KR102254628B1 - 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법 - Google Patents

신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법 Download PDF

Info

Publication number
KR102254628B1
KR102254628B1 KR1020210006166A KR20210006166A KR102254628B1 KR 102254628 B1 KR102254628 B1 KR 102254628B1 KR 1020210006166 A KR1020210006166 A KR 1020210006166A KR 20210006166 A KR20210006166 A KR 20210006166A KR 102254628 B1 KR102254628 B1 KR 102254628B1
Authority
KR
South Korea
Prior art keywords
present application
polypeptide
sequence
variant
strain
Prior art date
Application number
KR1020210006166A
Other languages
English (en)
Inventor
배지연
이지현
이지혜
김희주
박고운
김효진
서창일
Original Assignee
씨제이제일제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 주식회사 filed Critical 씨제이제일제당 주식회사
Priority to KR1020210006166A priority Critical patent/KR102254628B1/ko
Priority to PCT/KR2021/005026 priority patent/WO2022154182A1/ko
Application granted granted Critical
Publication of KR102254628B1 publication Critical patent/KR102254628B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/03Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amidines (3.5.3)
    • C12Y305/03008Formimidoylglutamase (3.5.3.8)

Abstract

본 출원은 신규한 포름이미도일글루타마아제(Formimidoylglutamase) 변이체, 상기 변이체를 포함하는 코리네박테리움 스테이셔니스(Corynebacterium stationis) 균주 및 상기 균주를 이용한 IMP(5'-inosine monophosphate) 생산 방법에 관한 것이다.

Description

신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 IMP 생산 방법{Novel Formimidoylglutamase variant and a method for producing IMP using the same}
본 출원은 신규한 포름이미도일글루타마아제(Formimidoylglutamase) 변이체, 상기 변이체를 포함하는 코리네박테리움 스테이셔니스(Corynebacterium stationis) 균주 및 상기 균주를 이용한 IMP(5'-inosine monophosphate) 생산 방법에 관한 것이다.
IMP(5'-inosine monophosphate) 및 기타 유용물질을 생산하기 위하여, 고효율 생산 미생물 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 예를 들어, IMP 생합성에 관여하는 효소를 코딩하는 유전자의 발현을 증가시키거나 또는 생합성에 불필요한 유전자를 제거하는 것과 같은 목적 물질 특이적 접근 방법이 주로 이용되고 있다(EP 3722430 A1, US 2020-0347346 A1).
다만, IMP 의 수요 증가에 따라 효과적인 IMP의 생산능 증가를 위한 연구가 여전히 필요한 실정이다.
한국공개특허공보 제10-2016-0145827호(2016.12.20)
본 출원의 하나의 목적은 서열번호 3의 아미노산 서열의 294번째 위치에 상응하는 아미노산인 아스파르트산(Aspartic acid)이 아스파라긴(Asparagine)으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진, 포름이미도일글루타마아제(Formimidoylglutamase) 변이체를 제공하는 것이다.
본 출원의 다른 하나의 목적은 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원의 또 다른 하나의 목적은 본 출원의 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하고, IMP(5'-inosine monophosphate) 생산능을 가진, 코리네박테리움 스테이셔니스(Corynebacterium stationis) 균주를 제공하는 것이다.
본 출원의 또 다른 하나의 목적은 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하고, IMP 생산능을 가진, 코리네박테리움 스테이셔니스 균주를 배지에서 배양하는 단계를 포함하는, IMP 생산 방법을 제공하는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 출원의 하나의 양태는 서열번호 3의 아미노산 서열의 294번째 위치에 상응하는 아미노산인 아스파르트산(Aspartic acid)이 아스파라긴(Asparagine)으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진, 포름이미도일글루타마아제 변이체를 제공한다.
본 출원의 변이체는 서열번호 1로 기재된 아미노산 서열을 가지거나, 포함하거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.
또한, 본 출원의 변이체는 상기 서열번호 1로 기재된 아미노산 서열에서 서열번호 3의 아미노산 서열을 기준으로 294번 위치에 상응하는 아미노산은 아스파라긴이고, 상기 서열번호 1로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다.
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 이러한 변이체는 일반적으로 상기 폴리펩티드의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 동정(identify)될 수 있다. 즉, 변이체의 능력은 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이체를 포함할 수 있다. 다른 변이체는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 "변이체"는 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 및 변이체 등의 용어(영문 표현으로는 modification, modified polypeptide, modified protein, mutant, mutein, divergent 등)가 혼용되어 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 본 출원의 목적상 상기 변이체는 서열번호 3의 아미노산 서열의 294번째 위치에 상응하는 아미노산인 아스파르트산이 아스파라긴으로 치환된, 서열번호 1로 기재된 아미노산 서열을 포함하는 폴리펩티드일 수 있다.
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이체의 N-말단에는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이동(translocation)에 관여하는 시그널(또는 리더) 서열이 컨쥬게이트 될 수 있다. 또한 상기 변이체는 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원에서 용어, '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
본 출원의 일 예로, 본 출원의 변이체는 포름이미도일글루타마아제(Formimidoylglutamase) 활성을 가질 수 있다. 또한, 본 출원의 변이체는 포름이미도일글루타마아제 활성을 갖는 야생형 폴리펩티드에 비해 IMP(5'-inosine monophosphate) 생산능이 증가되도록 하는 활성을 가질 수 있다.
본 출원에서 용어, "포름이미도일글루타마아제(Formimidoylglutamase)"는 N-포름이미도일-L-글루타메이트(N-formimidoyl-L-glutamate) 및 물을 기질로 하여 L-글루타메이트(L-glutamate) 및 포름아마이드(Formamide)를 생산하는 폴리펩티드이다. 구체적으로, 본 출원의 포름이미도일글루타마아제는 포름이미노글루타마제(Formiminoglutamase), N-포름이미노글루타메이트 하이드로라제(N-formiminoglutamate hydrolase), N-포름이미노-L-글루타메이트 포름이미노하이드로라제(N-formimino-L-glutamate formiminohydrolase), N-포름이미도일-L-글루타메이트 포름이미도일하이드로라제(N-formimidoyl-L-glutamate formimidoylhydrolase) 또는 HutG와 혼용하여 사용될 수 있다. 본 출원에서 상기 포름이미도일글루타마아제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다. 구체적으로 hutG에 의해 코딩되는 포름이미도일글루타마아제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.
본 출원에서, 용어 "상응하는(corresponding to)"은, 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 상응하는 위치의 아미노산을 확인하는 것은 특정 서열을 참조하는 서열의 특정 아미노산을 결정하는 것일 수 있다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 참조 (reference) 단백질에서의 유사하거나 대응되는 위치를 지칭한다.
예를 들어, 임의의 아미노산 서열을 서열번호 3과 정렬(align)하고, 이를 토대로 상기 아미노산 서열의 각 아미노산 잔기는 서열번호 3의 아미노산 잔기와 상응하는 아미노산 잔기의 숫자 위치를 참조하여 넘버링 할 수 있다. 예를 들어, 본 출원에 기재된 것과 같은 서열 정렬 알고리즘은, 쿼리 시퀀스("참조 서열"이라고도 함)와 비교하여 아미노산의 위치, 또는 치환, 삽입 또는 결실 등의 변형이 발생하는 위치를 확인할 수 있다.
이러한 정렬에는 예를 들어 Needleman-Wunsch 알고리즘 (Needleman 및 Wunsch, 1970, J. Mol. Biol. 48: 443-453), EMBOSS 패키지의 Needle 프로그램 (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) 등을 이용할 수 있으나, 이에 제한되지 않고 당업계에 알려진 서열 정렬 프로그램, 쌍 서열(pairwise sequence) 비교 알고리즘 등을 적절히 사용할 수 있다.
본 출원의 다른 하나의 양태는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 1으로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열로 이루어지거나, 필수적으로 구성될 수 있다.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 1의 294번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 아스파라긴을 코딩하는 코돈 중 하나일 수 있다.
또한, 본 출원의 폴리뉴클레오티드는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화할 수 있는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(J. Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1ХSSC, 0.1% SDS, 구체적으로 60℃, 0.1ХSSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1ХSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 본 출원의 폴리뉴클레오티드와 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
상기 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(예컨대, J. Sambrook et al., 상동).
본 출원의 또 다른 하나의 양태는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다. 상기 벡터는 상기 폴리뉴클레오티드를 숙주세포에서 발현시키기 위한 발현 벡터일 수 있으나, 이에 제한되지 않는다.
본 출원의 벡터는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이체를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는, 코리네박테리움 스테이셔니스(Corynebacterium stationis) 균주를 제공하는 것이다.
본 출원의 균주는 본 출원의 변이형 폴리펩티드, 상기 폴리펩티드를 암호화하는 폴리뉴클레오티드, 또는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 포함할 수 있다.
본 출원에서 용어, "균주(또는, 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.
본 출원의 균주는 본 출원의 변이체, 본 출원의 폴리뉴클레오티드 및 본 출원의 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 발현하도록 변형된 균주; 본 출원의 변이체, 또는 본 출원의 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 본 출원의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.
본 출원의 균주는 IMP 생산능을 가진 균주일 수 있다.
본 출원의 균주는 자연적으로 포름이미도일글루타마아제 또는 IMP 생산능을 가지고 있는 미생물, 또는 포름이미도일글루타마아제 또는 IMP 생산능이 없는 모균주에 본 출원의 변이체 또는 이를 코딩하는 폴리뉴클레오티드 (또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입되거나 및/또는 IMP 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다.
일 예로, 본 출원의 균주는 본 출원의 폴리뉴클레오티드 또는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어, 본 출원의 변이체를 발현하는 세포 또는 미생물로서, 본 출원의 목적상 본 출원의 균주는 본 출원의 변이체를 포함하여 IMP를 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 균주는 천연의 야생형 미생물 또는 IMP를 생산하는 미생물에 본 출원의 변이체를 코딩하는 폴리뉴클레오티드가 도입됨으로써 포름이미도일글루타마아제 변이체가 발현되어, IMP 생산능이 증가된 재조합 균주일 수 있다. 상기 IMP 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 포름이미도일글루타마아제 비변형 미생물 (즉, 야생형 포름이미도일글루타마아제(서열번호 3)를 발현하는 미생물 또는 변이형(서열번호 1) 단백질을 발현하지 않는 미생물)에 비하여 IMP 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 IMP 생산능의 증가 여부를 비교하는 대상 균주인, 포름이미도일글루타마아제 비변형 미생물은 CJI2332 균주(KCCM12277P, KR 10-1950141 B1)일 수 있으나, 이에 제한되지 않는다.
일 예로, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물의 IMP 생산능에 비하여 약 1% 이상, 구체적으로는 약 2% 이상, 약 4% 이상, 약 6% 이상, 약 8% 이상, 약 10% 이상, 약 12% 이상, 약 14% 이상, 약 16% 이상, 약 18% 이상, 약 20% 이상, 약 22% 이상, 약 24% 이상 또는 약 26% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 40% 이하, 약 30% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, IMP 생산능이 약 1.05배 이상, 약 1.10배 이상, 약 1.15배 이상, 약 1.20배 이상, 약 1.21배 이상, 약 1.22배 이상, 약 1.23배 이상, 약 1.24배 이상, 약 1.25배 이상 또는 약 1.26배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다. 상기 용어 “약(about)”은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.
본 출원에서 용어, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 포름이미도일글루타마아제 변이체가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 "변형 전 균주", "변형 전 미생물", "비변이 균주", "비변형 균주", "비변이 미생물" 또는 "기준 미생물"과 혼용될 수 있다.
본 출원의 또 다른 일 예로, 본 출원의 미생물은 코리네박테리움 스테이셔니스(Corynebacterium stationis), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있다.
본 출원에서 용어, 폴리펩티드의 "약화"는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다.
상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 "내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "불활성화, 결핍, 감소, 하향조절, 저하, 감쇠"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다.
이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 폴리펩티드의 약화는
1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;
2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;
3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);
4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형 (예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);
5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;
6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;
7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;
8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
예컨대,
상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.
또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.
또한, 상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
또한, 상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.
상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.
상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.
상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.
본 출원에서 용어, 폴리펩티드 활성의 "강화"는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "강화", "상향조절", "과발현" 또는 "증가"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 폴리펩티드의 강화는
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;
5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
보다 구체적으로,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.
공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 미생물에서, 변이체, 폴리뉴클레오티드 및 IMP 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 스테이셔니스 균주를 배지에서 배양하는 단계를 포함하는, IMP 생산방법을 제공한다.
본 출원의 IMP 생산방법은 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터를 포함하는 코리네박테리움 스테이셔니스 균주를 배지에서 배양하는 단계를 포함할 수 있다.
본 출원에서, 용어 "배양"은 본 출원의 코리네박테리움 스테이셔니스 균주를 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "배지"는 본 출원의 코리네박테리움 스테이셔니스 균주를 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 코리네박테리움 스테이셔니스 균주의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 코리네박테리움 스테이셔니스 균주를 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
구체적으로, 코리네박테리움 속 균주에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)]에서 찾아 볼 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.
또한, 본 출원의 코리네박테리움 스테이셔니스 균주의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.
본 출원의 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 배양에 의하여 생산된 IMP는 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
본 출원의 IMP 생산 방법은, 본 출원의 코리네박테리움 스테이셔니스 균주를 준비하는 단계, 상기 균주를 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다.
본 출원의 IMP 생산 방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 코리네박테리움 스테이셔니스 균주로부터 IMP를 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 IMP를 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 IMP를 회수할 수 있다.
또한, 본 출원의 IMP 생산 방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 IMP 생산 방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 방법에서, 변이체, 폴리뉴클레오티드, 벡터 및 균주 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체, 상기 변이체를 코딩하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 벡터 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 스테이셔니스 균주; 이를 배양한 배지; 또는 이들 중 2 이상의 조합을 포함하는 IMP 생산용 조성물을 제공하는 것이다.
본 출원의 조성물은 아미노산 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 조성물에서, 변이체, 폴리뉴클레오티드, 벡터, 균주, 배지 및 IMP 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 포름이미도일글루타마아제(Formimidoylglutamase)의 변이체를 포함하는, 코리네박테리움 스테이셔니스(Corynebacterium stationis) 균주를 배양하는 경우, 기존 비변형 폴리펩티드를 갖는 미생물에 비해 고수율의 IMP(5'-inosine monophosphate) 생산이 가능하다.
도 1은 pDCM2 플라스미드의 모식도이다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 하기 실시예는 본 출원을 예시하기 위한 바람직한 실시양태에 불과한 것이며 따라서, 본 출원의 권리범위를 이에 한정하는 것으로 의도되지는 않는다. 한편, 본 명세서에 기재되지 않은 기술적인 사항들은 본 출원의 기술 분야 또는 유사 기술 분야에서 숙련된 통상의 기술자이면 충분히 이해하고 용이하게 실시할 수 있다.
실시예 1: 플라스미드의 제작
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 5)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다.
실시예 2: 미생물내 포름이미도일글루타마아제(Formimidoylglutamase) 변이체 발현을 위한 벡터 제작
포름이미도일글루타마아제 아미노산 서열(서열번호 3)의 294번째 위치 아스파르트산이 아스파라긴으로 치환된 변이체(D294N; 서열번호 1)가 IMP(5'-inosine monophosphate) 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다.
야생형 코리네박테리움 스테이셔니스(Corynebacterium stationis) ATCC6872의 gDNA(genomic DNA)를 주형으로 서열번호 6 및 7의 서열의 프라이머 쌍과 서열번호 8 및 9의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 6 및 서열번호 9의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-hutG(D294N)라 명명하였다.
실시예 3: 포름이미도일글루타마아제 변이체를 발현하는 미생물의 IMP 생산능 평가
3-1. 포름이미도일글루타마아제 변이체 발현 균주 제작
상기 실시예 2에서 제작한 벡터를 코리네박테리움 스테이셔니스 CJI2332 균주(KCCM12277P, KR 10-1950141 B1)에 형질전환 하였다.
상동성 재조합이 일어난 균주에서 서열번호 10과 11을 이용하여 변이체가 도입된 균주를 선별하였다. 선별된 균주를 CJI2332_hutG_D294N로 명명하였다.
3-2. 포름이미도일글루타마아제 변이체 발현 균주의 IMP 생산능 비교
상기 실시예 3-1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 IMP 생산능을 분석하였다.
먼저, 종배지 2ml을 함유하는 지름 18mm 시험관에 각 균주를 접종하고, 30℃에서 24시간 동안, 진탕 배양하여 종 배양액으로 사용하였다. 생산배지 29ml(본배지 24ml + 별도 살균 배지 5ml)를 함유하는 250ml 코너-바플 플라스크에 2 ml의 종 배양액을 접종하여 30℃에서 72 시간 동안, 170rpm으로 배양하였다. 배양 종료 후 HPLC로 IMP의 생산능을 측정하였다. 실험한 각 균주에 대한 배양액 중의 IMP 농도 및 농도 증가율은 하기 표 1과 같다.
<종배지 (pH 7.5)>
포도당 1%, 펩톤 1%, 육즙 1%, 효모엑기스 1%, 염화나트륨 0.25%, 아데닌 100mg/l, 구아닌 100mg/l (증류수 1 리터 기준)
<생산배지 - 본배지 (pH 7.5)>
효모추출액 0.2%, 글루타민산 나트륨 0.1%, 황산마그네슘 1.2%, 염화칼슘 0.01%, 황산철 20mg/l, 황산망간 20mg/l, 황산아연 20mg/l, 황산구리 5mg/l, L-시스테인 23mg/l, 베타알라닌 24mg/l, 니코틴산 8mg/l, 비오틴 45㎍/l, 티아민염산 5mg/l, 아데닌 30mg/l, 포도당 2.55%, 과당 1.45% (증류수 1리터 기준)
<생산배지 - 별도 살균 배지 (pH 7.5)>
인산(85%) 2.3%, 수산화칼륨(45%) 2.55% (증류수 1리터 기준)
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 1에 나타내었다.
IMP 생산능 비교
균 주 IMP 농도 (g/L) IMP 농도 증가율(%)
CJI2332 1.74 -
CJI2332_hutG_D294N 2.2 26.4
표 1과 같이, CJI2332_hutG_D294N 균주는 대조군에 비해 26.4% 증가된 IMP 생산능을 나타내었다.
상기 CJI2332_hutG_D294N은 CN01-2646으로 명명하였으며, 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2020년 11월 30일자로 기탁하여 수탁번호 KCCM12841P를 부여받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
한국미생물보존센터(국외) KCCM12841P 20201130
<110> CJ CheilJedang Corporation <120> Novel Formimidoylglutamase variant and a method for producing IMP using the same <130> KPA201567-KR <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 319 <212> PRT <213> Artificial Sequence <220> <223> variant AA <400> 1 Met Asn Thr Glu Thr Ala Pro Leu Tyr Ser Pro Ala Pro Asp Trp Ser 1 5 10 15 Gly Arg Asn Asp Gly Pro Gly Pro Glu His Ala Arg Trp His Ser Val 20 25 30 Ile Glu Pro Ile Ala Gln Asp Ser Pro Ala Gly Val Ala Leu Leu Gly 35 40 45 Phe Ala Ser Asp Glu Gly Val Glu Arg Asn Gly Gly Arg Gln Gly Ala 50 55 60 Ala Ala Gly Ser Ala Ala Leu Arg Glu Ala Leu Gly Gly Leu Ala Val 65 70 75 80 His Asp Glu Leu Ala Leu Phe Asp Ala Gly Thr Ile Thr Thr Gln Glu 85 90 95 Thr Asp Leu Glu Gly Ala His Glu Glu Leu Ser Ser Arg Val Ala Thr 100 105 110 Leu Ile Asp Ala Gly His Leu Thr Val Ile Leu Gly Gly Gly His Glu 115 120 125 Thr Ala Phe Gly Ser His Arg Gly Leu Phe Arg Ser Leu Gly Pro Ala 130 135 140 Gln Ile Ile Asn Leu Asp Ala His Phe Asp Leu Arg Ser Glu Asn Arg 145 150 155 160 Pro Thr Ser Gly Thr Pro Phe Leu Gln Ile Ser Gln Leu Val Gly Glu 165 170 175 Lys Asp Phe Asp Tyr Ser Val Leu Gly Ile Ser Gln Pro Asn Asn Thr 180 185 190 Ala Thr Leu Phe Glu Thr Ala Asn Glu Leu Gly Val His Ile Met Leu 195 200 205 Asp Glu Asp Leu Ala Glu Met Ser Val Lys Glu Ala Ala Gln Leu Ala 210 215 220 Arg Val Leu Val Gln Asn Ser Pro His Glu Arg Val His Leu Ser Ile 225 230 235 240 Asp Met Asp Val Leu Pro Ala Asp Gln Ala Pro Gly Val Ser Ala Pro 245 250 255 Ala Ala Leu Gly Val Ser Phe Asp Arg Ile Arg Ala Ile Ala Val Ala 260 265 270 Ile Ala Ala Thr Gly Lys Leu Ala Leu Val Asp Val Val Glu Ile Asn 275 280 285 Pro His Phe Asp Gln Asn Asn Arg Thr Ala Lys Leu Gly Ala Arg Leu 290 295 300 Ile Asn Asp Ile Ala Val Ala His Val Leu Ser Thr Ser Ala Thr 305 310 315 <210> 2 <211> 960 <212> DNA <213> Artificial Sequence <220> <223> variant NT <400> 2 atgaacactg agaccgcgcc tttgtactct cctgctcccg attggtctgg ccgcaacgac 60 ggccctggcc cggaacatgc ccggtggcac agcgtcattg aacccattgc gcaagattcg 120 cccgcgggtg ttgccttgct gggctttgct tccgatgaag gcgttgagcg caacggcggg 180 cggcaaggtg ctgcggcagg atcagcagct ttacgcgaag cactgggcgg tttagcagta 240 cacgatgagc ttgcgctttt cgatgccggc accatcacca cccaagaaac cgacctggag 300 ggagcacatg aggagctttc ttcgcgagta gccacgctta tcgatgccgg acatttaacc 360 gtcattttag gcggcgggca tgaaactgct tttggctccc accgcgggct gtttcgatcc 420 ttgggcccag cgcagattat taatctagac gcgcacttcg acttacgctc ggagaaccgc 480 ccaacttccg gcacgccctt tttacagata tcccagcttg taggtgaaaa ggattttgat 540 tacagcgttt tgggcatctc ccagccgaat aacaccgcca cgctttttga aactgcaaat 600 gagcttggcg ttcatatcat gttggatgaa gaccttgcgg agatgagtgt caaagaggct 660 gcgcaattag cgcgcgtgct ggttcaaaac tccccgcacg agcgcgtgca cctttccatc 720 gacatggatg ttttacccgc tgaccaagca ccgggggtgt ctgcccctgc agctttgggt 780 gtgagctttg accgtatccg cgctattgcc gtagctatcg ctgctaccgg aaaactggct 840 ttggtagatg tcgtggagat taatccccac tttgatcaaa acaaccgcac agccaaattg 900 ggtgcgcggt tgatcaacga tattgcggtc gctcacgttc tttcgacgtc agcaacttaa 960 960 <210> 3 <211> 319 <212> PRT <213> Artificial Sequence <220> <223> WT AA <400> 3 Met Asn Thr Glu Thr Ala Pro Leu Tyr Ser Pro Ala Pro Asp Trp Ser 1 5 10 15 Gly Arg Asn Asp Gly Pro Gly Pro Glu His Ala Arg Trp His Ser Val 20 25 30 Ile Glu Pro Ile Ala Gln Asp Ser Pro Ala Gly Val Ala Leu Leu Gly 35 40 45 Phe Ala Ser Asp Glu Gly Val Glu Arg Asn Gly Gly Arg Gln Gly Ala 50 55 60 Ala Ala Gly Ser Ala Ala Leu Arg Glu Ala Leu Gly Gly Leu Ala Val 65 70 75 80 His Asp Glu Leu Ala Leu Phe Asp Ala Gly Thr Ile Thr Thr Gln Glu 85 90 95 Thr Asp Leu Glu Gly Ala His Glu Glu Leu Ser Ser Arg Val Ala Thr 100 105 110 Leu Ile Asp Ala Gly His Leu Thr Val Ile Leu Gly Gly Gly His Glu 115 120 125 Thr Ala Phe Gly Ser His Arg Gly Leu Phe Arg Ser Leu Gly Pro Ala 130 135 140 Gln Ile Ile Asn Leu Asp Ala His Phe Asp Leu Arg Ser Glu Asn Arg 145 150 155 160 Pro Thr Ser Gly Thr Pro Phe Leu Gln Ile Ser Gln Leu Val Gly Glu 165 170 175 Lys Asp Phe Asp Tyr Ser Val Leu Gly Ile Ser Gln Pro Asn Asn Thr 180 185 190 Ala Thr Leu Phe Glu Thr Ala Asn Glu Leu Gly Val His Ile Met Leu 195 200 205 Asp Glu Asp Leu Ala Glu Met Ser Val Lys Glu Ala Ala Gln Leu Ala 210 215 220 Arg Val Leu Val Gln Asn Ser Pro His Glu Arg Val His Leu Ser Ile 225 230 235 240 Asp Met Asp Val Leu Pro Ala Asp Gln Ala Pro Gly Val Ser Ala Pro 245 250 255 Ala Ala Leu Gly Val Ser Phe Asp Arg Ile Arg Ala Ile Ala Val Ala 260 265 270 Ile Ala Ala Thr Gly Lys Leu Ala Leu Val Asp Val Val Glu Ile Asn 275 280 285 Pro His Phe Asp Gln Asp Asn Arg Thr Ala Lys Leu Gly Ala Arg Leu 290 295 300 Ile Asn Asp Ile Ala Val Ala His Val Leu Ser Thr Ser Ala Thr 305 310 315 <210> 4 <211> 960 <212> DNA <213> Artificial Sequence <220> <223> WT NT <400> 4 atgaacactg agaccgcgcc tttgtactct cctgctcccg attggtctgg ccgcaacgac 60 ggccctggcc cggaacatgc ccggtggcac agcgtcattg aacccattgc gcaagattcg 120 cccgcgggtg ttgccttgct gggctttgct tccgatgaag gcgttgagcg caacggcggg 180 cggcaaggtg ctgcggcagg atcagcagct ttacgcgaag cactgggcgg tttagcagta 240 cacgatgagc ttgcgctttt cgatgccggc accatcacca cccaagaaac cgacctggag 300 ggagcacatg aggagctttc ttcgcgagta gccacgctta tcgatgccgg acatttaacc 360 gtcattttag gcggcgggca tgaaactgct tttggctccc accgcgggct gtttcgatcc 420 ttgggcccag cgcagattat taatctagac gcgcacttcg acttacgctc ggagaaccgc 480 ccaacttccg gcacgccctt tttacagata tcccagcttg taggtgaaaa ggattttgat 540 tacagcgttt tgggcatctc ccagccgaat aacaccgcca cgctttttga aactgcaaat 600 gagcttggcg ttcatatcat gttggatgaa gaccttgcgg agatgagtgt caaagaggct 660 gcgcaattag cgcgcgtgct ggttcaaaac tccccgcacg agcgcgtgca cctttccatc 720 gacatggatg ttttacccgc tgaccaagca ccgggggtgt ctgcccctgc agctttgggt 780 gtgagctttg accgtatccg cgctattgcc gtagctatcg ctgctaccgg aaaactggct 840 ttggtagatg tcgtggagat taatccccac tttgatcaag acaaccgcac agccaaattg 900 ggtgcgcggt tgatcaacga tattgcggtc gctcacgttc tttcgacgtc agcaacttaa 960 960 <210> 5 <211> 5803 <212> DNA <213> Artificial Sequence <220> <223> pDCM2 <400> 5 gttcgcttgc tgtccataaa accgcccagt ctagctatcg ccatgtaagc ccactgcaag 60 ctacctgctt tctctttgcg cttgcgtttt cccttgtcca gatagcccag tagctgacat 120 tcatccgggg tcagcaccgt ttctgcggac tggctttcta cgtgttccgc ttcctttagc 180 agcccttgcg ccctgagtgc ttgcggcagc gtgaagctag cttttatcgc cattcgccat 240 tcaggctgcg caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc 300 tggcgaaagg gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt 360 cacgacgttg taaaacgacg gccagtgaat tcgagctcgg tacccgggga tcctctagag 420 tcgacctgca ggcatgcaag cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat 480 tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 540 ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 600 tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 660 ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 720 ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg 780 gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag 840 gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga 900 cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct 960 ggaagctccc tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc 1020 tttctccctt cgggaagcgt ggcgctttct caatgctcac gctgtaggta tctcagttcg 1080 gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc 1140 tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 1200 ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 1260 ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct 1320 ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc 1380 accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 1440 tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 1500 cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttgggg 1560 tgggcgaaga actccagcat gagatccccg cgctggagga tcatccagcc ctgatagaaa 1620 cagaagccac tggagcacct caaaaacacc atcatacact aaatcagtaa gttggcagca 1680 tcacccgacg cactttgcgc cgaataaata cctgtgacgg aagatcactt cgcagaataa 1740 ataaatcctg gtgtccctgt tgataccggg aagccctggg ccaacttttg gcgaaaatga 1800 gacgttgatc ggcacgtaag aggttccaac tttcaccata atgaaataag atcactaccg 1860 ggcgtatttt ttgagttatc gagattttca ggagctgata gaaacagaag ccactggagc 1920 acctcaaaaa caccatcata cactaaatca gtaagttggc agcatcaccc gacgcacttt 1980 gcgccgaata aatacctgtg acggaagatc acttcgcaga ataaataaat cctggtgtcc 2040 ctgttgatac cgggaagccc tgggccaact tttggcgaaa atgagacgtt gatcggcacg 2100 taagaggttc caactttcac cataatgaaa taagatcact accgggcgta ttttttgagt 2160 tatcgagatt ttcaggagct ctttggcatc gtctctcgcc tgtcccctca gttcagtaat 2220 ttcctgcatt tgcctgtttc cagtcggtag atattccaca aaacagcagg gaagcagcgc 2280 ttttccgctg cataaccctg cttcggggtc attatagcga ttttttcggt atatccatcc 2340 tttttcgcac gatatacagg attttgccaa agggttcgtg tagactttcc ttggtgtatc 2400 caacggcgtc agccgggcag gataggtgaa gtaggcccac ccgcgagcgg gtgttccttc 2460 ttcactgtcc cttattcgca cctggcggtg ctcaacggga atcctgctct gcgaggctgg 2520 ccggctaccg ccggcgtaac agatgagggc aagcggatgg ctgatgaaac caagccaacc 2580 aggaagggca gcccacctat caaggtgtac tgccttccag acgaacgaag agcgattgag 2640 gaaaaggcgg cggcggccgg catgagcctg tcggcctacc tgctggccgt cggccagggc 2700 tacaaaatca cgggcgtcgt ggactatgag cacgtccgcg agggcgtccc ggaaaacgat 2760 tccgaagccc aacctttcat agaaggcggc ggtggaatcg aaatctcgtg atggcaggtt 2820 gggcgtcgct tggtcggtca tttcgaaaaa ggttaggaat acggttagcc atttgcctgc 2880 ttttatatag ttcantatgg gattcacctt tatgttgata agaaataaaa gaaaatgcca 2940 ataggatatc ggcattttct tttgcgtttt tatttgttaa ctgttaattg tccttgttca 3000 aggatgctgt ctttgacaac agatgttttc ttgcctttga tgttcagcag gaagctcggc 3060 gcaaacgttg attgtttgtc tgcgtagaat cctctgtttg tcatatagct tgtaatcacg 3120 acattgtttc ctttcgcttg aggtacagcg aagtgtgagt aagtaaaggt tacatcgtta 3180 ggcggatcaa gatccatttt taacacaagg ccagttttgt tcagcggctt gtatgggcca 3240 gttaaagaat tagaaacata accaagcatg taaatatcgt tagacgtaat gccgtcaatc 3300 gtcatttttg atccgcggga gtcagtgaac aggtaccatt tgccgttcat tttaaagacg 3360 ttcgcgcgtt caatttcatc tgttactgtg ttagatgcaa tcagcggttt catcactttt 3420 ttcagtgtgt aatcatcgtt tagctcaatc ataccgagag cgccgtttgc taactcagcc 3480 gtgcgttttt tatcgctttg cagaagtttt tgactttctt gacggaagaa tgatgtgctt 3540 ttgccatagt atgctttgtt aaataaagat tcttcgcctt ggtagccatc ttcagttcca 3600 gtgtttgctt caaatactaa gtatttgtgg cctttatctt ctacgtagtg aggatctctc 3660 agcgtatggt tgtcgcctga gctgtagttg ccttcatcga tgaactgctg tacattttga 3720 tacgtttttc cgtcaccgtc aaagattgat ttataatcct ctacaccgtt gatgttcaaa 3780 gagctgtctg atgctgatac gttaacttgt gcagttgtca gtgtttgttt gccgtaatgt 3840 ttaccggaga aatcagtgta gaataaacgg atttttccgt cagatgtaaa tgtggctgaa 3900 cctgaccatt cttgtgtttg gtcttttagg atagaatcat ttgcatcgaa tttgtcgctg 3960 tctttaaaga cgcggccagc gtttttccag ctgtcaatag aagtttcgcc gactttttga 4020 tagaacatgt aaatcgatgt gtcatccgca tttttaggat ctccggctaa tgcaaagacg 4080 atgtggtagc cgtgatagtt tgcgacagtg ccgtcagcgt tttgtaatgg ccagctgtcc 4140 caaacgtcca ggccttttgc agaagagata tttttaattg tggacgaatc aaattcagaa 4200 acttgatatt tttcattttt ttgctgttca gggatttgca gcatatcatg gcgtgtaata 4260 tgggaaatgc cgtatgtttc cttatatggc ttttggttcg tttctttcgc aaacgcttga 4320 gttgcgcctc ctgccagcag tgcggtagta aaggttaata ctgttgcttg ttttgcaaac 4380 tttttgatgt tcatcgttca tgtctccttt tttatgtact gtgttagcgg tctgcttctt 4440 ccagccctcc tgtttgaaga tggcaagtta gttacgcaca ataaaaaaag acctaaaata 4500 tgtaaggggt gacgccaaag tatacacttt gccctttaca cattttaggt cttgcctgct 4560 ttatcagtaa caaacccgcg cgatttactt ttcgacctca ttctattaga ctctcgtttg 4620 gattgcaact ggtctatttt cctcttttgt ttgatagaaa atcataaaag gatttgcaga 4680 ctacgggcct aaagaactaa aaaatctatc tgtttctttt cattctctgt attttttata 4740 gtttctgttg catgggcata aagttgcctt tttaatcaca attcagaaaa tatcataata 4800 tctcatttca ctaaataata gtgaacggca ggtatatgtg atgggttaaa aaggatcacc 4860 ccagagtccc gctcagaaga actcgtcaag aaggcgatag aaggcgatgc gctgcgaatc 4920 gggagcggcg ataccgtaaa gcacgaggaa gcggtcagcc cattcgccgc caagctcttc 4980 agcaatatca cgggtagcca acgctatgtc ctgatagcgg tccgccacac ccagccggcc 5040 acagtcgatg aatccagaaa agcggccatt ttccaccatg atattcggca agcaggcatc 5100 gccatgggtc acgacgagat cctcgccgtc gggcatccgc gccttgagcc tggcgaacag 5160 ttcggctggc gcgagcccct gatgctcttc gtccagatca tcctgatcga caagaccggc 5220 ttccatccga gtacgtgctc gctcgatgcg atgtttcgct tggtggtcga atgggcaggt 5280 agccggatca agcgtatgca gccgccgcat tgcatcagcc atgatggata ctttctcggc 5340 aggagcaagg tgagatgaca ggagatcctg ccccggcact tcgcccaata gcagccagtc 5400 ccttcccgct tcagtgacaa cgtcgagaca gctgcgcaag gaacgcccgt cgtggccagc 5460 cacgatagcc gcgctgcctc gtcttggagt tcattcaggg caccggacag gtcggtcttg 5520 acaaaaagaa ccgggcgccc ctgcgctgac agccggaaca cggcggcatc agagcagccg 5580 attgtctgtt gtgcccagtc atagccgaat agcctctcca cccaagcggc cggagaacct 5640 gcgtgcaatc catcttgttc aatcatgcga aacgatcctc atcctgtctc ttgatcagat 5700 cttgatcccc tgcgccatca gatccttggc ggcaagaaag ccatccagtt tactttgcag 5760 ggcttcccaa ccttaccaga gggcgcccca gctggcaatt ccg 5803 <210> 6 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 1F <400> 6 tcgagctcgg taccctgaaa ctgcttttgg ctccc 35 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> 2R <400> 7 tggctgtgcg gttgttttga tcaaagtggg 30 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> 3F <400> 8 cccactttga tcaaaacaac cgcacagcca 30 <210> 9 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 4R <400> 9 ctctagagga tccccccatt tggatcaatt tccgc 35 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5F <400> 10 tgaaactgct tttggctccc 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 6R <400> 11 ccatttggat caatttccgc 20

Claims (5)

  1. 서열번호 3의 294번째 위치에 상응하는 아미노산인 아스파르트산이 아스파라긴으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진 포름이미도일글루타마아제 변이체.
  2. 제1항의 변이체를 코딩하는 폴리뉴클레오티드.
  3. 제1항의 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는, 코리네박테리움 스테이셔니스 균주.
  4. 제3항에 있어서, 상기 균주는 서열번호 3의 폴리펩티드 또는 이를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 스테이셔니스와 비교하여 IMP 생산능이 증가된, 균주.
  5. 제1항의 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 스테이셔니스 균주를 배지에서 배양하는 단계를 포함하는, IMP 생산 방법.
KR1020210006166A 2021-01-15 2021-01-15 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법 KR102254628B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210006166A KR102254628B1 (ko) 2021-01-15 2021-01-15 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법
PCT/KR2021/005026 WO2022154182A1 (ko) 2021-01-15 2021-04-21 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210006166A KR102254628B1 (ko) 2021-01-15 2021-01-15 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법

Publications (1)

Publication Number Publication Date
KR102254628B1 true KR102254628B1 (ko) 2021-05-21

Family

ID=76157482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210006166A KR102254628B1 (ko) 2021-01-15 2021-01-15 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법

Country Status (2)

Country Link
KR (1) KR102254628B1 (ko)
WO (1) WO2022154182A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160145827A (ko) 2014-04-30 2016-12-20 에보닉 데구사 게엠베하 호알칼리성 박테리아를 사용하는 l-아미노산 생산 방법
WO2019147078A1 (ko) * 2018-01-25 2019-08-01 씨제이제일제당 (주) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
KR102006976B1 (ko) * 2019-02-26 2019-08-06 씨제이제일제당 주식회사 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956510B1 (ko) * 2018-07-27 2019-03-08 씨제이제일제당 (주) 신규 5'-이노신산 디하이드로게나아제 및 이를 이용한 5'-이노신산 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160145827A (ko) 2014-04-30 2016-12-20 에보닉 데구사 게엠베하 호알칼리성 박테리아를 사용하는 l-아미노산 생산 방법
WO2019147078A1 (ko) * 2018-01-25 2019-08-01 씨제이제일제당 (주) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
KR20190090657A (ko) * 2018-01-25 2019-08-02 씨제이제일제당 (주) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
KR102006976B1 (ko) * 2019-02-26 2019-08-06 씨제이제일제당 주식회사 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법
EP3722430A1 (en) * 2019-02-26 2020-10-14 Cj Cheiljedang Corporation Novel promoter and purine nucleotide production method using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI Reference sequence: WP_066794831.1(2016.8.18.) *

Also Published As

Publication number Publication date
WO2022154182A1 (ko) 2022-07-21

Similar Documents

Publication Publication Date Title
KR102257842B1 (ko) 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102281368B1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법
KR102254633B1 (ko) 신규한 3d-(3,5/4)-트리하이드록시사이클로헥세인-1,2-다이온 아실하이드롤라아제 변이체 및 이를 이용한 imp 생산 방법
KR102254635B1 (ko) 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102259338B1 (ko) 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102259337B1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102288395B1 (ko) 신규한 1,4-알파-글루칸-분지 효소 변이체 및 이를 이용한 imp 생산 방법
KR102288396B1 (ko) 신규한 혐기성 코프로포르피리노겐 ⅲ 옥시다제 변이체 및 이를 이용한 imp 생산 방법
KR102281361B1 (ko) 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법
KR102281360B1 (ko) 신규한 atp 포스포리보실트랜스퍼라제 변이체 및 이를 이용한 l-발린 생산 방법
KR102281363B1 (ko) 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법
KR102254628B1 (ko) 신규한 포름이미도일글루타마아제 변이체 및 이를 이용한 imp 생산 방법
KR102254629B1 (ko) 신규한 글루코사민-6-포스페이트 데아미나제 변이체 및 이를 이용한 imp 생산 방법
KR102254630B1 (ko) 신규한 셀레니드, 물 디키나제 변이체 및 이를 이용한 imp 생산 방법
KR102254632B1 (ko) 신규한 피토엔 탈포화효소 변이체 및 이를 이용한 imp 생산 방법
KR102254631B1 (ko) 신규한 펩타이드 메티오닌 설폭사이드 환원효소 변이체 및 이를 이용한 imp 생산 방법
KR102254634B1 (ko) 신규한 포름아미도피리미딘-dna 글리코실라제 변이체 및 이를 이용한 imp 생산 방법
KR102257841B1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102258159B1 (ko) 신규한 말레이트 디하이드로게나제 변이체 및 이를 이용한 l-라이신 생산 방법
KR102254209B1 (ko) 신규한 dna 중합효소 ⅲ 감마 및 타우 서브유닛 변이체 및 이를 이용한 l-라이신 생산 방법
KR102266232B1 (ko) 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102277406B1 (ko) 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102259339B1 (ko) 신규한 알데하이드 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102273637B1 (ko) 신규한 펩티딜-디펩티다제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102270701B1 (ko) 신규한 d-알라닌―d-알라닌 리가아제 변이체 및 이를 이용한 imp 생산 방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant