KR102247161B1 - Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same - Google Patents

Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same Download PDF

Info

Publication number
KR102247161B1
KR102247161B1 KR1020130159146A KR20130159146A KR102247161B1 KR 102247161 B1 KR102247161 B1 KR 102247161B1 KR 1020130159146 A KR1020130159146 A KR 1020130159146A KR 20130159146 A KR20130159146 A KR 20130159146A KR 102247161 B1 KR102247161 B1 KR 102247161B1
Authority
KR
South Korea
Prior art keywords
carbonate
secondary battery
electrolyte
lithium
battery electrolyte
Prior art date
Application number
KR1020130159146A
Other languages
Korean (ko)
Other versions
KR20150071973A (en
Inventor
김진성
오승연
이광국
함진수
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020130159146A priority Critical patent/KR102247161B1/en
Publication of KR20150071973A publication Critical patent/KR20150071973A/en
Application granted granted Critical
Publication of KR102247161B1 publication Critical patent/KR102247161B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지를 제공하는 것으로, 본 발명의 이차전지 전해액은 우수한 고온안정성, 저온방전용량 및 수명특성을 가진다.The present invention provides a lithium secondary battery electrolyte and a lithium secondary battery including the same, and the secondary battery electrolyte of the present invention has excellent high temperature stability, low temperature discharge capacity, and lifetime characteristics.

Description

리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지{Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same}Lithium secondary battery electrolyte and lithium secondary battery containing the same {Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same}

본 발명은 리튬 이차전지 전해액 및 이를 함유하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 보론 유도체를 포함하는 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다. The present invention relates to a lithium secondary battery electrolyte and a lithium secondary battery containing the same, and more particularly, to a lithium secondary battery electrolyte including a boron derivative and a lithium secondary battery including the same.

최근 휴대전자기기의 보급이 광범위하게 이루어지고 있고 이에 따라 이러한 휴대전자기기의 급속한 소형화, 경량화 및 박형화에 수반하여 그 전원인 전지도 소형으로 경량이면서 장시간 충방전이 가능하며 고율특성이 우수한 이차전지의 개발이 강력하게 요구되고 있다. Recently, the spread of portable electronic devices has been widely made, and according to the rapid miniaturization, weight reduction, and thinning of such portable electronic devices, the battery as its power source is also compact, lightweight, and capable of charging and discharging for a long time. There is a strong demand for development.

현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차 전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나, 이러한 리튬 이차 전지는 비수 전해액을 사용함에 따르는 발화 및 폭발 등의 안전 문제가 존재하며, 이와 같은 문제는 전지의 용량 밀도를 증가시킬수록 더 심각해진다.Among the currently applied secondary batteries, the lithium secondary battery developed in the early 1990s has the advantage of having a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using aqueous electrolyte solutions. It is in the limelight. However, such a lithium secondary battery has safety problems such as ignition and explosion due to the use of a non-aqueous electrolyte, and such problems become more serious as the capacity density of the battery increases.

비수전해액 이차 전지는 연속 충전시 발생되는 전지의 안전성 저하가 큰 문제가 된다. 이것에 영향을 미칠 수 있는 원인 중의 하나는 양극의 구조 붕괴에 따른 발열이다. 이의 작용 원리는 다음과 같다. 즉, 비수전해액 전지의 양극활물질은 리튬 및/또는 리튬 이온을 흡장 및 방출할 수 있는 리튬 함유 금속 산화물 등으로 이루어지는데, 이와 같은 양극활물질은 과충전시 리튬이 다량 이탈됨에 따라 열적으로 불안정한 구조로 변형된다. 이러한 과충전 상태에서 외부의 물리적 충격, 예컨대 고온 노출 등으로 인하여 전지 온도가 임계 온도에 이르면 불안정한 구조의 양극활물질로부터 산소가 방출되게 되고, 방출된 산소는 전해액 용매 등과 발열 분해 반응을 일으키게 된다. 특히, 양극으로부터 방출된 산소에 의하여 전해액의 연소는 더욱 가속화되므로, 이러한 연쇄적인 발열 반응에 의하여 열 폭주에 의한 전지의 발화 및 파열 현상이 초래된다.The non-aqueous electrolyte secondary battery has a major problem of deteriorating the safety of the battery generated during continuous charging. One of the causes that can affect this is heat generation due to the collapse of the structure of the anode. The principle of its operation is as follows. That is, the positive electrode active material of the nonaqueous electrolyte battery is made of a lithium-containing metal oxide that can occlude and release lithium and/or lithium ions, and such positive electrode active material is transformed into a thermally unstable structure due to the release of a large amount of lithium during overcharging. do. In such an overcharged state, when the battery temperature reaches a critical temperature due to external physical shock, such as high temperature exposure, oxygen is released from the positive electrode active material having an unstable structure, and the released oxygen causes an exothermic decomposition reaction with an electrolyte solvent and the like. In particular, since the combustion of the electrolyte solution is further accelerated by oxygen released from the anode, ignition and rupture of the battery due to thermal runaway are caused by such a cascading exothermic reaction.

상기와 같은 전지 내부의 온도 상승에 따른 발화 또는 폭발을 제어하기 위해 전해액 중에 레독스셔틀(redox shuttle)첨가제로서 방향족 화합물을 첨가하는 방법이 이용되고 있다. 예를 들어 일본특허 JP2002-260725는 비페닐(Biphenyl)과 같은 방향족 화합물을 사용하여 과충전 전류 및 이로 인한 열폭주 현상을 방지할수 있는 비수계 리튬이온전지를 개시하고 있다. 또 미국특허 5,879,834호에도 비페닐(biphenyl), 3-클로로티오펜(3-chlorothiophene) 등의 방향족 화합물을 소량첨가시켜 비정상적인 과전압상태에서 전기화학적으로 중합되어 내부저항을 증가시킴으로써 전지의 안전성을 향상시키기 위한 방법이 기재되어 있다. In order to control ignition or explosion due to an increase in temperature inside the battery as described above, a method of adding an aromatic compound as a redox shuttle additive to an electrolyte is used. For example, Japanese Patent JP2002-260725 discloses a non-aqueous lithium ion battery capable of preventing an overcharge current and a thermal runaway phenomenon by using an aromatic compound such as biphenyl. In addition, a small amount of aromatic compounds such as biphenyl and 3-chlorothiophene are added to U.S. Patent No. 5,879,834 to improve battery safety by electrochemical polymerization under abnormal overvoltage conditions to increase internal resistance. The method for this is described.

그러나 비페닐 등과 같은 첨가물을 사용하는 경우에는 일반적인 작동 전압에서는 국부적으로 상대적으로 높은 전압이 발생할 때 충방전 과정에서 점진적으로 분해되거나 전지가 장기간 고온에서 방전될 때, 비페닐 등의 양이 점차 감소하여 300 사이클 충방전 이후에는 안전성을 보장할 수 없는 문제점, 저장특성의 문제점등이 있다.However, in the case of using an additive such as biphenyl, the amount of biphenyl gradually decreases during the charging and discharging process when a relatively high voltage is generated locally at a general operating voltage, or when the battery is discharged at a high temperature for a long period of time. After 300 cycles of charging and discharging, there are problems in which safety cannot be guaranteed and problems of storage characteristics.

따라서, 여전히 용량 유지율이 높으면서도 고온 및 저온에서 안전성을 향상키기기위한 연구가 요구되고 있는 실정이다.Therefore, research to improve safety at high and low temperatures while still having a high capacity retention rate is required.

일본특허 JP2002-260725Japanese Patent JP2002-260725 미국특허 5,879,834호U.S. Patent 5,879,834

본 발명은 고율 충방전 특성, 수명 특성 등의 기본적인 성능이 양호하게 유지되면서, 고온 및 저온 특성이 우수한 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지를 제공하는 데 있다. The present invention is to provide a lithium secondary battery electrolyte having excellent high-temperature and low-temperature characteristics, and a lithium secondary battery including the same, while maintaining good basic performance such as high rate charge/discharge characteristics and lifespan characteristics.

본 발명은 리튬 이차전지 전해액을 제공하는 것으로, 본 발명의 리튬 이차전지 전해액은,The present invention provides a lithium secondary battery electrolyte, the lithium secondary battery electrolyte of the present invention,

리튬염;Lithium salt;

비수성 유기 용매; 및Non-aqueous organic solvents; And

하기 화학식 1로 표시되는 보론 유도체;를 포함한다.It includes; boron derivatives represented by the following formula (1).

[화학식 1] [Formula 1]

Figure 112013116439103-pat00001
Figure 112013116439103-pat00001

(상기 화학식 1에서, (In Chemical Formula 1,

R은 (C1-C6)알킬, (C2-C6)알케닐 또는 (C2-C6)알키닐이며;R is (C1-C6)alkyl, (C2-C6)alkenyl or (C2-C6)alkynyl;

R1 내지 R4는 서로 독립적으로 수소 또는 (C1-C10)알킬이다.)R 1 to R 4 are each independently hydrogen or (C1-C10)alkyl.)

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 화학식 1에서, 바람직하게 R1 내지 R4는 서로 독립적으로 메틸 또는 에틸일 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, in Formula 1, preferably, R 1 to R 4 may be methyl or ethyl independently of each other.

바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1에서 R은 메틸, 에틸, 프로필, n-부틸, 에테닐, 프로페닐, 및 프로파르길일 수 있다.Preferably, R in Formula 1 according to an embodiment of the present invention may be methyl, ethyl, propyl, n-butyl, ethenyl, propenyl, and propargyl.

본 발명의 일 실시예에 따른 리튬 이차전지 전해액에서, 상기 화학식 1로 표시되는 보론 유도체는 상기 전해액 총 중량에 대하여 0.1 내지 5중량%로 포함될 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the boron derivative represented by Formula 1 may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.

본 발명의 일 실시예에 따른 리튬 이차전지 전해액에서, 상기 전해액은 옥살레이토보레이트계 화합물, 불소로 치환된 카보네이트계 화합물, 비닐리덴 카보네이트계 화합물 및 설피닐기 함유 화합물로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 첨가제를 더 포함할 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the electrolyte is one or two selected from the group consisting of an oxalatoborate-based compound, a fluorine-substituted carbonate-based compound, a vinylidene carbonate-based compound, and a sulfinyl group-containing compound. It may further include the above additives.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 전해액은 리튬디플루오로 옥살레이토보레이트(LiFOB), 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 다이비닐 설폰(divinyl sulfone), 에틸렌 설파이트(ethylene sulfite), 프로필렌 설파이트(propylene sulfite), 다이알릴 설포네이트 (diallyl sulfonate), 에탄 설톤, 프로판 설톤(propane sulton, PS), 부탄 설톤(butane sulton), 에텐 설톤, 부텐 설톤 및 프로펜 설톤(PRS)으로 이루어진 군으로부터 선택된 첨가제를 더 포함할 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the electrolyte is lithium difluoro oxalatoborate (LiFOB), lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinylethylene carbonate (VEC), divinyl sulfone, ethylene sulfite, propylene sulfite, diallyl sulfonate , Ethane sultone, propane sultone (PS), butane sultone (butane sulton), ethene sultone, butene sultone and propene sultone (PRS) may further include an additive selected from the group consisting of.

본 발명의 일 실시예에 따른 리튬 이차전지 전해액에서, 상기 첨가제는 전해액 총 중량에 대하여 0.1% 내지 5.0 중량%로 포함될 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the additive may be included in an amount of 0.1% to 5.0% by weight based on the total weight of the electrolyte.

본 발명의 일 실시예에 따른 리튬 이차전지 전해액에서, 상기 비수성 유기 용매는 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 이들의 혼합용매로부터 선택될 수 있으며, 상기 환형 카보네이트는 에틸렌카보네이트, 프로필렌카보네이트이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 플루오르에틸렌카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고, 상기 선형 카보네이트는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the non-aqueous organic solvent may be selected from a cyclic carbonate-based solvent, a linear carbonate-based solvent, and a mixed solvent thereof, and the cyclic carbonate is ethylene carbonate, propylene carbonate, etc. , Butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, fluorine ethylene carbonate, and a mixture thereof, the linear carbonate may be selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl It may be selected from the group consisting of carbonate, methyl isopropyl carbonate, ethylpropyl carbonate, and mixtures thereof.

본 발명의 일 실시예에 따른 리튬 이차전지 전해액에서, 상기 비수성 유기 용매는 선형 카보네이트 용매 : 환형 카보네이트 용매의 혼합 부피비가 1 내지 9 : 1일 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the non-aqueous organic solvent may have a mixing volume ratio of a linear carbonate solvent: a cyclic carbonate solvent of 1 to 9:1.

본 발명의 일 실시예에 따른 리튬 이차전지 전해액에서, 상기 리튬염은 LiPF6, LiBF4, LiClO4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, LiN(CF3SO2)2, LiN(SO3C2F5)2, LiN(SO2F)2, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiSCN, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the lithium salt is LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(SO 3 C 2 F 5 ) 2 , LiN(SO 2 F) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC 6 H 5 SO 3 , LiSCN, LiAlO 2 , LiAlCl 4 , LiN (C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where x and y are natural numbers), one selected from the group consisting of LiCl, LiI and LiB(C 2 O 4 ) 2 Or two or more.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 리튬염은 0.1 내지 2.0 M의 농도로 존재할 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the lithium salt may be present in a concentration of 0.1 to 2.0 M.

또한, 본 발명은 상기 리튬 이차전지 전해액을 포함하는 리튬 이차전지을 제공한다. In addition, the present invention provides a lithium secondary battery comprising the lithium secondary battery electrolyte.

본 발명에 따른 리튬 이차전지 전해액은 보론 유도체를 포함함으로써 우수한 고온 저장 특성, 구체적으로 높은 고온 용량 회복율 및 낮은 전지의 두께 증가율을 가진다.Since the lithium secondary battery electrolyte according to the present invention contains a boron derivative, it has excellent high-temperature storage characteristics, specifically, a high high-temperature capacity recovery rate, and a low battery thickness increase rate.

또한 본 발명에 따른 리튬 이차전지 전해액은 직쇄형의 알킬, 알케닐 또는 알키닐이 치환된 보론 유도체를 포함하여 고온 특성뿐만 아니라 저온에서의 방전용량도 매우 높다.In addition, the lithium secondary battery electrolyte according to the present invention includes a boron derivative substituted with a straight-chain alkyl, alkenyl, or alkynyl, and has high discharge capacity at a low temperature as well as high temperature characteristics.

또한 본 발명에 따른 리튬 이차전지 전해액은 본 발명의 화학식 1로 표시되는 보론 유도체와 옥살레이토보레이트계 화합물, 불소로 치환된 카보네이트계 화합물, 비닐리덴 카보네이트계 화합물 및 설피닐기 함유 화합물로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 첨가제를 더 포함하여 보다 우수한 수명특성, 고온안정성 및 저온특성을 가진다.In addition, the lithium secondary battery electrolyte according to the present invention is selected from the group consisting of a boron derivative represented by Formula 1 of the present invention and an oxalatoborate compound, a carbonate compound substituted with fluorine, a vinylidene carbonate compound, and a sulfinyl group-containing compound. It further includes one or two or more additives to have better life characteristics, high temperature stability, and low temperature characteristics.

또한 본 발명의 리튬 이차전지는 보론 유도체를 포함하는 본 발명의 리튬 이차전지 전해액을 채용함으로써 고효율 충방전 특성, 수명 특성 등의 기본적인 성능을 양호하게 유지하면서도 우수한 고온 저장안정성과 저온 특성을 가진다. In addition, the lithium secondary battery of the present invention has excellent high-temperature storage stability and low-temperature characteristics while maintaining good basic performances such as high-efficiency charge/discharge characteristics and lifespan characteristics by employing the lithium secondary battery electrolyte of the present invention containing a boron derivative.

이하, 본 발명에 대하여 보다 구체적으로 설명한다. 이 때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
Hereinafter, the present invention will be described in more detail. If there are no other definitions in the technical terms and scientific terms used at this time, they have the meanings commonly understood by those of ordinary skill in the technical field to which this invention belongs, and the following description will unnecessarily obscure the subject matter of the present invention. Description of possible known functions and configurations will be omitted.

본 발명은 고온 저장특성과 수명특성이 높으면서도 저온에서 방전용량이 매우 우수한 전지를 제공하기 위한 리튬 이차전지 전해액에 관한 것이다.The present invention relates to a lithium secondary battery electrolyte for providing a battery having high high-temperature storage characteristics and high-life characteristics and excellent discharge capacity at low temperatures.

본 발명은 리튬염; 비수성 유기 용매; 및 하기 화학식 1로 표시되는 보론 유도체;를 포함하는 리튬 이차전지 전해액을 제공한다:The present invention is a lithium salt; Non-aqueous organic solvents; And it provides a lithium secondary battery electrolyte comprising a; and a boron derivative represented by the formula (1):

[화학식 1] [Formula 1]

Figure 112013116439103-pat00002
Figure 112013116439103-pat00002

(상기 화학식 1에서, (In Chemical Formula 1,

R은 (C1-C6)알킬, (C2-C6)알케닐 또는 (C2-C6)알키닐이며;R is (C1-C6)alkyl, (C2-C6)alkenyl or (C2-C6)alkynyl;

R1 내지 R4는 서로 독립적으로 수소 또는 (C1-C10)알킬이다.)R 1 to R 4 are each independently hydrogen or (C1-C10)alkyl.)

본 발명의 이차전지 전해액은 보론 유도체, 구체적으로는 직쇄형의 알킬,알케닐 또는 알키닐, 보다 구체적으로 상기 화학식 1의 R이 직쇄형의 알킬, 알케닐 또는 알키닐로 치환된, 바람직하게는 알킬로 치환된 특정 구조의 보론 유도체를 포함하고 있어, 고온에서의 용량회복율과 안정성이 높으며, 저온에서의 방전용량도 매우 우수하다.The secondary battery electrolyte of the present invention is a boron derivative, specifically, straight-chain alkyl, alkenyl or alkynyl, and more specifically, R in Formula 1 is substituted with straight-chain alkyl, alkenyl or alkynyl, preferably Since it contains a boron derivative of a specific structure substituted with alkyl, the capacity recovery rate and stability are high at high temperature, and the discharge capacity at low temperature is also very excellent.

본 발명의 일 실시예에 따른 상기 화학식 1에서 바람직하게는 R은 메틸, 에틸, 프로필, n-부틸, 에테닐, 프로페닐, 및 프로파르길일 수 있다.In Formula 1 according to an embodiment of the present invention, preferably R may be methyl, ethyl, propyl, n-butyl, ethenyl, propenyl, and propargyl.

본 발명의 일 실시예에 따른 상기 화학식 1에서 바람직하게는 R1 내지 R4는 서로 독립적으로 메틸 또는 에틸일 수 있다.In Formula 1 according to an embodiment of the present invention, preferably R 1 to R 4 may be independently methyl or ethyl.

본 발명에 기재된 「알킬」, 「알콕시」 및 그 외 「알킬」부분을 포함하는 치환체는 특별히 언급하지 않는 한 직쇄 또는 분쇄 형태를 모두 포함하며, 1 내지 10개의 탄소원자, 바람직하게는 1 내지 6, 보다 바람직하게는 1 내지 4의 탄소원자를 갖는다. Substituents including ``alkyl'', ``alkoxy'' and other ``alkyl'' moieties described in the present invention include all linear or branched forms, unless otherwise specified, and 1 to 10 carbon atoms, preferably 1 to 6 , More preferably, it has 1 to 4 carbon atoms.

본 발명에 기재된 단독으로 또는 또다른 기의 일부분으로서 용어 「알케닐」은 2 내지 10개의 탄소 원자 및 1개 이상의 탄소 대 탄소 이중 결합을 함유하는 직쇄, 분지쇄 또는 사이클릭 탄화수소 라디칼을 의미한다. 더욱 바람직한 알케닐 라디칼은 2 내지 약 6 개의 탄소 원자를 갖는 저급 알케닐 라디칼이다. 가장 바람직한 저급 알케닐 라디칼은 2 내지 약 4개의 탄소 원자를 갖는 라디칼이다.The term "alkenyl", either alone or as part of another group described herein, refers to a straight chain, branched chain or cyclic hydrocarbon radical containing 2 to 10 carbon atoms and at least one carbon to carbon double bond. More preferred alkenyl radicals are lower alkenyl radicals having 2 to about 6 carbon atoms. The most preferred lower alkenyl radicals are those having 2 to about 4 carbon atoms.

또한 알케닐기는 임의의 이용가능한 부착지점에서 치환될 수 있다. 알케닐 라디칼의 예로는 에테닐, 프로페닐, 알릴, 프로페닐 및 부테닐이 포함된다. 용어 알케닐 및 저급 알케닐 은 시스 및 트란스 배향, 또는 대안적으로, E 및 Z 배향을 갖는 라디칼을 포함한다. Also alkenyl groups may be substituted at any available point of attachment. Examples of alkenyl radicals include ethenyl, propenyl, allyl, propenyl and butenyl. The terms alkenyl and lower alkenyl include radicals having cis and trans orientations, or, alternatively, E and Z orientations.

본 발명에 기재된 단독으로 또는 또다른 기의 일부분으로서 용어 「알키닐」은 2 내지 10개의 탄소 원자 및 1개 이상의 탄소 대 탄소 삼중 결합을 함유하는 직쇄, 분지쇄 또는 사이클릭 탄화수소 라디칼을 의미한다. 더욱 바람직한 알키닐 라디칼은 2 내지 약 6 개의 탄소원자를 갖는 저급 알키닐 라디칼이다. 가장 바람직한 것은 2 내지 약 4개의 탄소원자를 갖는 저금 알키닐 라디칼이다. 이러한 라디칼의 예로는 프로파르길, 부틴일 등이 포함된다. 또한 알키닐기는 임의의 이용가능한 부착지점에서 치환될 수 있다.The term "alkynyl", either alone or as part of another group described herein, refers to a straight chain, branched chain or cyclic hydrocarbon radical containing 2 to 10 carbon atoms and at least one carbon to carbon triple bond. More preferred alkynyl radicals are lower alkynyl radicals having 2 to about 6 carbon atoms. Most preferred are low-gold alkynyl radicals having 2 to about 4 carbon atoms. Examples of such radicals include propargyl, butynyl, and the like. Also, the alkynyl group may be substituted at any available point of attachment.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 화학식 1의 보론 유도체는 상기 이차전지 전해액 총 중량에 대하여 0.1 내지 5중량%로 포함될 수 있으며, 고온 안정성 측면에서 바람직하게는 0.1 내지 3 중량%, 보다 바람직하게는 1 내지 3 중량%로 포함된다. 상기 화학식 1의 보론 유도체의 함량이 0.1 중량% 미만 포함되면 고온 안정성이 낮거나 용량 유지율의 개선이 미미한 등 첨가 효과가 나타나지 않으며, 리튬 이차전지의 방전용량 또는 출력 등의 향상 효과가 미미하고, 5중량% 초과 포함되면, 급격한 수명 열화가 발생되는 등, 오히려 리튬 이차전지의 특성이 저하된다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the boron derivative of Formula 1 may be included in an amount of 0.1 to 5% by weight based on the total weight of the secondary battery electrolyte, and preferably 0.1 to 3% by weight in terms of high temperature stability. %, more preferably 1 to 3% by weight. When the content of the boron derivative of Formula 1 is less than 0.1% by weight, there is no effect of addition such as low stability at high temperature or insignificant improvement in capacity retention, and the effect of improving the discharge capacity or output of the lithium secondary battery is insignificant, and 5 If it is contained in an amount exceeding% by weight, a rapid life deterioration occurs, and the characteristics of the lithium secondary battery are rather deteriorated.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 전해액은 전지 수명을 향상시키기 위한 수명 향상 첨가제로서, 옥살레이토보레이트계 화합물, 불소로 치환된 카보네이트계 화합물, 비닐리덴 카보네이트계 화합물 및 설피닐기 함유 화합물로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 첨가제를 더 포함할 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the electrolyte is an oxalate borate compound, a carbonate compound substituted with fluorine, a vinylidene carbonate compound, and a sulfinyl group as a life enhancement additive for improving battery life. It may further include one or more additives selected from the group consisting of containing compounds.

상기 옥살레이토보레이트계 화합물은 하기 화학식 2로 표시되는 화합물 또는 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB)일 수 있다.The oxalatoborate-based compound may be a compound represented by the following Formula 2 or lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB).

[화학식 2][Formula 2]

Figure 112013116439103-pat00003
Figure 112013116439103-pat00003

(상기 화학식 2에서, R11 및 R12는 각각 독립적으로 할로겐 원소, 또는 할로겐화된 C1 내지 C10의 알킬기이다.)(In Formula 2, R 11 and R 12 are each independently a halogen element or a halogenated C1 to C10 alkyl group.)

상기 옥살레이토보레이트계 첨가제의 구체적인 예로는 LiB(C2O4)F2 (리튬디플루오로 옥살레이토보레이트, LiFOB) 또는 LiB(C2O4)2 (리튬비스옥살레이토보레이트, LiBOB) 등을 들 수 있다.Specific examples of the oxalate borate-based additive include LiB(C 2 O 4 )F 2 (lithium difluoro oxalate borate, LiFOB) or LiB(C 2 O 4 ) 2 (lithium bis oxalate borate, LiBOB), etc. Can be lifted.

상기 불소로 치환된 카보네이트계 화합물은 플루오로에틸렌카보네이트(FEC), 디플루오로에틸렌카보네이트(DFEC), 플루오로디메틸카보네이트(FDMC), 플루오로에틸메틸카보네이트(FEMC) 또는 이들의 조합일 수 있다.The carbonate-based compound substituted with fluorine may be fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), fluorodimethyl carbonate (FDMC), fluoroethylmethyl carbonate (FEMC), or a combination thereof.

상기 비닐리덴 카보네이트계 화합물은 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC) 또는 이들의 혼합물일 수 있다.The vinylidene carbonate-based compound may be vinylene carbonate (VC), vinyl ethylene carbonate (VEC), or a mixture thereof.

상기 설피닐기(S=O) 함유 화합물은 설폰, 설파이트, 설포네이트 및 설톤(환형 설포네이트)일 수 있으며, 이들은 단독 또는 혼합 사용될 수 있다. 구체적으로 상기 설폰은 하기 화학식 3으로 표현될 수 있으며, 다이비닐 설폰(divinyl sulfone)일 수 있다. 상기 설파이트는 하기 화학식 4로 표현될 수 있으며, 에틸렌 설파이트(ethylene sulfite), 또는 프로필렌 설파이트(propylene sulfite)일 수 있다. 설포네이트는 하기 화학식 5로 표현될 수 있으며, 다이알릴 설포네이트 (diallyl sulfonate)일 수 있다. 또한, 설톤의 비제한적인 예로는 에탄 설톤, 프로판 설톤(propane sulton), 부탄 설톤(butane sulton), 에텐 설톤, 부텐 설톤, 프로펜 설톤(propene sultone) 등을 들 수 있다.The sulfinyl group (S=O)-containing compound may be sulfone, sulfite, sulfonate, and sultone (cyclic sulfonate), and these may be used alone or in combination. Specifically, the sulfone may be represented by Formula 3 below, and may be divinyl sulfone. The sulfite may be represented by Formula 4 below, and may be ethylene sulfite or propylene sulfite. The sulfonate may be represented by the following Chemical Formula 5, and may be diallyl sulfonate. In addition, non-limiting examples of sultones include ethane sultone, propane sultone, butane sulton, ethene sultone, butene sultone, propene sultone, and the like.

[화학식 3][Formula 3]

Figure 112013116439103-pat00004
Figure 112013116439103-pat00004

[화학식 4][Formula 4]

Figure 112013116439103-pat00005
Figure 112013116439103-pat00005

[화학식 5][Formula 5]

Figure 112013116439103-pat00006
Figure 112013116439103-pat00006

(상기 화학식 3, 4, 및 5에서, R13 및 R14는 각각 독립적으로 수소, 할로겐 원자, C1-C10의 알킬기, C2-C10의 알케닐기, 할로겐이 치환된 C1-C10의 알킬기 또는 할로겐이 치환된 C2-C10의 알케닐기이다.)(In Formulas 3, 4, and 5, R 13 and R 14 are each independently hydrogen, a halogen atom, a C1-C10 alkyl group, a C2-C10 alkenyl group, a halogen-substituted C1-C10 alkyl group or a halogen It is a substituted C2-C10 alkenyl group.)

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 보다 바람직하게 상기 전해액은 리튬디플루오로 옥살레이토보레이트(LiFOB), 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 다이비닐 설폰(divinyl sulfone), 에틸렌 설파이트(ethylene sulfite), 프로필렌 설파이트(propylene sulfite), 다이알릴 설포네이트 (diallyl sulfonate), 에탄 설톤, 프로판 설톤(propane sulton, PS), 부탄 설톤(butane sulton), 에텐 설톤, 부텐 설톤 및 프로펜 설톤(PRS)으로 이루어진 군으로부터 선택된 첨가제를 더 포함할 수 있으며, 보다 바람직하게는 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 에틸렌 설파이트(ethylene sulfite), 에탄 설톤, 프로판 설톤(propane sulton, PS)에서 선택되는 하나 또는 둘이상의 첨가제를 더 포함할 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, more preferably, the electrolyte is lithium difluoro oxalatoborate (LiFOB), lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB), fluorine Roethylene carbonate (FEC), vinylene carbonate (VC), vinylethylene carbonate (VEC), divinyl sulfone, ethylene sulfite, propylene sulfite, diallyl sulfonate ( diallyl sulfonate), ethane sultone, propane sultone (PS), butane sultone (butane sulton), ethene sultone, butene sultone and propene sultone (PRS). Specifically, lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfite, ethane sultone, propane sultone , PS) may further include one or more additives selected from.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 첨가제의 함량은 크게 제한되는 것은 아니나, 이차전지 전해액 내에서 전지 수명을 향상시키기 위해 전해액 총 중량에 대하여 0.1 내지 5 중량%로, 보다 바람직하게는 0.1 내지 3 중량%로 포함될 수 있다. In the lithium secondary battery electrolyte according to an embodiment of the present invention, the content of the additive is not significantly limited, but in order to improve the battery life in the secondary battery electrolyte, it is 0.1 to 5% by weight, more preferably, based on the total weight of the electrolyte. It may be included in 0.1 to 3% by weight.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 비수성 유기 용매는 카보네이트, 에스테르, 에테르 또는 케톤을 단독 또는 이들의 혼합용매를 포함할 수 있으나, 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 이들의 혼합용매로부터 선택되는 것이 바람직하고, 환형 카보네이트계 용매와 선형 카보네이트계 용매를 혼합하여 사용하는 것이 가장 바람직하다. 상기 환형 카보네이트 용매는 극성이 커서 리튬 이온을 충분히 해리시킬 수 있는 반면, 점도가 커서 이온 전도도가 작은 단점이 있다. 따라서, 상기 환형 카보네이트 용매에 극성은 작지만 점도가 낮은 선형 카보네이트 용매를 혼합하여 사용함으로써 리튬 이차전지의 특성을 최적화할 수 있다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the non-aqueous organic solvent may include carbonate, ester, ether, or ketone alone or a mixed solvent thereof, but a cyclic carbonate-based solvent, a linear carbonate-based solvent, and It is preferable to be selected from these mixed solvents, and most preferably, a cyclic carbonate-based solvent and a linear carbonate-based solvent are mixed and used. The cyclic carbonate solvent has a high polarity and can sufficiently dissociate lithium ions, but has a high viscosity and low ionic conductivity. Therefore, the characteristics of the lithium secondary battery can be optimized by mixing and using a linear carbonate solvent having a small polarity but a low viscosity to the cyclic carbonate solvent.

상기 환형 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 플루오르에틸렌카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고, 상기 선형 카보네이트계 용매는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.The cyclic carbonate-based solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate ate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, and mixtures thereof, and the linear carbonate-based solvent is dimethyl carbonate, It may be selected from the group consisting of diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, and mixtures thereof.

본 발명의 일실시예에 따른 리튬 이차전지 전해액에서, 상기 비수성 유기 용매는 환형 카보네이트계 용매와 선형 카보네이트계 용매의 혼합용매로, 선형 카보네이트 용매 : 환형 카보네이트 용매의 혼합 부피비가 1 내지 9 : 1 일 수 있으며, 바람직하게는 1.5 내지 4 : 1의 부피비로 혼합하여 사용한다.In the lithium secondary battery electrolyte according to an embodiment of the present invention, the non-aqueous organic solvent is a mixed solvent of a cyclic carbonate-based solvent and a linear carbonate-based solvent, and the mixing volume ratio of the linear carbonate solvent: the cyclic carbonate solvent is 1 to 9: 1 It may be, and is preferably used by mixing in a volume ratio of 1.5 to 4: 1.

본 발명의 일실시예에 따른 고전압 리튬 이차전지 전해액에서, 상기 리튬염은 한정되는 것은 아니나, LiPF6, LiBF4, LiClO4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, LiN(CF3SO2)2, LiN(SO3C2F5)2, LiN(SO2F)2, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiSCN, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.In the high voltage lithium secondary battery electrolyte according to an embodiment of the present invention, the lithium salt is not limited, but LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(SO 3 C 2 F 5 ) 2 , LiN(SO 2 F) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC 6 H 5 SO 3 , LiSCN, LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where x and y are natural numbers), LiCl, LiI and LiB(C 2 O 4 ) 2 It may be one or two or more selected from the group consisting of.

상기 리튬염의 농도는 0.1 내지 2.0 M 범위 내에서 사용하는 것이 바람직하며, 0.7 내지 1.6 M 범위 내에서 사용하는 것이 더 바람직하다. 리튬염의 농도가 0.1 M 미만이면 전해액의 전도도가 낮아져 전해액 성능이 떨어지고, 2.0 M을 초과하는 경우에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소하는 문제점이 있다. 상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 한다.The concentration of the lithium salt is preferably used within the range of 0.1 to 2.0 M, and more preferably used within the range of 0.7 to 1.6 M. When the concentration of the lithium salt is less than 0.1 M, the conductivity of the electrolyte is lowered and the electrolyte performance is deteriorated. When the concentration of the lithium salt is more than 2.0 M, the viscosity of the electrolyte increases, thereby reducing the mobility of lithium ions. The lithium salt acts as a source of lithium ions in the battery, thereby enabling the operation of a basic lithium secondary battery.

본 발명의 리튬 이차전지 전해액은 통상 -20℃∼60℃의 온도범위에서 안정하며, 4.4V영역의 전압에서도 전기화학적으로 안정적인 특성을 유지하므로 리튬 이온 전지 및 리튬 폴리머 전지 등 모든 리튬 이차 전지에 적용될 수 있다.
The lithium secondary battery electrolyte of the present invention is generally stable in the temperature range of -20℃ to 60℃ and maintains electrochemically stable characteristics even at a voltage in the 4.4V range, so it can be applied to all lithium secondary batteries such as lithium ion batteries and lithium polymer batteries. I can.

또한, 본 발명은 상기 리튬 이차전지 전해액을 포함하는 리튬 이차전지을 제공한다. In addition, the present invention provides a lithium secondary battery comprising the lithium secondary battery electrolyte.

상기 이차 전지의 비제한적인 예로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등이 있다.Non-limiting examples of the secondary battery include a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.

본 발명에 따른 리튬 이차전지 전해액으로부터 제조된 리튬 이차전지는 70% 이상의 고온저장효율을 보임과 동시에 고온에서 장기간 방치시 전지의 두께 증가율이 1 내지 20% 보다 바람직하게는 1 내지 8% 로 매우 낮은 것을 특징으로 한다.The lithium secondary battery manufactured from the lithium secondary battery electrolyte according to the present invention exhibits a high temperature storage efficiency of 70% or more, and the thickness increase rate of the battery when left at high temperature for a long period is very low, preferably 1 to 8%, rather than 1 to 20%. It is characterized by that.

본 발명의 리튬 이차전지는 양극 및 음극을 포함한다.The lithium secondary battery of the present invention includes a positive electrode and a negative electrode.

양극은 리튬 이온을 흡장 및 탈리할 수 있는 양극 활물질을 포함하며, 이러한 양극 활물질로는 코발트, 망간, 니켈에서 선택되는 최소한 1종 및 리튬과의 복합 금속 산화물인 것이 바람직하다. 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 이들 금속 외에 Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택되는 원소가 더 포함될 수 있다. 상기 양극 활물질의 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:The positive electrode includes a positive electrode active material capable of occluding and desorbing lithium ions, and the positive electrode active material is preferably at least one selected from cobalt, manganese, and nickel, and a composite metal oxide with lithium. The solid solution ratio between metals can be made variously, and in addition to these metals, Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, An element selected from the group consisting of Sr, V, and rare earth elements may be further included. As a specific example of the positive electrode active material, a compound represented by any one of the following formulas may be used:

LiaA1-bBbD2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1-bBbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2-bBbO4-cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cCobBcO2-αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cCobBcO2-αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cMnbBcO2-αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcO2-αF2 (상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); 및 LiFePO4.Li a A 1-b B b D 2 (where 0.90≦a≦1.8, and 0≦b≦0.5); Li a E 1-b B b O 2-c D c (in the above formula, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05); LiE 2-b B b O 4-c D c (where 0≦b≦0.5, 0≦c≦0.05); Li a Ni 1-bc Co b B c D α (wherein, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 <α ≤ 2); Li a Ni 1-bc Co b B c O 2-α F α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 <α <2); Li a Ni 1-bc Co b B c O 2-α F 2 (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 <α <2); Li a Ni 1-bc Mn b B c D α (wherein, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 <α ≤ 2); Li a Ni 1-bc Mn b B c O 2-α F α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 <α <2); Li a Ni 1-bc Mn b B c O 2-α F 2 (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 <α <2); Li a Ni b E c G d O 2 (in the above formula, 0.90≦a≦1.8, 0≦b≦0.9, 0≦c≦0.5, 0.001≦d≦0.1); Li a Ni b Co c Mn d GeO 2 (in the above formula, 0.90≦a≦1.8, 0≦b≦0.9, 0≦c≦0.5, 0≦d≦0.5, 0.001≦e≦0.1); Li a NiG b O 2 (in the above formula, 0.90≦a≦1.8, 0.001≦b≦0.1); Li a CoG b O 2 (wherein, 0.90≦a≦1.8, 0.001≦b≦0.1); Li a MnG b O 2 (wherein, 0.90≦a≦1.8, 0.001≦b≦0.1); Li a Mn 2 G b O 4 (wherein, 0.90≦a≦1.8, 0.001≦b≦0.1); QO 2 ; QS 2 ; LiQS 2 ; V 2 O 5 ; LiV 2 O 5 ; LiIO 2 ; LiNiVO 4 ; Li (3-f) J 2 (PO 4 ) 3 (0≦f≦2); Li (3-f) Fe 2 (PO 4 ) 3 (0≦f≦2); And LiFePO 4 .

상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; F는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합일 수 있다. In the above formula, A is Ni, Co, Mn, or a combination thereof; B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof; D is O, F, S, P, or a combination thereof; E is Co, Mn, or a combination thereof; F is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof; Q is Ti, Mo, Mn, or a combination thereof; I is Cr, V, Fe, Sc, Y or a combination thereof; J may be V, Cr, Mn, Co, Ni, Cu, or a combination thereof.

음극은 리튬 이온을 흡장 및 탈리할 수 있는 음극 활물질을 포함하며, 이러한 음극 활물질로는 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리튬 금속, 리튬과 다른 원소의 합금 등이 사용될 수 있다. 예를 들면, 비결정질 탄소로는 하드카본, 코크스, 1500℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead: MCMB), 메조페이스피치계 탄소섬유(mesophase pitch-based carbon fiber: MPCF) 등이 있다. 결정질 탄소로는 흑연계 재료가 있으며, 구체적으로는 천연흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등이 있다. 상기 탄소재 물질은 층간거리(interplanar distance)가 3.35~3.38Å, X-선 회절(X-ray diffraction)에 의한 Lc(crystallite size)가 적어도 20㎚ 이상인 물질이 바람직하다. 리튬과 합금을 이루는 다른 원소로는 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐이 사용될 수 있다.The negative electrode contains a negative electrode active material capable of occluding and desorbing lithium ions, and such negative electrode active materials include carbon materials such as crystalline carbon, amorphous carbon, carbon composites, carbon fibers, lithium metal, and alloys of lithium and other elements. I can. For example, amorphous carbon includes hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500° C. or less, and mesophase pitch-based carbon fibers (MPCF). As crystalline carbon, there are graphite-based materials, and specifically, natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like. The carbon material is preferably a material having an interplanar distance of 3.35 to 3.38 Å and a crystallite size (Lc) of at least 20 nm by X-ray diffraction. Other elements forming an alloy with lithium may include aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium.

양극 또는 음극은 전극 활물질, 바인더 및 도전재, 필요한 경우 증점제를 용매에 분산시켜 전극 슬러리 조성물을 제조하고, 이 슬러리 조성물을 전극 집전체에 도포하여 제조될 수 있다. 양극 집전체로는 흔히 알루미늄 또는 알루미늄 합금 등을 사용할 수 있고, 음극 집전체로는 흔히 구리 또는 구리 합금 등을 사용할 수 있다. 상기 양극 집전체 및 음극 집전체의 형태로는 포일이나 메시 형태를 들 수 있다.The positive or negative electrode may be prepared by dispersing an electrode active material, a binder, a conductive material, and, if necessary, a thickener in a solvent to prepare an electrode slurry composition, and then applying the slurry composition to an electrode current collector. Aluminum or aluminum alloy may be used as the positive electrode current collector, and copper or copper alloy may be commonly used as the negative electrode current collector. The positive electrode current collector and the negative electrode current collector may be in the form of foil or mesh.

바인더는 활물질의 페이스트화, 활물질의 상호 접착, 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충효과 등의 역할을 하는 물질로서, 예를 들면 폴리비닐리덴플루오라이드(PVdF), 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체(PVdF/HFP)), 폴리(비닐아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 스티렌-부타디엔고무, 아크릴로니트릴-부타디엔 고무 등이 있다. 바인더의 함량은 전극 활물질에 대하여 0.1 내지 30중량%, 바람직하게는 1 내지 10중량%이다. 상기 바인더의 함량이 너무 적으면 전극 활물질과 집전체와의 접착력이 불충분하고, 바인더의 함량이 너무 많으면 접착력은 좋아지지만 전극 활물질의 함량이 그만큼 감소하여 전지용량을 고용량화 하는데 불리하다.The binder is a material that plays a role in the formation of a paste of the active material, adhesion of the active material to each other, adhesion to the current collector, and buffering effect on expansion and contraction of the active material, such as polyvinylidene fluoride (PVdF), polyhexafluoro Propylene-polyvinylidene fluoride copolymer (PVdF/HFP)), poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, polyvinyl ether, poly(methylmetha) Acrylate), poly(ethylacrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like. The content of the binder is 0.1 to 30% by weight, preferably 1 to 10% by weight, based on the electrode active material. If the content of the binder is too small, the adhesion between the electrode active material and the current collector is insufficient, and if the content of the binder is too high, the adhesion is improved, but the content of the electrode active material decreases that much, which is disadvantageous in increasing the battery capacity.

도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 흑연계 도전제, 카본 블랙계 도전제, 금속 또는 금속 화합물계 도전제로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다. 상기 흑연계 도전제의 예로는 인조흑연, 천연 흑연 등이 있으며, 카본 블랙계 도전제의 예로는 아세틸렌 블랙, 케첸 블랙(ketjen black), 덴카 블랙(denkablack), 써멀 블랙(thermal black), 채널 블랙(channel black) 등이 있으며, 금속계 또는 금속 화합물계 도전제의 예로는 주석, 산화주석, 인산주석(SnPO4), 산화티타늄, 티탄산칼륨, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질이 있다. 그러나 상기 열거된 도전제에 한정되는 것은 아니다.The conductive material is used to impart conductivity to the electrode, and in the battery constituted, any material can be used as long as it does not cause chemical change and is an electron conductive material.A graphite conductive agent, a carbon black conductive agent, a metal or a metal compound type At least one selected from the group consisting of conductive agents may be used. Examples of the graphite-based conductive agent include artificial graphite, natural graphite, and the like, and examples of the carbon black-based conductive agent include acetylene black, ketjen black, denkablack, thermal black, and channel black. (channel black), etc., and examples of metal-based or metallic compound-based conductive agents include perovskites such as tin, tin oxide, tin phosphate (SnPO 4 ), titanium oxide, potassium titanate, LaSrCoO 3 , and LaSrMnO 3 There is a substance. However, it is not limited to the conductive agents listed above.

도전제의 함량은 전극 활물질에 대하여 0.1 내지 10중량%인 것이 바람직하다. 도전제의 함량이 0.1중량%보다 적은 경우에는 전기 화학적 특성이 저하되고, 10중량%을 초과하는 경우에는 중량당 에너지 밀도가 감소한다.The content of the conductive agent is preferably 0.1 to 10% by weight based on the electrode active material. When the content of the conductive agent is less than 0.1% by weight, the electrochemical properties decrease, and when it exceeds 10% by weight, the energy density per weight decreases.

증점제는 활물질 슬러리 점도조절의 역할을 할 수 있는 것이라면 특별히 한정되지 않으나, 예를 들면 카르복시메틸 셀룰로오스, 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스 등이 사용될 수 있다.The thickener is not particularly limited as long as it can control the viscosity of the active material slurry, but for example, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, and the like may be used.

전극 활물질, 바인더, 도전재 등이 분산되는 용매로는 비수용매 또는 수계용매가 사용된다. 비수용매로는 N-메틸-2-피롤디돈(NMP), 디메틸포름아미드, 디메틸아세트아미드, N,N-디메틸아미노프로필아민, 에틸렌옥사이드, 테트라히드로퓨란 등을 들 수 있다.As a solvent in which an electrode active material, a binder, a conductive material, and the like are dispersed, a non-aqueous solvent or an aqueous solvent is used. Examples of the non-aqueous solvent include N-methyl-2-pyrrolididone (NMP), dimethylformamide, dimethylacetamide, N,N-dimethylaminopropylamine, ethylene oxide, and tetrahydrofuran.

본 발명의 리튬 이차전지는 양극 및 음극 사이에 단락을 방지하고 리튬 이온의 이동통로를 제공하는 세퍼레이터를 포함할 수 있으며, 이러한 세퍼레이터로는 폴리프로필렌, 폴리에틸렌, 폴리에틸렌/폴리프로필렌, 폴리에틸렌/폴리프로필렌/폴리에틸렌, 폴리프로필렌/폴리에틸렌/폴리프로필렌 등의 폴리올레핀계 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 및 부직포를 사용할 수 있다. 또한 다공성의 폴리올레핀 필름에 안정성이 우수한 수지가 코팅된 필름을 사용할 수도 있다.The lithium secondary battery of the present invention may include a separator that prevents a short circuit between the positive electrode and the negative electrode and provides a passage for lithium ions. Such separators include polypropylene, polyethylene, polyethylene/polypropylene, polyethylene/polypropylene/ Polyolefin-based polymer films such as polyethylene, polypropylene/polyethylene/polypropylene, or a multilayer thereof, microporous films, woven fabrics, and nonwoven fabrics may be used. In addition, a film coated with a resin having excellent stability on a porous polyolefin film may be used.

본 발명의 리튬 이차 전지는 각형 외에 원통형, 파우치형 등 다른 형상으로 이루어질 수 있다.
The lithium secondary battery of the present invention may have other shapes, such as a cylindrical shape or a pouch type, in addition to a square shape.

이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. 리튬 이온 농도가 1몰(1M)이 되기 위해 리튬염이 모두 해리하는 것으로 보고 LiPF6와 같은 리튬 염을 1몰(1M) 농도가 되도록 해당량을 기본 용매에 용해시켜 베이스 전해액을 형성시킬 수 있다.
Hereinafter, examples and comparative examples of the present invention will be described. However, the following examples are only preferred examples of the present invention, and the present invention is not limited to the following examples. It is believed that all lithium salts dissociate in order to have a lithium ion concentration of 1 mol (1M), and a lithium salt such as LiPF 6 can be dissolved in a basic solvent to achieve a concentration of 1 mol (1M) to form a base electrolyte. .

[제조예 1] 2-메톡시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 (2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 이하, 'PEA11'라 함)의 합성[Preparation Example 1] 2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2-methoxy-4,4,5,5-tetramethyl-1,3 ,2-dioxaborolane, hereinafter referred to as'PEA11') synthesis

Figure 112013116439103-pat00007
Figure 112013116439103-pat00007

트리메틸보레이트(3.7 g)와 무수 피나콜(4.2 g)을 68 oC에서 2시간 동안 교반시켜 반응시켰다. 반응이 종결 된 후, 감압 증류하여 2-메톡시-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(2.8 g)을 얻었다.Trimethylborate (3.7 g) and anhydrous pinacol (4.2 g) were stirred at 68 o C for 2 hours to react. After the reaction was completed, distillation under reduced pressure was performed to obtain 2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.8 g).

1H NMR (CDCl3, 500 MHz) δ 3.57 (s, 2H), 1.22 (s, 12H)
1 H NMR (CDCl 3 , 500 MHz) δ 3.57 (s, 2H), 1.22 (s, 12H)

[제조예 2] 2-이소프로필-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 (2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 이하, 'PEA12'라 함)의 합성[Production Example 2] 2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2-isopropoxy-4,4,5,5-tetramethyl-1,3 ,2-dioxaborolane, hereinafter referred to as'PEA12') synthesis

Figure 112013116439103-pat00008
Figure 112013116439103-pat00008

트리이소프로필보레이트(5.5 g)와 무수 피나콜(3.9 g)을 68 oC에서 2시간 동안 교반시켜 반응하였다. 반응이 종결 된 후, 감압 증류하여 2-이소프로필-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(2.1 g)을 얻었다.Triisopropylborate (5.5 g) and anhydrous pinacol (3.9 g) were stirred at 68 o C for 2 hours to react. After the reaction was completed, distillation under reduced pressure was performed to obtain 2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.1 g).

1H NMR (CDCl3, 500 MHz) δ 4.32 (m, 1H), 1.24 (s, 12H), 1.19 (d, J = 6.1 Hz, 6H)
1 H NMR (CDCl 3 , 500 MHz) δ 4.32 (m, 1H), 1.24 (s, 12H), 1.19 (d, J = 6.1 Hz, 6H)

[실시예 1-6 및 비교예 1-3][Example 1-6 and Comparative Example 1-3]

전해액은 에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC)를 3 : 7의 부피비로 혼합한 혼합용매에 LiPF6을 1.0 M 용액이 되도록 용해시킨 용액을 기본 전해액(1M LiPF6, EC/EMC=3:7)으로 하여 하기 표 1에 기재된 성분들을 추가로 투입하여 제조하였다. The electrolyte is a solution obtained by dissolving LiPF 6 to a 1.0 M solution in a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 and the basic electrolyte solution (1M LiPF 6 , EC/EMC = 3). : 7) was prepared by additionally adding the components shown in Table 1 below.

상기 비수성 전해액을 적용할 전지는 다음과 같이 제조하였다.A battery to which the non-aqueous electrolyte is applied was manufactured as follows.

양극 활물질로서 LiNiCoMnO2와 LiMn2O4를 1:1의 중량비로 혼합하고, 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 및 도전제로서 카본을 92:4:4의 중량비로 혼합한 다음, N-메틸-2-피롤리돈에 분산시켜 양극 슬러리를 제조하였다. 이 슬러리를 두께 20㎛의 알루미늄 호일에 코팅한 후 건조, 압연하여 양극을 제조하였다. 음극 활물질로 인조 흑연, 바인더로서 스티렌-부타디엔고무 및 증점제로서 카르복시메틸셀룰로오스를 96:2:2의 중량비로 혼합한 다음 물에 분산시켜 음극 활물질 슬러리를 제조하였다. 이 슬러리를 두께 15㎛의 구리 호일에 코팅한 후 건조, 압연하여 음극을 제조하였다. LiNiCoMnO 2 and LiMn 2 O 4 as a positive electrode active material are mixed in a weight ratio of 1:1, polyvinylidene fluoride (PVdF) as a binder and carbon as a conductive agent are mixed in a weight ratio of 92:4:4, and then N- Disperse in methyl-2-pyrrolidone to prepare a positive electrode slurry. The slurry was coated on an aluminum foil having a thickness of 20 μm, dried and rolled to prepare a positive electrode. Artificial graphite as a negative electrode active material, styrene-butadiene rubber as a binder, and carboxymethylcellulose as a thickener were mixed in a weight ratio of 96:2:2, and then dispersed in water to prepare a negative electrode active material slurry. The slurry was coated on a 15 μm-thick copper foil, dried, and rolled to prepare a negative electrode.

상기 제조된 전극들 사이에 두께 25㎛의 폴리에틸렌(PE) 재질의 필름 세퍼레이터를 스택킹(Stacking)하여 두께 8 mm x 가로 270 mm x 세로 185 mm 사이즈의 파우치를 이용하여 셀(Cell)을 구성하였고, 상기 비수성 전해액을 주입하여 EV 용 25Ah 급 리튬 이차 전지를 제조하였다.A 25 μm-thick polyethylene (PE) film separator was stacked between the prepared electrodes, and a cell was constructed using a pouch having a size of 8 mm in thickness x 270 mm in width x 185 mm in length. , The non-aqueous electrolyte was injected to prepare a 25Ah class lithium secondary battery for EV.

이렇게 제조된 EV 용 25Ah 급 전지의 성능을 하기와 같이 평가하였다. 평가항목은 하기와 같다.The performance of the thus prepared EV 25Ah class battery was evaluated as follows. The evaluation items are as follows.

*평가 항목**Evaluation items*

1. -20℃ 1C 방전용량 : 상온에서 25A, 4.2V CC-CV로 3시간 충전 후, -20℃ 에서 4시간 방치 후 25A의 전류로, 2.7V까지 CC 로 방전 후 초기용량 대비 사용가능 용량(%)을 측정하였다.1. -20℃ 1C discharge capacity: After charging at room temperature with 25A, 4.2V CC-CV for 3 hours, leaving at -20℃ for 4 hours with a current of 25A, discharging to 2.7V by CC, and then using the available capacity compared to the initial capacity (%) was measured.

2. 60℃ 30일 용량 회복율 : 상온에서 4.2V, 25A CC-CV 로 3시간 충전 후, 60'C 30일 방 치 후 25A 의 전류로, 2.7V 까지 CC 로 방전 후 초기용량 대비 회복율(%)을 측정하였다.2. Capacity recovery rate at 60℃ for 30 days: After charging with 4.2V, 25A CC-CV at room temperature for 3 hours, and leaving at 60'C for 30 days, with a current of 25A, after discharging to 2.7V at CC, the recovery rate compared to the initial capacity (% ) Was measured.

3. 60℃ 30일 후 두께 증가율 : 상온에서 4.2V, 25A CC-CV 로 3시간 충전 후, 전지의 두께를 A 라고 하고 밀폐된 항온장치를 이용하여 60℃ 및 대기 중 노출된 상압에서 30일 방치된 전지의 두께를 B 라 할 때 두께의 증가율을 하기 식 1과 같이 계산 하였다.3. Thickness increase rate after 30 days at 60℃: After charging with 4.2V, 25A CC-CV at room temperature for 3 hours, the thickness of the battery is called A, and 30 days at 60℃ and atmospheric pressure using a sealed thermostat. When the thickness of the left battery is B, the rate of increase in thickness was calculated as shown in Equation 1 below.

[식 1][Equation 1]

(B-A)/A × 100(%)(B-A)/A × 100(%)

4. 상온 수명 : 상온에서 4.4V, 50A CC-CV로 3시간 충전 후 2.7V, 50A 전류로 2.7V 까지 방전을 500회 반복한다. 이때 1회 째 방전 용량을 C라고 하고, 300회째 방전 용량을 1회째 방전 용량으로 나누어서 수명 중 용량 유지율을 계산 하였다.
4. Room temperature life: After charging at room temperature with 4.4V, 50A CC-CV for 3 hours, discharge up to 2.7V with 2.7V, 50A current 500 times. At this time, the first discharge capacity was denoted C, and the capacity retention rate during the lifetime was calculated by dividing the 300th discharge capacity by the first discharge capacity.

Figure 112013116439103-pat00009
Figure 112013116439103-pat00009

표 1에서 보이는 바와 같이 본 발명에 따른 리튬 이차전지 전해액을 포함하는 리튬 이차전지는 60℃에서 30일이후에도 높은 용량 회복율을 보였으며, 두께 증가율도 3 내지 18%로 매우 낮음을 알 수 있습니다.As shown in Table 1, it can be seen that the lithium secondary battery containing the lithium secondary battery electrolyte according to the present invention showed a high capacity recovery rate even after 30 days at 60℃, and the thickness increase rate was also very low, 3 to 18%.

반면 본 발명의 보론 유도체를 포함하지 않은 비교예 1의 전해액을 채용한 리튬 이차전지는 고온에서의 낮은 용량 유지율 및 저온에서의 방전용량을 나타냈었으며, 전지의 두께 증가율도 높아 고온에서의 안정성이 매우 낮다.On the other hand, the lithium secondary battery employing the electrolytic solution of Comparative Example 1 that does not contain the boron derivative of the present invention exhibited low capacity retention at high temperature and discharge capacity at low temperature. Very low.

또한 비교예 2와 비교예 3의 전해액은 본 발명의 보론 유도체와 상이한 구조를 가진 첨가제를 포함하고 있어, 고온 및 저온에서의 전지 특성이 매우 낮은 것을 보인다.In addition, the electrolyte solutions of Comparative Example 2 and Comparative Example 3 contain an additive having a structure different from that of the boron derivative of the present invention, so that the battery characteristics at high and low temperatures are very low.

이는 본 발명의 상기 화학식 1로 표시되는 보론의 구조에 기인하는 것으로 판단되며, 구체적으로 본 발명의 상기 화학식 1에서 R의 치환기가 직쇄가 아닌 분지쇄의 구조를 가지는 PEA12는 분지쇄로 인한 큰 부피로 음극 표면에 두께운 피막이 형성되어 저항이 증가되어 저온 및 고온에서의 특성이 낮은 것으로 판단된다.This is considered to be due to the structure of boron represented by Formula 1 of the present invention. Specifically, PEA12 having a branched structure in which the substituent of R in Formula 1 of the present invention is not a straight chain, has a large volume due to the branched chain. It is judged that the characteristics at low and high temperatures are low because a thick film is formed on the surface of the furnace and the resistance is increased.

그러나 본 발명의 보론 유도체인 PEA11의 경우 화학식 1의 R에 직쇄의 알킬기가 치환되어 높은 고온 및 저온 특성을 가지는 것으로 판단된다.However, in the case of PEA11, which is a boron derivative of the present invention, it is determined that R in Formula 1 is substituted with a linear alkyl group to have high and low temperature characteristics.

또한 본 발명의 이차전지 전해액은 본 발명의 화학식 1로 표시되는 보론 유도체와 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 에틸렌 설파이트(ethylene sulfite), 에탄 설톤, 프로판 설톤(propane sulton, PS)에서 선택되는 하나이상의 첨가제를 더 포함함으로써 고온 저장안정성, 저온 방전용량 및 수명특성을 보다 향상시켜 본 발명의 이차전지 전해액을 포함하는 리튬 이차전지는 매우 높은 효율, 안정성 및 수명특성을 가진다. In addition, the secondary battery electrolyte of the present invention is a boron derivative represented by Formula 1 of the present invention and lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB), vinylene carbonate (VC), vinylethylene carbonate (VEC). , Ethylene sulfite (ethylene sulfite), ethane sultone, propane sultone (propane sulton, PS) by further including one or more additives selected from the high-temperature storage stability, low-temperature discharge capacity and life characteristics to further improve the secondary battery electrolyte of the present invention The lithium secondary battery comprising a has very high efficiency, stability and life characteristics.

이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.As described above, the embodiments of the present invention have been described in detail, but those of ordinary skill in the art to which the present invention pertains, the present invention without departing from the spirit and scope of the present invention defined in the appended claims. It will be possible to implement the invention by various modifications. Therefore, changes in the embodiments of the present invention will not be able to depart from the technology of the present invention.

Claims (13)

리튬염;
비수성 유기 용매;
하기 화학식 1로 표시되는 보론 유도체; 및
리튬디플루오로 옥살레이토보레이트(LiFOB), 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 다이비닐 설폰(divinyl sulfone), 에틸렌 설파이트(ethylene sulfite), 프로필렌 설파이트(propylene sulfite), 다이알릴 설포네이트 (diallyl sulfonate), 에탄 설톤, 프로판 설톤(propane sulton, PS), 부탄 설톤(butane sulton), 에텐 설톤, 부텐 설톤 및 프로펜 설톤(PS)으로 이루어진 군으로부터 선택된 하나 또는 둘 이상의 첨가제를 포함하는 이차전지 전해액:
[화학식 1]
Figure 112020063702587-pat00010

(상기 화학식 1에서,
R은 직쇄(C1-C6)알킬이며;
R1 내지 R4는 서로 독립적으로 수소 또는 (C1-C10)알킬이다.)
Lithium salt;
Non-aqueous organic solvents;
Boron derivatives represented by the following formula (1); And
Lithium difluoro oxalate borate (LiFOB), lithium bis oxalate borate (LiB(C 2 O 4 ) 2 , LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinylethylene carbonate (VEC) , Divinyl sulfone, ethylene sulfite, propylene sulfite, diallyl sulfonate, ethane sultone, propane sulton (PS), butane sultone sulton), ethene sultone, butene sultone, and propene sultone (PS):
[Formula 1]
Figure 112020063702587-pat00010

(In Chemical Formula 1,
R is straight-chain (C1-C6)alkyl;
R 1 to R 4 are each independently hydrogen or (C1-C10)alkyl.)
제 1항에 있어서,
R1 내지 R4는 서로 독립적으로 메틸 또는 에틸인 이차전지 전해액.
The method of claim 1,
R 1 to R 4 are each independently methyl or ethyl secondary battery electrolyte.
제 1항에 있어서,
R은 메틸 또는 에틸인 이차전지 전해액.
The method of claim 1,
R is methyl or ethyl secondary battery electrolyte.
제 1항에 있어서,
상기 보론 유도체는 상기 전해액 총 중량에 대하여 0.1 내지 5중량%로 포함되는 것인 이차전지 전해액.
The method of claim 1,
The boron derivative is a secondary battery electrolyte that is contained in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
삭제delete 삭제delete 제 1항에 있어서,
상기 첨가제는 전해액 총 중량에 대하여 0.1 ~ 5.0중량%로 포함되는 이차전지 전해액.
The method of claim 1,
The additive is a secondary battery electrolyte containing 0.1 to 5.0% by weight based on the total weight of the electrolyte.
제 1항에 있어서,
상기 비수성 유기 용매는 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 이들의 혼합용매로부터 선택되는 이차전지 전해액.
The method of claim 1,
The non-aqueous organic solvent is a secondary battery electrolyte selected from a cyclic carbonate-based solvent, a linear carbonate-based solvent, and a mixed solvent thereof.
제 8항에 있어서,
상기 환형 카보네이트는 에틸렌카보네이트, 프로필렌카보네이트이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 플루오르에틸렌카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 상기 선형 카보네이트는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 이차전지 전해액.
The method of claim 8,
The cyclic carbonate is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, and mixtures thereof, and the linear carbonate is dimethyl carbonate, diethyl carbonate, dipropyl A secondary battery electrolyte selected from the group consisting of carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, and mixtures thereof.
제 8항에 있어서,
상기 비수성 유기 용매는 선형 카보네이트 용매 : 환형 카보네이트 용매의 혼합부피비가 1 내지 9 : 1인 이차전지 전해액.
The method of claim 8,
The non-aqueous organic solvent is a secondary battery electrolyte in which the mixing volume ratio of the linear carbonate solvent: the cyclic carbonate solvent is 1 to 9: 1.
제 1항에 있어서,
상기 리튬염은 LiPF6, LiBF4, LiClO4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, LiN(CF3SO2)2, LiN(SO3C2F5)2, LiN(SO2F)2, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiSCN, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군에서 선택되는 하나 또는 둘 이상인 이차전지 전해액.
The method of claim 1,
The lithium salt is LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(SO 3 C 2 F 5 ) 2 , LiN(SO 2 F) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC 6 H 5 SO 3 , LiSCN, LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, and LiB(C 2 O 4 ) 2 One or more secondary battery electrolytes selected from the group consisting of.
제 1항에 있어서,
상기 리튬염은 0.1 내지 2.0 M의 농도로 존재하는 이차전지 전해액.
The method of claim 1,
The lithium salt is a secondary battery electrolyte present in a concentration of 0.1 to 2.0 M.
제 1항 내지 제4항 및 제 7항 내지 제 12항에서 선택되는 어느 한 항에 따른 이차전지 전해액을 포함하는 리튬 이차전지.A lithium secondary battery comprising the secondary battery electrolyte according to any one of claims 1 to 4 and 7 to 12.
KR1020130159146A 2013-12-19 2013-12-19 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same KR102247161B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130159146A KR102247161B1 (en) 2013-12-19 2013-12-19 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130159146A KR102247161B1 (en) 2013-12-19 2013-12-19 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Publications (2)

Publication Number Publication Date
KR20150071973A KR20150071973A (en) 2015-06-29
KR102247161B1 true KR102247161B1 (en) 2021-05-04

Family

ID=53518084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130159146A KR102247161B1 (en) 2013-12-19 2013-12-19 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Country Status (1)

Country Link
KR (1) KR102247161B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076067B2 (en) * 2016-04-26 2022-05-27 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
CN116544514B (en) * 2023-07-07 2024-03-08 宁德新能源科技有限公司 Electrochemical device and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138844A2 (en) * 2011-04-06 2012-10-11 Uchicago Argonne, Llc Non-aqueous electrolytes for lithium-air batteries
JP2013098057A (en) * 2011-11-01 2013-05-20 Asahi Kasei Corp Additive for electrolyte and electrolyte containing the same, lithium ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2156800C (en) 1995-08-23 2003-04-29 Huanyu Mao Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP4352622B2 (en) 2001-03-06 2009-10-28 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138844A2 (en) * 2011-04-06 2012-10-11 Uchicago Argonne, Llc Non-aqueous electrolytes for lithium-air batteries
JP2013098057A (en) * 2011-11-01 2013-05-20 Asahi Kasei Corp Additive for electrolyte and electrolyte containing the same, lithium ion secondary battery

Also Published As

Publication number Publication date
KR20150071973A (en) 2015-06-29

Similar Documents

Publication Publication Date Title
CN112768747B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN108428940B (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR102310478B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR102188424B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR20160029457A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR20160030734A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
US10243235B2 (en) Lithium secondary battery electrolyte and lithium secondary battery comprising same
KR102266993B1 (en) New Compound and Electrolyte of Lithium Secondary Battery Containing the Same
KR20150072188A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR102460822B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR102022363B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR20150032416A (en) electrolyte for secondary battery containing boron-based lithium salt and a secondary battery containing the same
US20150318573A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
KR102247161B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR102308599B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR102353962B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101970725B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR102040067B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR20140067242A (en) Electrolyte for secondary battery and lithium secondary battery containing the same
KR102037211B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant