste lithium batteries and waste scrap generated in the process is increasing day by day. The positive electrode, which accounts for more than 60% of the cost of such a lithium secondary battery, has excellent reversibility as a positive electrode material, has a low self-discharge rate, high capacity, and high energy density, and is easy to synthesize lithium cobalt oxide (LiCoO 2 ) and expensive. In order to reduce the amount of phosphorus cobalt, it is used in the form of a complex oxide such as Li(Ni, Co, Mn)O 2 containing Ni and Mn. Since such a cathode material contains about 5 to 7% lithium, a lot of attention is paid to a method of recovering a lithium compound from a waste cathode material generated during the manufacturing process of a lithium ion secondary battery.

하지만, 기존 리튬이온 이차전지 제조 공정 중 발생하는 폐 양극재로부터 리튬 화합물을 회수하고자 하는 방법에 있어서, 그 공정이 복잡하여 비용이 많이 발생할 뿐만 아니라, 리튬 회수율이 현저히 떨어지는 단점이 있었다.However, in the method of recovering the lithium compound from the waste cathode material generated during the manufacturing process of the existing lithium-ion secondary battery, the process is complicated, and thus, there is a disadvantage in that the process is complicated and expensive, and the lithium recovery rate is significantly lowered.

한국 공개특허번호 제2005-0112487호(공개일 : 2005.11.30)Korean Patent Application Publication No. 2005-0112487 (Publication date: 2005.11.30)

본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 단순 용이한 방법으로 리튬이온 이차전지의 폐 양극재에 포함되어 있는 리튬을 효율적으로 회수할 수 있는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법을 제공하는데 목적이 있다.The present invention was devised in consideration of the above points, and lithium contained in the waste cathode material of the lithium ion secondary battery can be efficiently recovered by a simple and easy method. It aims to provide a method of recovery.

또한, 본 발명은 리튬이온 이차전지의 폐 양극재에 포함되어 있는 유가 금속 중에서도 단순 용이한 방법으로 리튬 만을 우선적으로 회수할 수 있는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법을 제공하는데 또다른 목적이 있다.In addition, the present invention provides a method of recovering lithium from a waste cathode material of a lithium ion secondary battery that can preferentially recover only lithium by a simple and easy method among valuable metals included in the waste cathode material of a lithium ion secondary battery. There is another purpose.

상술한 과제를 해결하기 위하여, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법은 리튬이온 이차전지의 폐 양극재를 준비하는 제1단계, 준비한 리튬이온 이차전지의 폐 양극재를 파쇄하여 폐 양극재 분말을 제조하는 제2단계, 상기 폐 양극재 분말을 물에 용해시켜, 용해물을 제조하는 제3단계, 상기 용해물을 산처리하여, 산처리한 용해물을 제조하는 제4단계 및 상기 산처리한 용해물에 포함된 불용해 침전물을 제거하는 제5단계를 포함할 수 있다.In order to solve the above problems, the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention is the first step of preparing the waste cathode material of the lithium ion secondary battery, and the waste cathode material of the prepared lithium ion secondary battery. The second step of manufacturing a waste cathode material powder by crushing, a third step of dissolving the waste cathode material powder in water to prepare a dissolved material, and acid treatment of the dissolved material to prepare an acid-treated solution. It may include a fourth step and a fifth step of removing the insoluble precipitate contained in the acid-treated lysate.

본 발명의 바람직한 일실시예에 있어서, 산처리는 염산 및 황산 중에서 선택된 1종 이상을 포함하는 산으로 수행할 수 있다.In a preferred embodiment of the present invention, the acid treatment may be performed with an acid containing at least one selected from hydrochloric acid and sulfuric acid.

본 발명의 바람직한 일실시예에 있어서, 산처리는 0.05 ~ 0.1 M의 농도를 가지는 산으로 수행할 수 있다.In a preferred embodiment of the present invention, the acid treatment may be performed with an acid having a concentration of 0.05 to 0.1 M.

본 발명의 바람직한 일실시예에 있어서, 산처리는 40 ~ 70℃의 온도 조건에서 수행할 수 있다.In a preferred embodiment of the present invention, the acid treatment may be performed under a temperature condition of 40 to 70°C.

본 발명의 바람직한 일실시예에 있어서, 제3단계에서 제조한 용해물은 1 : 15 ~ 30의 고액비를 가지도록 제조할 수 있다.In a preferred embodiment of the present invention, the melt prepared in the third step can be prepared to have a high-liquid ratio of 1: 15 to 30.

본 발명의 바람직한 일실시예에 있어서, 폐 양극재 분말은 50 ~ 500㎛의 평균 입도를 가질 수 있다.In a preferred embodiment of the present invention, the waste cathode material powder may have an average particle size of 50 ~ 500㎛.

본 발명의 바람직한 일실시예에 있어서, 폐 양극재 분말은 리튬(Li), 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함할 수 있다.In a preferred embodiment of the present invention, the waste cathode material powder may include lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn).

본 발명의 바람직한 일실시예에 있어서, 폐 양극재 분말은 전체 중량%에 대하여, 리튬(Li) 5.4 ~ 8.2 중량%, 니켈(Ni) 23.8 ~ 35.8 중량%, 코발트(Co) 8.8 ~ 13.4 중량% 및 망간(Mn) 10.4 ~ 15.7 중량%를 포함할 수 있다.In a preferred embodiment of the present invention, the waste cathode material powder is lithium (Li) 5.4 to 8.2% by weight, nickel (Ni) 23.8 to 35.8% by weight, cobalt (Co) 8.8 to 13.4% by weight, based on the total weight% And manganese (Mn) 10.4 to 15.7% by weight.

본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법은 단순 용이한 방법으로 리튬이온 이차전지의 폐 양극재에 포함되어 있는 리튬을 효율적으로 회수할 수 있다. The method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention is a simple and easy method to efficiently recover the lithium contained in the waste cathode material of the lithium ion secondary battery.

또한, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법은 단순 용이한 방법으로 리튬이온 이차전지의 폐 양극재에 포함되어 있는 유가 금속 중에서도 리튬 만을 우선적으로 회수할 수 있다.In addition, the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention is a simple and easy method, and it is possible to preferentially recover only lithium among the valuable metals contained in the waste cathode material of the lithium ion secondary battery.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention. The present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and the same reference numerals are added to the same or similar components throughout the specification.

본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법은 제1단계 내지 제5단계를 포함한다.The method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention includes the first to fifth steps.

먼저, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법의 제1단계는 리튬이온 이차전지의 폐 양극재를 준비할 수 있다.First, in the first step of the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention, a waste cathode material of the lithium ion secondary battery may be prepared.

리튬이온 이차전지의 폐 양극재는 리튬이온 이차전지의 제조 공정 중 발생한 폐 양극재이며, 리튬을 포함하는 양극재일 수 있다.The waste cathode material of the lithium ion secondary battery is a waste cathode material generated during the manufacturing process of the lithium ion secondary battery, and may be a cathode material containing lithium.

또한, 제1단계의 준비는 양극재 외에 음극재, 분리막 등을 포함하는 리튬이온 이차전지에서 리튬이온 이차전지의 폐 양극재만을 분리하여 준비할 수 있고, 양극재, 음극재, 분리막 등을 포함하는 리튬이온 이차전지를 준비할 수 있다. 달리 말하면, 하기 제2단계를 통해 파쇄되는 폐 양극재 분말은 제1단계에서 리튬이온 이차전지가 준비될 때는 리튬이온 이차전지의 폐 양극재 성분 외에 리튬이온 이차전지에 포함된 음극재, 분리막 등을 구성하는 성분들이 포함될 수 있는 것이다. In addition, the preparation of the first step can be prepared by separating only the waste cathode material of the lithium ion secondary battery from the lithium ion secondary battery including a cathode material, a separator, etc. in addition to the cathode material, and includes a cathode material, a negative electrode material, a separator, etc. A lithium ion secondary battery can be prepared. In other words, when the lithium ion secondary battery is prepared in the first step, the waste cathode material powder crushed through the following second step is a negative electrode material included in the lithium ion secondary battery, a separator, etc., in addition to the waste cathode material component of the lithium ion secondary battery. Components constituting the may be included.

다음으로, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법의 제2단계는 제1단계에서 준비한 리튬이온 이차전지의 폐 양극재를 파쇄하여 폐 양극재 분말을 제조할 수 있다.Next, in the second step of the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention, the waste cathode material of the lithium ion secondary battery prepared in the first step may be crushed to prepare a waste cathode material powder. .

제조한 폐 양극재 분말에는 리튬(Li), 니켈(Ni), 코발트(Co) 및 망간(Mn) 중에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 리튬(Li), 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함할 수 있다. 또한, 추가적으로 폐 양극재 분말에는 구리(Cu), 철(Fe), 칼륨(K), 마그네슘(Mg), 아연(Zn), 나트륨(Na), 알루미늄(Al) 및 칼슘(Ca) 중에서 선택된 1종 이상을 더 포함할 수 있다.The prepared waste cathode material powder may contain at least one selected from lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn), preferably lithium (Li), nickel (Ni), It may include cobalt (Co) and manganese (Mn). In addition, the waste cathode material powder includes 1 selected from copper (Cu), iron (Fe), potassium (K), magnesium (Mg), zinc (Zn), sodium (Na), aluminum (Al), and calcium (Ca). It may further include more than a species.

더욱 구체적으로, 제조한 폐 양극재 분말에는 리튬(Li) 5.4 ~ 8.2 중량%, 바람직하게는 6.1 ~ 7.5 중량%, 니켈(Ni) 23.8 ~ 35.8 중량%, 바람직하게는 26.8 ~ 32.8 중량%, 코발트(Co) 8.8 ~ 13.4 중량%, 바람직하게는 9.9 ~ 12.3 중량% 및 망간(Mn) 10.4 ~ 15.7 중량%, 바람직하게는 11.7 ~ 14.4 중량%를 포함할 수 있다.More specifically, in the prepared waste cathode material powder, lithium (Li) 5.4 to 8.2% by weight, preferably 6.1 to 7.5% by weight, nickel (Ni) 23.8 to 35.8% by weight, preferably 26.8 to 32.8% by weight, cobalt (Co) 8.8 to 13.4 wt%, preferably 9.9 to 12.3 wt%, and manganese (Mn) 10.4 to 15.7 wt%, preferably 11.7 to 14.4 wt%.

또한, 폐 양극재 분말은 50 ~ 500㎛의 평균 입도, 바람직하게는 80 ~ 120㎛의 평균 입도를 가질 수 있으며, 만일 평균 입도가 50㎛ 미만이면 비중에 의한 분진화로 인해 공정손실의 문제가 있을 수 있고, 120㎛를 초과하면 리튬 회수율이 저하되는 문제가 있을 수 있다.In addition, the waste cathode material powder may have an average particle size of 50 to 500 μm, preferably 80 to 120 μm, and if the average particle size is less than 50 μm, there is a problem of process loss due to dust generation due to specific gravity. There may be, and if it exceeds 120㎛ there may be a problem that the lithium recovery rate is lowered.

다음으로, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법의 제3단계는 제2단계에서 제조한 폐 양극재 분말을 물에 용해시켜, 용해물을 제조할 수 있다. 이 때, 용해물은 1 : 15 ~ 30의 고액비, 바람직하게는 1 : 20 ~ 27를 가지도록 제조할 수 있으며, 만일 고액비가 1 : 15 미만이면, 리튬 회수율이 저하의 문제가 있을 수 있고, 1 : 30를 초과하면 리튬 회수율이 저하되거나 미미하여 공정 효율이 저하되는 문제가 있을 수 있다. Next, in the third step of the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention, the waste cathode material powder prepared in the second step is dissolved in water to prepare a dissolved product. At this time, the melt may be prepared to have a high-liquid ratio of 1: 15 to 30, preferably 1: 20 to 27, and if the high-liquid ratio is less than 1: 15, there may be a problem of lowering the lithium recovery rate, and , If it exceeds 1:30, there may be a problem in that the lithium recovery rate is lowered or insignificant and thus process efficiency is lowered.

다음으로, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법의 제4단계는 제3단계에서 제조한 용해물을 산처리하여, 산처리한 용해물을 제조할 수 있다.Next, in the fourth step of the method for recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention, the dissolved product prepared in the third step may be acid-treated to prepare an acid-treated dissolved product.

이 때, 산처리는 용해물에 산을 투입 및 혼합하거나, 적가하는 방법으로 수행할 수 있으며, 산처리는 유기산 및 무기산에서 선택된 1종 이상을 사용하여 수행할 수 있고, 바람직하게는 염산 및 황산 중에서 선택된 1종 이상을 포함하는 산으로 수행할 수 있으며, 더욱 바람직하게는 염산으로 수행할 수 있다.At this time, the acid treatment can be carried out by adding and mixing an acid to the dissolved material, or dropwise addition, and the acid treatment can be carried out using one or more selected from organic acids and inorganic acids, preferably hydrochloric acid and sulfuric acid. It can be carried out with an acid containing at least one selected from among, more preferably, it can be carried out with hydrochloric acid.

또한, 산처리는 0.05 ~ 0.5 M의 농도, 바람직하게는 0.05 ~ 0.1 M의 농도를 가지는 산으로 수행할 수 있으며, 만일 농도가 0.05 M 미만이면 리튬 회수율이 저하되는 문제가 있을 수 있고, 0.5 M을 초과하면 폐 양극재 분말에 포함된 리튬 이외의 금속 성분들이 이온화되어 리튬만을 분리하기 어려운 문제가 있을 수 있다.In addition, the acid treatment can be performed with an acid having a concentration of 0.05 to 0.5 M, preferably 0.05 to 0.1 M, and if the concentration is less than 0.05 M, there may be a problem that the lithium recovery rate is lowered, and 0.5 M If exceeded, metal components other than lithium included in the waste cathode material powder may be ionized, making it difficult to separate only lithium.

마지막으로, 본 발명의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법의 제5단계는 제4단계에서 산처리한 용해물에 포함된 불용해 침전물을 제거할 수 있다. 이를 통해, 산처리한 용해물에 포함된 다량의 리튬만을 회수할 수 있으며, 불용해 침전물에 포함된 다른 폐 양극재 분말 성분들은 다른 공정을 통해 각각의 성분별로 회수할 수 있는 것이다.Finally, in the fifth step of the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of the present invention, insoluble precipitates contained in the acid-treated melted product in the fourth step may be removed. Through this, only a large amount of lithium contained in the acid-treated melt can be recovered, and other waste cathode material powder components included in the insoluble precipitate can be recovered for each component through a different process.

이상에서 본 발명에 대하여 구현예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명의 구현예를 한정하는 것이 아니며, 본 발명의 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 구현예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments of the present invention have been described above, but these are only examples, and do not limit the embodiments of the present invention, and those of ordinary skill in the field to which the embodiments of the present invention belong to are not limited to the essential characteristics of the present invention. It will be appreciated that various modifications and applications not illustrated above are possible within the range not departing from. For example, each component specifically shown in the embodiments of the present invention can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.

실시예 1 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 1: Method for recovering lithium from waste cathode material of lithium ion secondary battery

(1) 리튬이온 이차전지의 제조 공정 중 발생한 폐 양극재를 준비하고, 준비한 폐 양극재를 파쇄하여 평균 입도 100㎛의 폐 양극재 분말을 제조하였다. 폐 양극재 분말에는 전체 중량%에 대하여 하기 표 1에 기재된 성분들을 각각의 중량%로 포함하였다.(1) A waste cathode material generated during the manufacturing process of a lithium ion secondary battery was prepared, and the prepared waste cathode material was crushed to prepare a waste cathode material powder having an average particle size of 100 μm. The waste cathode material powder contained the components shown in Table 1 below in each weight% with respect to the total weight %.

Figure 112020123931285-pat00001
Figure 112020123931285-pat00001

* 상기 표 1에 기타의 성분으로 구리(Cu), 철(Fe), 칼륨(K), 마그네슘(Mg), 아연(Zn), 나트륨(Na), 알루미늄(Al) 및 칼슘(Ca)을 포함한다.* Other ingredients in Table 1 include copper (Cu), iron (Fe), potassium (K), magnesium (Mg), zinc (Zn), sodium (Na), aluminum (Al), and calcium (Ca). do.

(2) 상기 폐 양극재 분말을 물에 용해시켜, 용해물을 제조하였다. 용해물은 1 : 25의 고액비(=고체 중량 대비 액체의 부피)를 가지도록 제조하였다.(2) The waste cathode material powder was dissolved in water to prepare a dissolved product. The lysate was prepared to have a solid-liquid ratio of 1:25 (=volume of liquid to solid weight).

(3) 상기 용해물을 60℃의 온도 조건에서 0.07M 농도의 염산(HCl)으로 산처리하여, 산처리한 용해물을 제조하였다.(3) The lysate was acid-treated with hydrochloric acid (HCl) at a concentration of 0.07 M at a temperature of 60° C. to prepare an acid-treated lysate.

(4) 산처리한 용해물에 포함된 불용해 침전물을 제거하고, 불용해 침전물을 제거한 산처리한 용해물을 회수하였다.(4) The insoluble precipitate contained in the acid-treated lysate was removed, and the acid-treated lysate from which the insoluble precipitate was removed was recovered.

실시예 2 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 2: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 산처리는 25℃의 온도 조건에서 수행하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike Example 1, the acid treatment was performed under a temperature condition of 25°C.

실시예 3 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 3: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 산처리는 80℃의 온도 조건에서 수행하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike Example 1, the acid treatment was performed under a temperature condition of 80°C.

실시예 4 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 4: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 용해물은 1 : 10의 고액비(=고체 중량 대비 액체의 부피)를 가지도록 제조하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike Example 1, the melt was prepared to have a solid-liquid ratio of 1:10 (=volume of liquid to solid weight).

실시예 5 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 5: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 용해물은 1 : 35의 고액비(=고체 중량 대비 액체의 부피)를 가지도록 제조하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike Example 1, the melt was prepared to have a solid-liquid ratio of 1:35 (=volume of liquid to solid weight).

실시예 6 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 6: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 산처리는0.01M 농도의 염산(HCl)으로 수행하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike in Example 1, the acid treatment was performed with hydrochloric acid (HCl) at a concentration of 0.01M.

실시예 7 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 7: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 산처리는0.07M 농도의 옥살산(C2H2O4)으로 수행하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike Example 1, the acid treatment was performed with 0.07M concentration of oxalic acid (C 2 H 2 O 4 ).

실시예 8 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 8: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 산처리는 0.07M 농도의 황산(H2SO4)으로 수행하였다.In the same manner as in Example 1, an acid-treated lysate was recovered from which insoluble precipitates were removed from the waste cathode material of a lithium ion secondary battery. However, unlike Example 1, the acid treatment was performed with 0.07M sulfuric acid (H 2 SO 4 ).

실시예 9 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 9: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 준비한 폐 양극재를 파쇄하여 평균 입도 40㎛의 폐 양극재 분말을 제조하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike in Example 1, the prepared waste cathode material was crushed to prepare a waste cathode material powder having an average particle size of 40 μm.

실시예 10 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Example 10: Method for recovering lithium from waste cathode material of lithium ion secondary battery

실시예 1과 동일한 방법으로 리튬이온 이차전지의 폐 양극재로부터 불용해 침전물을 제거한 산처리한 용해물을 회수하였다. 다만, 실시예 1과 달리 준비한 폐 양극재를 파쇄하여 평균 입도 150㎛의 폐 양극재 분말을 제조하였다.In the same manner as in Example 1, the acid-treated lysate obtained by removing the insoluble precipitate from the waste cathode material of the lithium ion secondary battery was recovered. However, unlike in Example 1, the prepared waste cathode material was crushed to prepare a waste cathode material powder having an average particle size of 150 μm.

비교예 1 : 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법Comparative Example 1: Method for recovering lithium from waste cathode material of lithium ion secondary battery

(1) 리튬이온 이차전지의 제조 공정 중 발생한 폐 양극재를 준비하고, 준비한 폐 양극재를 파쇄하여 평균 입도 100㎛의 폐 양극재 분말을 제조하였다. 폐 양극재 분말에는 전체 중량%에 대하여 하기 표 2에 기재된 성분들을 각각의 중량%로 포함하였다.(1) A waste cathode material generated during the manufacturing process of a lithium ion secondary battery was prepared, and the prepared waste cathode material was crushed to prepare a waste cathode material powder having an average particle size of 100 μm. The waste cathode material powder contained the components shown in Table 2 in each weight% with respect to the total weight %.

Figure 112020123931285-pat00002
Figure 112020123931285-pat00002

* 상기 표 2에 기타의 성분으로 구리(Cu), 철(Fe), 칼륨(K), 마그네슘(Mg), 아연(Zn), 나트륨(Na), 알루미늄(Al) 및 칼슘(Ca)을 포함한다.* Other ingredients in Table 2 include copper (Cu), iron (Fe), potassium (K), magnesium (Mg), zinc (Zn), sodium (Na), aluminum (Al), and calcium (Ca). do.

(2) 상기 폐 양극재 분말을 물에 용해시켜, 용해물을 제조하였다. 용해물은1 : 25의 고액비(=고체 중량 대비 액체의 부피)를 가지도록 제조하였다.(2) The waste cathode material powder was dissolved in water to prepare a dissolved product. The lysate was prepared to have a solid-liquid ratio of 1:25 (=volume of liquid relative to solid weight).

(3) 용해물에 포함된 불용해 침전물을 제거하고, 불용해 침전물을 제거한 용해물을 회수하였다.(3) The insoluble precipitate contained in the lysate was removed, and the lysate from which the insoluble precipitate was removed was recovered.

실험예 1 : 리튬 회수율 측정Experimental Example 1: Measurement of lithium recovery rate

실시예 1 ~ 10 각각의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법을 통하여 회수된 리튬 회수율(%)을 계산하여 하기 표 3에 기재하였다.Examples 1 to 10 The recovery rate (%) of lithium recovered through the method of recovering lithium from the waste cathode material of each lithium ion secondary battery was calculated and shown in Table 3 below.

리튬 회수율(%)은 하기 관계식 1에 의하여 계산하였다.The lithium recovery rate (%) was calculated by the following relational formula 1.

[관계식 1][Relationship 1]

Figure 112020123931285-pat00003
Figure 112020123931285-pat00003

비교예 1의 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법을 통하여 회수된 리튬 회수율(%)을 계산하여 하기 표 3에 기재하였다.The recovery rate (%) of lithium recovered through the method of recovering lithium from the waste cathode material of the lithium ion secondary battery of Comparative Example 1 was calculated and shown in Table 3 below.

리튬 회수율(%)은 하기 관계식 2에 의하여 계산하였다.The lithium recovery rate (%) was calculated by the following relational formula 2.

[관계식 2][Relationship 2]

Figure 112020123931285-pat00004
Figure 112020123931285-pat00004

Figure 112020123931285-pat00005
Figure 112020123931285-pat00005

표 3에서 확인 할 수 있듯이, 실시예 1에서 가장 우수한 리튬 회수율을 보임을 확인할 수 있었다.As can be seen in Table 3, it was confirmed that the best lithium recovery rate was shown in Example 1.

본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다 A simple modification or change of the present invention can be easily implemented by a person skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (8)

리튬이온 이차전지의 폐 양극재를 준비하는 제1단계;
준비한 리튬이온 이차전지의 폐 양극재를 파쇄하여 80 ~ 120㎛의 평균 입도를 가지는 폐 양극재 분말을 제조하는 제2단계;
상기 폐 양극재 분말을 물에 용해시켜, 용해물을 제조하는 제3단계;
상기 용해물을 40 ~ 70℃의 온도 조건에서 산처리하여, 산처리한 용해물을 제조하는 제4단계; 및
상기 산처리한 용해물에 포함된 불용해 침전물을 제거하는 제5단계; 를 포함하고,
상기 제3단계에서 제조한 용해물은 1 : 15 ~ 30의 고액비를 가지도록 제조하는 것을 특징으로 하는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법.
A first step of preparing a waste cathode material for a lithium ion secondary battery;
A second step of manufacturing a waste cathode material powder having an average particle size of 80 to 120 μm by crushing the waste cathode material of the prepared lithium ion secondary battery;
A third step of dissolving the waste cathode material powder in water to prepare a dissolved material;
A fourth step of acid-treating the melted product at a temperature of 40 to 70°C to prepare an acid-treated melt; And
A fifth step of removing the insoluble precipitate contained in the acid-treated lysate; Including,
The method for recovering lithium from the waste cathode material of a lithium ion secondary battery, characterized in that the melt prepared in the third step is prepared to have a high liquid ratio of 1: 15 to 30.
제1항에 있어서,
상기 산처리는 염산 및 황산 중에서 선택된 1종 이상을 포함하는 산으로 수행하는 것을 특징으로 하는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법.
The method of claim 1,
The acid treatment is a method of recovering lithium from a waste cathode material of a lithium ion secondary battery, characterized in that the acid treatment is performed with an acid containing at least one selected from hydrochloric acid and sulfuric acid.
제2항에 있어서,
상기 산처리는 0.05 ~ 0.1 M의 농도를 가지는 산으로 수행하는 것을 특징으로 하는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법.
The method of claim 2,
The acid treatment is a method of recovering lithium from a waste cathode material of a lithium ion secondary battery, characterized in that the acid treatment is performed with an acid having a concentration of 0.05 to 0.1 M.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 폐 양극재 분말은 리튬(Li), 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 것을 특징으로 하는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법.
The method of claim 1,
The waste cathode material powder comprises lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn).
제7항에 있어서,
상기 폐 양극재 분말은 전체 중량%에 대하여, 리튬(Li) 5.4 ~ 8.2 중량%, 니켈(Ni) 23.8 ~ 35.8 중량%, 코발트(Co) 8.8 ~ 13.4 중량% 및 망간(Mn) 10.4 ~ 15.7 중량%를 포함하는 것을 특징으로 하는 리튬이온 이차전지의 폐 양극재로부터 리튬을 회수하는 방법.
The method of claim 7,
The waste cathode material powder is lithium (Li) 5.4 to 8.2% by weight, nickel (Ni) 23.8 to 35.8% by weight, cobalt (Co) 8.8 to 13.4% by weight, and manganese (Mn) 10.4 to 15.7% by weight, based on the total weight% A method for recovering lithium from a waste cathode material of a lithium ion secondary battery, comprising %.
KR1020200154862A 2020-11-18 2020-11-18 method for recovering lithium from used anode of lithium ion secondary battery KR102255898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200154862A KR102255898B1 (en) 2020-11-18 2020-11-18 method for recovering lithium from used anode of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200154862A KR102255898B1 (en) 2020-11-18 2020-11-18 method for recovering lithium from used anode of lithium ion secondary battery

Publications (1)

Publication Number Publication Date
KR102255898B1 true KR102255898B1 (en) 2021-05-25

Family

ID=76145297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200154862A KR102255898B1 (en) 2020-11-18 2020-11-18 method for recovering lithium from used anode of lithium ion secondary battery

Country Status (1)

Country Link
KR (1) KR102255898B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050112487A (en) 2004-05-25 2005-11-30 (주)지케이엠 High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
KR20120094619A (en) * 2011-02-17 2012-08-27 한국지질자원연구원 Method for making sulfate solution of valuable metal from used battery and for making cathode active material
JP2012172223A (en) * 2011-02-23 2012-09-10 Jx Nippon Mining & Metals Corp Method for recovering lithium
JP2017115179A (en) * 2015-12-22 2017-06-29 日本リサイクルセンター株式会社 Recovery method of valuable substance
KR101802071B1 (en) * 2016-05-20 2017-11-27 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR20200022514A (en) * 2017-07-21 2020-03-03 래리 리엔 Recovery of Lithium from Acid Solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050112487A (en) 2004-05-25 2005-11-30 (주)지케이엠 High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
KR20120094619A (en) * 2011-02-17 2012-08-27 한국지질자원연구원 Method for making sulfate solution of valuable metal from used battery and for making cathode active material
JP2012172223A (en) * 2011-02-23 2012-09-10 Jx Nippon Mining & Metals Corp Method for recovering lithium
JP2017115179A (en) * 2015-12-22 2017-06-29 日本リサイクルセンター株式会社 Recovery method of valuable substance
KR101802071B1 (en) * 2016-05-20 2017-11-27 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR20200022514A (en) * 2017-07-21 2020-03-03 래리 리엔 Recovery of Lithium from Acid Solution

Similar Documents

Publication Publication Date Title
Du et al. Progresses in sustainable recycling technology of spent lithium‐ion batteries
Xu et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries
TWI392745B (en) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
Zhang et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries
US8945275B2 (en) Method for recovering valuable metals from lithium secondary battery wastes
CN101886178B (en) Comprehensive recovery method for nickel-hydrogen waste battery
CA3135949C (en) Process for the recovery of cathode materials in the recycling of batteries
CN1052760C (en) Recovering method for compound containing rare-earth elements can be reused
CN111261968B (en) Method for lossless recovery of waste lithium iron phosphate battery electrode material
WO2017215282A1 (en) Method for recycling lithium in anode material of lithium battery by means of electrochemical process
WO2019082532A1 (en) Method for separating copper from nickel and cobalt
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
JP2005149889A (en) Recovery method of metal from waste secondary battery
KR101178769B1 (en) Method of recovery of lithium from cathodic active material of phosphorus oxide lithium battery
WO2017181766A1 (en) Method for extracting lithium using slag from thermal recycling of lithium battery
KR101178768B1 (en) Method of recovery of lithium from cathodic active material of lithium battery
KR100358528B1 (en) recycling method of lithium ion secondary battery
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
JP2021521327A (en) Method of recovering lithium and transition metals using heat
Li et al. Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review
JP2021014630A (en) Method of recovering lithium from lithium ion battery
KR102255898B1 (en) method for recovering lithium from used anode of lithium ion secondary battery
KR102367354B1 (en) Method for purifying waste lithium phosphate and method for manufacturing lithium iron phosphate comprising the same
CN105074030A (en) Alloy method for complex metal for negative electrode active material
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant