KR102246864B1 - Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same - Google Patents

Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same Download PDF

Info

Publication number
KR102246864B1
KR102246864B1 KR1020190044706A KR20190044706A KR102246864B1 KR 102246864 B1 KR102246864 B1 KR 102246864B1 KR 1020190044706 A KR1020190044706 A KR 1020190044706A KR 20190044706 A KR20190044706 A KR 20190044706A KR 102246864 B1 KR102246864 B1 KR 102246864B1
Authority
KR
South Korea
Prior art keywords
leu
ala
gly
glu
ile
Prior art date
Application number
KR1020190044706A
Other languages
Korean (ko)
Other versions
KR20200122006A (en
Inventor
양택호
정혜숙
김의중
반재구
한정준
Original Assignee
주식회사 제노포커스
주식회사 지에프퍼멘텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제노포커스, 주식회사 지에프퍼멘텍 filed Critical 주식회사 제노포커스
Priority to KR1020190044706A priority Critical patent/KR102246864B1/en
Publication of KR20200122006A publication Critical patent/KR20200122006A/en
Application granted granted Critical
Publication of KR102246864B1 publication Critical patent/KR102246864B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/99Oxidoreductases acting on NADH or NADPH (1.6) with other acceptors (1.6.99)
    • C12Y106/99001NADPH dehydrogenase (1.6.99.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01163Demethylmenaquinone methyltransferase (2.1.1.163)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0103Heptaprenyl diphosphate synthase (2.5.1.30)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010741,4-Dihydroxy-2-naphthoate polyprenyltransferase (2.5.1.74)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 메나퀴논-7 고생산성 재조합 미생물 및 이를 이용한 메나퀴논-7의 제조방법에 관한 것으로, 본 발명에 따른 재조합 미생물은 메나퀴논 합성 경로의 재구축을 통해 메나퀴논-7의 생산성이 높을 뿐 아니라, 저가의 배지 성분으로 고농도 발효 배양이 용이하여 경제적 상업 생산에 유용하게 활용될 수 있다.The present invention relates to a menaquinone-7 highly productive recombinant microorganism and a method for producing menaquinone-7 using the same, and the recombinant microorganism according to the present invention only has high productivity of menaquinone-7 through reconstruction of the menaquinone synthesis pathway. In addition, it is easy to cultivate high-concentration fermentation with an inexpensive medium component, and thus can be usefully used in economic and commercial production.

Description

메나퀴논-7 고생산성 재조합 미생물 및 이를 이용한 메나퀴논-7의 제조방법{Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same}Menaquinone-7 Highly Productive Recombinant Microorganism and Method for Producing Menaquinone-7 Using the Same {Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same}

본 발명은 메나퀴논-7 고생산성 재조합 미생물 및 이를 이용한 메나퀴논-7의 제조방법에 관한 것으로, 더욱 자세하게는 1,4-디하이드록시-2-나프톨레이트(1,4-dihydroxy-2-naphthoate, DHNA) 생합성 경로 및 파르네실 피로포스페이트(farnesyl pyrophosphate, FPP) 생합성 경로를 내재적으로 가지고 있는 미생물에서, (i) 파르네실 피로포스페이트(FPP)를 헵타프레닐 피로포스페이트(heptaprenyl pyrophosphate, HPP)로 전환하는 효소를 코딩하는 유전자; 및 (ii) 디메틸메타퀴놀(demethylmenaquinol, DMM)을 메타퀴놀-7(menaquinol-7, M-7)으로 전환하는 효소를 코딩하는 유전자가 도입되어 있는 메나퀴논-7 생성능을 가지는 재조합 미생물 및 이를 이용한 메나퀴논-7의 제조방법에 관한 것이다.The present invention relates to a menaquinone-7 highly productive recombinant microorganism and a method for producing menaquinone-7 using the same, and in more detail, 1,4-dihydroxy-2-naphthoate , DHNA) biosynthetic pathway and farnesyl pyrophosphate (farnesyl pyrophosphate (FPP) biosynthetic pathway in a microorganism that inherently has, (i) farnesyl pyrophosphate (FPP) to heptaprenyl pyrophosphate (heptaprenyl pyrophosphate, HPP) conversion A gene encoding an enzyme that does And (ii) a recombinant microorganism having the ability to produce menaquinone-7 into which a gene encoding an enzyme that converts dimethylmenaquinol (DMM) to metaquinol-7 (M-7) has been introduced, and using the same It relates to a method for producing menaquinone-7.

비타민 K는 헤드그룹(head group)의 핵심 구조로 나프토퀴논(napthoquinone) 링을 가지고 있는 지용성 비타민의 일종으로 체내에서 혈액 응고와 뼈 강화에 중요한 역할을 하는데, 결핍 시 혈액 응고 기작이 손상되거나 출혈을 조절할 수 없고, 골다공증 등 뼈의 강도를 약화시키고 동맥이나 연성 조직 내에서 칼슘의 침착을 일으키는 것으로 알려져 있다. 자연계 중 식물체에서는 비타민 K1 (필로퀴논, phylloquinone)의 형태로, 미생물과 동물체에서는 비타민 K2 (메나퀴논, menaquinone)의 형태로 존재하며, 비타민 K2가 가장 높은 생리활성을 가지고 있다고 알려져 있다. Vitamin K is a type of fat-soluble vitamin that has a naphthoquinone ring as a core structure of the head group.It plays an important role in blood coagulation and bone strengthening in the body.If it is deficient, the blood clotting mechanism is impaired or bleeding. It is known to be unable to control and weaken the strength of bones such as osteoporosis and cause calcium deposition in arteries or soft tissues. Among the natural world, it is in the form of vitamin K1 (phylloquinone) in plants, and in the form of vitamin K2 (menaquinone) in microorganisms and animals, and vitamin K2 is known to have the highest physiological activity.

화학구조 상 메나퀴논은 나프토퀴논 헤드그룹에 이소프렌 테일그룹(isoprene tail group)이 결합된 이소프레노이드 퀴논(isoprenoid quinine)의 일종으로, 이소프레노이드 퀴논은 거의 모든 생물체의 세포막 구성성분으로 존재하며 전자전달, 산화적 인산화 반응, 능동 수송에 중요한 역할을 수행한다(Fujimoto N. et al., Chemical Biology, pp 187-208, 2012). 또 다른 대표적인 이소프레노이드 퀴논으로는 코엔자임 Q(Coenzyme Q)로 알려져있는 유비퀴논(ubiquinone)이 있으며 벤조퀴논(benzoquinone) 헤드그룹에 이소프렌 테일그룹이 결합된 형태이다. 이들 이소프레노이드 퀴논은 결합된 이소프렌 테일그룹 길이에 따라 다양한 형태로 존재하는데, 메나퀴논의 경우 메나퀴논-2(menaquinone-2, MK-2) ~ 메나퀴논-14(menaquinone-14, MK-14)까지, 유비퀴논의 경우 유비퀴논-1(ubiquinone-1, Q-1)~ 유비퀴논-11(ubiquinone-11, Q-11)까지 세균에 존재한다고 알려져있다 (Collins M.D. and Jones D., Microbiol. Rev., 45:316-354, 1981). In terms of chemical structure, menaquinone is a type of isoprenoid quinine in which an isoprene tail group is bound to a naphthoquinone head group, and isoprenoid quinone is present as a component of the cell membrane of almost all living organisms. It plays an important role in electron transport, oxidative phosphorylation, and active transport (Fujimoto N. et al ., Chemical Biology, pp 187-208, 2012). Another representative isoprenoid quinone is ubiquinone, known as Coenzyme Q, and is a form in which an isoprene tail group is bound to a benzoquinone head group. These isoprenoid quinones exist in various forms depending on the length of the bound isoprene tail group, in the case of menaquinone, menaquinone-2 (MK-2) to menaquinone-14 (MK-14). ), ubiquinone is known to exist in bacteria from ubiquinone-1 (Q-1) to ubiquinone-11 (Q-11) (Collins MD and Jones D., Microbiol). Rev., 45:316-354, 1981).

메나퀴논의 경우 이소프렌 테일그룹의 길이에 따라 체내에서의 흡수, 지속성, 활성이 달라질 수 있는데, 뼈의 칼슘 조절과 골다공증 예방 용도로 상업 생산되고 있는 메나퀴논-4(MK-4)와 메나퀴논-7(MK-7) 중에서 메나퀴논-7이 메나퀴논-4에 비해 비하여 체내 흡수율이 높고 지속 시간이 길어 소량 섭취할 경우도 그 효능이 높다고 알려져있다 (WO2014/058330). 현재 메나퀴논-7은 미생물 발효 방법과 화학 합성 방법으로 생산되고 있으며, 화학 합성 제품의 경우 이소프렌 테일그룹에 트랜스형(trans form)과 시스형(cis form)이 공존하는 반면, 미생물 발효 생산의 경우 이성질체가 없는 트랜스형 단일 구조(all-trans form)로 생산된다. 이런 테일그룹의 구조적 차이가 메나퀴논-7의 생체 내 흡수율과 활성에 영향을 주고, 미생물 발효로 생산된 단일 트랜스형이 더 높은 생물 활성을 보이는 것으로 알려져있다. In the case of menaquinone, absorption, persistence, and activity in the body may vary depending on the length of the isoprene tail group. Menaquinone-4 (MK-4) and menaquinone are commercially produced for the purpose of controlling bone calcium and preventing osteoporosis. Among 7 (MK-7), menaquinone-7 has a higher absorption rate in the body than menaquinone-4 and has a longer duration, so it is known that its efficacy is high even when ingested in small amounts (WO2014/058330). Currently, menaquinone-7 is produced by a microbial fermentation method and a chemical synthesis method, and in the case of chemical synthesis products, trans and cis forms coexist in the isoprene tail group, whereas in the case of microbial fermentation production. It is produced in an all-trans form without isomers. It is known that the structural difference of these tail groups affects the absorption rate and activity of menaquinone-7 in vivo, and a single trans form produced by microbial fermentation exhibits higher biological activity.

한편, 다양한 종류의 미생물들이 호흡사슬(respiratory chain)의 전자 전달 물질로써 메나퀴논과 유비퀴논을 생산한다고 알려져 있는데, 고세균(archaebacteria), 그람 양성균(Gram positive bacteria), 혐기성 그람 음성균(gram negative bacteria)에서는 주로 메나퀴논이 존재하고, 호기성 그람 음성균(gram negative bacteria)에서는 유비퀴논이 주로 존재한다. 또, 통성 혐기성 그람 음성균(gram negative bacteria)에서는 메나퀴논과 유비퀴논이 같이 공존하는 것으로 알려져 있다 (Collins M.D. and Jones D., Microbiol. Rev., 45:316-354, 1981). 메나퀴논 생산 미생물은 공통적으로 헤드그룹인 DHNA(1,4-dihydroxy-2-naphthoate) 합성 경로를 가지고 있고, 더불어 다양한 길이의 이소프렌 테일그룹을 합성하는 경로를 가지고 있다(도 1). 예컨대, 이소프렌 유닛이 7개 반복되는 HPP(heptaprenyl pyrophosphate) 테일그룹 합성 경로를 갖는 미생물은 메나퀴논-7(MK-7)을 생산하고, 이소프렌 유닛이 8개 반복되는 OPP(octaprenyl pyrophosphate) 테일그룹 합성 경로를 갖는 미생물은 메나퀴논-8(MK-8)을 생산한다. 대장균(E. coli)의 경우 DHNA 헤드그룹에 OPP테일그룹이 결합되어 최종적으로 메나퀴논-8로 전환되는데, 자세한 대사 과정은 다음과 같다. On the other hand, various types of microorganisms are known to produce menaquinone and ubiquinone as electron transport materials in the respiratory chain.Archaebacteria, Gram positive bacteria, and anaerobic Gram negative bacteria Menaquinone is mainly present in, and ubiquinone is mainly present in aerobic gram negative bacteria. In addition, menaquinone and ubiquinone are known to co-exist in gram negative bacteria (Collins MD and Jones D., Microbiol. Rev., 45:316-354, 1981). Menaquinone-producing microorganisms have a pathway for synthesizing DHNA (1,4-dihydroxy-2-naphthoate), a head group in common, and a pathway for synthesizing isoprene tail groups of various lengths (FIG. 1). For example, a microorganism having a pathway for synthesizing HPP (heptaprenyl pyrophosphate) tail group in which seven isoprene units are repeated produces menaquinone-7 (MK-7), and synthesizes an OPP (octaprenyl pyrophosphate) tail group in which eight isoprene units are repeated. Microorganisms with the pathway produce menaquinone-8 (MK-8). In the case of E. coli , the OPP tail group is bound to the DHNA head group and finally converted to menaquinone-8. The detailed metabolic process is as follows.

DHNA는 시키메이트(Shikimate) 경로로부터 만들어진 코리스메이트(chorismate)를 전구체로 하여 men operon을 구성하는 menF(isochorismate synthase), menD(2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase), menH(2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase), menC(o-succinylbenzoate synthase), menE(o-succinylbenzoate CoA ligase), menB(1,4-dihydroxy-2-naphthoyl-CoA synthase) 효소들에 의해 DHN-CoA(1,4-dihydroxy-2-naphthoyl-CoA)로 전환되고, 이는 menI(1,4-dihydroxy-2-naphthoyl-CoA hydrolase)에 의해 DHNA로 전환된다. OPP는 해당과정(glycolysis)과 MEP(2-C-Methyl-D-erythritol-4-phosphate) 경로를 통해 만들어진 IPP(isopentenyl pyrophosphate)와 DMAPP(dimethylallyl pyrophosphate)를 출발물질로 하여 ispA((geranyl diphosphate/farnesyl diphosphate synthase) 중합 작용에 의해 GPP (geranyl pyrophosphate)를 거쳐 FPP(farnesyl pyrophosphate)가 되고, ispB(octaprenyl-diphosphate synthase)에 의해 OPP가 합성된다. IPP와 DMAPP는 모든 터페노이드(terpenoid) 화합물 생합성의 출발 전구물질로 MEP 경로 혹은 MVA(mevalonate) 경로를 통해 합성되는데, 인간을 비롯한 대부분의 진핵생물과 일부 세균은 MVA 경로를 가지고 있고, 원핵생물과 대장균을 포함한 대부분의 세균은 MEP 경로를 가지고 있다. 대장균에 존재하는 MEP 경로는 해당과정(glycolysis)을 통해 만들어진 G3P(D-glyceraldehyde-3-phosphate)와 pyruvate를 출발물질로 시작하여 dxs(1-deoxy-D-xylulose-5-phosphate synthase)와 dxr(deoxyxylulose-5-phosphate reductoisomerase)에 의해 MEP을 만들고, 이후 ispD(2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase), ispE(4-diphosphocytidyl-2-C-methyl-D-erythritol kinase), ispF(2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase), ispG((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase), ispH(4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase)에 의해 IPP와 DMAPP를 만드는데, 이들은 idi(isopentenyl-diphosphate Delta-isomerase)에 의해 상호 전환된다. 합성된 OPP와 DHNA는 menA(1,4-dihydroxy-2-naphthoate polyprenyltransferase)에 의해 중합되어 DMM-8(demethylmenaquinol-8)를 형성하고, ubiE(demethylmenaquinone methyltransferase)와 wrbA/qorB(NAD(P)H dehydrogenase)의 작용에 의해 M-8(menaquinol-8)를 거쳐 최종적으로 메나퀴논-8로 전환된다. DHNA is a precursor of chorismate made from the Shikimate pathway, and menF (isochorismate synthase), menD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-) constituting men operon. carboxylate synthase), menH (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase), menC (o-succinylbenzoate synthase), menE (o-succinylbenzoate CoA ligase) , menB (1,4-dihydroxy -2-naphthoyl-CoA synthase) enzymes convert to DHN-CoA (1,4-dihydroxy-2-naphthoyl-CoA), which is converted by menI (1,4-dihydroxy-2-naphthoyl-CoA hydrolase). Converted to DHNA. OPP uses isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) made through glycolysis and 2-C-Methyl-D-erythritol-4-phosphate (MEP) pathways as starting materials, and ispA ((geranyl diphosphate/ Farnesyl diphosphate synthase) is polymerized through GPP (geranyl pyrophosphate) to FPP (farnesyl pyrophosphate) and ispB (octaprenyl-diphosphate synthase) to synthesize OPP. IPP and DMAPP are the biosynthesis of all terpenoid compounds. As a starting precursor, it is synthesized through the MEP pathway or the mevalonate (MVA) pathway. Most eukaryotes including humans and some bacteria have the MVA pathway, and most bacteria including prokaryotes and E. coli have the MEP pathway. The MEP pathway present in E. coli starts with G3P (D-glyceraldehyde-3-phosphate) and pyruvate made through glycolysis, and starts with dxs (1-deoxy-D-xylulose-5-phosphate synthase) and dxr. (deoxyxylulose-5-phosphate reductoisomerase) to make MEP, then ispD (2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase), ispE (4-diphosphocytidyl-2-C-methyl-D-erythritol kinase), ispF (2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase), ispG ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase), ispH (4-hydroxy-3-methylbut - 2-en-1-yl diphosphate reductase) makes IPP and DMAPP, which are mutually converted by idi (isopentenyl-diphosphate Delta-isomerase). The synthesized OPP and DHNA are polymerized by menA (1,4-dihydroxy-2-naphthoate polyprenyltransferase) to form DMM-8 (demethylmenaquinol-8), ubiE (demethylmenaquinone methyltransferase) and wrbA/qorB (NAD(P)H). dehydrogenase) is finally converted to menaquinol-8 through M-8.

상기 다양한 미생물 중 메나퀴논-7을 생산하는 대표적인 균주는 바실러스 서브틸리스(Bacillius subtilis)를 포함한 바실러스 속 (Bacillus sp.)으로 현재까지 가장 많은 연구가 진행되어 왔고, 현재 상업적 생산에 활용되고 있으며, 특히 바실러스 서브틸리스의 경우 전체 메나퀴논 생성량 중 메나퀴논-7 함량이 90~96%를 차지한다고 알려져다 (한국등록특허 10-1196338). 하지만, 메나퀴논-7의 상업적 생산을 위한 바실러스 속 미생물의 발효는 최종 제품의 규격을 준수하기 위해 높은 발효 생산성이 요구되는데, 이를 위해 발효 배지 성분으로 고가의 유기질소원(soytone, yeast extract 등)을 고농도로 사용하고, 통상 5일 이상의 장시간 동안 발효 배양을 해야하는 등 전체 생산 공정의 경제성이 낮고 발효 후공정을 어렵게 하는 문제점이 있다. 또, 생산 경제성과 고생산성을 확보하기 위해 복합 영양 성분으로 사용하는 대두박(soybean meal)의 경우 완전한 멸균이 어려워 장기간의 발효 배양 동안 환경 미생물에 의한 오염이 빈번히 일어나며, 포자 형성을 하는 바실러스 속 미생물의 특성상 발효 배양 조절이 용이하지 않아 결과의 재현성이 낮은 문제점이 있다. Among the various microorganisms, a representative strain that produces menaquinone-7 is Bacillus sp., including Bacillus subtilis , and has been the most researched so far, and is currently used for commercial production, In particular, in the case of Bacillus subtilis, it is known that the menaquinone-7 content accounts for 90 to 96% of the total menaquinone production (Korean Patent Registration No. 10-1196338). However, fermentation of microorganisms in Bacillus for commercial production of menaquinone-7 requires high fermentation productivity to comply with the specifications of the final product.To this end, expensive organic nitrogen sources (soytone, yeast extract, etc.) are used as a fermentation medium component. There is a problem in that the economic efficiency of the entire production process is low and the post-fermentation process is difficult, such as using at a high concentration and requiring fermentation culture for a long time, usually 5 days or longer. In addition, in the case of soybean meal, which is used as a complex nutrient component to secure production economy and high productivity, complete sterilization is difficult, so contamination by environmental microorganisms frequently occurs during long-term fermentation and culture. Due to its nature, it is difficult to control the fermentation culture, so that the reproducibility of results is low.

이에, 본 발명자들은 미생물을 이용하여 메나퀴논-7을 고농도로 생산할 수 있는 방법을 개발하고자 예의 노력한 결과, 메나퀴논-7 합성 대사 경로의 특정 효소 유전자들이 도입된 재조합 미생물을 배양할 경우, 저가의 최소 배지 조건에서 짧은 시간 동안 발효 배양을 통하여도 고농도로 메나퀴논-7을 생산할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to develop a method for producing menaquinone-7 at high concentration using microorganisms. As a result, when cultivating a recombinant microorganism into which specific enzyme genes of the menaquinone-7 synthesis metabolic pathway are introduced, inexpensive It was confirmed that menaquinone-7 can be produced at a high concentration even through fermentation culture for a short time in a minimum medium condition, and the present invention was completed.

본 발명의 목적은 고농도의 복합 영양 성분을 첨가하지 않고도 메나퀴논-7을 고농도로 생산할 수 있는 재조합 미생물을 제공하는데 있다.An object of the present invention is to provide a recombinant microorganism capable of producing menaquinone-7 at a high concentration without adding a complex nutrient component at a high concentration.

본 발명의 다른 목적은 상기 재조합 미생물을 이용하여 메나퀴논-7을 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing menaquinone-7 using the recombinant microorganism.

상기 목적을 달성하기 위하여, 본 발명은 1,4-디하이드록시-2-나프톨레이트(1,4-dihydroxy-2-naphthoate, DHNA) 생합성 경로 및 파르네실 피로포스페이트(farnesyl pyrophosphate, FPP) 생합성 경로를 내재적으로 가지고 있는 미생물에서, In order to achieve the above object, the present invention is a 1,4-dihydroxy-2-naphthoate (1,4-dihydroxy-2-naphthoate, DHNA) biosynthetic pathway and farnesyl pyrophosphate (farnesyl pyrophosphate, FPP) biosynthetic pathway In microorganisms that have inherently,

(i) 파르네실 피로포스페이트를 헵타프레닐 피로포스페이트(heptaprenyl pyrophosphate, HPP)로 전환하는 효소를 코딩하는 유전자; (i) a gene encoding an enzyme that converts farnesyl pyrophosphate to heptaprenyl pyrophosphate (HPP);

(ii) 1,4-디하이드록시-2-나프토에이트 헵타프레닐트랜스퍼레이즈( 1,4-dihydroxy-2-naphthoate heptaprenyltransferase)를 코딩하는 유전자;(ii) a gene encoding 1,4-dihydroxy-2-naphthoate heptaprenyltransferase;

(iii) 디메틸메나퀴논 메틸트랜스퍼레이즈(demethylmenaquinone methyltransferase)를 코딩하는 유전자; 및 (iii) a gene encoding dimethylmenaquinone methyltransferase; And

(iv) NAD(P)H 디하이드로게네이즈(NAD(P)H dehydrogenase)를 코딩하는 유전자가 도입되어 있는 메나퀴논-7 생성능을 가지는 재조합 미생물을 제공한다. (iv) Provides a recombinant microorganism having the ability to produce menaquinone-7 into which a gene encoding NAD(P)H dehydrogenase is introduced.

본 발명은 또한, (a) 상기 재조합 미생물을 배양하여 메나퀴논-7을 생성시키는 단계; 및 (b) 상기 생성된 메나퀴논-7을 수득하는 단계.를 포함하는 메나퀴논-7의 제조방법을 제공한다.The present invention also includes the steps of: (a) culturing the recombinant microorganism to produce menaquinone-7; And (b) obtaining the produced menaquinone-7.

본 발명에 따른 재조합 미생물은 메나퀴논 합성 경로의 재구축을 통해 메나퀴논-7의 생산성이 높을 뿐 아니라, 저가의 배지 성분으로 고농도 발효 배양이 용이하여 경제적 상업 생산에 유용하게 활용될 수 있다.The recombinant microorganism according to the present invention not only has high productivity of menaquinone-7 through the reconstruction of the menaquinone synthesis pathway, but also has high concentration fermentation culture with a low-cost medium component, and thus can be usefully used in economic and commercial production.

도 1은 메나퀴논-7 생합성에 필요한 재조합 미생물의 내재 경로 및 인위적으로 도입한 외래 경로를 도식적으로 나타낸 것으로, 실선은 내재된 경로를 나타내고, 실선은 외부로부터 도입되는 경로를 나타낸다.
도 2는 메나퀴논-7 생합성을 위해 인위적으로 도입한 유전자들을 포함하는 재조합 발현 플라즈미드를 도식화한 것이다.
도 3은 메나퀴논-7 고생산성 재조합 대장균들을 플라스크 배양하였을 때 생산된 메나퀴논-7의 HPLC 분석 결과를 나타낸 것이다.
도 4는 메나퀴논-7 고생산성 재조합 대장균(T2S-DH5α)의 유가식 발효 결과를 나타낸 것이다.
1 schematically shows an intrinsic pathway and an artificially introduced foreign pathway of a recombinant microorganism required for menaquinone-7 biosynthesis, where a solid line represents an intrinsic pathway, and a solid line represents a pathway introduced from the outside.
2 is a schematic diagram of a recombinant expression plasmid containing genes artificially introduced for menaquinone-7 biosynthesis.
3 shows the results of HPLC analysis of menaquinone-7 produced when menaquinone-7 highly productive recombinant E. coli were flask cultured.
Figure 4 shows the results of fed-batch fermentation of menaquinone-7 highly productive recombinant E. coli (T2S-DH5α).

본 발명에서는 메나퀴논-7의 DHNA(1,4-dihydroxy-2-naphthoate) 헤드그룹 합성 경로 및 FPP(farnesyl pyrophosphate, FPP) 생합성 경로를 갖고 있는 미생물에, 이소프렌 유닛이 7개 반복되는 HPP(heptaprenyl pyrophosphate) 테일그룹을 과량 생산할 수 있는 효소 유전자들과 DHNA와 HPP를 메나퀴논-7으로 전환하는 효소 유전자들을 도입한 메나퀴논-7 고생산성 재조합 미생물을 제조하고, 상기 재조합 미생물을 배양하는 경우, 메나퀴논-7을 고농도로 생산할 수 있는 것을 확인하였다.In the present invention, in a microorganism having a DHNA (1,4-dihydroxy-2-naphthoate) head group synthesis pathway and a farnesyl pyrophosphate (FPP) biosynthetic pathway of menaquinone-7, HPP (heptaprenyl) in which 7 isoprene units are repeated. pyrophosphate) In the case of producing a high-productive recombinant microorganism containing enzyme genes capable of producing an excessive amount of tail group and enzyme genes that convert DHNA and HPP into menaquinone-7, and culturing the recombinant microorganism, mena It was confirmed that quinone-7 can be produced at a high concentration.

따라서, 본 발명은 일 관점에서, 1,4-디하이드록시-2-나프톨레이트(1,4-dihydroxy-2-naphthoate, DHNA) 생합성 경로 및 파르네실 피로포스페이트(farnesyl pyrophosphate, FPP) 생합성 경로를 내재적으로 가지고 있는 미생물에서, (i) 파르네실 피로포스페이트(FPP)를 헵타프레닐 피로포스페이트(heptaprenyl pyrophosphate, HPP)로 전환하는 효소를 코딩하는 유전자; 및 (ii) 디메틸메타퀴놀(demethylmenaquinol, DMM)을 메타퀴놀-7(menaquinol-7, M-7)으로 전환하는 효소를 코딩하는 유전자가 도입되어 있는 메나퀴논-7 생성능을 가지는 재조합 미생물에 관한 것이다.Therefore, the present invention, in one aspect, 1,4-dihydroxy-2-naphthoate (1,4-dihydroxy-2-naphthoate, DHNA) biosynthetic pathway and farnesyl pyrophosphate (farnesyl pyrophosphate, FPP) biosynthetic pathway In the internally possessed microorganism, (i) a gene encoding an enzyme that converts farnesyl pyrophosphate (FPP) to heptaprenyl pyrophosphate (HPP); And (ii) dimethylmetaquinol (demethylmenaquinol, DMM) to metaquinol-7 (menaquinol-7, M-7) to a gene encoding an enzyme is introduced to a recombinant microorganism having the ability to produce menaquinone-7 has been introduced. .

본 발명에 있어서, 상기 미생물은 1,4-디하이드록시-2-나프톨레이트(DHNA)와 헵타프레닐 피로포스페이트(HPP)로부터 디메틸메타퀴놀(DMM)를 합성할 수 있는 효소와 메타퀴놀-7(menaquinol-7, M-7)를 메나퀴논-7(menaquinone-7, MK-7)으로 전환하는 효소가 내재되어 있는 것을 특징으로 할 수 있다. In the present invention, the microorganism is an enzyme capable of synthesizing dimethylmetaquinol (DMM) from 1,4-dihydroxy-2-naphtholate (DHNA) and heptaprenyl pyrophosphate (HPP) and metaquinol-7 It may be characterized by an enzyme that converts (menaquinol-7, M-7) to menaquinone-7 (MK-7).

본 발명에 있어서, 상기 파르네실 피로포스페이트(FPP)를 헵타프레닐 피로포스페이트(heptaprenyl pyrophosphate, HPP)로 전환하는 효소는 헵타프레닐 디포스페이트 신테이즈 컴포넌트 I(heptaprenyl diphosphate synthase component I) 및 헵타프레닐 디포스페이트 신테이즈 컴포넌트 II(heptaprenyl diphosphate synthase component II) 인 것을 특징으로 할 수 있고, 상기 상기 파르네실 피로포스페이트(FPP)를 헵타프레닐 피로포스페이트(HPP)로 전환하는 효소를 코딩하는 유전자는 hepS hepT인 것을 특징으로 할 수 있다. In the present invention, the enzyme that converts farnesyl pyrophosphate (FPP) to heptaprenyl pyrophosphate (HPP) is heptaprenyl diphosphate synthase component I (heptaprenyl diphosphate synthase component I) and heptaprenyl It may be characterized in that it is a diphosphate synthase component II (heptaprenyl diphosphate synthase component II), and the gene encoding the enzyme that converts the farnesyl pyrophosphate (FPP) to heptaprenyl pyrophosphate (HPP) is hepS and It may be characterized in that it is hepT.

본 발명에 있어서, 상기 디메틸메타퀴놀(demethylmenaquinol, DMM)을 메타퀴놀-7(menaquinol-7, M-7)으로 전환하는 효소는 디메틸메나퀴논 메틸트랜스퍼레이즈(demethylmenaquinone methyltransferase)인 것을 특징으로 할 수 있다. In the present invention, the enzyme that converts dimethylmetaquinol (DMM) to metaquinol-7 (M-7) may be characterized in that it is dimethylmenaquinone methyltransferase. .

본 발명의 재조합 미생물은 1,4-디하이드록시-2-나프톨레이트(DHNA)와 헵타프레닐 피로포스페이트(HPP)로부터 디메틸메타퀴놀(DMM)를 합성할 수 있는 효소를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있다. The recombinant microorganism of the present invention further contains a gene encoding an enzyme capable of synthesizing dimethylmetaquinol (DMM) from 1,4-dihydroxy-2-naphtholate (DHNA) and heptaprenyl pyrophosphate (HPP). It can be characterized by being introduced.

본 발명에 있어서, 상기 1,4-디하이드록시-2-나프톨레이트(DHNA)와 헵타프레닐 피로포스페이트(HPP)로부터 디메틸메타퀴놀(DMM)를 합성할 수 있는 효소는 1,4-디하이드록시-2-나프토에이트 헵타프레닐트랜스퍼레이즈(1,4-dihydroxy-2-naphthoate heptaprenyltransferase)인 것을 특징으로 할 수 있고, 상기 1,4-디하이드록시-2-나프토에이트 헵타프레닐트랜스퍼레이즈(1,4-dihydroxy-2-naphthoate heptaprenyltransferase)를 코딩하는 유전자는 menA인 것을 특징으로 할 수 있다.In the present invention, the enzyme capable of synthesizing dimethylmetaquinol (DMM) from 1,4-dihydroxy-2-naphtholate (DHNA) and heptaprenyl pyrophosphate (HPP) is 1,4-dihydro It may be characterized in that it is hydroxy-2-naphthoate heptaprenyltransferase (1,4-dihydroxy-2-naphthoate heptaprenyltransferase), and the 1,4-dihydroxy-2-naphthoate heptaprenyltransfer Raise (1,4-dihydroxy-2-naphthoate heptaprenyltransferase) may be characterized in that the gene encoding menA.

본 발명의 재조합 미생물은 메타퀴놀-7(menaquinol-7, M-7)를 메나퀴논-7(menaquinone-7, MK-7)으로 전환하는 효소를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있다. The recombinant microorganism of the present invention is characterized in that a gene encoding an enzyme that converts menaquinol-7 (M-7) to menaquinone-7 (MK-7) is additionally introduced. can do.

본 발명에 있어서, 상기 메타퀴놀-7(menaquinol-7, M-7)를 메나퀴논-7(menaquinone-7, MK-7)으로 전환하는 효소는 NAD(P)H 디하이드로게네이즈(NAD(P)H dehydrogenase)인 것을 특징으로 할 수 있고, 상기 NAD(P)H 디하이드로게네이즈(NAD(P)H dehydrogenase)를 코딩하는 유전자는 yhcB인 것을 특징으로 할 수 있다. In the present invention, the enzyme that converts the metaquinol-7 (menaquinol-7, M-7) to menaquinone-7 (MK-7) is NAD(P)H dehydrogenase (NAD ( P)H dehydrogenase), and the gene encoding the NAD(P)H dehydrogenase may be yhcB.

발명의 재조합 미생물에는 메발로네이트(mevalonate, MVA) 합성 경로에 관여하는 효소를 코딩하는 유전자가 추가로 도입할 수 있으며, 상기 메발로네이트(mevalonate, MVA) 합성 경로에 관여하는 효소는 hydroxymethylglutaryl-CoA reductase, hydroxymethylglutaryl-CoA synthase, mevalonate kinase, phosphomevalonate kinase 및 diphosphomevalonate decarboxylase로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.In the recombinant microorganism of the invention, a gene encoding an enzyme involved in the mevalonate (MVA) synthesis pathway may be additionally introduced, and the enzyme involved in the mevalonate (MVA) synthesis pathway is hydroxymethylglutaryl-CoA. It may be characterized by being selected from the group consisting of reductase, hydroxymethylglutaryl-CoA synthase, mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase.

본 발명에 있어서, 상기 메발로네이트(mevalonate, MVA) 합성 경로에 관여하는 효소를 코딩하는 유전자는 mvaE, mvaK1, mvaK2mvaD로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the gene encoding the enzyme involved in the mevalonate (MVA) synthesis pathway may be selected from the group consisting of mvaE, mvaK1 , mvaK2 and mvaD.

본 발명의 재조합 미생물에는 IPP(isopentenyl pyrophosphate)와 DMAPP(dimethylallyl pyrophosphate)간의 상호 전환을 촉매하는 효소인 이소펜테닐-디포스페이트 델타-이소머레이즈(isopentenyl-diphosphate Delta-isomerase) 효소를 코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있으며, 상기기 이소펜테닐-디포스페이트 델타-이소머레이즈(isopentenyl-diphosphate Delta-isomerase) 효소를 코딩하는 유전자는 idi인 것을 특징으로 할 수 있다. In the recombinant microorganism of the present invention, a gene encoding an enzyme isopentenyl-diphosphate delta-isomerase, an enzyme that catalyzes the mutual conversion between isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). It may be characterized in that it is additionally introduced, and the gene encoding the group isopentenyl-diphosphate Delta-isomerase enzyme may be characterized in that it is idi.

본 발명의 일 양태에서는 상기 재조합 대장균에 대하여, 유가식 발효(fed-batch fermentation) 배양을 수행하여 60시간의 배양에서 132mg/L 수준의 메나퀴논-7 생산성을 확인하였다. In one embodiment of the present invention, fed-batch fermentation culture was performed on the recombinant E. coli to confirm the productivity of menaquinone-7 at a level of 132 mg/L in 60 hours of culture.

따라서, 본 발명은 다른 관점에서, (a) 상기 재조합 미생물을 배양하여 메나퀴논-7을 생성시키는 단계; 및 (b) 상기 생성된 메나퀴논-7을 수득하는 단계를 포함하는 메나퀴논-7의 제조방법에 관한 것이다.Accordingly, in another aspect, the present invention comprises the steps of: (a) culturing the recombinant microorganism to produce menaquinone-7; And (b) obtaining the produced menaquinone-7.

메나퀴논-7 고생성능을 가지는 재조합 미생물의 제조Menaquinone-7 Preparation of Recombinant Microorganisms with High Productivity

본 발명의 메나퀴논-7 고생산성을 가지는 재조합 미생물은 도 1에 나타난 바와 같이, 메나퀴논-7의 DHNA(1,4-dihydroxy-2-naphthoate) 헤드그룹 합성 경로 및 FPP(farnesyl pyrophosphate, FPP) 생합성 경로를 갖고 있는 미생물에, 이소프렌 유닛이 7개 반복되는 HPP 테일그룹을 과량 생산할 수 있는 효소 유전자들과 DHNA와 HPP를 메나퀴논-7으로 전환하는 효소 유전자들을 도입한 것이다. 상기 설명한 바와 같이 HPP 테일그룹은 IPP와 그 구조 이성질체인 DMAPP 단량체를 전구체로 하는 일련의 중합 경로를 통해 만들어진다.As shown in Figure 1, the recombinant microorganism having high productivity of menaquinone-7 of the present invention is a DHNA (1,4-dihydroxy-2-naphthoate) head group synthesis pathway and FPP (farnesyl pyrophosphate, FPP) of menaquinone-7. In a microorganism having a biosynthetic pathway, enzyme genes that can over-produce the HPP tail group of 7 repeats of the isoprene unit and enzyme genes that convert DHNA and HPP to menaquinone-7 were introduced. As described above, the HPP tail group is formed through a series of polymerization pathways using IPP and its structural isomer, DMAPP monomer, as a precursor.

바람직하게 본 발명의 재조합 미생물은 DHNA 합성 경로와 MEP 경로를 포함하는 FPP 합성경로를 내재적으로 가지고 있으며, 한 분자의 FPP에 4분자의 IPP가 순차적으로 중합되어 HPP를 합성하는 효소의 유전자들, 즉 hepS(heptaprenyl diphosphate synthase component I), hepT(heptaprenyl diphosphate synthase component II)과 DMM을 메타퀴놀-7(M-7)으로 전환하는 효소의 유전자가 도입된 것이다. Preferably, the recombinant microorganism of the present invention inherently has an FPP synthesis pathway including a DHNA synthesis pathway and an MEP pathway, and four molecules of IPP are sequentially polymerized in one molecule of FPP to synthesize HPP genes, that is, Genes for enzymes that convert hepS (heptaprenyl diphosphate synthase component I), hepT (heptaprenyl diphosphate synthase component II) and DMM to metaquinol-7 (M-7) were introduced.

보다 바람직하게 본 발명의 재조합 미생물은 DHNA 합성 경로와 MEP 경로를 포함하는 FPP 합성경로를 내재적으로 가지고 있으며, 한 분자의 FPP에 4분자의 IPP가 순차적으로 중합되어 HPP를 합성하는 효소의 유전자들, 즉 hepS(heptaprenyl diphosphate synthase component I), hepT(heptaprenyl diphosphate synthase component II)과 HPP와 DHNA를 중합하여 최종적으로 메나퀴논-7으로 전환할 수 있는 일련의 효소, 즉 menA(1,4-dihydroxy-2-naphthoate heptaprenyltransferase), ubiE(demethylmenaquinone methyltransferase) 및 yhcB(NAD(P)H dehydrogenase)이 도입된 것이다. More preferably, the recombinant microorganism of the present invention inherently has an FPP synthesis pathway including a DHNA synthesis pathway and an MEP pathway, and four molecules of IPP are sequentially polymerized in one molecule of FPP to synthesize HPP genes, In other words, hepS (heptaprenyl diphosphate synthase component I), hepT (heptaprenyl diphosphate synthase component II), HPP and DHNA are polymerized to finally convert to menaquinone-7, namely menA (1,4-dihydroxy-2). -naphthoate heptaprenyltransferase), ubiE (demethylmenaquinone methyltransferase) and yhcB (NAD(P)H dehydrogenase) were introduced.

더욱 바람직하게 발명의 재조합 미생물은 상기 도입한 외래 유전자들과 더불어 IPP 과생산을 위한 MVA 경로와 관련된 유전자들, 즉 mvaE(hydroxymethylglutaryl-CoA reductase), mvaS(hydroxymethylglutaryl-CoA synthase), mvaK1(mevalonate kinase), mvaK2(phosphomevalonate kinase) 및 mvaD(diphosphomevalonate decarboxylase)과 IPP와 DMAPP간의 상호 전환을 촉매하는 효소의 유전자(idi)가 추가적으로 도입된 것이다. More preferably, the recombinant microorganism of the present invention includes genes related to the MVA pathway for IPP overproduction , namely mvaE (hydroxymethylglutaryl-CoA reductase), mvaS (hydroxymethylglutaryl-CoA synthase), mvaK1 (mevalonate kinase), along with the introduced foreign genes. , mvaK2 (phosphomevalonate kinase) and mvaD (diphosphomevalonate decarboxylase), and genes (idi ) of enzymes that catalyze the mutual conversion between IPP and DMAPP were additionally introduced.

상기 DHNA 합성 경로와 MEP 경로를 내재적으로 갖는 미생물은 야생형 미생물 또는 재조합 미생물일 수 있으며, 고세균(archaebacteria) 내지 세균 (bacteria)이 될 수 있으며, 바람직하게는 할로박테리움(Halobacterium)속, 대장균(Escherichia)속, 엔테로박터(Enterobacter)속, 클렙시엘라(Klebsiella)속, 세라시아(Serratia)속, 프로테우스(Proteus)속, 비브리오(Vibrio)속, 액티노바실서스(Actinobacillus)속, 파스투렐라(Pasteurella)속, 플라보박테리움(Flavobacterium)속, 헤모필루스(Haemophilus)속, 써머스(Thermus)속, 박테로이드(Bacteroides)속, 카프노싸이토파가(Capnocytophaga)속, 데설포비브리오(Desulfovibrio)속, 마이소코커스(Myxococcus)속, 싸이토파가(Cytophaga)속, 클로로비움(Chlorobium)속, 클로로슈도모나스(Chloropseudomonas)속, 로도슈도모나스(Rhodopseudomonas)속, 로도스피릴리움(Rhodospirillum)속, 바실러스(Bacillus)속, 클로스트리움(Clostridium)속, 스포로락토바실러스(Sporolactobacillus)속, 락토바실러스(Lactobacillus)속, 리스테리아(Listeria)속, 카리오파논(Caryophanon)속, 마이크로코커스(Micrococcus)속, 스타필로코코스(Staphylococcus)속, 플라노코코스(Planococcus)속, 스트렙토코코스(Streptococcus)속, 아트로박터(Arthrobacter)속, 브레비박테리움(Brevibacterium)속, 셀로모나스(Cellulomonas)속, 코리네박테리움(Corynebacterium)속, 마이크로박테리움(Microbacterium)속, 마이코박테리움(Mycobacterium)속, 노카디아(Nocardia)속, 로도코코스(Rhodococcus)속, 액티노마이세스(Actinomyces)속, 프로프리오니박테리움(Proprionibacterium)속, 스트렙토마이세스(Streptomyces)속 세균 등이 될 수 있고, 더욱 바람직하게는 대장균(Escherichia coli), Halobacterium cutirubrum, Halobacterium halobium, Halobacterium saccharovorum, Halobacterium salinarium, Halobacterium volcanii, Halobacterium trapanicum, Enterobacter aerogenes, Enterobacter agglomerans, Enterbacter liquefaciens, Erwinia amylovora, Erwinia carotovora, Kiebsiella aerogenes, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Aeromonas hydrophila, Aeromonas punctata, Vibrio alginolyticus, Vibrio succinogenes, Actinobacillus actinoides, Actinobacillus actinomycetencomitans, Actinobacillus equuli, Actinobacillus lignieresii, Actinobacillus seminis, Flavobacterium arborescens, Flavobacterium breve, Flavobacterium esteraromaticum, Flavobacterium flavescens, Flavobacterium heparinum, Flavobacterium meningosepticum, Flavobacterium odoratum, Flavobacterium pectinovorum, Flavobacterium suaveolens, Flavobacterium tirrenicum, Haemophilus haemoglobinophilus, Haemophilus parainfluenzae, Haemophilus paragallinarum, Haemophilus aegyptius, Haemophilus influenzae, Haemophilus parahaemolyticus, Haemophilus paraphrophilus, Haemophilus paraphrohaemolyticus, Pasteurella gallinacum, Pasteurella haemolytica, Pasteurella mastitidis, Pasteurella multocida, Pasteurella piscicida, Pasteurella ureae, Pasteurella bettii, Pasteurella pneumotropica, Thermus aquaticus, Thermus thermophilus, Bacteroides asaccharolyticus, Bacteroides distasonis, Bacteroides eggerthii, Bacteroides fragilis, Bacteroides melaninogenicus, Bacteroides oralis, Bacteroides ruminicola, Bacteroides vulgatus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Desulfovibrio desulfuricans, Desulfovibrio gigas, Desulfovibrio vulgaris, Myxococcus fulvus, Cytophaga aurantiaca, Cytophaga fermentans, Cytophaga hutchinsonii, Chromatium vinosum, Rhodopseudomonas capsulata, Rhodopseudomonas gelatinosa, Rhodopseudomonas viridis, Rhodospirillum fulvum, Rhodospirillum molischianum, Rhodospirillum rubrum, Caryophanon latum, Caryophanon tenue, Lactobacillus casei, Listeria denitrificans, Micrococcus agilis, Micrococcus halobius, Micrococcus luteus, Micrococcus radiodurans, Planococcus citreus, Staphylococcus aureus, Peptostreptococcus magnus, Leuconostoc lactis, Streptococcus cremoris, Streptococcus faecalis, Streptococcus lactis, Arthrobacter atrocyaneus, Arthrobacter aurescens, Arthrobacter citreus, Arthrobacter crystallopoietes, Arthrobacter globiformis, Arthrobacter oxydans, Arthrobacter polychromogenes, Arthrobacter ramosus, Arthrobacter simplex, Arthrobacter tumescens, Arthrobacter ureafaciens, Brevibacterium fermentans, Brevibacterium helvolum, Brevibacterium lyticum, Brevibacterium lipolyticum, Brevibacterium protophormiae, Brevibacterium flavum, Brevibacterium lactofermentum, Brevibacterium saccharolyticum, Cellulomonas cartalyticum, Celulomonas fimi, Cellulomonas flavigena, Corynebacterium aquaticum, Corynebacterium insidiosum, Corynebacterium mediolanum, Corynebacterium manihot, Corynebacterium mediolanum, Corynebacterium michiganense, Corynebacterium bovis, Corynebacterium fascians, Corynebacterium flavidum, Corynebacterium glutamicum, Corynebacterium hydrocarboclastus, Corynebacterium renale, Mycobacterium avium, Mycobacterium farcinogenes, Mycobacterium fortuitum, Mycobacterium kansasii, Nocardia vaccinii, Rhodococcus bronchialis, Rhodococcus terrae, Nocardia calcarea, Nocardia rubra, Nocardia erythropolis, Nocardia rugosa, Actinomyces bovis, Actinomyces israelii, Actinomyces viscosus, Propionibacterium acnes, Propionibacterium arabinosum, Streptomyces albus, Streptomyces gardneri, Streptomyces griseus, Streptomyces olivaceus, Streptomyces platensis, Streptomyces somaliensis 등 이다.The microorganisms inherently having the DHNA synthesis pathway and the MEP pathway may be wild-type microorganisms or recombinant microorganisms, and may be archaebacteria to bacteria, preferably Halobacterium genus, Escherichia ), Enterobacter, Klebsiella, Serratia, Proteus, Vibrio, Actinobacillus, Pasteurella ), Flavobacterium, Haemophilus, Thermus, Bacteroides, Capnocytophaga, Desulfovibrio, My Myxococcus genus, Cytopaga genus, Chlorobium genus, Chloropseudomonas genus, Rhodopseudomonas genus, Rhodospirillum genus, Bacillus genus , Clostridium genus, Sporolactobacillus genus, Lactobacillus genus, Listeria genus, Caryophanon genus, Micrococcus genus, Staphylococcus ), Planococcus, Streptococcus, Arthrobacter, Brevibacterium, Cellulomonas, Corynebacterium , Microbacterium, Mycobacterium, Nocardia, Rhodococcus, Actinomy It may be a bacteria of the genus Actinomyces, a genus Proprionibacterium, a genus Streptomyces, and more preferably Escherichia coli , Halobacterium cutirubrum, Halobacterium halobium, Halobacterium saccharovorum, Halobacterium salinarium, Halobacterium volcanii, Halobacterium trapanicum, Enterobacter aerogenes, Enterobacter agglomerans, Enterbacter liquefaciens, Erwinia amylovora, Erwinia carotovora, Kiebsiella aerogenes, Proteus mirabilis, Proteus mirabilis, Proteus vulgaris, Serratia succinos, Protelus vulgaris, Aerobics succins, Viscens, Enterobacter aerogenes, Enterobacter agglomerans, Enterobacter liquefaciens Actinobacillus actinomycetencomitans, Actinobacillus equuli, Actinobacillus lignieresii, Actinobacillus seminis, Flavobacterium arborescens, Flavobacterium breve, Flavobacterium esteraromaticum, Flavobacterium flavescens, Flavobacterium heparinocum, Flavobacterium flavescentum, Flavophilum, Flavophilum, Flavobacterium havor, ilus, Haemophilus parainfluenzae, Haemophilus paragallinarum, Haemophilus aegyptius, Haemophilus influenzae, Haemophilus parahaemolyticus, Haemophilus paraphrophilus, Haemophilus paraphrohaemolyticus, Pasteurella gallinacum, Pasteurella pneumoniae, Pasteurella gallinacum, Pasteurella pneumoniae, Pasteurella pneumoniae, Pasteurella pesteurella, Pasteurella aquatica, Pasteurella neutron Thermus thermophilus, Bacteroides asaccharolyticus, Bacteroides distasonis , Bacteroides eggerthii, Bacteroides fragilis, Bacteroides melaninogenicus, Bacteroides oralis, Bacteroides ruminicola, Bacteroides vulgatus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Desulfovibrio desulfuricans, Desulfovibrio gigas, Desulfovibrio vulgaris, Myxococcus fulvus, Cytophaga aurantiaca, Cytophaga fermentans , Cytophaga hutchinsonii, Chromatium vinosum, Rhodopseudomonas capsulata, Rhodopseudomonas gelatinosa, Rhodopseudomonas viridis, Rhodospirillum fulvum, Rhodospirillum molischianum, Rhodospiril lum rubrum, Caryophanon latum, Caryophanon tenue, Lactobacillus casei, Listeria denitrificans, Micrococcus agilis, Micrococcus halobius, Micrococcus luteus, Micrococcus radiodurans, Planococcus citreus, Staphylococcus aureus, Peptococcus, Staphylococcus aureus, Peptostreptococcus fanus, Streptoccus, Artoccus, Streptoccus fanus, Lactobacillus casei, Strococcus fanus, , Arthrobacter aurescens, Arthrobacter citreus, Arthrobacter crystallopoietes, Arthrobacter globiformis, Arthrobacter oxydans, Arthrobacter polychromogenes, Arthrobacter ramosus, Arthrobacter simplex, Arthrobacter tumescens, Arthrobacter ureafaciens, Brevibacterium fermentans, Breviiumbacter Breviium bacterium lactofermentum, Brevibacterium saccharolyticum, Cellulomonas cartalyticum, Celulomonas fimi, Cellulomonas flavigena, Corynebacterium aquaticum, Corynebacterium insidiosum, Corynebacterium mediolanum, Corynebact erium manihot, Corynebacterium mediolanum, Corynebacterium michiganense, Corynebacterium bovis, Corynebacterium fascians, Corynebacterium flavidum, Corynebacterium glutamicum, Corynebacterium hydrocarboclastus, Corynebacterium renale, Mycobacterium vaccinogenes, Mycobacterium vacscinogenes, Mycobacterium vacsacin, Mycobacterium vaccinogenes, Mycobacterium vacsacinogenes, Mycobacterium vacs, Mycobacterium, Mycobacterium for, , Nocardia rubra, Nocardia erythropolis, Nocardia rugosa, Actinomyces bovis, Actinomyces israelii, Actinomyces viscosus, Propionibacterium acnes, Propionibacterium arabinosum, Streptomyces albus, Streptomyces gardolineri, Streptomyces griseus, Streptomyces malisis, Streptomyces malisis, Streptomyces malisis, etc.

메나퀴논-7 합성에 필요한 외래 효소 유전자군Foreign enzyme gene group required for the synthesis of menaquinone-7

본 발명의 재조합 미생물은 한 분자의 FPP에 4분자의 IPP가 순차적으로 중합되어 HPP를 합성하는 효소의 유전자들이 도입된 것이다. 상기 유전자들은 hepShepT 일 수 있으며(표 1), 서열번호 2 또는 서열번호 4의 염기서열을 포함하는 유전자 또는 이와 90% 이상의 상동성을 갖는 유전자, 서열번호 1 또는 서열번호 3의 아미노산 서열을 갖는 단백질을 코딩하는 유전자, 상기 서열번호 1 또는 서열번호 3의 아미노산 서열과 90% 이상의 상동성을 갖는 아미노산 서열을 갖는 단백질을 코딩하는 유전자 또는 서열번호 1 또는 서열번호 3의 아미노산 서열을 갖는 단백질과 효소 활성이 90% 이상 동일한 단백질을 코딩하는 유전자 등이다. In the recombinant microorganism of the present invention, four molecules of IPP are sequentially polymerized in one molecule of FPP to introduce genes of an enzyme that synthesizes HPP. The genes may be hepS and hepT (Table 1), a gene comprising the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or a gene having 90% or more homology thereto, and the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3 A gene encoding a protein having, a gene encoding a protein having an amino acid sequence having 90% or more homology to the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or a protein having an amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3; It is a gene that encodes a protein having at least 90% of the same enzyme activity.

유전자gene 효소명Enzyme name 유래 미생물Derived microorganism 단백질서열/유전자 서열Protein sequence/gene sequence hepS hepS heptaprenyl diphosphate synthase component Iheptaprenyl diphosphate synthase component I Bacillus subtilis subsp. natto Bacillus subtilis subsp. natto 서열번호 1/서열번호 2SEQ ID NO: 1/SEQ ID NO: 2 hepThepT heptaprenyl diphosphate synthase component IIheptaprenyl diphosphate synthase component II Bacillus subtilis subsp. natto Bacillus subtilis subsp. natto 서열번호 3/서열번호 4SEQ ID NO: 3/SEQ ID NO: 4

본 발명의 재조합 미생물은 HPP와 DHNA를 중합하여 최종적으로 메나퀴논-7으로 전환할 수 있는 일련의 효소 유전자들이 도입된 것이다. 상기 유전자들은 menA, ubiE, yhcB 일 수 있으며(표 2), 서열번호 8, 서열번호 12, 서열번호 14의 염기서열을 포함하는 유전자 또는 이와 90% 이상의 상동성을 갖는 유전자, 서열번호 7, 서열번호 11, 서열번호 13의 아미노산 서열을 갖는 단백질을 코딩하는 유전자, 상기 서열번호 7, 서열번호 11, 서열번호 13의 아미노산 서열과 90% 이상의 상동성을 갖는 아미노산 서열을 갖는 단백질을 코딩하는 유전자 또는 서열번호 7, 서열번호 11, 서열번호 13의 아미노산 서열을 갖는 단백질과 효소 활성이 90% 이상 동일한 단백질을 코딩하는 유전자 등이다.The recombinant microorganism of the present invention is a series of enzyme genes that can be converted to menaquinone-7 by polymerizing HPP and DHNA. The genes may be menA, ubiE, yhcB (Table 2), a gene including the nucleotide sequence of SEQ ID NO: 8, SEQ ID NO: 12, or SEQ ID NO: 14 or a gene having 90% or more homology thereto, SEQ ID NO: 7, sequence A gene encoding a protein having an amino acid sequence of SEQ ID NO: 11 and SEQ ID NO: 13, a gene encoding a protein having an amino acid sequence having 90% or more homology to the amino acid sequence of SEQ ID NO: 7, SEQ ID NO: 11, or SEQ ID NO: 13; or It is a gene encoding a protein having an amino acid sequence of SEQ ID NO: 7, SEQ ID NO: 11, and SEQ ID NO: 13 and a protein having at least 90% identical enzyme activity.

유전자gene 효소명Enzyme name 유래 미생물Derived microorganism 단백질서열/유전자 서열Protein sequence/gene sequence menAmenA 1,4-dihydroxy-2-naphthoate heptaprenyltransferase1,4-dihydroxy-2-naphthoate heptaprenyltransferase Bacillus subtilis subsp. natto Bacillus subtilis subsp. natto 서열번호 7/서열번호 8SEQ ID NO: 7/SEQ ID NO: 8 ubiEubiE demethylmenaquinone methyltransferasedemethylmenaquinone methyltransferase Bacillus subtilis subsp. natto Bacillus subtilis subsp. natto 서열번호 11/서열번호 12SEQ ID NO: 11/SEQ ID NO: 12 yhcByhcB NAD(P)H dehydrogenaseNAD(P)H dehydrogenase Bacillus subtilis subsp. natto Bacillus subtilis subsp. natto 서열번호 13/서열번호 14SEQ ID NO: 13/SEQ ID NO: 14

본 발명의 재조합 미생물은 HPP의 전구체인 IPP 과생산을 위해 외래 MVA 경로와 관련된 유전자들과 IPP와 DMAPP간의 상호 전환을 촉매하는 효소의 유전자가 추가적으로 도입된 것이다. In the recombinant microorganism of the present invention, for the overproduction of IPP, a precursor of HPP, genes related to the foreign MVA pathway and genes of enzymes that catalyze the mutual conversion between IPP and DMAPP are additionally introduced.

상기 유전자는 mvaE, mvaS, mvaK1, mvaK2, mvaD, idi 일 수 있으며(표 3), 서열번호 18, 서열번호 22, 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 34의 염기서열을 포함하는 유전자 또는 이와 90% 이상의 상동성을 갖는 유전자, 서열번호 17, 서열번호 21, 서열번호 25, 서열번호 27, 서열번호 29, 서열번호 33의 아미노산 서열을 갖는 단백질을 코딩하는 유전자, 상기 서열번호 17, 서열번호 21, 서열번호 25, 서열번호 27, 서열번호 29, 서열번호 33의 아미노산 서열과 90% 이상의 상동성을 갖는 아미노산 서열을 갖는 단백질을 코딩하는 유전자 또는 서열번호 17, 서열번호 21, 서열번호 25, 서열번호 27, 서열번호 29, 서열번호 33의 아미노산 서열을 갖는 단백질과 효소 활성이 90% 이상 동일한 단백질을 코딩하는 유전자 등이다.The gene may be mvaE, mvaS, mvaK1, mvaK2, mvaD, idi (Table 3), and includes the nucleotide sequence of SEQ ID NO: 18, SEQ ID NO: 22, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, and SEQ ID NO: 34 A gene or a gene having 90% or more homology thereto, a gene encoding a protein having an amino acid sequence of SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, and SEQ ID NO: 33, the SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, a gene encoding a protein having an amino acid sequence having 90% or more homology with the amino acid sequence of SEQ ID NO: 33 or SEQ ID NO: 17, SEQ ID NO: 21, It is a gene encoding a protein having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, and SEQ ID NO: 33 and a protein having the same enzyme activity of 90% or more.

유전자gene 효소명Enzyme name 유래 미생물Derived microorganism 단백질서열/유전자 서열Protein sequence/gene sequence mvaEmvaE hydroxymethylglutaryl-CoA reductasehydroxymethylglutaryl-CoA reductase Enterococcus faecalisEnterococcus faecalis 서열번호 17/서열번호 18SEQ ID NO: 17/SEQ ID NO: 18 mvaSmvaS hydroxymethylglutaryl-CoA synthasehydroxymethylglutaryl-CoA synthase Enterococcus faecalisEnterococcus faecalis 서열번호21/서열번호 22SEQ ID NO: 21 / SEQ ID NO: 22 mvaK1mvaK1 mevalonate kinasemevalonate kinase Streptococcus Streptococcus pneumoniaepneumoniae 서열번호 25/서열번호 26SEQ ID NO: 25/SEQ ID NO: 26 mvaK2mvaK2 phosphomevalonate kinasephosphomevalonate kinase Streptococcus pneumoniaeStreptococcus pneumoniae 서열번호 27/서열번호 28SEQ ID NO: 27/SEQ ID NO: 28 mvaDmvaD diphosphomevalonate decarboxylasediphosphomevalonate decarboxylase Streptococcus pneumoniaeStreptococcus pneumoniae 서열번호 29/서열번호 30SEQ ID NO: 29/ SEQ ID NO: 30 idiidi isopentenyl-diphosphate Delta-isomeraseisopentenyl-diphosphate Delta-isomerase Escherichia coliEscherichia coli 서열번호 33/서열번호 34SEQ ID NO: 33/SEQ ID NO: 34

상기 유전자들의 도입은 유전자 발현이 가능한 모든 형태일 수 있고, 예컨대 플라즈미드(plasmid)의 형태이거나 대상 미생물 유전체 상의 특정 유전자와의 대체나 특정 위치로의 삽입일 수 있다. The introduction of the genes may be in any form in which gene expression is possible, for example, in the form of a plasmid, replacement with a specific gene on a target microorganism genome, or insertion into a specific location.

용어 “벡터 (vector)”는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드 (plasmid)” 및 “벡터 (vector)”는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다. 포유동물 세포 배양물 발현을 위한 전형적인 발현 벡터는 예를 들면 pRK5 (EP 307,247호), pSV16B (WO 91/08291호) 및 pVL1392 (Pharmingen)을 기초로 한다. The term “vector” refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in a suitable host. The vector can be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are currently the most commonly used form of vectors, in the specification of the present invention “plasmid” and “vector” are sometimes used interchangeably. However, the present invention includes other forms of vectors that have functions equivalent to those known or become known in the art. Typical expression vectors for expression in mammalian cell cultures are based on, for example, pRK5 (EP 307,247), pSV16B (WO 91/08291) and pVL1392 (Pharmingen).

“발현 조절 서열 (expression control sequence)”이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 고 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스 (cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다. The expression “expression control sequence” means a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism. Such regulatory sequences include promoters to effect transcription, any operator sequences to regulate such transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences that regulate termination of transcription and translation. For example, regulatory sequences suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells include promoters, polyadenylation signals and enhancers. The factor that most affects the amount of gene expression in the plasmid is the promoter. As a promoter for high expression, an SRα promoter and a cytomegalovirus-derived promoter are preferably used.

본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다. T7 RNA 폴리메라아제 프로모터 Φ10은 이. 콜라이에서 단백질을 발현시키는데 유용하게 사용될 수 있다.In order to express the DNA sequence of the present invention, any of a wide variety of expression control sequences can be used in the vector. Examples of useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, fd Regulatory regions of the coding protein, promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, promoters of the phosphatase, for example Pho5, promoters of the yeast alpha-crossing system and prokaryotic or eukaryotic cells or viruses thereof Other sequences of constructs and inductions known to regulate the expression of the genes of A and several combinations thereof are included. T7 RNA polymerase promoter Φ10 is E. It can be usefully used to express a protein in E. coli.

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결 (operably linked)”된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, “작동가능하게 연결된”은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다. Nucleic acids are “operably linked” when placed in a functional relationship with another nucleic acid sequence. This can be a gene and regulatory sequence(s) linked in a manner that allows gene expression when the appropriate molecule (eg, a transcriptional activating protein) is bound to the regulatory sequence(s). For example, DNA for a pre-sequence or secretory leader is operably linked to the DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; The promoter or enhancer is operably linked to the coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to the coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to the coding sequence when arranged to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and, in the case of a secretory leader, is contacted and is present in the reading frame. However, the enhancer does not need to be contacted. The ligation of these sequences is carried out by ligation (linkage) at a convenient restriction enzyme site. If such a site does not exist, a synthetic oligonucleotide adapter or linker according to a conventional method is used.

본원 명세서에 사용된 용어 “발현 벡터”는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.The term "expression vector" as used herein is a recombinant carrier into which a fragment of a heterologous DNA is inserted, and generally refers to a fragment of double-stranded DNA. Here, heterologous DNA refers to heterologous DNA, which is DNA that is not naturally found in host cells. Once in the host cell, the expression vector can replicate independently of the host chromosomal DNA and several copies of the vector and its inserted (heterologous) DNA can be generated.

당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, in order to increase the level of expression of a transfected gene in a host cell, the gene must be operably linked to a transcriptional and translational expression control sequence that exerts a function in the selected expression host. Preferably, the expression control sequence and the corresponding gene are included in one expression vector that includes a bacterial selection marker and a replication origin. When the expression host is a eukaryotic cell, the expression vector must further contain an expression marker useful in the eukaryotic expression host.

본 발명의 목적 단백질의 DNA 서열을 발현시키기 위해 매우 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵 숙주에 적합한 발현 벡터에는, 예를 들어 SV40, 소 유두종바이러스, 아네노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열을 포함한다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pBluescript, pGEX2T, pUC벡터, col E1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 E. coli에서 얻는 것을 예시할 수 있는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2μ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL 941이다.A wide variety of expression host/vector combinations can be used to express the DNA sequence of the protein of interest of the present invention. Expression vectors suitable for eukaryotic hosts include expression control sequences derived from, for example, SV40, bovine papillomavirus, anenovirus, adeno-associated virus, cytomegalovirus and retrovirus. Expression vectors that can be used in bacterial hosts include bacterial plasmids obtained from E. coli such as pBluescript, pGEX2T, pUC vector, col E1, pCR1, pBR322, pMB9 and derivatives thereof, and a wider host range such as RP4. Plasmids having λgt10 and λgt11, phage DNA, which can be exemplified by a wide variety of phage lambda derivatives such as NM989, and other DNA phages such as M13 and filamentous single-stranded DNA phage. Expression vectors useful for yeast cells are 2μ plasmids and derivatives thereof. A vector useful for insect cells is pVL 941.

상술한 발현 벡터에 의해 형질전환 또는 형질감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 “형질전환”은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 “형질감염”은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다. Host cells transformed or transfected with the above-described expression vector constitute another aspect of the present invention. As used herein, the term “transformation” means that DNA is introduced into a host so that the DNA becomes replicable as an extrachromosomal factor or by chromosomal integrity completion. As used herein, the term “transfection” means that the expression vector is accepted by the host cell, whether or not any coding sequence is actually expressed.

발명의 숙주 세포는 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 이. 콜라이, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO 및 생쥐 세포같은 동물 세포, COS 1, COS 7, BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 및 조직배양된 인간 세포는 사용될 수 있는 숙주 세포의 예이다. 본 발명의 단백질을 코딩하는 cDNA를 클로닝할 때에는 동물세포를 숙주로 하는 것이 바람직하다. 본 발명에서는 어류 기원의 CHSE-214, FHM, RTG-2 및 EPC를 예시하였으나 물론 이에 제한되는 것은 아니다. COS 세포를 이용하는 경우에는 COS 세포에서 SV40 라지 T안티겐(large T antigen)이 발현하고 있으므로 SV40의 복제개시점을 갖는 플라스미드는 세포중에서 다수 카피(copy)의 에피솜(episome)으로 존재하도록 되고 통상보다 고 발현이 기대될 수 있다. 도입된 DNA 서열은 숙주 세포와 동일한 종으로부터 얻을 수 있거나, 숙주 세포와 다른 종의 것일 수 있거나, 또는 그것은 어떠한 이종 또는 상동성 DNA를 포함하는 하이브리드 DNA 서열일 수 있다. The host cell of the invention may be a prokaryotic or eukaryotic cell. In addition, a host having a high DNA introduction efficiency and a high expression efficiency of the introduced DNA is usually used. this. Known eukaryotic and prokaryotic hosts such as coli, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera frugiperda (SF9), animal cells such as CHO and mouse cells, COS 1, COS 7, African green monkey cells such as BSC 1, BSC 40 and BMT 10, and tissue cultured human cells are examples of host cells that can be used. When cloning the cDNA encoding the protein of the present invention, it is preferable to use an animal cell as a host. In the present invention, CHSE-214, FHM, RTG-2 and EPC of fish origin have been exemplified, but of course, the present invention is not limited thereto. In the case of using COS cells, since SV40 large T antigen is expressed in COS cells, the plasmid with the replication initiation point of SV40 is supposed to exist as an episome of multiple copies in the cell. Higher expression can be expected. The introduced DNA sequence may be obtained from the same species as the host cell, may be of a different species than the host cell, or it may be a hybrid DNA sequence comprising any heterologous or homologous DNA.

물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 단백질의 cDNA를 클로닝 하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 페닝법(panning법), 필름에멀션법(film emulsion 법)등이 적용될 수 있다.Of course, it should be understood that not all vectors and expression control sequences function equally in expressing the DNA sequence of the present invention. Likewise, not all hosts function equally for the same expression system. However, those skilled in the art can make an appropriate selection among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, when choosing a vector, you must consider the host, because the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered. In selecting the expression control sequence, several factors must be considered. For example, the relative strength of the sequence, controllability and compatibility with the DNA sequence of the present invention, etc., should be considered in particular with regard to possible secondary structures. The single-celled host is the selected vector, the toxicity of the product encoded by the DNA sequence of the present invention, the secretion characteristics, the ability to accurately fold the protein, culture and fermentation requirements, the product encoded by the DNA sequence of the present invention from the host. It should be selected in consideration of factors such as ease of purification. Within the range of these variables, one skilled in the art can select various vector/expression control sequence/host combinations capable of expressing the DNA sequence of the present invention in fermentation or large-scale animal culture. As a screening method for cloning protein cDNA by expression cloning, a binding method, a panning method, a film emulsion method, or the like can be applied.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 예는Hereinafter, the present invention will be described in more detail through examples. These examples are

오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.It will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples, as only to illustrate the present invention.

실시예 1: 메나퀴논-7 고생산성 재조합 대장균의 제작Example 1: Preparation of menaquinone-7 highly productive recombinant E. coli

본 실시예에서는 상기 설명한 DHNA 합성 경로와 MEP 경로를 내재적으로 가지고 있는 대장균에, 메나퀴논-7 합성 경로에 관여하는 효소를 코딩하는 유전자들과 전구체 IPP의 생산성을 높이기 위한 MVA 경로에 관여하는 효소를 코딩하는 유전자들을 플라즈미드 형태로 도입하여 메나퀴논-7 고효율 생합성 재조합 대장균을 제작하였다. In this example, genes encoding enzymes involved in the menaquinone-7 synthesis pathway and enzymes involved in the MVA pathway for increasing the productivity of the precursor IPP were used in E. coli that inherently have the above-described DHNA synthesis pathway and MEP pathway. The coding genes were introduced in the form of plasmids to produce menaquinone-7 highly efficient biosynthetic recombinant E. coli.

본 실시예에서 사용된 메나퀴논-7 합성 경로의 유전자들과 MVA 경로의 효소 유전자들은 최종 발현 플라즈미드의 유지 안정성을 고려하여 각각 pTrc99A 벡터(GenBank No. M22744)와 pSTV28 벡터(Takara Korea, 한국) 에 나누어 도입하였고, 이들 벡터는 서로 다른 Origin을 가지고 있기 때문에 하나의 대장균 내에서 공존 가능하다.The genes of the menaquinone-7 synthesis pathway and the enzyme genes of the MVA pathway used in this example were in pTrc99A vector (GenBank No. M22744) and pSTV28 vector (Takara Korea, Korea), respectively, taking into account the maintenance stability of the final expression plasmid. It was introduced separately, and because these vectors have different origins, they can coexist within one E. coli.

(1) HPP 합성 및 메나퀴논-7 전환과 관련된 효소 유전자들 발현을 위한 플라즈미드 제작(1) Preparation of plasmid for expression of enzyme genes related to HPP synthesis and menaquinone-7 conversion

본 실시예에서 사용된 HPP 합성 및 메나퀴논-7 전환 경로와 관련된 효소를 코딩하는 유전자들은 Bacillus subtilis subsp. natto 염색체를 주형으로 PCR 증폭하여 사용하였고, 유전자 증폭을 위한 프라이머는 표 4와 같으며 오버랩핑 PCR을 수행하여 pTrc99A 벡터(Pharmacia, Sweden)에 각각 도입하여 pT-MK7-1과 pT-MK7-2를 제작하였다 (도 2). hepS, hepT, ubiE 유전자는 해당 균주 Bacillus subtilis subsp. natto 염색체상에 오페론으로 존재하여 전체를 PCR 증폭 후 사용하였다.Genes encoding enzymes related to HPP synthesis and menaquinone-7 conversion pathways used in this example are Bacillus subtilis subsp. The natto chromosome was used by PCR amplification as a template, and the primers for gene amplification are shown in Table 4, and the overlapping PCR was performed and introduced into the pTrc99A vector (Pharmacia, Sweden), respectively, and pT-MK7-1 and pT-MK7-2 Was produced (Fig. 2). The hepS, hepT, and ubiE genes are derived from Bacillus subtilis subsp. It existed as an operon on the natto chromosome, and the whole was used after PCR amplification.

유전자gene 유전자 증폭을 위한 프라이머 서열Primer sequence for gene amplification hepS-ubiE-hepThepS-ubiE-hepT 서열번호 5:
CATGGAATTCAAGGAGGTGATATTTATGCAAGACATCTACGGAAC
서열번호 6:
TCCTTGGTACCTCCGGATCATTAAAATTTTCTTTTACCGATATAT
SEQ ID NO: 5:
CATGGAATTCAAGGAGGTGATATTTATGCAAGACATCTACGGAAC
SEQ ID NO: 6:
TCCTTGGTACCTCCGGATCATTAAAATTTTCTTTTACCGATATAT
menAmenA 서열번호 9:
CGGAGGTACCAAGGAGGAGCTCAAGATGAACCAAACAAATAAGGGTG
서열번호 10:
TCTAGAACCTCCTGTACGAGCTCATTATCGGAAATAGCTGATCAATAATC
SEQ ID NO: 9:
CGGAGGTACCAAGGAGGAGCTCAAGATGAACCAAACAAATAAGGGTG
SEQ ID NO: 10:
TCTAGAACCTCCTGTACGAGCTCATTATCGGAAATAGCTGATCAATAATC
yhcByhcB 서열번호 15:
AATGAGCTCGTACAGGAGGTTCTAGAATGAAAATTTATGTAGTGTATG
서열번호 16:
TGCAGGTCGACTCTAGATTACTGTCCTGCTGTTAGGTTTCC
SEQ ID NO: 15:
AATGAGCTCGTACAGGAGGTTCTAGAATGAAAATTTATGTAGTGTATG
SEQ ID NO: 16:
TGCAGGTCGACTCTAGATTACTGTCCTGCTGTTAGGTTTCC

(2) IPP 과생산을 위한 MVA 경로의 효소 유전자들 발현을 위한 플라즈미드 제작(2) Preparation of plasmid for expression of enzyme genes of the MVA pathway for IPP overproduction

본 실시예에서 사용된 IPP 과생산을 위한 MVA 경로와 관련된 효소를 코딩하는 유전자들과 IPP와 DMAPP간의 상호 전환을 촉매하는 효소 유전자 idi는 GenScript(NJ, USA)에서 합성하였고, 유전자 증폭을 위한 프라이머는 표 5와 같으며 오버랩핑 PCR을 수행하여 pSTV28 벡터에 각각 도입하여 pS-MVA를 제작하였는데, mvaK1, mvaK2, mvaD 유전자는 해당 균주 Streptococcus pneumonia 염색체상에 오페론으로 존재하여 전체를 합성하여 PCR 증폭 후 사용하였다 (도 2).The genes encoding the enzymes related to the MVA pathway for IPP overproduction used in this example and the enzyme gene idi that catalyzes the mutual conversion between IPP and DMAPP were synthesized in GenScript (NJ, USA), and primers for gene amplification Is shown in Table 5 and was introduced into pSTV28 vector by performing overlapping PCR, respectively, to produce pS- MVA.The mvaK1, mvaK2, and mvaD genes exist as operons on the corresponding strain Streptococcus pneumonia chromosome, and the whole was synthesized and amplified by PCR. Was used (Fig. 2).

유전자gene 유전자 증폭을 위한 프라이머 서열Primer sequence for gene amplification mvaK1-mvaD-mvaK2 mvaK1 - mvaD - mvaK2 서열번호 31:ACCCGGGGATCCTGCGATAACGGAAAAAACGATAAGGAGGTATTCTATGACAAAAAAAGTTGGTGTCGG
서열번호 32:
CAAACCTCCTTAAACTATTACGAGACCTTACGATTTGTCGTCATGTCCTATCC
SEQ ID NO: 31: ACCCGGGGATCCTGCGATAACGGAAAAAACGATAAGGAGGTATTCTATGACAAAAAAAGTTGGTGTCGG
SEQ ID NO: 32:
CAAACCTCCTTAAACTATTACGAGACCTTACGATTTGTCGTCATGTCCTATCC
idiidi 서열번호 35:
GTCTCGTAATAGTTTAAGGAGGTTTGTTATGCAAACGGAACACGTCATTTTA
서열번호 36:
CCTTATACCTGTTTATCAAATCTAGATTATTTAAGCTGGGTAAATGCAGATA
SEQ ID NO: 35:
GTCTCGTAATAGTTTAAGGAGGTTTGTTATGCAAACGGAACACGTCATTTTA
SEQ ID NO: 36:
CCTTATACCTGTTTATCAAATCTAGATTATTTAAGCTGGGTAAATGCAGATA
mvaEmvaE 서열번호 19:
AATCTAGATTTGATAAACAGGTATAAGGAGGTATTTTATGAAAACAGTAGTTATTATTG
서열번호 20:
CATAAAAATACCTCCTTATTATTGTTTTCTTAAATCATTTAAAAT
SEQ ID NO: 19:
AATCTAGATTTGATAAACAGGTATAAGGAGGTATTTTATGAAAACAGTAGTTATTATTG
SEQ ID NO: 20:
CATAAAAATACCTCCTTATTATTGTTTTCTTAAATCATTTAAAAT
mvaSmvaS 서열번호 23:
CAATAATAAGGAGGTATTTTTATGACAATTGGGATTGATAAAATT
서열번호 24:
GCATGCCTGCAGGTCGACTTAGTTTCGATAAGAGCGAACGGTAT
SEQ ID NO: 23:
CAATAATAAGGAGGTATTTTTATGACAATTGGGATTGATAAAATT
SEQ ID NO: 24:
GCATGCCTGCAGGTCGACTTAGTTTCGATAAGAGCGAACGGTAT

(3) 형질전환된 재조합 대장균의 제작(3) Preparation of transformed recombinant E. coli

상기 제작한 pT-MK7와 pS-MVA 재조합 플라즈미드의 도입 유전자 염기 서열은 DNA 시퀀싱을 통해 확인하였으며, 이소프레노이드(isoprenoid) 생산에 일반적으로 많이 사용하는 대장균 균주인 E. coli DH5α에 화학적 형질전환법을 사용하여 도입하여 아래 표 6과 같은 조합의 재조합 대장균들을 제작하였다.The transgene nucleotide sequence of the pT-MK7 and pS-MVA recombinant plasmids prepared above was confirmed through DNA sequencing, and chemical transformation method for E. coli DH5α, an E. coli strain commonly used for the production of isoprenoids. Was introduced to produce recombinant E. coli of the combination shown in Table 6 below.

재조합 대장균명Recombinant E. coli name 플라즈미드Plasmid 도입 유전자Transgene C-DH5αC-DH5α pTrc99A, pSTV28pTrc99A, pSTV28 -- S-DH5αS-DH5α pS-MVApS-MVA mvaK1, mvaD, mvaK2, idi, mvaE, mvaS mvaK1 , mvaD , mvaK2, idi, mvaE, mvaS T1-DH5αT1-DH5α pT-MK7-1pT-MK7-1 hepS, ubiE, hepThepS, ubiE, hepT T2-DH5αT2-DH5α pT-MK7-2pT-MK7-2 hepS, ubiE, hepT, menA, yhcBhepS, ubiE, hepT, menA, yhcB T1S-DH5αT1S-DH5α pT-MK7-1, pS-MVApT-MK7-1, pS-MVA hepS, ubiE, hepTmvaK1, mvaD, mvaK2, idi, mvaE, mvaS hepS, ubiE, hepTmvaK1 , mvaD , mvaK2, idi, mvaE, mvaS T2S-DH5αT2S-DH5α pT-MK7-2, pS-MVApT-MK7-2, pS-MVA hepS, ubiE, hepT, menA, yhcBmvaK1, mvaD, mvaK2, idi, mvaE, mvaS hepS, ubiE, hepT, menA, yhcBmvaK1 , mvaD , mvaK2, idi, mvaE, mvaS

실시예 2: 플라스크 배양을 통한 메나퀴논-7 생산성 확인Example 2: Confirmation of menaquinone-7 productivity through flask culture

실시예 1에서 제작한 재조합 대장균들을 플라스크 수준에서 배양하여 메나퀴논-7의 생산성을 비교하였다. 각 재조합 균주들을 아래 표 7 조성의 최소 배지(pH 7.0)에 접종하여 30ㅀC, 200rpm 에서 24시간 동안 배양하였으며, 배양 중 샘플을 채취하여 OD(optical density) 600을 측정하여 균주의 생장 속도를 측정하였다. 재조합 대장균이 생산한 메나퀴논-7의 농도는 USP(미국약전) 방법 기반으로 분석하였으며, 그 과정은 다음과 같다. 채취한 샘플을 초음파 파쇄(sonication)로 완전히 파쇄하고, 9배 부피의 에탄올을 첨가하여 60℃에서 추출 및 여과한 후 HPLC (Agilent Infinity series 1260, C18 packing column, C18 column, UV 268nm)로 분석하였다 (도 3). The recombinant E. coli produced in Example 1 was cultured at the flask level to compare the productivity of menaquinone-7. Each recombinant strain was inoculated into the minimum medium (pH 7.0) of the composition in Table 7 below and cultured for 24 hours at 30°C and 200 rpm, and samples were collected during the culture and OD (optical density) 600 was measured to determine the growth rate of the strain. It was measured. The concentration of menaquinone-7 produced by recombinant E. coli was analyzed based on the USP (US Pharmacopoeia) method, and the process is as follows. The collected sample was completely crushed by sonication, extracted and filtered at 60°C by adding 9-fold volume of ethanol, and analyzed by HPLC (Agilent Infinity series 1260, C18 packing column, C18 column, UV 268nm). (Fig. 3).

성분ingredient 최종 농도Final concentration GlycerolGlycerol 30.0 g/L30.0 g/L MgSO4·7H2OMgSO 4 7H 2 O 1.2 g/L1.2 g/L (NH4)2HPO4 (NH 4 ) 2 HPO 4 4.0 g/L4.0 g/L KH2PO4 KH 2 PO 4 13.3 g/L13.3 g/L Citric acidCitric acid 1.7 g/L1.7 g/L Yeast extractYeast extract 5 g/L5 g/L Trace metal solution*Trace metal solution* 3 ml/L3 ml/L Trace metal solution (per liter): 2.8g EDTA, 4.33g Zn(CH3COO)2·2H2O, 5g MnCl2·4H2O, 1g H3PO3, 33.33g Fe(III)Citrate, 0.5g CuCl2, 0.83g CoCl2·6H2O, 0.83g Na2MoO4·2H2OTrace metal solution (per liter): 2.8g EDTA, 4.33g Zn(CH 3 COO) 2 ·2H 2 O, 5g MnCl 2 ·4H 2 O, 1g H 3 PO 3 , 33.33g Fe(III)Citrate, 0.5g CuCl 2 , 0.83 g CoCl 2 6H 2 O, 0.83 g Na 2 MoO 4 2H 2 O

그 결과, 실시예 1에서 제작한 재조합 대장균들 모두 비슷한 생장을 보였으며, 메나퀴논-7 생산 농도와 생산성 측면에서는 T2S-DH5α가 가장 우수한 성능을 보였다 (표 8). 즉, 야생형 대장균 E. coli DH5α에 HPP 합성 효소군(hepS, hepT), DHNA와 HPP로부터 메나퀴논-7으로의 전환 효소군(menA, ubiE, yhcB), IPP 및 DMAPP의 대량 생산을 할 수 있는 MVA 경로 효소군(mvaE, mvaS, mvaK1, mvaK2, mvaD, idi)이 동시에 도입된 재조합 대장균의 경우 24시간의 플라스크 배양에서 24mg/L 수준의 메나퀴논-7 생산성을 보였다.As a result, all of the recombinant E. coli produced in Example 1 showed similar growth, and in terms of menaquinone-7 production concentration and productivity, T2S-DH5α showed the best performance (Table 8). That is, wild-type E. coli DH5α HPP synthase group ( hepS, hepT ), DHNA and HPP to menaquinone-7 conversion enzyme group ( menA, ubiE, yhcB ), IPP and DMAPP can be mass-produced. Recombinant E. coli to which the MVA pathway enzyme groups ( mvaE, mvaS, mvaK1 , mvaK2, mvaD, idi ) were simultaneously introduced showed a 24 mg/L level of menaquinone-7 productivity in a flask culture for 24 hours.

재조합 대장균명Recombinant E. coli name 균체 농도
(OD600)
Cell concentration
(OD600)
메나퀴논-7 생산 농도
(mg/L)
Menaquinone-7 production concentration
(mg/L)
메나퀴논-7 특이 생산성
(mg/L/OD600)
Menaquinone-7 specific productivity
(mg/L/OD600)
C-DH5αC-DH5α 27.8±0.627.8±0.6 Not detectedNot detected -- S-DH5αS-DH5α 28.4±0.728.4±0.7 Not detectedNot detected -- T1-DH5αT1-DH5α 26.1±0.626.1±0.6 4.4±0.14.4±0.1 0.17±0.000.17±0.00 T2-DH5αT2-DH5α 24.6±0.624.6±0.6 14.2±0.914.2±0.9 0.58±0.040.58±0.04 T1S-DH5αT1S-DH5α 25.6±0.825.6±0.8 15.1±1.315.1±1.3 0.59±0.030.59±0.03 T2S-DH5αT2S-DH5α 25.1±0.625.1±0.6 23.8±1.823.8±1.8 0.95±0.050.95±0.05

한편, 메나퀴논-7 생산능을 가진 기존의 대표적 상업적 생산 균주인 바실러스 서브틸리스 나또 (Bacillus subtilis subsp. natto, ATCC 15245)와의 생산성 비교를 위해 상기 최소 배지 조건에서 24시간 플라스크 배양한 경우 메나퀴논-7은 검출되지 않았으며, 복합 배지 조건(Tryptic Soy Broth; Tryptone 17g/L, Soytone 3g/L, Glucose 2.5g/L, NaCl 5.0g/L, KH2PO4 2.5g/L, pH 7.3)에서 24시간 플라스크 배양한 경우 3.9mg/L 수준의 메나퀴논-7 생산성을 보였다. 이는 일반적인 야생형의 바실러스 서브틸리스가 고농도의 복합 성분 존재 하에 72시간 플라스크 배양에서 4.2mg/L의 메나퀴논-7 생산성을 보이는 것과 유사한 결과이다 (한국등록특허 10-1884659). On the other hand, in order to compare the productivity with Bacillus subtilis natto (ATCC 15245), which is a representative commercially produced strain having menaquinone-7 production capacity, menaquinone was cultured in a flask for 24 hours under the minimum medium condition. -7 was not detected, and complex medium conditions (Tryptic Soy Broth; Tryptone 17g/L, Soytone 3g/L, Glucose 2.5g/L, NaCl 5.0g/L, KH 2 PO 4 2.5g/L, pH 7.3) When incubated in the flask for 24 hours, menaquinone-7 productivity of 3.9mg/L was shown. This is similar to that of the general wild-type Bacillus subtilis showing 4.2 mg/L menaquinone-7 productivity in a 72-hour flask culture in the presence of a high concentration of complex components (Korean Patent Registration No. 10-1884659).

실시예 3: 유가식 발효를 통한 메나퀴논-7 생산성 확인Example 3: Menaquinone-7 productivity confirmation through fed-batch fermentation

실시예 2에서 가장 우수한 메나퀴논-7 생산성을 보였던 재조합 대장균 T2S-DH5α를 대상으로 유가식 발효(fed-batch fermentation) 배양을 수행하여 메나퀴논-7의 생산성을 확인하였다. 발효 배지 조성은 상기 표 7과 동일하고, 미세호기조건 (0.5vvm), pH 7.0, 배양 온도 30℃ 조건에서 배양하였다. 균주의 생장 속도와 메나퀴논-7 생성량 측정은 실시예 2와 같은 방법으로 수행하였다. The productivity of menaquinone-7 was confirmed by performing fed-batch fermentation culture on the recombinant E. coli T2S-DH5α which showed the best menaquinone-7 productivity in Example 2. The composition of the fermentation medium was the same as in Table 7 above, and cultured under microaerobic conditions (0.5vvm), pH 7.0, and culture temperature of 30°C. The growth rate and the amount of menaquinone-7 production of the strain were measured in the same manner as in Example 2.

그 결과, 도 4에 나타난 바와 같이, 60시간의 배양에서 132mg/L 수준의 메나퀴논-7 생산성을 확인하였다. As a result, as shown in FIG. 4, the productivity of menaquinone-7 was confirmed at a level of 132 mg/L in the culture for 60 hours.

한편, 바실러스 서브틸리스 나또 (Bacillus subtilis subsp. natto, ATCC 15245)의 경우 복합 배지 조건(glycerol 50g/L, soybean meal 50g/L, yeast extract 50g/L, KH2PO4 0.6g/L, pH 6.4)에서 96시간 배양한 경우 27.9mg/L 수준의 메나퀴논-7을 생산할 뿐이었다. 또, 한국등록특허 10-1884659에서는 야생형의 바실러스 서브틸리스 균주를 이용하여 최적의 복합 배지 조건에서 80시간 발효한 경우 11.4mg/L 수준의 메나퀴논-7을 생성하고, 자외선과 아지드화나트륨으로 돌연변이한 변이균주가 같은 배양 조건에서 80시간 발효한 경우 107.0mg/L 수준의 메나퀴논-7 생산성을 생성한다고 보고하고 있다. On the other hand, in the case of Bacillus subtilis natto (ATCC 15245), complex medium conditions (glycerol 50g/L, soybean meal 50g/L, yeast extract 50g/L, KH 2 PO 4 0.6g/L, pH) When cultured for 96 hours at 6.4), only 27.9 mg/L of menaquinone-7 was produced. In addition, in Korean Patent Registration No. 10-1884659, when fermented for 80 hours in an optimal complex medium condition using a wild-type Bacillus subtilis strain, menaquinone-7 at a level of 11.4 mg/L was produced, and ultraviolet rays and sodium azide It has been reported that when the mutant strains mutated to and fermented for 80 hours under the same culture conditions, menaquinone-7 productivity at the level of 107.0mg/L is produced.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업게의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의항 정의As described above, specific parts of the present invention have been described in detail, and for those of ordinary skill in the art, this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. It will be obvious. Therefore, the practical scope of the present invention is defined in accordance with the appended claims and their equivalents.

된다고 할 것이다.I would say that it is.

<110> GENOFOCUS CO., LTD. GF Fermentech, Inc. <120> Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same <130> P19-B099 <160> 36 <170> KopatentIn 2.0 <210> 1 <211> 251 <212> PRT <213> Bacillus subtilis subsp. natto <400> 1 Met Gln Asp Ile Tyr Gly Thr Leu Ala Asn Leu Asn Thr Lys Leu Lys 1 5 10 15 Gln Lys Leu Ser His Pro Tyr Leu Ala Lys His Ile Ser Ala Pro Lys 20 25 30 Ile Asp Glu Asp Lys Leu Leu Leu Phe His Ala Leu Phe Glu Glu Ala 35 40 45 Asp Ile Lys Asn Asn Asp Arg Glu Asn Tyr Ile Val Thr Ala Met Leu 50 55 60 Val Gln Ser Ala Leu Asp Thr His Asp Glu Val Thr Thr Ala Arg Val 65 70 75 80 Ile Lys Arg Asp Glu Asn Lys Asn Arg Gln Leu Thr Val Leu Ala Gly 85 90 95 Asp Tyr Phe Ser Gly Leu Tyr Tyr Ser Leu Leu Ser Glu Met Lys Asp 100 105 110 Ile Tyr Met Ile Arg Thr Leu Ala Thr Ala Ile Lys Glu Ile Asn Glu 115 120 125 His Lys Ile Arg Leu Tyr Asp Arg Ser Phe Lys Asp Glu Asn Asp Phe 130 135 140 Phe Glu Ser Val Gly Ile Val Glu Ser Ala Leu Phe His Arg Val Ala 145 150 155 160 Glu His Phe Ser Leu Pro Arg Trp Lys Lys Leu Ser Ser Asp Phe Phe 165 170 175 Val Phe Lys Arg Leu Met Asn Gly Asn Asp Ala Phe Leu Asp Val Ile 180 185 190 Gly Ser Phe Ile Gln Leu Gly Lys Thr Lys Glu Glu Ile Leu Glu Asp 195 200 205 Cys Phe Lys Lys Ala Lys Asn Ser Ile Glu Ser Leu Leu Pro Leu Asn 210 215 220 Ser Pro Ile Gln Asn Ile Leu Ile Asn Arg Leu Lys Thr Ile Ser Gln 225 230 235 240 Asp Gln Thr Tyr His Gln Lys Val Glu Glu Gly 245 250 <210> 2 <211> 753 <212> DNA <213> Bacillus subtilis subsp. natto <400> 2 atgcaagaca tctacggaac tttagccaat ctgaacacga aattaaaaca aaagctgtct 60 catccttatt tagcgaagca tatttctgcg ccgaaaattg atgaggataa gcttcttctt 120 tttcatgctt tatttgaaga agctgacata aaaaacaacg acagagaaaa ttatattgta 180 acagcgatgc ttgtacaaag cgcccttgat acccatgatg aagtgacgac agctagagtc 240 ataaaacgag acgaaaacaa aaaccgccaa ttgactgttc tcgcgggcga ttatttcagc 300 gggctgtact actctttact atctgaaatg aaggatatct acatgattcg gacgcttgct 360 acagccatta aagaaatcaa cgaacataaa attcgtctgt atgaccgttc tttcaaggac 420 gaaaacgatt ttttcgaaag tgtcggcatc gttgaatcag ctttattcca tcgtgtggcg 480 gaacacttca gcctcccgcg ctggaaaaag ctgtcgagtg atttttttgt atttaagcgg 540 cttatgaacg gaaatgatgc atttctggat gtgatcggca gttttataca gctgggaaaa 600 acaaaagaag agatattaga agattgtttt aaaaaagcga aaaacagcat tgagtcactt 660 ctgcctctaa attcacctat tcagaacatt ttaataaacc gtctgaagac aatcagccaa 720 gatcaaacct atcatcagaa agtggaagaa ggg 753 <210> 3 <211> 348 <212> PRT <213> Bacillus subtilis subsp. natto <400> 3 Met Leu Asn Ile Ile Arg Leu Leu Ala Glu Ser Leu Pro Arg Ile Ser 1 5 10 15 Asp Gly Asn Glu Asn Thr Asp Val Trp Val Asn Asp Met Lys Phe Lys 20 25 30 Met Ala Tyr Ser Phe Leu Asn Asp Asp Ile Asp Val Ile Glu Arg Glu 35 40 45 Leu Glu Gln Thr Val Arg Ser Asp Tyr Pro Leu Leu Ser Glu Ala Gly 50 55 60 Leu His Leu Leu Gln Ala Gly Gly Lys Arg Ile Arg Pro Val Phe Val 65 70 75 80 Leu Leu Ser Gly Met Phe Gly Asp Tyr Asp Ile Asn Lys Ile Lys Tyr 85 90 95 Val Ala Val Thr Leu Glu Met Ile His Met Ala Ser Leu Val His Asp 100 105 110 Asp Val Ile Asp Asp Ala Glu Leu Arg Arg Gly Lys Pro Thr Ile Lys 115 120 125 Ala Lys Trp Asp Asn Arg Ile Ala Met Tyr Thr Gly Asp Tyr Met Leu 130 135 140 Ala Gly Ser Leu Glu Met Met Thr Arg Ile Asn Glu Pro Lys Ala His 145 150 155 160 Arg Ile Leu Ser Gln Thr Ile Val Glu Val Cys Leu Gly Glu Ile Glu 165 170 175 Gln Ile Lys Asp Lys Tyr Asn Met Glu Gln Asn Leu Arg Thr Tyr Leu 180 185 190 Arg Arg Ile Lys Arg Lys Thr Ala Leu Leu Ile Ala Val Ser Cys Gln 195 200 205 Leu Gly Ala Ile Ala Ser Gly Ala Asp Glu Lys Ile His Lys Ala Leu 210 215 220 Tyr Trp Phe Gly Tyr Tyr Val Gly Met Ser Tyr Gln Ile Ile Asp Asp 225 230 235 240 Ile Leu Asp Phe Thr Ser Thr Glu Glu Glu Leu Gly Lys Pro Val Gly 245 250 255 Gly Asp Leu Leu Gln Gly Asn Val Thr Leu Pro Val Leu Tyr Ala Leu 260 265 270 Lys Asn Pro Ala Leu Lys Asn Gln Leu Lys Leu Ile Asn Ser Glu Thr 275 280 285 Thr Gln Glu Gln Leu Glu Pro Ile Ile Glu Glu Ile Lys Lys Thr Asp 290 295 300 Ala Ile Glu Ala Ser Met Ala Val Ser Glu Met Tyr Leu Gln Lys Ala 305 310 315 320 Phe Gln Lys Leu Asn Thr Leu Pro Arg Gly Arg Ala Arg Ser Ser Leu 325 330 335 Ala Ala Ile Ala Lys Tyr Ile Gly Lys Arg Lys Phe 340 345 <210> 4 <211> 1044 <212> DNA <213> Bacillus subtilis subsp. natto <400> 4 atgttaaata tcattcgttt actggcggag tcgctgccac gcatatcgga tggaaatgaa 60 aacacagatg tttgggtgaa tgatatgaaa tttaaaatgg cctactcttt tttaaatgac 120 gatattgatg taatcgaaag agaacttgaa caaaccgtac gttccgatta cccgctttta 180 agcgaggcag gtcttcacct gctgcaggcc ggagggaaac gtattcgtcc tgttttcgtg 240 ctgctttctg gcatgtttgg cgattacgat attaataaga ttaaatatgt cgccgtcact 300 ctggaaatga ttcacatggc atctttggtt catgatgatg tcattgatga tgcagagctt 360 cgccgaggaa aaccgacaat caaagcaaag tgggacaatc gtattgcgat gtacacaggc 420 gattatatgc ttgcgggatc tcttgaaatg atgacgagaa ttaacgaacc gaaagcccat 480 aggattttgt cacagacgat cgttgaagtt tgtctagggg aaattgagca gatcaaagac 540 aaatataaca tggaacaaaa tctcagaacg tatctccgcc gtatcaaaag aaaaacagct 600 ctcttgatcg cggtcagctg ccagcttggt gccattgcgt ctggagctga tgagaagatt 660 cataaggcat tgtactggtt tgggtattac gtcggcatgt cttatcagat tattgatgat 720 attcttgatt ttacttcaac tgaagaagag ctgggtaaac ccgttggagg agatttgctt 780 caaggaaacg tcacattgcc agtgctgtat gccctgaaaa atcctgcatt aaaaaaccag 840 cttaaattga ttaacagtga gacaacgcag gagcagcttg aaccaatcat tgaagaaatc 900 aaaaaaacag atgcaattga agcatctatg gcagtaagcg aaatgtatct gcagaaagct 960 tttcagaaat taaacacgct tccacgaggg cgcgcacgct cgtctcttgc agccatcgca 1020 aaatatatcg gtaaaagaaa attt 1044 <210> 5 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 catggaattc aaggaggtga tatttatgca agacatctac ggaac 45 <210> 6 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tccttggtac ctccggatca ttaaaatttt cttttaccga tatat 45 <210> 7 <211> 311 <212> PRT <213> Bacillus subtilis subsp. natto <400> 7 Met Asn Gln Thr Asn Lys Gly Glu Gly Gln Thr Ala Pro Gln Lys Glu 1 5 10 15 Ser Met Gly Gln Ile Leu Trp Gln Leu Thr Arg Pro His Thr Leu Thr 20 25 30 Ala Ser Phe Val Pro Val Leu Leu Gly Thr Val Leu Ala Met Phe Tyr 35 40 45 Val Lys Val Asp Leu Leu Leu Phe Leu Ala Met Leu Phe Ser Cys Leu 50 55 60 Trp Ile Gln Ile Ala Thr Asn Leu Phe Asn Glu Tyr Tyr Asp Phe Lys 65 70 75 80 Arg Gly Leu Asp Thr Ala Glu Ser Val Gly Ile Gly Gly Ala Ile Val 85 90 95 Arg His Gly Met Lys Pro Lys Thr Ile Leu Gln Leu Ala Leu Ala Ser 100 105 110 Tyr Gly Ile Ala Ile Leu Leu Gly Val Tyr Ile Cys Ala Ser Ser Ser 115 120 125 Trp Trp Leu Ala Leu Ile Gly Leu Val Gly Met Ala Ile Gly Tyr Leu 130 135 140 Tyr Thr Gly Gly Pro Leu Pro Ile Ala Tyr Thr Pro Phe Gly Glu Leu 145 150 155 160 Phe Ser Gly Ile Cys Met Gly Ser Val Phe Val Leu Ile Ser Phe Phe 165 170 175 Ile Gln Thr Asp Met Ile Asn Thr Gln Ser Ile Leu Ile Ser Ile Pro 180 185 190 Ile Ala Ile Leu Val Gly Ala Ile Asn Leu Ser Asn Asn Ile Arg Asp 195 200 205 Ile Glu Glu Asp Lys Lys Gly Gly Arg Lys Thr Leu Ala Ile Leu Met 210 215 220 Gly His Lys Gly Ala Val Thr Leu Leu Ala Ala Ser Phe Ala Val Ala 225 230 235 240 Tyr Ile Trp Val Val Gly Leu Val Ile Thr Gly Ala Ala Ser Pro Trp 245 250 255 Leu Phe Val Val Phe Leu Ser Val Pro Lys Pro Val Gln Ala Val Lys 260 265 270 Gly Phe Val Gln Lys Glu Met Pro Met Asn Met Ile Val Ala Met Lys 275 280 285 Ser Thr Ala Gln Thr Asn Thr Phe Phe Gly Phe Leu Leu Ser Ile Gly 290 295 300 Leu Leu Ile Ser Tyr Phe Arg 305 310 <210> 8 <211> 933 <212> DNA <213> Bacillus subtilis subsp. natto <400> 8 atgaaccaaa caaataaggg tgagggtcag acagcgccgc aaaaagaaag catggggcag 60 atcctttggc agttaacccg tcctcatacg ttaaccgcat cgtttgtgcc tgtgctgctc 120 ggaaccgttt tggcgatgtt ttatgtgaag gttgatctgc tgctgttttt ggctatgctg 180 ttttcttgcc tatggattca gatcgcgacg aacttattta atgaatatta tgattttaaa 240 cgcggattag atacagcaga atcagtcgga atcggagggg caattgtacg ccacggaatg 300 aagcctaaaa cgattttgca attagctctg gcatcatacg ggattgccat tttgctcggt 360 gtctatattt gtgcgagcag cagctggtgg cttgcgctga tcggccttgt cggcatggcg 420 atcggctacc tgtatacagg cgggccgctg ccgattgcgt acacgccgtt cggtgaatta 480 ttctcaggca tttgcatggg ttcggtgttt gtgctgattt cgtttttcat tcagacagat 540 atgatcaaca cgcaaagcat tttgatttcc atcccgattg cgattcttgt cggcgcgatt 600 aatttgtcaa acaacattcg cgatattgaa gaggacaaaa aaggcggccg caaaacattg 660 gcgattttga tggggcataa gggagctgtt actctgttag ctgcgtcgtt tgccgtcgct 720 tatatctggg ttgtcggctt ggttattacc ggtgccgcaa gcccatggct gtttgtcgtc 780 tttttgagcg tgcctaagcc ggttcaggca gtgaagggct tcgtccaaaa agaaatgccg 840 atgaatatga ttgtcgcaat gaaatcaaca gcccaaacaa atacattttt cggattcctg 900 ctttcgatcg gattattgat cagctatttc cga 933 <210> 9 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cggaggtacc aaggaggagc tcaagatgaa ccaaacaaat aagggtg 47 <210> 10 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tctagaacct cctgtacgag ctcattatcg gaaatagctg atcaataatc 50 <210> 11 <211> 233 <212> PRT <213> Bacillus subtilis subsp. natto <400> 11 Met Gln Asp Ser Lys Glu Gln Arg Val His Gly Val Phe Glu Lys Ile 1 5 10 15 Tyr Lys Asn Tyr Asp Gln Met Asn Ser Val Ile Ser Phe Gln Gln His 20 25 30 Lys Lys Trp Arg Asp Lys Thr Met Arg Ile Met Asn Val Lys Glu Gly 35 40 45 Ala Lys Ala Leu Asp Val Cys Cys Gly Thr Ala Asp Trp Thr Ile Ala 50 55 60 Leu Ala Lys Ala Ala Gly Lys Ser Gly Glu Ile Lys Gly Leu Asp Phe 65 70 75 80 Ser Glu Asn Met Leu Ser Val Gly Glu Gln Lys Val Lys Asp Gly Gly 85 90 95 Phe Ser Gln Ile Glu Leu Leu His Gly Asn Ala Met Glu Leu Pro Phe 100 105 110 Asp Asp Asp Thr Phe Asp Tyr Val Thr Ile Gly Phe Gly Leu Arg Asn 115 120 125 Val Pro Asp Tyr Leu Thr Val Leu Lys Glu Met Arg Arg Val Val Lys 130 135 140 Pro Gly Gly Gln Val Val Cys Leu Glu Thr Ser Gln Pro Glu Met Ile 145 150 155 160 Gly Phe Arg Gln Ala Tyr Phe Met Tyr Phe Lys Tyr Ile Met Pro Phe 165 170 175 Phe Gly Lys Leu Phe Ala Lys Ser Tyr Lys Glu Tyr Ser Trp Leu Gln 180 185 190 Glu Ser Ala Arg Asp Phe Pro Gly Met Lys Glu Leu Ala Gly Leu Phe 195 200 205 Glu Glu Ala Gly Leu Lys Asn Val Lys Tyr His Ser Phe Thr Gly Gly 210 215 220 Val Ala Ala Thr His Ile Gly Trp Lys 225 230 <210> 12 <211> 699 <212> DNA <213> Bacillus subtilis subsp. natto <400> 12 atgcaggact caaaagaaca gcgcgtacac ggagtatttg aaaaaatata taaaaactat 60 gaccaaatga actctgtcat cagttttcag cagcataaaa aatggcgcga taaaacgatg 120 cgcatcatga atgtaaaaga aggcgcaaaa gcacttgatg tctgctgcgg aacggctgac 180 tggacgatcg ctcttgcaaa agcggccggc aaaagcggcg agatcaaggg cttggatttc 240 agtgaaaata tgctgagtgt cggcgagcag aaagtaaaag acggcggatt cagccaaatt 300 gaactgctgc acggaaatgc gatggagctt ccttttgatg atgatacatt tgattatgtc 360 accattggct tcgggctccg caatgtccct gattacttga ctgtactgaa agagatgaga 420 cgtgtagtga agccgggcgg gcaggtggta tgtctggaaa cgtcccagcc ggaaatgatc 480 ggattcagac aggcttactt tatgtacttt aagtatatta tgccgttttt cgggaaactg 540 tttgcgaaga gctataaaga atattcttgg cttcaagaat cagccagaga tttccctgga 600 atgaaggaac tggcaggcct gtttgaagag gcgggcctga aaaatgttaa atatcattcg 660 tttactggcg gagtcgctgc cacgcatatc ggatggaaa 699 <210> 13 <211> 176 <212> PRT <213> Bacillus subtilis subsp. natto <400> 13 Met Lys Ile Tyr Val Val Tyr Asp Ser Glu Gly Glu His Thr Lys Val 1 5 10 15 Leu Ala Glu Ala Ile Ala Glu Gly Ala Arg Glu Asn Gly Ala Ala Glu 20 25 30 Val Phe Ile Asp His Val Asp Gln Ala Asp Ile Arg Lys Leu Lys Asp 35 40 45 Met Asp Ala Ile Ile Trp Gly Cys Pro Gly His Phe Gly Thr Ile Ser 50 55 60 Ser Gly Leu Lys Thr Trp Ile Asp Arg Leu Gly Tyr Leu Trp Ala Glu 65 70 75 80 Gly Glu Leu Ile Asn Lys Val Gly Ala Val Phe Cys Thr Thr Ala Thr 85 90 95 Thr His Gly Gly Leu Glu Met Thr Met His Asn Leu Ile Thr Pro Met 100 105 110 Phe His Gln Gly Met Ile Val Val Gly Leu Pro Gly Asn Val Pro Glu 115 120 125 Asn Ala Leu Tyr Gly Ser Tyr Tyr Gly Ala Gly Val Thr Cys Pro Val 130 135 140 Asp Ser Asp Glu Leu Met Ser Glu Glu Gly Ile Gln Leu Gly Arg Ala 145 150 155 160 Leu Gly Arg Arg Val Ser Gln Val Thr Gly Asn Leu Thr Ala Gly Gln 165 170 175 <210> 14 <211> 528 <212> DNA <213> Bacillus subtilis subsp. natto <400> 14 atgaaaattt atgtagtgta tgatagtgaa ggcgaacata ctaaagtgct tgcagaagcg 60 attgctgaag gcgcgagaga aaacggcgcg gctgaagtgt tcatcgacca tgtagatcag 120 gctgatatcc gcaagcttaa agatatggat gcgattattt ggggatgccc agggcatttc 180 ggaacaatca gctccggtct taaaacttgg atcgacagac ttggctactt gtgggctgaa 240 ggcgagctga tcaacaaagt cggtgctgtc ttctgcacaa cggcaacaac acacggcggc 300 ttggaaatga caatgcacaa tttaatcacg ccgatgttcc accaaggcat gattgttgtc 360 ggactgcctg ggaacgtgcc tgaaaacgca ctttatggct cttattacgg agcaggtgtc 420 acttgtccgg tagacagtga tgagttaatg tctgaggaag gtattcagct tggacgcgcg 480 ttgggaagac gtgtcagcca agtcacagga aacctaacag caggacag 528 <210> 15 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 aatgagctcg tacaggaggt tctagaatga aaatttatgt agtgtatg 48 <210> 16 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tgcaggtcga ctctagatta ctgtcctgct gttaggtttc c 41 <210> 17 <211> 803 <212> PRT <213> Enterococcus faecalis <400> 17 Met Lys Thr Val Val Ile Ile Asp Ala Leu Arg Thr Pro Ile Gly Lys 1 5 10 15 Tyr Lys Gly Ser Leu Ser Gln Val Ser Ala Val Asp Leu Gly Thr His 20 25 30 Val Thr Thr Gln Leu Leu Lys Arg His Ser Thr Ile Ser Glu Glu Ile 35 40 45 Asp Gln Val Ile Phe Gly Asn Val Leu Gln Ala Gly Asn Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ile Ala Ile Asn Ser Gly Leu Ser His Glu Ile Pro 65 70 75 80 Ala Met Thr Val Asn Glu Val Cys Gly Ser Gly Met Lys Ala Val Ile 85 90 95 Leu Ala Lys Gln Leu Ile Gln Leu Gly Glu Ala Glu Val Leu Ile Ala 100 105 110 Gly Gly Ile Glu Asn Met Ser Gln Ala Pro Lys Leu Gln Arg Phe Asn 115 120 125 Tyr Glu Thr Glu Ser Tyr Asp Ala Pro Phe Ser Ser Met Met Tyr Asp 130 135 140 Gly Leu Thr Asp Ala Phe Ser Gly Gln Ala Met Gly Leu Thr Ala Glu 145 150 155 160 Asn Val Ala Glu Lys Tyr His Val Thr Arg Glu Glu Gln Asp Gln Phe 165 170 175 Ser Val His Ser Gln Leu Lys Ala Ala Gln Ala Gln Ala Glu Gly Ile 180 185 190 Phe Ala Asp Glu Ile Ala Pro Leu Glu Val Ser Gly Thr Leu Val Glu 195 200 205 Lys Asp Glu Gly Ile Arg Pro Asn Ser Ser Val Glu Lys Leu Gly Thr 210 215 220 Leu Lys Thr Val Phe Lys Glu Asp Gly Thr Val Thr Ala Gly Asn Ala 225 230 235 240 Ser Thr Ile Asn Asp Gly Ala Ser Ala Leu Ile Ile Ala Ser Gln Glu 245 250 255 Tyr Ala Glu Ala His Gly Leu Pro Tyr Leu Ala Ile Ile Arg Asp Ser 260 265 270 Val Glu Val Gly Ile Asp Pro Ala Tyr Met Gly Ile Ser Pro Ile Lys 275 280 285 Ala Ile Gln Lys Leu Leu Ala Arg Asn Gln Leu Thr Thr Glu Glu Ile 290 295 300 Asp Leu Tyr Glu Ile Asn Glu Ala Phe Ala Ala Thr Ser Ile Val Val 305 310 315 320 Gln Arg Glu Leu Ala Leu Pro Glu Glu Lys Val Asn Ile Tyr Gly Gly 325 330 335 Gly Ile Ser Leu Gly His Ala Ile Gly Ala Thr Gly Ala Arg Leu Leu 340 345 350 Thr Ser Leu Ser Tyr Gln Leu Asn Gln Lys Glu Lys Lys Tyr Gly Val 355 360 365 Ala Ser Leu Cys Ile Gly Gly Gly Leu Gly Leu Ala Met Leu Leu Glu 370 375 380 Arg Pro Gln Gln Lys Lys Asn Ser Arg Phe Tyr Gln Met Ser Pro Glu 385 390 395 400 Glu Arg Leu Ala Ser Leu Leu Asn Glu Gly Gln Ile Ser Ala Asp Thr 405 410 415 Lys Lys Glu Phe Glu Asn Thr Ala Leu Ser Ser Gln Ile Ala Asn His 420 425 430 Met Ile Glu Asn Gln Ile Ser Glu Thr Glu Val Pro Met Gly Val Gly 435 440 445 Leu His Leu Thr Val Asp Glu Thr Asp Tyr Leu Val Pro Met Ala Thr 450 455 460 Glu Glu Pro Ser Val Ile Ala Ala Leu Ser Asn Gly Ala Lys Ile Ala 465 470 475 480 Gln Gly Phe Lys Thr Val Asn Gln Gln Arg Leu Met Arg Gly Gln Ile 485 490 495 Val Phe Tyr Asp Val Ala Asp Pro Glu Ser Leu Ile Asp Lys Leu Gln 500 505 510 Val Arg Glu Ala Glu Ile Phe Gln Gln Ala Glu Leu Ser Tyr Pro Ser 515 520 525 Ile Val Lys Arg Gly Gly Gly Leu Arg Asp Leu Gln Tyr Arg Thr Phe 530 535 540 Asp Glu Ser Phe Val Ser Val Asp Phe Leu Val Asp Val Lys Asp Ala 545 550 555 560 Met Gly Ala Asn Ile Val Asn Ala Met Leu Glu Gly Val Ala Glu Leu 565 570 575 Phe Arg Glu Trp Phe Ala Glu Gln Lys Ile Leu Phe Ser Ile Leu Ser 580 585 590 Asn Tyr Ala Thr Glu Ser Val Val Thr Met Lys Thr Ala Ile Pro Val 595 600 605 Ser Arg Leu Ser Lys Gly Ser Asn Gly Arg Glu Ile Ala Glu Lys Ile 610 615 620 Val Leu Ala Ser Arg Tyr Ala Ser Leu Asp Pro Tyr Arg Ala Val Thr 625 630 635 640 His Asn Lys Gly Ile Met Asn Gly Ile Glu Ala Val Val Leu Ala Thr 645 650 655 Gly Asn Asp Thr Arg Ala Val Ser Ala Ser Cys His Ala Phe Ala Val 660 665 670 Lys Glu Gly Arg Tyr Gln Gly Leu Thr Ser Trp Thr Leu Asp Gly Glu 675 680 685 Gln Leu Ile Gly Glu Ile Ser Val Pro Leu Ala Leu Ala Thr Val Gly 690 695 700 Gly Ala Thr Lys Val Leu Pro Lys Ser Gln Ala Ala Ala Asp Leu Leu 705 710 715 720 Ala Val Thr Asp Ala Lys Glu Leu Ser Arg Val Val Ala Ala Val Gly 725 730 735 Leu Ala Gln Asn Leu Ala Ala Leu Arg Ala Leu Val Ser Glu Gly Ile 740 745 750 Gln Lys Gly His Met Ala Leu Gln Ala Arg Ser Leu Ala Met Thr Val 755 760 765 Gly Ala Thr Gly Lys Glu Val Glu Ala Val Ala Gln Gln Leu Lys Arg 770 775 780 Gln Lys Thr Met Asn Gln Asp Arg Ala Leu Ala Ile Leu Asn Asp Leu 785 790 795 800 Arg Lys Gln <210> 18 <211> 2409 <212> DNA <213> Enterococcus faecalis <400> 18 atgaaaacag tagttattat tgatgcatta cgaacaccaa ttggaaaata taaaggcagc 60 ttaagtcaag taagtgccgt agacttagga acacatgtta caacacaact tttaaaaaga 120 cattccacta tttctgaaga aattgatcaa gtaatctttg gaaatgtttt acaagctgga 180 aatggccaaa atcccgcacg acaaatagca ataaacagcg gtttgtctca tgaaattccc 240 gcaatgacgg ttaatgaggt ctgcggatca ggaatgaagg ccgttatttt ggcgaaacaa 300 ttgattcaat taggagaagc ggaagtttta attgctggtg ggattgagaa tatgtcccaa 360 gcacctaaat tacaacgatt taattacgaa acagaaagct acgatgcgcc tttttctagt 420 atgatgtacg atgggttaac ggatgccttt agtggtcagg caatgggctt aactgctgaa 480 aatgtggccg aaaagtatca tgtaactaga gaagagcaag atcaattttc tgtacattca 540 caattaaaag cagctcaagc acaagcagaa gggatattcg ctgacgaaat agccccatta 600 gaagtgtcag gaacgcttgt ggagaaagat gaagggattc gccctaattc gagcgttgag 660 aagctaggaa cgcttaaaac agtttttaaa gaagacggta ctgtaacagc agggaatgca 720 tcaaccatta atgatggggc ttctgctttg attattgctt cacaagaata tgccgaagca 780 cacggtcttc cttatttagc tattattcga gacagtgtgg aagtcggtat tgatccagcc 840 tatatgggaa tttcgccgat taaagccatt caaaaactgt tagcgcggaa tcaacttact 900 acggaagaaa ttgatctgta tgaaatcaac gaagcatttg cagcaacttc aatcgtggtc 960 caaagagaac tggctttacc agaggaaaag gtcaacattt atggtggcgg tatttcatta 1020 ggtcatgcga ttggtgccac aggtgctcgt ttattaacga gtttaagtta tcaattaaat 1080 caaaaagaaa agaaatatgg cgtggcttct ttatgtatcg gcggtggctt aggactcgct 1140 atgctactag agagacctca gcaaaaaaaa aacagccgat tttatcaaat gagtcctgag 1200 gaacgcctgg cttctcttct taatgaaggc cagatttctg ctgatacaaa aaaagaattt 1260 gaaaatacgg ctttatcttc gcagattgcc aatcatatga ttgaaaatca aatcagtgaa 1320 acagaagtgc cgatgggcgt tggcttacat ttaacagtgg acgaaactga ttatttggta 1380 ccaatggcga cagaagagcc ctcagtgatt gcggctttga gtaatggtgc aaaaatagca 1440 caaggattta aaacagtgaa tcaacaacgc ttaatgcgtg gacaaatcgt tttttacgat 1500 gttgcagatc ccgagtcatt gattgataaa ctacaagtaa gagaagcgga aatttttcaa 1560 caagcagagt taagttatcc atctatcgtt aaacggggcg gcggcttaag agatttgcaa 1620 tatcgtactt ttgatgaatc gtttgtatct gtcgactttt tagtagatgt taaggatgca 1680 atgggggcaa atatcgttaa cgctatgttg gaaggtgtgg ccgagttgtt ccgtgaatgg 1740 tttgcggagc aaaagatttt attcagtatt ttaagtaatt atgccacgga gtcggttgtt 1800 acgatgaaaa cggctattcc agtttcacgt ttaagtaagg ggagcaatgg ccgggaaatt 1860 gctgaaaaaa ttgttttagc ttcacgctat gcttcattag atccttatcg ggcagtcacg 1920 cataacaaag ggatcatgaa tggcattgaa gctgtagttt tagctacagg aaatgataca 1980 cgcgctgtta gcgcttcttg tcatgctttt gcggtgaagg aaggtcgcta ccaaggcttg 2040 actagttgga cgctggatgg cgaacaacta attggtgaaa tttcagttcc gcttgcgtta 2100 gccacggttg gcggtgccac aaaagtcttg cctaaatctc aagcagccgc tgatttgtta 2160 gcagtgacgg atgcaaaaga actaagtcga gtagtagcgg ctgttggttt ggcccaaaat 2220 ttagcggcgt tacgggcctt agtctctgaa ggcattcaaa aaggacacat ggctctacaa 2280 gcacgttctt tagcgatgac ggtcggagct actggtaaag aagttgaggc agtcgctcaa 2340 caattaaaac gtcaaaaaac gatgaaccaa gaccgagcct tggctatttt aaatgattta 2400 agaaaacaa 2409 <210> 19 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 aatctagatt tgataaacag gtataaggag gtattttatg aaaacagtag ttattattg 59 <210> 20 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cataaaaata cctccttatt attgttttct taaatcattt aaaat 45 <210> 21 <211> 383 <212> PRT <213> Enterococcus faecalis <400> 21 Met Thr Ile Gly Ile Asp Lys Ile Ser Phe Phe Val Pro Pro Tyr Tyr 1 5 10 15 Ile Asp Met Thr Ala Leu Ala Glu Ala Arg Asn Val Asp Pro Gly Lys 20 25 30 Phe His Ile Gly Ile Gly Gln Asp Gln Met Ala Val Asn Pro Ile Ser 35 40 45 Gln Asp Ile Val Thr Phe Ala Ala Asn Ala Ala Glu Ala Ile Leu Thr 50 55 60 Lys Glu Asp Lys Glu Ala Ile Asp Met Val Ile Val Gly Thr Glu Ser 65 70 75 80 Ser Ile Asp Glu Ser Lys Ala Ala Ala Val Val Leu His Arg Leu Met 85 90 95 Gly Ile Gln Pro Phe Ala Arg Ser Phe Glu Ile Lys Glu Ala Cys Tyr 100 105 110 Gly Ala Thr Ala Gly Leu Gln Leu Ala Lys Asn His Val Ala Leu His 115 120 125 Pro Asp Lys Lys Val Leu Val Val Ala Ala Asp Ile Ala Lys Tyr Gly 130 135 140 Leu Asn Ser Gly Gly Glu Pro Thr Gln Gly Ala Gly Ala Val Ala Met 145 150 155 160 Leu Val Ala Ser Glu Pro Arg Ile Leu Ala Leu Lys Glu Asp Asn Val 165 170 175 Met Leu Thr Gln Asp Ile Tyr Asp Phe Trp Arg Pro Thr Gly His Pro 180 185 190 Tyr Pro Met Val Asp Gly Pro Leu Ser Asn Glu Thr Tyr Ile Gln Ser 195 200 205 Phe Ala Gln Val Trp Asp Glu His Lys Lys Arg Thr Gly Leu Asp Phe 210 215 220 Ala Asp Tyr Asp Ala Leu Ala Phe His Ile Pro Tyr Thr Lys Met Gly 225 230 235 240 Lys Lys Ala Leu Leu Ala Lys Ile Ser Asp Gln Thr Glu Ala Glu Gln 245 250 255 Glu Arg Ile Leu Ala Arg Tyr Glu Glu Ser Ile Ile Tyr Ser Arg Arg 260 265 270 Val Gly Asn Leu Tyr Thr Gly Ser Leu Tyr Leu Gly Leu Ile Ser Leu 275 280 285 Leu Glu Asn Ala Thr Thr Leu Thr Ala Gly Asn Gln Ile Gly Leu Phe 290 295 300 Ser Tyr Gly Ser Gly Ala Val Ala Glu Phe Phe Thr Gly Glu Leu Val 305 310 315 320 Ala Gly Tyr Gln Asn His Leu Gln Lys Glu Thr His Leu Ala Leu Leu 325 330 335 Asp Asn Arg Thr Glu Leu Ser Ile Ala Glu Tyr Glu Ala Met Phe Ala 340 345 350 Glu Thr Leu Asp Thr Asp Ile Asp Gln Thr Leu Glu Asp Glu Leu Lys 355 360 365 Tyr Ser Ile Ser Ala Ile Asn Asn Thr Val Arg Ser Tyr Arg Asn 370 375 380 <210> 22 <211> 1149 <212> DNA <213> Enterococcus faecalis <400> 22 atgacaattg ggattgataa aattagtttt tttgtgcccc cttattatat tgatatgacg 60 gcactggctg aagccagaaa tgtagaccct ggaaaatttc atattggtat tgggcaagac 120 caaatggcgg tgaacccaat cagccaagat attgtgacat ttgcagccaa tgccgcagaa 180 gcgatcttga ccaaagaaga taaagaggcc attgatatgg tgattgtcgg gactgagtcc 240 agtatcgatg agtcaaaagc ggccgcagtt gtcttacatc gtttaatggg gattcaacct 300 ttcgctcgct ctttcgaaat caaggaagct tgttacggag caacagcagg cttacagtta 360 gctaagaatc acgtagcctt acatccagat aaaaaagtct tggtcgtagc agcagatatt 420 gcaaaatatg gcttaaattc tggcggtgag cctacacaag gagctggggc ggttgcaatg 480 ttagttgcta gtgaaccgcg cattttggct ttaaaagagg ataatgtgat gctgacgcaa 540 gatatctatg acttttggcg tccaacaggc catccatatc ctatggtcga tggtcctttg 600 tcaaacgaaa cctacatcca atcttttgcc caagtctggg atgaacataa aaaacgaacc 660 ggtcttgatt ttgcagatta tgatgcttta gcgttccata ttccttacac aaaaatgggc 720 aaaaaagcct tattagcaaa aatctccgac caaactgaag cagaacagga acgaatttta 780 gcccgttatg aagaaagcat catctatagt cgtcgcgtag gaaacttgta tacgggttca 840 ctttatctgg gactcatttc ccttttagaa aatgcaacga ctttaaccgc aggcaatcaa 900 attgggttat tcagttatgg ttctggtgct gtcgctgaat ttttcactgg tgaattagta 960 gctggttatc aaaatcattt acaaaaagaa actcatttag cactgctgga taatcggaca 1020 gaactttcta tcgctgaata tgaagccatg tttgcagaaa ctttagacac agacattgat 1080 caaacgttag aagatgaatt aaaatatagt atttctgcta ttaataatac cgttcgctct 1140 tatcgaaac 1149 <210> 23 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 caataataag gaggtatttt tatgacaatt gggattgata aaatt 45 <210> 24 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gcatgcctgc aggtcgactt agtttcgata agagcgaacg gtat 44 <210> 25 <211> 292 <212> PRT <213> Streptococcus pneumoniae <400> 25 Met Thr Lys Lys Val Gly Val Gly Gln Ala His Ser Lys Ile Ile Leu 1 5 10 15 Ile Gly Glu His Ala Val Val Tyr Gly Tyr Pro Ala Ile Ser Leu Pro 20 25 30 Leu Leu Glu Val Glu Val Thr Cys Lys Val Val Pro Ala Glu Ser Pro 35 40 45 Trp Arg Leu Tyr Glu Glu Asp Thr Leu Ser Met Ala Val Tyr Ala Ser 50 55 60 Leu Glu Tyr Leu Asn Ile Thr Glu Ala Cys Ile Arg Cys Glu Ile Asp 65 70 75 80 Ser Ala Ile Pro Glu Lys Arg Gly Met Gly Ser Ser Ala Ala Ile Ser 85 90 95 Ile Ala Ala Ile Arg Ala Val Phe Asp Tyr Tyr Gln Ala Asp Leu Pro 100 105 110 His Asp Val Leu Glu Ile Leu Val Asn Arg Ala Glu Met Ile Ala His 115 120 125 Met Asn Pro Ser Gly Leu Asp Ala Lys Thr Cys Leu Ser Asp Gln Pro 130 135 140 Ile Arg Phe Ile Lys Asn Val Gly Phe Thr Glu Leu Glu Met Asp Leu 145 150 155 160 Ser Ala Tyr Leu Val Ile Ala Asp Thr Gly Val Tyr Gly His Thr Arg 165 170 175 Glu Ala Ile Gln Val Val Gln Asn Lys Gly Lys Asp Ala Leu Pro Phe 180 185 190 Leu His Ala Leu Gly Glu Leu Thr Gln Gln Ala Glu Val Ala Ile Ser 195 200 205 Gln Lys Asp Ala Glu Gly Leu Gly Gln Ile Leu Ser Gln Ala His Leu 210 215 220 His Leu Lys Glu Ile Gly Val Ser Ser Pro Glu Ala Asp Phe Leu Val 225 230 235 240 Glu Thr Thr Leu Ser His Gly Ala Leu Gly Ala Lys Met Ser Gly Gly 245 250 255 Gly Leu Gly Gly Cys Ile Ile Ala Leu Val Thr Asn Leu Thr His Ala 260 265 270 Gln Glu Leu Ala Glu Arg Leu Glu Glu Lys Gly Ala Val Gln Thr Trp 275 280 285 Ile Glu Ser Leu 290 <210> 26 <211> 876 <212> DNA <213> Streptococcus pneumoniae <400> 26 atgacaaaaa aagttggtgt cggtcaggca catagtaaga taattttaat aggggaacat 60 gcggtcgttt acggttatcc tgccatttcc ctgcctcttt tggaggtgga ggtgacctgt 120 aaggtagttc ctgcagagag tccttggcgc ctttatgagg aggatacctt gtccatggcg 180 gtttatgcct cactggagta tttgaatatc acagaagcct gcattcgttg tgagattgac 240 tcggctatcc ctgagaaacg ggggatgggt tcgtcagcgg ctatcagcat agcggccatt 300 cgtgcagtat ttgactacta tcaggctgat ctgcctcatg atgtactaga aatcttggtc 360 aatcgagctg aaatgattgc ccatatgaat cctagtggtt tggatgctaa gacctgtctt 420 agtgaccaac ctattcgctt tatcaagaac gtaggattta cagaacttga gatggattta 480 tccgcctatt tggtgattgc cgatacgggt gtttatggtc atactcgtga agccatccaa 540 gtggttcaaa ataagggcaa ggatgcccta ccgtttttgc atgccttggg agaattaacc 600 cagcaagcag aagttgcgat ttcacaaaaa gatgctgaag gactgggaca aatcctcagt 660 caagcgcatt tacatttaaa agaaattgga gtcagtagcc ctgaggcaga ctttttggtt 720 gaaacgactc ttagccatgg tgctctgggt gccaagatga gcggtggtgg gctaggaggt 780 tgtatcatag ccttggtaac caatttgaca cacgcacaag aactagcaga aagattagaa 840 gagaaaggag ctgttcagac atggatagag agcctg 876 <210> 27 <211> 335 <212> PRT <213> Streptococcus pneumoniae <400> 27 Met Ile Ala Val Lys Thr Cys Gly Lys Leu Tyr Trp Ala Gly Glu Tyr 1 5 10 15 Ala Ile Leu Glu Pro Gly Gln Leu Ala Leu Ile Lys Asp Ile Pro Ile 20 25 30 Tyr Met Arg Ala Glu Ile Ala Phe Ser Asp Ser Tyr Arg Ile Tyr Ser 35 40 45 Asp Met Phe Asp Phe Ala Val Asp Leu Arg Pro Asn Pro Asp Tyr Ser 50 55 60 Leu Ile Gln Glu Thr Ile Ala Leu Met Gly Asp Phe Leu Ala Val Arg 65 70 75 80 Gly Gln Asn Leu Arg Pro Phe Ser Leu Lys Ile Cys Gly Lys Met Glu 85 90 95 Arg Glu Gly Lys Lys Phe Gly Leu Gly Ser Ser Gly Ser Val Val Val 100 105 110 Leu Val Val Lys Ala Leu Leu Ala Leu Tyr Asn Leu Ser Val Asp Gln 115 120 125 Asn Leu Leu Phe Lys Leu Thr Ser Ala Val Leu Leu Lys Arg Gly Asp 130 135 140 Asn Gly Ser Met Gly Asp Leu Ala Cys Ile Val Ala Glu Asp Leu Val 145 150 155 160 Val Tyr Gln Ser Phe Asp Arg Gln Lys Ala Ala Ala Trp Leu Glu Glu 165 170 175 Glu Asn Leu Ala Thr Val Leu Glu Arg Asp Trp Gly Phe Phe Ile Ser 180 185 190 Gln Val Lys Pro Thr Leu Glu Cys Asp Phe Leu Val Gly Trp Thr Lys 195 200 205 Glu Val Ala Val Ser Ser His Met Val Gln Gln Ile Lys Gln Asn Ile 210 215 220 Asn Gln Asn Phe Leu Ser Ser Ser Lys Glu Thr Val Val Ser Leu Val 225 230 235 240 Glu Ala Leu Glu Gln Gly Lys Ala Glu Lys Val Ile Glu Gln Val Glu 245 250 255 Val Ala Ser Lys Leu Leu Glu Gly Leu Ser Thr Asp Ile Tyr Thr Pro 260 265 270 Leu Leu Arg Gln Leu Lys Glu Ala Ser Gln Asp Leu Gln Ala Val Ala 275 280 285 Lys Ser Ser Gly Ala Gly Gly Gly Asp Cys Gly Ile Ala Leu Ser Phe 290 295 300 Asp Ala Gln Ser Thr Lys Thr Leu Lys Asn Arg Trp Ala Asp Leu Gly 305 310 315 320 Ile Glu Leu Leu Tyr Gln Glu Arg Ile Gly His Asp Asp Lys Ser 325 330 335 <210> 28 <211> 1005 <212> DNA <213> Streptococcus pneumoniae <400> 28 atgattgctg ttaaaacttg cggaaaactc tattgggcag gtgaatatgc tattttagag 60 ccagggcagt tagctttgat aaaggatatt cccatctata tgagggctga gattgctttt 120 tctgacagct accgtatcta ttcagatatg tttgatttcg cagtggactt aaggcctaat 180 cctgactaca gcttgattca agaaacgatt gctttgatgg gagacttcct cgctgttcgc 240 ggtcagaatt taagaccttt ttccctaaaa atctgtggca aaatggaacg agaagggaaa 300 aagtttggtc taggttctag tggcagcgtc gttgtcttgg ttgtcaaggc tttattggct 360 ctctataatc tttcggttga tcagaatctc ttgttcaagc tgactagcgc tgtcttgctc 420 aagcgaggag acaatggttc catgggcgac cttgcctgta ttgtggcaga ggatttggtt 480 gtctaccagt catttgatcg ccagaaggcg gctgcttggt tagaagaaga aaacttggcg 540 acagttctgg agcgtgattg gggatttttt atctcacaag tgaaaccaac tttagaatgt 600 gatttcttag tgggatggac caaggaagtg gctgtatcga gtcacatggt ccagcaaatc 660 aagcaaaata tcaatcaaaa ttttttaagt tcctcaaaag aaacggtggt ttctttggtc 720 gaagccttgg agcaggggaa agccgaaaaa gttatcgagc aagtagaagt agccagcaag 780 cttttagaag gcttgagtac agatatttac acgcctttgc ttagacagtt gaaagaagcc 840 agtcaagatt tgcaggccgt tgccaagagt agtggtgctg gtggtggtga ctgtggcatc 900 gccctgagtt ttgatgcgca atcaaccaaa accttaaaaa atcgttgggc cgatctgggg 960 attgagctct tatatcaaga aaggatagga catgacgaca aatcg 1005 <210> 29 <211> 317 <212> PRT <213> Streptococcus pneumoniae <400> 29 Met Asp Arg Glu Pro Val Thr Val Arg Ser Tyr Ala Asn Ile Ala Ile 1 5 10 15 Ile Lys Tyr Trp Gly Lys Lys Lys Glu Lys Glu Met Val Pro Ala Thr 20 25 30 Ser Ser Ile Ser Leu Thr Leu Glu Asn Met Tyr Thr Glu Thr Thr Leu 35 40 45 Ser Pro Leu Pro Ala Asn Val Thr Ala Asp Glu Phe Tyr Ile Asn Gly 50 55 60 Gln Leu Gln Asn Glu Val Glu His Ala Lys Met Ser Lys Ile Ile Asp 65 70 75 80 Arg Tyr Arg Pro Ala Gly Glu Gly Phe Val Arg Ile Asp Thr Gln Asn 85 90 95 Asn Met Pro Thr Ala Ala Gly Leu Ser Ser Ser Ser Ser Gly Leu Ser 100 105 110 Ala Leu Val Lys Ala Cys Asn Ala Tyr Phe Lys Leu Gly Leu Asp Arg 115 120 125 Ser Gln Leu Ala Gln Glu Ala Lys Phe Ala Ser Gly Ser Ser Ser Arg 130 135 140 Ser Phe Tyr Gly Pro Leu Gly Ala Trp Asp Lys Asp Ser Gly Glu Ile 145 150 155 160 Tyr Pro Val Glu Thr Asp Leu Lys Leu Ala Met Ile Met Leu Val Leu 165 170 175 Glu Asp Lys Lys Lys Pro Ile Ser Ser Arg Asp Gly Met Lys Leu Cys 180 185 190 Val Glu Thr Ser Thr Thr Phe Asp Asp Trp Val Arg Gln Ser Glu Lys 195 200 205 Asp Tyr Gln Asp Met Leu Ile Tyr Leu Lys Glu Asn Asp Phe Ala Lys 210 215 220 Ile Gly Glu Leu Thr Glu Lys Asn Ala Leu Ala Met His Ala Thr Thr 225 230 235 240 Lys Thr Ala Ser Pro Ala Phe Ser Tyr Leu Thr Asp Ala Ser Tyr Glu 245 250 255 Ala Met Asp Phe Val Arg Gln Leu Arg Glu Lys Gly Glu Ala Cys Tyr 260 265 270 Phe Thr Met Asp Ala Gly Pro Asn Val Lys Val Phe Cys Gln Glu Lys 275 280 285 Asp Leu Glu His Leu Ser Glu Ile Phe Gly His Arg Tyr Arg Leu Ile 290 295 300 Val Ser Lys Thr Lys Asp Leu Ser Gln Asp Asp Cys Cys 305 310 315 <210> 30 <211> 951 <212> DNA <213> Streptococcus pneumoniae <400> 30 atggatagag agcctgtaac agtacgttcc tacgcaaata ttgctattat caaatattgg 60 ggaaagaaaa aagaaaaaga gatggtgcct gctactagca gtatttctct aactttggaa 120 aatatgtata cagagacgac cttgtcgcct ttaccagcca atgtaacagc tgacgaattt 180 tacatcaatg gtcagctaca aaatgaggtc gagcatgcca agatgagtaa gattattgac 240 cgttatcgtc cagctggtga gggctttgtc cgtatcgata ctcaaaacaa tatgcctacg 300 gcagcgggtc tgtcctcaag ttctagtggt ttgtccgccc tggtcaaggc ttgtaatgct 360 tatttcaagc ttggattgga tagaagtcag ttggcacagg aagccaaatt tgcctcaggt 420 tcttcttctc ggagttttta tggaccacta ggagcctggg ataaggatag tggagaaatt 480 taccctgtag agacagactt gaaactagct atgattatgt tggtgctaga ggacaagaaa 540 aaaccaatct ctagccgtga cgggatgaaa ctttgtgtgg aaacctcgac gacttttgac 600 gactgggttc gtcagtctga gaaggactat caggatatgc tgatttatct caaggaaaat 660 gattttgcca agattggaga attaacggag aaaaatgccc tggctatgca tgctacgaca 720 aagactgcta gtccagcctt ttcttatctg acggatgcct cttatgaggc tatggacttt 780 gttcgccagc ttcgtgagaa aggagaggcc tgctacttta ccatggatgc tggtcccaat 840 gttaaggtct tctgtcagga gaaagacttg gagcatttat cagaaatttt cggtcatcgt 900 tatcgcttga ttgtgtcaaa aacaaaggat ttgagtcaag atgattgctg t 951 <210> 31 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 acccggggat cctgcgataa cggaaaaaac gataaggagg tattctatga caaaaaaagt 60 tggtgtcgg 69 <210> 32 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 caaacctcct taaactatta cgagacctta cgatttgtcg tcatgtccta tcc 53 <210> 33 <211> 182 <212> PRT <213> Escherichia coli <400> 33 Met Gln Thr Glu His Val Ile Leu Leu Asn Ala Gln Gly Val Pro Thr 1 5 10 15 Gly Thr Leu Glu Lys Tyr Ala Ala His Thr Ala Asp Thr Arg Leu His 20 25 30 Leu Ala Phe Ser Ser Trp Leu Phe Asn Ala Lys Gly Gln Leu Leu Val 35 40 45 Thr Arg Arg Ala Leu Ser Lys Lys Ala Trp Pro Gly Val Trp Thr Asn 50 55 60 Ser Val Cys Gly His Pro Gln Leu Gly Glu Ser Asn Glu Asp Ala Val 65 70 75 80 Ile Arg Arg Cys Arg Tyr Glu Leu Gly Val Glu Ile Thr Pro Pro Glu 85 90 95 Ser Ile Tyr Pro Asp Phe Arg Tyr Arg Ala Thr Asp Pro Ser Gly Ile 100 105 110 Val Glu Asn Glu Val Cys Pro Val Phe Ala Ala Arg Thr Thr Ser Ala 115 120 125 Leu Gln Ile Asn Asp Asp Glu Val Met Asp Tyr Gln Trp Cys Asp Leu 130 135 140 Ala Asp Val Leu His Gly Ile Asp Ala Thr Pro Trp Ala Phe Ser Pro 145 150 155 160 Trp Met Val Met Gln Ala Thr Asn Arg Glu Ala Arg Lys Arg Leu Ser 165 170 175 Ala Phe Thr Gln Leu Lys 180 <210> 34 <211> 546 <212> DNA <213> Escherichia coli <400> 34 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaa 546 <210> 35 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtctcgtaat agtttaagga ggtttgttat gcaaacggaa cacgtcattt ta 52 <210> 36 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ccttatacct gtttatcaaa tctagattat ttaagctggg taaatgcaga ta 52 <110> GENOFOCUS CO., LTD. GF Fermentech, Inc. <120> Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same <130> P19-B099 <160> 36 <170> KopatentIn 2.0 <210> 1 <211> 251 <212> PRT <213> Bacillus subtilis subsp. natto <400> 1 Met Gln Asp Ile Tyr Gly Thr Leu Ala Asn Leu Asn Thr Lys Leu Lys 1 5 10 15 Gln Lys Leu Ser His Pro Tyr Leu Ala Lys His Ile Ser Ala Pro Lys 20 25 30 Ile Asp Glu Asp Lys Leu Leu Leu Phe His Ala Leu Phe Glu Glu Ala 35 40 45 Asp Ile Lys Asn Asn Asp Arg Glu Asn Tyr Ile Val Thr Ala Met Leu 50 55 60 Val Gln Ser Ala Leu Asp Thr His Asp Glu Val Thr Thr Ala Arg Val 65 70 75 80 Ile Lys Arg Asp Glu Asn Lys Asn Arg Gln Leu Thr Val Leu Ala Gly 85 90 95 Asp Tyr Phe Ser Gly Leu Tyr Tyr Ser Leu Leu Ser Glu Met Lys Asp 100 105 110 Ile Tyr Met Ile Arg Thr Leu Ala Thr Ala Ile Lys Glu Ile Asn Glu 115 120 125 His Lys Ile Arg Leu Tyr Asp Arg Ser Phe Lys Asp Glu Asn Asp Phe 130 135 140 Phe Glu Ser Val Gly Ile Val Glu Ser Ala Leu Phe His Arg Val Ala 145 150 155 160 Glu His Phe Ser Leu Pro Arg Trp Lys Lys Leu Ser Ser Asp Phe Phe 165 170 175 Val Phe Lys Arg Leu Met Asn Gly Asn Asp Ala Phe Leu Asp Val Ile 180 185 190 Gly Ser Phe Ile Gln Leu Gly Lys Thr Lys Glu Glu Ile Leu Glu Asp 195 200 205 Cys Phe Lys Lys Ala Lys Asn Ser Ile Glu Ser Leu Leu Pro Leu Asn 210 215 220 Ser Pro Ile Gln Asn Ile Leu Ile Asn Arg Leu Lys Thr Ile Ser Gln 225 230 235 240 Asp Gln Thr Tyr His Gln Lys Val Glu Glu Gly 245 250 <210> 2 <211> 753 <212> DNA <213> Bacillus subtilis subsp. natto <400> 2 atgcaagaca tctacggaac tttagccaat ctgaacacga aattaaaaca aaagctgtct 60 catccttatt tagcgaagca tatttctgcg ccgaaaattg atgaggataa gcttcttctt 120 tttcatgctt tatttgaaga agctgacata aaaaacaacg acagagaaaa ttatattgta 180 acagcgatgc ttgtacaaag cgcccttgat acccatgatg aagtgacgac agctagagtc 240 ataaaacgag acgaaaacaa aaaccgccaa ttgactgttc tcgcgggcga ttatttcagc 300 gggctgtact actctttact atctgaaatg aaggatatct acatgattcg gacgcttgct 360 acagccatta aagaaatcaa cgaacataaa attcgtctgt atgaccgttc tttcaaggac 420 gaaaacgatt ttttcgaaag tgtcggcatc gttgaatcag ctttattcca tcgtgtggcg 480 gaacacttca gcctcccgcg ctggaaaaag ctgtcgagtg atttttttgt atttaagcgg 540 cttatgaacg gaaatgatgc atttctggat gtgatcggca gttttataca gctgggaaaa 600 acaaaagaag agatattaga agattgtttt aaaaaagcga aaaacagcat tgagtcactt 660 ctgcctctaa attcacctat tcagaacatt ttaataaacc gtctgaagac aatcagccaa 720 gatcaaacct atcatcagaa agtggaagaa ggg 753 <210> 3 <211> 348 <212> PRT <213> Bacillus subtilis subsp. natto <400> 3 Met Leu Asn Ile Ile Arg Leu Leu Ala Glu Ser Leu Pro Arg Ile Ser 1 5 10 15 Asp Gly Asn Glu Asn Thr Asp Val Trp Val Asn Asp Met Lys Phe Lys 20 25 30 Met Ala Tyr Ser Phe Leu Asn Asp Asp Ile Asp Val Ile Glu Arg Glu 35 40 45 Leu Glu Gln Thr Val Arg Ser Asp Tyr Pro Leu Leu Ser Glu Ala Gly 50 55 60 Leu His Leu Leu Gln Ala Gly Gly Lys Arg Ile Arg Pro Val Phe Val 65 70 75 80 Leu Leu Ser Gly Met Phe Gly Asp Tyr Asp Ile Asn Lys Ile Lys Tyr 85 90 95 Val Ala Val Thr Leu Glu Met Ile His Met Ala Ser Leu Val His Asp 100 105 110 Asp Val Ile Asp Asp Ala Glu Leu Arg Arg Gly Lys Pro Thr Ile Lys 115 120 125 Ala Lys Trp Asp Asn Arg Ile Ala Met Tyr Thr Gly Asp Tyr Met Leu 130 135 140 Ala Gly Ser Leu Glu Met Met Thr Arg Ile Asn Glu Pro Lys Ala His 145 150 155 160 Arg Ile Leu Ser Gln Thr Ile Val Glu Val Cys Leu Gly Glu Ile Glu 165 170 175 Gln Ile Lys Asp Lys Tyr Asn Met Glu Gln Asn Leu Arg Thr Tyr Leu 180 185 190 Arg Arg Ile Lys Arg Lys Thr Ala Leu Leu Ile Ala Val Ser Cys Gln 195 200 205 Leu Gly Ala Ile Ala Ser Gly Ala Asp Glu Lys Ile His Lys Ala Leu 210 215 220 Tyr Trp Phe Gly Tyr Tyr Val Gly Met Ser Tyr Gln Ile Ile Asp Asp 225 230 235 240 Ile Leu Asp Phe Thr Ser Thr Glu Glu Glu Leu Gly Lys Pro Val Gly 245 250 255 Gly Asp Leu Leu Gln Gly Asn Val Thr Leu Pro Val Leu Tyr Ala Leu 260 265 270 Lys Asn Pro Ala Leu Lys Asn Gln Leu Lys Leu Ile Asn Ser Glu Thr 275 280 285 Thr Gln Glu Gln Leu Glu Pro Ile Ile Glu Glu Ile Lys Lys Thr Asp 290 295 300 Ala Ile Glu Ala Ser Met Ala Val Ser Glu Met Tyr Leu Gln Lys Ala 305 310 315 320 Phe Gln Lys Leu Asn Thr Leu Pro Arg Gly Arg Ala Arg Ser Ser Leu 325 330 335 Ala Ala Ile Ala Lys Tyr Ile Gly Lys Arg Lys Phe 340 345 <210> 4 <211> 1044 <212> DNA <213> Bacillus subtilis subsp. natto <400> 4 atgttaaata tcattcgttt actggcggag tcgctgccac gcatatcgga tggaaatgaa 60 aacacagatg tttgggtgaa tgatatgaaa tttaaaatgg cctactcttt tttaaatgac 120 gatattgatg taatcgaaag agaacttgaa caaaccgtac gttccgatta cccgctttta 180 agcgaggcag gtcttcacct gctgcaggcc ggagggaaac gtattcgtcc tgttttcgtg 240 ctgctttctg gcatgtttgg cgattacgat attaataaga ttaaatatgt cgccgtcact 300 ctggaaatga ttcacatggc atctttggtt catgatgatg tcattgatga tgcagagctt 360 cgccgaggaa aaccgacaat caaagcaaag tgggacaatc gtattgcgat gtacacaggc 420 gattatatgc ttgcgggatc tcttgaaatg atgacgagaa ttaacgaacc gaaagcccat 480 aggattttgt cacagacgat cgttgaagtt tgtctagggg aaattgagca gatcaaagac 540 aaatataaca tggaacaaaa tctcagaacg tatctccgcc gtatcaaaag aaaaacagct 600 ctcttgatcg cggtcagctg ccagcttggt gccattgcgt ctggagctga tgagaagatt 660 cataaggcat tgtactggtt tgggtattac gtcggcatgt cttatcagat tattgatgat 720 attcttgatt ttacttcaac tgaagaagag ctgggtaaac ccgttggagg agatttgctt 780 caaggaaacg tcacattgcc agtgctgtat gccctgaaaa atcctgcatt aaaaaaccag 840 cttaaattga ttaacagtga gacaacgcag gagcagcttg aaccaatcat tgaagaaatc 900 aaaaaaacag atgcaattga agcatctatg gcagtaagcg aaatgtatct gcagaaagct 960 tttcagaaat taaacacgct tccacgaggg cgcgcacgct cgtctcttgc agccatcgca 1020 aaatatatcg gtaaaagaaa attt 1044 <210> 5 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 catggaattc aaggaggtga tatttatgca agacatctac ggaac 45 <210> 6 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tccttggtac ctccggatca ttaaaatttt cttttaccga tatat 45 <210> 7 <211> 311 <212> PRT <213> Bacillus subtilis subsp. natto <400> 7 Met Asn Gln Thr Asn Lys Gly Glu Gly Gln Thr Ala Pro Gln Lys Glu 1 5 10 15 Ser Met Gly Gln Ile Leu Trp Gln Leu Thr Arg Pro His Thr Leu Thr 20 25 30 Ala Ser Phe Val Pro Val Leu Leu Gly Thr Val Leu Ala Met Phe Tyr 35 40 45 Val Lys Val Asp Leu Leu Leu Phe Leu Ala Met Leu Phe Ser Cys Leu 50 55 60 Trp Ile Gln Ile Ala Thr Asn Leu Phe Asn Glu Tyr Tyr Asp Phe Lys 65 70 75 80 Arg Gly Leu Asp Thr Ala Glu Ser Val Gly Ile Gly Gly Ala Ile Val 85 90 95 Arg His Gly Met Lys Pro Lys Thr Ile Leu Gln Leu Ala Leu Ala Ser 100 105 110 Tyr Gly Ile Ala Ile Leu Leu Gly Val Tyr Ile Cys Ala Ser Ser Ser 115 120 125 Trp Trp Leu Ala Leu Ile Gly Leu Val Gly Met Ala Ile Gly Tyr Leu 130 135 140 Tyr Thr Gly Gly Pro Leu Pro Ile Ala Tyr Thr Pro Phe Gly Glu Leu 145 150 155 160 Phe Ser Gly Ile Cys Met Gly Ser Val Phe Val Leu Ile Ser Phe Phe 165 170 175 Ile Gln Thr Asp Met Ile Asn Thr Gln Ser Ile Leu Ile Ser Ile Pro 180 185 190 Ile Ala Ile Leu Val Gly Ala Ile Asn Leu Ser Asn Asn Ile Arg Asp 195 200 205 Ile Glu Glu Asp Lys Lys Gly Gly Arg Lys Thr Leu Ala Ile Leu Met 210 215 220 Gly His Lys Gly Ala Val Thr Leu Leu Ala Ala Ser Phe Ala Val Ala 225 230 235 240 Tyr Ile Trp Val Val Gly Leu Val Ile Thr Gly Ala Ala Ser Pro Trp 245 250 255 Leu Phe Val Val Phe Leu Ser Val Pro Lys Pro Val Gln Ala Val Lys 260 265 270 Gly Phe Val Gln Lys Glu Met Pro Met Asn Met Ile Val Ala Met Lys 275 280 285 Ser Thr Ala Gln Thr Asn Thr Phe Phe Gly Phe Leu Leu Ser Ile Gly 290 295 300 Leu Leu Ile Ser Tyr Phe Arg 305 310 <210> 8 <211> 933 <212> DNA <213> Bacillus subtilis subsp. natto <400> 8 atgaaccaaa caaataaggg tgagggtcag acagcgccgc aaaaagaaag catggggcag 60 atcctttggc agttaacccg tcctcatacg ttaaccgcat cgtttgtgcc tgtgctgctc 120 ggaaccgttt tggcgatgtt ttatgtgaag gttgatctgc tgctgttttt ggctatgctg 180 ttttcttgcc tatggattca gatcgcgacg aacttattta atgaatatta tgattttaaa 240 cgcggattag atacagcaga atcagtcgga atcggagggg caattgtacg ccacggaatg 300 aagcctaaaa cgattttgca attagctctg gcatcatacg ggattgccat tttgctcggt 360 gtctatattt gtgcgagcag cagctggtgg cttgcgctga tcggccttgt cggcatggcg 420 atcggctacc tgtatacagg cgggccgctg ccgattgcgt acacgccgtt cggtgaatta 480 ttctcaggca tttgcatggg ttcggtgttt gtgctgattt cgtttttcat tcagacagat 540 atgatcaaca cgcaaagcat tttgatttcc atcccgattg cgattcttgt cggcgcgatt 600 aatttgtcaa acaacattcg cgatattgaa gaggacaaaa aaggcggccg caaaacattg 660 gcgattttga tggggcataa gggagctgtt actctgttag ctgcgtcgtt tgccgtcgct 720 tatatctggg ttgtcggctt ggttattacc ggtgccgcaa gcccatggct gtttgtcgtc 780 tttttgagcg tgcctaagcc ggttcaggca gtgaagggct tcgtccaaaa agaaatgccg 840 atgaatatga ttgtcgcaat gaaatcaaca gcccaaacaa atacattttt cggattcctg 900 ctttcgatcg gattattgat cagctatttc cga 933 <210> 9 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cggaggtacc aaggaggagc tcaagatgaa ccaaacaaat aagggtg 47 <210> 10 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tctagaacct cctgtacgag ctcattatcg gaaatagctg atcaataatc 50 <210> 11 <211> 233 <212> PRT <213> Bacillus subtilis subsp. natto <400> 11 Met Gln Asp Ser Lys Glu Gln Arg Val His Gly Val Phe Glu Lys Ile 1 5 10 15 Tyr Lys Asn Tyr Asp Gln Met Asn Ser Val Ile Ser Phe Gln Gln His 20 25 30 Lys Lys Trp Arg Asp Lys Thr Met Arg Ile Met Asn Val Lys Glu Gly 35 40 45 Ala Lys Ala Leu Asp Val Cys Cys Gly Thr Ala Asp Trp Thr Ile Ala 50 55 60 Leu Ala Lys Ala Ala Gly Lys Ser Gly Glu Ile Lys Gly Leu Asp Phe 65 70 75 80 Ser Glu Asn Met Leu Ser Val Gly Glu Gln Lys Val Lys Asp Gly Gly 85 90 95 Phe Ser Gln Ile Glu Leu Leu His Gly Asn Ala Met Glu Leu Pro Phe 100 105 110 Asp Asp Asp Thr Phe Asp Tyr Val Thr Ile Gly Phe Gly Leu Arg Asn 115 120 125 Val Pro Asp Tyr Leu Thr Val Leu Lys Glu Met Arg Arg Val Val Lys 130 135 140 Pro Gly Gly Gln Val Val Cys Leu Glu Thr Ser Gln Pro Glu Met Ile 145 150 155 160 Gly Phe Arg Gln Ala Tyr Phe Met Tyr Phe Lys Tyr Ile Met Pro Phe 165 170 175 Phe Gly Lys Leu Phe Ala Lys Ser Tyr Lys Glu Tyr Ser Trp Leu Gln 180 185 190 Glu Ser Ala Arg Asp Phe Pro Gly Met Lys Glu Leu Ala Gly Leu Phe 195 200 205 Glu Glu Ala Gly Leu Lys Asn Val Lys Tyr His Ser Phe Thr Gly Gly 210 215 220 Val Ala Ala Thr His Ile Gly Trp Lys 225 230 <210> 12 <211> 699 <212> DNA <213> Bacillus subtilis subsp. natto <400> 12 atgcaggact caaaagaaca gcgcgtacac ggagtatttg aaaaaatata taaaaactat 60 gaccaaatga actctgtcat cagttttcag cagcataaaa aatggcgcga taaaacgatg 120 cgcatcatga atgtaaaaga aggcgcaaaa gcacttgatg tctgctgcgg aacggctgac 180 tggacgatcg ctcttgcaaa agcggccggc aaaagcggcg agatcaaggg cttggatttc 240 agtgaaaata tgctgagtgt cggcgagcag aaagtaaaag acggcggatt cagccaaatt 300 gaactgctgc acggaaatgc gatggagctt ccttttgatg atgatacatt tgattatgtc 360 accattggct tcgggctccg caatgtccct gattacttga ctgtactgaa agagatgaga 420 cgtgtagtga agccgggcgg gcaggtggta tgtctggaaa cgtcccagcc ggaaatgatc 480 ggattcagac aggcttactt tatgtacttt aagtatatta tgccgttttt cgggaaactg 540 tttgcgaaga gctataaaga atattcttgg cttcaagaat cagccagaga tttccctgga 600 atgaaggaac tggcaggcct gtttgaagag gcgggcctga aaaatgttaa atatcattcg 660 tttactggcg gagtcgctgc cacgcatatc ggatggaaa 699 <210> 13 <211> 176 <212> PRT <213> Bacillus subtilis subsp. natto <400> 13 Met Lys Ile Tyr Val Val Tyr Asp Ser Glu Gly Glu His Thr Lys Val 1 5 10 15 Leu Ala Glu Ala Ile Ala Glu Gly Ala Arg Glu Asn Gly Ala Ala Glu 20 25 30 Val Phe Ile Asp His Val Asp Gln Ala Asp Ile Arg Lys Leu Lys Asp 35 40 45 Met Asp Ala Ile Ile Trp Gly Cys Pro Gly His Phe Gly Thr Ile Ser 50 55 60 Ser Gly Leu Lys Thr Trp Ile Asp Arg Leu Gly Tyr Leu Trp Ala Glu 65 70 75 80 Gly Glu Leu Ile Asn Lys Val Gly Ala Val Phe Cys Thr Thr Ala Thr 85 90 95 Thr His Gly Gly Leu Glu Met Thr Met His Asn Leu Ile Thr Pro Met 100 105 110 Phe His Gln Gly Met Ile Val Val Gly Leu Pro Gly Asn Val Pro Glu 115 120 125 Asn Ala Leu Tyr Gly Ser Tyr Tyr Gly Ala Gly Val Thr Cys Pro Val 130 135 140 Asp Ser Asp Glu Leu Met Ser Glu Glu Gly Ile Gln Leu Gly Arg Ala 145 150 155 160 Leu Gly Arg Arg Val Ser Gln Val Thr Gly Asn Leu Thr Ala Gly Gln 165 170 175 <210> 14 <211> 528 <212> DNA <213> Bacillus subtilis subsp. natto <400> 14 atgaaaattt atgtagtgta tgatagtgaa ggcgaacata ctaaagtgct tgcagaagcg 60 attgctgaag gcgcgagaga aaacggcgcg gctgaagtgt tcatcgacca tgtagatcag 120 gctgatatcc gcaagcttaa agatatggat gcgattattt ggggatgccc agggcatttc 180 ggaacaatca gctccggtct taaaacttgg atcgacagac ttggctactt gtgggctgaa 240 ggcgagctga tcaacaaagt cggtgctgtc ttctgcacaa cggcaacaac acacggcggc 300 ttggaaatga caatgcacaa tttaatcacg ccgatgttcc accaaggcat gattgttgtc 360 ggactgcctg ggaacgtgcc tgaaaacgca ctttatggct cttattacgg agcaggtgtc 420 acttgtccgg tagacagtga tgagttaatg tctgaggaag gtattcagct tggacgcgcg 480 ttgggaagac gtgtcagcca agtcacagga aacctaacag caggacag 528 <210> 15 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 aatgagctcg tacaggaggt tctagaatga aaatttatgt agtgtatg 48 <210> 16 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tgcaggtcga ctctagatta ctgtcctgct gttaggtttc c 41 <210> 17 <211> 803 <212> PRT <213> Enterococcus faecalis <400> 17 Met Lys Thr Val Val Ile Ile Asp Ala Leu Arg Thr Pro Ile Gly Lys 1 5 10 15 Tyr Lys Gly Ser Leu Ser Gln Val Ser Ala Val Asp Leu Gly Thr His 20 25 30 Val Thr Thr Gln Leu Leu Lys Arg His Ser Thr Ile Ser Glu Glu Ile 35 40 45 Asp Gln Val Ile Phe Gly Asn Val Leu Gln Ala Gly Asn Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ile Ala Ile Asn Ser Gly Leu Ser His Glu Ile Pro 65 70 75 80 Ala Met Thr Val Asn Glu Val Cys Gly Ser Gly Met Lys Ala Val Ile 85 90 95 Leu Ala Lys Gln Leu Ile Gln Leu Gly Glu Ala Glu Val Leu Ile Ala 100 105 110 Gly Gly Ile Glu Asn Met Ser Gln Ala Pro Lys Leu Gln Arg Phe Asn 115 120 125 Tyr Glu Thr Glu Ser Tyr Asp Ala Pro Phe Ser Ser Met Met Tyr Asp 130 135 140 Gly Leu Thr Asp Ala Phe Ser Gly Gln Ala Met Gly Leu Thr Ala Glu 145 150 155 160 Asn Val Ala Glu Lys Tyr His Val Thr Arg Glu Glu Gln Asp Gln Phe 165 170 175 Ser Val His Ser Gln Leu Lys Ala Ala Gln Ala Gln Ala Glu Gly Ile 180 185 190 Phe Ala Asp Glu Ile Ala Pro Leu Glu Val Ser Gly Thr Leu Val Glu 195 200 205 Lys Asp Glu Gly Ile Arg Pro Asn Ser Ser Val Glu Lys Leu Gly Thr 210 215 220 Leu Lys Thr Val Phe Lys Glu Asp Gly Thr Val Thr Ala Gly Asn Ala 225 230 235 240 Ser Thr Ile Asn Asp Gly Ala Ser Ala Leu Ile Ile Ala Ser Gln Glu 245 250 255 Tyr Ala Glu Ala His Gly Leu Pro Tyr Leu Ala Ile Ile Arg Asp Ser 260 265 270 Val Glu Val Gly Ile Asp Pro Ala Tyr Met Gly Ile Ser Pro Ile Lys 275 280 285 Ala Ile Gln Lys Leu Leu Ala Arg Asn Gln Leu Thr Thr Glu Glu Ile 290 295 300 Asp Leu Tyr Glu Ile Asn Glu Ala Phe Ala Ala Thr Ser Ile Val Val 305 310 315 320 Gln Arg Glu Leu Ala Leu Pro Glu Glu Lys Val Asn Ile Tyr Gly Gly 325 330 335 Gly Ile Ser Leu Gly His Ala Ile Gly Ala Thr Gly Ala Arg Leu Leu 340 345 350 Thr Ser Leu Ser Tyr Gln Leu Asn Gln Lys Glu Lys Lys Tyr Gly Val 355 360 365 Ala Ser Leu Cys Ile Gly Gly Gly Leu Gly Leu Ala Met Leu Leu Glu 370 375 380 Arg Pro Gln Gln Lys Lys Asn Ser Arg Phe Tyr Gln Met Ser Pro Glu 385 390 395 400 Glu Arg Leu Ala Ser Leu Leu Asn Glu Gly Gln Ile Ser Ala Asp Thr 405 410 415 Lys Lys Glu Phe Glu Asn Thr Ala Leu Ser Ser Gln Ile Ala Asn His 420 425 430 Met Ile Glu Asn Gln Ile Ser Glu Thr Glu Val Pro Met Gly Val Gly 435 440 445 Leu His Leu Thr Val Asp Glu Thr Asp Tyr Leu Val Pro Met Ala Thr 450 455 460 Glu Glu Pro Ser Val Ile Ala Ala Leu Ser Asn Gly Ala Lys Ile Ala 465 470 475 480 Gln Gly Phe Lys Thr Val Asn Gln Gln Arg Leu Met Arg Gly Gln Ile 485 490 495 Val Phe Tyr Asp Val Ala Asp Pro Glu Ser Leu Ile Asp Lys Leu Gln 500 505 510 Val Arg Glu Ala Glu Ile Phe Gln Gln Ala Glu Leu Ser Tyr Pro Ser 515 520 525 Ile Val Lys Arg Gly Gly Gly Leu Arg Asp Leu Gln Tyr Arg Thr Phe 530 535 540 Asp Glu Ser Phe Val Ser Val Asp Phe Leu Val Asp Val Lys Asp Ala 545 550 555 560 Met Gly Ala Asn Ile Val Asn Ala Met Leu Glu Gly Val Ala Glu Leu 565 570 575 Phe Arg Glu Trp Phe Ala Glu Gln Lys Ile Leu Phe Ser Ile Leu Ser 580 585 590 Asn Tyr Ala Thr Glu Ser Val Val Thr Met Lys Thr Ala Ile Pro Val 595 600 605 Ser Arg Leu Ser Lys Gly Ser Asn Gly Arg Glu Ile Ala Glu Lys Ile 610 615 620 Val Leu Ala Ser Arg Tyr Ala Ser Leu Asp Pro Tyr Arg Ala Val Thr 625 630 635 640 His Asn Lys Gly Ile Met Asn Gly Ile Glu Ala Val Val Leu Ala Thr 645 650 655 Gly Asn Asp Thr Arg Ala Val Ser Ala Ser Cys His Ala Phe Ala Val 660 665 670 Lys Glu Gly Arg Tyr Gln Gly Leu Thr Ser Trp Thr Leu Asp Gly Glu 675 680 685 Gln Leu Ile Gly Glu Ile Ser Val Pro Leu Ala Leu Ala Thr Val Gly 690 695 700 Gly Ala Thr Lys Val Leu Pro Lys Ser Gln Ala Ala Ala Asp Leu Leu 705 710 715 720 Ala Val Thr Asp Ala Lys Glu Leu Ser Arg Val Val Ala Ala Val Gly 725 730 735 Leu Ala Gln Asn Leu Ala Ala Leu Arg Ala Leu Val Ser Glu Gly Ile 740 745 750 Gln Lys Gly His Met Ala Leu Gln Ala Arg Ser Leu Ala Met Thr Val 755 760 765 Gly Ala Thr Gly Lys Glu Val Glu Ala Val Ala Gln Gln Leu Lys Arg 770 775 780 Gln Lys Thr Met Asn Gln Asp Arg Ala Leu Ala Ile Leu Asn Asp Leu 785 790 795 800 Arg Lys Gln <210> 18 <211> 2409 <212> DNA <213> Enterococcus faecalis <400> 18 atgaaaacag tagttattat tgatgcatta cgaacaccaa ttggaaaata taaaggcagc 60 ttaagtcaag taagtgccgt agacttagga acacatgtta caacacaact tttaaaaaga 120 cattccacta tttctgaaga aattgatcaa gtaatctttg gaaatgtttt acaagctgga 180 aatggccaaa atcccgcacg acaaatagca ataaacagcg gtttgtctca tgaaattccc 240 gcaatgacgg ttaatgaggt ctgcggatca ggaatgaagg ccgttatttt ggcgaaacaa 300 ttgattcaat taggagaagc ggaagtttta attgctggtg ggattgagaa tatgtcccaa 360 gcacctaaat tacaacgatt taattacgaa acagaaagct acgatgcgcc tttttctagt 420 atgatgtacg atgggttaac ggatgccttt agtggtcagg caatgggctt aactgctgaa 480 aatgtggccg aaaagtatca tgtaactaga gaagagcaag atcaattttc tgtacattca 540 caattaaaag cagctcaagc acaagcagaa gggatattcg ctgacgaaat agccccatta 600 gaagtgtcag gaacgcttgt ggagaaagat gaagggattc gccctaattc gagcgttgag 660 aagctaggaa cgcttaaaac agtttttaaa gaagacggta ctgtaacagc agggaatgca 720 tcaaccatta atgatggggc ttctgctttg attattgctt cacaagaata tgccgaagca 780 cacggtcttc cttatttagc tattattcga gacagtgtgg aagtcggtat tgatccagcc 840 tatatgggaa tttcgccgat taaagccatt caaaaactgt tagcgcggaa tcaacttact 900 acggaagaaa ttgatctgta tgaaatcaac gaagcatttg cagcaacttc aatcgtggtc 960 caaagagaac tggctttacc agaggaaaag gtcaacattt atggtggcgg tatttcatta 1020 ggtcatgcga ttggtgccac aggtgctcgt ttattaacga gtttaagtta tcaattaaat 1080 caaaaagaaa agaaatatgg cgtggcttct ttatgtatcg gcggtggctt aggactcgct 1140 atgctactag agagacctca gcaaaaaaaa aacagccgat tttatcaaat gagtcctgag 1200 gaacgcctgg cttctcttct taatgaaggc cagatttctg ctgatacaaa aaaagaattt 1260 gaaaatacgg ctttatcttc gcagattgcc aatcatatga ttgaaaatca aatcagtgaa 1320 acagaagtgc cgatgggcgt tggcttacat ttaacagtgg acgaaactga ttatttggta 1380 ccaatggcga cagaagagcc ctcagtgatt gcggctttga gtaatggtgc aaaaatagca 1440 caaggattta aaacagtgaa tcaacaacgc ttaatgcgtg gacaaatcgt tttttacgat 1500 gttgcagatc ccgagtcatt gattgataaa ctacaagtaa gagaagcgga aatttttcaa 1560 caagcagagt taagttatcc atctatcgtt aaacggggcg gcggcttaag agatttgcaa 1620 tatcgtactt ttgatgaatc gtttgtatct gtcgactttt tagtagatgt taaggatgca 1680 atgggggcaa atatcgttaa cgctatgttg gaaggtgtgg ccgagttgtt ccgtgaatgg 1740 tttgcggagc aaaagatttt attcagtatt ttaagtaatt atgccacgga gtcggttgtt 1800 acgatgaaaa cggctattcc agtttcacgt ttaagtaagg ggagcaatgg ccgggaaatt 1860 gctgaaaaaa ttgttttagc ttcacgctat gcttcattag atccttatcg ggcagtcacg 1920 cataacaaag ggatcatgaa tggcattgaa gctgtagttt tagctacagg aaatgataca 1980 cgcgctgtta gcgcttcttg tcatgctttt gcggtgaagg aaggtcgcta ccaaggcttg 2040 actagttgga cgctggatgg cgaacaacta attggtgaaa tttcagttcc gcttgcgtta 2100 gccacggttg gcggtgccac aaaagtcttg cctaaatctc aagcagccgc tgatttgtta 2160 gcagtgacgg atgcaaaaga actaagtcga gtagtagcgg ctgttggttt ggcccaaaat 2220 ttagcggcgt tacgggcctt agtctctgaa ggcattcaaa aaggacacat ggctctacaa 2280 gcacgttctt tagcgatgac ggtcggagct actggtaaag aagttgaggc agtcgctcaa 2340 caattaaaac gtcaaaaaac gatgaaccaa gaccgagcct tggctatttt aaatgattta 2400 agaaaacaa 2409 <210> 19 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 aatctagatt tgataaacag gtataaggag gtattttatg aaaacagtag ttattattg 59 <210> 20 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cataaaaata cctccttatt attgttttct taaatcattt aaaat 45 <210> 21 <211> 383 <212> PRT <213> Enterococcus faecalis <400> 21 Met Thr Ile Gly Ile Asp Lys Ile Ser Phe Phe Val Pro Pro Tyr Tyr 1 5 10 15 Ile Asp Met Thr Ala Leu Ala Glu Ala Arg Asn Val Asp Pro Gly Lys 20 25 30 Phe His Ile Gly Ile Gly Gln Asp Gln Met Ala Val Asn Pro Ile Ser 35 40 45 Gln Asp Ile Val Thr Phe Ala Ala Asn Ala Ala Glu Ala Ile Leu Thr 50 55 60 Lys Glu Asp Lys Glu Ala Ile Asp Met Val Ile Val Gly Thr Glu Ser 65 70 75 80 Ser Ile Asp Glu Ser Lys Ala Ala Ala Val Val Leu His Arg Leu Met 85 90 95 Gly Ile Gln Pro Phe Ala Arg Ser Phe Glu Ile Lys Glu Ala Cys Tyr 100 105 110 Gly Ala Thr Ala Gly Leu Gln Leu Ala Lys Asn His Val Ala Leu His 115 120 125 Pro Asp Lys Lys Val Leu Val Val Ala Ala Asp Ile Ala Lys Tyr Gly 130 135 140 Leu Asn Ser Gly Gly Glu Pro Thr Gln Gly Ala Gly Ala Val Ala Met 145 150 155 160 Leu Val Ala Ser Glu Pro Arg Ile Leu Ala Leu Lys Glu Asp Asn Val 165 170 175 Met Leu Thr Gln Asp Ile Tyr Asp Phe Trp Arg Pro Thr Gly His Pro 180 185 190 Tyr Pro Met Val Asp Gly Pro Leu Ser Asn Glu Thr Tyr Ile Gln Ser 195 200 205 Phe Ala Gln Val Trp Asp Glu His Lys Lys Arg Thr Gly Leu Asp Phe 210 215 220 Ala Asp Tyr Asp Ala Leu Ala Phe His Ile Pro Tyr Thr Lys Met Gly 225 230 235 240 Lys Lys Ala Leu Leu Ala Lys Ile Ser Asp Gln Thr Glu Ala Glu Gln 245 250 255 Glu Arg Ile Leu Ala Arg Tyr Glu Glu Ser Ile Ile Tyr Ser Arg Arg 260 265 270 Val Gly Asn Leu Tyr Thr Gly Ser Leu Tyr Leu Gly Leu Ile Ser Leu 275 280 285 Leu Glu Asn Ala Thr Thr Leu Thr Ala Gly Asn Gln Ile Gly Leu Phe 290 295 300 Ser Tyr Gly Ser Gly Ala Val Ala Glu Phe Phe Thr Gly Glu Leu Val 305 310 315 320 Ala Gly Tyr Gln Asn His Leu Gln Lys Glu Thr His Leu Ala Leu Leu 325 330 335 Asp Asn Arg Thr Glu Leu Ser Ile Ala Glu Tyr Glu Ala Met Phe Ala 340 345 350 Glu Thr Leu Asp Thr Asp Ile Asp Gln Thr Leu Glu Asp Glu Leu Lys 355 360 365 Tyr Ser Ile Ser Ala Ile Asn Asn Thr Val Arg Ser Tyr Arg Asn 370 375 380 <210> 22 <211> 1149 <212> DNA <213> Enterococcus faecalis <400> 22 atgacaattg ggattgataa aattagtttt tttgtgcccc cttattatat tgatatgacg 60 gcactggctg aagccagaaa tgtagaccct ggaaaatttc atattggtat tgggcaagac 120 caaatggcgg tgaacccaat cagccaagat attgtgacat ttgcagccaa tgccgcagaa 180 gcgatcttga ccaaagaaga taaagaggcc attgatatgg tgattgtcgg gactgagtcc 240 agtatcgatg agtcaaaagc ggccgcagtt gtcttacatc gtttaatggg gattcaacct 300 ttcgctcgct ctttcgaaat caaggaagct tgttacggag caacagcagg cttacagtta 360 gctaagaatc acgtagcctt acatccagat aaaaaagtct tggtcgtagc agcagatatt 420 gcaaaatatg gcttaaattc tggcggtgag cctacacaag gagctggggc ggttgcaatg 480 ttagttgcta gtgaaccgcg cattttggct ttaaaagagg ataatgtgat gctgacgcaa 540 gatatctatg acttttggcg tccaacaggc catccatatc ctatggtcga tggtcctttg 600 tcaaacgaaa cctacatcca atcttttgcc caagtctggg atgaacataa aaaacgaacc 660 ggtcttgatt ttgcagatta tgatgcttta gcgttccata ttccttacac aaaaatgggc 720 aaaaaagcct tattagcaaa aatctccgac caaactgaag cagaacagga acgaatttta 780 gcccgttatg aagaaagcat catctatagt cgtcgcgtag gaaacttgta tacgggttca 840 ctttatctgg gactcatttc ccttttagaa aatgcaacga ctttaaccgc aggcaatcaa 900 attgggttat tcagttatgg ttctggtgct gtcgctgaat ttttcactgg tgaattagta 960 gctggttatc aaaatcattt acaaaaagaa actcatttag cactgctgga taatcggaca 1020 gaactttcta tcgctgaata tgaagccatg tttgcagaaa ctttagacac agacattgat 1080 caaacgttag aagatgaatt aaaatatagt atttctgcta ttaataatac cgttcgctct 1140 tatcgaaac 1149 <210> 23 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 caataataag gaggtatttt tatgacaatt gggattgata aaatt 45 <210> 24 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gcatgcctgc aggtcgactt agtttcgata agagcgaacg gtat 44 <210> 25 <211> 292 <212> PRT <213> Streptococcus pneumoniae <400> 25 Met Thr Lys Lys Val Gly Val Gly Gln Ala His Ser Lys Ile Ile Leu 1 5 10 15 Ile Gly Glu His Ala Val Val Tyr Gly Tyr Pro Ala Ile Ser Leu Pro 20 25 30 Leu Leu Glu Val Glu Val Thr Cys Lys Val Val Pro Ala Glu Ser Pro 35 40 45 Trp Arg Leu Tyr Glu Glu Asp Thr Leu Ser Met Ala Val Tyr Ala Ser 50 55 60 Leu Glu Tyr Leu Asn Ile Thr Glu Ala Cys Ile Arg Cys Glu Ile Asp 65 70 75 80 Ser Ala Ile Pro Glu Lys Arg Gly Met Gly Ser Ser Ala Ala Ile Ser 85 90 95 Ile Ala Ala Ile Arg Ala Val Phe Asp Tyr Tyr Gln Ala Asp Leu Pro 100 105 110 His Asp Val Leu Glu Ile Leu Val Asn Arg Ala Glu Met Ile Ala His 115 120 125 Met Asn Pro Ser Gly Leu Asp Ala Lys Thr Cys Leu Ser Asp Gln Pro 130 135 140 Ile Arg Phe Ile Lys Asn Val Gly Phe Thr Glu Leu Glu Met Asp Leu 145 150 155 160 Ser Ala Tyr Leu Val Ile Ala Asp Thr Gly Val Tyr Gly His Thr Arg 165 170 175 Glu Ala Ile Gln Val Val Gln Asn Lys Gly Lys Asp Ala Leu Pro Phe 180 185 190 Leu His Ala Leu Gly Glu Leu Thr Gln Gln Ala Glu Val Ala Ile Ser 195 200 205 Gln Lys Asp Ala Glu Gly Leu Gly Gln Ile Leu Ser Gln Ala His Leu 210 215 220 His Leu Lys Glu Ile Gly Val Ser Ser Pro Glu Ala Asp Phe Leu Val 225 230 235 240 Glu Thr Thr Leu Ser His Gly Ala Leu Gly Ala Lys Met Ser Gly Gly 245 250 255 Gly Leu Gly Gly Cys Ile Ile Ala Leu Val Thr Asn Leu Thr His Ala 260 265 270 Gln Glu Leu Ala Glu Arg Leu Glu Glu Lys Gly Ala Val Gln Thr Trp 275 280 285 Ile Glu Ser Leu 290 <210> 26 <211> 876 <212> DNA <213> Streptococcus pneumoniae <400> 26 atgacaaaaa aagttggtgt cggtcaggca catagtaaga taattttaat aggggaacat 60 gcggtcgttt acggttatcc tgccatttcc ctgcctcttt tggaggtgga ggtgacctgt 120 aaggtagttc ctgcagagag tccttggcgc ctttatgagg aggatacctt gtccatggcg 180 gtttatgcct cactggagta tttgaatatc acagaagcct gcattcgttg tgagattgac 240 tcggctatcc ctgagaaacg ggggatgggt tcgtcagcgg ctatcagcat agcggccatt 300 cgtgcagtat ttgactacta tcaggctgat ctgcctcatg atgtactaga aatcttggtc 360 aatcgagctg aaatgattgc ccatatgaat cctagtggtt tggatgctaa gacctgtctt 420 agtgaccaac ctattcgctt tatcaagaac gtaggattta cagaacttga gatggattta 480 tccgcctatt tggtgattgc cgatacgggt gtttatggtc atactcgtga agccatccaa 540 gtggttcaaa ataagggcaa ggatgcccta ccgtttttgc atgccttggg agaattaacc 600 cagcaagcag aagttgcgat ttcacaaaaa gatgctgaag gactgggaca aatcctcagt 660 caagcgcatt tacatttaaa agaaattgga gtcagtagcc ctgaggcaga ctttttggtt 720 gaaacgactc ttagccatgg tgctctgggt gccaagatga gcggtggtgg gctaggaggt 780 tgtatcatag ccttggtaac caatttgaca cacgcacaag aactagcaga aagattagaa 840 gagaaaggag ctgttcagac atggatagag agcctg 876 <210> 27 <211> 335 <212> PRT <213> Streptococcus pneumoniae <400> 27 Met Ile Ala Val Lys Thr Cys Gly Lys Leu Tyr Trp Ala Gly Glu Tyr 1 5 10 15 Ala Ile Leu Glu Pro Gly Gln Leu Ala Leu Ile Lys Asp Ile Pro Ile 20 25 30 Tyr Met Arg Ala Glu Ile Ala Phe Ser Asp Ser Tyr Arg Ile Tyr Ser 35 40 45 Asp Met Phe Asp Phe Ala Val Asp Leu Arg Pro Asn Pro Asp Tyr Ser 50 55 60 Leu Ile Gln Glu Thr Ile Ala Leu Met Gly Asp Phe Leu Ala Val Arg 65 70 75 80 Gly Gln Asn Leu Arg Pro Phe Ser Leu Lys Ile Cys Gly Lys Met Glu 85 90 95 Arg Glu Gly Lys Lys Phe Gly Leu Gly Ser Ser Gly Ser Val Val Val 100 105 110 Leu Val Val Lys Ala Leu Leu Ala Leu Tyr Asn Leu Ser Val Asp Gln 115 120 125 Asn Leu Leu Phe Lys Leu Thr Ser Ala Val Leu Leu Lys Arg Gly Asp 130 135 140 Asn Gly Ser Met Gly Asp Leu Ala Cys Ile Val Ala Glu Asp Leu Val 145 150 155 160 Val Tyr Gln Ser Phe Asp Arg Gln Lys Ala Ala Ala Trp Leu Glu Glu 165 170 175 Glu Asn Leu Ala Thr Val Leu Glu Arg Asp Trp Gly Phe Phe Ile Ser 180 185 190 Gln Val Lys Pro Thr Leu Glu Cys Asp Phe Leu Val Gly Trp Thr Lys 195 200 205 Glu Val Ala Val Ser Ser His Met Val Gln Gln Ile Lys Gln Asn Ile 210 215 220 Asn Gln Asn Phe Leu Ser Ser Ser Lys Glu Thr Val Val Ser Leu Val 225 230 235 240 Glu Ala Leu Glu Gln Gly Lys Ala Glu Lys Val Ile Glu Gln Val Glu 245 250 255 Val Ala Ser Lys Leu Leu Glu Gly Leu Ser Thr Asp Ile Tyr Thr Pro 260 265 270 Leu Leu Arg Gln Leu Lys Glu Ala Ser Gln Asp Leu Gln Ala Val Ala 275 280 285 Lys Ser Ser Gly Ala Gly Gly Gly Asp Cys Gly Ile Ala Leu Ser Phe 290 295 300 Asp Ala Gln Ser Thr Lys Thr Leu Lys Asn Arg Trp Ala Asp Leu Gly 305 310 315 320 Ile Glu Leu Leu Tyr Gln Glu Arg Ile Gly His Asp Asp Lys Ser 325 330 335 <210> 28 <211> 1005 <212> DNA <213> Streptococcus pneumoniae <400> 28 atgattgctg ttaaaacttg cggaaaactc tattgggcag gtgaatatgc tattttagag 60 ccagggcagt tagctttgat aaaggatatt cccatctata tgagggctga gattgctttt 120 tctgacagct accgtatcta ttcagatatg tttgatttcg cagtggactt aaggcctaat 180 cctgactaca gcttgattca agaaacgatt gctttgatgg gagacttcct cgctgttcgc 240 ggtcagaatt taagaccttt ttccctaaaa atctgtggca aaatggaacg agaagggaaa 300 aagtttggtc taggttctag tggcagcgtc gttgtcttgg ttgtcaaggc tttattggct 360 ctctataatc tttcggttga tcagaatctc ttgttcaagc tgactagcgc tgtcttgctc 420 aagcgaggag acaatggttc catgggcgac cttgcctgta ttgtggcaga ggatttggtt 480 gtctaccagt catttgatcg ccagaaggcg gctgcttggt tagaagaaga aaacttggcg 540 acagttctgg agcgtgattg gggatttttt atctcacaag tgaaaccaac tttagaatgt 600 gatttcttag tgggatggac caaggaagtg gctgtatcga gtcacatggt ccagcaaatc 660 aagcaaaata tcaatcaaaa ttttttaagt tcctcaaaag aaacggtggt ttctttggtc 720 gaagccttgg agcaggggaa agccgaaaaa gttatcgagc aagtagaagt agccagcaag 780 cttttagaag gcttgagtac agatatttac acgcctttgc ttagacagtt gaaagaagcc 840 agtcaagatt tgcaggccgt tgccaagagt agtggtgctg gtggtggtga ctgtggcatc 900 gccctgagtt ttgatgcgca atcaaccaaa accttaaaaa atcgttgggc cgatctgggg 960 attgagctct tatatcaaga aaggatagga catgacgaca aatcg 1005 <210> 29 <211> 317 <212> PRT <213> Streptococcus pneumoniae <400> 29 Met Asp Arg Glu Pro Val Thr Val Arg Ser Tyr Ala Asn Ile Ala Ile 1 5 10 15 Ile Lys Tyr Trp Gly Lys Lys Lys Glu Lys Glu Met Val Pro Ala Thr 20 25 30 Ser Ser Ile Ser Leu Thr Leu Glu Asn Met Tyr Thr Glu Thr Thr Leu 35 40 45 Ser Pro Leu Pro Ala Asn Val Thr Ala Asp Glu Phe Tyr Ile Asn Gly 50 55 60 Gln Leu Gln Asn Glu Val Glu His Ala Lys Met Ser Lys Ile Ile Asp 65 70 75 80 Arg Tyr Arg Pro Ala Gly Glu Gly Phe Val Arg Ile Asp Thr Gln Asn 85 90 95 Asn Met Pro Thr Ala Ala Gly Leu Ser Ser Ser Ser Ser Gly Leu Ser 100 105 110 Ala Leu Val Lys Ala Cys Asn Ala Tyr Phe Lys Leu Gly Leu Asp Arg 115 120 125 Ser Gln Leu Ala Gln Glu Ala Lys Phe Ala Ser Gly Ser Ser Ser Arg 130 135 140 Ser Phe Tyr Gly Pro Leu Gly Ala Trp Asp Lys Asp Ser Gly Glu Ile 145 150 155 160 Tyr Pro Val Glu Thr Asp Leu Lys Leu Ala Met Ile Met Leu Val Leu 165 170 175 Glu Asp Lys Lys Lys Pro Ile Ser Ser Arg Asp Gly Met Lys Leu Cys 180 185 190 Val Glu Thr Ser Thr Thr Phe Asp Asp Trp Val Arg Gln Ser Glu Lys 195 200 205 Asp Tyr Gln Asp Met Leu Ile Tyr Leu Lys Glu Asn Asp Phe Ala Lys 210 215 220 Ile Gly Glu Leu Thr Glu Lys Asn Ala Leu Ala Met His Ala Thr Thr 225 230 235 240 Lys Thr Ala Ser Pro Ala Phe Ser Tyr Leu Thr Asp Ala Ser Tyr Glu 245 250 255 Ala Met Asp Phe Val Arg Gln Leu Arg Glu Lys Gly Glu Ala Cys Tyr 260 265 270 Phe Thr Met Asp Ala Gly Pro Asn Val Lys Val Phe Cys Gln Glu Lys 275 280 285 Asp Leu Glu His Leu Ser Glu Ile Phe Gly His Arg Tyr Arg Leu Ile 290 295 300 Val Ser Lys Thr Lys Asp Leu Ser Gln Asp Asp Cys Cys 305 310 315 <210> 30 <211> 951 <212> DNA <213> Streptococcus pneumoniae <400> 30 atggatagag agcctgtaac agtacgttcc tacgcaaata ttgctattat caaatattgg 60 ggaaagaaaa aagaaaaaga gatggtgcct gctactagca gtatttctct aactttggaa 120 aatatgtata cagagacgac cttgtcgcct ttaccagcca atgtaacagc tgacgaattt 180 tacatcaatg gtcagctaca aaatgaggtc gagcatgcca agatgagtaa gattattgac 240 cgttatcgtc cagctggtga gggctttgtc cgtatcgata ctcaaaacaa tatgcctacg 300 gcagcgggtc tgtcctcaag ttctagtggt ttgtccgccc tggtcaaggc ttgtaatgct 360 tatttcaagc ttggattgga tagaagtcag ttggcacagg aagccaaatt tgcctcaggt 420 tcttcttctc ggagttttta tggaccacta ggagcctggg ataaggatag tggagaaatt 480 taccctgtag agacagactt gaaactagct atgattatgt tggtgctaga ggacaagaaa 540 aaaccaatct ctagccgtga cgggatgaaa ctttgtgtgg aaacctcgac gacttttgac 600 gactgggttc gtcagtctga gaaggactat caggatatgc tgatttatct caaggaaaat 660 gattttgcca agattggaga attaacggag aaaaatgccc tggctatgca tgctacgaca 720 aagactgcta gtccagcctt ttcttatctg acggatgcct cttatgaggc tatggacttt 780 gttcgccagc ttcgtgagaa aggagaggcc tgctacttta ccatggatgc tggtcccaat 840 gttaaggtct tctgtcagga gaaagacttg gagcatttat cagaaatttt cggtcatcgt 900 tatcgcttga ttgtgtcaaa aacaaaggat ttgagtcaag atgattgctg t 951 <210> 31 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 acccggggat cctgcgataa cggaaaaaac gataaggagg tattctatga caaaaaaagt 60 tggtgtcgg 69 <210> 32 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 caaacctcct taaactatta cgagacctta cgatttgtcg tcatgtccta tcc 53 <210> 33 <211> 182 <212> PRT <213> Escherichia coli <400> 33 Met Gln Thr Glu His Val Ile Leu Leu Asn Ala Gln Gly Val Pro Thr 1 5 10 15 Gly Thr Leu Glu Lys Tyr Ala Ala His Thr Ala Asp Thr Arg Leu His 20 25 30 Leu Ala Phe Ser Ser Trp Leu Phe Asn Ala Lys Gly Gln Leu Leu Val 35 40 45 Thr Arg Arg Ala Leu Ser Lys Lys Ala Trp Pro Gly Val Trp Thr Asn 50 55 60 Ser Val Cys Gly His Pro Gln Leu Gly Glu Ser Asn Glu Asp Ala Val 65 70 75 80 Ile Arg Arg Cys Arg Tyr Glu Leu Gly Val Glu Ile Thr Pro Pro Glu 85 90 95 Ser Ile Tyr Pro Asp Phe Arg Tyr Arg Ala Thr Asp Pro Ser Gly Ile 100 105 110 Val Glu Asn Glu Val Cys Pro Val Phe Ala Ala Arg Thr Thr Ser Ala 115 120 125 Leu Gln Ile Asn Asp Asp Glu Val Met Asp Tyr Gln Trp Cys Asp Leu 130 135 140 Ala Asp Val Leu His Gly Ile Asp Ala Thr Pro Trp Ala Phe Ser Pro 145 150 155 160 Trp Met Val Met Gln Ala Thr Asn Arg Glu Ala Arg Lys Arg Leu Ser 165 170 175 Ala Phe Thr Gln Leu Lys 180 <210> 34 <211> 546 <212> DNA <213> Escherichia coli <400> 34 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaa 546 <210> 35 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtctcgtaat agtttaagga ggtttgttat gcaaacggaa cacgtcattt ta 52 <210> 36 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ccttatacct gtttatcaaa tctagattat ttaagctggg taaatgcaga ta 52

Claims (17)

1,4-디하이드록시-2-나프톨레이트(1,4-dihydroxy-2-naphthoate, DHNA) 생합성 경로 및 파르네실 피로포스페이트(farnesyl pyrophosphate, FPP) 생합성 경로, 1,4-디하이드록시-2-나프톨레이트(DHNA)와 옥타프레닐 피로포스페이트 (octaprenyl pyrophosphate, OPP)로부터 디메틸메타퀴놀-8(demethylmenaquinol-8, DMM-8)를 합성할 수 있는 효소 및 메타퀴놀-8(menaquinol-8, M-8)를 메나퀴논-8(menaquinone-8, MK-8)으로 전환하는 효소가 내재되어 있고, 메나퀴논-7 생성능이 없는 대장균에,
(i) 파르네실 피로포스페이트(FPP)를 헵타프레닐 피로포스페이트(heptaprenyl pyrophosphate, HPP)로 전환하는 효소를 코딩하는 유전자인 hepS hepT;
(ii) 1,4-디하이드록시-2-나프톨레이트(DHNA)와 헵타프레닐 피로포스페이트(HPP)로부터 디메틸메타퀴놀-7(demethylmenaquinol-7, DMM-7)을 합성할 수 있는 효소인 1,4-디하이드록시-2-나프토에이트 헵타프레닐트랜스퍼레이즈(1,4-dihydroxy-2-naphthoate heptaprenyltransferase)를 코딩하는 유전자인 menA;
(iii) 디메틸메타퀴놀-7(DMM-7)을 메타퀴놀-7(menaquinol-7, M-7)으로 전환하는 효소를 코딩하는 유전자인 ubiE;
(iv) 메타퀴놀-7(M-7)을 메나퀴논-7(MK-7)으로 전환하는 효소를 코딩하는 유전자인 yhcB;
(v) 메발로네이트(mevalonate, MVA) 합성 경로에 관여하는 효소를 코딩하는 유전자인 mvaE, mvaK1, mvaK2mvaD ; 및
(vi) 이소펜테닐-디포스페이트 델타-이소머레이즈(isopentenyl-diphosphate Delta-isomerase) 효소를 코딩하는 유전자인 idi가 도입되어 있고, 메나퀴논-7 생성능을 가지는 재조합 미생물.
1,4-dihydroxy-2-naphthoate (DHNA) biosynthetic pathway and farnesyl pyrophosphate (FPP) biosynthetic pathway, 1,4-dihydroxy-2 -An enzyme capable of synthesizing demethylmenaquinol-8 (DMM-8) from naphtholate (DHNA) and octaprenyl pyrophosphate (OPP) and metaquinol-8 (Menaquinol-8, M In E. coli, which has an enzyme that converts -8) to menaquinone-8 (MK-8), and does not have the ability to produce menaquinone-7,
(i) hepS and hepT , which are genes encoding enzymes that convert farnesyl pyrophosphate (FPP) into heptaprenyl pyrophosphate (HPP);
(ii) 1, an enzyme capable of synthesizing dimethylmetaquinol-7 (DMM-7) from 1,4-dihydroxy-2-naphtholate (DHNA) and heptaprenyl pyrophosphate (HPP) MenA, a gene encoding a ,4-dihydroxy-2-naphthoate heptaprenyltransferase;
(iii) of dimethyl meta-quinol -7 (DMM-7) a meta-quinol -7 (menaquinol-7, M- 7) gene coding for the enzyme conversion to ubiE;
(iv) yhcB , a gene encoding an enzyme that converts metaquinol-7 (M-7) to menaquinone-7 (MK-7);
(v) mvaE, mvaK1 , mvaK2 and mvaD , which are genes encoding enzymes involved in the mevalonate (MVA) synthesis pathway; And
(vi) Isopentenyl-diphosphate delta-isomerase (isopentenyl-diphosphate Delta-isomerase) is a recombinant microorganism having idi, which is a gene encoding an enzyme, has been introduced and has the ability to produce menaquinone-7.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 다음 단계를 포함하는 메나퀴논-7의 제조방법:
(a) 제1항의 재조합 미생물을 배양하여 메나퀴논-7을 생성시키는 단계; 및
(b) 상기 생성된 메나퀴논-7을 수득하는 단계.


Menaquinone-7 production method comprising the following steps:
(a) culturing the recombinant microorganism of claim 1 to produce menaquinone-7; And
(b) obtaining the produced menaquinone-7.


KR1020190044706A 2019-04-17 2019-04-17 Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same KR102246864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190044706A KR102246864B1 (en) 2019-04-17 2019-04-17 Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190044706A KR102246864B1 (en) 2019-04-17 2019-04-17 Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same

Publications (2)

Publication Number Publication Date
KR20200122006A KR20200122006A (en) 2020-10-27
KR102246864B1 true KR102246864B1 (en) 2021-04-30

Family

ID=73136161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190044706A KR102246864B1 (en) 2019-04-17 2019-04-17 Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same

Country Status (1)

Country Link
KR (1) KR102246864B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150533A1 (en) * 2022-02-01 2023-08-10 Conagen Inc. Microorganisms and methods for producing menaquinone-7

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884659B1 (en) 2017-08-30 2018-08-31 주식회사 에이스바이오텍 Novel Bacillus subtilis BS4 having improved menaquinone-7 productivity and method for mass production of menaquinone-7 by using thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130043382A (en) * 2011-10-20 2013-04-30 아주대학교산학협력단 Recombinant microorganism to produce menaquinone and method for preparing menaquinon using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884659B1 (en) 2017-08-30 2018-08-31 주식회사 에이스바이오텍 Novel Bacillus subtilis BS4 having improved menaquinone-7 productivity and method for mass production of menaquinone-7 by using thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ACS Synth. Biol., Vol. 8, pp. 70-81 (2018.12.13.)*
Journal of Bacteriology, Vol. 180, pp. 2782-2787 (1998.)
RSC Adv., Vol. 8, pp. 5099-5104 (2018.)*
Synthetic and Systems Biotechnology, Vol. 2, pp. 167-175 (2017.)*

Also Published As

Publication number Publication date
KR20200122006A (en) 2020-10-27

Similar Documents

Publication Publication Date Title
US20240200112A1 (en) Process for the Production of Fucosylated Oligosaccharides
US20220154234A1 (en) Production of steviol glycosides in recombinant hosts
US20210155966A1 (en) Production of steviol glycosides in recombinant hosts
US20220195477A1 (en) Production of steviol glycosides in recombinant hosts
US11821015B2 (en) Production of steviol glycosides in recombinant hosts
BRPI0716954A2 (en) ISOPRENOID PRODUCTION AND ISOPRENOID PRECURSORS
Okada et al. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae
US5607672A (en) Replacement therapy for dental caries
US20200080123A1 (en) Production of steviol glycosides in recombinant hosts
KR102246864B1 (en) Recombinant Microorganism Having Enhanced Menaquinone-7 Producing Ability and Method for Preparing Menaquinone-7 Using the Same
US20220380822A1 (en) Application of branched-chain a-ketoacid dehydrogenase complex in preparation of malonyl coenzyme a
Chen et al. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli
KR102229379B1 (en) Recombinant Microorganism Having Enhanced Phytofluene Producing Ability and Method for Preparing Phytofluene Using the Same
CN107223152A (en) The genetically engineered bacteria of carbon monoxide dehydrogenase (CODH) activity with change
JPH1057072A (en) Production of ubiquinone-10
US20190048356A1 (en) Production of steviol glycosides in recombinant hosts
KR101863239B1 (en) Microorganism Capable of Using Acetic Acid as Sole Carbon Source
BR112019027919A2 (en) microorganism with stabilized copy number of functional dna sequence and associated methods
KR20130043382A (en) Recombinant microorganism to produce menaquinone and method for preparing menaquinon using the same
TW201124537A (en) Isopropyl alcohol-producing bacterium and method for producing isopropylalcohol
DE102007041862A1 (en) Microbiological production of isoprenoids
Schulbach Isoprenoid chain elongation in Mycobacterium tuberculosis
Rohr The phosphoketolase from Bifidobacterium lactis: Biochemistry, genetics, and phylogeny

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant