KR102250885B1 - Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent - Google Patents

Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent Download PDF

Info

Publication number
KR102250885B1
KR102250885B1 KR1020190094052A KR20190094052A KR102250885B1 KR 102250885 B1 KR102250885 B1 KR 102250885B1 KR 1020190094052 A KR1020190094052 A KR 1020190094052A KR 20190094052 A KR20190094052 A KR 20190094052A KR 102250885 B1 KR102250885 B1 KR 102250885B1
Authority
KR
South Korea
Prior art keywords
water
weight
parts
prepolymer
soluble acrylic
Prior art date
Application number
KR1020190094052A
Other languages
Korean (ko)
Other versions
KR20210016192A (en
KR102250885B9 (en
Inventor
유영선
김미경
전병준
Original Assignee
유영선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유영선 filed Critical 유영선
Priority to KR1020190094052A priority Critical patent/KR102250885B1/en
Publication of KR20210016192A publication Critical patent/KR20210016192A/en
Application granted granted Critical
Publication of KR102250885B1 publication Critical patent/KR102250885B1/en
Publication of KR102250885B9 publication Critical patent/KR102250885B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/089Reaction retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1841Catalysts containing secondary or tertiary amines or salts thereof having carbonyl groups which may be linked to one or more nitrogen or oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating

Abstract

본 발명은 폴리올, 디메틸올프로피온 산(dimethylol propionic acid: DMPA) 및 이소시아네이트를 혼합하여 프리폴리머를 제조하는 단계; N-메틸피놀리돈(NMP)용액에 희석시킨 중화제로 상기 프리폴리머를 중화시키는 단계; 상기 중화된 프리폴리머에 증류수를 투입하여 수분산 시킨 후, 사슬 연장제를 첨가하여 수분산 폴리 우레탄을 제조하는 단계; 상기 수분산 폴리 우레탄에 아크릴 모노머, 생분해 촉매제, 증점제 및 개시제를 첨가한 후 교반하여 수용성 아크릴 폴리우레탄을 제조하는 단계;및 상기 수용성 아크릴 폴리우레탄에 유기화제로 처리된 클레이를 분산시키는 단계;를 포함하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법에 관한 것으로, 상기 방법에 의하여 제조된 코팅액은 내유성, 내수성, 산소 배리어성, 방습성, 인쇄적성, 열봉합성이 뛰어나고, 알칼리 해리성을 가져 재생(재활용)이 용이한 친환경 식품 포장재 코팅에 유용하게 사용될 수 있다. The present invention comprises the steps of preparing a prepolymer by mixing polyol, dimethylol propionic acid (DMPA) and isocyanate; Neutralizing the prepolymer with a neutralizing agent diluted in an N-methylpinolidone (NMP) solution; Adding distilled water to the neutralized prepolymer to disperse it, and then adding a chain extender to prepare a water-dispersible polyurethane; Adding an acrylic monomer, a biodegradation catalyst, a thickener, and an initiator to the water-dispersible polyurethane, followed by stirring to prepare a water-soluble acrylic polyurethane; and dispersing the clay treated with an organic agent in the water-soluble acrylic polyurethane. It relates to a method for preparing a nano-clay dispersion water-soluble acrylic polyurethane coating solution, wherein the coating solution prepared by the method has excellent oil resistance, water resistance, oxygen barrier property, moisture-proof property, printability, heat sealability, and alkali dissociation property and is regenerated (recycled). This easy-to-use eco-friendly food packaging material can be usefully used for coating.

Description

생분해 촉매제, 증점제를 함유한 수용성 종이 코팅액 및 수용성 코팅지 제조방법 { METHOD OF WATER-SOLUBLE COATING PAPER AND WATER-SOLUBLE COATING LIQUID CONTAING BIODEGRADABLE CATALYST, VISCOSITY INCREASING AGENT }Method for producing water-soluble paper coating liquid and water-soluble coating paper containing biodegradation catalyst and thickener {METHOD OF WATER-SOLUBLE COATING PAPER AND WATER-SOLUBLE COATING LIQUID CONTAING BIODEGRADABLE CATALYST, VISCOSITY INCREASING AGENT}

본 발명은 사용후 폐기시 재활용이 용이하지 않는 폴리에틸렌(polyethylene, PE) 코팅지를 대체하기 위한 생분해 촉매제, 증점제를 함유한 수용성 종이 코팅액 및 수용성 코팅지 제조방법에 관한 것으로, 더욱 자세하게는 나노 분산 기술, 수용성 고분자, 생분해 촉매제 및 증점제를 적용한 고차단성 코팅 기술로 내유성, 내수성, 산소 배리어성, 인쇄적성, 열실링성이 뛰어나고, 알칼리 해리성을 가져 재생(재활용)이 용이한 친환경 코팅기술에 관한 것이다.The present invention relates to a biodegradation catalyst for replacing polyethylene (PE) coated paper, which is not easily recycled when discarded after use, a water-soluble paper coating solution containing a thickener, and a water-soluble coating paper manufacturing method, and in more detail, nano-dispersion technology, water-soluble It is an eco-friendly coating technology that has excellent oil resistance, water resistance, oxygen barrier property, printability, heat sealing property, alkali dissociation property, and easy regeneration (recycling) by applying a polymer, a biodegradation catalyst and a thickener.

현대 사회의 발전과 함께 플라스틱 소재의 포장지 및 용기류는 우수한 기능과 저렴한 가격으로 생활의 편리성을 가져오고 산업 전반에 걸쳐 산업발달에 큰 공헌을 해왔지만 사용 후의 폐기 문제로 식품포장지의 주성분인 플라스틱 폐기물은 환경오염의 가장 큰 오염원 중 하나로 인식되고 있다. With the development of modern society, plastic packaging and containers bring convenience in life with excellent functions and low prices, and have made a great contribution to industrial development throughout the industry, but plastic waste, which is the main component of food packaging, due to the problem of disposal after use. Is recognized as one of the largest sources of environmental pollution.

폴리에틸렌은 일반적으로 식품 위생성이 우수하고, 신율이 우수하여 가공성이 우수하고, 가격이 저렴한 등의 이유에 의하여 다양한 식품 용기의 내부에 코팅되어 방수 등의 목적으로 사용되고 있으나 이를 사용한 코팅용기 포장재는 사용 및 폐기과정에서 플라스틱에 첨가된 가소제 등에 의한 환경 호르몬방출 등의 사회적·환경적 문제를 야기한다. 또한, 폴리에틸렌 코팅 용기 포장재는 사용 후 재활용을 위해 해리하는 과정에서 물에 해리되지 않는 폴리에틸렌은 선별 과정을 거쳐야 하기 때문에 재활용 비용이 증가하는 단점이 있다.Polyethylene is generally coated inside various food containers for reasons such as excellent food hygiene, excellent elongation, excellent processability, and low price, and is used for waterproofing purposes. In the process of disposal, it causes social and environmental problems such as the release of environmental hormones due to plasticizers added to plastics. In addition, the polyethylene-coated container packaging material has a disadvantage of increasing recycling costs because polyethylene, which does not dissociate in water, must undergo a sorting process in the process of dissociating for recycling after use.

대량으로 발생하는 각종 폐비닐, 스티로폼, 플라스틱 용기 등의 소각이나 매립에 다른 환경 호르몬 누출, 맹독성의 다이옥신 검출 폐기물의 불완전 연소에 의한 대기오염 발생 등과 같은 심각한 환경오염의 원인으로 대두하고 있으며, 이러한 난분해성 플라스틱으로 인하여 전 세계적으로 환경문제가 대두함에 따라서 자연 부하를 최소화할 수 있는 소재의 개발이 중요시되고 있으며 자연 순환계로 돌아가 환경오염을 일으키지 않는 친환경 소재의 등장이 필요한 상황이다. It is emerging as a cause of serious environmental pollution, such as the leakage of other environmental hormones in the incineration or landfill of various waste vinyl, styrofoam, plastic containers, etc. that occur in large quantities, and air pollution due to incomplete combustion of highly toxic dioxin detection waste. As environmental problems emerge around the world due to degradable plastics, the development of materials that can minimize natural loads is becoming important, and the emergence of eco-friendly materials that do not cause environmental pollution by returning to the natural circulation system is required.

종래의 식품포장지 중 종이포장용은 폴리에틸렌 칩(chip)에 고온의 열을 가해 용해한 후, 원지에 열융착 하는 방법으로 제조되는데, 이때 폴리에틸렌 칩의 용해공정에서 발암물질로 추정되는 휘발성 유기용제(VOCs)가 발생하고 이는 대기오염을 수발한다. 또한, 재활용 과정이 어렵고 처리비용이 높아 대부분 소각하는 실정이다. 더욱이, 종래 제품은 사용/폐기과정에서 환경 호르몬 방출의 위험이 커 식품위생 및 안전성 측면에서 문제가 제기되고 있어, 환경파괴 및 자원의 재활용 관점에서 그 한계점이 있었다.Among the conventional food packaging paper, paper packaging is manufactured by applying high-temperature heat to the polyethylene chip to dissolve it, and then heat-sealing it on the base paper, and at this time, volatile organic solvents (VOCs) that are estimated to be carcinogens in the melting process of polyethylene chips. Occurs, which causes air pollution. In addition, the recycling process is difficult and treatment costs are high, so most of them are incinerated. Moreover, conventional products have a high risk of releasing environmental hormones in the use/disposal process, which raises problems in terms of food hygiene and safety, and has limitations in terms of environmental destruction and recycling of resources.

식품포장지 제작 공정에서 폴리에틸렌과 동일한 효과를 가지며, 또한 재활용할 수 있는 수용성 셀룰로오스 기술기반 코팅액의 사용과 이를 통한 친환경 식품포장지의 제작으로, 식품용지 종류에 상관없이 펄프재생을 실현할 수 있으며, 200℃가량의 고온공정이 필요하지 않기 때문에 공정비용 절감과 휘발성 유기물질(VOCs)의 발생 및 이에 대한 대기오염을 원천적으로 제거하는 동시에, 친환경적인 작업환경을 제공한다. 또한, 환경 호르몬의 발생이 없는 천연물질을 사용하므로 사용자의 건강을 지킬 수 있는, 친환경 식품포장용으로 개발하고자 한다.By using a water-soluble cellulose technology-based coating solution that can be recycled and has the same effect as polyethylene in the food packaging paper manufacturing process, and through the production of eco-friendly food packaging paper, it is possible to realize pulp regeneration regardless of the type of food paper. Since the high-temperature process is not required, it provides an eco-friendly work environment while reducing process costs and eliminating the generation of volatile organic substances (VOCs) and air pollution at the same time. In addition, since it uses natural substances that do not generate environmental hormones, it is intended to be developed for eco-friendly food packaging that can protect the health of users.

대한민국 등록특허 제10-1169203호Korean Patent Registration No. 10-1169203

기존 종이 포장재(다층 합지 포장재 포함) 및 용기(플라스틱 제품 포함)의 단점을 보완하여 인체에 무해하며, 자원 절약화(감량화, 재이용성, 재활용성, 재자원화 이용성, 폐기처리 용이성)와 소각시 친환경성, 매립시 분해 용이성이 뛰어나 환경을 보호할 수 있는 알칼리 해리성을 부여한 친환경 코팅액 제조방법을 제공하는 것을 목적으로 한다. It is harmless to the human body by complementing the shortcomings of existing paper packaging materials (including multi-layered laminated packaging materials) and containers (including plastic products), saving resources (reduction, reusability, recyclability, recyclability, ease of disposal) and eco-friendly incineration Its purpose is to provide an eco-friendly coating solution manufacturing method that has excellent alkali dissociation properties that can protect the environment due to its excellent ease of decomposition during embedding and landfill.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG), 디메틸올프로피온 산(dimethylol propionic acid: DMPA), N-메틸피놀리돈(NMP)용액 및 이소포론디The present invention has been devised to solve the above problems, polytetramehtyleneglycol (PTMG), dimethylol propionic acid (DMPA), N-methylpinolidone (NMP) solution, and isophorone D

이소시아네이트(isophorone diisocyanate, IPDI)를 혼합하여 프리폴리머를 제조하는 단계; N-메틸피놀리돈(NMP) 용액에 희석시킨 트리에틸아민 (triethylamine, TEA)으로 상기 프리폴리머를 중화시키고 상기 중화된 프리폴리머에 증류수를 투입하여 수분산 시킨 후, 사슬 연장제인 에틸렌디아민(ethylene diamine, EDA)를 첨가하여 수분산 폴리 우레탄을 제조하는 단계; 상기 수분산 폴리 우레탄에 메틸메타크릴레이트(methylmetaacrylate, MMA), 생분해 촉매제인 페릭아세틸카바메이트, 증점제 및 개시제인 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN)를 첨가한 후 교반하여 수용성 아크릴 폴리우레탄을 제조하는 단계; 및 상기 수용성 아크릴 폴리우레탄에 유기화제로 처리된 클레이를 분산시키는 단계;를 포함하는 수용성 종이 코팅액 제조방법을 제공한다.Preparing a prepolymer by mixing isocyanate (isophorone diisocyanate, IPDI); Neutralize the prepolymer with triethylamine (TEA) diluted in N-methylpinolidone (NMP) solution, and add distilled water to the neutralized prepolymer to disperse it. EDA) to prepare a water-dispersible polyurethane; Stirring after adding methyl methacrylate (MMA), ferric acetyl carbamate as a biodegradation catalyst, azobisisobutyronitrile (2,2'-azobis isobutyronitrile, AIBN) as a thickener and initiator to the water-dispersible polyurethane To prepare a water-soluble acrylic polyurethane; And dispersing the clay treated with an organic agent in the water-soluble acrylic polyurethane.

본 발명에 의하여 제조된 코팅액은 내유성, 내수성, 산소 배리어성, 인쇄적성, 열실링성이 뛰어나고, 사용후 폐기시 자연에서 생분해되고, 알칼리 해리성을 가져 재생(재활용)이 용이한 친환경 식품 포장재로 많이 사용되는 종이 코팅에 유용하게 사용될 수 있다.The coating solution prepared according to the present invention has excellent oil resistance, water resistance, oxygen barrier property, printability, heat sealing property, is biodegradable in nature when discarded after use, and is an eco-friendly food packaging material that is easy to regenerate (recycle) with alkali dissociation properties. It can be usefully used for paper coatings that are widely used.

도 1은 본 발명의 코팅액을 일 실시 예에 따라 제조하는 방법을 도시한 흐름도이다.
도 2는 본 발명에 따른 코팅액을 이용한 수용성 코팅지의 환경표지 기준에 따라 알칼리해리성 및 분산성을 시험한 시험 성적서이다.
1 is a flow chart showing a method of manufacturing the coating solution of the present invention according to an embodiment.
2 is a test report showing alkali dissociation and dispersibility according to the environmental labeling standards of a water-soluble coated paper using a coating solution according to the present invention.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 실시 예에 따른 수용성 종이 코팅액 제조방법은,A method for preparing a water-soluble paper coating solution according to an embodiment of the present invention,

폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG), 디메틸올프로피온 산(dimethylol propionic acid: DMPA), N-메틸피놀리돈(NMP)용액 및 이소포론디이소시아네이트(isophorone diisocyanate, IPDI)를 혼합하여 프리폴리머를 제조하는 단계;Prepolymer is prepared by mixing polytetramehtyleneglycol (PTMG), dimethylol propionic acid (DMPA), N-methylpinolidone (NMP) solution, and isophorone diisocyanate (IPDI). step;

N-메틸피놀리돈(NMP) 용액에 희석시킨 트리에틸아민 (triethylamine, TEA)으로 상기 프리폴리머를 중화시키고 상기 중화된 프리폴리머에 증류수를 투입하여 수분산 시킨 후, 사슬 연장제인 에틸렌디아민(ethylene diamine, EDA)를 첨가하여 수분산 폴리 우레탄을 제조하는 단계;Neutralize the prepolymer with triethylamine (TEA) diluted in N-methylpinolidone (NMP) solution, and add distilled water to the neutralized prepolymer to disperse it. EDA) to prepare a water-dispersible polyurethane;

상기 수분산 폴리 우레탄에 메틸메타크릴레이트(methylmetaacrylate, MMA), 생분해 촉매제인 페릭아세틸카바메이트, 증점제 및 개시제인 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN)를 첨가한 후 교반하여 수용성 아크릴 폴리우레탄을 제조하는 단계;및Stirring after adding methyl methacrylate (MMA), ferric acetyl carbamate as a biodegradation catalyst, azobisisobutyronitrile (2,2'-azobis isobutyronitrile, AIBN) as a thickener and initiator to the water-dispersible polyurethane To prepare a water-soluble acrylic polyurethane; And

상기 수용성 아크릴 폴리우레탄에 유기화제로 처리된 클레이를 분산시키는 단계;를 포함하여 이루어진다.And dispersing the clay treated with an organic agent in the water-soluble acrylic polyurethane.

상기 프리폴리머를 제조하는 단계는 프리폴리머 100 중량부에 대하여 폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG) 15~25 중량부를 진공 오븐에서 60~80℃에 녹인 후, 내부 공기를 질소로 치환하여 교반하는 단계;The step of preparing the prepolymer may include dissolving 15 to 25 parts by weight of polytetramehtyleneglycol (PTMG) in a vacuum oven at 60 to 80°C with respect to 100 parts by weight of the prepolymer, and then replacing the internal air with nitrogen and stirring;

프리폴리머 100 중량부에 대하여 디메틸올프로피온 산 15~25 중량부를 첨가하여 교반하는 단계;및Stirring by adding 15 to 25 parts by weight of dimethylolpropionic acid based on 100 parts by weight of the prepolymer; And

프리폴리머 100 중량부에 대하여 N-메틸피놀리돈(NMP)용액 1~5 중량부 및 이소포론디이소시아네이트(isophorone diisocyanate, IPDI) 50~65 중량부를 첨가하여 교반한 후 온도를 45~55℃로 낮추는 단계;를 포함하여 이루어진다.After stirring by adding 1 to 5 parts by weight of N-methylpinolidone (NMP) solution and 50 to 65 parts by weight of isophorone diisocyanate (IPDI) to 100 parts by weight of the prepolymer, the temperature is lowered to 45 to 55°C. Step; is made, including.

상기 폴리에테르 폴리올(polyether polyol)인 폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG)은, 수용성 아크릴폴리우레탄 100 중량부에 대하여 15~25 중량부를 사용할 수 있으며, 사용량이 15중량부 미만일 경우 응집력이 저하될 우려가 있고, 25 중량부를 초과할 경우 내가수분해성이 저하될 우려가 있다.Polytetramehtyleneglycol (PTMG), which is a polyether polyol, may be used in 15 to 25 parts by weight based on 100 parts by weight of water-soluble acrylic polyurethane, and if the amount is less than 15 parts by weight, cohesive strength may be lowered. And, if it exceeds 25 parts by weight, there is a concern that the hydrolysis resistance is deteriorated.

상기 디메틸올 프로피온산(dimethylol propionic acid, DMPA)은 수용성 아크릴 폴리우레탄 100 중량부에 대하여 15~25 중량부를 사용할 수 있으며, 사용량이 15 중량부 미만일 경우 수분산 안정성이 저하될 우려가 있고, 25 중량부를 초과할 경우 내가수분해성이 저하될 우려가 있다.The dimethylol propionic acid (DMPA) may be used in 15 to 25 parts by weight based on 100 parts by weight of water-soluble acrylic polyurethane, and if the amount is less than 15 parts by weight, water dispersion stability may be lowered, and 25 parts by weight If it is exceeded, there is a fear that the hydrolysis resistance may decrease.

상기 이소포론 디이소시아네이트(isophorone diisocyanate, IPDI)는 수용성 아크릴 폴리우레탄 100 중량부에 대하여 50~65 중량부를 사용할 수 있으며 상기 범위를 벗어날 경우 폴리우레탄이 충분히 합성되지 못하거나 또는 수분산 안정성이 저하될 우려가 있다.The isophorone diisocyanate (IPDI) may be used in an amount of 50 to 65 parts by weight based on 100 parts by weight of water-soluble acrylic polyurethane, and if it is out of the above range, polyurethane may not be sufficiently synthesized or water dispersion stability may be deteriorated. There is.

상기 수분산 폴리우레탄을 제조하는 단계는 상기 수용성 폴리우레탄 분산체 100 중량부에 대하여 프리폴리머 25~45 중량부, N-메틸피놀리돈(NMP)용액 1~3 중량부에 트리에틸아민(triethylamine, TEA) 2~6 중량부를 혼합하여 프리폴리머를 중화시키는 단계; 증류수 40~60 중량부를 적하시켜 주며 교반하는 단계;및 사슬 연장제인 에틸렌디아민(ethylene diamine, EDA) 5~15 중량부를 넣고 교반하는 단계를 포함하는 것을 특징으로 한다.The step of preparing the water-dispersible polyurethane includes 25 to 45 parts by weight of the prepolymer and 1 to 3 parts by weight of the N-methylpinolidone (NMP) solution based on 100 parts by weight of the water-soluble polyurethane dispersion. TEA) neutralizing the prepolymer by mixing 2 to 6 parts by weight; Stirring while adding 40 to 60 parts by weight of distilled water; And adding 5 to 15 parts by weight of ethylene diamine (EDA) as a chain extender and stirring.

상기 중화제인 트리에틸아민(triethylamine, TEA)을 2~6 중량부를 사용할 수 있으며, 사용량이 2 중량부 미만일 경우 수분산 안정성이 저하될 우려가 있고, 6중량부를 초과할 경우 저장 안정성이 저하될 우려가 있고, 부가반응을 일으켜 물성이 저하될 우려가 있다.2 to 6 parts by weight of triethylamine (TEA) as the neutralizing agent may be used, and if the amount is less than 2 parts by weight, the water dispersion stability may be deteriorated, and if it exceeds 6 parts by weight, storage stability may be deteriorated. There is a risk of deteriorating physical properties by causing an addition reaction.

상기 사슬연장제로는 에틸렌디아민(ethylene diamine, EDA)을 사용하며, 사용량이 5 중량부 미만일 경우 사슬연장 효과가 미비해질 우려가 있고, 15중량부를 초과할 경우 저장 안정성이 저하될 우려가 있다.Ethylene diamine (EDA) is used as the chain extender, and if the amount is less than 5 parts by weight, the chain extension effect may be insufficient, and if it exceeds 15 parts by weight, storage stability may be deteriorated.

상기 수용성 아크릴 폴리우레탄을 제조하는 단계는 수용성 아크릴 폴리우레탄 100 중량부에 대하여 상기 수분산 폴리 우레탄 70~85 중량부, 메틸메타아크릴레이트(methylmetaacrylate, MMA) 10~25 중량부, 페릭아세틸카바메이트 0.1~2 중량부, 증점제 0.2~1.5 중량부 및 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN) 1~3 중량부를 첨가하여 교반하는 것을 특징으로 한다.The step of preparing the water-soluble acrylic polyurethane includes 70 to 85 parts by weight of the water-dispersed polyurethane, 10 to 25 parts by weight of methylmetaacrylate (MMA), and 0.1 parts by weight of ferric acetyl carbamate based on 100 parts by weight of the water-soluble acrylic polyurethane. It is characterized by adding and stirring ~2 parts by weight, 0.2 to 1.5 parts by weight of a thickener, and 1 to 3 parts by weight of azobisisobutyronitrile (2,2'-azobis isobutyronitrile, AIBN).

상기 메틸메타아크릴레이트(methylmetaacrylate, MMA)는 수용성 아크릴 폴리우레탄 100 중량부에 대하여 10~25 중량부를 사용할 수 있으며, 사용량이 10 중량부 미만일 경우 내구성과 내수성 향상 효과가 미비해질 우려가 있으며, 25 중량부를 초과할 경우 저장 안정성이 저하될 우려가 있다.The methylmetaacrylate (MMA) may be used in an amount of 10 to 25 parts by weight based on 100 parts by weight of water-soluble acrylic polyurethane, and if the amount is less than 10 parts by weight, the durability and water resistance improvement effect may be insufficient, and 25 parts by weight. If it exceeds part, there is a risk of deteriorating storage stability.

상기 페릭아세틸카바메이트는 아크릴 폴리우레탄을 광산화 반응으로 저분자화 및 생분해 시키는 기능을 수행하는데, 0.1~2 중량부를 사용할 수 있는데, 0.1 중량부 미만으로 사용하는 경우 최종 생분해 기간이 길어지는 단점이 있다. 또한 2 중량부를 초과할 경우 효과는 우수하지만 가격이 상승하는 단점이 있다The ferric acetyl carbamate performs a function of reducing molecular weight and biodegradation of acrylic polyurethane through a photooxidation reaction, and 0.1 to 2 parts by weight may be used, and when used in less than 0.1 parts by weight, the final biodegradation period is prolonged. In addition, if it exceeds 2 parts by weight, the effect is excellent, but there is a disadvantage of increasing the price.

상기 증점제는 잔탄검(Xanthan gum), 카르복시메틸셀룰로오스(Carboxy methyl cellulose), 구아검(Guar gum) 또는 전분(Starch) 중에서 선택하여 사용할 수 있으며, 바람직하게는 0.2~1.5 중량부를 사용할 수 있는데, 0.2 중량부 이하로 사용하는 경우 원하는 점도에 도달하지 못하고, 1.5 중량부를 초과할 경우 원가가 상승하고 또한 점도가 너무 증가하는 단점이 있다.The thickener may be selected from Xanthan gum, carboxy methyl cellulose, guar gum, or starch, and preferably 0.2 to 1.5 parts by weight may be used. If it is used in parts by weight or less, the desired viscosity cannot be reached, and if it exceeds 1.5 parts by weight, the cost increases and the viscosity increases too much.

중합을 위한 개시제로 아조비스이소부틸로니트릴(2,2'-azo-bisiso butyronitrile, AIBN)이 1~3 중량부를 사용한다. 상기 AIBN 함량이 1 중량부 미만일 경우 개시제의 효율이 저하하여 반응이 쉽게 진행되지 못하고, 3 중량부를 초과 사용하면 순간적인 발열반응에 의하여 겔이 생성되는 문제점이 있다.As an initiator for polymerization, 1 to 3 parts by weight of azobisisobutylonitrile (2,2'-azo-bisiso butyronitrile, AIBN) is used. When the AIBN content is less than 1 part by weight, the efficiency of the initiator is lowered and the reaction does not proceed easily, and when it is used in excess of 3 parts by weight, there is a problem in that a gel is generated due to an instantaneous exothermic reaction.

상기 수용성 아크릴 폴리우레탄에 유기화제로 처리된 클레이를 분산시키는 단계는 수용성 아크릴 폴리우레탄 95~98 중량부에 유기화제로 처리된 클레이 2~5 중량부를 분산시키는 것을 특징으로 한다.Dispersing the clay treated with the organic agent in the water-soluble acrylic polyurethane is characterized in that 2 to 5 parts by weight of the clay treated with the organic agent are dispersed in 95 to 98 parts by weight of the water-soluble acrylic polyurethane.

상기 유기화제로 처리된 클레이는 4급 암모늄염으로 개질 처리된 몬모릴로나이트로, 4급 암모늄염은 디메틸 벤질 수소화 탈로우 4차 암모늄(Dimethylbenzyl hydrogenatedtallow quaternary ammonium), 디메틸 수소화 탈로우 4차 암모늄(Dimethyl dihydrogenatedtallow quaternary ammonium), 메틸 탈로우 비스-2-하이드록시에틸 4차 암모늄(methyl tallow bis-2-hydroxyethyl quaternary ammonium), 디메틸 수소화 탈로우 2-에틸헥실 4차 암모늄(Dimethyl hydrogenated tallow 2-ethylhexyl quaternary ammonium) 등을 사용할 수 있으며, 이중 디메틸 수소화 탈로우 2-에틸헥실 4차 암모늄(Dimethyl hydrogenated tallow 2-ethylhexyl quaternary ammonium)으로 개질 처리하는 것이 가장 바람직하다.The clay treated with the organic agent is montmorillonite modified with a quaternary ammonium salt, and the quaternary ammonium salt is dimethylbenzyl hydrogenatedtallow quaternary ammonium, dimethyl dihydrogenatedtallow quaternary ammonium. , Methyl tallow bis-2-hydroxyethyl quaternary ammonium, dimethyl hydrogenated tallow 2-ethylhexyl quaternary ammonium, etc. Among them, it is most preferable to perform a modification treatment with dimethyl hydrogenated tallow 2-ethylhexyl quaternary ammonium.

층상 구조의 점토 광물인 몬모릴로나이트(Pristinemonmorillonite:PM)를 이용하는 고분자 나노 복합소재에 대한 연구가 많이 이루어지고 있다. 나노클레이로 알려진 몬모릴로나이트를 함유한 나노 복합소재는 기계적 물성을 강화시킬 뿐만 아니라 우수한 내열성, 낮은 기체 투과성, 난연성의 부여 등 여러 가지 장점을 줄 수 있는 무기 첨가제로 알려져 있다. 이 나노클레이는 복합재료로 제조되었을 때 고분자 매트릭스(matrix)에 나노 크기로 균일하게 분산될 경우 고분자/나노클레이 복합재료의 물성을 향상시킨다. 나노클레이는 강한 친수성을 띄고 있으므로 고분자에 첨가할 경우 분산이 어려운 경우가 많아서 클레이의 표면을 유기화제로 개질한 후 혼합하여 첨가한다.There are many studies on polymer nanocomposites using montmorillonite (PM), a clay mineral of a layered structure. Nanocomposite materials containing montmorillonite known as nanoclays are known as inorganic additives that can provide various advantages such as not only enhancing mechanical properties, but also excellent heat resistance, low gas permeability, and imparting flame retardancy. When this nanoclay is made of a composite material, it improves the physical properties of the polymer/nanoclay composite when it is uniformly dispersed in a nano-size in a polymer matrix. Since nanoclay has strong hydrophilicity, it is often difficult to disperse when added to a polymer, so the surface of the clay is modified with an organic agent and then mixed and added.

본 발명의 또 다른 실시예에 따르면, According to another embodiment of the present invention,

도공지 또는 비도공지 또는 크래프트지로 이루어진 기재 상면에 제1항 내지 제8항 중 어느 한 항의 방법으로 제조된 코팅액을 4~5g/m2을 도포하여 코팅층을 형성하는 단계;Forming a coating layer by applying a coating solution prepared by the method of any one of claims 1 to 8 on an upper surface of a substrate made of coated or uncoated paper or kraft paper by applying 4 to 5 g/m 2;

상기 코팅층을 자외선램프, 열풍장치, 냉각 쿨링 장치가 구성된 자외선 건조장치로 건조하는 단계를 포함하고 Including the step of drying the coating layer with an ultraviolet drying device consisting of an ultraviolet lamp, a hot air device, and a cooling and cooling device,

상기 열풍 장치에서 50 내지 200℃ 온도로 1 내지 5분 동안 열풍을 분사하고, 상기 냉각 쿨링 장치에서 냉각 바람이 분사되면서 코팅층을 -10 내지 10℃ 온도로 1 내지 3분 동안 급속 냉각하는 것을 특징으로 하는 식품 포장지 제조방법을 제공한다.The hot air is sprayed at a temperature of 50 to 200°C in the hot air device for 1 to 5 minutes, and the coating layer is rapidly cooled at a temperature of -10 to 10°C for 1 to 3 minutes while cooling wind is sprayed from the cooling and cooling device. It provides a method of manufacturing a food wrapper.

상기 기재로 사용할 수 있는 도공지는 아트지, SC 마닐라지, 아이보리 마닐라지, 로얄아이보리 마닐라지, CCP(cast coated paper) 종이 중 어느 하나를 선택하여 사용할 수 있다. 또한, 상기 기재로 사용할 수 있는 비도공지는 백상지, 박엽지, TOP 마닐라지 중 어느 하나를 선택하여 사용할 수 있다.The coated paper that can be used as the substrate may be used by selecting any one of art paper, SC manila paper, ivory manila paper, royal ivory manila paper, and CCP (cast coated paper) paper. In addition, the uncoated paper that can be used as the substrate may be used by selecting any one of white paper, thin-leaf paper, and TOP Manila paper.

상기 자외선 건조장치는 살균 및 멸균처리, 항온, 항습 공법이 적용된 장치로, 자외선을 코팅된 식품 포장지에 조사하고, 자외선에 의해 내부 경화작용을 함으로써, 코팅층을 완벽하게 건조시킨다. 또한, 상기 내부 경화작용으로 코팅층의 물성을 변화시켜 코팅층의 경도를 향상시킨다.The ultraviolet drying device is a device to which sterilization and sterilization treatment, constant temperature, and humidity are applied, and by irradiating the food wrapper with ultraviolet rays and internally curing by ultraviolet rays, the coating layer is completely dried. In addition, the hardness of the coating layer is improved by changing the physical properties of the coating layer through the internal curing action.

또한, 열풍 장치에서 50 내지 200℃ 온도로 1 내지 5분 동안 열풍을 분사하는 것이 바람직하다. 상기 열풍 온도와 시간이 50℃ 및 1분 미만인 경우 코팅층의 내부까지 건조되지 못하는 문제가 있으며, 200℃ 및 5분 초과인 경우 코팅된 식품 포장지의 일부가 얼룩이 생기는 문제가 발생된다.In addition, it is preferable to spray hot air for 1 to 5 minutes at a temperature of 50 to 200°C in the hot air device. When the temperature and time of the hot air are less than 50°C and 1 minute, there is a problem in that the inside of the coating layer is not dried, and when the temperature and time are more than 200°C and 5 minutes, there is a problem that a part of the coated food wrapper is stained.

또한, 냉각 쿨링 장치에서 냉각 바람이 분사되면서 코팅층을 -10 내지 10℃ 온도로 1 내지 3분 동안 급속 냉각하여 식품 포장지의 컬(curl) 현상을 방지한다. 상기 냉각 온도와 시간이 -10℃ 및 1분 미만인 경우 코팅된 식품 포장지가 상기 자외선 건조 장치에 구비된 롤러에 달라붙는 문제가 있으며, 10℃ 및 3분 초과인 경우 코팅된 식품 포장지의 일부가 접혀지는 문제가 발생된다 In addition, while cooling wind is sprayed from the cooling and cooling device, the coating layer is rapidly cooled at a temperature of -10 to 10°C for 1 to 3 minutes to prevent curling of the food wrapper. If the cooling temperature and time are less than -10°C and 1 minute, there is a problem that the coated food wrapper sticks to the roller provided in the UV drying device, and if it exceeds 10°C and 3 minutes, a part of the coated food wrapper is folded. There is a problem of losing

상기 코팅액은 나이프팅 코팅, 리버스 롤 코팅, 에어 나이프 코팅, 및 와이어로드 코팅 방식 중 어느 하나를 선택하여 코팅하는 것을 특징으로 한다.The coating solution is characterized in that coating is performed by selecting any one of knife coating, reverse roll coating, air knife coating, and wire rod coating.

상기 나이프팅 코팅 방식은 코팅물질을 나이프나 블레이드에 의해 코팅두께 및 양을 조절 가능하며, Transfer roll의 mesh 수에 따라 조절할 수 있다. 코팅의 질은 나이프의 각도, 형태, web 통과속도, 코팅액의 유동특성에 따라 좌우된다.In the knifeing coating method, the coating thickness and amount of the coating material can be adjusted by a knife or blade, and can be adjusted according to the number of meshes of the transfer roll. The quality of the coating depends on the angle and shape of the knife, the web passing speed, and the flow characteristics of the coating liquid.

상기 리버스 롤 코팅 방식은 코팅방법은 코팅 수지가 코팅 롤에 의해 web에 도포된 후 미터링 롤과 Rubber backing roll을 통과하면 과량의 코팅액이 제거되고 평활한 표면처리가 되어 코팅된 막의 전체두께가 일정하게 조절된다.In the reverse roll coating method, when the coating resin is applied to the web by the coating roll and then passes through the metering roll and the rubber backing roll, the excess coating liquid is removed and the surface is treated smoothly, so that the total thickness of the coated film is uniform. Is regulated.

Backing roll의 표면이 고무와 같이 탄성이 있는 물질로 nip의 압력조절에 의한 코팅두께의 조절이 가능하다. nip의 압력이 높고 롤의 회전속도가 빠를수록 제거되는 코팅제의 양은 증가하게 되며 코팅의 두께, 코팅액의 점도, 고형분의 양, 요변성(Thixotropy), 점착성(Tack)등의 변수를 고려하여 적용한다.The surface of the backing roll is a material with elasticity such as rubber, and the coating thickness can be adjusted by adjusting the pressure of the nip. The higher the nip pressure and the faster the rotational speed of the roll, the greater the amount of coating agent removed. It is applied in consideration of variables such as the thickness of the coating, the viscosity of the coating liquid, the amount of solids, thixotropy, and tack. .

상기 에어 나이프 코팅 방식은 층류(laminar flow)공기를 종이표면에 충돌시켜 과잉의 코팅액을 제거하는 방법으로 종이표면이 코팅물질이 있는 팬위를 회전하는 코팅 롤에 접촉하면 미리 측정된 일정량의 코팅두께로 도포된다. 이때 적용되는 코팅 수지의 양은 공기의 충돌속도 및 충돌각도, 코팅액의 점도, 종이의 이동속도에 따라 좌우된다. 이 방법의 장점은 코팅 나이프가 없이 공기압력을 사용하므로 종이표면의 요철과 무관하게 균일하게 코팅되며 코팅의 두께가 얇더라도 우수한 코팅효과가 발생한다.The air knife coating method is a method of removing excess coating liquid by colliding laminar flow air against the paper surface.When the paper surface contacts a coating roll rotating on a pan with a coating material, a predetermined amount of coating thickness is obtained. Is applied. At this time, the amount of coating resin to be applied depends on the collision speed and collision angle of the air, the viscosity of the coating liquid, and the moving speed of the paper. The advantage of this method is that it uses air pressure without a coating knife, so it is uniformly coated regardless of the irregularities on the paper surface, and excellent coating effect occurs even if the thickness of the coating is thin.

상기 코팅액을 4~5g/m2을 도포하여 코팅층을 형성하며, 이는 적은양을 코팅해야 생산속도가 보장되고, 종이에 수용성 액을 코팅하는 것으로 이 범위의 코팅액을 도포시 종이원단의 컬(말리는현상)의 방지를 위함이다.4~5g/m 2 of the coating solution is applied to form a coating layer, which guarantees production speed only when a small amount is coated, and a water-soluble solution is coated on paper. Phenomenon).

상기 코팅층은 1~3도로 이루어질 수 있으며, 바람직하게는 3도를 형성하는 것이, 식품 포장지의 물성을 강화시킨다. 1도에 코팅액 12~15g/m2를 한 번에 코팅하면, 코팅 후 요구되는 내수, 내유, 배리어성, 열실링성이 연속 3도 코팅시보다 떨어지게 된다.The coating layer may be made of 1 to 3 degrees, preferably forming a 3 degree, enhances the physical properties of the food wrapper. If coating 12~15g/m 2 of coating solution at 1 degree at a time, the water resistance, oil resistance, barrier property and heat sealing properties required after coating will be inferior to that of continuous 3 degree coating.

이하, 실시 예 및 실험 예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and experimental examples. However, these examples are only for helping the understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.

시약의 준비Preparation of reagents

수용성 수분산 폴리우레탄을 제조하기 위해 ether형 polyol인 폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG)(Mw=1,800 g/mole)를 1mmHg, 60℃에서 약 10시간 이상 진공건조를 하여 수분을 제거하여 사용하였다. 우레탄 내 친수성 관능기를 도입하기 위하여 디메틸올프로피온 산(dimethylol propionic acid: DMPA)을 추가 정체 없이 그대로 사용하였다. 중화제로는 트리에틸아민(triethylamine, TEA)을 사용하였으며, 사슬연장제로는 에틸렌디아민(ethylenediamine, EDA)을 사용하였다.To prepare a water-soluble water-dispersible polyurethane, polytetramehtyleneglycol (PTMG) (Mw=1,800 g/mole), an ether-type polyol, was vacuum-dried at 1mmHg and 60°C for about 10 hours or more to remove moisture. . In order to introduce a hydrophilic functional group in the urethane, dimethylol propionic acid (DMPA) was used as it was without further stasis. Triethylamine (TEA) was used as the neutralizing agent, and ethylenediamine (EDA) was used as the chain extender.

아크릴-폴리우레탄 하이브리드 제조시 사용된 아크릴 단량체는 메틸메타아크릴레이트(methyl metaacrylate, MMA)를 사용하였으며, 생분해 촉매제로는 페릭아세틸카바메이트를 사용하였고, 증점제로는 잔탄검, 개시제로는 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN)을 사용하였다. 기타 용매로는 n-메틸-2-피롤리돈(n-methyl-2-pyrrolidinone, NMP)를 사용하였다The acrylic monomer used in the manufacture of the acrylic-polyurethane hybrid was methyl metaacrylate (MMA), ferric acetyl carbamate was used as the biodegradation catalyst, xanthan gum as the thickener, and azobisiso as the initiator. Butyronitrile (2,2'-azobis isobutyronitrile, AIBN) was used. As other solvent, n-methyl-2-pyrrolidinone (NMP) was used.

클레이는 Southern Clay Product의 몬모릴로나이트로 이온교환능(CEC, cation exchange capacity)이 92.6 meq/100g인 순수한 몬모릴로나이트(PM)와 유기화제로 표면이 개질된 Cloisite 30B (CEC: 90.0 meq/100g)와 Cloisite 25A(CEC: 95.0 meq/100g)를 사용하였다. 30B와 25A는 methyl tallow bis-2-hydroxyethyl의 제4급 암모늄과 dimethyl dehydrogenated tallow 2-ethylhexyl의 제4급 암모늄으로 각각 개질된 클레이이다.Clay is Southern Clay Product's montmorillonite, pure montmorillonite (PM) with a cation exchange capacity (CEC) of 92.6 meq/100g, Cloisite 30B (CEC: 90.0 meq/100g) and Cloisite 25A ( CEC: 95.0 meq/100g) was used. 30B and 25A are clays modified with quaternary ammonium of methyl tallow bis-2-hydroxyethyl and quaternary ammonium of dimethyl dehydrogenated tallow 2-ethylhexyl, respectively.

<실시예 1> 수용성 아크릴 우레탄 하이브리드 분산체 제조<Example 1> Preparation of water-soluble acrylic urethane hybrid dispersion

먼저, 수용성 폴리우레탄 수분산체(Waterborne Polyurethane Dispersions; WPUDs)를 합성하였다. 이는 prepolymer를 mixing process에서 PTMG와 DMPA를 먼저, 반응시키고 이후 isocyanate를 첨가하는 'two shot process '방식으로 생산한다. 교반기의 두 개의 입구를 질소로 퍼지(purge)시키고 다른 한쪽 입구를 막고 진행하다 증류수를 적하시킨다.First, Waterborne Polyurethane Dispersions (WPUDs) were synthesized. This is produced in a'two shot process' method in which PTMG and DMPA are first reacted with prepolymer in the mixing process, and isocyanate is then added. The two inlets of the stirrer are purged with nitrogen, and the other inlet is blocked and distilled water is added dropwise while proceeding.

1) NCO-prepolymer의 제조1) Preparation of NCO-prepolymer

먼저, 교반기에 PTMG를 넣고 진공 오븐(100℃)에서 그대로 녹인 후 이를 oil bath에 설치한다. 교반기의 임펠라 속도를 100 rpm으로 고정하고 30분간 교반기 내부의 공기를 질소로 치환하여 반응을 시작한다. 그런 다음 미리 진공으로 건조한 DMPA를 반응 조건의 변화를 주지 않고 교반기에 넣어 PTMG에 녹인다.First, put PTMG in a stirrer, melt it in a vacuum oven (100°C), and install it in an oil bath. The impeller speed of the stirrer is fixed at 100 rpm and the air inside the stirrer is replaced with nitrogen for 30 minutes to start the reaction. Then, DMPA dried in a vacuum in advance is put into a stirrer without changing the reaction conditions and dissolved in PTMG.

이후 1시간 정도를 교반한 후 NMP와 IPDI를 넣는다. 그대로 1시간 정도를 더 교반한 후 온도를 50℃로 낮추고, 이후 1시간 더 교반하여 NCO-prepolymer를 얻는다.After stirring for about 1 hour, NMP and IPDI are added. After stirring for an additional hour as it is, the temperature is lowered to 50° C., and then stirred for an additional hour to obtain an NCO-prepolymer.

[표 1][Table 1]

Figure 112019079307213-pat00001
Figure 112019079307213-pat00001

2) 수용성 폴리우레탄 분산체 제조2) Preparation of water-soluble polyurethane dispersion

상기 제조된 NCO-prepolymer에 NMP 용액으로 희석시킨 중화제 TEA를 넣고 중화시킨 후 일정량의 증류수를 일정한 속도로 적하시켜주며 교반속도를 300rpm으로 상승시킨다. 이후 EDA를 교반기 넣고 그 상태로 총 3시간 정도 교반을 진행하여 최종적으로 수용성 폴리우레탄 분산체를 얻는다.A neutralizing agent TEA diluted with an NMP solution is added to the prepared NCO-prepolymer and neutralized. Then, a certain amount of distilled water is added dropwise at a constant speed, and the stirring speed is increased to 300 rpm. Thereafter, EDA is put in a stirrer and stirring is carried out for a total of 3 hours in that state to finally obtain a water-soluble polyurethane dispersion.

[표 2][Table 2]

Figure 112019079307213-pat00002
Figure 112019079307213-pat00002

3) 아크릴-우레탄 하이브리드 분산체 제조3) Preparation of acrylic-urethane hybrid dispersion

위의 방식으로 제조된 수용성 폴리우레탄 분산체를 준비한다. MMA와 상기 수용성 폴리우레탄 분산체를 교반기의 임펠라 속도를 1500 rpm의 고속으로 30분 정도 안정화를 시킨 후 oil bath에 설치하여 30분간 질소로 치환한다. 교반기 내부가 질소 하의 조건이 되었을 때 MMA에 AIBN을 녹인 용액을 첨가하고 300 rpm으로 1시간 정도 교반하여 액상의 수용성 아크릴-우레탄 하이브리드 분산체 (Waterborne Acrylic-Urethane hybrid Dispersions; WAUDs)를 제조한다.A water-soluble polyurethane dispersion prepared in the above manner is prepared. After stabilizing the MMA and the water-soluble polyurethane dispersion at a high speed of 1500 rpm for about 30 minutes, the impeller speed of the stirrer was installed in an oil bath and replaced with nitrogen for 30 minutes. When the inside of the stirrer is under nitrogen, a solution in which AIBN is dissolved in MMA is added and stirred at 300 rpm for about 1 hour to prepare a liquid waterborne acrylic-urethane hybrid dispersion (WAUDs).

[표 3][Table 3]

Figure 112019079307213-pat00003
Figure 112019079307213-pat00003

<실시예 2> 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조<Example 2> Preparation of nano-clay dispersion water-soluble acrylic polyurethane coating solution

실시예 1에서 제조한 액상의 수용성 아크릴-우레탄 하이브리드 분산체 용액에 전체 중량 대비 유기화제로 표면이 개질된 몬모릴로나이트(Cloisite 30B 또는 Cloisite 25A)를 총 중량 대비 2.0 ~ 5.0 중량부, 생분해 촉매제로 페릭아세틸카바메이트를 0.3 중량부, 증점제로 잔탄검 1.0 중량부 더 첨가한 다음, 50℃에서 교반하고, 유기화제로 처리된 나노 클레이를 분산시켜 수용성 종이 코팅액을 제조하였다.In the liquid aqueous acrylic-urethane hybrid dispersion solution prepared in Example 1, 2.0 to 5.0 parts by weight of montmorillonite (Cloisite 30B or Cloisite 25A) whose surface has been modified with an organic agent relative to the total weight was added to the total weight, and ferric acetyl was used as a biodegradation catalyst. 0.3 parts by weight of carbamate and 1.0 part by weight of xanthan gum as a thickener were further added, followed by stirring at 50° C., and dispersing the nano-clay treated with an organic agent to prepare a water-soluble paper coating solution.

나노클레이의 층간 간격을 조사한 결과 Cloisite 25A의 나노클레이의 층간 거리가 증가하여 수지 내에 효과적으로 잘 분산되며, 아크릴수지/나노클레이 복합재료의 열적물성 측정 결과도 Cloisite 25A를 포함한 NAD수지의 유리전이온도가 가장 높게 나타났으며, 저장 탄성률 또한 Cloisite 25A가 더 우수한 것으로 관찰되어 나노클레이로 Cloisite 25A를 첨가하는 것이 가장 효과적이다.As a result of examining the interlayer spacing of the nanoclay, the interlayer distance of the nanoclay of Cloisite 25A increases, so that it is effectively dispersed in the resin, and the measurement result of the thermal properties of the acrylic resin/nanoclay composite material also shows that the glass transition temperature of the NAD resin including Cloisite 25A is increased. It was the highest, and the storage modulus was also observed to be superior to Cloisite 25A, so adding Cloisite 25A with nanoclay is the most effective.

<비교예 1> 1도 코팅<Comparative Example 1> 1 degree coating

드라이 라미네이팅 코팅기에 기재를 투입하고, 상기 기재 상면에 실시예 2에서 제조된 코팅액을 12g/㎡의 도공량으로 코팅하여 코팅층을 형성한 후, 자외선 건조장치에 기재를 건조시키되, 자외선으로 조사하면서 열풍 장치에서 100℃ 및 3분 동안 열풍을 분사하여 건조시키고, 그 후에 냉각 쿨링장치에서 5℃ 및 3분 동안 급속 냉각을 하여 건조하였다.After putting the substrate into the dry laminating coating machine, and coating the coating solution prepared in Example 2 on the upper surface of the substrate at a coating amount of 12 g/m2 to form a coating layer, the substrate was dried in an ultraviolet drying device, but irradiated with ultraviolet rays while hot air. The apparatus was dried by spraying hot air at 100° C. for 3 minutes, and then rapid cooling was performed at 5° C. and 3 minutes in a cooling and cooling apparatus, followed by drying.

<비교예 2> 2도 코팅<Comparative Example 2> 2nd degree coating

드라이 라미네이팅 코팅기에 기재를 투입하고, 상기 기재 상면에 실시예 2에서 제조된 코팅액을 6g/㎡의 도공량으로 코팅하여 제1코팅층을 형성한 후, 상기 제1코팅층 상면에 상기 코팅액을 6g/㎡의 도공량으로 코팅하여 제2코팅층을 형성하였다. 그리고 나서, 자외선 건조장치에 제1코팅층과 제2코팅층이 형성된 기재를 건조시키되, 자외선으로 조사하면서 열풍 장치에서 100℃ 및 3분 동안 열풍을 분사하여 건조시키고, 그 후에 냉각 쿨링장치에서 5℃ 및 3분 동안 급속 냉각을 하여 건조하였다.A base material was introduced into a dry laminating coating machine, and the coating solution prepared in Example 2 was coated on the top surface of the base material at a coating amount of 6 g/m 2 to form a first coating layer, and then 6 g/m 2 of the coating solution was applied to the top surface of the first coating layer. A second coating layer was formed by coating with the coating amount of. Then, dry the substrate on which the first coating layer and the second coating layer are formed in an ultraviolet drying device, and dry by spraying hot air for 100° C. and 3 minutes in a hot air device while irradiating with ultraviolet light, and then 5° C. and It was dried by rapid cooling for 3 minutes.

<비교예 3> 3도 코팅<Comparative Example 3> 3rd degree coating

드라이 라미네이팅 코팅기에 기재를 투입하고, 상기 기재 상면에 실시예 2에서 제조된 코팅액을 4g/㎡의 도공량으로 코팅하여 제1코팅층을 형성한 후, 상기 제1코팅층 상면에 상기 코팅액을 4g/㎡의 도공량으로 코팅하여 제2코팅층을 형성한 후, 다시 제2코팅층 상면에 코팅액을 4g/㎡의 도공량으로 코팅하여 제3코팅층을 형성하였다. 그리고 나서, 자외선 건조장치에 제1코팅층, 제2코팅층, 제3코팅층이 형성된 기재를 건조시키되, 자외선으로 조사하면서 열풍 장치에서 100℃ 및 3분 동안 열풍을 분사하여 건조시키고, 그 후에 냉각 쿨링장치에서 5℃ 및 3분 동안 급속 냉각을 하여 건조하였다.A substrate was introduced into a dry laminating coating machine, and the coating solution prepared in Example 2 was coated on the upper surface of the substrate at a coating amount of 4 g/m 2 to form a first coating layer, and then 4 g/m 2 of the coating solution was applied to the upper surface of the first coating layer. After forming a second coating layer by coating with a coating amount of, a third coating layer was formed by coating the coating solution on the upper surface of the second coating layer at a coating amount of 4 g/m 2. Then, dry the substrate on which the first coating layer, the second coating layer, and the third coating layer are formed in an ultraviolet drying device, and dry by spraying hot air at 100° C. and for 3 minutes in a hot air device while irradiating with ultraviolet rays, and then cooling and cooling device It was dried by rapid cooling at 5° C. and 3 minutes.

<실험예 1><Experimental Example 1>

비교예 1 내지 3을 동일한 조건하에서 물성을 시험하여, 그 결과를 [표 4]로 정리하였다.Comparative Examples 1 to 3 were tested for physical properties under the same conditions, and the results are summarized in [Table 4].

[표 4][Table 4]

Figure 112019079307213-pat00004
Figure 112019079307213-pat00004

<시험방법><Test method>

표면거칠기(평활도): KSM ISO 5627:2011Surface roughness (smoothness): KSM ISO 5627:2011

내유도: KS M 7124:2008Induction resistance: KS M 7124:2008

내수도: KS M 7025:2012:12Domestic water supply: KS M 7025: 2012:12

투기도: KS M 7020:2006:11Speculative prayer: KS M 7020: 2006:11

투습도(중량법): KS M ISO 2528Water vapor transmission rate (gravity method): KS M ISO 2528

접착(열실링)강도: 자체시험Adhesion (heat sealing) strength: self-test

본 발명에 의해 제조된 코팅지의 표면 거칠기는 KSM ISO 5627:2011의 방법으로 시험하고, 내유성은 KS M 7124:2008의 방법으로 시험하고, 내수성은 KS M 7025:2012:12의 방법으로 시험하고, 투기성은 KS M 7020:2006:11의 방법으로 시험하고, 투습성은 KS M ISO 2528의 방법으로 시험하고, 열접착(열실링)강도은 자체시험을 통해서 시험하였다. 상기 시험을 통해 비교예 3으로 제조된 코팅지가 비교예 1 및 2의 방법으로 코팅한 경우에 비하여 물성이 우수함을 알 수 있었다.The surface roughness of the coated paper produced by the present invention was tested by the method of KSM ISO 5627:2011, oil resistance was tested by the method of KS M 7124:2008, and water resistance was tested by the method of KS M 7025:2012:12, The air permeability was tested by the method of KS M 7020:2006:11, the moisture permeability was tested by the method of KS M ISO 2528, and the thermal bonding (heat sealing) strength was tested through a self-test. Through the above test, it was found that the coated paper prepared in Comparative Example 3 was superior in physical properties compared to the case where the coated paper prepared in Comparative Examples 1 and 2 was coated.

또한, 본 발명에 의해 제조된 코팅지의 친환경성은 한국 환경부 환경표지 대상제품 및 인증기준 EL 606의 알칼리 해리성 및 분산성 시험에서 불순물이 포함되어 있지 않았으며, 점착성이 나타나지 않았다. 따라서, 재사용이 가능한 수준을 달성하였다.In addition, the eco-friendliness of the coated paper prepared according to the present invention did not contain impurities and did not show adhesiveness in the alkali dissociation and dispersibility test of the product subject to environmental labeling of the Ministry of Environment of Korea and the certification standard EL 606. Therefore, a level of reusability has been achieved.

아울러, 본 발명에 의해 제조된 코팅지는 식품안전처 식품공전 기구 및 용기포장에 대한 기준 및 규격의 가공기재의 시험규격에 부합하여 식품 포장지로 안전하게 사용할 수 있다.In addition, the coated paper manufactured according to the present invention can be safely used as a food packaging paper in accordance with the test standards of the processing equipment of the standards and standards for the Ministry of Food Safety and Security's food code mechanism and container packaging.

<실험예 2><Experimental Example 2>

비교예 1 내지 3에 따라 제조된 수용성 코팅지의 중금속, 유해물질 함유 여부를 확인하기 위하여 "기구 및 용기포장의 기준규격" 따라 시험하였고, 그 결과를 [표 5]에 나타내었다.In order to check whether the water-soluble coated papers prepared according to Comparative Examples 1 to 3 contain heavy metals and harmful substances, a test was conducted according to the "Standard Standards for Appliances and Containers", and the results are shown in [Table 5].

[표 5][Table 5]

Figure 112019079307213-pat00005
Figure 112019079307213-pat00005

시험규격 : [식약처] 식품용 기구 및 용기 포장 공전 기준Test standard: [Ministry of Food and Drug Safety] Standards for packaging equipment and containers for food

상기 [표 5]의 결과에서 보아 기구 및 용기포장 기준규격에 적합하여 인체에 무해하고, 중금속 함량이 적합한 것을 알 수 있었다.From the results of [Table 5], it can be seen that it meets the standard standards for packaging equipment and containers, is harmless to the human body, and the content of heavy metals is suitable.

이상, 본 발명에서 설명한 것은 내유성, 내수성, 방습성 및 열실링성을 가지는 다층 코팅기술을 이용한 친환경 수용성 코팅지 및 그의 제조방법을 위한 실시예에 불과한 것으로, 본 발명은 상기 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.As described above, what has been described in the present invention is merely an example for an eco-friendly water-soluble coated paper and a method of manufacturing the same using a multi-layer coating technology having oil resistance, water resistance, moisture resistance and heat sealing property, and the present invention is not limited to the above embodiment, but is not limited to each other. It can be implemented in various other forms, only this embodiment is provided to complete the disclosure of the present invention, and to completely inform the scope of the invention to those of ordinary skill in the technical field to which the present invention belongs, The invention is only defined by the scope of the claims.

Claims (8)

폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG), 디메틸올프로피온 산(dimethylol propionic acid: DMPA), N-메틸피놀리돈(NMP)용액 및 이소포론디이소시아네이트(isophorone diisocyanate, IPDI)를 혼합하여 프리폴리머를 제조하는 단계;
N-메틸피놀리돈(NMP)용액에 희석시킨 트리에틸아민(triethylamine, TEA)으로 상기 프리폴리머를 중화시키고 상기 중화된 프리폴리머에 증류수를 투입하여 수분산 시킨 후, 사슬 연장제인 에틸렌디아민(ethylene diamine, EDA)를 첨가하여 수분산 폴리 우레탄을 제조하는 단계;
상기 수분산 폴리 우레탄에 메틸메타크릴레이트(methylmetaacrylate, MMA), 생분해 촉매제인 페릭아세틸카바메이트, 증점제인 잔탄검 및 개시제인 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN)를 첨가한 후 교반하여 수용성 아크릴 폴리우레탄을 제조하는 단계;및
상기 수용성 아크릴 폴리우레탄에 유기화제로 처리된 클레이를 분산시키는 단계;를 포함하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법.
Prepolymer is prepared by mixing polytetramehtyleneglycol (PTMG), dimethylol propionic acid (DMPA), N-methylpinolidone (NMP) solution, and isophorone diisocyanate (IPDI). step;
Neutralize the prepolymer with triethylamine (TEA) diluted in N-methylpinolidone (NMP) solution, and add distilled water to the neutralized prepolymer to disperse it. EDA) to prepare a water-dispersible polyurethane;
Addition of methyl methacrylate (MMA), biodegradation catalyst ferric acetyl carbamate, thickener xanthan gum, and initiator azobisisobutyronitrile (2,2'-azobis isobutyronitrile, AIBN) to the water-dispersible polyurethane And then agitating to prepare a water-soluble acrylic polyurethane; And
Dispersing the clay treated with an organic agent in the water-soluble acrylic polyurethane; nano-clay dispersion water-soluble acrylic polyurethane coating solution manufacturing method comprising a.
제1항에 있어서,
상기 프리폴리머를 제조하는 단계는
프리폴리머 100 중량부에 대하여 폴리테트라메틸렌글리콜(polytetramehtyleneglycol, PTMG) 15~25 중량부를 진공 오븐에서 60~80℃에 녹인 후, 내부 공기를 질소로 치환하여 교반하는 단계;
프리폴리머 100 중량부에 대하여 디메틸올프로피온 산 15~25 중량부를 첨가하여 교반하는 단계;및
프리폴리머 100 중량부에 대하여 N-메틸피놀리돈(NMP)용액 1~5 중량부 및 이소포론디이소시아네이트(isophorone diisocyanate, IPDI) 50~65 중량부를 첨가하여 교반한 후 온도를 45~55℃로 낮추는 단계;를 포함하는 것을 특징으로 하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법.
The method of claim 1,
The step of preparing the prepolymer is
Dissolving 15 to 25 parts by weight of polytetramehtyleneglycol (PTMG) based on 100 parts by weight of the prepolymer at 60 to 80° C. in a vacuum oven, and then replacing the internal air with nitrogen and stirring;
Stirring by adding 15 to 25 parts by weight of dimethylolpropionic acid based on 100 parts by weight of the prepolymer; And
After stirring by adding 1 to 5 parts by weight of N-methylpinolidone (NMP) solution and 50 to 65 parts by weight of isophorone diisocyanate (IPDI) to 100 parts by weight of the prepolymer, the temperature is lowered to 45 to 55°C. Step; Method for producing a water-soluble acrylic polyurethane coating solution comprising a nano-clay dispersion.
제1항에 있어서,
상기 수분산 폴리 우레탄을 제조하는 단계는 상기 수분산 폴리우레탄 분산체 100 중량부에 대하여 프리폴리머 25~45 중량부, N-메틸피놀리돈(NMP)용액 1~3 중량부에 트리에틸아민(triethylamine, TEA) 2~6 중량부를 혼합하여 프리폴리머를 중화시키는 단계;
증류수 40~60 중량부를 적하시켜주며 교반하는 단계;및
사슬 연장제인 에틸렌디아민(ethylene diamine, EDA) 5~15 중량부를 넣고 교반하는 단계를 포함하는 것을 특징으로 하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법.
The method of claim 1,
The step of preparing the water-dispersible polyurethane includes 25 to 45 parts by weight of the prepolymer and 1 to 3 parts by weight of the N-methylpinolidone (NMP) solution based on 100 parts by weight of the water-dispersion polyurethane dispersion. , TEA) neutralizing the prepolymer by mixing 2 to 6 parts by weight;
Stirring while adding 40 to 60 parts by weight of distilled water dropwise; And
A method for preparing a water-soluble acrylic polyurethane coating solution with nano-clay dispersion, comprising the step of adding and stirring 5 to 15 parts by weight of ethylene diamine (EDA) as a chain extender.
제1항에 있어서,
상기 수용성 아크릴 폴리우레탄을 제조하는 단계는
수용성 아크릴 폴리우레탄 100 중량부에 대하여 상기 수분산 폴리 우레탄 70~85 중량부, 메틸메타크릴레이트(methylmetaacrylate, MMA) 10~25 중량부, 페릭아세틸카바메이트 0.1~2 중량부, 잔탄검 0.2~1.5 및 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN) 1~3 중량부를 첨가하여 교반하는 것을 특징으로 하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법.
The method of claim 1,
The step of preparing the water-soluble acrylic polyurethane
Based on 100 parts by weight of water-soluble acrylic polyurethane, 70 to 85 parts by weight of the water-dispersed polyurethane, 10 to 25 parts by weight of methyl methacrylate (MMA), 0.1 to 2 parts by weight of ferric acetyl carbamate, 0.2 to 1.5 parts by weight of xanthan gum And azobisisobutyronitrile (2,2'-azobis isobutyronitrile, AIBN) 1 to 3 parts by weight and stirring.
제1항에 있어서,
상기 수용성 아크릴 폴리우레탄에 유기화제로 처리된 클레이를 분산시키는 단계는
수용성 아크릴 폴리우레탄 95~98 wt%에 유기화제로 처리된 클레이 2~5%를 분산시키는 것을 특징으로 하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법.
The method of claim 1,
Dispersing the clay treated with an organic agent in the water-soluble acrylic polyurethane
Nano-clay dispersion water-soluble acrylic polyurethane coating solution, characterized in that dispersing 2 to 5% of clay treated with an organic agent in 95 to 98 wt% of water-soluble acrylic polyurethane.
제1항에 있어서,
상기 유기화제로 처리된 클레이는 4급 암모늄염으로 개질 처리된 몬모릴로나이트로,
상기 4급 암모늄염은 메틸 탈로우 비스-2-하이드록시에틸 4차 암모늄(methyl tallow bis-2-hydroxyethyl quaternary ammonium) 또는 디메틸 수소화
탈로우 2-에틸헥실 4차 암모늄(Dimethyl hydrogenatedtallow 2-ethylhexyl quaternary ammonium)인 것을 특징으로 하는 나노 클레이 분산 수용성 아크릴 폴리우레탄 코팅액 제조방법.
The method of claim 1,
Clay treated with the organic agent is montmorillonite modified with a quaternary ammonium salt,
The quaternary ammonium salt is methyl tallow bis-2-hydroxyethyl quaternary ammonium or dimethyl hydrogenated
A method for preparing a water-soluble acrylic polyurethane coating solution with nano-clay dispersion, characterized in that it is dimethyl hydrogenatedtallow 2-ethylhexyl quaternary ammonium.
도공지 또는 비도공지 또는 크래프트지로 이루어진 기재 상면에 제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 코팅액을 4~5g/m2 도포하여 코팅층을 형성하는 단계;
상기 코팅층을 자외선램프, 열풍장치, 냉각 쿨링 장치가 구성된 자외선 건조장치로 건조하는 단계를 포함하고
상기 열풍 장치에서 50 내지 200℃ 온도로 1 내지 5분 동안 열풍을 분사하고, 상기 냉각 쿨링 장치에서 냉각 바람이 분사되면서 코팅층을 -10 내지 10℃ 온도로 1 내지 3분 동안 급속 냉각하는 것을 특징으로 하는 식품 포장지 제조방법.
A coated paper or any one of claims 1 to 6 prepared by the method of any one of wherein the coating liquid on the upper surface of the non-substrate of Jiro known or kraft to form a 4 ~ 5g / m 2 is applied to the coating layer;
Including the step of drying the coating layer with an ultraviolet drying device consisting of an ultraviolet lamp, a hot air device, and a cooling and cooling device,
The hot air is sprayed at a temperature of 50 to 200°C in the hot air device for 1 to 5 minutes, and the coating layer is rapidly cooled at a temperature of -10 to 10°C for 1 to 3 minutes while cooling wind is sprayed from the cooling and cooling device. How to make a food wrapper.
제7항에 있어서,
상기 코팅층은 1 내지 3개의 층으로 이루어진 것을 특징으로 하는 식품 포장지 제조방법.
The method of claim 7,
The coating layer is a food wrapping paper manufacturing method, characterized in that consisting of 1 to 3 layers.
KR1020190094052A 2019-08-01 2019-08-01 Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent KR102250885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190094052A KR102250885B1 (en) 2019-08-01 2019-08-01 Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190094052A KR102250885B1 (en) 2019-08-01 2019-08-01 Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent

Publications (3)

Publication Number Publication Date
KR20210016192A KR20210016192A (en) 2021-02-15
KR102250885B1 true KR102250885B1 (en) 2021-05-11
KR102250885B9 KR102250885B9 (en) 2021-11-19

Family

ID=74560507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190094052A KR102250885B1 (en) 2019-08-01 2019-08-01 Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent

Country Status (1)

Country Link
KR (1) KR102250885B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976877B (en) * 2022-12-27 2023-10-13 广东利宏达包装有限公司 Surface treatment process for packaging box

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008507A1 (en) 2001-07-18 2003-01-30 Dainippon Ink And Chemicals, Inc. Water-based coating composition curable with actinic energy ray, coated metallic material, and process for producing the same
JP2009509016A (en) 2005-09-22 2009-03-05 チバ ホールディング インコーポレーテッド Scratch resistant polymer and coating composition
JP2016522283A (en) 2013-05-16 2016-07-28 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Polymer compositions and coatings for food and beverage packaging
KR102009042B1 (en) * 2018-06-15 2019-08-08 (주)바이오소재 Method of eco-friendly nanoclay dispersed water-soluble acryl polyurethane coating liquid containing biodegradable catalyst and coating paper substituting polyethylene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169203B1 (en) 2010-10-28 2012-07-26 유영선 ECO friendly and recyclable water soluble coating materials for paper coating and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008507A1 (en) 2001-07-18 2003-01-30 Dainippon Ink And Chemicals, Inc. Water-based coating composition curable with actinic energy ray, coated metallic material, and process for producing the same
JP2009509016A (en) 2005-09-22 2009-03-05 チバ ホールディング インコーポレーテッド Scratch resistant polymer and coating composition
JP2016522283A (en) 2013-05-16 2016-07-28 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Polymer compositions and coatings for food and beverage packaging
KR102009042B1 (en) * 2018-06-15 2019-08-08 (주)바이오소재 Method of eco-friendly nanoclay dispersed water-soluble acryl polyurethane coating liquid containing biodegradable catalyst and coating paper substituting polyethylene

Also Published As

Publication number Publication date
KR20210016192A (en) 2021-02-15
KR102250885B9 (en) 2021-11-19

Similar Documents

Publication Publication Date Title
KR102274458B1 (en) Method for prepararing eco-friendly packing paper for food and eco-friendly packing paper for food prepared thereby
Liu et al. Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films
Han et al. Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing
KR102009042B1 (en) Method of eco-friendly nanoclay dispersed water-soluble acryl polyurethane coating liquid containing biodegradable catalyst and coating paper substituting polyethylene
CN102197178B (en) Wallpaper and method for manufacturing same
Chowdhury et al. High-performance waterborne polyurethane coating based on a blocked isocyanate with cellulose nanocrystals (CNC) as the polyol
EP2837736B1 (en) Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof
JP5882209B2 (en) Use of polyelectrolyte composites for the production of polymer sheets with oxygen barrier properties
EP2417296B9 (en) A method for treating a surface of a substrate
CN101970552A (en) Readily bondable polyester film
CA2240969C (en) Dry bond film laminate employing acrylic emulsion adhesives with improved crosslinker
TW201226193A (en) Laminated film
KR20100092460A (en) Gas barrier member with polymer layer containing localized gas-barrier substance and process for producing the gas-barrier member
Xu et al. Synthesis, mechanical properties and iron surface conservation behavior of UV-curable waterborne polyurethane-acrylate coating modified with inorganic carbonate
Anıl et al. Recent advances in waterborne polyurethanes and their nanoparticle-containing dispersions
Yang et al. Healable, recyclable, and adhesive rubber composites equipped with ester linkages, zinc ionic bonds, and hydrogen bonds
KR102250885B1 (en) Method of water-soluble coating paper and water-soluble coating liquid containg biodegradable catalyst, viscosity increasing agent
KR102077386B1 (en) Method of eco-friendly nanoclay dispersed water-soluble acryl polyurethane coating liquid and coating paper substituting polyethylene
CN104245788A (en) Poly(lactone)s, method of manufacture, and uses thereof
CN106977683A (en) No-solvent type polyurethane nano TiO2Composite membrane and preparation method thereof
Madbouly et al. Sustainable Polyurethane–Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties
Ammar et al. Polymers-based nanocomposite coatings
JP5762410B2 (en) Use of polyelectrolyte complex as plasticizer shield
CN109021250B (en) Preparation of waterborne polyurethane modified montmorillonite nano composite emulsion
KR102374579B1 (en) Ink composition for aqueous flexographic printing and process for preparing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant