KR102243162B1 - A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water - Google Patents

A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water Download PDF

Info

Publication number
KR102243162B1
KR102243162B1 KR1020200148205A KR20200148205A KR102243162B1 KR 102243162 B1 KR102243162 B1 KR 102243162B1 KR 1020200148205 A KR1020200148205 A KR 1020200148205A KR 20200148205 A KR20200148205 A KR 20200148205A KR 102243162 B1 KR102243162 B1 KR 102243162B1
Authority
KR
South Korea
Prior art keywords
wastewater
ammonia
hydrofluoric acid
powder
solid fertilizer
Prior art date
Application number
KR1020200148205A
Other languages
Korean (ko)
Inventor
허재수
Original Assignee
허재수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허재수 filed Critical 허재수
Priority to KR1020200148205A priority Critical patent/KR102243162B1/en
Application granted granted Critical
Publication of KR102243162B1 publication Critical patent/KR102243162B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D5/00Fertilisers containing magnesium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

The present invention is a method for preparing a powder for solid fertilizer using ammonia-containing hydrofluoric acid wastewater, and more specifically, to a technology on a method for preparing a powder for solid fertilizer using ammonia-containing hydrofluoric acid wastewater, in which the powder for solid fertilizer is prepared by adding slaked lime to ammonia-containing hydrofluoric acid wastewater (S1); stirring and precipitating (S2); filtering the precipitate (S3); degassing ammonia dissolved in the filtered wastewater to be adsorbed onto sulfuric acid and phosphoric acid (S4); and discharging the degassed and purified wastewater, mixing sulfuric acid again with an aqueous solution of ammonium phosphate and ammonium sulfate produced as by-products in the ammonia degassing process, adding magnesium hydroxide and stirring (S5); and aging for a predetermined time to carry out a reaction (S6).

Description

암모니아포함 불산폐수를 이용한 고체비료용 분말 제조방법{A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water}A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water

본 발명은 암모니아포함 불산 폐수를 이용한 고체비료용 분말의 제조방법으로, 구체적으로 암모니아포함 불산 폐수에 소석회를 투입(S1)후 이를 교반 침전(S2)한 후 침전물을 필터링(S3)하고, 필터링 된 폐수에 용해된 암모니아를 탈기하여 황산, 인산에 흡착(S4)한 후 암모니아가 탈기되어 정수된 폐수는 방류하고 암모니아 탈기 과정에서 부산물로 생성된 암모늄 수용액에 다시 황산을 혼합하고 수산화마그네슘을 투입 교반(S5)하여 소정 시간 숙성(S6)하여 반응시킴으로써 고체비료용 분말로 제조하는, 암모니아포함 불산 폐수를 이용한 고체비료용 분말의 제조방법에 관한 기술이다.The present invention is a method for producing a powder for solid fertilizer using hydrofluoric acid wastewater containing ammonia. Specifically, slaked lime is added to hydrofluoric acid wastewater containing ammonia (S1) and then stirred and precipitated (S2), and the precipitate is filtered (S3) and filtered. After degassing the ammonia dissolved in the wastewater and adsorbing it to sulfuric acid and phosphoric acid (S4), the wastewater purified by degassing ammonia is discharged, and sulfuric acid is again mixed with the aqueous ammonium solution produced as a by-product in the ammonia degassing process, and magnesium hydroxide is added and stirred ( This is a technology related to a method for producing a powder for solid fertilizer using hydrofluoric acid wastewater containing ammonia, which is prepared as a powder for solid fertilizer by reacting by aging (S6) for a predetermined time by S5).

식물 필수원소는 전 생활과정에 반드시 필요한 원소인데, 알려진바로는 9가지 다량원소와 7가지 미량원소 등 총 16종이 있다. 필수원소는 하나라도 부족할 경우 식물의 생장, 생존 또는 번식 중 어느 것이 완성되지 않으며, 결핍 시 그 원소를 줌으로써 회복될 뿐 다른 원소로는 대체되지 않는 것이어서, 필수원소 16종은 식물체 필수적 구성성분이거나 체내 생화학적 반응에 반드시 필요한 성분으로 알려져 있다.Plant essential elements are essential elements in the entire life process, and there are a total of 16 species, including 9 macro elements and 7 trace elements. If any of the essential elements are insufficient, neither growth, survival, or reproduction of the plant is completed, and in case of deficiency, it is recovered by giving the element and is not replaced by other elements.Therefore, 16 kinds of essential elements are essential components of the plant or in the body. It is known as an essential component for biochemical reactions.

또 16종의 필수원소 중 탄소, 수소, 산소, 질소, 인, 칼륨, 칼슘, 마그네슘, 황 등은 비교적 식물에 다량 함유된 다량원소이며, 철, 망가니즈, 구리, 아연, 붕소, 몰리브덴, 염소 등 7가지는 미량원소로서 작물재배시 필수 비료성분이며, 황(S), 마그네슘(Mg), 인산(P) 및 암모니아(NH3)는 농업용 비료로 널리 사용되며 황(S)를 제외한 모두 전량 수입된다. In addition, among the 16 essential elements, carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur are macro elements contained in relatively large amounts in plants, and iron, manganese, copper, zinc, boron, molybdenum, and chlorine Seven of these are trace elements and are essential fertilizer components for crop cultivation, and sulfur (S), magnesium (Mg), phosphoric acid (P) and ammonia (NH3) are widely used as agricultural fertilizers, and all except sulfur (S) are imported. .

그 중에서 황(S)은 원자번호 16, 원자량 32.06인 비금속원소로서, 생리적으로는 메티오닌(methionine), 시스테인(cysteine), 시스틴(cystine)의 아미노산을 비롯하여 이로부터 형성된 단백질, 효소 등과 일부 비타민(thiamine, biotin)을 구성하며, -SH는 생체 내 산화·환원 기능을 조절하는 작용기로서 식물체에 포함된 황의 함량은 식물종류, 나이 및 흡수상태에 따라 다르지만 대략 0.1~1.0% 수준으로 알려져 있다. 이는 인산(P)과 비슷한 수준으로 곡류보다는 십자화과 채소류 및 마늘·파 등에 많고, 토양 중 존재하는 황은 원소상태(동소체 황)로 퇴적되거나, 암석상태(화성암)에 0.05~0.3% 범위 황화물로 존재하며 호기적 조건에서 암석 풍화 시 황산염의 산화된 상태를 띤다.Among them, sulfur (S) is a non-metallic element with an atomic number of 16 and an atomic weight of 32.06, physiologically, amino acids of methionine, cysteine, and cystine, as well as proteins and enzymes formed therefrom, and some vitamins. , biotin), and -SH is a functional group that regulates the oxidation and reduction functions in the living body. The content of sulfur contained in plants varies depending on the type of plant, age, and absorption state, but is known to be approximately 0.1 to 1.0%. It is similar to phosphoric acid (P), and is more common in cruciferous vegetables and garlic and green onions than cereals, and sulfur present in the soil is deposited as an elemental state (alloyed sulfur), or exists as a sulfide in the range of 0.05 to 0.3% in a rocky state (igneous rock). Under aerobic conditions, when rock is weathered, it takes on an oxidized state of sulphate.

또 마그네슘(Mg)은 황산마그네슘 ·산화마그네슘·수산화마그네슘·탄산마그네슘 등 총칭하는 마그네슘 비료를 말하며, 식물의 필수원소로 엽록소 구성성분이자 효소 작용에 관여한다. 특히 한국의 식물재배토양은 대개 모재(母材)가 화강암에 기인하기 때문에, 산성이 강한 토양에서는 마그네슘 성분이 부족하기 쉬운 것으로 알려져 있고 이 때문에 한국 토양은 대부분 마그네슘 보충을 하기위해 마그네슘 비료를 널리 사용하고 있다. 참고로 마그네사이트(탄산마그네슘)은 하소 시(calcination) 하소온도가 1500℃ 이상일 경우에는 반응성이 극히 낮은 중소산화마그네슘으로 만들어지거나, 과 소성된 상태여서 반응성이 낮아진 사소산화마그네슘으로 제조되나, 900~1000℃에서 5-10시간 하소시에는 물과 반응하여 수화물이 형성되는 수화반응성이 가장 좋은소재인 경소산화마그네슘이 되며 이를 이용하여 분말 수산화마그네슘을 제조할 수 있다. 또한 수산화마그네슘은 마그네슘 수산화물(Mg(OH)2)로 이루어진 육방정계에 속하는 광물인 자연석상태 수미석을 분쇄하여 제공할 수도 있다.In addition, magnesium (Mg) refers to magnesium fertilizers, collectively referred to as magnesium sulfate, magnesium oxide, magnesium hydroxide, and magnesium carbonate, and is an essential element of plants, which is a component of chlorophyll and is involved in enzyme action. In particular, in Korea's plant cultivation soil, it is known that magnesium is easily insufficient in soils with strong acidity because the parent material is mostly due to granite, and for this reason, most Korean soils use magnesium fertilizer widely to supplement magnesium. Are doing. For reference, magnesite (magnesium carbonate) is made of magnesium oxide, which has extremely low reactivity when the calcination temperature is higher than 1500℃, or is made of magnesium oxide, which has low reactivity due to over-calcination. When calcined at °C for 5-10 hours, it becomes light-burned magnesium oxide, which is the material with the best hydration reactivity in which hydrates are formed by reacting with water, and powdered magnesium hydroxide can be prepared using this. In addition, magnesium hydroxide may be provided by pulverizing natural stone state minerals belonging to the hexagonal system consisting of magnesium hydroxide (Mg(OH)2).

인(P)성분의 경우, 식물세포의 원형질 구성 필수원소로서, 인산비료는 질소 및 칼륨과 함께 매우 오래전부터 기본 비료성분으로 사용되어 왔고, 암모니아는 대개 암모늄 형태(NH4+)를 띠고 있기 때문에 암모니아가 식물체 내에 질소(N) 형태로 흡수될 경우 빠르게 아미노산 및 단백질로 변화하여 식물의 조직을 구성하는 중요한 역할을 하게 한다.In the case of phosphorus (P), it is an essential element of the protoplasm of plant cells. Phosphoric fertilizers have been used as basic fertilizers for a very long time along with nitrogen and potassium, and ammonia is usually in the form of ammonium (NH4 + ). When is absorbed in the form of nitrogen (N) in the plant, it rapidly changes into amino acids and proteins, and plays an important role in organizing plant tissues.

그런데 위에 언급한 여러 성분을 포함한 상업용비료는 대개 양액관주용 비료, 미생물 영양제, 재생 인산 등의 형태로 보급되고 있지만 복잡한 제법과 생산비 문제로 값싸고 효율적인 비료 보급에 많은 어려움을 겪고 있었다. However, commercial fertilizers containing the above-mentioned components are usually distributed in the form of nutrient-drench fertilizers, microbial nutrients, and regenerated phosphoric acid, but they have had many difficulties in supplying cheap and efficient fertilizers due to complex manufacturing methods and production costs.

한편 불산은 반도체 등 첨단기술제품의 제조공정에서 필수적으로 사용되는 물질로서, 반도체 에칭공정에는 특별히 NF3(삼불화질소)와 암모니아(NH3)가스를 사용하여 세척하는 공정 등이 있고, 세척 후에는 암모니아 폐수가 발생하여 암모니아 혼합물 형태로 불산(HF)과 함께 배출된다. On the other hand, hydrofluoric acid is an essential material used in the manufacturing process of high-tech products such as semiconductors, and the semiconductor etching process includes a special cleaning process using NF3 (nitrogen trifluoride) and ammonia (NH3) gas. After cleaning, ammonia Wastewater is generated and discharged together with hydrofluoric acid (HF) in the form of ammonia mixture.

그런데 이러한 불산(HF)과 함께 배출되는 암모니아는 배출 전 2단계 폐수처리 절차를 대개 거치는데, 1단계에서 수산화칼슘(Ca(OH)2)을 강알칼리 조건에서 혼합하여 CaF2로 반응, 침전시켜 제거하고, 2단계에서 강알칼리 조건에서 60℃이상으로 가열시키는 암모니아 탈기과정을 거친다. 즉 불산 폐수의 불산(HF)은 수산화칼슘(소석회) 및 Ph 11.0 이상 강알칼리 상태에서 2HF + Ca(OH)2 <-> CaF2 + 2H2O의 반응을 유도하며, 2차로 폐수 온도를 60℃이상으로 상승시키면 폐수에 용해되어 있는 암모니아(NH3)가 가스형태로 기화시키게 된다. 이때 발생한 암모니아 가스를 인산 또는 황산에 반응 흡착시켜 인산암모늄 또는 황산암모늄수용액상태로 만들어 폐기물 또는 폐수로 위탁 처리하는데, 연간 수십만톤에 이를 정도 심각한 문제이다.However, the ammonia discharged with hydrofluoric acid (HF) usually undergoes a two-stage wastewater treatment procedure before discharge.In the first step, calcium hydroxide (Ca(OH) 2 ) is mixed under strong alkali conditions, reacted with CaF 2 , precipitated and removed. , In the second step, ammonia degassing process is carried out by heating above 60℃ under strong alkaline conditions. That is, the hydrofluoric acid (HF) of the hydrofluoric acid wastewater induces a reaction of 2HF + Ca(OH) 2 <-> CaF 2 + 2H 2 O in a strong alkali state of calcium hydroxide (slaked lime) and Ph 11.0 or higher, and the temperature of the wastewater is secondarily raised to 60℃ or higher. When it rises to, ammonia (NH3) dissolved in wastewater is vaporized in the form of gas. The ammonia gas generated at this time is reacted and adsorbed with phosphoric acid or sulfuric acid to form an aqueous ammonium phosphate or ammonium sulfate solution, and is consigned to waste or wastewater, which is a serious problem, reaching hundreds of thousands of tons per year.

이러한 불산 폐수처리를 위해 제안된 도 1공정의 공개특허공보 제10-2009-69904호는 철강산업, 특히 원자력발전용 핵연료봉의 소재인 질카로이 합금튜브 세정용 불산 및 질산을 주성분으로 하는 폐 산세액을 고농도 산세액과 저농도 산세액으로 분리 처리하여 질소 및 불소 제거효율을 향상시킨 것이 요지로, 특히 고농도 산세액을 알카리성 물질로 중화한 후 증발시켜서 증발액과 고형폐기물로 분리하는 고농도 산세액 처리과정과; 상기 고농도 산세액 처리과정에서 발생된 증발액과 저농도 산세액을 혼합하여 불소제거제를 이용하여 1차 불소제거를 수행하고 생물학적 방법으로 탈질처리하며, 여과에 의해 잔류고형물을 제거한 후 최종 처리수를 방류 처리하는 저농도 산세액 처리하는 특징이 있으나, 처리 슬러지는 농축 후 폐기하고 2차 불소제거과정을 거친 처리 수는 방류에 맞게 희석하여 방류시키고 있어, 최종 폐수에서의 질소 등 성분을 인한 환경오염 문제는 여전히 상존하고 있다.Publication No. 10-2009-69904 of the process of Fig. 1 proposed for the treatment of hydrofluoric acid wastewater is a waste pickling solution containing hydrofluoric acid and nitric acid as main components for cleaning the steel industry, especially the zinc alloy tube, which is a material for nuclear fuel rods for nuclear power generation. The main point is to improve nitrogen and fluorine removal efficiency by separating and treating high-concentration pickling liquid and low-concentration pickling liquid.In particular, a high-concentration pickling liquid treatment process in which the high-concentration pickling liquid is neutralized with an alkaline substance and then evaporated to separate the evaporated liquid and solid waste. and; The evaporation liquid generated during the treatment of the high-concentration pickling solution and the low-concentration pickling solution are mixed, the primary fluorine removal is performed using a fluorine remover, denitrification treatment is performed by a biological method, and residual solids are removed by filtration and the final treated water is discharged. The treated sludge is treated with a low-concentration pickling solution, but the treated sludge is discarded after concentration, and the treated water that has undergone the secondary fluorine removal process is diluted and discharged for discharge.Therefore, the problem of environmental pollution caused by components such as nitrogen in the final wastewater is avoided. It still exists.

또 다른 불산 폐수 처리기술인 도 2 공정의 국내특허 기술 등록특허제10-1007522호는 불산(HF) 함유폐수를 방류수 수질기준이하로 안정 처리할 수 있도록 발생한 불산 폐수를 집수조에 저장한 후, 원수펌프를 이용하여 반응조로 이송하는 원수이송부, 상기 원수펌프에서 이송된 폐수를 약품투입장치에 의해 약품을 투입하여 화학적반응을 일으켜 응집물을 형성시키고 폐수를 중성으로 조정하는 반응부, 상기 반응부의 화학반응 후 폐수를 멤브레인을 통과시켜 처리하는 멤브레인처리부, 상기 멤브레인 처리부를 통과한 처리수를 약품투입장치에 의해 PH를 조절하고, 미처리된 미량의 잔존 불소성분은 불소제거용 이온교환 수지를 사용하여 제거하는 후단처리부로 이루어진 불산폐수 처리시스템을 제안하나, 이 또한 수산화칼슘을 이용한 1차 처리와 수산화칼슘과 황산을 이용한 2차 처리 후 결국 파이널필터시스템을 적용하여 방류하는 불소 제거 및 폐수처리 기술일 뿐이어서 폐수 중 질소 성분 등의 환경오염 문제는 여전히 상존하고, 비료로 재활용에 관한 인식조차 없다.Another hydrofluoric acid wastewater treatment technology, the domestic patent technology registration patent No. 10-1007522 of the process of Fig. 2, stores the generated hydrofluoric acid wastewater in a water collecting tank so that the hydrofluoric acid (HF)-containing wastewater can be stably treated below the effluent water quality standard, and then the raw water pump The raw water transfer unit transferred to the reaction tank by using, the reaction unit that causes a chemical reaction by injecting the chemicals into the wastewater transferred from the raw water pump by the chemical injection device to form agglomerates and adjusts the wastewater to neutral, and the reaction unit after the chemical reaction of the reaction unit A membrane treatment unit that treats wastewater by passing through the membrane, the pH of the treated water that has passed through the membrane treatment unit is adjusted by a chemical injection device, and an untreated trace amount of residual fluorine is removed using an ion exchange resin for removing fluorine. We propose a hydrofluoric acid wastewater treatment system consisting of a treatment unit, but this is only a technology for removing fluorine and discharging by applying a final filter system after the first treatment using calcium hydroxide and the second treatment using calcium hydroxide and sulfuric acid. The problem of environmental pollution such as ingredients still exists, and there is no awareness of recycling as a fertilizer.

또 다른 기술로 소개된 국내등록 실용신안공보실1996-31480호에 따르면, 도 3과 같이 실리콘웨이퍼 생산 공장에서 발생되는 폐수인 부유물질 함유폐수, 불소함유 폐수, 세척폐수를 분리하여 처리함으로써 해당 공정수로 재이용할 수 있도록 경제적이고 환경오염을 줄일 수 있는 실리콘웨이퍼폐수의 재이용장치에 관한 것으로 폴리싱 및 크리닝 등 공정에서 세척수로 발생하는 폐수가 침적여상법, 관형막분리장치, 역삼투장치, 사외선/오존발생장치 및 이온교환수지 장치를 통해 공정수로 행성시켜 재이용되는 공정폐수처리장치, 슬라이싱, 그라인딩 및 다이싱쇼공정에서 발생되는 고농도의 실리콘부유물질함유폐수가 침전조(23), 관형막분리장치(26), 경수연화장치(27), 탈기장치(28), 역삼투장치(30), 오존발생기(31), 활성탄여과장치(32), 이온교환수지탑(33,34) 및 정밀여과장치(35)를 통해 공정수로 생성시켜 재이용하는 고농도고형성물질처리장치(2), 웨이퍼 표면 에칭 시 사용되는 불산에 발생되는 불소폐수가 화학적 처리 관형막분리, 역삼투 및 이온교환수지장치(46, 48)를 통해 슬러지케이크처리와 공정수로 생성시켜 재이용하는 불소폐수처리장치(3) 및, 분뇨 및 오수가 스크린(50), 폭기조(51), 오존발생기(53, 57) 및 활성탄여과장치(58)를 통해 공정세척수로 생성시켜 재이용하는 분뇨 및 오수폐수처리장치(4)로 구성되는 실리콘웨이퍼폐수의 재이용장치이나, 이 또한 불소포함 폐수를 냉각수로 재이용하거나 희석하는 폐수처리용 기술일 뿐 최종 방류단계에서 질소 등 성분을 비료로 사용하고자하는 인식을 찾아보기 어렵다.According to Korean Utility Model Publication No. 1996-31480, which was introduced as another technology, as shown in Fig. 3, the process water is treated by separating and treating wastewater containing suspended solids, wastewater containing fluorine, and wastewater. It is an economical and environmentally reusable device for silicon wafer wastewater that can be reused as a wastewater. The wastewater generated from washing water in processes such as polishing and cleaning is immersion filtration method, tubular membrane separation device, reverse osmosis device, ultraviolet rays/ Process wastewater treatment system that is recycled and reused as process water through an ozone generator and an ion exchange resin device, a high-concentration silicon-suspended wastewater generated in the slicing, grinding, and dicing show processes, a settling tank 23, a tubular membrane separation device ( 26), water softening device (27), degassing device (28), reverse osmosis device (30), ozone generator (31), activated carbon filtration device (32), ion exchange resin towers (33, 34) and precision filtration device ( A high-concentration solid material treatment device (2) that is generated as process water and reused through 35), a chemical treatment of fluorine wastewater generated in hydrofluoric acid used during wafer surface etching, tubular membrane separation, reverse osmosis and ion exchange resin device (46, Fluorine wastewater treatment device 3 that generates and reuses sludge cake treatment and process water through 48), and manure and wastewater screen 50, aeration tank 51, ozone generators 53 and 57, and activated carbon filtration device ( 58), a silicon wafer wastewater recycling device composed of manure and sewage wastewater treatment device 4 that is generated and reused as process washing water.This is also a wastewater treatment technology that reuses or dilutes fluorine-containing wastewater as cooling water. It is difficult to find the perception that nitrogen or other components are used as fertilizer in the discharge stage.

일본에서 개발된 국내 공개특허공보 특1997-10661호 기술은 반도체공장 알칼리폐수에 대하여 다양한 약품을 첨가하지 않고 초순수 제조설비에서 원수로서 이용하기 위해 폐수를 처리할 수 있는 수처리 장치를 제공한 특징이 있으나, 상기 장치는 산성폐수가 도입되는 제1수조, 제1수조로부터의 폐수를 고액분리하고 상청액을 방출하는 제2수조, 막필터를 통과한 처리수를 재생시키는 이온교환수지와 폭기관을 포함하는 이온교환처리조, 이온교환수지를 침강시키는 침강조와 침강조의 이온교환수지를 제1수조에 도입하는 에어리프트 펌프 및 제2수조의 이온교환수지를 이온교환처리조에 반송하는 반송 에어 리프트 펌프를 포함하여, 이온교환수지는 이온교환처리조에서 이온을 처리수의 플루오르 이온으로 교환시키는 작용을 하고 제1수조에서 산성폐수로서 재생하는 것을 핵심으로 한 이온교환수지를 이용한 폐수처리 기술일 뿐, 폐수 중의 특정 성분을 식물재배에 활용하고자 한 시도가 전혀 없다. The Korean Patent Publication No. 1997-10661 technology developed in Japan is characterized by providing a water treatment device capable of treating wastewater for use as raw water in an ultrapure water production facility without adding various chemicals to the alkaline wastewater of a semiconductor factory. , The device comprises a first tank into which acidic wastewater is introduced, a second tank that solid-liquid separation of wastewater from the first tank and discharges a supernatant liquid, an ion exchange resin and an aeration pipe for regenerating the treated water that has passed through the membrane filter. An ion exchange treatment tank, an air lift pump that introduces the ion exchange resin of the settling tank and the settling tank to the first water tank, and a transfer air lift pump that transfers the ion exchange resin from the second tank to the ion exchange treatment tank. Including, the ion exchange resin is only a wastewater treatment technology using ion exchange resin, which has a core function of exchanging ions into fluorine ions in the treated water in the ion exchange treatment tank and regeneration as acidic wastewater in the first tank. There have been no attempts at all to utilize a specific ingredient in the plant cultivation.

이처럼 지금까지 제안된 불산 포함 폐수의 물리화학적 및 생물학적 반응공정 은 대부분 장치 및 반응 조건이 매우 까다롭고, 처리 절차가 매우 복잡하며, 처리 비용과 안전사고 위험이 매우 높았기 때문에 실제 반도체 등 첨단산업 발전에 따라 사용 및 폐수 배출량이 폭증하는 불산 포함 폐수의 효과적 처리가 요구됨에도 효과적으로 적용될 수 없었고, 특히 이를 이용한 식물재배용 자원화는 인식 자체도 없었다.As such, most of the physicochemical and biological reaction processes of wastewater containing hydrofluoric acid that have been proposed so far have very strict equipment and reaction conditions, very complex treatment procedures, and very high treatment costs and risk of safety accidents, so the actual development of high-tech industries such as semiconductors. Accordingly, it could not be applied effectively even though effective treatment of wastewater including hydrofluoric acid, whose use and discharge of wastewater rapidly increased, was not effectively applied, and in particular, there was no awareness of the use of it as a resource for plant cultivation.

- 공개특허공보 제10-2009-69904호(2009.7.1.공개)-Unexamined Patent Publication No. 10-2009-69904 (published on July 1, 2009) - 등록특허제10-1007522호(2011.1.14.공고)-Registered Patent No. 10-1007522 (announcement on Jan. 14, 2011) - 등록실용신안공보 실1996-31480호(1996.10.22.공개)-Registered Utility Model Publication No. 1996-31480 (published on October 22, 1996) - 공개특허공보 특1997-10661호(1997.3.27.공개)-Unexamined Patent Publication No. 1997-10661 (published on March 27, 1997)

본 발명은 암모니아 포함 불산 폐수를 이용한 고체 비료용 분말 제조방법을 제공하고자 한다.The present invention is to provide a powder manufacturing method for solid fertilizer using ammonia-containing hydrofluoric acid wastewater.

본 발명은 암모니아포함 불산 폐수정수과정에서 발생하는 부산물(인산 및 황산암모늄수용액)을 비료로 재활용하는 방법으로, 특히 고체 비료용 분말로 제조하는 효과적 방법을 제공하고자 한다.The present invention is a method of recycling the by-products (phosphoric acid and ammonium sulfate aqueous solution) generated in the hydrofluoric acid wastewater purification process including ammonia as fertilizer, and in particular, to provide an effective method of manufacturing a solid fertilizer powder.

본 발명은 암모니아포함 폐수를 비료용 분말로 제조함으로써 산업폐기물 처리, 식물재배에 활용 및 비료수입 대체효과를 제공하여 첨단산업과 농업 상생방안을 지원하고자 한다. The present invention aims to support a win-win plan for high-tech industries and agriculture by manufacturing ammonia-containing wastewater as a powder for fertilizer, thereby providing an effect to treat industrial waste, plant cultivation, and substitute fertilizer import.

이를 위하여 본 발명은 암모니아포함 불산 폐수에 소석회를 투입하는 제1단계(S1); 상기 제1단계를 거친 폐수를 교반 침전하는 제2단계(S2); 상기 제2단계를 거친 폐수로부터 불화칼슘 침전물을 필터링하는 제3단계(S3); 상기 제3단계를 거쳐 불화칼슘이 제거된 폐수를 70℃로 가열하여 암모니아를 탈기하고 이를 인산 및 황산을 이용하여 흡착하는 제4단계(S4) 및, 상기 제4단계에서 암모니아가 탈기된 폐수는 방류하고 암모니아가 흡착된 인산암모늄 및 황산암모늄 수용액에 황산 및 수산화마그네슘을 혼합 교반하는 제5단계(S5) 및, 상기 제5단계 처리된 수용액을 1시간 방치하여 숙성하는 제6단계(S6)를 포함하는 것을 특징으로 하는, 암모니아포함 불산 폐수를 이용한 고체비료용 분말 제조방법을 제공한다.
또한 본 발명은 상기 6단계의 방법으로 수득한 고체비료용 분말을 소정 크기로 분쇄하여 포장하는 제7단계(S7)를 더 부가한 암모니아포함 불산 폐수를 이용한 고체비료용 분말 제조방법을 제공한다.
To this end, the present invention includes a first step (S1) of adding slaked lime to hydrofluoric acid wastewater containing ammonia; A second step (S2) of stirring and sedimenting the wastewater passed through the first step; A third step (S3) of filtering the calcium fluoride precipitate from the wastewater that has passed through the second step; The fourth step (S4) in which the wastewater from which calcium fluoride has been removed through the third step is heated to 70°C to degas ammonia and adsorbed using phosphoric acid and sulfuric acid, and the wastewater from which the ammonia is degassed in the fourth step A fifth step (S5) of mixing and stirring sulfuric acid and magnesium hydroxide in an aqueous solution of ammonium phosphate and ammonium sulfate adsorbed with ammonia after discharge, and a sixth step (S6) in which the aqueous solution treated in the fifth step is left to stand for 1 hour. It provides a powder manufacturing method for a solid fertilizer using hydrofluoric acid wastewater containing ammonia, characterized in that it comprises.
In addition, the present invention provides a method for preparing a powder for solid fertilizer using hydrofluoric acid wastewater containing ammonia, further adding a seventh step (S7) of pulverizing and packing the powder for solid fertilizer obtained by the method of step 6 into a predetermined size.

삭제delete

본 발명은 불산폐수를 비료용 분말로 재활용하여 환경오염을 예방할 수 있다. The present invention can prevent environmental pollution by recycling hydrofluoric acid wastewater as a fertilizer powder.

본 발명은 불산폐수를 이용한 고체비료용 분말 제조방법 및 비료를 제공한다.The present invention provides a powder manufacturing method and fertilizer for solid fertilizer using hydrofluoric acid wastewater.

본 발명은 반도체제조 등 첨단산업과 농업의 윈윈 방안을 제시한다.The present invention proposes a win-win plan for high-tech industries such as semiconductor manufacturing and agriculture.

또한 본 발명은 불산폐수를 비료로 이용함으로써 수입대체효과를 제공할 수 있다.In addition, the present invention can provide an import substitution effect by using hydrofluoric acid wastewater as fertilizer.

도 1은 공개특허공보 제10-2009-69904호에 공개한 폐 산세액을 고농도 산세액과 저농도 산세액으로 분리처리하는 질소 및 불소 제거효율을 향상시킨 폐수처리방법을 도시한 것이다.
도 2는 등록특허제10-1007522호의 불산 폐수를 처리하기 위한 1,2차 반응조와 멤브레인시스템을 통하여 불산(HF)폐수를 방류수 수질기준이하로 안정되게하여 방류하는 처리공정을 도시한 것이다.
도 3은 등록실용신안공보실1996-31480호 기술로서 부유물질 함유 폐수, 불소함유 폐수, 세척폐수를 분리 처리하여 해당 공정수로 재이용할 수 있도록 함으로써 경제적이며 환경오염을 줄이는 실리콘웨이퍼폐수 재이용기술을 도시한 것이다.
도 4는 국내공개특허공보 특1997-10661호 기술로서 반도체공장의 알칼리폐수에 대하여 다양한 약품을 첨가하지 않고 초순수 제조설비에서 원수로서 이용하기 위해 폐수를 처리할 수 있는 일본에서 개발된 수처리장치 및 이온교환수지 이용 기술을 도시한 것이다.
도 5는 공지의 불산폐수 처리과정을 도식화한 것으로서, 강산성 상태에서 소석회(수산화칼슘) 투입, 교반 및 침전, 침전물 필터링, 암모니아 탈기 흡착처리하여 방류하는 것을 도시한 것이다.
도 6은 본 발명의 마그네슘을 이용한 비료용 분말화 기술로서, 기존에 방류되던 흡착 화합물인 황산 및 인산암모늄수용액을 재이용하되, 인산 또는 황산에 흡착된 인산암모늄 및 황산암모늄수용액에 다시 황산 및 마그네슘화합물(수산화마그네슘 또는 경소산화마그네슘)과 반응시키고, 최종적으로 고체 비료용 분말을 제조하는 방법을 도식화한 것이다.
도 7은 본 발명의 분말상태 수산마그네슘 투입 시 황산과 격렬한 반응이 발생하는 것을 보여주는 사진이다.
도 8은 본 발명의 수산화마그네슘 투입과 함께 일어나는 반응과정을 도시한 것으로서, 암모늄수용액에 들어 있던 물이 모두 반응에 사용되는 과정을 도시한 것이다.
도 9는 본 발명의 반응과 숙성과정이 종료되어 수득된 결정체 분말사진이다.
도 10은 본 발명의 3단계 탈기한 암모니아를 황산 및 인산에 흡착시키기 위하여 제작된 증류기를 도시한 것이다.
FIG. 1 shows a wastewater treatment method with improved nitrogen and fluorine removal efficiency in which the waste pickling solution disclosed in Korean Patent Application Publication No. 10-2009-69904 is separated into a high-concentration pickling solution and a low-concentration pickling solution.
FIG. 2 shows a treatment process of stabilizing and discharging hydrofluoric acid (HF) wastewater below the effluent water quality standard through the first and second reaction tanks and membrane systems for treating hydrofluoric acid wastewater of Korean Patent No. 10-1007522.
3 shows a silicon wafer wastewater reuse technology that is economical and reduces environmental pollution by separating and treating wastewater containing suspended solids, wastewater containing fluorine, and washing wastewater as a technology of Registration Utility Model Publication No. 1996-31480 so that they can be reused as process water. I did it.
4 is a technology of Korean Patent Publication No. 1997-10661, which is a water treatment device and ions developed in Japan capable of treating wastewater for use as raw water in an ultrapure water production facility without adding various chemicals to alkaline wastewater of a semiconductor factory. It shows the technology of using the exchangeable resin.
FIG. 5 is a schematic diagram of a known hydrofluoric acid wastewater treatment process, and shows that slaked lime (calcium hydroxide) is introduced, stirred and precipitated, precipitates are filtered, and ammonia is degassed by adsorption treatment in a strongly acidic state.
Figure 6 is a powdering technology for fertilizer using magnesium of the present invention, reusing the sulfuric acid and ammonium phosphate aqueous solution, which are adsorbed compounds that were previously discharged, but the sulfuric acid and magnesium compounds again in the aqueous ammonium phosphate and ammonium sulfate solution adsorbed to phosphoric acid or sulfuric acid. This is a schematic diagram of a method of reacting with (magnesium hydroxide or light magnesium oxide) and finally producing a powder for solid fertilizer.
7 is a photograph showing that vigorous reaction with sulfuric acid occurs when powdered magnesium hydroxide is added according to the present invention.
8 is a diagram illustrating a reaction process that occurs with the addition of magnesium hydroxide according to the present invention, and shows a process in which all water contained in an aqueous ammonium solution is used for the reaction.
9 is a photograph of a crystal powder obtained by completing the reaction and aging process of the present invention.
10 shows a still manufactured to adsorb ammonia degassed in three stages of the present invention to sulfuric acid and phosphoric acid.

본 발명에서 사용하는 용어 중 ‘암모늄 수용액’이란 전자회사 등에서 발생하는 불산(HF)과 암모니아(NH4+)가 혼합된 폐수에 수산화칼슘을 투입하여 먼저 불산을 제거시킨 후 다시 폐수를 방류하기 위해 폐수에 용해되어 있는 암모니아를 탈기하는 과정을 거치는데 이때 암모니아 가스를 황산 또는 인산에 흡착시킨 것으로 수용액 상태의 혼합물인 인산암모늄 또는 황산암모늄을 개별적으로 또는 모두 포함하는 의미로 사용된 것이다.Among the terms used in the present invention, the term'ammonium aqueous solution' is added to the wastewater in which hydrofluoric acid (HF) and ammonia (NH4 + ) generated by electronics companies are mixed with calcium hydroxide to remove the hydrofluoric acid first, and then to the wastewater to discharge the wastewater again. Dissolved ammonia is degassed. At this time, ammonia gas is adsorbed to sulfuric acid or phosphoric acid, and is used to include ammonium phosphate or ammonium sulfate, which is an aqueous mixture, individually or all.

본 발명은 암모니아포함 불산 폐수에 소석회를 투입하는 제1단계(S1); 상기 제1단계를 거친 폐수를 교반 침전하는 제2단계(S2); 상기 제2단계를 거친 폐수로부터 침전물을 필터링하는 제3단계(S3); 상기 제3단계를 거친 폐수로부터 암모니아를 탈기하여 흡착하는 제4단계(S4) 및, 상기 제4단계에서 암모니아가 탈기된 폐수는 방류하고 암모니아가 흡착된 암모늄 수용액에 황산 및 수산화마그네슘을 혼합 교반하는 5단계(S5) 및, 상기 5단계에서 처리된 폐수를 소정 시간 방치하여 숙성하는 제6단계(S6)를 포함하는 암모니아포함 불산 폐수를 이용한 고체비료용 분말 제조방법을 제공한다.The present invention is a first step of introducing slaked lime into hydrofluoric acid wastewater containing ammonia (S1); A second step (S2) of stirring and sedimenting the wastewater passed through the first step; A third step (S3) of filtering the sediment from the wastewater passed through the second step; A fourth step (S4) of degassing and adsorbing ammonia from the wastewater passed through the third step, and the wastewater from which ammonia is degassed in the fourth step is discharged, and sulfuric acid and magnesium hydroxide are mixed and stirred in an aqueous ammonium solution to which ammonia is adsorbed. It provides a powder manufacturing method for a solid fertilizer using ammonia-containing hydrofluoric acid wastewater comprising a fifth step (S5) and a sixth step (S6) of aging the wastewater treated in the fifth step for a predetermined time.

또한, 본 발명의 제5단계(S5)에서 황산은 농도 95%이상인 것을 특징으로 제공할 수 있다.In addition, in the fifth step (S5) of the present invention, sulfuric acid may be provided with a concentration of 95% or more.

또한 본 발명의 제6단계(S6)의 수산화마그네슘은 수미석(brucite) 분말이거나, 수산화마그네슘을 경소산화마그네슘으로 대체한 것을 특징으로 제공할 수 있다.In addition, the magnesium hydroxide in the sixth step (S6) of the present invention may be provided as a brucite powder or in that magnesium hydroxide is replaced with light-burned magnesium oxide.

또한 본 발명에서는 6단계의 방법으로 수득한 고체비료용 분말을 소정 크기로 분쇄하여 포장하는 제7단계(S7)를 더 부가한 것을 특징으로 제공할 수 있다. In addition, in the present invention, a seventh step (S7) of pulverizing and packing the powder for solid fertilizer obtained by the method of step 6 into a predetermined size may be further added.

본 발명은 앞서 밝힌 종래의 공지기술이 본 발명의 제1단계 내지 제4단계까지 처리하여 폐수는 방류하고 황산또는 인산 암모늄수용액은 위탁 폐기처분하는 것으로 이 수용액에 포함된 성분을 고체비료용 분말로 제조하기 위한 방법을 제공하기 위해서 착안한 것이다.In the present invention, the conventional known technology disclosed above treats the first to fourth steps of the present invention to discharge wastewater and dispose of the sulfuric acid or ammonium phosphate aqueous solution on a consignment basis, and the components contained in this aqueous solution are converted into powder for solid fertilizer. It was conceived to provide a method for manufacturing.

이를 위해 본 발명은 불산을 먼저 수산화칼슘으로 침전, 필터링하여 제거한 후, 폐수를 가열하여 암모니아를 탈기한 다음, 황산 또는 인산에 흡착함으로써 폐수는 방류되기에 적합한 수질이 되도록 하여 방류하고 폐수에서 탈기된 암모니아를 황산 또는 인산에 흡착시켜 황산암모늄 또는 인산암모늄 수용액 형태로 반응시킨다.To this end, in the present invention, hydrofluoric acid is first precipitated with calcium hydroxide, filtered and removed, and then the wastewater is heated to degassed ammonia, and then the wastewater is discharged to a water quality suitable for discharge by adsorbing to sulfuric acid or phosphoric acid, and then degassed ammonia from the wastewater. Is adsorbed to sulfuric acid or phosphoric acid and reacted in the form of ammonium sulfate or ammonium phosphate aqueous solution.

이후 황산암모늄 또는 인산암모늄 수용액에는 강산인 황산을 적정량 투입하여 인산암모늄 및 황산암모늄으로 안정된 상태의 수용액의 이온을 분리시킨 상태에서 분말상태의 수산화마그네슘을 이용하여 황산마그네슘, 황산마그네슘암모늄 등 물질로 재반응하게 유도함으로써 수용액 수분은 결합수로 사용되어 결정화시킨 고형화된 비료용 분말을 제조할 수 있었다. 즉 본 발명에 따른 최종 수득한 분말 비료용 분말에 대한 분석결과 작물재배용 비료로 사용할 수 있음을 확인하였다. After that, in the ammonium sulfate or ammonium phosphate aqueous solution, an appropriate amount of sulfuric acid, which is a strong acid, is added to separate the ions of the aqueous solution in a stable state with ammonium phosphate and ammonium sulfate. By inducing the reaction, water in the aqueous solution was used as bound water and crystallized to prepare a solidified fertilizer powder. That is, as a result of analysis of the powder for fertilizer obtained finally according to the present invention, it was confirmed that it can be used as a fertilizer for crop cultivation.

아래에서 더욱 구체적으로 설명한다.It will be described in more detail below.

본 발명 실시예에서는 ㈜효성네오켐(울산 소재)에서 불산 및 암모니아 화학반응을 이용하는 NF3(삼불화질소) 생산공정에 발생한 폐수를 사용하는데, 상기 불산 폐수에는 약 5% ~ 36%의 불산(HF)과 함께 1.5~ 8%의 T-N(총 질소 암모니아) 성분이 함유된 것이다. In an exemplary embodiment of the present invention, wastewater generated in the NF3 (nitrogen trifluoride) production process using a chemical reaction of hydrofluoric acid and ammonia from Hyosung Neochem (Ulsan) is used, and the hydrofluoric acid wastewater contains about 5% to 36% of hydrofluoric acid (HF ) And 1.5 to 8% of TN (Total Nitrogen Ammonia).

먼저 본 발명의 실시 전처리단계에서 버려지는 불산폐수 성분을 검사하였다. 검사 시료 및 그 결과는 아래 실시 예1과 같다.First, the components of hydrofluoric acid wastewater discarded in the pretreatment step of the present invention were examined. The test sample and the result are as in Example 1 below.

[실시예 1][Example 1]

㈜효성네오켐(울산 소재)에서 NF3(삼불화질소) 생산에 사용하고 버려지는 산업폐기물인 불산폐수 5리터를 2020.10.08. 수거, 성분 분석한 결과, 불산(HF)과 암모니아(T-N 암모늄)가 각각 36.2 중량% 및 8.7중량% 포함하는 것으로 조사되었고, 다른 중금속성분은 발견되지 않았다.Hyosung Neo-Chem Co., Ltd. (Ulsan) uses 5 liters of hydrofluoric acid wastewater, which is an industrial waste used for the production of NF3 (nitrogen trifluoride) and discarded on October 8, 2020. As a result of collection and analysis of the components, it was found that hydrofluoric acid (HF) and ammonia (T-N ammonium) contained 36.2% by weight and 8.7% by weight, respectively, and no other heavy metal components were found.

[실시예 2][Example 2]

본 발명의 1단계 및 2단계를 동시 실시하기 위하여 실시예 1에서 수거한 불산 폐수 5리터에 순도92%인 325메시크기의 분말상 소석회(수산화칼슘)를 360g 투입한 후, pH를 11.2의 강알칼리로 조정하여 1시간동안 천천히 교반하였다. 그 결과 아래 반응식과 같이 본 발명의 1단계 및 2단계 과정을 거쳐 HF는 불화칼슘인 CaF2로 침전되는 것이 확인되었다. In order to simultaneously carry out the first and second steps of the present invention, 360 g of 325 mesh-sized powdered slaked lime (calcium hydroxide) having a purity of 92% was added to 5 liters of hydrofluoric acid wastewater collected in Example 1, and then the pH was adjusted to a strong alkali of 11.2. Then, the mixture was stirred slowly for 1 hour. As a result, it was confirmed that HF precipitated as calcium fluoride CaF 2 through the first and second steps of the present invention as shown in the reaction equation below.

[반응식] [Reaction Scheme]

2HF + Ca(OH)2 → CaF2 + 2H2O 2HF + Ca(OH) 2 → CaF 2 + 2H 2 O

[실시예 3][Example 3]

앞서 실시예 2에서 침전된 불화칼슘 CaF2를 필터링하여 제거할 수 있도록 통상의 공지 기술인 진공여과장치를 이용하여 불화칼슘을 필터링하였다. 이를 통해 불화칼슘을 제거한 암모니아 수용액을 후속 처리단계에서 사용할 수 있도록 준비하였다.Calcium fluoride was filtered using a vacuum filtration apparatus, which is a conventional technique, so that the calcium fluoride CaF 2 precipitated in Example 2 can be removed by filtering. Through this, an aqueous ammonia solution from which calcium fluoride was removed was prepared to be used in a subsequent treatment step.

[실시예 4] [Example 4]

앞서 실시예 3을 통해 불화칼슘 침전물이 제거된 불산폐수 2리터를 70℃이상으로 가열하되, 도 10과 같이 특수제작한 밀폐 증류기를 이용하여 암모니아를 흡착한 수용액을 제조하였다. 증류기에서는 폐수를 가열시 발생한 암모니아 기화 가스를 인산 및 황산을 이용해 흡착했고, 실시예 4 이후 폐수 성분을 조사한 결과, 아래 반응식 결과와 같이 폐수로부터 암모니아수가 인산암모늄 및 황산암모늄을 포함한 수용액이 생성됨을 확인하였다. 따라서 암모니아 흡착을 위하여 인산 또는 황산을 이용하여 암모늄 수용액을 제조할 수 있다.Prior to Example 3, 2 liters of hydrofluoric acid wastewater from which the calcium fluoride precipitate was removed was heated to 70° C. or higher, and an aqueous solution adsorbing ammonia was prepared using a specially manufactured sealed distiller as shown in FIG. 10. In the distiller, the ammonia gaseous gas generated when the wastewater was heated was adsorbed using phosphoric acid and sulfuric acid, and as a result of investigating the wastewater components after Example 4, it was confirmed that an aqueous solution containing ammonium phosphate and ammonium sulfate was generated from the wastewater as shown in the reaction equation below. I did. Therefore, an aqueous ammonium solution can be prepared using phosphoric acid or sulfuric acid for ammonia adsorption.

[반응식][Reaction Scheme]

2NH4OH + H2SO4 → (NH4)2SO4 + 2H202NH 4 OH + H 2 SO 4 → (NH4) 2 SO 4 + 2H 2 0

H3PO4 + 3NH4OH → (NH4)3PO4 + 3H20H 3 PO 4 + 3NH 4 OH → (NH 4 ) 3 PO 4 + 3H 2 0

실시예 4의 폐수 가열온도는 70℃일 때 가장 적합하였다. 55℃에서는 60℃에 비해 반응속도가 서서히 진행됨으로써 동일한 물량 처리에 약 1.5배의 시간이 소요되었고, 80℃이상에서는 탈기, 흡착에 유리하나 위험성이 높아질 수 있다.The wastewater heating temperature of Example 4 was most suitable at 70°C. At 55°C, the reaction rate proceeds slowly compared to 60°C, so it took about 1.5 times more time to process the same amount of water. At 80°C or higher, it is advantageous for degassing and adsorption, but the risk may increase.

[실시예 5][Example 5]

실시예 4에서 인산암모늄 및 황산암모늄 수용액에 황산 및, 수산화마그네슘을 더 투입하되, 수산화마그네슘은 마그네사이트를 약 1000℃내외에서 5-10시간 하소한 경소산화마그네슘을 물과 혼합하여 수화시킨 수산화마그네슘으로서, 순도 65%이상인 분말로서 CaO 1.5%, SiO2 1.5%, R2O3 1.0% 포함된 것을 특징으로 한다. 또한 상기 수산화마그네슘은 마그네슘 수산화물(Mg(OH)2)로 이루어진 육방정계에 속하는 광물이나, 65%이상 순도의 경소산화마그네슘 분말을 투입하여 물과 반응함으로써 수산화마그네슘으로 만들어 사용할 수도 있다.In Example 4, sulfuric acid and magnesium hydroxide were further added to the ammonium phosphate and ammonium sulfate aqueous solution, but the magnesium hydroxide was magnesium hydroxide obtained by mixing light-calcined magnesium oxide calcined at about 1000°C for 5-10 hours with water. , It is characterized in that it contains 1.5% CaO, 1.5% SiO 2 , and 1.0% R 2 O 3 as a powder having a purity of 65% or more. In addition, the magnesium hydroxide is a mineral belonging to the hexagonal system consisting of magnesium hydroxide (Mg(OH) 2 ), or it may be made into magnesium hydroxide by reacting with water by adding light-calcined magnesium oxide powder having a purity of 65% or more.

실시예 5에서 더 구체적으로, 85%농도 인산액을 앞선 실시예 4의 처리 폐수에 투입하되 폐수 pH가 6.2가 될 때까지 계속 혼합하여 암모니아수와 반응함으로써 총 인산(T-P2O5) 24.7%, 총 질소(T-N) 7.3%를 포함한 인산암모늄 수용액을 준비하고, 준비된 인산암모늄수용액 300ml에 95%농도 황산용액 200ml를 더 부가하여 혼합하고, 325메시를 90%통과한 65%순도의 수산화마그네슘 340g을 천천히 투입하면서 300rpm으로 강하게 교반하여 20분간 반응시켰다. More specifically in Example 5, an 85% concentration phosphoric acid solution was added to the treatment wastewater of Example 4, but continued mixing until the wastewater pH reached 6.2 and reacted with ammonia water, thereby total phosphoric acid (TP 2 O 5 ) 24.7%, Prepare an aqueous ammonium phosphate solution containing 7.3% total nitrogen (TN), add 200 ml of 95% concentrated sulfuric acid solution to 300 ml of the prepared ammonium phosphate aqueous solution, mix, and mix 340 g of 65% pure magnesium hydroxide through 90% of 325 mesh. While slowly added, the mixture was stirred vigorously at 300 rpm and reacted for 20 minutes.

이를 통해 불산과 암모니아 혼합폐수의 정수과정에서 발생하는 부산물(인산 암모늄수용액)에 황산을 혼합한 후 수산화마그네슘을 투입하여 재반응시켜 인산암모늄수용액을 아래 반응식과 같이 황산마그네슘, 인산마그네슘, 인산마그네슘암모늄, 황산마그네슘암모늄 등 결정체로 반응되도록 유도하였다.Through this, sulfuric acid is mixed with the by-product (ammonium phosphate aqueous solution) generated in the water purification process of hydrofluoric acid and ammonia mixed wastewater, and then magnesium hydroxide is added to re-react. It was induced to react with crystals such as magnesium sulfate and ammonium.

또한 인산암모늄수용액과 황산의 혼합비율은 인산암모늄의 농도에 비례하도록 적절히 조정할 수 있으며, 인산암모늄수용액의 양에 따라 농도 95%이상의 농황산 대신 50%농도 황산을 적정량 사용하여도 반응 유도에 문제가 없었다.In addition, the mixing ratio of aqueous ammonium phosphate solution and sulfuric acid can be appropriately adjusted in proportion to the concentration of ammonium phosphate, and there was no problem in inducing the reaction even if an appropriate amount of 50% concentrated sulfuric acid was used instead of 95% concentrated sulfuric acid depending on the amount of the ammonium phosphate aqueous solution. .

[반응식][Reaction Scheme]

⑴ 인산마그네슘 3Mg(OH)2 + 2H3(PO)4 → Mg3(PO4)2 + 6H2O ⑴ Magnesium phosphate 3Mg(OH) 2 + 2H 3 (PO) 4 → Mg 3 (PO 4 ) 2 + 6H 2 O

⑵ 황산암모늄 2NH4OH + H2SO4 → (NH4)2SO4 + 2H2O⑵ Ammonium sulfate 2NH 4 OH + H 2 SO 4 → (NH 4 ) 2 SO 4 + 2H 2 O

⑶ 황산마그네슘 H2SO4 + Mg(OH)2 → MgSO4 +2H2O ⑶ Magnesium sulfate H 2 SO 4 + Mg(OH) 2 → MgSO 4 +2H 2 O

⑷ 인산마그네슘암모늄 H3PO4 + NH4OH + Mg(OH)2 → Mg(NH4)PO4 +3H2O⑷ Ammonium magnesium phosphate H 3 PO 4 + NH 4 OH + Mg(OH) 2 → Mg(NH 4 )PO 4 +3H 2 O

⑸ 황산마그네슘암모늄 2(NH4)2SO4+ Mg(OH)2 → (NH4)2Mg(SO4)2 +H2SO4+1/2O2 ⑸ Ammonium magnesium sulfate 2(NH 4 ) 2 SO 4 + Mg(OH) 2 → (NH 4 ) 2 Mg(SO 4 ) 2 +H 2 SO 4 +1/2O 2

또한 상기 실시예5를 통해 제조된 결정체는 분석결과 아래 표 1의 성분으로 확인되어, 마그네슘, 질소 및 인 성분을 포함한 식물재배비료 용도로 사용할 수 있음을 확인할 수 있다.In addition, the crystals prepared in Example 5 were identified as components in Table 1 below as a result of the analysis, and it could be confirmed that they can be used for plant cultivation fertilizers including magnesium, nitrogen and phosphorus components.

분석 항목Analysis item 함량(%)content(%) 비고Remark C-MgOC-MgO 24.024.0 구연산에 용해되는 MgOMgO soluble in citric acid PHPH 7.57.5 비중importance 0.920.92 SO3 SO 3 24.7624.76 T-NT-N 3.13.1 T-P2O5T-P2O5 11.211.2 결합수분Combined moisture 15.9315.93 부착수분Adhesion moisture 7.457.45

[실시예 6][Example 6]

실시예 4에서 암모니아를 탈기 흡착 후, 황산을 더 투입 후 혼합하면서, 분말 수산화마그네슘을 연속하여 투입하며 교반하였다. In Example 4, after degassing and adsorption of ammonia, sulfuric acid was further added and mixed, and powdered magnesium hydroxide was continuously added and stirred.

즉 95%농도 농황산 500ml에 4단계 처리된 폐수를 통과시켜 ph 4.2로 조정한 결과, 비중 1.2의 T-N(총질소) 8.31%, 황산암모늄 농도 40.5%의 황산암모늄수용액을 제조하고, 황산암모늄수용액 300ml에 95% 농황산 200ml를 더 혼합하고, 325메시를 90%통과한 순도 65%의 경소산화마그네슘(MgO) 분말 340g을 천천히 투입하면서 300rpm으로 강하게 교반하며 20분간 반응시킨 결과, 산화마그네슘은 물과 반응, 수산화마그네슘이 되고 다시 황산암모늄을 황산마그네슘, 황산마그네슘암모늄으로 반응하였다.That is, as a result of adjusting the pH to 4.2 by passing the wastewater treated in the fourth step through 500 ml of 95% concentrated sulfuric acid, an aqueous ammonium sulfate solution having a specific gravity of 1.2 TN (total nitrogen) of 8.31% and an ammonium sulfate concentration of 40.5% was prepared, and 300 ml of an aqueous ammonium sulfate solution. 200 ml of 95% concentrated sulfuric acid was further mixed in, and 340 g of light-burned magnesium oxide (MgO) powder with a purity of 65% passed through 90% of 325 mesh was slowly added and stirred strongly at 300 rpm for 20 minutes.As a result, magnesium oxide reacted with water. , Magnesium hydroxide was obtained, and ammonium sulfate was reacted with magnesium sulfate and magnesium ammonium sulfate again.

또한 상기 산화마그네슘을 수산화마그네슘으로 대체한 경우에도 황산암모늄은 아래 반응식과 같이 황산마그네슘 및 황산마그네슘암모늄 등 결정체로 동일하게 반응하였다.In addition, even when the magnesium oxide was replaced with magnesium hydroxide, the ammonium sulfate reacted in the same manner as crystals such as magnesium sulfate and ammonium magnesium sulfate as shown in the following reaction formula.

[반응식][Reaction Scheme]

(1) 황산암모늄 2NH4OH + H2SO4 → (NH4)2SO4 + 2H2O(1) Ammonium sulfate 2NH 4 OH + H 2 SO 4 → (NH4) 2 SO 4 + 2H 2 O

(2) 황산마그네슘 H2SO4 + Mg(OH)2 → MgSO4 +2H2O(2) Magnesium sulfate H 2 SO4 + Mg(OH) 2 → MgSO 4 +2H 2 O

(3) 황산마그네슘암모늄 2(NH4)2SO4+ Mg(OH)2 → (NH4)2Mg(SO4)2+H2SO4+1/2O2 (3) Ammonium magnesium sulfate 2(NH 4 ) 2 SO 4 + Mg(OH) 2 → (NH 4 ) 2 Mg(SO 4 ) 2 +H 2 SO 4 +1/2O 2

또한 상기 실시예6의 황산 및 수산화마그네슘을 투입한 경우, 수득되는 결정체 분말에서는 분석결과 아래 표 2의 성분이 확인되었으므로, 본 발명에 따른 결정체 분말은 마그네슘, 질소 및 인 성분을 포함한 식물재배비료 용도로 사용할 수 있음을 확인할 수 있었다.In addition, when the sulfuric acid and magnesium hydroxide of Example 6 were added, the components in Table 2 below were confirmed as a result of analysis in the obtained crystalline powder, so that the crystalline powder according to the present invention is used as a plant cultivation fertilizer including magnesium, nitrogen and phosphorus components. It was confirmed that it can be used as.

구분division 함량(중량%)Content (% by weight) 비고Remark C-MgOC-MgO 24.524.5 구연산에 용해되는 MgOMgO soluble in citric acid PHPH 5.85.8 비중importance 1.021.02 SO3 SO 3 38.5338.53 T-NT-N 3.33.3 결합수분Combined moisture 16.8516.85 부착수분Adhesion moisture 6.826.82

[실시예 7][Example 7]

실시예 5 및 실시예 6 처리과정에서 마그네슘화합물과 폐수가 충분히 반응할 수 있도록 혼합 교반하는 과정에서 소정 시간 방치함으로써 숙성기간을 부여하였다. 숙성이란 화학반응이 충분히 일어날 수 있도록하여 물리적으로 분말 상태로 변화될때까지의 기간을 부여하는 것으로서, 본 발명 실시예 7에서는 숙성시간을 1시간 부가하여 반응을 완료할 수 있었다. Examples 5 and 6 The aging period was given by allowing the magnesium compound and wastewater to react sufficiently during the treatment and allowed to stand for a predetermined time in the process of mixing and stirring. The aging is to give a period until it is physically changed to a powder state by allowing a chemical reaction to occur sufficiently. In Example 7 of the present invention, the reaction could be completed by adding an aging time of 1 hour.

즉 실시예 5 및 실시예 6의 반응이 일어난 직후에는 바로 포장 단계로 진행시 높은 반응열과 일정량의 수분이 그대로 남아있는 상태이기 때문에 생성 결정체가 서로 뭉쳐 덩어리가 되는 현상(케이크)이 발생할 수 있어 작업과 품질에 문제가 발생할 수 있다. 이 때문에 본 발명에서는 숙성시간을 1시간 내외 부여함으로써 이를 예방할 수 있었다.That is, immediately after the reaction of Examples 5 and 6 occurs, when proceeding to the packaging step immediately, a phenomenon in which high reaction heat and a certain amount of moisture remain as it is, so that a phenomenon in which the resulting crystals clump together and form a lump (cake) may occur. And quality problems can occur. For this reason, in the present invention, this could be prevented by giving the aging time around 1 hour.

[실시예 8][Example 8]

실시예 7에서 1시간 숙성하여 수득한 결정체 분석결과, 아래 표 3과 같이 인산암모늄 또는 황산암모늄 수용액에 황산 및 수산화마그네슘을 순차 혼합하여 교반할 경우, 구연산에 용해되는 탄소-산화마그네슘(C-MgO) 24 또는 24.5 중량%이고, pH는 7.5 내지 5.8, 비중 0.9 내지 1.0, SO3 24.8 내지 38.5 중량%, 총질소 3.1 내지 3.3중량%, 총인 11.2중량%, 결합수분 15.9 내지 16.9중량%, 부착수분 7.4 내지 6.8중량%을 포함한 것으로 확인되었다. 이를 통해 본 발명은 수산화마그네슘과 함께 고형화된 수화물성분들을 비료로 활용할 수 있음을 확인할 수 있었다. As a result of the analysis of crystals obtained by aging for 1 hour in Example 7, carbon-magnesium oxide (C-MgO) dissolved in citric acid when sulfuric acid and magnesium hydroxide are sequentially mixed and stirred in an aqueous ammonium phosphate or ammonium sulfate solution as shown in Table 3 below. ) 24 or 24.5 wt%, pH 7.5 to 5.8, specific gravity 0.9 to 1.0, SO 3 24.8 to 38.5 wt%, total nitrogen 3.1 to 3.3 wt%, total phosphorus 11.2 wt%, bound moisture 15.9 to 16.9 wt%, attached moisture It was found to contain 7.4 to 6.8% by weight. Through this, it was confirmed that the present invention can utilize the hydrate components solidified together with magnesium hydroxide as fertilizers.

구분(중량%)Classification (% by weight) 인산암모늄+황산+Mg(OH)2 혼합시When mixing ammonium phosphate + sulfuric acid + Mg(OH) 2 황산암모늄+황산+Mg(OH)2 혼합시When ammonium sulfate + sulfuric acid + Mg(OH) 2 are mixed C-MgOC-MgO 24.024.0 24.524.5 PHPH 7.57.5 5.85.8 비중importance 0.920.92 1.021.02 SO3 SO 3 24.7624.76 38.5338.53 T-NT-N 3.13.1 3.33.3 T-P2O5 TP 2 O 5 11.211.2 -- 결합수분Combined moisture 15.9315.93 16.8516.85 부착수분Adhesion moisture 7.457.45 6.826.82

또한 본 발명은 전체 처리과정에 더욱 추가하여 최종 수득한 결정체의 분말화 작업 후 검사항목을 통해 상업화 목적의 특정 비료성분을 더 부가하여 비료생산에 이용할 수 있다.In addition, the present invention can be used in fertilizer production by further adding specific fertilizer components for commercialization purposes through inspection items after powdering the final obtained crystals in addition to the entire processing process.

특히 본 발명에 따라 제조된 비료용 분말에는 필수성분 질소(N), 인산(P) 및 칼륨(K) 성분을 더 부가하여 부가가치를 더 높인 고품질비료 생산에 이용될 수 있고, 특히 마그네슘, 인산 및 황을 포함한 비료제조 시 첨가제로 이용할 수 있도록 지원할 수 있다.In particular, it can be used in the production of high-quality fertilizers with higher added value by adding essential components nitrogen (N), phosphoric acid (P) and potassium (K) components to the fertilizer powder prepared according to the present invention. It can be supported to be used as an additive in the manufacture of fertilizers containing sulfur.

Claims (5)

암모니아포함 불산 폐수에 소석회를 투입하는 제1단계(S1); 상기 제1단계를 거친 폐수를 교반 침전하는 제2단계(S2); 상기 제2단계를 거친 폐수로부터 불화칼슘 침전물을 필터링하는 제3단계(S3); 상기 제3단계를 거쳐 불화칼슘이 제거된 폐수를 70℃로 가열하여 암모니아를 탈기하고 이를 인산 및 황산을 이용하여 흡착하는 제4단계(S4) 및, 상기 제4단계에서 암모니아가 탈기된 폐수는 방류하고 암모니아가 흡착된 인산암모늄 및 황산암모늄 수용액에 황산 및 수산화마그네슘을 혼합 교반하는 제5단계(S5) 및, 상기 제5단계 처리된 수용액을 1시간 방치하여 숙성하는 제6단계(S6)를 포함하는 것을 특징으로 하는, 암모니아포함 불산 폐수를 이용한 고체비료용 분말 제조방법 A first step (S1) of adding slaked lime to hydrofluoric acid wastewater containing ammonia; A second step (S2) of stirring and sedimenting the wastewater passed through the first step; A third step (S3) of filtering the calcium fluoride precipitate from the wastewater that has passed through the second step; The fourth step (S4) of heating the wastewater from which calcium fluoride has been removed through the third step to 70°C to degas ammonia and adsorb it using phosphoric acid and sulfuric acid, and the wastewater from which the ammonia is degassed in the fourth step A fifth step (S5) of mixing and stirring sulfuric acid and magnesium hydroxide in an aqueous solution of ammonium phosphate and ammonium sulfate adsorbed with ammonia after discharge, and a sixth step (S6) in which the aqueous solution treated in the fifth step is left to stand for 1 hour and aged. Powder manufacturing method for solid fertilizer using hydrofluoric acid wastewater containing ammonia, characterized in that it comprises 제1항에 있어서,
상기 제1항의 방법으로 수득한 고체비료용 분말을 소정 크기로 분쇄하여 포장하는 제7단계(S7)를 더 부가한 것을 특징으로 하는, 암모니아포함 불산 폐수를 이용한 고체비료용 분말 제조방법
The method of claim 1,
A method for producing powder for solid fertilizer using hydrofluoric acid wastewater containing ammonia, characterized in that the seventh step (S7) of pulverizing and packaging the solid fertilizer powder obtained by the method of claim 1 is further added.
삭제delete 삭제delete 삭제delete
KR1020200148205A 2020-11-09 2020-11-09 A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water KR102243162B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200148205A KR102243162B1 (en) 2020-11-09 2020-11-09 A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200148205A KR102243162B1 (en) 2020-11-09 2020-11-09 A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water

Publications (1)

Publication Number Publication Date
KR102243162B1 true KR102243162B1 (en) 2021-04-21

Family

ID=75743910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200148205A KR102243162B1 (en) 2020-11-09 2020-11-09 A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water

Country Status (1)

Country Link
KR (1) KR102243162B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530870B1 (en) 2022-10-14 2023-05-09 주상열 Treatment method of waster water containing hydrofluoric acid and treatment apparatus for the same
KR20230169655A (en) * 2022-06-09 2023-12-18 주식회사 브이엘홀딩스 A method of recycling BOE waste liquid
KR102631442B1 (en) * 2022-09-14 2024-01-30 주식회사 브이엘홀딩스 A method of recycling BOE waste liquid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960031480A (en) 1995-02-28 1996-09-17 강재헌 Method for preparing iodine-β-cyclodextrin clathrate
KR970010661A (en) 1995-08-16 1997-03-27 쯔지 하루오 WATER TREATMENT METHOD AND WATER TREATMENT APPARATUS FOR WATER TREATMENT USING ION EXCHANGE RESIN
JPH09117775A (en) * 1995-10-23 1997-05-06 Shinriyou:Kk Treatment of waste liquid containing fluorine and ammonia nitrogen
JP2006334472A (en) * 2005-05-31 2006-12-14 Fujikasui Engineering Co Ltd Ammonia-containing waste water treatment method
KR20090069904A (en) 2007-12-26 2009-07-01 한전원자력연료 주식회사 Method for acidic wasten in iron industry
KR101007522B1 (en) 2010-11-12 2011-01-14 주식회사 시노펙스 Hydrofluoric acid wastewater treatment system and treatment method using membrane
KR20170025114A (en) * 2015-08-27 2017-03-08 고려대학교 산학협력단 Manufacturing apparatus for fertilizer composition comprising diammonium phosphate and method of manufacturing for fertilizer composition comprising diammonium phosphate
KR20170089499A (en) * 2016-01-27 2017-08-04 사단법인 분자설계연구소 The system for eco-friendly circulating resources

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960031480A (en) 1995-02-28 1996-09-17 강재헌 Method for preparing iodine-β-cyclodextrin clathrate
KR970010661A (en) 1995-08-16 1997-03-27 쯔지 하루오 WATER TREATMENT METHOD AND WATER TREATMENT APPARATUS FOR WATER TREATMENT USING ION EXCHANGE RESIN
JPH09117775A (en) * 1995-10-23 1997-05-06 Shinriyou:Kk Treatment of waste liquid containing fluorine and ammonia nitrogen
JP2006334472A (en) * 2005-05-31 2006-12-14 Fujikasui Engineering Co Ltd Ammonia-containing waste water treatment method
KR20090069904A (en) 2007-12-26 2009-07-01 한전원자력연료 주식회사 Method for acidic wasten in iron industry
KR101007522B1 (en) 2010-11-12 2011-01-14 주식회사 시노펙스 Hydrofluoric acid wastewater treatment system and treatment method using membrane
KR20170025114A (en) * 2015-08-27 2017-03-08 고려대학교 산학협력단 Manufacturing apparatus for fertilizer composition comprising diammonium phosphate and method of manufacturing for fertilizer composition comprising diammonium phosphate
KR20170089499A (en) * 2016-01-27 2017-08-04 사단법인 분자설계연구소 The system for eco-friendly circulating resources

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230169655A (en) * 2022-06-09 2023-12-18 주식회사 브이엘홀딩스 A method of recycling BOE waste liquid
KR102631441B1 (en) * 2022-06-09 2024-01-30 주식회사 브이엘홀딩스 A method of recycling BOE waste liquid
KR102631442B1 (en) * 2022-09-14 2024-01-30 주식회사 브이엘홀딩스 A method of recycling BOE waste liquid
KR102530870B1 (en) 2022-10-14 2023-05-09 주상열 Treatment method of waster water containing hydrofluoric acid and treatment apparatus for the same

Similar Documents

Publication Publication Date Title
KR102243162B1 (en) A solid fertilizer manufacturing method by ammonia including hydrofluoric acid waste water
EP3393968B1 (en) Process for producing a phosphorus product from wastewater
Huang et al. Recovery and removal of ammonia–nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product
CA2799294C (en) Treatment of phosphate-containing wastewater
US3551332A (en) Purification of fluorine-containing industrial waste waters
US20110127223A1 (en) Process for treating pond water
CN108473345B (en) Desalination process and fertilizer production method
US6387272B2 (en) Process for utilizing liquid manure material
Ulu et al. Ammonia removal from wastewater by air stripping and recovery struvite and calcium sulphate precipitations from anesthetic gases manufacturing wastewater
CN101428933B (en) Biological agent cooperated hydrolyzation-blowing off treatment process for nickel-ammonia wastewater
CN106517621A (en) Process of recycling wastewater containing ammonia chloride
CN111995155A (en) Method for recycling ammoniacal nitrogen-containing acidic wastewater
CN201485354U (en) Novel device for processing ammonia nitrogen waste water
CN115321736A (en) Treatment method of glyphosate production wastewater and high-value recycling of phosphorus-containing waste
SE541387C2 (en) Chemical processing of struvite
CN105217864B (en) The handling process of double cyanogen front-end volatiles waste water in disperse blue 60 production process
CN103058449A (en) Treatment method for aluminum phosphate molecular sieve production wastewater
CN108217815A (en) A kind of method for removing phosphor in sewage element
CN110844897B (en) Treatment method of waste phosphoric acid on running water treatment line
CN111018199B (en) Method for treating high-phosphorus high-fluorine-content wastewater
CN114349207A (en) Zero-emission high-salt and high-fluorine mine water purification system and process
JP5452525B2 (en) Method for recycling phosphorus component-containing waste liquid and method for producing liquid fertilizer
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
KR19990027070A (en) Biological denitrification of wastewater and simultaneous treatment of high concentration hydrofluoric acid, lead and nitric acid
Hassidou et al. Phosphorus removal from Tunisian landfill leachate through struvite precipitation under controlled degassing technique

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant