KR102246866B1 - Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme - Google Patents

Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme Download PDF

Info

Publication number
KR102246866B1
KR102246866B1 KR1020190063911A KR20190063911A KR102246866B1 KR 102246866 B1 KR102246866 B1 KR 102246866B1 KR 1020190063911 A KR1020190063911 A KR 1020190063911A KR 20190063911 A KR20190063911 A KR 20190063911A KR 102246866 B1 KR102246866 B1 KR 102246866B1
Authority
KR
South Korea
Prior art keywords
saccharification
pine
enzyme
concentration
biomass
Prior art date
Application number
KR1020190063911A
Other languages
Korean (ko)
Other versions
KR20200137478A (en
Inventor
김영숙
김영균
박소현
윤새민
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Priority to KR1020190063911A priority Critical patent/KR102246866B1/en
Publication of KR20200137478A publication Critical patent/KR20200137478A/en
Application granted granted Critical
Publication of KR102246866B1 publication Critical patent/KR102246866B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01006Endo-1,3(4)-beta-glucanase (3.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Abstract

본 발명은 폭쇄 전처리된 소나무 바이오매스를 트리코더마 속 KMF006 균주(KCTC13500BP) 유래 셀룰레이즈를 이용하여 처리하여 당화시키는 것을 특징으로 하는 소나무 바이오매스의 당화방법에 관한 것으로, 본 발명에 따르면, 당화가 어려웠던 폭쇄처리된 소나무 바이오매스를 보다 효과적으로 당화시킬 수 있어, 바이오 연료 생산에 유용하게 이용될 수 있다.The present invention relates to a saccharification method of pine biomass, characterized in that the saccharification of pine biomass is treated with cellulose derived from Trichoderma genus KMF006 strain (KCTC13500BP) for saccharification. According to the present invention, saccharification was difficult. Since the treated pine biomass can be more effectively saccharified, it can be usefully used in biofuel production.

Description

셀룰로오즈 분해 효소를 이용한 소나무 바이오매스의 당화방법{Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme}Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme}

본 발명은 셀룰로오즈 분해 효소를 이용한 소나무 바이오매스의 당화방법에 관한 것으로, 더욱 자세하게는 폭쇄 전처리된 소나무 바이오매스를 트리코더마 속 KMF006 균주(KCTC13500BP) 유래 셀룰레이즈를 이용하여 처리하여 당화시키는 것을 특징으로 하는 소나무 바이오매스의 당화방법에 관한 것이다. The present invention relates to a method for saccharifying pine biomass using a cellulose degrading enzyme, and more particularly, to saccharify pine biomass by treating with cellulose derived from KMF006 strain (KCTC13500BP) of Trichoderma genus KMF006 strain (KCTC13500BP). It relates to a method of saccharifying biomass.

바이오에너지는 화석연료의 소비에 따른 지구온난화 및 고유가에 따라 화석연료를 대체할 수 에너지로 주목받고 있으며, 식물성 바이오매스 자원으로부터 에탄올을 생산하기 위한 기술이 개발되고 있다. Bioenergy is attracting attention as an energy that can replace fossil fuels according to global warming and high oil prices due to consumption of fossil fuels, and technology for producing ethanol from plant biomass resources is being developed.

현재 상용화된 바이오에탄올의 주원료인 사탕수수나 옥수수 같은 전분질계 원료는 식량시장의 가격과 공급에 문제를 야기하면서 사회적 이슈로 등장하였다. 이로 인해 바이오 에탄올을 비롯한 바이오 연료 생산을 위해 연료공급이 충분하고 재생산 가능하며 환경 친화적인 목질계 바이오매스가 차세대 바이오연료 원료로서 부상되고 있다. Starch-based raw materials such as sugar cane and corn, which are the main raw materials of currently commercialized bioethanol, have emerged as a social issue, causing problems in the price and supply of the food market. For this reason, wood-based biomass with sufficient fuel supply, reproducible and environmentally friendly, is emerging as a next-generation biofuel raw material for the production of biofuels including bioethanol.

그러나 목질계 바이오매스는 셀룰로오스, 헤미셀룰로오스, 리그닌이 주요 구성성분으로 결합이 단단하고 강도가 큰 특징이 있어 분해가 어렵고 단당류로 분리해 내는데 복잡한 공정이 필요하여 고비용의 문제점이 있다. 목질계 바이오매스의 처리에는 우선 목질계 바이오매스로부터 리그닌을 효과적으로 제거하고 셀룰로오스의 결정화도를 감소시키며 바이오매스의 표면적을 증가시켜 효율적인 당화를 돕는 전처리 공정과 셀룰로오스와 헤미셀룰로오스을 이용 가능한 단당류로 분해하기 위한 당화 공정이 필요하다. 당화 공정은 기존 상용기술로 농황산을 이용하거나 희석 산을 이용하는 산 당화가 있으나 이들은 높은 온도에서 실시함에 따라 furfural, 5-hydroxymethylfurfural (HMF) 등과 같은 발효 저해제가 형성되고 환경오염과 같은 문제를 발생시킬 뿐만 아니라 금속을 부식시키므로 최근에는 효소를 이용한 당화기술이 주류를 이루고 있다. 효소당화는 당화하는데 시간이 소요되는 단점이 있지만 화학약품을 사용하지 않아, 약품회수나 중화과정이 필요하지 않기 때문에 에너지 절감과 환경적 측면에서 매우 유리하다.However, lignocellulosic biomass is characterized by a hard bond and high strength as the main constituents of cellulose, hemicellulose, and lignin, so it is difficult to decompose and requires a complicated process to separate it into monosaccharides, resulting in a problem of high cost. In the treatment of lignocellulosic biomass, first, the pretreatment process that effectively removes lignin from the lignocellulosic biomass, reduces the crystallinity of cellulose, increases the surface area of the biomass, and helps efficient saccharification, and the saccharification process to decompose cellulose and hemicellulose into usable monosaccharides. I need this. The saccharification process is an existing commercial technology, such as acid saccharification using concentrated sulfuric acid or dilute acid. However, as they are carried out at high temperatures, fermentation inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are formed, causing problems such as environmental pollution. In addition, since it corrodes metals, saccharification technology using enzymes has become the mainstream in recent years. Enzymatic saccharification has a disadvantage in that it takes time to saccharify, but it is very advantageous in terms of energy saving and environmental aspects because it does not use chemicals and does not require chemical recovery or neutralization process.

섬유소계 물질의 효소 가수분해는 Endo-1,4-β-glucanase (EG), β-glucosidase (BGL) 및 cellobiohydrolase (CBH)를 포함하는 셀룰레이즈 복합 효소에 의한 가수분해 반응에 의해 수행된다. 일반적으로 셀룰레이즈 복합체는 목질계 바이오매스를 영양원으로 하는 생물체에서 얻어지는 경우가 많다. 특히 셀룰로오스를 효율적으로 가수분해할 수 있는 미생물 유래의 셀룰레이즈 개발 연구가 다수 수행되고 있다. 이들 미생물 유래 셀룰레이즈는 주로 다양한 배양조건에 의해 그 활성이 다르게 발현될 수 있고 탄소원과 질소원은 리그닌 분해 효소 생산에 중요한 역할을 한다. Enzymatic hydrolysis of fibrin-based materials is performed by a hydrolysis reaction with a cellulose complex enzyme including Endo-1,4-β-glucanase (EG), β-glucosidase (BGL) and cellobiohydrolase (CBH). In general, cellulase complexes are often obtained from organisms using woody biomass as a nutrient source. In particular, a number of studies on the development of cellulose derived from microorganisms capable of efficiently hydrolyzing cellulose have been conducted. These microorganism-derived celluloses can be expressed differently in their activity depending on various culture conditions, and the carbon source and nitrogen source play an important role in the production of lignin-degrading enzymes.

그러나, 현재까지 알려진 목질계 바이오매스의 당화는 비교적 당화가 쉬운 짚, 쌀겨 풀 등을 당화시키는 방법이 대부분이고, 목재를 효율적으로 당화할 수 있는 당화효소나 조건의 확립은 요원한 실정이며, 특히 침엽수인 소나무 바이오매스를 당화할 수 있는 조건 확립은 전무한 실정이다.However, saccharification of wood-based biomass known to date is mostly a method of saccharifying straw, rice bran grass, etc., which are relatively easy to saccharify, and the establishment of saccharification enzymes or conditions that can efficiently saccharify wood is difficult, especially coniferous trees. There is no situation in establishing conditions for saccharifying phosphorus pine biomass.

이에, 본 발명자들은 리그닌이 제거되지 않은 목재에 대하여 당화활성을 가지는 셀룰레이즈를 생산하는 신규 트리코더마 속 KMF006 균주를 스크리닝하고, 상기 균주로부터 분리한, 셀룰레이즈를 폭쇄전처리된 소나무 칩에 적용하는 경우, 기존의 상업효소를 처리하였을 때보다, 현저히 높은 당화수율을 나타내는 것을 확인하고, 본 발명을 완성하게 되었다. Accordingly, the present inventors screened a new strain of Trichoderma genus KMF006 that produces cellulose having saccharification activity on wood from which lignin has not been removed, and applies the cellulose isolated from the strain to pre-explosion-treated pine chips, It was confirmed that the saccharification yield was significantly higher than that when the conventional commercial enzyme was treated, and the present invention was completed.

본 발명의 목적은 소나무 바이오매스의 당화방법을 제공하는데 있다. An object of the present invention is to provide a method for saccharifying pine biomass.

상기 목적을 달성하기 위하여, 본 발명은 (a) 소나무 바이오매스를 전처리하는 단계; 및 (b) 상기 전처리된 소나무 바이오매스를 트리코더마 속 KMF006 균주(KCTC13500BP) 유래 셀룰레이즈를 이용하여 처리하여 당화시키는 단계를 포함하는 소나무 바이오매스의 당화방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of (a) pre-treating pine biomass; And (b) it provides a saccharification method of pine biomass comprising the step of saccharifying the pretreated pine biomass by treating with cellulose derived from Trichoderma genus KMF006 strain (KCTC13500BP).

본 발명에 따르면, 당화가 어려웠던 폭쇄처리된 소나무 바이오매스를 보다 효과적으로 당화시킬 수 있어, 바이오 연료 생산에 유용하게 이용될 수 있다.According to the present invention, it is possible to more effectively saccharify the explosively processed pine biomass, which was difficult to saccharify, and thus can be usefully used in biofuel production.

도 1은 스팀-폭쇄 전처리(25kgf/cm2, 13분)된 소나무의 당화율(%)에 대한 주효과도를 나타낸 것이다.
도 2는 스팀-폭쇄 전처리(25kgf/cm2, 13분)된 소나무의 당화율(%)의 등고선도를 나타낸 것이다.
도 3은 스팀-폭쇄 전처리(25kgf/cm2, 13분)된 소나무의 당화율(%) 대 효소농도(FPU) 및 기질농도(%)의 표면반응도를 나타낸 것이다(X: 기질농도, Y:효소농도).
도 4는 스팀-폭쇄 전처리(25kgf/cm2, 13분)된 소나무의 당화율(%) 대 Tween80(mg/g, 글루칸), 및 기질농도(%)의 표면반응도를 나타낸 것이다(X: 기질농도, Y: Tween80 농도).
도 5는 스팀-폭쇄 전처리(25kgf/cm2, 13분)된 소나무의 당화율(%) 대 Tween80(mg/g, 글루칸), 및 효소농도(FPU)의 표면반응도를 나타낸 것이다(X: 효소농도, Y: Tween80 농도).
도 6은 스팀-폭쇄 전처리(25kgf/cm2, 13분)된 소나무의 당화의 최적 조건을 나타낸 것이다.
도 7은 스팀-폭쇄 전처리(25kgf/cm2, 7분)된 소나무의 당화율(%)에 대한 주효과도를 나타낸 것이다.
도 8은 스팀-폭쇄 전처리(25kgf/cm2, 7분)된 소나무 당화율(%)의 등고선도를 나타낸 것이다.
도 9는 스팀-폭쇄 전처리(25kgf/cm2, 7분)된 소나무의 당화율(%) 대 효소농도(FPU) 및 기질농도(%)의 표면반응도를 나타낸 것이다(X: 기질농도, Y:효소농도).
도 10은 스팀-폭쇄 전처리(25kgf/cm2, 7분)된 소나무의 당화율(%) 대 Tween80(mg/g, 글루칸), 및 기질농도(%)의 표면반응도를 나타낸 것이다(X: 기질농도, Y: Tween80 농도).
도 11은 스팀-폭쇄 전처리(25kgf/cm2, 7분)된 소나무의 당화율(%) 대 Tween80(mg/g, 글루칸), 및 효소농도(FPU)의 표면반응도를 나타낸 것이다(X: 효소농도, Y: Tween80 농도).
도 12는 스팀-폭쇄 전처리(25kgf/cm2, 7분)된 소나무의 당화의 최적 조건을 나타낸 것이다.
도 13은 최적조건 1에서 KMF006 유래 효소와 상용효소(Cellic CTec2)를 이용한 스팀-폭쇄 전처리된 소나무와 cellulose의 당화율(%)을 나타낸 것이다.
도 14는 최적조건 2에서 KMF006 유래 효소와 상용효소(Cellic CTec2)를 이용한 스팀-폭쇄 전처리된 소나무와 cellulose의 당화율(%)을 나타낸 것이다.
1 shows the main effect on the saccharification rate (%) of pine trees subjected to steam-explosion pretreatment (25kgf/cm 2, 13 minutes).
Figure 2 shows a contour diagram of the saccharification rate (%) of a pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 13 minutes).
3 shows the surface reactivity of the saccharification rate (%) versus enzyme concentration (FPU) and substrate concentration (%) of the pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 13 minutes) (X: substrate concentration, Y: Enzyme concentration).
Figure 4 shows the surface reactivity of the saccharification rate (%) versus Tween80 (mg/g, glucan), and the substrate concentration (%) of the pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 13 minutes) (X: substrate Concentration, Y: Tween80 concentration).
5 shows the surface reactivity of the saccharification rate (%) vs. Tween80 (mg/g, glucan), and enzyme concentration (FPU) of the pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 13 minutes) (X: enzyme Concentration, Y: Tween80 concentration).
6 shows the optimum conditions for saccharification of pine trees subjected to steam-explosion pretreatment (25kgf/cm 2, 13 minutes).
7 shows the main effect on the saccharification rate (%) of pine trees subjected to steam-explosion pretreatment (25kgf/cm 2, 7 minutes).
8 shows a contour diagram of the saccharification rate (%) of pine trees subjected to steam-explosion pretreatment (25kgf/cm 2, 7 minutes).
9 shows the surface reactivity of the saccharification rate (%) versus enzyme concentration (FPU) and substrate concentration (%) of the pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 7 minutes) (X: substrate concentration, Y: Enzyme concentration).
Figure 10 shows the surface reactivity of the saccharification rate (%) vs. Tween80 (mg/g, glucan), and the substrate concentration (%) of the pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 7 minutes) (X: substrate Concentration, Y: Tween80 concentration).
Figure 11 shows the surface reactivity of the saccharification rate (%) vs. Tween80 (mg/g, glucan), and enzyme concentration (FPU) of the pine tree subjected to steam-explosion pretreatment (25kgf/cm 2, 7 minutes) (X: enzyme Concentration, Y: Tween80 concentration).
12 shows the optimum conditions for saccharification of pine trees subjected to steam-explosion pretreatment (25kgf/cm 2, 7 minutes).
13 shows the saccharification rate (%) of pine and cellulose pretreated with steam-explosion using an enzyme derived from KMF006 and a commercial enzyme (Cellic CTec2) under optimal condition 1.
14 shows the saccharification rate (%) of pine and cellulose pretreated with steam-explosion using an enzyme derived from KMF006 and a commercial enzyme (Cellic CTec2) under optimal condition 2.

본 발명에서는 목질계 바이오매스인 소나무 바이오매스를 효과적으로 당화하는 방법을 개발하고자 하였으며, 당화효소 활성이 우수한 신규 트리코더마 속 KMF006 균주(대한민국 특허출원 2018-0069387) 유래 셀룰레이즈를 폭쇄전처리된 소나무 바이오매스에 처리하여, 당화를 수행하는 경우, 상용효소보다 높은 효율로 소나무 바이오매스를 당화할 수 있다는 것을 확인하였다. In the present invention, an attempt was made to develop a method for effectively saccharifying pine biomass, which is a lignocellulosic biomass, and cellulase derived from the novel Trichoderma genus KMF006 strain (Korea Patent Application 2018-0069387) having excellent saccharification enzyme activity was added to the pre-explosive pine biomass By treatment, it was confirmed that when saccharification was performed, pine biomass could be saccharified with higher efficiency than a commercial enzyme.

따라서, 본 발명은 일 관점에서, (a) 소나무 바이오매스를 전처리하는 단계; 및 (b) 상기 전처리된 소나무 바이오매스를 트리코더마 속 KMF006 균주(KCTC13500BP) 유래 셀룰레이즈를 이용하여 처리하여 당화시키는 단계를 포함하는 소나무 바이오매스의 당화방법에 관한 것이다. Accordingly, the present invention, in one aspect, (a) the step of pre-treating the pine biomass; And (b) saccharifying the pine biomass by treating the pre-treated pine biomass with cellulose derived from Trichoderma genus KMF006 (KCTC13500BP).

본 명세서에 사용된 용어, '당화(saccharification)'는 녹말, 섬유소 등과 같은 고분자량의 탄수화물을 효소 또는 산의 작용으로 가수분해하여 저분자량(단당류 또는 이당류)의 당(saccharide)으로 바꾸는 반응을 의미한다.The term'saccharification', as used herein, refers to a reaction that converts high molecular weight carbohydrates such as starch and fiber into low molecular weight (monosaccharide or disaccharide) saccharides by hydrolyzing them by the action of enzymes or acids. do.

본 발명에서, 상기 트리코더마 속 KMF006 균주는 셀룰로오스를 단당류(포도당)로 분해하는 과정에 필요한 엔도-β-1,4-글루카네이스, 셀로바이오하이드로레이스 및 베타-글루코시데이스를 모두 생산할 수 있다.In the present invention, the strain KMF006 of the genus Trichoderma can produce all of endo-β-1,4-glucanase, cellobiohydrolace, and beta-glucosidase required for the process of decomposing cellulose into monosaccharides (glucose).

본 명세서에 사용된 용어, '셀룰레이스(cellulase)'는 셀룰로오스를 가수분해하는 효소의 총칭이며, '셀룰로오스(cellulose)'는 포도당이 β-1,4 글루코시드(β-1,4-glucosde) 결합으로 연결된 동종 중합체를 의미한다.As used herein, the term'cellulase' is a generic term for an enzyme that hydrolyzes cellulose, and'cellulose' refers to glucose as β-1,4 glucoside (β-1,4-glucosde) It means a homopolymer connected by a bond.

본 발명의 셀룰레이즈는 트리코더마 속 KMF006 균주를 배양한 배양액에서 수득되는 것을 특징으로 한다. Cellulase of the present invention is characterized in that it is obtained from a culture medium obtained by culturing the strain KMF006 of the genus Trichoderma.

상기 셀룰레이스는 엔도-β-1,4-글루카네이스 (endo-β-1,4-glucanase; EC 3214), 셀로바이오하이드로레이스(cellobiohydrolase; EC 32191) 및 베타-글루코시데이스(β-glucosidase; EC32121)로 구성된 군에서 선택될 수 있다.The cellulose is endo-β-1,4-glucanase (endo-β-1,4-glucanase; EC 3214), cellobiohydrolase (EC 32191), and beta-glucosidase. ; EC32121) can be selected from the group consisting of.

상기 엔도-베타-1,4-글루카네이스는 셀룰로오스의 β-1,4-글루코시드 결합을 내부에서 무작위로 가수분해하는 효소이고, 일반적으로 가용성의 카르복시메틸셀룰로오스(carboxymethyl cellulose, CMC)를 기질로 사용하므로 CMC 분해효소(CMCase)라고도 불린다.The endo-beta-1,4-glucanase is an enzyme that randomly hydrolyzes the β-1,4-glucoside bond of cellulose, and generally uses soluble carboxymethyl cellulose (CMC) as a substrate. It is also called CMC degrading enzyme (CMCase) because it is used as

셀로바이오하이드로레이스는 엔도-베타-1,4-글루카네이스에 의해 가수분해된 산물의 환원 말단 및 비환원 말단을 가수분해하여 글루코스 이당체인 셀로바이오스(cellobiose)를 생성한다. 생성된 셀로바이오스는 엔도-베타-1,4-글루카네이스와 셀로바이오하이드로레이스의 활성을 억제하게 된다. 베타-글루코시데이스는 셀로바이오스를 글루코스(포도당)로 분해하므로 셀로바이오스에 의한 엔도-베타-1,4-글루카네이스와 셀로바이오하이드로레이스의 활성 억제를 제거한다.Cellobiohydrolace hydrolyzes the reducing and non-reducing ends of the product hydrolyzed by endo-beta-1,4-glucanase to produce cellobiose, a glucose disaccharide. The generated cellobiose inhibits the activities of endo-beta-1,4-glucanase and cellobiohydrolace. Because beta-glucosidase decomposes cellobiose into glucose (glucose), it eliminates the inhibition of the activity of endo-beta-1,4-glucanase and cellobiohydrolace by cellobiose.

본 발명의 '셀룰레이즈'는 트리코더마 속 KMF006 균주(KCTC13500BP) 배양물, 세포 파쇄물, 정제된 효소 및 농축액 등을 모두 포함하는 것을 특징으로 할 수 있다.'Cellulase' of the present invention may be characterized by including all of the culture of the KMF006 strain (KCTC13500BP) of the genus Trichoderma, cell lysates, purified enzymes, and concentrates.

본 발명의 농축액이란, 상기 트리코더마 속 KMF006 균주(KCTC13500BP)의 배양물 또는 무세포( cell-free)배양액을 농축한 것을 의미한다.The concentrate of the present invention means that the culture or cell-free culture of the trichoderma genus KMF006 strain (KCTC13500BP) is concentrated.

본 발명의, 무세포(cell-free) 배양액이란 상기 미생물을 배양한 배지에서 배양된 미생물을 제거한 것을 의미하며, 배양물은 상기 배양된 미생물이 포함된 것을 의미한다.In the present invention, the cell-free culture medium means removing the cultured microorganisms from the culture medium in which the microorganisms are cultured, and the culture means containing the cultured microorganisms.

본 발명에 있어서, 상기 소나무 바이오매스의 전처리는 폭쇄전처리인 것이 바람직하며, 더욱 바람직하게는 스팀-폭쇄 전처리인 것이 바람직하다.In the present invention, the pretreatment of the pine biomass is preferably detonation pretreatment, more preferably steam-detonation pretreatment.

본 발명에 있어서, 상기 폭쇄는 20~30kgf/cm2 조건에서 3~20분간 수행하는 것을 특징으로 할 수 있으며, 바람직하게는 5~13분간 수행할 수 있다. In the present invention, the bombardment may be characterized in that it is performed for 3 to 20 minutes under the condition of 20 to 30 kgf/cm 2, and preferably, it may be performed for 5 to 13 minutes.

본 발명의 일 양태에서는 스팀-폭쇄 전처리 공정은, Masonite 기술을 기반으로 진행하였으며, 스팀-폭쇄 처리는 25kgf/cm2의 압력으로 처리시간을 3, 5, 7, 13분으로 조정하여 처리하였고, 스팀-폭쇄 처리된 소나무를 사이클론(cyclone)에서 수집하고, 약 40℃로 냉각한 후 고체 회수를 위해 여과하였다. 여과 후, 남은 잔사에 대하여, 화학적 조성분 분석을 실시하고, 당화용 기질로 사용하였다.In one aspect of the present invention, the steam-explosion pretreatment process was performed based on Masonite technology, and the steam-explosion treatment was treated by adjusting the treatment time to 3, 5, 7, 13 minutes at a pressure of 25 kgf/cm 2, The steam-crushed pine trees were collected in a cyclone, cooled to about 40°C, and filtered for solid recovery. After filtration, the remaining residue was analyzed for chemical composition and used as a substrate for saccharification.

본 발명에 있어서, 상기 (b) 단계는 당화 증진제를 추가로 처리하는 것을 특징으로 할 수 있으며, 당화 증진제로는 비이온성의 Tween 80 및 PEG 등을 사용할 수 있으며, 바람직하게는 Tween 80을 사용할 수 있다. In the present invention, the step (b) may be characterized in that the saccharification enhancer is additionally treated, and nonionic Tween 80 and PEG may be used as the saccharification promoter, and Tween 80 may be preferably used. have.

본 발명에 있어서, 상기 당화 증진제로 트윈 80(Tween 80)을 사용하는 경우, 10~800mg/g 글루칸 으로 처리하는 것을 특징으로 할 수 있으며, 바람직하게는 100~500mg/g 글루칸, 사용할 수 있다. In the present invention, when using Tween 80 as the saccharification enhancer, it may be characterized in that treatment with 10 to 800 mg/g glucan , preferably 100 to 500 mg/g glucan, may be used.

본 발명에 있어서, 상기 셀룰레이즈는 10~80 FPU로 처리하는 것을 특징을 할 수 있으며, 바람직하게는 20~70FPU로 처리할 수 있으며, 더욱 바람직하게는 30~60FPU로 처리할 수 있다.In the present invention, the cellulase may be characterized in that it is treated with 10 to 80 FPU, preferably 20 to 70 FPU, and more preferably 30 to 60 FPU.

본 발명에 있어서, 당화처리에 있어서, 폭쇄재의 기질 농도는 3~10%일 수 있으며, 더욱 바람직하게는 5~8%일 수 있으며, 가장 바람직하게는 7%일 수 있다. In the present invention, in the saccharification treatment, the substrate concentration of the explosive material may be 3 to 10%, more preferably 5 to 8%, and most preferably 7%.

본 발명의 일 양태에서는 소나무 폭쇄재(25kgf/cm2, 13min)를 KMF006균주 유래 셀룰레이즈를 이용하여 당화시켰을 때, 소나무 폭쇄재(25kgf/cm2, 13min)의 요인 3가지인 기질농도7%, 효소농도 약 33.74FPU, 당화 증진제(Tween80) 농도 500 mg/g,glucan에서 최대 예측 당화율이 약 105.69%인 것으로 확인되었다.In one aspect of the present invention pine width swaejae (25kgf / cm 2, 13min) when sikyeoteul glycosylation using KMF006 strain derived cellulose raised, pine width swaejae factor three kinds of substrate concentration of (25kgf / cm 2, 13min) 7% , Enzyme concentration of about 33.74FPU, saccharification enhancer (Tween80) concentration of 500 mg/g, it was found that the maximum predicted glycation rate was about 105.69% in glucan.

본 발명의 다른 양태에서는 소나무 폭쇄재(25kgf/cm2, 13min)를 KMF006 균주 유래 셀룰레이즈를 이용하여 당화시켰을 때, 소나무 폭쇄재(25kgf/cm2, 13min)의 요인 3가지인 기질농도7%, 효소농도 약 33.74FPU, 60FPU, 당화 증진제(Tween80) 농도 342.42 mg/g,glucan)에서 최대 예측 당화율이 약 93.75%%인 것으로 확인되었다.In another aspect of the present invention pine width swaejae (25kgf / cm 2, 13min) when sikyeoteul glycosylation using KMF006 strain derived cellulose raised, pine width swaejae factor three kinds of substrate concentration of (25kgf / cm 2, 13min) 7% , At the enzyme concentration of about 33.74FPU, 60FPU, and the saccharification enhancer (Tween80) concentration of 342.42 mg/g, glucan), the maximum predicted glycation rate was found to be about 93.75%%.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.

실시예 1: 셀룰레이즈 효소액의 제조Example 1: Preparation of cellulase enzyme solution

트리코더마 속 KMF006 균주(KCTC13500BP)를 MEA 플레이트에서 5일 내지 7일 동안 배양하고, PDB 50 ㎖에 균사체를 접종하여 30℃에서 150 rpm으로 진탕하면서 5일 동안 전배양하였다.Trichoderma genus KMF006 strain (KCTC13500BP) was cultured in MEA plates for 5 to 7 days, and mycelium was inoculated in 50 ml of PDB, and pre-cultured for 5 days while shaking at 150 rpm at 30°C.

본배양은 하기 표 1에 기재된 조건으로 액체배지를 제조하여 수행하였다. 제조된 액체배지에 전배양액 5%(w/v)를 접종하고, 150 rpm으로 30℃에서 약 4주 동안 배양하였다. 배양이 진행되는 동안 매일 배양액 500㎕를 회수하고, 원심분리하여 군체를 제거한 후 효소액으로 사용하였다.This culture was carried out by preparing a liquid medium under the conditions described in Table 1 below. The prepared liquid medium was inoculated with 5% (w/v) of the pre-culture solution, and incubated at 30° C. at 150 rpm for about 4 weeks. During incubation, 500 µl of the culture solution was collected every day, centrifuged to remove colonies, and then used as an enzyme solution.

성분ingredient 농도density 아비셀 (g/L)Avicel (g/L) 3030 효모 추출물 (g/L)Yeast extract (g/L) 1515 K2HP04 (g/L)K 2 HP 0 4 (g/L) 55 KH2P04 (g/L)KH 2 P0 4 (g/L) 55 MgS04 (g/L)MgS0 4 (g/L) 33 pH pH 6.06.0

실시예 2: 셀룰레이즈 효소활성 측정Example 2: Cellulase enzyme activity measurement

실시예 1에서 수득한 트리코더마 속 KMF006 균주 유래 효소액의 베타-글루코시데이스 활성, 엔도-베타-1,4-글루카네이스(endo-β-1,4-glucanase, EG) 활성 및 셀로바이오하이드로레이스(cellobiohydrolase, CBH)의 활성을 측정하였다. Beta-glucosidase activity, endo-beta-1,4-glucanase (EG) activity and cellobiohydrolace of enzyme solution derived from the strain KMF006 of the genus Trichoderma obtained in Example 1 The activity of (cellobiohydrolase, CBH) was measured.

2-1: 베타-글루코시데이스(β-glucosidase, BGL) 활성 측정2-1: Beta-glucosidase (BGL) activity measurement

0.1M 아세트산 나트륨(sodium acetate, NaAC) 완충용액(pH 5.0) 0.8㎖에 10mM p-니트로페닐-β-D-글리코피라노시드(p-nitrophenyl-β-D-glycopyranoside,pNPG) 0.1 ㎖과 상기 본배양액 0.1 ㎖를 첨가하여 50℃에서 15분 동안 반응시켰다. 이후 2M 탄산나트륨(Na2CO3) 용액 0.1 ㎖를 첨가하여 반응을 정지시키고, 405㎚에서 흡광도를 측정하여 생성된 p-니트로페놀(p-nitrophenol)의 양을 확인하였다. 효소 활성 단위인 1 unit(U)은 일정 조건에서 15분 동안 p-니트로페놀 1 μmol을 생성하는데 필요한 효소의 양으로 정의하였다.0.1 M sodium acetate (NaAC) buffer solution (pH 5.0) in 0.8 ml of 10 mM p-nitrophenyl-β-D-glycopyranoside (p-nitrophenyl-β-D-glycopyranoside, pNPG) 0.1 ml and the above 0.1 ml of the main culture solution was added and reacted at 50° C. for 15 minutes. Thereafter, 0.1 ml of a 2M sodium carbonate (Na2CO3) solution was added to stop the reaction, and absorbance was measured at 405 nm to confirm the amount of p-nitrophenol produced. The enzyme activity unit, 1 unit (U), was defined as the amount of enzyme required to produce 1 μmol of p-nitrophenol for 15 minutes under certain conditions.

2-2: 엔도-베타-1,4-글루카네이스 활성2-2: endo-beta-1,4-glucanase activity

0.1M 아세트산 나트륨 완충용액(pH 5.0)에 카르복시메틸셀룰로오스 나트륨을 2%(v/v) 농도로 용해시켜 효소 반응액을 제조하였다. 효소 반응액 45 ㎕에 배양액 5 ㎕를 첨가하여 50℃에서 30분 동안 반응시키고, 구리 용액 50 ㎕를 첨가한 후 100℃에서 10분 동안 가열하여 반응을 정지시켰다. 생성된 환원당의 양은 Somogyi-Nelson 방법으로 측정하였다(최신 실험 미생물학, p253, 2001) 효소 활성의 단위인 1 unit(U)은 일정 조건에서 30분 동안 글루코스(glucose) 1 μmol을 생성하는데 필요한 효소의 양으로 정의하였다.An enzyme reaction solution was prepared by dissolving sodium carboxymethylcellulose at a concentration of 2% (v/v) in 0.1M sodium acetate buffer (pH 5.0). 5 µl of the culture solution was added to 45 µl of the enzyme reaction solution, followed by reaction at 50°C for 30 minutes, and 50µl of a copper solution was added, followed by heating at 100°C for 10 minutes to stop the reaction. The amount of reducing sugar produced was measured by the Somogyi-Nelson method (latest experimental microbiology, p253, 2001). 1 unit (U), which is a unit of enzyme activity, is the amount of enzyme required to produce 1 μmol of glucose for 30 minutes under certain conditions. It was defined as a quantity.

2-3: 셀로바이오하이드로레이스 활성2-3: cellobiohydrolace activity

0.1M 아세트산 나트륨 완충용액(pH 5.0) 08 ㎖에 p-니트로페닐-β-D-셀로바이오시드(p-nitrophenyl-β-D-cellobioside, pNPC) 0.1 ㎖과 배양액 0.1㎖를 첨가하여 50℃에서 15분 동안 반응시켰다. 이후 2M 탄산나트륨 용액 0.1 ㎖를 첨가하여 반응을 정지시키고, 405㎚에서 흡광도를 측정하여 생성된 p-니트로페놀(p-nitrophenol)의 양을 확인하였다. 효소 활성 단위인 1 unit(U)은 일정 조건에서 15분 동안 p-니트로페놀 1 μmol을 생성하는데 필요한 효소의 양으로 정의하였다.To 08 ml of 0.1M sodium acetate buffer (pH 5.0), 0.1 ml of p-nitrophenyl-β-D-cellobioside (pNPC) and 0.1 ml of the culture solution were added. It was allowed to react for 15 minutes. Thereafter, 0.1 ml of 2M sodium carbonate solution was added to stop the reaction, and absorbance was measured at 405 nm to confirm the amount of p-nitrophenol produced. The enzyme activity unit, 1 unit (U), was defined as the amount of enzyme required to produce 1 μmol of p-nitrophenol for 15 minutes under certain conditions.

효소활성단위 FPU(filter paper unit)는 트리코더마 속 KMF006 균주유래 셀룰레이즈를 이용하여, 셀룰레이즈 활성의 측정방법(Measurment of Cellulose Activity, NREL/TP-510-42628)에 의거하여 측정하였다. 기질로 50mg의 Whatman No. 1 여과지를 사용하여, 100mM sodium citrate buffer pH 4.5를 사용하였다. 기질인 50mg의 여과지를 넣은 테스트 튜브에 각 버퍼와 효소액을 넣고 50℃에서 60분간 반응시켰다. 그 후, 3mL DNS(3, 5 Dimitrosalicylic acid, Alfa Aesar) 시약을 넣고 5분간 끓는물에 넣고 반응을 정지시키고 상온으로 냉각시켰다. 펄프화된 여과지를 13500 rpm으로 10분간 원심분리하여 가라앉힌 후, 증류수와 일정비율로 섞어 540nM에서 흡광도를 측정하였다. The enzyme activity unit FPU (filter paper unit) was measured according to the method of measuring cellulose activity (Measurment of Cellulose Activity, NREL/TP-510-42628) using cellulose derived from the KMF006 strain of Trichoderma genus. 50mg Whatman No. 1 Using filter paper, 100mM sodium citrate buffer pH 4.5 was used. Each buffer and enzyme solution were added to a test tube containing 50 mg of filter paper as a substrate and reacted at 50° C. for 60 minutes. Thereafter, 3mL DNS (3, 5 Dimitrosalicylic acid, Alfa Aesar) reagent was added, put in boiling water for 5 minutes, and the reaction was stopped and cooled to room temperature. After being settled by centrifuging the pulped filter paper at 13500 rpm for 10 minutes, it was mixed with distilled water at a certain ratio and absorbance was measured at 540 nM.

상기 방법으로 측정된 KMF006 균주 유래 효소액의 베타-글루코시데이스 활성, 엔도-베타-1,4-글루카네이스(endo-β-1,4-glucanase, EG) 활성 및 셀로바이오하이드로레이스(cellobiohydrolase, CBH)의 활성을 표 2에 나타내었다. Beta-glucosidase activity, endo-beta-1,4-glucanase (EG) activity, and cellobiohydrolase of the enzyme solution derived from the KMF006 strain measured by the above method. The activity of CBH) is shown in Table 2.

효소 활성 (U/㎖)Enzyme activity (U/ml) 효소 종류Type of enzyme 베타-글루코시데이
Beta-glucoside
S
엔도-베타-1,4-글루
카네이스
Endo-beta-1,4-glu
Canace
셀로바이오
하이드로레이스
Cello Bio
Hydro race
KMF006 균주 유래 효소액Enzyme solution derived from KMF006 strain 216.04±1094216.04±1094 202.13±785202.13±785 8.9±0348.9±034

실시예 3: 소나무 바이오매스의 폭쇄 전치리Example 3: Pretreatment of explosives of pine biomass

목질 바이오매스는 스팀-폭쇄 전처리된 한국산 소나무(Pinus densiflora)를 사용하였다. 사용한 소나무는 경상남도 진주시에서 벌채된 원목에서 생산된 우드 칩을 구매하여 사용하였다. 비교 기질로는 cellulose(DAEJUNG, 20~100미크론)을 사용하였다. 스팀-폭쇄 전처리 공정은, Masonite 기술을 기반으로 한 맞춤형 batch pilot 유닛(유림하이텍, 한국)에서 스팀-폭쇄 전처리가 진행되었다. 스팀-폭쇄 처리는 25kgf/cm2의 압력으로 처리시간을 3, 5, 7, 13분으로 조정하여 처리하였고, 스팀-폭쇄 처리된 소나무를 사이클론(cyclone)에서 수집하고, 약 40℃로 냉각한 후 고체 회수를 위해 여과하였다. 여과 후, 남은 잔사에 대하여, 화학적 조성분 분석을 실시하고, 당화용 기질로 사용하였다.For woody biomass, Korean pine ( Pinus densiflora ) that had been pretreated with steam-explosion was used. For the used pine, wood chips produced from logs harvested in Jinju City, Gyeongsangnam-do were purchased and used. Cellulose (DAEJUNG, 20-100 microns) was used as a comparative substrate. The steam-explosion pretreatment process was performed in a customized batch pilot unit (Yurim Hitech, Korea) based on Masonite technology. The steam-blasting treatment was treated by adjusting the treatment time to 3, 5, 7, 13 minutes at a pressure of 25kgf/cm 2 , and the steam-crushed pine trees were collected in a cyclone and cooled to about 40°C. Then, it was filtered to recover the solid. After filtration, the remaining residue was analyzed for chemical composition and used as a substrate for saccharification.

폭쇄 전처리된 소나무 목재의 화학적 조성을 분석하기 위하여, 바이오매스에서 구성적 탄수화물과 리그닌의 결정방법(Determination of structural carbohyrates and lignin in biomass method, NREL/TP 510-42618)에 의거하여, 글루칸, 자일란, 갈락탄 아라비난, 만난, 리그닌, Ash에 대한 분석실험을 실시하였으며, 그 결과를 표 3에 나타내었다.In order to analyze the chemical composition of the pre-explosion-treated pine wood, according to the Determination of structural carbohyrates and lignin in biomass method (NREL/TP 510-42618), glucan, xylan, and gallbladder were used. Analysis experiments were performed on lactan arabinan, mannan, lignin, and Ash, and the results are shown in Table 3.

스팀-폭쇄 소나무의 화학적 조성(25kgf/cm2, 5분)Chemical composition of steam-explosive pine (25kgf/cm 2 , 5 minutes) ComponentComponent Rate of component (Rate of component ( %% w/w) w/w) GlucanGlucan XylanXylan GalactanGalactan ArabinanArabinan MannanMannan LigninLignin AshAsh 소나무 폭쇄재
(25kgf/cm2, 7min)
Pine explosives
(25kgf/cm 2 , 7min)
37.0037.00 1.501.50 -- -- 2.052.05 47.7747.77 0.320.32
소나무 폭쇄재
(25kgf/cm2, 13min)
Pine explosives
(25kgf/cm 2 , 13min)
41.0241.02 0.440.44 -- -- -- 50.6050.60 0.280.28

실시예 4: 폭쇄전처리 소나무 바이오매스의 최적 당화조건 확립Example 4: Establishment of optimal saccharification conditions of pine biomass pre-explosion treatment

KMF006 균주 유래 효소를 이용한 실시예 3에서 스팀-폭쇄 전처리된 소나무 바이오매스의 최적 당화조건을 확립하였다. In Example 3 using an enzyme derived from the KMF006 strain, the optimal saccharification conditions of the pine biomass pretreated with steam-explosion were established.

4-1: 소나무 폭쇄조건 25kgf/cm4-1: Pine tree bombardment condition 25kgf/cm 22 , 13min.의 최적 당화 조건 도출을 위한 실험계획 최적조건, Optimum conditions of experiment design for deriving optimal saccharification conditions of 13min.

25kgf/cm2, 7min.조건으로 폭쇄전처리된 소나무의 당화의 최적조건 도출을 위한 실험계획은 반응표면분석법 중 Box-behnken방법을 이용하였다. 영향 요인은 당화율에 영향을 미치는 인자들 중 기질농도, 효소농도, 당화 증진제 농도를 3가지 요인으로 설정하였으며 각 요인의 농도 범위를 Table 2에 나타낸 바와 같이 설정하여 시험을 진행하였다. 설계는 Box-behnken법에서 3인자 3수준 완전요인 설계법을 이용하여 수행하였으며 반복실험 횟수 2번, 중앙점 1번으로 설정하여 총 26개의 실험수를 구성하였고 이 디자인을 코드화 형식으로 표 3에 나타내었다.The experimental design for deriving the optimal conditions for saccharification of pine trees pre-detonated under the conditions of 25kgf/cm 2 and 7min. was used by the Box-behnken method among the response surface analysis methods. Among the factors affecting the saccharification rate, the influencing factors were substrate concentration, enzyme concentration, and saccharification enhancer concentration as three factors, and the concentration range of each factor was set as shown in Table 2, and the test was conducted. The design was performed using the 3-factor 3-level perfect factor design method in the Box-behnken method, and the number of repeated experiments was set as 2 times and the center point 1, and a total of 26 experiments were composed, and this design is shown in Table 3 in a coded format. I got it.

당화 증진제로는 Tween80(Sigma-aldrich)을 사용하였으며, 1~5% 수준으로 설정하여 사용하였다. Tween80 (Sigma-aldrich) was used as a saccharification enhancer, and it was set at a level of 1 to 5%.

반응표면분석법을 위한 인자 수준Factor levels for response surface analysis FactorFactor Levels of factorLevels of factor -- 00 ++ 1One Substrate concentration(%)
steam-explosion pine (25kgf/cm2, 13min)
Substrate concentration(%)
steam-explosion pine (25kgf/cm 2 , 13min)
33 55 77
22 Enzyme concentration
(FPU, KMF006)
Enzyme concentration
(FPU, KMF006)
1010 3535 6060
33 Tween80 (mg/g,glucan)Tween80 (mg/g,glucan) 100100 300300 500500

변수들의 실험 디자인 코드화 형식Experimental design coding format of variables OrderOrder RunRun Substrate concentrationSubstrate concentration Enzyme concentrationEnzyme concentration Tween80Tween80
(mg/g,glucan)(mg/g,glucan)
1313 1One ++ 00 -- 2525 22 -- -- 00 55 33 -- 00 ++ 1919 44 00 -- -- 2121 55 ++ 00 ++ 2424 66 00 00 00 2828 77 00 00 00 44 88 00 ++ ++ 22 99 00 -- ++ 77 1010 -- 00 -- 2929 1111 00 ++ -- 2020 1212 -- ++ 00 1717 1313 ++ ++ 00 66 1414 00 00 00 2626 1515 ++ -- 00 2727 1616 ++ 00 -- 2222 1717 -- -- 00 1515 1818 -- 00 ++ 88 1919 00 -- -- 2323 2020 ++ 00 ++ 1414 2121 00 00 00 1010 2222 00 00 00 1818 2323 00 ++ ++ 33 2424 00 -- ++ 1111 2525 -- 00 -- 1212 2626 00 ++ -- 99 2727 -- ++ 00 1One 2828 ++ ++ 00 1616 2929 00 00 00 3030 3030 ++ -- 00

그 결과, 반응표면분석법(Box-behnken)을 이용하여 폭쇄전처리된 소나무재의 최적 당화 조건 도출 결과를 도 1~6에 나타내었다. 당화에 영향하는 3가지 요인인 기질농도, 효소농도, 당화 증진제 농도에 따른 주효과도는 도 7에 나타난 바와 같이, 기질농도가 가장 큰 주효과도를 보였으며 기질농도가 높아질수록 높은 당화율을 보이는 경향을 나타내었다. 기질농도는 7%에서 가장 높은 당화율을 보이는 것으로 나타났다. 또한 효소농도의 경우, 농도가 높아질수록 높은 당화율을 나타내었으나 60FPU에서는 감소하는 경향을 보였다. Tween80의 경우, 500 mg/g,glucan 농도에서 가장 높은 당화율을 나타내었으며 당화 증진제 농도가 높아질수록 당화율이 증가하는 경향을 보였다. 또한 도 2~5에 나타낸 등고선도와 표면도에서도 동일한 경향을 나타내었다. As a result, the results of deriving the optimal saccharification conditions of the pine wood pre-detonation treatment using the response surface analysis method (Box-behnken) are shown in FIGS. 1 to 6. The main effect according to the three factors affecting saccharification, substrate concentration, enzyme concentration, and saccharification enhancer concentration, as shown in FIG. 7, showed the greatest main effect of the substrate concentration. It showed a tendency to see. The substrate concentration showed the highest saccharification rate at 7%. In addition, in the case of the enzyme concentration, the higher the concentration, the higher the saccharification rate, but the 60FPU tended to decrease. In the case of Tween80, the saccharification rate was highest at 500 mg/g, glucan concentration, and the saccharification rate tended to increase as the saccharification enhancer concentration increased. In addition, the same trend was exhibited in the contour diagrams and surface diagrams shown in FIGS. 2 to 5.

이와 같은 결과를 바탕으로 도 6에 나타난 바와 같이, 소나무 폭쇄재(25kgf/cm2, 13min)의 요인 3가지인 기질농도 7%, 효소농도: 약 33.74FPU, 당화 증진제(Tween80) 농도 500 mg/g,glucan에서 최대 예측 당화율이 약 105.69%인 것으로 도출되었다. Based on these results, as shown in FIG. 6, the three factors of the pine explosive material (25kgf/cm 2 , 13min) are substrate concentration 7%, enzyme concentration: about 33.74FPU, saccharification enhancer (Tween80) concentration 500 mg/ The maximum predicted saccharification rate in g,glucan was found to be about 105.69%.

4-2: 소나무 폭쇄조건 25kgf/cm4-2: Pine tree bombardment condition 25kgf/cm 22 , 7min.의 최적 당화 조건 도출을 위한 실험계획 최적조건, Optimal conditions of experiment design for derivation of optimal saccharification conditions of 7min.

25kgf/cm2, 13min.조건으로 폭쇄전처리된 소나무의 당화의 최적조건 도출을 위한 실험계획은 반응표면분석법 중 Box-behnken방법을 이용하였다. 영향 요인은 당화율에 영향을 미치는 인자들 중 기질농도, 효소농도, 당화 증진제 농도를 3가지 요인으로 설정하였으며 각 요인의 농도 범위를 표 4에 나타낸 바와 같이 설정하여 시험을 진행하였다. 설계는 Box-behnken법에서 3인자 3수준 완전요인 설계법을 이용하여 수행하였으며 반복실험 횟수 2번, 중앙점 1번으로 설정하여 총 26개의 실험수를 구성하였고 이 디자인을 코드화 형식으로 표 5에 나타내었다.The experimental plan for deriving the optimal conditions for saccharification of pine trees pre-detonated under the conditions of 25kgf/cm 2 and 13min. was used by the Box-behnken method among the response surface analysis methods. The influencing factors were three factors: substrate concentration, enzyme concentration, and saccharification enhancer concentration among the factors that affect the saccharification rate, and the concentration range of each factor was set as shown in Table 4, and the test was carried out. The design was performed using the 3-factor 3-level perfect factor design method in the Box-behnken method, and a total of 26 experiments were composed by setting the number of replicates to 2 times and center point 1, and this design is shown in Table 5 in a coded format. I got it.

반응표면분석법을 위한 인자 수준Factor levels for response surface analysis FactorFactor Levels of factorLevels of factor -- 00 ++ 1One Substrate concentration
steam-explosion pine (25kgf/cm2, 7min)
Substrate concentration
steam-explosion pine (25kgf/cm 2 , 7min)
33 55 77
22 Enzyme concentration
(FPU, KMF006)
Enzyme concentration
(FPU, KMF006)
1010 3535 6060
33 Tween80 (mg/g,glucan)Tween80 (mg/g,glucan) 100100 300300 500500

변수들의 실험 디자인 코드화 형식Experimental design coding format of variables OrderOrder RunRun Substrate concentrationSubstrate concentration Enzyme concentrationEnzyme concentration Tween80Tween80
(mg/g,glucan)(mg/g,glucan)
1818 1One ++ 00 -- 77 22 -- -- 00 1414 33 -- 00 ++ 99 44 00 -- -- 2727 55 ++ 00 ++ 44 66 00 00 00 1515 77 00 00 00 2323 88 00 ++ ++ 2525 99 00 -- ++ 1One 1010 -- 00 -- 1313 1111 00 ++ -- 1919 1212 -- ++ 00 1717 1313 ++ ++ 00 2121 1414 00 00 00 55 1515 ++ -- 00 66 1616 ++ 00 -- 1111 1717 -- -- 00 1616 1818 -- 00 ++ 2424 1919 00 -- -- 2222 2020 ++ 00 ++ 2828 2121 00 00 00 22 2222 00 00 00 33 2323 00 ++ ++ 2020 2424 00 -- ++ 3030 2525 -- 00 -- 2929 2626 00 ++ -- 2626 2727 -- ++ 00 1010 2828 ++ ++ 00 1212 2929 00 00 00 88 3030 ++ -- 00

반응표면분석법(Box-behnken)을 이용하여 폭쇄전처리(25kgf/cm2, 7분)된 소나무재의 최적 당화 조건 도출 결과를 도 8~12에 나타내었다. 당화에 영향하는 3가지 요인인 기질농도, 효소농도, 당화 증진제 농도에 따른 주효과도는 도 12에 나타난 바와 같이, 기질농도가 가장 큰 주효과도를 보였으며 기질농도가 높아질수록 높은 당화율을 보이는 경향을 나타내었다. 기질농도는 7%에서 가장 높은 당화율을 보이는 것으로 나타났다. 또한 효소농도의 경우, 농도가 높아질수록 높은 당화율을 나타내었으며 60FPU에서 감소하는 경향을 보였다. Tween80의 경우, 342.42mg/g,glucan 농도에서 가장 높은 당화율을 나타내었다. 또한 도 8~11에 나타낸 등고선도와 표면도에서도 동일한 경향을 나타내었다. The results of deriving the optimal saccharification conditions of the pine wood pre-detonation treatment (25kgf/cm 2 , 7 minutes) using the response surface analysis method (Box-behnken) are shown in FIGS. The main effect according to the three factors affecting saccharification, the substrate concentration, the enzyme concentration, and the saccharification enhancer concentration, as shown in FIG. 12, showed the greatest main effect of the substrate concentration, and the higher the substrate concentration, the higher the saccharification rate. It showed a tendency to see. The substrate concentration showed the highest saccharification rate at 7%. In addition, in the case of the enzyme concentration, the higher the concentration, the higher the saccharification rate, and the tendency to decrease in 60FPU. In the case of Tween80, the highest saccharification rate was shown at 342.42mg/g, glucan concentration. In addition, the same trend was also exhibited in the contour diagrams and the surface diagrams shown in FIGS.

이와 같은 결과를 바탕으로 도 12에 나타난 바와 같이, 소나무 폭쇄재(25kgf/cm2, 7min)의 요인 3가지인 기질농도 7%, 효소농도 60FPU, 당화 증진제(Tween80) 농도 342.42 mg/g,glucan)에서 최대 예측 당화율이 약 93.75%인 것으로 도출되었다. Based on these results, as shown in FIG. 12, the three factors of pine explosives (25kgf/cm 2 , 7min) are substrate concentration 7%, enzyme concentration 60FPU, saccharification enhancer (Tween80) concentration 342.42 mg/g, glucan ), the maximum predicted saccharification rate was derived to be about 93.75%.

실시예 5: 최적조건에 의한 소나무 바이오매스 당화Example 5: saccharification of pine biomass by optimal conditions

실시예 3과 동일하게 처리된 스팀-폭쇄 전처리된 소나무 폭쇄재(25kgf/cm2,13분)으로 기질 농도 3~7% 범위로 사용하였다. 소나무 폭쇄재의 화학적 조성분을 표 8에 나타내었다.The same treatment as in Example 3 was used in the range of 3 to 7% of the substrate concentration as a pre-treated pine explosive material (25 kgf/cm 2 ,13 minutes). Table 8 shows the chemical composition of the pine explosives.

ComponentComponent Rate of component (Rate of component ( %% w/w) w/w) GlucanGlucan XylanXylan GalactanGalactan ArabinanArabinan MannanMannan LigninLignin AshAsh 소나무 폭쇄재
(25kgf/cm2, 3min)
Pine explosives
(25kgf/cm 2 , 3min)
36.7936.79 2.612.61 1.601.60 -- 4.814.81 44.4744.47 0.400.40
소나무 폭쇄재
(25kgf/cm2, 7min)
Pine explosives
(25kgf/cm 2 , 7min)
37.0037.00 1.501.50 -- -- 2.052.05 47.7747.77 0.320.32
소나무 폭쇄재
(25kgf/cm2, 13min)
Pine explosives
(25kgf/cm 2 , 13min)
41.0241.02 0.440.44 -- -- -- 50.6050.60 0.280.28
1) Acid insoluble lignin1) Acid insoluble lignin

KMF006 유래 셀룰레이즈의 효소는 농축 후 효소활성은 각각 endo-β-glucanase 활성이 3,241 ± 50.07unit/mℓ,β-glucosidase 활성이 3,587 ± 41.92 unit/mℓ, cellobiohydrolase 활성이 256.92 ± 12.46 unit/mℓ이었다. 대조군으로는 상용효소 Cellic CTec2 (Novozyme)를 비교효소로 사용하였다. After concentration, the enzyme activity of KMF006-derived cellulose was 3,241 ± 50.07 units/mℓ for endo-β-glucanase activity, 3,587 ± 41.92 unit/mℓ for β-glucosidase activity, and 256.92 ± 12.46 unit/mℓ for cellobiohydrolase activity, respectively. As a control, the commercial enzyme Cellic CTec2 (Novozyme) was used as a comparative enzyme.

당화 증진제는 Tween 80(Sigma-aldeich)를 사용하였으며, 실시예 4에서 확립한 최적조건인 하기 조건으로 당화를 수행하였다. Tween 80 (Sigma-aldeich) was used as the saccharification enhancer, and saccharification was performed under the following conditions, which are the optimal conditions established in Example 4.

폭쇄전처리 소나무 최적조건[1]: 기질농도 7%, 효소농도 33.74 FPU, Tween80 500mg/g,glucan) Pre-explosion-treated pine trees optimal condition [1]: substrate concentration 7%, enzyme concentration 33.74 FPU, Tween80 500mg/g, glucan)

폭쇄전처리 소나무 최적조건[2]: 기질농도 7%,효소농도 60 FPU, Tween80 342.43mg/g,glucan)Pre-explosion-treated pine trees optimal condition [2]: substrate concentration 7%, enzyme concentration 60 FPU, Tween80 342.43mg/g, glucan)

당화조건 : 72시간, 5.0 pH, 250rpmSaccharification conditions: 72 hours, 5.0 pH, 250 rpm

상기 최적조건 [1]을 적용한 결과, 도 13에 나타난 바와 같이, KMF006 유래 효소는 비교기질인 cellulose(DAEJUNG, 20~100미크론)에 대해 당화율 80.13%로, 상용효소(Cellic CTec2)가 76.55% 당화율을 나타낸 것에 비해 높은 당화율을 나타내었다. As a result of applying the optimum condition [1], as shown in FIG. 13, the enzyme derived from KMF006 has a saccharification rate of 80.13% for cellulose (DAEJUNG, 20-100 microns), which is a comparative substrate, and a commercial enzyme (Cellic CTec2) of 76.55%. It showed a high saccharification rate compared to that of the saccharification rate.

소나무 폭쇄재에 대해서는 폭쇄시간에 따라 당화율이 다른 결과를 보였다. 당화 증진제을 적용하지 않은 소나무의 경우, 폭쇄시간이 3, 5, 7분으로 전처리된 소나무는 당화율이 약 50~76% 정도를 나타내었고, 13분 폭쇄전처리한 경우에 약 90%정도의 당화율을 나타내어 상용효소와 유사한 결과를 나타냈다. The saccharification rate of the pine explosives was different according to the exploding time. In the case of pine trees without saccharification enhancer, the saccharification rate of pine trees pretreated with 3, 5, and 7 minutes of exploding time was about 50-76%, and about 90% of the saccharification rate in the case of 13 minutes exploding pretreatment. And showed similar results to the commercial enzyme

당화 증진제을 적용하지 않은 소나무의 경우, 폭쇄시간이 3분과 7분으로 전처리된 소나무는 당화율이 각각 21%와 33%, 폭쇄전처리 시간이 13분인 소나무시료에는 약 76% 정도의 당화율을 보였다. 그러나 당화 증진제를 사용한 경우에는 폭쇄전처리 시간이 7분과 13분인 소나무시료에 각각 100% 정도의 매우 우수한 당화율을 보였다. 이 결과에 따라 본 발명의 당화최적조건에서 도출된 최적조건[1]은 폭쇄전처리한 소나무 적용이 가능하다는 것이 밝혀졌다. 특히 상용효소에서는 경우에 KMF006와 동일 효소농도에서 폭쇄전처리 시간 13분의 시료에 대해서도 약 33%정도의 낮은 당화율을 나타낸 것에 비하면 최적조건에서의 KMF006의 성능은 향후 상용화 가능성에 상당히 높다고 판단된다.In the case of pine trees without saccharification enhancer, the saccharification rates of pine trees pretreated with 3 minutes and 7 minutes of detonation time were 21% and 33%, respectively, and about 76% in pine samples with 13 minutes pre-detonation treatment time. However, when the saccharification enhancer was used, the saccharification rate of pine trees with pre-explosion treatment time of 7 minutes and 13 minutes was 100%, respectively. According to this result, it was found that the optimum condition [1] derived from the saccharification optimum condition of the present invention can be applied to pine trees subjected to pre-detonation treatment. In particular, in the case of commercial enzymes, the performance of KMF006 under optimal conditions is considered to be considerably high in the possibility of future commercialization, compared to the low saccharification rate of about 33% even for samples with a pre-explosion treatment time of 13 minutes at the same enzyme concentration as KMF006.

상기 최적조건 [2]를 적용한 결과, 도 14에 나타낸 바와 같이, KMF006 유래 효소는 비교기질인 Cellulose에 대해 당화율 90.79%로, 상용효소 (Cellic CTec2)가 80.50% 당화율을 나타낸 것에 비해 높은 당화율을 나타내었다. As a result of applying the optimum condition [2], as shown in Fig. 14, the KMF006-derived enzyme had a saccharification rate of 90.79% for Cellulose, which is a comparative substrate, compared with a commercial enzyme (Cellic CTec2) showing an 80.50% saccharification rate, which is higher than that of the commercial enzyme (Cellic CTec2). Expressed the rate of hwaryul

당화 증진제을 적용하지 않은 소나무의 경우, 폭쇄시간이 3분과 7분으로 전처리된 소나무는 당화율이 각각 29.43%와 38.97%, 폭쇄전처리 시간이 13분인 소나무시료에는 약 90.55% 정도의 당화율을 보였다. 그러나 당화 증진제를 사용한 경우에는 폭쇄전처리 시간이 7분과 13분인 소나무시료에 각각 98.00, 100% 정도의 매우 우수한 당화율을 보였다. 이 결과에 따라 본 발명의 당화최적조건에서 도출된 최적조건[2]은 폭쇄전처리한 소나무 적용이 가능하다는 것이 밝혀졌다. 특히 상용효소에서는 경우에 KMF006와 폭쇄전처리 시간 13분의 시료에 대해서도 낮은 당화율을 나타낸 것에 비하면 최적조건에서의 KMF006의 성능은 향후 상용화 가능성에 상당히 높다고 판단된다. In the case of pine trees without saccharification enhancer, the saccharification rates of pine trees pretreated with 3 minutes and 7 minutes of detonation time were 29.43% and 38.97%, respectively, and about 90.55% in pine samples with 13 minutes pre-detonation treatment time. However, when the saccharification enhancer was used, the saccharification rate was 98.00 and 100%, respectively, in pine samples with 7 minutes and 13 minutes of explosive treatment time. According to this result, it was found that the optimum condition [2] derived from the saccharification optimum condition of the present invention can be applied to pine trees subjected to pre-detonation treatment. In particular, in the case of commercial enzymes, the performance of KMF006 under optimal conditions is considered to be considerably higher for future commercialization, compared to KMF006 and a low saccharification rate for samples with a pre-explosion treatment time of 13 minutes.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (8)

다음 단계를 포함하는 소나무 바이오매스의 당화방법:
(a) 소나무 바이오매스를 20~30kgf/cm2 조건에서 3~20분간 스팀-폭쇄 전처리하는 단계; 및
(b) 상기 전처리된 소나무 바이오매스를 리그닌을 분해하는 트리코더마 속 KMF006 균주(KCTC13500BP) 유래의 엔도-베타-1,4-글루카네이스(endo-β-1,4-glucanase), 베타-글루코시데이스(β-glucosidase) 및 셀로바이오하이드로레이스(cellobiohydrolase)을 포함하는 셀룰레이즈 효소액과 당화 증진제를 이용하여 처리하여 당화시키는 단계.
Saccharification method of pine biomass comprising the following steps:
(a) step of steam-blasting pretreatment for 3 to 20 minutes under conditions of 20 to 30 kgf/cm 2 of pine biomass; And
(b) Endo-beta-1,4-glucanase (endo-β-1,4-glucanase), beta-glucanase from Trichoderma genus KMF006 strain (KCTC13500BP) that degrades lignin from the pretreated pine biomass Saccharification by treatment with a cellulase enzyme solution containing β-glucosidase and cellobiohydrolase and a saccharification enhancer.
삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 당화 증진제는 트윈 80인 것을 특징으로 하는 방법.
The method of claim 1, wherein the saccharification enhancer is Tween 80.
삭제delete 제5항에 있어서, 상기 당화 증진제는 트윈 80(Tween 80)을 10~800mg/g 글루칸 으로 처리하는 것을 특징으로 하는 방법.
The method of claim 5, wherein the saccharification enhancer is treated with 10 to 800 mg/g glucan of Tween 80.
제1항에 있어서, 상기 셀룰레이즈는 10~80 FPU로 처리하는 것을 특징으로 하는 방법.The method of claim 1, wherein the cellulase is treated with 10 to 80 FPU.
KR1020190063911A 2019-05-30 2019-05-30 Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme KR102246866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190063911A KR102246866B1 (en) 2019-05-30 2019-05-30 Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190063911A KR102246866B1 (en) 2019-05-30 2019-05-30 Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme

Publications (2)

Publication Number Publication Date
KR20200137478A KR20200137478A (en) 2020-12-09
KR102246866B1 true KR102246866B1 (en) 2021-04-30

Family

ID=73787273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190063911A KR102246866B1 (en) 2019-05-30 2019-05-30 Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme

Country Status (1)

Country Link
KR (1) KR102246866B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787104A (en) 2012-07-20 2012-11-21 中南林业科技大学 High-activity composite cellulase and preparation thereof, and application method for same in enzymatic saccharification of wood fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273218B1 (en) * 2011-06-21 2013-06-12 한국에너지기술연구원 Manufacturing method of hydrolysate by improving alkali-catalyzed steam explosion from biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787104A (en) 2012-07-20 2012-11-21 中南林业科技大学 High-activity composite cellulase and preparation thereof, and application method for same in enzymatic saccharification of wood fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Applied Energy, Vol. 175, pp. 82-90 (2016.05.04.)*
한국목재공학 힉술발표논문집, 2017권1호, pp. 45, 107 (2017.04.)*

Also Published As

Publication number Publication date
KR20200137478A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
Rabelo et al. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide
Buaban et al. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis
US7754456B2 (en) Process for producing ethanol
Soni et al. Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp. S4B2F
JP6508039B2 (en) Method of producing sugar solution
Kumari et al. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain
Xu et al. Enzymatic hydrolysis of switchgrass and coastal Bermuda grass pretreated using different chemical methods
Ogunyewo et al. Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccharification of various pretreated biomasses
JP2011152079A (en) Saccharifying fermentation system of cellulose-based biomass
Ahmed et al. Bioprocessing of proximally analyzed wheat straw for enhanced cellulase production through process optimization with Trichoderma viride under SSF
CN101765655A (en) processes of producing fermentation products
US10030236B2 (en) Process for the production of an enzymatic cocktail using liquid residues from a process for the biochemical conversion of lignocellulosic materials
Martins et al. Canola meal as a promising source of fermentable sugars: Potential of the Penicillium glabrum crude extract for biomass hydrolysis
CN112204151A (en) Method for producing sugars from carbohydrate materials
Xie et al. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and l-lactic acid preparation with the hydrolysate
EP2373787B1 (en) Process for production of an enzymatic preparation for hydrolysis of cellulose from lignocellulosic residues
Hideno et al. Utilization of spent sawdust matrix after cultivation of Grifola frondosa as substrate for ethanol production by simultaneous saccharification and fermentation
KR102246866B1 (en) Method for Saccarification of Pine Tree Biomass Using Cellulose Degrading Enzyme
KR102246865B1 (en) Method for Saccarification of Oak Tree Biomass Using Cellulose Degrading Enzyme
WO2009065199A1 (en) Enzyme composition from trichoderma reesei and aspergillus awamori
Mihajlovski et al. The Role of Plant Cell Wall Degrading Enzymes in Biorefinery Development
KR102155049B1 (en) Method for Producing Cellulase using Trichoderma sp. KMF006 strain
Phuengjayaem et al. Optimization of saccharification conditions of acid-pretreated sweet sorghum straw using response surface methodology
EP3695001B1 (en) Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars
JP2010110230A (en) Saccharification treatment method for herb biomass

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant