KR102241064B1 - Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same - Google Patents

Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same Download PDF

Info

Publication number
KR102241064B1
KR102241064B1 KR1020190092362A KR20190092362A KR102241064B1 KR 102241064 B1 KR102241064 B1 KR 102241064B1 KR 1020190092362 A KR1020190092362 A KR 1020190092362A KR 20190092362 A KR20190092362 A KR 20190092362A KR 102241064 B1 KR102241064 B1 KR 102241064B1
Authority
KR
South Korea
Prior art keywords
cox
indole
chlorobenzyl
carbohydrazide
compound
Prior art date
Application number
KR1020190092362A
Other languages
Korean (ko)
Other versions
KR20210014374A (en
Inventor
정지형
주쥐란
수밍즈
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020190092362A priority Critical patent/KR102241064B1/en
Publication of KR20210014374A publication Critical patent/KR20210014374A/en
Application granted granted Critical
Publication of KR102241064B1 publication Critical patent/KR102241064B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/045Organic compounds containing nitrogen as heteroatom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/324Foods, ingredients or supplements having a functional effect on health having an effect on the immune system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 신규한 인돌 유도체 및 이를 포함하는 염증성 질환 예방 또는 치료용 조성물에 관한 것으로, 보다 상세하게는 항염증성 해조류 대사산물의 핵심 구조를 결합한 일련의 치환된 인돌 유도체 화합물을 설계 및 합성하였고, 상기 화합물에서 COX-1과 COX-2에 대한 억제 활성 및 항염 활성을 확인한 바, 상기 화합물은 염증성 질환의 예방, 개선 또는 치료를 위한 효과적인 약학 조성물 또는 건강기능식품 조성물로 활용할 수 있다.The present invention relates to a novel indole derivative and a composition for preventing or treating inflammatory diseases comprising the same, and more specifically, a series of substituted indole derivative compounds combining the core structure of an anti-inflammatory algae metabolite was designed and synthesized, and the As the inhibitory activity and anti-inflammatory activity against COX-1 and COX-2 were confirmed in the compound, the compound can be used as an effective pharmaceutical composition or health functional food composition for the prevention, improvement or treatment of inflammatory diseases.

Description

신규한 인돌 유도체 및 이를 포함하는 염증성 질환 예방 또는 치료용 조성물{NOVEL INDOLE DERIVATIVES AND COMPOSITION FOR PREVENTING OR TREATING INFLAMMATORY DISEASES COMPRISING THE SAME}A novel indole derivative and a composition for preventing or treating inflammatory diseases containing the same {NOVEL INDOLE DERIVATIVES AND COMPOSITION FOR PREVENTING OR TREATING INFLAMMATORY DISEASES COMPRISING THE SAME}

본 발명은 신규한 인돌 유도체 및 이를 포함하는 염증성 질환 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a novel indole derivative and a composition for preventing or treating inflammatory diseases comprising the same.

염증 증상에 대한 치료제로 비-스테로이드성 항염 약물들(non-steroidal anti-inflammatory drugs; 이하, NSAIDs)이 가장 빈번히 선택되지만, 이들은 신장, 간 및 심혈관 계통에 바람직하지 않은 부작용을 수반하는 경우가 많다. 따라서 더 나은 안전성 프로파일을 가진 새로운 NSAIDs의 발견은 여전히 중요한 도전 과제이다. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently chosen treatments for inflammatory symptoms, but they often have undesirable side effects on the kidney, liver and cardiovascular system. . Therefore, the discovery of new NSAIDs with a better safety profile remains an important challenge.

일반적으로, 새로운 NSAIDs의 개발을 위해 두 가지 다른 전략이 사용되고 있다. 첫번째는 염증의 강력한 매개자인 프로스타글란딘(prostaglandin; 이하, PG) E2 및 아라키돈산(arachidonic acid) 대사산물 생산의 억제제 개발이다. 사이클로옥시게나제(Cyclooxygenases, COX-1 and -2)는 이 매개자들의 생합성에 필수적이다. 또 다른 전략은 유도성 질소산화물 합성효소(inducible nitric oxide synthase; 이하, iNOS)의 억제제 개발이다. iNOS는 세포 독성 염증 매개자로써 산화질소의 생성을 통해 급성 및 만성 염증에 기여한다.In general, two different strategies are being used for the development of new NSAIDs. The first is the development of inhibitors of the production of prostaglandin (PG) E 2 and arachidonic acid metabolites, which are potent mediators of inflammation. Cyclooxygenases (COX-1 and -2) are essential for the biosynthesis of these mediators. Another strategy is the development of inhibitors of inducible nitric oxide synthase (iNOS). iNOS is a cytotoxic inflammatory mediator and contributes to acute and chronic inflammation through the production of nitric oxide.

종래의 NSAIDs는 생체 내(in vivo) 사이클로옥시게나제(이하, COX) 활성의 억제 및 국소 조직에서의 PG의 생합성의 감소를 통해 약리 작용을 나타낸다. 현재, NSAID의 COX 억제 효과가 그들의 약물학적(pharmacodynamic) 효과의 기초라고 여겨지고 있다. 따라서 COX 단백질은 약물 개발의 필수불가결한 타겟으로 인식되고 있다.Conventional NSAIDs exhibit pharmacological action through inhibition of in vivo cyclooxygenase (hereinafter, referred to as COX) activity and reduction of biosynthesis of PG in local tissues. Currently, the COX inhibitory effect of NSAIDs is believed to be the basis of their pharmacodynamic effects. Therefore, COX protein is recognized as an indispensable target for drug development.

COX는 서로 다른 생리적 역할을 하는 두 가지 아형(isoform)을 포함한다. 다양한 조직에서 구성적으로 발현되는 COX-1은 위 세포 보호, 혈장 항상성, 혈소판 응집 및 신장 기능과 같은 일반적인 세포적 프로세스를 조절하는 하우스키핑(housekeeping) 효소로 묘사된다. 이와 대조적으로, COX-2는 대부분의 조직에서 매우 낮은 수준으로 유지되고, 질병 및 염증 부위에서 발생하는 프로스타노이드(prostanoids)의 생성을 증가시키는 염증 단계에서만 급격히 상향 조절된다.COX contains two isoforms that play different physiological roles. Constitutively expressed in various tissues, COX-1 is described as a housekeeping enzyme that regulates common cellular processes such as gastric cell protection, plasma homeostasis, platelet aggregation, and renal function. In contrast, COX-2 is maintained at very low levels in most tissues and is rapidly upregulated only in the inflammatory phase, which increases the production of prostanoids that occur at the site of disease and inflammation.

아스피린(aspirin), 페나존(phenazone) 및 인도메타신(indomethacin)과 같은 종래의 비-선택적 COX 억제제는 염증 질환의 치료에 효과적이나, 위장관에서 구성적 COX-1 아이소폼의 세포 보호 작용이 감소되어 궤양 형성, 간 및 신장 독성을 일으키는 주요 결점과 관련이 있다. 따라서 셀레콕시브(celecoxib), 로페콕시브(rofecoxib) 및 발데콕시브(valdecoxib)와 같은 COX-2 선택적 억제제는 위장 부작용이 감소된 항염증제로서 개발되었다. 그러나 이러한 COX-2 선택적 억제제도 COX 경로의 불균형으로 인한 심혈관 장애와 같은 다른 부작용과 관련 있음이 발견되어, 이로 인해 종종 시장에서 철수되기도 한다.Conventional non-selective COX inhibitors such as aspirin, phenazone and indomethacin are effective in the treatment of inflammatory diseases, but the cytoprotective action of the constitutive COX-1 isoform in the gastrointestinal tract is reduced. Is associated with major defects that cause ulcer formation, liver and kidney toxicity. Therefore, COX-2 selective inhibitors such as celecoxib, rofecoxib and valdecoxib have been developed as anti-inflammatory agents with reduced gastrointestinal side effects. However, these COX-2 selective inhibitors have also been found to be associated with other side effects, such as cardiovascular disorders due to imbalance in the COX pathway, and are often withdrawn from the market.

최근에, Wallace et al.은 COX-1의 억제가 위장 과운동성(gastric hypermobility) 및 PG 결핍에 의해 발생되는 후속 장애와 같은 COX-1 억제에 의해 유발되는 해로운 영향을 막을 수 있는 COX-2의 상향 조절을 유도함을 보여주었다. 게다가, COX-1의 억제는 염증의 해소에 상당히 기여한다. 궤양 치유 과정에서, COX-2 특이적(specific) 억제제뿐만 아니라, COX-1 특이적 억제제도 치유를 늦추었다. 이러한 발견은 COX-2가 염증 과정에서 중추적인 역할을 함에도 불구하고, COX-1/COX-2의 균형 잡힌(balanced) 억제제가 비-선택적 또는 선택적 억제제 모두의 치명적인 부작용이 고려될 때 어떤 측면에서 보다 유리하게 나타남을 보여주며, 이에 따른 새로운 COX 억제제의 개발이 필요하다.Recently, Wallace et al. showed that inhibition of COX-1 could prevent the detrimental effects caused by COX-1 inhibition, such as gastric hypermobility and subsequent disorders caused by PG deficiency. It has been shown to induce upregulation. In addition, inhibition of COX-1 contributes significantly to the resolution of inflammation. In the ulcer healing process, not only the COX-2 specific inhibitor but also the COX-1 specific inhibitor slowed the healing. These findings suggest that, although COX-2 plays a pivotal role in the inflammatory process, balanced inhibitors of COX-1/COX-2 are in some respects given the lethal side effects of both non-selective or selective inhibitors. It shows that it appears more advantageous, and accordingly, it is necessary to develop a new COX inhibitor.

한국공개특허 제10-2004-0047862호 (2004.06.05 공개)Korean Patent Publication No. 10-2004-0047862 (published on June 5, 2004)

상기와 같은 문제점을 해결하기 위해, 본 발명은 COX 억제제로서의 신규한 인돌 유도체를 제공한다.In order to solve the above problems, the present invention provides a novel indole derivative as a COX inhibitor.

또한, 본 발명은 상기 신규한 인돌 유도체를 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 조성물을 제공한다.In addition, the present invention provides a composition for preventing or treating inflammatory diseases comprising the novel indole derivative as an active ingredient.

본 발명에 따른 하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염은,A compound represented by the following Formula 1 according to the present invention, or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof,

[화학식 1][Formula 1]

Figure 112019078197118-pat00001
Figure 112019078197118-pat00001

상기 화학식 1에서, n은 0 또는 1이고, R1은 할로겐에서 선택될 수 있으며, R2는 선형 또는 분지형의 (C1~C12)알킬, (C3~C8)사이클로알킬, 페닐(C1~C4)알킬, (C1~C2)알킬치아졸-5-일, 퓨릴, 수소 또는 하기 화학식 2에서 선택될 수 있고,In Formula 1, n is 0 or 1, R 1 may be selected from halogen, and R 2 is linear or branched (C1 to C12) alkyl, (C3 to C8) cycloalkyl, phenyl (C1 to C4) )Alkyl, (C1~C2)alkylthiazol-5-yl, furyl, hydrogen or may be selected from the following formula (2),

[화학식 2][Formula 2]

Figure 112019078197118-pat00002
Figure 112019078197118-pat00002

이 때, R3 및 R4는 각각 동일하거나 다를 수 있고, 수소, 할로겐, 시아노, (C1~C4)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.At this time, R 3 and R 4 may be the same or different, respectively, and may be selected from hydrogen, halogen, cyano, (C1 ~ C4) alkoxy, hydroxy, or carboxy.

본 발명에 따른 염증성 질환 예방 또는 치료용 약학 조성물은 상기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유할 수 있다.The pharmaceutical composition for preventing or treating inflammatory diseases according to the present invention may contain a compound represented by Chemical Formula 1, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에 따른 염증성 질환 예방 또는 개선용 건강기능식품 조성물은 상기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유할 수 있다.The health functional food composition for preventing or improving inflammatory diseases according to the present invention may contain a compound represented by Chemical Formula 1, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에 따른 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염은 COX 억제제로서의 신규한 인돌 유도체로, 산화 스트레스를 감소시키고, IKK, IκBα 및 NF-κB로 이루어진 군에서 선택되는 하나 이상의 인산화를 감소시켜 활성을 억제하며, iNOS, NO, PGE2, TNF-α 및 IL-6로 이루어진 군에서 선택되는 하나 이상의 전염증성 인자의 발현을 억제할 수 있다.The compound according to the present invention, or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, is a novel indole derivative as a COX inhibitor, reducing oxidative stress, and at least one selected from the group consisting of IKK, IκBα and NF-κB. It inhibits the activity by reducing phosphorylation, and can inhibit the expression of one or more pro-inflammatory factors selected from the group consisting of iNOS, NO, PGE 2, TNF-α and IL-6.

상기 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염은 상기와 같은 우수한 항염 활성을 가지고 부작용이 적으므로, 염증성 질환의 예방, 개선 또는 치료를 위한 약학 조성물 또는 건강기능식품 조성물로 활용할 수 있고, 이를 통해 상기 질환을 안전하고 효과적으로 치료 및 개선할 수 있다.Since the compound, or its stereoisomer, or a pharmaceutically acceptable salt thereof, has excellent anti-inflammatory activity as described above and has few side effects, it can be used as a pharmaceutical composition or a health functional food composition for the prevention, improvement or treatment of inflammatory diseases. And, through this, it is possible to safely and effectively treat and improve the disease.

도 1은 헤르드마닌의 부분 구조 및 종래의 NSAID를 결합한 본 발명에 따른 COX 억제제의 설계 과정을 개략적으로 나타낸 것이다.
도 2는 본 발명의 일 실험예에 따른 화합물 5a-5u 및 6a-6b의 생체외 COX-1 및 COX-2 효소 억제 활성 분석 결과를 나타낸 그래프이다.
도 3은 본 발명의 일 실험예에 따른 화합물 5m의 세포 독성 결과를 나타낸 그래프이다.
도 4는 본 발명의 일 실험예에 따른 전염증 인자 iNOS 및 COX-2의 단백질 발현의 변화를 나타낸 것으로, 상단 첫번째 이미지는 RAW264.7 세포에서 화합물 5m의 농도에 따른 LPS-유도된 iNOS 및 COX-2의 발현 정도를 나타내고, (A)는 iNOS의 상대적 단백질 발현량을, (B)는 COX-2의 상대적 단백질 발현량을 나타낸 그래프이다.
도 5는 본 발명의 일 실험예에 따른 전염증 인자 생성 변화를 나타낸 것으로, (A)는 산화질소(nitric oxide, NO), (B)는 인터류킨-6(interleukin-6, IL-6), (C)는 종양 괴사 인자 α(tumor necrosis factor α, TNF-α), (D)는 프로스타글란딘 E2(prostaglandin E2, PGE2)의 생성 정도를 나타낸 그래프이다.
도 6은 본 발명의 일 실험예에 따른 활성산소종(ROS)의 생성 변화를 나타낸 것으로, (A)는 LPS 유도된 세포 내의 ROS로, 형광 프로브인 DCFH-DA에 의해 녹색 형광으로 표시되고, (B)는 형광 마이크로플레이트 리더기로 형광 강도를 정량화한 그래프이다.
도 7은 본 발명의 일 실험예에 따른 NF-κB 등의 인산화 변화를 나타낸 것으로, (A)는 NF-κB p65의 공초점 현미경 이미지이고 (B)는 NF-κB 의 인산화, (C)는 IKK의 인산화 및 (D)는 IκBα의 인산화를 나타낸 그래프이다.
도 8은 본 발명의 일 실험예를 통해 확인한 COX 억제제로서의 화합물 5m의 항염증 매커니즘을 나타낸다.
도 9는 본 발명의 일 실험예에 따른 리간드/COX 결합의 도킹(docking) 및 결정 구조이다.
1 schematically shows the design process of a COX inhibitor according to the present invention combining a partial structure of Herdmanin and a conventional NSAID.
Figure 2 is a graph showing the results of in vitro COX-1 and COX-2 enzyme inhibitory activity analysis of compounds 5a-5u and 6a-6b according to an experimental example of the present invention.
3 is a graph showing the cytotoxicity results of compound 5m according to an experimental example of the present invention.
Figure 4 shows the changes in the protein expression of pro-inflammatory factors iNOS and COX-2 according to an experimental example of the present invention, the top first image is LPS-induced iNOS and COX according to the concentration of compound 5m in RAW264.7 cells The expression level of -2 is shown, (A) is a graph showing the relative protein expression level of iNOS, and (B) is a graph showing the relative protein expression level of COX-2.
5 shows the change in the generation of pro-inflammatory factors according to an experimental example of the present invention, (A) is nitric oxide (NO), (B) is interleukin-6 (IL-6), (C) is a graph showing the degree of production of tumor necrosis factor α (TNF-α), and (D) is prostaglandin E 2 (prostaglandin E 2 , PGE 2 ).
6 shows the change in the production of reactive oxygen species (ROS) according to an experimental example of the present invention, (A) is ROS in LPS-induced cells, indicated by green fluorescence by DCFH-DA, a fluorescent probe, (B) is a graph obtained by quantifying fluorescence intensity with a fluorescent microplate reader.
Figure 7 shows the change in phosphorylation of NF-κB according to an experimental example of the present invention, (A) is a confocal microscope image of NF-κB p65, (B) is phosphorylation of NF-κB, (C) is IKK phosphorylation and (D) are graphs showing the phosphorylation of IκBα.
8 shows the anti-inflammatory mechanism of compound 5m as a COX inhibitor identified through an experimental example of the present invention.
9 is a docking (docking) and crystal structure of the ligand / COX binding according to an experimental example of the present invention.

이하, 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명자는 항염증성 해조류 대사산물인 헤르드마닌(herdmanines)에 의해서 개선된 안전성 프로파일을 가지는 효과적인 항염증제 개발을 위해, 분홍멍게(Herdmania momus)로부터 분리된 헤르드마닌 C와 D에서 COX-2, iNOS, IL-6, NO 등의 생성 억제 효과를 확인하여 이의 핵심 구조를 결합한 일련의 치환된 인돌(indole) 유도체를 설계 및 합성하였고, 이 유도체의 COX-1과 COX-2에 대한 억제 활성 및 항염 활성을 확인함으로써, 본 발명을 완성하였다.In order to develop an effective anti-inflammatory agent having an improved safety profile by herdmanines, an anti-inflammatory algae metabolite, the inventors of the present invention are COX-2, iNOS in Herdmanin C and D isolated from Herdmania momus. A series of substituted indole derivatives that combine their core structures were designed and synthesized by confirming the effect of inhibiting the production of, IL-6, NO, etc., and their inhibitory activity against COX-1 and COX-2 and anti-inflammatory By confirming the activity, the present invention was completed.

본 명세서에서, "예방"이란, 본 발명에 따른 약학 조성물 또는 건강기능식품 조성물의 투여에 의해 염증성 질환, 또는 상기 질환의 적어도 하나 이상의 증상의 발생을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다. 또한, 재발을 예방하거나 방지하기 위해 상기 질병에 차도가 있는 대상의 치료를 포함한다.In the present specification, "prevention" means any action of inhibiting the occurrence of or delaying the onset of an inflammatory disease or at least one symptom of the disease by administration of the pharmaceutical composition or health functional food composition according to the present invention. . In addition, it includes treatment of a subject with remission to the disease to prevent or prevent recurrence.

본 명세서에서, "치료"란, 본 발명에 따른 약학 조성물의 투여에 의해 염증성 질환, 또는 상기 질환의 적어도 하나 이상의 증상을 완화, 감소, 또는 소멸시키는 등 그 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미한다.In the present specification, "treatment" refers to any act of improving or beneficially altering the symptoms of an inflammatory disease, or at least one symptom of the disease, such as alleviating, reducing, or eliminating at least one symptom of the disease by administration of the pharmaceutical composition according to the present invention. Means.

본 명세서에서, "개선"이란, 본 발명에 따른 건강기능식품 조성물의 섭취에 의해 염증성 질환, 또는 상기 질환의 적어도 하나 이상의 증상이 완화, 감소, 또는 소멸시키는 등 그 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미한다.In the present specification, the term "improvement" refers to an inflammatory disease, or at least one symptom of the disease by ingestion of the health functional food composition according to the present invention, alleviating, reducing, or eliminating the symptoms, etc. It means all actions.

본 명세서에서, "약학 조성물"이란, 특정한 목적을 위해 투여되는 조성물로, 본 발명의 목적상 염증성 질환, 또는 상기 질환의 적어도 하나 이상의 증상을 예방하거나 또는 치료하기 위해 투여되는 것을 의미한다.In the present specification, the term "pharmaceutical composition" means a composition administered for a specific purpose, and for the purposes of the present invention, it is meant to be administered to prevent or treat an inflammatory disease, or at least one symptom of the disease.

본 명세서에서, "건강기능식품"이란, 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 포함하며, 영양 공급 외에도 본 발명의 목적상 염증성 질환의 예방, 생체 방어, 면역, 회복 등의 생체 조절 기능이 효율적으로 나타나도록 가공된 의학, 의료 효과가 높은 식품을 의미한다.In the present specification, the term "health functional food" includes foods manufactured and processed using raw materials or ingredients having functions useful for the human body according to the Health Functional Food Act No. 6727, and in addition to supplying nutrition, the object of the present invention It refers to foods with high medical effects and medicines processed to efficiently exhibit biomodulatory functions such as prevention of inflammatory diseases, body defense, immunity, and recovery.

본 발명은 하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 제공한다.The present invention provides a compound represented by the following formula (1), or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.

[화학식 1][Formula 1]

Figure 112019078197118-pat00003
Figure 112019078197118-pat00003

상기 화학식 1에서, n은 0 또는 1이고, R1은 할로겐에서 선택될 수 있고, R2는 선형 또는 분지형의 (C1~C12)알킬, (C3~C8)사이클로알킬, 페닐(C1~C4)알킬, (C1~C2)알킬치아졸-5-일, 퓨릴, 수소 또는 하기 화학식 2에서 선택될 수 있으며,In Formula 1, n is 0 or 1, R 1 may be selected from halogen, and R 2 is linear or branched (C1-C12)alkyl, (C3-C8)cycloalkyl, phenyl (C1-C4) )Alkyl, (C1~C2)alkylthiazol-5-yl, furyl, hydrogen, or may be selected from Formula 2 below,

[화학식 2][Formula 2]

Figure 112019078197118-pat00004
Figure 112019078197118-pat00004

이 때, R3 및 R4는 각각 동일하거나 다를 수 있고, 수소, 할로겐, 시아노, (C1~C4)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.At this time, R 3 and R 4 may be the same or different, respectively, and may be selected from hydrogen, halogen, cyano, (C1 ~ C4) alkoxy, hydroxy, or carboxy.

바람직하게는, 상기 화학식 1에서 R2는 선형 또는 분지형의 (C3~C8)알킬, (C3~C6)사이클로알킬, 페닐(C1~C2)알킬, 메틸치아졸-5-일, 퓨릴 또는 상기 화학식 2에서 선택될 수 있고, 상기 화학식 2에서 R3 및 R4는 각각 동일하거나 다를 수 있으며, 수소, 할로겐, 시아노, (C1~C2)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.Preferably, in Formula 1, R 2 is linear or branched (C3-C8)alkyl, (C3-C6)cycloalkyl, phenyl (C1-C2)alkyl, methylthiazol-5-yl, furyl or the above It may be selected from Formula 2, and in Formula 2, R 3 and R 4 may be the same or different, respectively, and in hydrogen, halogen, cyano, (C1 ~ C2) alkoxy, hydroxy or carboxy Can be chosen.

상기 "알킬"은 선형 또는 분지형의 포화된 탄화수소로, 예를 들어, 메틸, 에틸, 이소프로필, 이소부틸, 터트-부틸(tert-butyl), 2-메틸부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐 등을 포함할 수 있다.The "alkyl" is a linear or branched saturated hydrocarbon, for example methyl, ethyl, isopropyl, isobutyl, tert-butyl, 2-methylbutyl, pentyl, hexyl, heptyl, octyl , Nonyl, and the like.

보다 상세하게는, 상기 화합물은 (E)-1-(4-클로로벤질)-N'-(2-메틸프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(2,2-디메틸프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(2-메틸부틸리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(사이클로프로필메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(사이클로헥실메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-헥실리덴-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-노닐리덴-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3-페닐프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-벤질리덴-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-하이드록시벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-클로로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-메톡시벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-(4-브로모벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-4-((2-(1-(4-클로로벤질)-1H-인돌-3-카보닐)하이드라조노)메틸)벤조산, (E)-1-(4-클로로벤질)-N'-(4-플루오로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3,5-디클로로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3,5-디브로모벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-(3-클로로-5-메톡시벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-((4-메틸치아졸-5-일)메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(퓨란-2-일메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드 및 (E)-1-(4-브로모벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드로 이루어진 군에서 선택될 수 있고, 보다 바람직하게는 (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드일 수 있으나, 이에 제한되는 것은 아니다.More specifically, the compound is (E)-1-(4-chlorobenzyl)-N'-(2-methylpropylidene)-1H-indole-3-carbohydrazide, (E)-1-( 4-chlorobenzyl)-N'-(2,2-dimethylpropylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(2-methyl Butylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(cyclopropylmethylene)-1H-indole-3-carbohydrazide, ( E)-1-(4-chlorobenzyl)-N'-(cyclohexylmethylene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-hexyl Den-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-nonylidene-1H-indole-3-carbohydrazide, (E)-1- (4-chlorobenzyl)-N'-(3-phenylpropylidene)-1H-indole-3-carbohydrazide, (E)-N'-benzylidene-1-(4-chlorobenzyl)-1H- Indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-hydroxybenzylidene)-1H-indole-3-carbohydrazide, (E)-1 -(4-chlorobenzyl)-N'-(4-chlorobenzylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-me Toxybenzylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydra Zide, (E)-N'-(4-bromobenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide, (E)-4-((2-(1 -(4-chlorobenzyl)-1H-indole-3-carbonyl)hydrazono)methyl)benzoic acid, (E)-1-(4-chlorobenzyl)-N'-(4-fluorobenzylidene)- 1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(3,5-dichlorobenzylidene)-1H-indole-3-carbohydrazide, (E )-1-(4-chlorobenzyl)-N'-(3,5-dibromobenzylidene)-1H-indole-3-carbohydrazide, (E)-N'-(3-chloro-5 -Methoxybenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-((4-methylthiazole -5-yl)methylene)-1H-indole-3-carbohydraji De, (E)-1-(4-chlorobenzyl)-N'-(furan-2-ylmethylene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzoyl) -N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide and (E)-1-(4-bromobenzoyl)-N'-(4-cyanobenzylidene)- 1H-indole-3-carbohydrazide may be selected from the group consisting of, more preferably (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole It may be -3-carbohydrazide, but is not limited thereto.

본 발명에 따른 화합물은 이의 입체 이성질체를 포함할 수 있다. "입체 이성질체(stereoisomer)"란, 분자식 및 구성 원자의 연결 방법이 같으나 원자 사이의 공간적 배치가 다른 것으로, 부분입체 이성질체(diasteromer) 또는 거울상이성질체(enantiomer)일 수 있다. 거울상이성질체는 왼손과 오른손의 관계처럼 그 거울상과 겹쳐지지 않는 이성질체를 말하고, 광학 이성질체(optical isomer)라고도 한다. 거울상 이성질체는 키랄 중심 탄소에 4개 이상의 치환기가 서로 다른 경우 R(Rectus: 시계방향) 및 S(sinister: 반시계 방향)로 구분한다. 부분입체이성질체는 거울상 관계가 아닌 입체 이성질체로, 시스(cis)-트랜스(trans) 이성질체, E-Z 이성질체 등의 기하 이성질체를 포함할 수 있다.The compounds according to the invention may contain stereoisomers thereof. A "stereoisomer" refers to a molecular formula and a connection method of constituent atoms that are the same, but different spatial arrangements between atoms, and may be a diasteromer or an enantiomer. The enantiomer refers to an isomer that does not overlap with the mirror image, such as the relationship between the left hand and the right hand, and is also called an optical isomer. Enantiomers are classified into R (Rectus: clockwise) and S (sinister: counterclockwise) when four or more substituents are different on the chiral central carbon. Diastereomers are stereoisomers that are not in an enantiomeric relationship, and may include geometric isomers such as cis-trans isomers and E-Z isomers.

본 발명에 따른 화합물은 약학적 또는 식품학적으로 허용가능한 염의 형태로 사용할 수 있으며, 상기 염은 투여되는 유기체에 심각한 자극을 유발하지 않고 화합물의 생물학적 활성과 물성들을 손상시키지 않는 염일 수 있다.The compound according to the present invention may be used in the form of a pharmaceutically or food acceptable salt, and the salt may be a salt that does not cause serious irritation to the administered organism and does not impair the biological activity and physical properties of the compound.

상기 염은 약학적 또는 식품학적으로 허용가능한 염기성 염 또는 산성염 중 어느 하나의 형태로 사용할 수 있다. 염기성염은 유기 염기염, 무기 염기염 중 어느 하나의 형태로 사용할 수 있으며, 나트륨염, 칼륨염, 칼슘염, 리튬염, 마그네슘염, 세슘염, 아미늄(aminium)염, 암모늄염, 트리에칠아미늄염 및 피리디늄염으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다.The salt may be used in the form of either a pharmaceutically or food pharmaceutically acceptable basic salt or acid salt. The basic salt can be used in the form of either an organic base salt or an inorganic base salt, and sodium salt, potassium salt, calcium salt, lithium salt, magnesium salt, cesium salt, aminium salt, ammonium salt, triethyl salt It may be selected from the group consisting of an aminium salt and a pyridinium salt, but is not limited thereto.

산성염은 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 유리산으로는 무기산과 유기산을 사용할 수 있으며, 무기산으로는 염산, 브롬산, 황산, 아황산, 인산, 이중 인산, 질산 등을 사용할 수 있고, 유기산으로는 구연산, 초산, 말레산, 말산, 퓨마르산, 글루코산, 메탄설폰산, 벤젠설폰산, 캠퍼설폰산, 옥살산, 말론산, 글루타릭산, 아세트산, 글리콘산, 석신산, 타타르산, 4-톨루엔설폰산, 갈락투론산, 엠본산, 글루탐산, 시트르산, 아스파르탄산, 스테아르산 등을 사용할 수 있다. Acid salts are useful acid addition salts formed by free acids. Inorganic acids and organic acids can be used as the free acid, hydrochloric acid, bromic acid, sulfuric acid, sulfurous acid, phosphoric acid, double phosphoric acid, nitric acid, etc. can be used as the inorganic acid, and citric acid, acetic acid, maleic acid, malic acid, fumaric acid, etc. can be used as the inorganic acid. , Glucose, methanesulfonic acid, benzenesulfonic acid, camphorsulfonic acid, oxalic acid, malonic acid, glutaric acid, acetic acid, glycolic acid, succinic acid, tartaric acid, 4-toluenesulfonic acid, galacturonic acid, embonic acid, Glutamic acid, citric acid, aspartic acid, stearic acid, and the like can be used.

또한, 본 발명에 따른 상기 화합물은 약학적 또는 식품학적으로 허용되는 염뿐만 아니라, 통상의 방법에 의해 제조될 수 있는 모든 염, 수화물 및 용매화물을 모두 포함할 수 있다. 부가염은 통상의 방법으로 제조할 수 있고, 상기 화합물을 수혼화성 유기용매, 예를 들면 아세톤, 메탄올, 에탄올, 또는 아세토니트릴 등에 녹이고 과량의 유기염기를 가하거나 무기염기의 염기 수용액을 가한 후 침전시키거나 결정화시켜서 제조할 수 있다. 또는 이 혼합물에서 용매나 과량의 염기를 증발시킨 후 건조시켜서 부가염을 얻거나 또는 석출된 염을 흡인 여과시켜 제조할 수 있다.In addition, the compound according to the present invention may include all salts, hydrates, and solvates that can be prepared by conventional methods, as well as pharmaceutically or food acceptable salts. The addition salt can be prepared by a conventional method, and the compound is dissolved in a water-miscible organic solvent, such as acetone, methanol, ethanol, or acetonitrile, and an excessive amount of organic base is added or an aqueous base solution of an inorganic base is added, followed by precipitation. It can be prepared by making it or crystallizing it. Alternatively, the mixture may be prepared by evaporating a solvent or an excess base and drying to obtain an addition salt, or by suction filtration of the precipitated salt.

본 발명에 따른 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염은 사이클로옥시게나제(Cyclooxygenases, COX) 억제 활성을 가지므로, COX 억제제로 사용될 수 있고, COX-1 및 COX-2를 균형있게 억제할 수 있다. 본 발명의 일 실험예에 따르면, 상기 화합물은 COX-1 및/또는 COX-2의 억제 활성을 가지는 것으로 확인되었고, 그 중 화합물 5m은 COX-1 및 COX-2 모두에서 우수한 억제 활성을 가지는 것으로 나타났다. 보다 상세한 것은 하기 실험예에 의해 후술될 것이다.The compound according to the present invention, or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, has a cyclooxygenase (COX) inhibitory activity, and thus can be used as a COX inhibitor, and COX-1 and COX-2 are used. I can restrain it in a balance. According to an experimental example of the present invention, it was confirmed that the compound has an inhibitory activity of COX-1 and/or COX-2, of which compound 5m has excellent inhibitory activity in both COX-1 and COX-2. appear. More details will be described later by the following experimental examples.

본 발명은 하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 염증성 질환 예방 또는 치료용 약학 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating inflammatory diseases containing a compound represented by the following Formula 1, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.

[화학식 1][Formula 1]

Figure 112019078197118-pat00005
Figure 112019078197118-pat00005

상기 화학식 1에서, n은 0 또는 1이고, R1은 할로겐에서 선택될 수 있고, R2는 선형 또는 분지형의 (C1~C12)알킬, (C3~C8)사이클로알킬, 페닐(C1~C4)알킬, (C1~C2)알킬치아졸-5-일, 퓨릴, 수소 또는 하기 화학식 2에서 선택될 수 있으며,In Formula 1, n is 0 or 1, R 1 may be selected from halogen, and R 2 is linear or branched (C1-C12)alkyl, (C3-C8)cycloalkyl, phenyl (C1-C4) )Alkyl, (C1~C2)alkylthiazol-5-yl, furyl, hydrogen, or may be selected from Formula 2 below,

[화학식 2][Formula 2]

Figure 112019078197118-pat00006
Figure 112019078197118-pat00006

이 때, R3 및 R4는 각각 동일하거나 다를 수 있고, 수소, 할로겐, 시아노, (C1~C4)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.At this time, R 3 and R 4 may be the same or different, respectively, and may be selected from hydrogen, halogen, cyano, (C1 ~ C4) alkoxy, hydroxy, or carboxy.

바람직하게는, 상기 화학식 1에서 R2는 선형 또는 분지형의 (C3~C8)알킬, (C3~C6)사이클로알킬, 페닐(C1~C2)알킬, 메틸치아졸-5-일, 퓨릴 또는 상기 화학식 2에서 선택될 수 있고, 상기 화학식 2에서 R3 및 R4는 각각 동일하거나 다를 수 있으며, 수소, 할로겐, 시아노, (C1~C2)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.Preferably, in Formula 1, R 2 is linear or branched (C3-C8)alkyl, (C3-C6)cycloalkyl, phenyl (C1-C2)alkyl, methylthiazol-5-yl, furyl or the above It may be selected from Formula 2, and in Formula 2, R 3 and R 4 may be the same or different, respectively, and in hydrogen, halogen, cyano, (C1 ~ C2) alkoxy, hydroxy or carboxy Can be chosen.

보다 상세하게는, 상기 화합물은 (E)-1-(4-클로로벤질)-N'-(2-메틸프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(2,2-디메틸프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(2-메틸부틸리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(사이클로프로필메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(사이클로헥실메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-헥실리덴-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-노닐리덴-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3-페닐프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-벤질리덴-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-하이드록시벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-클로로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-메톡시벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-(4-브로모벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-4-((2-(1-(4-클로로벤질)-1H-인돌-3-카보닐)하이드라조노)메틸)벤조산, (E)-1-(4-클로로벤질)-N'-(4-플루오로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3,5-디클로로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3,5-디브로모벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-(3-클로로-5-메톡시벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-((4-메틸치아졸-5-일)메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(퓨란-2-일메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드 및 (E)-1-(4-브로모벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드로 이루어진 군에서 선택될 수 있고, 보다 바람직하게는 (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드일 수 있으나, 이에 제한되는 것은 아니다.More specifically, the compound is (E)-1-(4-chlorobenzyl)-N'-(2-methylpropylidene)-1H-indole-3-carbohydrazide, (E)-1-( 4-chlorobenzyl)-N'-(2,2-dimethylpropylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(2-methyl Butylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(cyclopropylmethylene)-1H-indole-3-carbohydrazide, ( E)-1-(4-chlorobenzyl)-N'-(cyclohexylmethylene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-hexyl Den-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-nonylidene-1H-indole-3-carbohydrazide, (E)-1- (4-chlorobenzyl)-N'-(3-phenylpropylidene)-1H-indole-3-carbohydrazide, (E)-N'-benzylidene-1-(4-chlorobenzyl)-1H- Indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-hydroxybenzylidene)-1H-indole-3-carbohydrazide, (E)-1 -(4-chlorobenzyl)-N'-(4-chlorobenzylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-me Toxybenzylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydra Zide, (E)-N'-(4-bromobenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide, (E)-4-((2-(1 -(4-chlorobenzyl)-1H-indole-3-carbonyl)hydrazono)methyl)benzoic acid, (E)-1-(4-chlorobenzyl)-N'-(4-fluorobenzylidene)- 1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(3,5-dichlorobenzylidene)-1H-indole-3-carbohydrazide, (E )-1-(4-chlorobenzyl)-N'-(3,5-dibromobenzylidene)-1H-indole-3-carbohydrazide, (E)-N'-(3-chloro-5 -Methoxybenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-((4-methylthiazole -5-yl)methylene)-1H-indole-3-carbohydraji De, (E)-1-(4-chlorobenzyl)-N'-(furan-2-ylmethylene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzoyl) -N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide and (E)-1-(4-bromobenzoyl)-N'-(4-cyanobenzylidene)- 1H-indole-3-carbohydrazide may be selected from the group consisting of, more preferably (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole It may be -3-carbohydrazide, but is not limited thereto.

본 발명에 따른 약학 조성물에 있어서, 상기 조성물은 사이클로옥시게나제(COX)를 억제할 수 있고, 활성산소종(Reactive oxygen species; ROS) 생성을 감소시킬 수 있으며, IKK(IκB-키나아제), IκBα(NF-κB의 억제제) 및 NF-κB(nuclear factor-kappa B)로 이루어진 군에서 선택되는 하나 이상의 인산화를 감소시킬 수 있다. 또한, iNOS(inducible nitric oxide synthase), NO(nitric oxide), PGE2(prostaglandin E2), TNF-α(tumor necrosis factor α) 및 IL-6(interleukin-6)로 이루어진 군에서 선택되는 하나 이상의 전염증성 인자의 발현을 억제할 수 있다. 상기 조성물은 상기와 같이, 산화 스트레스를 억제하고, 우수한 항염 활성 효과를 가질 수 있어. 염증성 질환의 예방 또는 치료를 위한 약학 조성물로 사용될 수 있다. In the pharmaceutical composition according to the present invention, the composition can inhibit cyclooxygenase (COX), reduce the production of reactive oxygen species (ROS), and can reduce IKK (IκB-kinase), IκBα (An inhibitor of NF-κB) and NF-κB (nuclear factor-kappa B) can reduce one or more phosphorylation selected from the group consisting of. In addition, at least one selected from the group consisting of iNOS (inducible nitric oxide synthase), NO (nitric oxide), PGE 2 (prostaglandin E 2 ), TNF-α (tumor necrosis factor α) and IL-6 (interleukin-6) It can inhibit the expression of pro-inflammatory factors. As described above, the composition can suppress oxidative stress and have an excellent anti-inflammatory effect. It can be used as a pharmaceutical composition for the prevention or treatment of inflammatory diseases.

본 발명의 일 실험예에 따르면, 본 발명의 일 합성예에 따라 합성된 화합물 5a~5u 및 6a~6b는 COX-1 및/또는 COX-2의 억제 활성을 가지는 것으로 확인되었고, 그 중 화합물 5m은 COX-1 및 COX-2 모두에서 우수한 억제 활성을 가지는 것으로 나타났다. 또한, LPS 유도된 RAW264.7 세포에서 상기 화합물 5m이 처리된 경우에는 ROS 생성이 억제되고, IKK, IκBα 및 NF-κB의 인산화가 감소되었으며, iNOS, NO, PGE2, TNF-α, IL-6와 같은 전염증성 인자들의 발현이 억제되는 것으로 확인되었다. 보다 상세한 것은 하기 실험예에 의해 후술될 것이다.According to an experimental example of the present invention, compounds 5a to 5u and 6a to 6b synthesized according to the synthesis example of the present invention were confirmed to have inhibitory activity of COX-1 and/or COX-2, of which compound 5m Was shown to have excellent inhibitory activity in both COX-1 and COX-2. In addition, when compound 5m was treated in LPS-induced RAW264.7 cells, ROS production was inhibited, phosphorylation of IKK, IκBα and NF-κB was reduced, iNOS, NO, PGE 2 , TNF-α, IL- It was confirmed that the expression of pro-inflammatory factors such as 6 is suppressed. More details will be described later by the following experimental examples.

본 발명에 따른 약학 조성물에 있어서, 상기 염증성 질환은 퇴행성 관절염(골관절염), 류마티스 관절염, 강직성 척추염, 패혈성 관절염 및 루푸스 관절염으로 이루어진 군에서 선택되는 관절염 관련 질환일 수 있다.In the pharmaceutical composition according to the present invention, the inflammatory disease may be an arthritis-related disease selected from the group consisting of degenerative arthritis (osteoarthritis), rheumatoid arthritis, ankylosing spondylitis, septic arthritis, and lupus arthritis.

본 명세서에서, "염증성 질환(inflammatory diseases)"이란 세균의 침입 등으로 인해 형성되는 농양의 병리적 상태를 주병변으로 하는 질병의 총칭으로, 관절염, 피부염, 알레르기, 결막염, 비염, 중이염, 위염, 대장염 및 급성 및 만성 염증 질환으로 이루어진 군에서 선택되는 하나일 수 있으며, 바람직하게는 관절염일 수 있으나, 이에 제한되는 것은 아니다. In the present specification, the term "inflammatory diseases" is a generic term for diseases whose main lesion is the pathological condition of an abscess formed due to the invasion of bacteria, etc., arthritis, dermatitis, allergy, conjunctivitis, rhinitis, otitis media, gastritis, It may be one selected from the group consisting of colitis and acute and chronic inflammatory diseases, preferably arthritis, but is not limited thereto.

상기 질환에서, "관절염(arthritis)"은 대표적인 연골 관련 질환으로, 세균이나 외상과 같은 어떤 원인에 의해서 관절 내 염증성 변화가 생긴 것을 총괄하여 지칭하는 병명으로, 뼈와 뼈 마디를 연결하여 매끈하게 움직이게 하는 연골이 소실되는 것을 말한다. 상기 관절염은 퇴행성 관절염(골관절염), 류마티스 관절염, 강직성 척추염, 패혈성 관절염, 루푸스 관절염 등을 포함할 수 있다.In the above diseases, "arthritis" is a representative cartilage-related disease, a disease name that collectively refers to inflammatory changes in the joint caused by some cause such as bacteria or trauma. This refers to the loss of cartilage. The arthritis may include degenerative arthritis (osteoarthritis), rheumatoid arthritis, ankylosing spondylitis, septic arthritis, lupus arthritis, and the like.

"퇴행성 관절염"은 관절을 보호하고 있는 연골의 점진적인 손상으로 인한 관절염으로, 관절 질환 중 가장 많이 발생 빈도가 높으며, 골관절염이라고도 한다. "Degenerative arthritis" is arthritis caused by gradual damage to the cartilage that protects the joint, and it is the most frequent among joint diseases, and is also called osteoarthritis.

"류마티스 관절염"은 관절 주위를 둘러싸고 있는 활막이라는 조직의 염증 때문에 일어나는 만성 염증성 질환이자, 자가면역질환의 일종으로, 대칭적 다발성 관절염이 가장 흔하게 나타난다."Rheumatoid arthritis" is a chronic inflammatory disease that occurs due to inflammation of a tissue called the synovial membrane surrounding the joint, and is a type of autoimmune disease, and symmetric polyarthritis is the most common.

"강직성 척추염"은 척추에 염증이 발생하고 점차적으로 척추 마디가 굳어지는 척추의 주 병변이 특징인 만성 관절염의 일종이다. "Ankylosing spondylitis" is a type of chronic arthritis characterized by a major lesion of the spine in which the spine becomes inflamed and the vertebral joints gradually harden.

"패혈성 관절염"은 혈행으로 전파된 세균이 관절을 침범하여 발생하는 질환으로, 여러 종류의 병원균이 이 질환을 일으킬 수 있으며, 그 중 황색포도상구균이 가장 흔한 원인균이다."Septic arthritis" is a disease caused by invading joints by bacteria that have spread to the blood circulation, and various types of pathogens can cause this disease, among which Staphylococcus aureus is the most common causative agent.

"루푸스 관절염"은 면역계의 이상으로 온몸에 염증이 생기는 만성 자가면역질환인 루푸스 환자에게서 관찰되는 관절염으로, 관절 주위 조직 변화로 운동성 장애가 생기기도 한다."Lupus arthritis" is an arthritis observed in patients with lupus, a chronic autoimmune disease that causes inflammation of the whole body due to an abnormality in the immune system, and movement disorders may occur due to tissue changes around the joint.

본 발명에 따른 약학 조성물은 약학적 분야의 통상적인 방법에 따라 제조될 수 있다.The pharmaceutical composition according to the present invention can be prepared according to a conventional method in the pharmaceutical field.

본 발명에 따른 약학 조성물은 상기 제형에 따라 약학적으로 허용가능한 적절한 담체와 배합될 수 있고, 필요에 따라, 부형제, 희석제, 분산제, 유화제, 완충제, 안정제, 결합제, 붕해제, 용제 등을 더 포함하여 제조될 수 있다. 상기 "약학적으로 허용 가능한"이란, 상기 약학 조성물에 노출되는 세포나 인간에게 독성이 없는 것을 의미하고, 상기 적절한 담체 등은 본 발명에 따른 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염의 활성 및 특성을 저해하지 않는 것으로, 투여 형태 및 제형에 따라 달리 선택될 수 있다.The pharmaceutical composition according to the present invention may be blended with an appropriate pharmaceutically acceptable carrier according to the above formulation, and further includes excipients, diluents, dispersants, emulsifiers, buffers, stabilizers, binders, disintegrants, solvents, etc., if necessary. It can be manufactured by. The term "pharmaceutically acceptable" means that it is not toxic to cells or humans exposed to the pharmaceutical composition, and the appropriate carrier or the like is a compound according to the present invention, or a stereoisomer thereof, or a pharmaceutically acceptable It does not inhibit the activity and properties of the salt, and may be selected differently depending on the dosage form and formulation.

본 발명에 따른 약학 조성물은 어떠한 제형으로도 적용될 수 있고, 보다 상세하게는 통상의 방법에 따라 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 비경구형 제형로 제형화하여 사용될 수 있다.The pharmaceutical composition according to the present invention may be applied in any dosage form, and more particularly, may be formulated and used in parenteral dosage forms of oral dosage forms, external preparations, suppositories, and sterile injectable solutions according to a conventional method.

상기 경구형 제형 중 고형 제형은 정제, 환제, 산제, 과립제, 캡슐제 등의 형태로, 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스, 락토오스, 솔비톨, 만니톨, 셀룰로오스, 젤라틴 등을 섞어 조제할 수 있고, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 포함될 수 있다. 또한, 캡술제형의 경우 상기 언급한 물질 외에도 지방유와 같은 액체 담체를 더 포함할 수 있다.Among the oral dosage forms, the solid dosage form is in the form of tablets, pills, powders, granules, capsules, etc., and at least one excipient such as starch, calcium carbonate, sucrose, lactose, sorbitol, mannitol, cellulose, gelatin, etc. It can be prepared by mixing, and in addition to simple excipients, lubricants such as magnesium stearate and talc may also be included. In addition, in the case of the capsul formulation, in addition to the above-mentioned substances, a liquid carrier such as fatty oil may be further included.

상기 경구형 제형 중 액상 제형은 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.Among the oral dosage forms, liquid dosage forms correspond to suspensions, liquid solutions, emulsions, syrups, and the like.In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweetening agents, fragrances, preservatives, etc. may be included. have.

상기 비경구 제형은 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. 이에 제한되지 않고, 당해 기술 분야에 알려진 적합한 제제를 모두 사용 가능하다.The parenteral formulation may include a sterilized aqueous solution, a non-aqueous solvent, a suspension, an emulsion, a lyophilized formulation, and a suppository. As the non-aqueous solvent and suspension, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like may be used. As a base for suppositories, witepsol, macrogol, Tween 61, cacao butter, laurin paper, glycerogelatin, and the like may be used. The present invention is not limited thereto, and any suitable agent known in the art may be used.

또한, 본 발명에 따른 약학 조성물은 치료 효능의 증진을 위해 칼슘이나 비타민 D3 등을 더 첨가할 수 있다. In addition, the pharmaceutical composition according to the present invention may further add calcium or vitamin D 3 to improve therapeutic efficacy.

본 발명에 따른 약학 조성물에 있어서, 상기 약학 조성물은 약학적으로 유효한 양으로 투여될 수 있다. 상기 "약학적으로 유효한 양"이란, 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미한다.In the pharmaceutical composition according to the present invention, the pharmaceutical composition may be administered in a pharmaceutically effective amount. The "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment and not cause side effects.

상기 약학 조성물의 유효 용량 수준은 사용 목적, 환자의 연령, 성별, 체중 및 건강 상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 달리 결정될 수 있다. 예를 들어, 일정하지는 않지만 일반적으로 0.001 내지 100mg/kg으로, 바람직하게는 0.01 내지 10mg/kg을 일일 1회 내지 수회 투여될 수 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The effective dosage level of the pharmaceutical composition is the purpose of use, the age, sex, weight and health condition of the patient, the type of disease, the severity, the activity of the drug, the sensitivity to the drug, the method of administration, the administration time, the route of administration and the rate of excretion, It can be determined differently depending on the duration, factors including the combination or co-used drugs and other factors well known in the medical field. For example, although not constant, generally 0.001 to 100 mg/kg, preferably 0.01 to 10 mg/kg may be administered once to several times a day. The above dosage does not limit the scope of the present invention in any way.

본 발명에 따른 약학 조성물은 염증성 질환이 발생할 수 있는 임의의 동물에 투여할 수 있고, 상기 동물은 예를 들어, 인간 및 영장류뿐만 아니라 소, 돼지, 말, 개 등의 가축 등을 포함할 수 있다.The pharmaceutical composition according to the present invention may be administered to any animal that may cause inflammatory disease, and the animal may include, for example, humans and primates, as well as livestock such as cattle, pigs, horses, and dogs. .

본 발명에 따른 약학 조성물은 제제 형태에 따른 적당한 투여 경로로 투여될 수 있고, 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다. 투여 방법은 특히 한정할 필요 없이, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 기관지내 흡입, 자궁내 경막 또는 뇌혈관내(intracere-broventricular) 주사 등의 통상적인 방법으로 투여될 수 있다.The pharmaceutical composition according to the present invention may be administered by an appropriate route of administration according to the form of the formulation, and may be administered through various routes, either oral or parenteral, as long as it can reach the target tissue. The method of administration is not particularly limited, and may be administered by conventional methods such as, for example, oral, rectal or intravenous, intramuscular, subcutaneous, intrabronchial inhalation, intrauterine dura mater or intracere-broventricular injection. .

본 발명에 따른 약학 조성물은 염증성 질환 예방 또는 치료를 위하여 단독으로 사용될 수 있고, 수술 또는 다른 약물 치료 등과 병용하여 사용될 수 있다.The pharmaceutical composition according to the present invention may be used alone to prevent or treat inflammatory diseases, or may be used in combination with surgery or other drug treatment.

또한, 본 발명은 하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 염증성 질환 예방 또는 개선용 건강기능식품 조성물을 제공한다.In addition, the present invention provides a health functional food composition for preventing or improving inflammatory diseases containing a compound represented by the following Formula 1, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.

[화학식 1][Formula 1]

Figure 112019078197118-pat00007
Figure 112019078197118-pat00007

상기 화학식 1에서, n은 0 또는 1이고, R1은 할로겐에서 선택될 수 있고, R2는 선형 또는 분지형의 (C1~C12)알킬, (C3~C8)사이클로알킬, 페닐(C1~C4)알킬, (C1~C2)알킬치아졸-5-일, 퓨릴, 수소 또는 하기 화학식 2에서 선택될 수 있으며,In Formula 1, n is 0 or 1, R 1 may be selected from halogen, and R 2 is linear or branched (C1-C12)alkyl, (C3-C8)cycloalkyl, phenyl (C1-C4) )Alkyl, (C1~C2)alkylthiazol-5-yl, furyl, hydrogen, or may be selected from Formula 2 below,

[화학식 2][Formula 2]

Figure 112019078197118-pat00008
Figure 112019078197118-pat00008

이 때, R3 및 R4는 각각 동일하거나 다를 수 있고, 수소, 할로겐, 시아노, (C1~C4)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.At this time, R 3 and R 4 may be the same or different, respectively, and may be selected from hydrogen, halogen, cyano, (C1 ~ C4) alkoxy, hydroxy, or carboxy.

바람직하게는, 상기 화학식 1에서 R2는 선형 또는 분지형의 (C3~C8)알킬, (C3~C6)사이클로알킬, 페닐(C1~C2)알킬, 메틸치아졸-5-일, 퓨릴 또는 상기 화학식 2에서 선택될 수 있고, 상기 화학식 2에서 R3 및 R4는 각각 동일하거나 다를 수 있으며, 수소, 할로겐, 시아노, (C1~C2)알콕시, 하이드록시(hydroxy) 또는 카복시(carboxy)에서 선택될 수 있다.Preferably, in Formula 1, R 2 is linear or branched (C3-C8)alkyl, (C3-C6)cycloalkyl, phenyl (C1-C2)alkyl, methylthiazol-5-yl, furyl or the above It may be selected from Formula 2, and in Formula 2, R 3 and R 4 may be the same or different, respectively, and in hydrogen, halogen, cyano, (C1 ~ C2) alkoxy, hydroxy or carboxy Can be chosen.

보다 상세하게는, 상기 화합물은 (E)-1-(4-클로로벤질)-N'-(2-메틸프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(2,2-디메틸프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(2-메틸부틸리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(사이클로프로필메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(사이클로헥실메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-헥실리덴-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-노닐리덴-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3-페닐프로필리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-벤질리덴-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-하이드록시벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-클로로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-메톡시벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-(4-브로모벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-4-((2-(1-(4-클로로벤질)-1H-인돌-3-카보닐)하이드라조노)메틸)벤조산, (E)-1-(4-클로로벤질)-N'-(4-플루오로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3,5-디클로로벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(3,5-디브로모벤질리덴)-1H-인돌-3-카보하이드라지드, (E)-N'-(3-클로로-5-메톡시벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-((4-메틸치아졸-5-일)메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤질)-N'-(퓨란-2-일메틸렌)-1H-인돌-3-카보하이드라지드, (E)-1-(4-클로로벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드 및 (E)-1-(4-브로모벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드로 이루어진 군에서 선택될 수 있고, 보다 바람직하게는 (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드일 수 있으나, 이에 제한되는 것은 아니다.More specifically, the compound is (E)-1-(4-chlorobenzyl)-N'-(2-methylpropylidene)-1H-indole-3-carbohydrazide, (E)-1-( 4-chlorobenzyl)-N'-(2,2-dimethylpropylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(2-methyl Butylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(cyclopropylmethylene)-1H-indole-3-carbohydrazide, ( E)-1-(4-chlorobenzyl)-N'-(cyclohexylmethylene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-hexyl Den-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-nonylidene-1H-indole-3-carbohydrazide, (E)-1- (4-chlorobenzyl)-N'-(3-phenylpropylidene)-1H-indole-3-carbohydrazide, (E)-N'-benzylidene-1-(4-chlorobenzyl)-1H- Indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-hydroxybenzylidene)-1H-indole-3-carbohydrazide, (E)-1 -(4-chlorobenzyl)-N'-(4-chlorobenzylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-me Toxybenzylidene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydra Zide, (E)-N'-(4-bromobenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide, (E)-4-((2-(1 -(4-chlorobenzyl)-1H-indole-3-carbonyl)hydrazono)methyl)benzoic acid, (E)-1-(4-chlorobenzyl)-N'-(4-fluorobenzylidene)- 1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-(3,5-dichlorobenzylidene)-1H-indole-3-carbohydrazide, (E )-1-(4-chlorobenzyl)-N'-(3,5-dibromobenzylidene)-1H-indole-3-carbohydrazide, (E)-N'-(3-chloro-5 -Methoxybenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzyl)-N'-((4-methylthiazole -5-yl)methylene)-1H-indole-3-carbohydraji De, (E)-1-(4-chlorobenzyl)-N'-(furan-2-ylmethylene)-1H-indole-3-carbohydrazide, (E)-1-(4-chlorobenzoyl) -N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide and (E)-1-(4-bromobenzoyl)-N'-(4-cyanobenzylidene)- 1H-indole-3-carbohydrazide may be selected from the group consisting of, more preferably (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole It may be -3-carbohydrazide, but is not limited thereto.

본 발명에 따른 건강기능식품 조성물에 있어서, 상기 조성물은 사이클로옥시게나제(COX)를 억제할 수 있고, 활성산소종(ROS) 생성을 감소시킬 수 있으며, IKK, IκBα 및 NF-κB로 이루어진 군에서 선택되는 하나 이상의 인산화를 감소시킬 수 있다. 또한, iNOS, NO, PGE2, TNF-α 및 IL-6로 이루어진 군에서 선택되는 하나 이상의 전염증성 인자의 발현을 억제할 수 있다. 상기 조성물은 상기와 같이, 산화 스트레스를 억제하고, 우수한 항염 활성 효과를 가질 수 있어. 염증성 질환의 예방 또는 개선용 건강기능식품 조성물로 사용될 수 있다.In the health functional food composition according to the present invention, the composition can inhibit cyclooxygenase (COX), reduce the production of reactive oxygen species (ROS), and the group consisting of IKK, IκBα and NF-κB Phosphorylation of one or more selected from may be reduced. In addition, it is possible to inhibit the expression of one or more pro-inflammatory factors selected from the group consisting of iNOS, NO, PGE 2, TNF-α and IL-6. As described above, the composition can suppress oxidative stress and have an excellent anti-inflammatory effect. It can be used as a health functional food composition for preventing or improving inflammatory diseases.

본 발명에 따른 건강기능식품 조성물에 있어서, 상기 염증성 질환은 퇴행성 관절염(골관절염), 류마티스 관절염, 강직성 척추염, 패혈성 관절염 및 루푸스 관절염으로 이루어진 군에서 선택되는 관절염 질환일 수 있다.In the health functional food composition according to the present invention, the inflammatory disease may be an arthritis disease selected from the group consisting of degenerative arthritis (osteoarthritis), rheumatoid arthritis, ankylosing spondylitis, septic arthritis, and lupus arthritis.

본 발명에 따른 건강기능식품 조성물에 있어서, 상기 건강기능식품은 분말, 과립, 정제, 캡슐, 시럽 또는 음료 등으로 제조될 수 있고, 상기 건강기능식품이 취할 수 있는 형태에는 제한이 없으며, 통상적인 의미의 식품을 모두 포함할 수 있다. 예를 들어, 음료 및 각종 드링크, 과실 및 그의 가공식품(과일통조림, 잼 등), 어류, 육류 및 그 가공식품(햄, 베이컨 등), 빵류 및 면류, 쿠키 및 스낵류, 유제품(버터, 치즈 등) 등이 가능하며, 통상적인 의미에서의 기능성 식품을 모두 포함할 수 있다. 또한 동물을 위한 사료로 이용되는 식품도 포함할 수 있다.In the health functional food composition according to the present invention, the health functional food may be prepared as a powder, granule, tablet, capsule, syrup or beverage, and there is no limitation on the form that the health functional food can take. It can include all foods of meaning. For example, beverages and various drinks, fruits and processed foods thereof (canned fruit, jam, etc.), fish, meat and processed foods thereof (ham, bacon, etc.), bread and noodles, cookies and snacks, dairy products (butter, cheese, etc.) ) And the like, and may include all functional foods in the usual sense. It may also include food used as feed for animals.

본 발명에 따른 건강기능식품 조성물은 당업계에서 통상적으로 사용되는 식품학적으로 허용 가능한 식품 첨가제(식품 첨가물) 및 적절한 기타 보조 성분을 더 포함하여 제조될 수 있다. 식품 첨가물로서의 적합 여부는 다른 규정이 없는 한, 식품의약품안전청에 승인된 식품 첨가물 공전의 총칙 및 일반시험법 등에 따라 해당 품목에 관한 규격 및 기준에 의하여 판정할 수 있다. The health functional food composition according to the present invention may be prepared by further comprising a food pharmaceutically acceptable food additive (food additive) and other appropriate auxiliary ingredients commonly used in the art. Unless otherwise specified, the suitability as a food additive can be determined according to the standards and standards for the relevant item in accordance with the general rules and general test methods for food additives approved by the Food and Drug Administration.

상기 기타 보조 성분은 예를 들어, 향미제, 천연 탄수화물, 감미제, 비타민, 전해질, 착색제, 펙트산, 알긴산, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산화제 등을 추가로 함유할 수 있다. 특히, 상기 천연 탄수화물로는 포도당, 과당과 같은 모노사카라이드, 말토스, 수크로오스와 같은 디사카라이드, 및 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알콜을 사용할 수 있으며, 감미제로서는 타우마틴, 스테비아 추출물과 같은 천연 감미제나 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다.The other auxiliary ingredients are, for example, flavoring agents, natural carbohydrates, sweetening agents, vitamins, electrolytes, colorants, pectic acids, alginic acids, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents, etc. It may further contain. In particular, as the natural carbohydrates, monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, sugar alcohols such as xylitol, sorbitol, and erythritol may be used. , As the sweetener, natural sweeteners such as taumatin and stevia extract, or synthetic sweeteners such as saccharin and aspartame may be used.

본 발명에 따른 건강기능식품에 함유된 상기 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염의 유효 용량은 염증성 질환 예방 또는 개선 등 그 사용 목적에 따라 적절하게 조절될 수 있다. The effective dose of the compound, or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof contained in the health functional food according to the present invention may be appropriately adjusted according to the purpose of use, such as prevention or improvement of inflammatory diseases.

상기 조성물은 식품을 원료로 하여 일반 약품의 장기 복용 시 발생할 수 있는 부작용 등이 없는 장점이 있고, 휴대성이 뛰어나, 염증성 질환 예방 또는 개선을 위한 보조제로 섭취될 수 있다.The composition has the advantage of not having side effects that may occur when taking a general drug for a long time by using food as a raw material, has excellent portability, and can be taken as an adjuvant for preventing or improving inflammatory diseases.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.

<실시예 1> 천연 항염증성 화합물 및 임상적으로 사용되는 NSAIDs를 기반으로 한 COX 억제제의 설계.Example 1 Design of COX inhibitors based on natural anti-inflammatory compounds and clinically used NSAIDs.

도 1은 헤르드마닌의 부분 구조 및 종래의 NSAID를 결합한 본 발명에 따른 COX 억제제의 설계 과정을 개략적으로 나타낸 것이다.1 schematically shows the design process of a COX inhibitor according to the present invention combining a partial structure of Herdmanin and a conventional NSAID.

도 1을 참조하면, 헤르드마닌 C 및 D의 구조는 각각 구아니딜(guanidyl) 및 인돌(indole) 잔기(moiety)를 특징으로 한다. 인도메타신(indomethacin)은 인돌 유도체이고, 달부페론(darbufelone) 및 멜록시캄(meloxicam)은 구아니딜기와 화학적으로 유사한 부분 구조를 가진다. 따라서 표적 분자(target molecules)는 구아니딜 잔기의 등배전자체(isostere)로써 아실하이드라존(acylhydrazone) 잔기를 가지는 인돌 유도체로서 설계되었다. Referring to FIG. 1, the structures of Herdmanin C and D are characterized by guanidyl and indole moieties, respectively. Indomethacin is an indole derivative, and darbufelone and meloxicam have a partial structure chemically similar to the guanidyl group. Therefore, the target molecule was designed as an indole derivative having an acylhydrazone residue as an isostere of a guanidyl residue.

아실하이드라존 잔기는 오픈 체인(open chain) R1-acyl-NHN=CH-R2 기를 특징으로 하고, 이 수소결합 공여체 구조는 헤르드마닌 C의 구아니딜 잔기(HNC(NH2)2)와 유사하다. 인돌 및 이의 유도체는 항염증제를 포함한 약물 설계를 위한 주요 템플릿(template)으로 사용될 수 있고, 아실하이드라존 잔기는 다양한 신규 생리활성 화합물의 합성을 위한 약물분자구조 블록(pharmacophore block)으로 이용될 수 있으며, 하이드라존(hydrazone) 유도체는 COX 억제 활성을 포함하는 항염증 활성을 가질 수 있다.The acylhydrazone residue is characterized by an open chain R 1 -acyl-NHN=CH-R 2 group, and this hydrogen bond donor structure is the guanidyl residue of Herdmanin C (HNC(NH 2 ) 2 ) Is similar to Indole and its derivatives can be used as a major template for drug design including anti-inflammatory agents, and the acylhydrazone residue can be used as a drug molecular structure block (pharmacophore block) for the synthesis of various novel bioactive compounds. , Hydrazone derivatives may have anti-inflammatory activity including COX inhibitory activity.

할로벤질(halobenzyl) 또는 할로벤조일(halobenzoyl) 잔기 또한 인도메타신의 부분 구조를 모방하고, COX의 리간드 결합 도메인(ligand binding domain)에서 주요 아미노산 잔기(residues)와의 소수성(hydrophobic) 상호작용을 촉진하기 위해 표적 스케폴드(target scaffold)에 포함되었다. 할로벤질 또는 할로벤조일 잔기는 COX 활성 부위와의 결합 및 COX의 주요 아미노산과의 소수성 상호작용의 안정화를 위해 중요하므로, 합성 유도체는 도 1과 같이 인돌, 아실하이드라존 및 할로벤질/할로벤조일 잔기를 결합하여 설계되었다.Halobenzyl or halobenzoyl residues also mimic the partial structure of indomethacin and promote hydrophobic interactions with major amino acid residues in the ligand binding domain of COX. Included in the target scaffold. Since halobenzyl or halobenzoyl residues are important for binding to the COX active site and stabilizing hydrophobic interactions with major amino acids of COX, synthetic derivatives are indole, acylhydrazone, and halobenzyl/halobenzoyl residues as shown in FIG. It was designed by combining.

또한, 본 발명의 원천(original) 설계에 기초하여, 수소 결합 공여체 아실하이드라존 잔기를 인돌의 C-3 위치에 두고, 알킬 및 아릴기의 물리화학적 성질을 변화시켰으며(화합물 4a-4u), 화합물 5a-5u에서는 인돌의 N-1 위치에 클로로벤질(chlorobenzyl) 잔기를 도입하였고, 화합물 6a-6b에서는 할로벤조일 잔기를 도입하였다. In addition, based on the original design of the present invention, the hydrogen bond donor acylhydrazone residue was placed at the C-3 position of the indole, and the physicochemical properties of the alkyl and aryl groups were changed (compounds 4a-4u). , In compound 5a-5u, a chlorobenzyl residue was introduced at the N-1 position of indole, and a halobenzoyl residue was introduced in compound 6a-6b.

<합성예 1> COX 억제제인 표적 화합물의 합성<Synthesis Example 1> Synthesis of a target compound as a COX inhibitor

1. 합성 준비1. Preparation for synthesis

사용된 모든 시약은 구매가능하고, 일부 유기 용매는 필요한 경우 양압(positive pressure) 하에서 재증류되었다. 반응은 형광 지시약(GF254, Merck, Germany)을 이용하여 실리카 겔로 코팅된 유리판상의 박막 크로마토그래피(thin-layer chromatography; 이하, TLC)에 의해 관찰되었다. 1H 및 13C NMR 스펙트럼 데이터는 각각 Varian Unity 500 MHz 및 400 MHz NMR 분광기로 기록되었다. 고 해상 고속 원자 충격 질량 분석(high-resolution fast-atom bombardment mass spectrometry; 이하, HRFABMS) 데이터는 Agilent 1200 UHPLC accurate-mass Q-TOF MS 분광기를 사용하여 획득되었다. 모든 화학 시약은 Sigma-Aldrich 및 Alfa Aesar에서 구매되었다.All reagents used were commercially available, and some organic solvents were re-distilled under positive pressure if necessary. The reaction was observed by thin-layer chromatography (hereinafter, TLC) on a glass plate coated with silica gel using a fluorescent indicator (GF254, Merck, Germany). 1 H and 13 C NMR spectral data were recorded with Varian Unity 500 MHz and 400 MHz NMR spectroscopy respectively. High-resolution fast-atom bombardment mass spectrometry (HRFABMS) data were obtained using an Agilent 1200 UHPLC accurate-mass Q-TOF MS spectrometer. All chemical reagents were purchased from Sigma-Aldrich and Alfa Aesar.

2. 합성 방법2. Synthesis method

하기 반응식 1은 본 발명에 따른 표적 화합물(target compounds)을 합성하는 과정을 나타낸다.Scheme 1 below shows the process of synthesizing target compounds according to the present invention.

<반응식 1><Reaction Scheme 1>

Figure 112019078197118-pat00009
Figure 112019078197118-pat00009

* 시약 및 조건 : (i) 희석된 H2SO4, MeOH, 환류(reflux), 24 h; (ii) NH2-NH2.H2O, EtOH, 환류, 2 h; (iii) RCHO/EtOH, 프로피온산(propionic acid), 환류, 2.5 h; (iv) 4-Cl-PhCH2Cl, NaH, DMF, R.T., 24 h; (v) 4-Cl-PhCOCl/4-Br-PhCOCl, NaH, DMF, R.T., 24 h.* Reagents and conditions: (i) diluted H 2 SO 4 , MeOH, reflux, 24 h; (ii) NH 2 -NH 2 .H 2 O, EtOH, reflux, 2 h; (iii) RCHO/EtOH, propionic acid, reflux, 2.5 h; (iv) 4-Cl-PhCH 2 Cl, NaH, DMF, RT, 24 h; (v) 4-Cl-PhCOCl/4-Br-PhCOCl, NaH, DMF, RT, 24 h.

2-1. 화합물 2의 합성2-1. Synthesis of compound 2

인돌-3-카르복실산(indole-3-carboxylic acid, 1.0 mmol-equiv.) 용액과 적정량의 무수 메틸 알콜(anhydrous methyl alcohol, 25mL)을 황산(sulfuric acid, 97%) 몇 방울 존재 하에 24시간 동안 환류(reflux)시켰다. 반응의 진행 과정은 TLC(Silica gel 60F254, Merck, Germany)로 모니터하였다. 침전된 1H-인돌-3-카르복시레이트 메틸 에스터(1H-indole-3-carboxylate methyl ester)를 여과하고, 에탄올-물(3:2) 혼합물로부터 재결정화하여 화합물 2 (77%)를 수득하였다.Indole-3-carboxylic acid (1.0 mmol-equiv.) solution and an appropriate amount of anhydrous methyl alcohol (25 mL) in the presence of a few drops of sulfuric acid (97%) for 24 hours During reflux (reflux). The progress of the reaction was monitored by TLC (Silica gel 60F 254 , Merck, Germany). The precipitated 1H-indole-3-carboxylate methyl ester was filtered and recrystallized from an ethanol-water (3:2) mixture to give compound 2 (77%).

화합물 2 : 메틸 1H-인돌-3-카르복시레이트(Methyl 1H-indole-3-carboxylate), 흰색 분말, 77% 수율;Compound 2: Methyl 1H-indole-3-carboxylate , white powder, 77% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.94 (s, 1H), 8.09 (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.26-7.14 (m, 2H), 3.81 (s, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.8, 136.4, 132.4, 125.7, 122.4, 121.3, 120.4, 112.4, 106.3, 50.6. HRFABMS m/z 176.0673 [M+H]+ (calcd for C10H9NO2, 176.0706). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.94 (s, 1H), 8.09 (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.26-7.14 (m, 2H) ), 3.81 (s, 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.8, 136.4, 132.4, 125.7, 122.4, 121.3, 120.4, 112.4, 106.3, 50.6. HRFABMS m/z 176.0673 [M+H] + (calcd for C 10 H 9 NO 2 , 176.0706).

2-2. 인돌 N-아릴하이드라존 유도체(indole N-arylhydrazone derivatives) 4a-4u의 합성2-2. Synthesis of indole N-arylhydrazone derivatives 4a-4u

하이드라진 수화물(hydrazine hydrate, 12.5g, 0.25M)과 화합물 2 1H-인돌-3-카르복시레이트 메틸 에스터(1H-Indole-3-carboxylate methyl ester, 1.0mmol-equiv.)를 적정량의 에탄올(30mL)에서 2시간 동안 환류 시켰다. 반응의 진행 과정은 TLC로 모니터하였다. 반응 혼합물을 실온으로 냉각시킨 후, 혼합물은 정제 없이 여과하여 흰색 고체의 조생성물(crude products), 화합물 3(96%)을 수득하였다. Hydazine hydrate (12.5g, 0.25M) and Compound 2 1H-indole-3-carboxylate methyl ester (1H-Indole-3-carboxylate methyl ester, 1.0 mmol-equiv.) in an appropriate amount of ethanol (30 mL) It was refluxed for 2 hours. The progress of the reaction was monitored by TLC. After the reaction mixture was cooled to room temperature, the mixture was filtered without purification to obtain a white solid crude product, compound 3 (96%).

다음, 에탄올(30mL)에 용해된 화합물 3의 인돌-하이드라지드(indole-hydrazide, 1.0 mmol)는 다양하게 치환된 적정량의 알데하이드(aldehyde, 1.5 mmol-equiv.) 및 프로피온산(propionic acid) 몇 방울에 적가 하여 2.5시간 동안 교반하고 환류 시켰다. 냉각 후에, 침전물을 여과하고 메탄올로 여러번 세척하여 결정 물질 인돌 N-아릴하이드라존(indole N-arylhydrazone) 유도체 4a-4u를 수득하였다. 생성된 화합물 4a-4u는 인돌릴-N-치환 벤질/벤조일 유도체 합성을 위한 출발 화합물로 사용되었다.Next, indole-hydrazide (1.0 mmol) of Compound 3 dissolved in ethanol (30 mL) was variously substituted with appropriate amounts of aldehyde (1.5 mmol-equiv.) and a few drops of propionic acid. Was added dropwise, stirred for 2.5 hours, and refluxed. After cooling, the precipitate was filtered and washed several times with methanol to obtain a crystalline indole N-arylhydrazone derivative 4a-4u. The resulting compounds 4a-4u were used as starting compounds for the synthesis of indolyl-N-substituted benzyl/benzoyl derivatives.

2-3. 인돌릴-N-치환 벤질/벤조일 유도체(indolyl-N-substituted benzyl/benzoyl derivatives) 5a-5u/6a-6b의 합성2-3. Synthesis of indolyl-N-substituted benzyl/benzoyl derivatives 5a-5u/6a-6b

수소화나트륨(sodium hydride, NaH, 1.5 mmol)이 용해된 디메틸포름아미드(dimethylfomamide; 이하, DMF, 10mL) 용액에 화합물 4a-4u(1 mmol)이 용해된 DMF 용액을 첨가하고, 반응 혼합물을 실온에서 1시간 동안 교반시켰다. 벤질 클로라이드(benzyl chloride)/벤조일 클로라이드(benzoyl chloride)(1.5 mmol)를 첨가하고 반응 혼합물을 실온에서 24시간 교반시켰다. 반응 혼합물은 얼음물에 부어 여과하고 메탄올로 여러 번 세척하여 표적 화합물인, 인돌릴-N-치환 벤질/벤조일(indolyl-N-substituted benzyl/benzoyl) 유도체 5a-5u/6a-6b를 수득하였다. DMF solution in which compound 4a-4u (1 mmol) was dissolved was added to a solution of dimethylfomamide (hereinafter, DMF, 10 mL) in which sodium hydride (NaH, 1.5 mmol) was dissolved, and the reaction mixture was added at room temperature. Stir for 1 hour. Benzyl chloride/benzoyl chloride (1.5 mmol) was added, and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was poured into ice water, filtered, and washed several times with methanol to obtain a target compound, an indolyl-N-substituted benzyl/benzoyl derivative 5a-5u/6a-6b.

최종 생성물은 1H-NMR, 13C-NMR 및 질량 분석(mass spectrometric analysis)을 통해 특징지어졌다. 5a-5u/6a-6b에서 탄소-질소 이중 결합의 기하 구조(geometry)는 N-아릴하이드라존 유도체에 대해 보고된 1H-NMR 데이터의 비교를 통해 (E)로 결정되었다. 5a-5h (δH 7.49-7.55), 5i-5u 및 6a-6b (δH 8.22-8.37)의 H-C=N 수소의 화학적 이동은 (E) 기하 구조의 N-아릴하이드라존 유도체의 화학적 이동과 거의 동일하다. 입체적으로 안정한 E-이성질체는 입체 장애 Z-이성질체보다 우세하였다. The final product was characterized through 1 H-NMR, 13 C-NMR and mass spectrometric analysis. The geometry of the carbon-nitrogen double bond in 5a-5u/6a-6b was determined as (E) through comparison of the 1 H-NMR data reported for the N-arylhydrazone derivative. The chemical shift of HC=N hydrogen in 5a-5h (δ H 7.49-7.55), 5i-5u and 6a-6b (δ H 8.22-8.37) is (E) chemical shift of the N-arylhydrazone derivative of the geometry. Is almost the same as The sterically stable E-isomer predominated over the sterically hindered Z-isomer.

화합물 5a : (E)-1-(4-클로로벤질)-N'-(2-메틸프로필리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(2-methylpropylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 35% 수율; Compound 5a: (E)-1-(4-chlorobenzyl)-N'-(2-methylpropylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl)- N'-(2-methylpropylidene)-1H-indole-3-carbohydrazide ], white powder, 35% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.92 (s, 1H), 8.20 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.41 (m, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.18 (m, 2H), 7.17 (m, 2H), 5.49 (s, 2H), 2.53 (m, 1H), 1.06 (d, J = 6.5 Hz, 6H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.1, 155.2, 136.0, 132.3, 129.3, 128.7 (×6), 122.4, 121.0 (×2), 110.6 (×2), 48.7, 30.9, 19.7 (×2). HRFABMS m/z 354.1358 [M+H]+ (calcd for C20H20ClN3O, 354.1368). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.92 (s, 1H), 8.20 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.41 (m, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.18 (m, 2H), 7.17 (m, 2H), 5.49 (s, 2H), 2.53 (m, 1H), 1.06 (d, J = 6.5 Hz, 6H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.1, 155.2, 136.0, 132.3, 129.3, 128.7 (×6), 122.4, 121.0 (×2), 110.6 (×2), 48.7, 30.9, 19.7 (×2). HRFABMS m/z 354.1358 [M+H] + (calcd for C 20 H 20 ClN 3 O, 354.1368).

화합물 5b : (E)-1-(4-클로로벤질)-N'-(2,2-디메틸프로필리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(2,2-dimethylpropylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 55% 수율; Compound 5b : (E)-1-(4-chlorobenzyl)-N'-(2,2-dimethylpropylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl )-N'-(2,2-dimethylpropylidene)-1H-indole-3-carbohydrazide ], white powder, 55% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.87 (s, 1H), 8.22 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 7.7 Hz, 2H), 7.19 (m, 2H), 7.17 (m, 2H), 5.48 (s, 2H), 1.07 (s, 9H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 165.6, 156.1, 135.9, 132.3, 129.3, 128.7 (×6), 122.4, 121.0 (×2), 110.6 (×2), 48.7, 34.4, 19.7 (×3). HRFABMS m/z 368.1525 [M+H]+ (calcd for C21H22ClN3O, 368.1524). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.87 (s, 1H), 8.22 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 7.7 Hz, 2H), 7.19 (m, 2H), 7.17 (m, 2H), 5.48 (s, 2H), 1.07 (s, 9H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 165.6, 156.1, 135.9, 132.3, 129.3, 128.7 (×6), 122.4, 121.0 (×2), 110.6 (×2), 48.7, 34.4, 19.7 (×3). HRFABMS m/z 368.1525 [M+H] + (calcd for C 21 H 22 ClN 3 O, 368.1524).

화합물 5c : (E)-1-(4-클로로벤질)-N'-(2-메틸부틸리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(2-methylbutylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 42% 수율; Compound 5c: (E)-1-(4-chlorobenzyl)-N'-(2-methylbutylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl) -N'-(2-methylbutylidene)-1H-indole-3-carbohydrazide ], white powder, 42% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.95 (s, 1H), 8.20 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.42 (m, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.20 (m, 2H), 7.17 (m, 2H), 5.50 (s, 2H), 2.31 (m, 1H), 1.50 (m, 1H), 1.40 (m, 1H), 1.05 (d, J = 6.2 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ= ppm) δ 164.3, 153.9, 136.3, 132.3, 129.3, 128.7 (×6), 122.4, 121.1 (×2), 110.6 (×2), 48.7, 37.6, 27.0, 17.3, 11.4. HRFABMS m/z 368.1525 [M+H]+ (calcd for C21H22ClN3O, 368.1524). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.95 (s, 1H), 8.20 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.42 (m, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.20 (m, 2H), 7.17 (m, 2H), 5.50 (s, 2H), 2.31 (m, 1H), 1.50 (m, 1H), 1.40 (m, 1H), 1.05 (d, J = 6.2 Hz , 3H), 0.90 (t, J = 7.4 Hz, 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ=ppm) δ 164.3, 153.9, 136.3, 132.3, 129.3, 128.7 (×6), 122.4, 121.1 (×2), 110.6 (×2), 48.7, 37.6, 27.0, 17.3, 11.4. HRFABMS m/z 368.1525 [M+H] + (calcd for C 21 H 22 ClN 3 O, 368.1524).

화합물 5d : (E)-1-(4-클로로벤질)-N'-(사이클로프로필메틸렌)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(cyclopropylmethylene)-1H-indole-3-carbohydrazide ], 흰색 분말, 60% 수율; Compound 5d : (E)-1-(4-chlorobenzyl)-N'-(cyclopropylmethylene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl)-N' -(cyclopropylmethylene)-1H-indole-3-carbohydrazide ], white powder, 60% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.91 (s, 1H), 8.15 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.39 (m, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.16 (m, 2H), 7.14 (m, 2H), 5.48 (s, 2H), 1.66 (m, 1H), 0.86 (dd, J = 8.1, 2.2 Hz, 2H), 0.63 (dd, J = 6.6, 4.1 Hz, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 165.3, 154.1, 136.2, 132.2, 129.1 (×2), 128.6 (×4), 122.3, 121.5, 120.9 (×2), 110.5 (×2), 48.7, 13.4, 5.8 (×2). HRFABMS m/z 352.1205 [M+H]+ (calcd for C20H18ClN3O, 352.1211). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.91 (s, 1H), 8.15 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.39 (m, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.16 (m, 2H), 7.14 (m, 2H), 5.48 (s, 2H), 1.66 (m, 1H), 0.86 (dd, J = 8.1, 2.2 Hz, 2H), 0.63 (dd, J = 6.6, 4.1 Hz, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 165.3, 154.1, 136.2, 132.2, 129.1 (×2), 128.6 (×4), 122.3, 121.5, 120.9 (×2), 110.5 (×2), 48.7, 13.4, 5.8 (×2) . HRFABMS m/z 352.1205 [M+H] + (calcd for C 20 H 18 ClN 3 O, 352.1211).

화합물 5e : (E)-1-(4-클로로벤질)-N'-(사이클로헥실메틸렌)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(cyclohexylmethylene)-1H-indole-3-carbohydrazide ], 흰색 분말, 45% 수율; Compound 5e : (E)-1-(4-chlorobenzyl)-N'-(cyclohexylmethylene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl)-N' -(cyclohexylmethylene)-1H-indole-3-carbohydrazide ], white powder, 45% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.93 (s, 1H), 8.13 (s, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.18 (m, 2H), 7.16 (m, 2H), 5.49 (s, 2H), 2.23 (m, 1H), 1.73 (m, 4H), 164 (m, 1H), 1.29 (m, 1H), 1.24 (m, 4H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.1, 152.8, 136.2, 132.3, 129.2, 128.6 (×4), 122.3 (×2), 121.5, 121.0 (×2), 110.5 (×2), 48.7, 29.8 (×2), 25.6, 25.1 (×3). HRFABMS m/z 394.1668 [M+H]+ (calcd for C23H24ClN3O, 394.1681). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.93 (s, 1H), 8.13 (s, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.18 (m, 2H), 7.16 (m, 2H), 5.49 (s, 2H), 2.23 (m, 1H), 1.73 (m, 4H), 164 (m, 1H), 1.29 (m , 1H), 1.24 (m, 4H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.1, 152.8, 136.2, 132.3, 129.2, 128.6 (×4), 122.3 (×2), 121.5, 121.0 (×2), 110.5 (×2), 48.7, 29.8 (×2), 25.6 , 25.1 (×3). HRFABMS m/z 394.1668 [M+H] + (calcd for C 23 H 24 ClN 3 O, 394.1681).

화합물 5f : (E)-1-(4-클로로벤질)-N'-헥실리덴-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-hexylidene-1H-indole-3-carbohydrazide ], 흰색 분말, 50% 수율; Compound 5f: (E)-1-(4-chlorobenzyl )-N'-hexylidene-1H-indole-3-carbohydrazide[ (E)-1-(4-Chlorobenzyl)-N'-hexylidene -1H-indole-3-carbohydrazide ], white powder, 50% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.96 (s, 1H), 8.19 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.40 (m, 2H), 7.25 (m, 2H), 7.18 (m, 2H), 7.15 (m, 2H), 5.50 (s, 2H), 2.24 (m, 2H), 1.49 (m, 2H), 1.29 (m, 4H), 0.87 (t, J = 5.6 Hz, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 166.3, 153.8, 136.2 (×2), 132.2, 129.0 (×2), 128.6 (×2), 122.3 (×2), 121.5, 120.9 (×2), 110.5 (×2), 48.7, 31.7, 30.7, 25.7, 21.8, 13.7. HRFABMS m/z 382.1695 [M+H]+ (calcd for C22H24ClN3O, 382.1681). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.96 (s, 1H), 8.19 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.40 (m, 2H), 7.25 (m, 2H), 7.18 (m, 2H) ), 7.15 (m, 2H), 5.50 (s, 2H), 2.24 (m, 2H), 1.49 (m, 2H), 1.29 (m, 4H), 0.87 (t, J = 5.6 Hz, 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 166.3, 153.8, 136.2 (×2), 132.2, 129.0 (×2), 128.6 (×2), 122.3 (×2), 121.5, 120.9 (×2), 110.5 (×2), 48.7 , 31.7, 30.7, 25.7, 21.8, 13.7. HRFABMS m/z 382.1695 [M+H] + (calcd for C 22 H 24 ClN 3 O, 382.1681).

화합물 5g : (E)-1-(4-클로로벤질)-N'-노닐리덴-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-nonylidene-1H-indole-3-carbohydrazide ], 흰색 분말, 55% 수율; Compound 5g: (E)-1-(4-chlorobenzyl )-N'-nonylidene-1H-indole-3-carbohydrazide[ (E)-1-(4-Chlorobenzyl)-N'-nonylidene -1H-indole-3-carbohydrazide ], white powder, 55% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 10.95 (s, 1H), 8.17 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.16 (m, 2H), 7.15 (m, 2H), 5.48 (s, 2H), 2.23 (dd, J = 12.9, 7.3 Hz, 2H), 1.47 (m, 2H), 1.24 (m, 10H), 0.83 (t, J = 6.4 Hz, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 165.5, 154.5, 136.2 (×2), 132.2, 128.9 (×2), 128.5 (×2), 122.3×2, 121.5, 120.9×2, 110.5 (×2), 48.7, 31.7, 31.1, 28.7, 28.5, 26.0, 23.2, 21.9, 13.8. HRFABMS m/z 424.2143 [M+H]+ (calcd for C25H30ClN3O, 424.2150). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 10.95 (s, 1H), 8.17 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.16 (m, 2H), 7.15 (m, 2H), 5.48 (s, 2H), 2.23 (dd, J = 12.9, 7.3 Hz, 2H), 1.47 (m, 2H), 1.24 (m , 10H), 0.83 (t, J = 6.4 Hz, 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 165.5, 154.5, 136.2 (×2), 132.2, 128.9 (×2), 128.5 (×2), 122.3×2, 121.5, 120.9×2, 110.5 (×2), 48.7, 31.7, 31.1 , 28.7, 28.5, 26.0, 23.2, 21.9, 13.8. HRFABMS m/z 424.2143 [M+H] + (calcd for C 25 H 30 ClN 3 O, 424.2150).

화합물 5h : (E)-1-(4-클로로벤질)-N'-(3-페닐프로필리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(3-phenylpropylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 65% 수율; Compound 5h: (E)-1-(4-chlorobenzyl)-N'-(3-phenylpropylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl)- N'-(3-phenylpropylidene)-1H-indole-3-carbohydrazide ], white powder, 65% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.04 (s, 1H), 8.17 (s, 1H), 7.59 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.7 Hz, 2H), 7.26 (m, 6H), 7.17 (m, 2H), 7.14 (m, 2H), 5.47 (s, 2H), 2.82 (t, J = 7.7 Hz, 2H), 2.57 (dt, J = 12.7, 6.3 Hz, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ= ppm) δ 163.8, 153.3, 141.1, 136.2 (×2), 135.9, 132.3, 129.1, 128.7 (×2), 128.4 (×2), 128.3 (×2), 125.9, 122.4 (×2), 121.5, 121.1 (×2), 110.6 (×2), 48.8, 33.6, 32.2. HRFABMS m/z 416.1517 [M+H]+ (calcd for C25H22ClN3O, 416.1524). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.04 (s, 1H), 8.17 (s, 1H), 7.59 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.7 Hz, 2H), 7.26 (m, 6H), 7.17 (m, 2H), 7.14 (m, 2H), 5.47 (s, 2H), 2.82 (t, J = 7.7 Hz, 2H), 2.57 (dt, J = 12.7, 6.3 Hz , 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ=ppm) δ 163.8, 153.3, 141.1, 136.2 (×2), 135.9, 132.3, 129.1, 128.7 (×2), 128.4 (×2), 128.3 (×2), 125.9, 122.4 (×2), 121.5 , 121.1 (×2), 110.6 (×2), 48.8, 33.6, 32.2. HRFABMS m/z 416.1517 [M+H] + (calcd for C 25 H 22 ClN 3 O, 416.1524).

화합물 5i : (E)-N'-벤질리덴-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드[ (E)-N'-benzylidene-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide ], 흰색 분말, 45% 수율; Compound 5i : (E)-N'-benzylidene-1-(4-chlorobenzyl)-1H-indole-3 -carbohydrazide[ (E)-N'-benzylidene-1-(4-chlorobenzyl)- 1H-indole-3-carbohydrazide ], white powder, 45% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.48 (s, 1H), 8.36 (s, 1H), 8.25 (s, 1H), 7.68 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.44 (m, 5H), 7.34 (s, 2H), 7.22 (m, 2H), 7.21 (m, 2H), 5.56 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.4, 154.3, 136.2 (×2), 135.9, 134.6 (×2), 132.3, 129.5, 129.3, 128.8 (×2), 128.7 (×2), 126.7, 122.5 (×2), 121.5, 121.2 (×2), 110.6 (×2), 48.8. HRFABMS m/z 388.1198 [M+H]+ (calcd for C23H18ClN3O, 388.1211). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.48 (s, 1H), 8.36 (s, 1H), 8.25 (s, 1H), 7.68 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.44 (m, 5H) ), 7.34 (s, 2H), 7.22 (m, 2H), 7.21 (m, 2H), 5.56 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.4, 154.3, 136.2 (×2), 135.9, 134.6 (×2), 132.3, 129.5, 129.3, 128.8 (×2), 128.7 (×2), 126.7, 122.5 (×2), 121.5 , 121.2 (×2), 110.6 (×2), 48.8. HRFABMS m/z 388.1198 [M+H] + (calcd for C 23 H 18 ClN 3 O, 388.1211).

화합물 5j : (E)-1-(4-클로로벤질)-N'-(4-하이드록시벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(4-hydroxybenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 80% 수율; Compound 5j : (E)-1-(4-chlorobenzyl)-N'-(4-hydroxybenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl) -N'-(4-hydroxybenzylidene)-1H-indole-3-carbohydrazide ], white powder, 80% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.70 (s, 1H), 11.26 (s, 1H), 8.23 (s, 1H), 8.20 (s, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.50 (m, 5H), 7.18 (m, 2H), 7.16 (m, 2H), 7.10 (d, J = 8.7 Hz, 2H), 5.17 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 168.9, 159.2, 156.4, 135.8, 132.4, 129.4 (×3), 128.4 (×3), 128.2 (×2), 127.7, 122.1 (×2), 121.1, 120.6 (×2), 115.2 (×2), 111.8, 68.5. HRFABMS m/z 404.1165 [M+H]+ (calcd for C23H18ClN3O2, 404.1160). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.70 (s, 1H), 11.26 (s, 1H), 8.23 (s, 1H), 8.20 (s, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.50 (m, 5H) ), 7.18 (m, 2H), 7.16 (m, 2H), 7.10 (d, J = 8.7 Hz, 2H), 5.17 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 168.9, 159.2, 156.4, 135.8, 132.4, 129.4 (×3), 128.4 (×3), 128.2 (×2), 127.7, 122.1 (×2), 121.1, 120.6 (×2), 115.2 (×2), 111.8, 68.5. HRFABMS m/z 404.1165 [M+H] + (calcd for C 23 H 18 ClN 3 O 2 , 404.1160).

화합물 5k : (E)-1-(4-클로로벤질)-N'-(4-클로로벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(4-chlorobenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 85% 수율; Compound 5k: (E)-1-(4-chlorobenzyl)-N'-(4-chlorobenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl)- N'-(4-chlorobenzylidene)-1H-indole-3-carbohydrazide ], white powder, 85% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.46 (s, 1H), 8.30 (s, 1H), 8.22 (s, 1H), 7.67 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.3 Hz, 2H), 7.21 (m, 2H), 7.18 (m, 2H), 5.53 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 166.1, 154.3, 136.1, 135.8, 133.8, 133.5, 132.3, 129.2 (×2), 128.8 (×2), 128.6 (×2), 128.2 (×2), 122.5 (×2), 121.4, 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 422.0828 [M+H]+ (calcd for C23H17Cl2N3O, 422.0821). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.46 (s, 1H), 8.30 (s, 1H), 8.22 (s, 1H), 7.67 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.3 Hz, 2H), 7.21 (m, 2H), 7.18 (m, 2H), 5.53 (s, 2H) ). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 166.1, 154.3, 136.1, 135.8, 133.8, 133.5, 132.3, 129.2 (×2), 128.8 (×2), 128.6 (×2), 128.2 (×2), 122.5 (×2), 121.4 , 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 422.0828 [M+H] + (calcd for C 23 H 17 Cl 2 N 3 O, 422.0821).

화합물 5l : (E)-1-(4-클로로벤질)-N'-(4-메톡시벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(4-methoxybenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 85% 수율; Compound 5l : (E)-1-(4-chlorobenzyl)-N'-(4-methoxybenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl) -N'-(4-methoxybenzylidene)-1H-indole-3-carbohydrazide ], white powder, 85% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.31 (s, 1H), 8.24 (s, 2H), 7.60 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.45 (m, 2H), 7.33 (m, 2H), 7.22 (m, 2H), 7.20 (m, 2H), 7.01 (d, J = 8.3 Hz, 2H), 5.54 (s, 2H), 3.81 (s, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 163.9, 160.4, 154.3, 136.2 (×2), 135.2, 132.4, 129.3, 128.6 (×2), 128.2 (×2), 127.2, 122.4 (×2), 121.5, 121.1 (×2), 114.3 (×2), 110.5 (×2), 55.2, 48.7. HRFABMS m/z 418.1322 [M+H]+ (calcd for C24H20ClN3O2, 418.1317). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.31 (s, 1H), 8.24 (s, 2H), 7.60 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.45 (m, 2H), 7.33 (m, 2H) ), 7.22 (m, 2H), 7.20 (m, 2H), 7.01 (d, J = 8.3 Hz, 2H), 5.54 (s, 2H), 3.81 (s, 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 163.9, 160.4, 154.3, 136.2 (×2), 135.2, 132.4, 129.3, 128.6 (×2), 128.2 (×2), 127.2, 122.4 (×2), 121.5, 121.1 (×2) , 114.3 (×2), 110.5 (×2), 55.2, 48.7. HRFABMS m/z 418.1322 [M+H] + (calcd for C 24 H 20 ClN 3 O 2 , 418.1317).

화합물 5m : (E)-1-(4-클로로벤질)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 58% 수율; Compound 5m : (E)-1-(4-chlorobenzyl)-N'-(4-cyanobenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl) -N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide ], white powder, 58% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.49 (s, 1H), 8.32 (s, 1H), 8.23 (s, 1H), 7.64 (m, 3H), 7.57 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 7.2 Hz, 2H), 7.22 (m, 2H), 7.21 (m, 2H), 5.55 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 168.2, 157.4, 139.8, 136.8, 136.6, 133.3 (×2), 133.1, 130.0, 129.4 (×4), 129.2, 127.9 (×2), 123.3, 122.1, 122.0 (×2), 119.3, 111.9, 111.4, 49.4. HRFABMS m/z 413.1168 [M+H]+ (calcd for C24H17ClN4O, 413.1164). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.49 (s, 1H), 8.32 (s, 1H), 8.23 (s, 1H), 7.64 (m, 3H), 7.57 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 7.2 Hz, 2H), 7.22 (m, 2H), 7.21 (m, 2H), 5.55 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 168.2, 157.4, 139.8, 136.8, 136.6, 133.3 (×2), 133.1, 130.0, 129.4 (×4), 129.2, 127.9 (×2), 123.3, 122.1, 122.0 (×2), 119.3 , 111.9, 111.4, 49.4. HRFABMS m/z 413.1168 [M+H] + (calcd for C 24 H 17 ClN 4 O, 413.1164).

화합물 5n : (E)-N'-(4-브로모벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드[ (E)-N'-(4-bromobenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide ], 황색 분말, 65% 수율; Compound 5n : (E)-N'-(4-bromobenzylidene)-1-(4-chlorobenzyl)-1H-indole-3 -carbohydrazide[ (E)-N'-(4-bromobenzylidene )-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide ], yellow powder, 65% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.66 (s, 1H), 8.35 (s, 1H), 8.23 (s, 1H), 7.90 (m, 1H), 7.86 (s, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 7.2 Hz, 2H), 7.32 (J = 7.7 Hz, 2H), 7.23 (m, 2H), 7.21 (m, 2H), 5.56 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.8, 155.7, 136.1 (×2), 135.8, 133.9, 132.3 (×2), 131.7, 129.2 (×2), 128.6 (×2), 128.5 (×2), 122.5 (×2), 121.5, 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 466.0314 [M+H]+ (calcd for C23H17BrClN3O, 466.0316). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.66 (s, 1H), 8.35 (s, 1H), 8.23 (s, 1H), 7.90 (m, 1H), 7.86 (s, 2H), 7.58 (d, J = 8.2 Hz, 1H ), 7.45 (d, J = 7.2 Hz, 2H), 7.32 ( J = 7.7 Hz, 2H), 7.23 (m, 2H), 7.21 (m, 2H), 5.56 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.8, 155.7, 136.1 (×2), 135.8, 133.9, 132.3 (×2), 131.7, 129.2 (×2), 128.6 (×2), 128.5 (×2), 122.5 (×2) , 121.5, 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 466.0314 [M+H] + (calcd for C 23 H 17 BrClN 3 O, 466.0316).

화합물 5o : (E)-4-((2-(1-(4-클로로벤질)-1H-인돌-3-카보닐)하이드라조노)메틸)벤조산[ (E)-4-((2-(1-(4-Chlorobenzyl)-1H-indole-3-carbonyl)hydrazono)methyl)benzoic acid ], 흰색 분말, 78% 수율; Compound 5o : (E)-4-((2-(1-(4-chlorobenzyl)-1H-indole-3-carbonyl)hydrazono)methyl)benzoic acid [ (E)-4-((2- (1-(4-Chlorobenzyl)-1H-indole-3-carbonyl)hydrazono)methyl)benzoic acid ], white powder, 78% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.61 (s, 1H), 8.36 (s, 1H), 8.25 (s, 1H), 7.82 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.49 (m, 2H), 7.43 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.24 (m, 2H), 7.22 (m, 2H), 5.37 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 166.3, 165.1, 155.2, 139.2, 136.1, 135.0, 132.3, 129.8 (×2), 129.7 (×2), 129.2, 128.6 (×2), 128.4 (×2), 126.8, 122.5 (×2), 121.4, 121.2 (×2), 110.6, 48.7. HRFABMS m/z 432.0966 [M+H]+ (calcd for C24H18ClN3O3, 432.0964). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.61 (s, 1H), 8.36 (s, 1H), 8.25 (s, 1H), 7.82 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.49 (m, 2H), 7.43 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.24 (m, 2H), 7.22 (m, 2H) ), 5.37 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 166.3, 165.1, 155.2, 139.2, 136.1, 135.0, 132.3, 129.8 (×2), 129.7 (×2), 129.2, 128.6 (×2), 128.4 (×2), 126.8, 122.5 (× 2), 121.4, 121.2 (×2), 110.6, 48.7. HRFABMS m/z 432.0966 [M+H] + (calcd for C 24 H 18 ClN 3 O 3 , 432.0964).

화합물 5p : (E)-1-(4-클로로벤질)-N'-(4-플루오로벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(4-fluorobenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 85% 수율; Compound 5p : (E)-1-(4-chlorobenzyl)-N'-(4-fluorobenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl) -N'-(4-fluorobenzylidene)-1H-indole-3-carbohydrazide ], white powder, 85% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.43 (s, 1H), 8.31 (s, 1H), 8.23 (s, 1H), 7.72 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.30 (m, 2H), 7.27 (d, J = 8.7 Hz, 2H), 7.21 (m, 2H), 7.17 (m, 2H), 5.54 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ= ppm) δ 165.6, 161.5, 156.9, 136.1, 132.3, 131.2, 129.2 (×2), 128.8 (×2), 128.7 (×2), 128.6 (×2), 122.4, 121.4, 121.1 (×2), 115.8, 115.6, 110.6 (×2), 48.7. HRFABMS m/z 406.1112 [M+H]+ (calcd for C23H17ClFN3O3, 406.1117). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.43 (s, 1H), 8.31 (s, 1H), 8.23 (s, 1H), 7.72 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.30 (m, 2H), 7.27 (d, J = 8.7 Hz, 2H), 7.21 (m, 2H), 7.17 (m, 2H), 5.54 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ=ppm) δ 165.6, 161.5, 156.9, 136.1, 132.3, 131.2, 129.2 (×2), 128.8 (×2), 128.7 (×2), 128.6 (×2), 122.4, 121.4, 121.1 (×2) , 115.8, 115.6, 110.6 (×2), 48.7. HRFABMS m/z 406.1112 [M+H] + (calcd for C 23 H 17 ClFN 3 O 3 , 406.1117).

화합물 5q : (E)-1-(4-클로로벤질)-N'-(3,5-디클로로벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(3,5-dichlorobenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 86% 수율; Compound 5q : (E)-1-(4-chlorobenzyl)-N'-(3,5-dichlorobenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl )-N'-(3,5-dichlorobenzylidene)-1H-indole-3-carbohydrazide ], white powder, 86% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.71 (s, 1H), 8.37 (s, 1H), 8.21 (s, 1H), 7.74 (s, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.7 Hz, 2H), 7.22 (m, 2H), 7.20 (m, 2H), 5.55 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.5, 155.2, 136.2 (×2), 134.5 (×2), 129.0 (×2), 128.9 (×2), 128.6 (×2), 128.4, 124.9 (×2), 122.5 (×2), 121.8, 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 456.0426 [M+H]+ (calcd for C23H16Cl3N3O, 456.0286). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.71 (s, 1H), 8.37 (s, 1H), 8.21 (s, 1H), 7.74 (s, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.7 Hz, 2H), 7.22 (m, 2H), 7.20 (m, 2H), 5.55 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.5, 155.2, 136.2 (×2), 134.5 (×2), 129.0 (×2), 128.9 (×2), 128.6 (×2), 128.4, 124.9 (×2), 122.5 (× 2), 121.8, 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 456.0426 [M+H] + (calcd for C 23 H 16 Cl 3 N 3 O, 456.0286).

화합물 5r : (E)-1-(4-클로로벤질)-N'-(3,5-디브로모벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(3,5-dibromobenzylidene)-1H-indole-3-carbohydrazide ], 황색 분말, 75% 수율; Compound 5r : (E)-1-(4-chlorobenzyl)-N'-(3,5-dibromobenzylidene)-1H-indole-3-carbohydrazide[ (E)-1-(4 -Chlorobenzyl)-N'-(3,5-dibromobenzylidene)-1H-indole-3-carbohydrazide ], yellow powder, 75% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.71 (s, 1H), 8.36 (s, 1H), 8.21 (s, 1H), 7.88 (s, 2H), 7.57 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 7.22 (m, 2H), 7.20 (m, 2H), 5.54 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 162.8, 157.8, 140.8, 138.8, 136.2, 133.6, 132.3, 129.0 (×3), 128.6 (×3), 128.1 (×2), 122.8 (×2), 122.5, 121.2 (×2), 110.6 (×2), 48.7. HRFABMS m/z 543.9271 [M+H]+ (calcd for C23H16Br2ClN3O, 543.9276). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.71 (s, 1H), 8.36 (s, 1H), 8.21 (s, 1H), 7.88 (s, 2H), 7.57 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 7.22 (m, 2H), 7.20 (m, 2H), 5.54 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 162.8, 157.8, 140.8, 138.8, 136.2, 133.6, 132.3, 129.0 (×3), 128.6 (×3), 128.1 (×2), 122.8 (×2), 122.5, 121.2 (×2) , 110.6 (×2), 48.7. HRFABMS m/z 543.9271 [M+H] + (calcd for C 23 H 16 Br 2 ClN 3 O, 543.9276).

화합물 5s : (E)-N'-(3-클로로-5-메톡시벤질리덴)-1-(4-클로로벤질)-1H-인돌-3-카보하이드라지드[ (E)-N'-(3-chloro-5-methoxybenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-Carbohydrazide ], 흰색 분말, 75% 수율; Compound 5s : (E)-N'-(3-chloro-5-methoxybenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-carbohydrazide[ (E)-N'- (3-chloro-5-methoxybenzylidene)-1-(4-chlorobenzyl)-1H-indole-3-Carbohydrazide ], white powder, 75% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.45 (s, 1H), 8.30 (s, 1H), 8.23 (s, 1H), 7.94 (d, J = 10.2 Hz, 1H), 7.65 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.32 (s, 2H), 7.21 (m, 2H), 7.19 (m, 2H), 5.53 (s, 2H), 3.90 (s, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 166.0, 156.2, 136.2 (×2), 132.3, 130.6, 129.1 (×2), 128.7, 128.6 (×4), 127.6, 122.4 (×2), 121.4, 121.1 (×2), 112.7, 111.1, 110.6, 56.4, 48.7. HRFABMS m/z 496.0259 [M+H]+ (calcd for C24H19BrClN3O2, 496.0276). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.45 (s, 1H), 8.30 (s, 1H), 8.23 (s, 1H), 7.94 (d, J = 10.2 Hz, 1H), 7.65 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.32 (s, 2H), 7.21 (m, 2H), 7.19 (m, 2H), 5.53 (s, 2H), 3.90 (s , 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 166.0, 156.2, 136.2 (×2), 132.3, 130.6, 129.1 (×2), 128.7, 128.6 (×4), 127.6, 122.4 (×2), 121.4, 121.1 (×2), 112.7 , 111.1, 110.6, 56.4, 48.7. HRFABMS m/z 496.0259 [M+H] + (calcd for C 24 H 19 BrClN 3 O 2 , 496.0276).

화합물 5t : (E)-1-(4-클로로벤질)-N'-((4-메틸치아졸-5-일)메틸렌)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-((4-methylthiazol-5-yl)methylene)-1H-indole-3-carbohydrazide ], 황색 분말, 88% 수율; Compound 5t : (E)-1-(4-chlorobenzyl)-N'-((4-methylthiazol-5-yl)methylene)-1H-indole-3-carbohydrazide[ (E)-1 -(4-Chlorobenzyl)-N'-((4-methylthiazol-5-yl)methylene)-1H-indole-3-carbohydrazide ], yellow powder, 88% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.49 (s, 1H), 9.00 (s, 1H), 8.59 (s, 1H), 8.26 (s, 1H), 8.20 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.29 (s, 2H), 7.19 (m, 2H), 5.49 (s, 2H), 2.45 (s, 3H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 164.5, 154.1, 153.0, 136.2, 132.4, 129.3, 128.8 (×4), 128.1 (×2), 122.6 (×2), 121.4, 121.3 (×2), 110.7 (×2), 48.8, 15.3. HRFABMS m/z 409.0873 [M+H]+ (calcd for C21H17ClN4OS, 409.0884). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.49 (s, 1H), 9.00 (s, 1H), 8.59 (s, 1H), 8.26 (s, 1H), 8.20 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H ), 7.40 (d, J = 8.2 Hz, 2H), 7.29 (s, 2H), 7.19 (m, 2H), 5.49 (s, 2H), 2.45 (s, 3H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 164.5, 154.1, 153.0, 136.2, 132.4, 129.3, 128.8 (×4), 128.1 (×2), 122.6 (×2), 121.4, 121.3 (×2), 110.7 (×2), 48.8 , 15.3. HRFABMS m/z 409.0873 [M+H] + (calcd for C 21 H 17 ClN 4 OS, 409.0884).

화합물 5u : (E)-1-(4-클로로벤질)-N'-(퓨란-2-일메틸렌)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzyl)-N'-(furan-2-ylmethylene)-1H-indole-3-carbohydrazide ], 황색 분말, 67% 수율; Compound 5u : (E)-1-(4-chlorobenzyl)-N'-(furan-2-ylmethylene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzyl) -N'-(furan-2-ylmethylene)-1H-indole-3-carbohydrazide ], yellow powder, 67% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.50 (s, 1H), 8.36 (s, 1H), 8.25 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.1 Hz, 2H), 7.21 (m, 2H), 7.20 (m, 2H), 6.86 (d, J = 3.0 Hz, 1H), 6.63 (dd, J = 3.1, 1.6 Hz, 1H), 5.53 (s, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 166.8, 149.8, 144.5, 136.1 (×2), 135.8, 132.3, 129.2 (×2), 128.6 (×4), 122.5 (×2), 121.5, 121.2 (×2), 112.0, 110.6, 48.8. HRFABMS m/z 378.0840 [M+H]+ (calcd for C21H16ClN3O2, 378.0858). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.50 (s, 1H), 8.36 (s, 1H), 8.25 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.1 Hz, 2H), 7.21 (m, 2H), 7.20 (m, 2H), 6.86 (d, J = 3.0 Hz, 1H), 6.63 (dd, J = 3.1, 1.6 Hz, 1H ), 5.53 (s, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 166.8, 149.8, 144.5, 136.1 (×2), 135.8, 132.3, 129.2 (×2), 128.6 (×4), 122.5 (×2), 121.5, 121.2 (×2), 112.0, 110.6 , 48.8. HRFABMS m/z 378.0840 [M+H] + (calcd for C 21 H 16 ClN 3 O 2 , 378.0858).

화합물 6a : (E)-1-(4-클로로벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Chlorobenzoyl)-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 88% 수율; Compound 6a : (E)-1-(4-chlorobenzoyl)-N'-(4-cyanobenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Chlorobenzoyl) -N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide ], white powder, 88% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.84 (s, 1H), 8.32 (s, 1H), 8.26 (s, 1H), 7.89 (s, 1H), 7.87 (m, 2H), 7.85 (m, 2H), 7.70 (m, 2H), 7.66 (s, 1H), 7.41 (m, 2H), 7.39 (m, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ= ppm) δ 167.7, 163.5, 159.6, 132.5 (×3), 131.3, 128.9 (×6), 127.4, 125.4 (×2), 124.7 (×2), 122.0, 118.5, 115.6 (×2), 111.7 (×2). HRFABMS m/z 427.0961 [M+H]+ (calcd for C24H15ClN4O2, 427.0956). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.84 (s, 1H), 8.32 (s, 1H), 8.26 (s, 1H), 7.89 (s, 1H), 7.87 (m, 2H), 7.85 (m, 2H), 7.70 (m , 2H), 7.66 (s, 1H), 7.41 (m, 2H), 7.39 (m, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ=ppm) δ 167.7, 163.5, 159.6, 132.5 (×3), 131.3, 128.9 (×6), 127.4, 125.4 (×2), 124.7 (×2), 122.0, 118.5, 115.6 (×2), 111.7 (×2). HRFABMS m/z 427.0961 [M+H] + (calcd for C 24 H 15 ClN 4 O 2 , 427.0956).

화합물 6b : (E)-1-(4-브로모벤조일)-N'-(4-시아노벤질리덴)-1H-인돌-3-카보하이드라지드[ (E)-1-(4-Bromobenzoyl)-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide ], 흰색 분말, 85% 수율; Compound 6b: (E)-1-(4-bromobenzoyl)-N'-(4-cyanobenzylidene)-1H-indole-3 -carbohydrazide[ (E)-1-(4-Bromobenzoyl )-N'-(4-cyanobenzylidene)-1H-indole-3-carbohydrazide ], white powder, 85% yield;

1H-NMR (500 MHz, DMSO-d 6 , δ = ppm) δ 11.88 (s, 1H), 8.36 (s, 1H), 8.29 (s, 1H), 7.90 (s, 1H), 7.88 (m, 2H), 7.87 (m, 2H), 7.83 (m, 2H), 7.72 (s, 1H), 7.46 (m, 2H), 7.43 (m, 2H). 13C-NMR (125 MHz, DMSO-d 6 , δ = ppm) δ 168.4, 160.2, 157.4, 145.3, 142.9, 139.3, 133.3 (×2), 132.6 (×5), 132.1, 128.0, 126.1, 125.4 (×2), 122.4, 119.2, 116.3 (×2), 112.4 (×2). HRFABMS m/z 471.0441 [M+H]+ (calcd for C24H15BrN4O2, 471.0451). 1 H-NMR (500 MHz, DMSO- d 6 , δ = ppm) δ 11.88 (s, 1H), 8.36 (s, 1H), 8.29 (s, 1H), 7.90 (s, 1H), 7.88 (m, 2H), 7.87 (m, 2H), 7.83 (m , 2H), 7.72 (s, 1H), 7.46 (m, 2H), 7.43 (m, 2H). 13 C-NMR (125 MHz, DMSO- d 6 , δ = ppm) δ 168.4, 160.2, 157.4, 145.3, 142.9, 139.3, 133.3 (×2), 132.6 (×5), 132.1, 128.0, 126.1, 125.4 (×2), 122.4, 119.2, 116.3 (×2) , 112.4 (×2). HRFABMS m/z 471.0441 [M+H] + (calcd for C 24 H 15 BrN 4 O 2 , 471.0451).

<실험예 1> 표적 화합물의 생리 활성 평가<Experimental Example 1> Evaluation of the physiological activity of the target compound

1. 실험 방법1. Experimental method

1-1. 세포 배양1-1. Cell culture

RAW264.7 쥐(murine) 대식세포(macrophage)는 한국 세포주 은행(Korean Cell Line Bank, KCLB®, Seoul, Korea)으로부터 구매하였고, 레트(rat) 간 세포 Ac2F 및 마우스(mouse) 섬유아세포 L929는 ATCC(American Type Culture Collection, Rockville, MD, USA)로부터 획득하였다. 세포는 37℃, 5% CO2의 습식 배양기(humidified incubator)에서 배양되고, 100mg/mL 스트렙토마이신(streptomycin), 2.5 mg/L 암포테리신 B(amphotericin B), 및 10% 열-비활성화된 소태아혈청(fetal bovine serum, FBS)이 첨가된 고-글루코오스 둘베코 수정 이글 배지(Dulbecco’s Modified Eagle Medium, DMEM, Nissui, Tokyo, Japan)에서 유지되었다.RAW264.7 murine macrophages were purchased from Korean Cell Line Bank (KCLB®, Seoul, Korea), rat liver cells Ac2F and mouse fibroblasts L929 were ATCC (American Type Culture Collection, Rockville, MD, USA). Cells were cultured in a humidified incubator at 37° C., 5% CO 2 , and 100 mg/mL streptomycin, 2.5 mg/L amphotericin B, and 10% heat-inactivated cattle. It was maintained in high-glucose Dulbecco's Modified Eagle Medium (DMEM, Nissui, Tokyo, Japan) to which fetal bovine serum (FBS) was added.

1-2. 세포 독성 분석1-2. Cytotoxicity assay

시험된 세포 주(1.0×104 cells/well)의 현탁액을 96-웰 배양 플레이트에 접종(seed)하여 12시간 동안 배양한 후, 다양한 희석 농도의 화합물 5m을 24시간 동안 처리하였다. 대조군 세포(control cells)는 배양 배지로 단독 처리되었다. 시험 화합물은 3가지 희석액(10, 20 및 50μM)으로 평가하였고, 최고 농도는 50μM 였다. 각 웰(10 μL)에 수용성 테트라졸리움(water soluble tetrazolium, WST) 시약(EZ-CyTox, Daeil Lab Service Co., Ltd., Seoul, Korea)을 첨가하고 37℃에서 1시간 동안 배양하여 세포 생존력(Cell viability)을 평가하였다. 450nm의 흡광도는 마이크로플레이트 흡광도 리더기(iMark Microplate Absorbance Reader, Bio-Rad Laboratories, Hercules, CA, USA)를 사용하여 측정하였다. 모든 실험에서 지수기(exponential phase)의 세포가 사용되었다. A suspension of the tested cell line (1.0×10 4 cells/well) was seeded into a 96-well culture plate and incubated for 12 hours, followed by treatment with 5m of a compound of various dilution concentrations for 24 hours. Control cells were treated with culture medium alone. The test compound was evaluated in three dilutions (10, 20 and 50 μM), and the highest concentration was 50 μM. A water soluble tetrazolium (WST) reagent (EZ-CyTox, Daeil Lab Service Co., Ltd., Seoul, Korea) was added to each well (10 μL) and cultured at 37°C for 1 hour to ensure cell viability ( Cell viability) was evaluated. The absorbance at 450 nm was measured using a microplate absorbance reader (iMark Microplate Absorbance Reader, Bio-Rad Laboratories, Hercules, CA, USA). Cells in the exponential phase were used in all experiments.

1-3. 사이클로옥시게나제(Cyclooxygenase, COX) 저해능 분석1-3. Cyclooxygenase (COX) inhibitory ability analysis

COX 형광 억제제 스크리닝 분석 키트(Cayman Chemical, MI, USA)를 이용하여 제조자의 프로토콜에 따라 분석을 수행하였다. COX-1(양) 및 COX-2(인간 재조합)는 아라키돈산을 PGG2로 촉매하는데 사용되었고, 이는 10-아세틸-3,7-디하이드록시페녹사진(10-acetyl-3,7-dihydroxyphenoxazine, ADHP)과 반응하여 고형광 화합물 레조루핀(resorufin)을 생산한다. 레조루핀 형광은 510nm의 여기 파장(excitation wavelength) 및 580nm의 방출 파장을 이용하여 분석될 수 있다. 간략하게, 150μL 분석 버퍼(assay buffer), 10μL 헴(heme), 10μL 효소(COX-1 또는 COX-2), 및 10μL 비히클(vehicle)이 100% 초기 활성 웰로 작용하도록 한 웰에서 혼합되었다; 160μL 분석 버퍼, 10μL 헴 및 10μL 비히클이 한 웰에서 혼합되었고 백그라운드 웰(background wells)로 작용하였다; 150μL 분석 버퍼, 10μL 헴, 및 10μL 효소(COX-1 또는 COX-2) 및 10μL 화합물이 한 웰에서 혼합되었고, 억제제 웰(inhibitor well)로 작용하였다. Analysis was performed according to the manufacturer's protocol using a COX fluorescence inhibitor screening assay kit (Cayman Chemical, MI, USA). COX-1 (sheep) and COX-2 (human recombination) were used to catalyze arachidonic acid to PGG 2 , which is 10-acetyl-3,7-dihydroxyphenoxazine (10-acetyl-3,7-dihydroxyphenoxazine). , ADHP) to produce a solid fluorescent compound resorufin. Resorupine fluorescence can be analyzed using an excitation wavelength of 510 nm and an emission wavelength of 580 nm. Briefly, 150 μL assay buffer, 10 μL heme, 10 μL enzyme (COX-1 or COX-2), and 10 μL vehicle were mixed in one well to serve as 100% initial active wells; 160 μL assay buffer, 10 μL heme and 10 μL vehicle were mixed in one well and served as background wells; 150 μL assay buffer, 10 μL heme, and 10 μL enzyme (COX-1 or COX-2) and 10 μL compound were mixed in one well and served as inhibitor wells.

플레이트를 실온에서 5분 동안 배양한 후, 각 웰에 10μL ADHP를 첨가하였다. 반응을 시작하기 위해, 아라키돈산 용액 10μL를 각 웰에 신속히 첨가하고, 실온에서 2분 동안 배양시킨 후, 멀티모드 마이크로플레이트 리더(TriStar LB 941 Multimode Microplate Reader, Bad Wildbad, Germany)로 510nm의 여기 파장 및 580nm의 방출 파장을 이용하여 형광 스펙트럼을 측정하였다.After incubating the plate for 5 minutes at room temperature, 10 μL ADHP was added to each well. To start the reaction, 10 μL of arachidonic acid solution was quickly added to each well, incubated for 2 minutes at room temperature, and then excitation wavelength of 510 nm with a multimode microplate reader (TriStar LB 941 Multimode Microplate Reader, Bad Wildbad, Germany). And an emission wavelength of 580 nm was used to measure the fluorescence spectrum.

1-4. 전염증성 인자 활성 분석1-4. Proinflammatory factor activity assay

RAW264.7 대식세포(cal. 1×104 cells/well)를 96-웰 배양 플레이트에 접종하고 12시간 동안 배양하였다. 세포를 1시간 동안 다양한 농도(2.5, 5, 10μM)의 약물로 전처리한 후, 25ng/mL LPS(Lipopolysaccharide)와 함께 24시간 동안 공동배양하였다. RAW264.7 macrophages (cal. 1×10 4 cells/well) were inoculated into a 96-well culture plate and cultured for 12 hours. Cells were pretreated with drugs of various concentrations (2.5, 5, 10 μM) for 1 hour, and then co-cultured with 25 ng/mL LPS (Lipopolysaccharide) for 24 hours.

배지의 NO 농도는 그리스 분석(Griess assay)을 이용하여 결정하였다. 그리스 시약(Griess reagent, 80 μL)을 배지 상등액에 첨가한 후, 37℃에서 15분간 암실에서 배양하였다. iMark Microplate Absorbance Reader(Bio-Rad Laboratories, Hercules, CA, USA)를 이용하여 520nm에서의 흡광도를 측정하였다. 0 내지 100μM 아질산염 나트륨 표준(sodium nitrite standards)을 이용하여 NO 농도를 계산하였다. The NO concentration in the medium was determined using a Grease assay. Grease reagent (80 μL) was added to the supernatant of the medium, followed by incubation at 37°C for 15 minutes in the dark. Absorbance at 520 nm was measured using an iMark Microplate Absorbance Reader (Bio-Rad Laboratories, Hercules, CA, USA). NO concentration was calculated using 0-100 μM sodium nitrite standards.

샌드위치-타입(sandwich-type) ELISA kit(Biolegend, San Diego, CA, USA)를 이용하여 배양 배지에서의 TNF-α 및 IL-6 발현을 정량화하고, 450nm에서의 흡광도를 측정하였다. PGE2 발현 ELISA kit (Cayman Chemical, MI, USA)의 프로토콜에 따라 이를 이용하여 배지의 프로스타글란딘 E2(PGE2)의 생산을 결정하였고, 415nm에서 흡광도를 측정하였다. TNF-α and IL-6 expression in the culture medium was quantified using a sandwich-type ELISA kit (Biolegend, San Diego, CA, USA), and absorbance at 450 nm was measured. According to the protocol of the PGE 2 expression ELISA kit (Cayman Chemical, MI, USA) , the production of prostaglandin E 2 (PGE 2 ) in the medium was determined using this, and absorbance was measured at 415 nm.

1-5. 활성산소종(Reactive oxygen species; 이하, ROS) 분석1-5. Reactive oxygen species (hereinafter, ROS) analysis

RAW264.7 대식세포를 공초점 접시(confocal dish)에서 배양시키고 시험 화합물을 1시간 동안 처리하였다. LPS 용액을 1μg/mL의 최종 농도로 상기 접시에 첨가하고 24시간 동안 계속 배양시켰다. 배지를 제거하고 PBS로 세척하였다; FBS 무 첨가 배지에 희석된 DCFH-DA를 첨가하여 최종 농도가 100μM로 되도록 37℃에서 30분간 배양하였다. 배지를 제거하고 세포를 PBS에 한번 세척하였다. 485 nm의 여기 파장 및 520 nm의 방출 파장의 공초점 현미경(confocal microscope, FluoView FV10i; Olympus, Australia)을 이용하여 형광을 확인하였다.RAW264.7 macrophages were cultured in a confocal dish and the test compound was treated for 1 hour. The LPS solution was added to the dish at a final concentration of 1 μg/mL, and incubation was continued for 24 hours. The medium was removed and washed with PBS; The diluted DCFH-DA was added to the FBS-free medium and incubated at 37° C. for 30 minutes so that the final concentration became 100 μM. The medium was removed and the cells were washed once in PBS. Fluorescence was confirmed using a confocal microscope (FluoView FV10i; Olympus, Australia) having an excitation wavelength of 485 nm and an emission wavelength of 520 nm.

세포 산화 스트레스의 정량화는 이전에 보고된 방법을 약간 수정하여 수행하였다. RAW264.7 대식세포(cal. 1×104 cells/well)를 블랙 96-웰 세포 배양 플레이트에 접종하고 12시간 배양하였다. 세포를 시험 화합물로 1시간 동안 전처리한 후, 1μg/mL LPS로 24시간 동안 공배양하였다. 배지를 제거하고 PBS로 세척하였다; FBS 무 첨가 배지에 100μL의 희석된 DCFH-DA를 최종 농도가 100μM로 되도록 첨가하고 37℃에서 30분간 배양하였다. 배지를 제거하고, 100μL PBS를 각 웰에 첨가하였으며, 형광은 TriStar LB 941 Multimode Microplate Reader(Bad Wildbad, Germany)로 485nm 여기 파장 및 520nm 방출 파장에서 검출하였다, Quantification of cellular oxidative stress was performed with a slight modification of the previously reported method. RAW264.7 macrophages (cal. 1×10 4 cells/well) were inoculated into a black 96-well cell culture plate and cultured for 12 hours. The cells were pretreated with the test compound for 1 hour and then co-cultured with 1 μg/mL LPS for 24 hours. The medium was removed and washed with PBS; 100 μL of diluted DCFH-DA was added to the FBS-free medium to a final concentration of 100 μM, followed by incubation at 37°C for 30 minutes. The medium was removed, and 100 μL PBS was added to each well, and fluorescence was detected at 485 nm excitation wavelength and 520 nm emission wavelength with TriStar LB 941 Multimode Microplate Reader (Bad Wildbad, Germany).

1-6. NF-κB p65의 면역형광염색 분석1-6. Immunofluorescence staining analysis of NF-κB p65

RAW264.7 세포를 공초점 접시에 배양하여 24시간 동안 시험 화합물을 처리하였다. 이어서 세포를 10% 포르말린(formalin) 용액에 15분간 고정시키고 PBS로 3차례 세척한 뒤, 0.5%(v/v) Triton X-100/PBS를 15분 동안 처리하고 다시 PBS로 3차례 세척 후 실온에서 30분 동안 10% FBS/PBS로 블로킹시켰다. RAW264.7 cells were cultured in a confocal dish to treat the test compound for 24 hours. Then, the cells were fixed in 10% formalin solution for 15 minutes, washed 3 times with PBS, treated with 0.5% (v/v) Triton X-100/PBS for 15 minutes, washed 3 times with PBS, and then washed 3 times with PBS at room temperature. Blocked with 10% FBS/PBS for 30 minutes at.

세포를 토끼(rabbit) anti-NFκB-p65 안티바디(Cell Signaling Technology, USA)로 처리하여 4℃에서 밤새 배양하고, PBS로 3차례 세척한 다음, 실온에서 30분 동안 분자 프로브로서 2차 안티바디(anti-rabbit Alexa 488 ,Cell Signaling Technology, USA) 처리하여 배양한 뒤, 다시 3차례 PBS로 세척한 뒤, 실온에서 20분 동안 DAPI(5μg/mL)로 배양하였다. Cells were treated with rabbit anti-NFκB-p65 antibody (Cell Signaling Technology, USA) and incubated overnight at 4°C, washed three times with PBS, and then a second antibody as a molecular probe at room temperature for 30 minutes. (anti-rabbit Alexa 488, Cell Signaling Technology, USA) was treated and cultured, washed again with PBS three times, and incubated with DAPI (5 μg/mL) for 20 minutes at room temperature.

NFκB-p65의 위치는 499nm의 여기 파장 및 520nm의 방출 파장을 갖는 공초점 현미경(FluoView FV10i, Olympus, Australia)을 사용하여 관찰되었다.The location of NFκB-p65 was observed using a confocal microscope (FluoView FV10i, Olympus, Australia) with an excitation wavelength of 499 nm and an emission wavelength of 520 nm.

1-7. 웨스턴 블로팅(Western blotting)1-7. Western blotting

RAW264.7 세포를 수확하여 프로테아제(protease) 및 포스파타아제(phosphatase) 억제제 칵테일을 포함한 라이시스 버퍼(lysis buffer)에 현탁시켰다. BCA 단백질 분석(Thermo Scientific, Rockford, IL, USA)을 이용하여 단백질 농도를 결정하였다. 동량의 단백질을 10% SDS-폴리아크릴아미드 겔 전기영동으로 분석하고 전기영동으로 폴리비닐리덴 디플루오라이드(polyvinylidene difluoride, PVDF) 막(membrane)으로 이동시켰다. 0.1% 트윈 20(Tween 20, TBS-T) 및 5% 스킴 밀크를 포함하는 트리스-완충 식염수(Tris-buffered saline, TBS)에서 막을 실온에서 1시간 동안 배양하여 막으로의 비-특이적 결합을 차단한 후, 특이적 1차 안티바디(Cell Signaling Technology, Danvers, MA, USA)로 4℃에서 밤새 배양시켰다. 2차 안티바디로 Anti-rabbit IgG-HRP를 사용하였다. 시그널(signal)은 ChemiDoc™ Touch Imaging System(Bio-Rad Laboratories, Hercules, CA, USA)을 이용하여 현상하였다.RAW264.7 cells were harvested and suspended in a lysis buffer containing a cocktail of protease and phosphatase inhibitors. Protein concentration was determined using BCA protein analysis (Thermo Scientific, Rockford, IL, USA). The same amount of protein was analyzed by 10% SDS-polyacrylamide gel electrophoresis and transferred to a polyvinylidene difluoride (PVDF) membrane by electrophoresis. Non-specific binding to the membrane was obtained by incubating the membrane in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBS-T) and 5% skim milk for 1 hour at room temperature. After blocking, a specific primary antibody (Cell Signaling Technology, Danvers, MA, USA) was incubated overnight at 4°C. Anti-rabbit IgG-HRP was used as a secondary antibody. The signal was developed using the ChemiDoc™ Touch Imaging System (Bio-Rad Laboratories, Hercules, CA, USA).

1-8. 분자 모델링(Molecular modeling)1-8. Molecular modeling

도킹(Docking) 계산은 AutoDock Vina 1.1.2 소프트웨어를 사용하여 수행하였다. Vina의 기본 설정과 스코어링 함수(scoring function)가 적용되었다. 리간드를 제조하기 위해, Chem3D Ultra 8.0 소프트웨어를 이용하여 후보자의 2D 구조를 최소화된 에너지의 3D 구조 데이터로 변환시켰다. 단백질 좌표는 단백질 데이터 은행(Protein Data Bank, accession code 1EQH/4COX)에서 다운로드하였다. 사슬 A는 단백질의 양성자화 상태의 계산뿐만 아니라 추가적인 사슬과 모든 리간드 및 물 분자의 제거에 의해 분자 모델링 소프트웨어 패키지, Chimera 1.5.3 내에서 도킹을 위해 준비되었다. 극성 수소의 추가 및 그리드 박스 파라미터의 설정은 MGLTools 1.5.4를 사용하여 수행되었고, exhaustiveness parameter는 8로 설정되었다. PyMol v1.5는 도킹 포즈(poses)의 리간드-단백질 상호작용의 분석 및 시각적 조사에 사용되었다.Docking calculations were performed using AutoDock Vina 1.1.2 software. Vina's default settings and scoring function were applied. To prepare the ligand, the 2D structure of the candidate was converted into 3D structure data with minimal energy using Chem3D Ultra 8.0 software. Protein coordinates were downloaded from Protein Data Bank (accession code 1EQH/4COX). Chain A was prepared for docking within the molecular modeling software package, Chimera 1.5.3, by calculation of the protonation state of the protein as well as the removal of additional chains and all ligands and water molecules. The addition of polar hydrogen and the setting of the grid box parameters were performed using MGLTools 1.5.4, and the exhaustiveness parameter was set to 8. PyMol v1.5 was used for the analysis and visual investigation of ligand-protein interactions in docking poses.

2. 실험 결과2. Experiment result

2-1. 합성 화합물의 COX-1 및 COX-2 억제 활성 확인2-1. Confirmation of COX-1 and COX-2 inhibitory activity of synthetic compounds

효소 면역 분석법(enzyme immunoassay, EIA)을 이용하여 상기 합성예에 따라 합성된 화합물(5a-5u 및 6a-6b)의 COX-1 및 COX-2 저해능을 시험하였다.The COX-1 and COX-2 inhibitory ability of the compounds (5a-5u and 6a-6b) synthesized according to the above Synthesis Example was tested using an enzyme immunoassay (EIA).

도 2는 본 발명의 일 실험예에 따른 화합물 5a-5u 및 6a-6b의 생체외 COX-1 및 COX-2 효소 억제 활성 분석 결과를 나타낸 그래프이다. SC-560은 COX-1 선택적 억제제이고, DUP-697 및 셀레콕시브(celecoxib, Cel.)는 COX-2 선택적 억제제이며, Con은 대조군(DMSO)이다. 결과는 3번의 독립적 실험의 평균±SD (n=3) 값으로 나타낸다. (대조군과 비교하여, * p < 0.05, ** p < 0.01, * **p < 0.001)Figure 2 is a graph showing the results of in vitro COX-1 and COX-2 enzyme inhibitory activity analysis of compounds 5a-5u and 6a-6b according to an experimental example of the present invention. SC-560 is a COX-1 selective inhibitor, DUP-697 and celecoxib (Cel.) are COX-2 selective inhibitors, and Con is a control (DMSO). Results are expressed as mean±SD (n=3) values of 3 independent experiments. (Compared to the control group, * p <0.05, ** p <0.01, * **p <0.001)

도 2를 참조하면, 화합물 5m은 COX-1 및 COX-2 두 가지 모두에서 높은 억제 효과를 나타내었고, 이에 따라 화합물 5m을 중심으로 여러가지 활성 평가를 진행하였다.Referring to FIG. 2, compound 5m exhibited high inhibitory effects in both COX-1 and COX-2, and accordingly, various activity evaluations were conducted around compound 5m.

표 1은 화합물 5m 및 표준 시약에 대한 생체 외 COX-1 및 COX-2 억제(IC50, μM) 및 선택도 지수(selectivity index)를 나타낸다. 결과값은 COX 형광 억제제 스크리닝 분석 키트(Cayman Chemical, MI, USA)를 이용하여 획득된 세 번의 값의 평균이다. COX-2 선택도 지수는 COX-1 IC50/COX-2 IC50의 값으로, SC-560은 COX-1 선택적 억제제로, 셀레콕시브 및 DUP-697은 COX-2 선택적 억제제로 사용되었다.Table 1 shows the in vitro COX-1 and COX-2 inhibition (IC 50 , μM) and selectivity index for compound 5m and standard reagents. Results are the average of three values obtained using the COX Fluorescence Inhibitor Screening Assay Kit (Cayman Chemical, MI, USA). The COX-2 selectivity index was used as the value of COX-1 IC 50 /COX-2 IC 50 , SC-560 was used as a COX-1 selective inhibitor, and celecoxib and DUP-697 were used as COX-2 selective inhibitors.

화합물compound COX-1COX-1 COX-2COX-2 COX-2-선택도COX-2-selectivity 5m5m 39.2039.20 7.597.59 5.165.16 SC-560SC-560 0.010.01 >3.30>3.30 <0.003<0.003 이부프로펜(ibuprofen)Ibuprofen 4.124.12 8.918.91 0.460.46 아스피린(aspirin)Aspirin 6.126.12 12.3612.36 0.490.49 메살라진(mesalazine)Mesalazine 7.737.73 7.537.53 1.021.02 디클로페낙(diclofenac)Diclofenac 18.7918.79 1.241.24 15.1815.18 셀레콕시브(celecoxib)Celecoxib >100.00>100.00 1.311.31 >76.39>76.39 Dup-697Dup-697 >3.00>3.00 0.020.02 >139.53>139.53

표 1을 참조하면, 시험된 화합물 중 5m은 각각 39.20 및 7.59μM의 IC50 값으로 상당한 COX-1 및 COX-2 억제 활성을 보여주었다. 5m의 COX-1 억제 활성은 시험된 NSAIDs 보다 활성이 덜한 것으로 나타났으나, COX-2 억제 활성의 경우, 5m은 유의한 효능을 보였으며, 시험된 NSAIDs의 값과 유사한 것으로 나타났다.Referring to Table 1, 5m of the tested compounds showed significant COX-1 and COX-2 inhibitory activity with IC 50 values of 39.20 and 7.59 μM, respectively. The COX-1 inhibitory activity of 5m was found to be less active than the tested NSAIDs, but for the COX-2 inhibitory activity, 5m showed significant efficacy and was found to be similar to the value of the tested NSAIDs.

5m의 COX 억제 효능 및 COX-2 선택도 지수(IC50 (COX-1)/IC50 (COX-2))는 COX-1 선택적(SC-560), COX-2 선택적(celecoxib 및 Dup-697), 및 상업적 약물과 비교되었다. 5m의 COX-2 선택도는 이부프로펜, 아스피린 및 메살라진보다 높았으나, 셀레콕시브 및 Dup-697보다는 많이 낮은 것으로 나타났다. 5m의 COX-2 선택도는 디클로페낙과 유사한 것으로 나타났다. 특히, 디클로페낙은 염증성 질병에 대해 널리 사용되나, 임상 시험(clinical trials) 및 역학적(epidemiological) 연구에서 약간의 GI 부작용들과 관련되어 왔다. 게다가, 디클로페낙은 셀레콕시브와 같은 COX-2 선택적 억제제의 특징인 심혈관 부작용이 없다. 이러한 결과는 5m의 균형 잡힌 COX-2 선택도가 위장 및 심혈관 부작용이 감소된 NSAIDs의 개발에 유리할 수 있음을 제시한다. 이후, 5m의 생체 외 항염증 활성은 RAW264.7 쥐 대식세포를 이용하여 세포 레벨에서 평가되었다.The COX inhibitory efficacy of 5 m and the COX-2 selectivity index (IC 50 (COX-1)/IC 50 (COX-2)) are COX-1 selective (SC-560), COX-2 selective (celecoxib and Dup-697). ), and commercial drugs. COX-2 selectivity of 5 m was higher than that of ibuprofen, aspirin and mesalazine, but was found to be much lower than that of celecoxib and Dup-697. The 5 m COX-2 selectivity was found to be similar to diclofenac. In particular, diclofenac is widely used for inflammatory diseases, but has been associated with some GI side effects in clinical trials and epidemiological studies. In addition, diclofenac does not have the cardiovascular side effects characteristic of COX-2 selective inhibitors such as celecoxib. These results suggest that a balanced COX-2 selectivity of 5 m may be beneficial for the development of NSAIDs with reduced gastrointestinal and cardiovascular side effects. Thereafter, the 5m in vitro anti-inflammatory activity was evaluated at the cell level using RAW264.7 murine macrophages.

2-2. 화합물 5m의 생체 외(in vitro) 세포 독성 확인2-2. In vitro cytotoxicity confirmation of compound 5m

세포 기반의 항염 분석에 앞서, 항염 분석을 위한 화합물 5m의 적절한 농도를 결정하기 위해 쥐 대식세포(RAW264.7), 레트 간 세포(Ac2F) 및 마우스 섬유아세포(L929)에서 세포 독성을 평가하였다.Prior to the cell-based anti-inflammatory assay, cytotoxicity was evaluated in murine macrophages (RAW264.7), rat liver cells (Ac2F) and mouse fibroblasts (L929) to determine the appropriate concentration of compound 5m for the anti-inflammatory assay.

도 3은 본 발명의 일 실험예에 따른 화합물 5m의 세포 독성 결과를 나타낸 그래프이다. 3 is a graph showing the cytotoxicity results of compound 5m according to an experimental example of the present invention.

도 3을 참조하면, 5m은 24시간 동안 최대 50μΜ 농도에서 상기 모든 세포주에 대해 독성을 거의 나타내지 않았다. 그러므로, 쥐 대식세포(RAW264.7)에 20μΜ 이하의 농도에서 5m을 처리하여 항염 분석을 진행하였다.Referring to Figure 3, 5m showed little toxicity to all of the cell lines at a concentration of up to 50 μM for 24 hours. Therefore, anti-inflammatory analysis was performed by treating rat macrophages (RAW264.7) with 5 m at a concentration of 20 μM or less.

2-3. 화합물 5m의 LPS-유도된 전염증성 사이토카인 발현 억제 확인2-3. Confirmation of LPS-induced inhibition of pro-inflammatory cytokine expression of compound 5m

화합물 5m의 생체 외 항염증 효과를 평가하기 위해, 웨스턴 블로팅(Western blotting)을 이용하여 전염증 인자 iNOS 및 COX-2의 단백질 발현을 시험하였다. 다른 농도의 5m을 처리한 세포를 LPS(1μg/mL)의 존재 또는 부존재하에서 24시간 동안 배양하였다. 덱사메타손(DEX, 10μM)은 양성 대조군으로 사용되었고, 결과값은 세번의 독립적인 실험의 평균± SD (n=3) 값으로 나타내었다.(대조군과 비교하여 ### p < 0.001, LPS-자극군과 비교하여 ** p < 0.01, ***p < 0.001)To evaluate the in vitro anti-inflammatory effect of compound 5m, protein expression of pro-inflammatory factors iNOS and COX-2 was tested using Western blotting. Cells treated with different concentrations of 5 m were cultured for 24 hours in the presence or absence of LPS (1 μg/mL). Dexamethasone (DEX, 10 μM) was used as a positive control, and the results were expressed as the mean±SD (n=3) of three independent experiments ( ### p <0.001, LPS-stimulated compared to the control group). Compared to group ** p <0.01, ***p <0.001)

도 4는 본 발명의 일 실험예에 따른 전염증 인자 iNOS 및 COX-2의 단백질 발현의 변화를 나타낸다. 상단 첫번째 이미지는 RAW264.7 세포에서 화합물 5m의 농도에 따른 LPS-유도된 iNOS 및 COX-2의 발현 정도를 나타내고, (A)는 iNOS의 상대적 단백질 발현량을 나타낸 그래프이고 (B)는 COX-2의 상대적 단백질 발현량을 나타낸 그래프이다. 4 shows changes in protein expression of pro-inflammatory factors iNOS and COX-2 according to an experimental example of the present invention. The first image at the top shows the level of expression of LPS-induced iNOS and COX-2 according to the concentration of compound 5m in RAW264.7 cells, (A) is a graph showing the relative protein expression level of iNOS, and (B) is COX- 2 is a graph showing the relative protein expression level.

도 4를 참조하면, LPS 자극은 iNOS 및 COX-2의 단백질 발현을 현저하게 증가시켰으나, 이 증가 정도는 5m으로 전처리된 세포에서 유의하게 농도 의존적으로 하향 조절되는 것으로 나타났다. 특히, 20μM의 5m은 10μM의 덱사메타손보다 iNOS 및 COX-2의 단백질 발현을 더 강하게 약화시켰다.Referring to Figure 4, LPS stimulation significantly increased the protein expression of iNOS and COX-2, but this increase was found to be significantly concentration-dependently down-regulated in cells pretreated to 5m. In particular, 20 μM of 5 m strongly attenuated the protein expression of iNOS and COX-2 than 10 μM of dexamethasone.

염증 과정에서, 전염증성 자극은 산화질소(nitric oxide; 이하, NO), 프로스타글란딘 E2(prostaglandin E2; 이하, PGE2), 종양 괴사 인자 α(tumor necrosis factor α; 이하, TNF-α) 및 인터류킨-6(interleukin-6; 이하, IL-6)과 같은 다양한 사이토카인 및 염증 매개체의 생성을 유발한다. 화합물 5m이 iNOS 발현을 억제하므로, 대식세포에서 NO 생성은 감소될 것으로 예상하고, RAW264.7 세포 상등액 중 NO의 양을 그리스 시약을 사용하여 측정하였다. 또한, TNF-α 및 IL-6의 생성은 효소결합면역흡착측정법(enzyme-linked immunosorbent assay, ELISA)으로 결정하였다. In inflammatory processes, proinflammatory stimulation of nitric oxide (nitric oxide; hereinafter, NO), prostaglandin E 2 (prostaglandin E 2; hereinafter, PGE 2), tumor necrosis factor-α (tumor necrosis factor α; hereinafter, TNF-α) and It induces the production of various cytokines and inflammatory mediators such as interleukin-6 (hereinafter, IL-6). Since compound 5m inhibits iNOS expression, it is expected that NO production in macrophages will be reduced, and the amount of NO in the RAW264.7 cell supernatant was measured using a grease reagent. In addition, the production of TNF-α and IL-6 was determined by enzyme-linked immunosorbent assay (ELISA).

도 5는 본 발명의 일 실험예에 따른 전염증 인자 생성 변화를 나타낸 것으로, (A)는 산화질소(nitric oxide, NO), (B)는 인터류킨-6(interleukin-6, IL-6), (C)는 종양 괴사 인자 α(tumor necrosis factor α, TNF-α), (D)는 프로스타글란딘 E2(prostaglandin E2, PGE2)의 생성 정도를 나타낸 그래프이다. 결과값은 세번의 독립적인 실험의 대표값으로 나타내었다.(처리하지 않은 대조군과 비교하여 ### p < 0.001, LPS-처리 세포와 비교하여 ** p < 0.01, ***p < 0.001)5 shows the change in the generation of pro-inflammatory factors according to an experimental example of the present invention, (A) is nitric oxide (NO), (B) is interleukin-6 (IL-6), (C) is a graph showing the degree of production of tumor necrosis factor α (TNF-α), and (D) is prostaglandin E 2 (prostaglandin E 2 , PGE 2 ). Results are represented as representative values of three independent experiments ( ### p <0.001 compared to the untreated control group, ** p <0.01, ***p <0.001 compared to the LPS-treated cells).

도 5를 참조하면, (A)에서 NO 생성은 화합물 5m의 농도 의존적으로 감소하는 것으로 나타났다. (D)의 PGE2 생성 또한 5m 처리에 따라 농도 의존적으로 감소하였다. 염증 매개자인 PGE2의 높은 생성은 염증 자극에 기인한 것으로, PGE2의 대사 효소인 COX-2의 억제는 PGE2의 생성을 감소시킨다.Referring to FIG. 5, in (A), NO generation was found to decrease in a concentration-dependent manner of compound 5m. The PGE 2 production of (D) also decreased in a concentration-dependent manner according to the 5m treatment. Inflammatory mediator is that high production of PGE 2 is caused by the inflammatory stimulus, the inhibition of the COX-2 enzyme metabolism of PGE 2 reduces the formation of PGE 2.

염증 사이토카인인 TNF-α 및 IL-6은 염증성 상황에 대한 숙주 반응의 일부이고 정상 세포 상태를 유지한다. (B) 및 (C)에서, RAW264.7 쥐 대식세포가 LPS에 노출되었을 때, 전염증성 매개체의 양이 현저하게 증가하였으나, 5m의 용량 의존적으로 그 증가함이 억제되었다. 이러한 결과로, 화합물 5m은 LPS-자극된 RAW264.7 세포에서 과도한 면역 반응을 분명히 약화시킴을 확인할 수 있다. The inflammatory cytokines TNF-α and IL-6 are part of the host's response to the inflammatory situation and maintain a normal cellular state. In (B) and (C), when RAW264.7 murine macrophages were exposed to LPS, the amount of pro-inflammatory mediator was remarkably increased, but the increase was suppressed in a dose-dependent manner of 5 m. As a result of these results, it can be confirmed that compound 5m clearly attenuates the excessive immune response in LPS-stimulated RAW264.7 cells.

2-4. 화합물 5m의 활성산소종(ROS) 생성 억제 확인2-4. Confirmation of the inhibition of the generation of reactive oxygen species (ROS) by compound 5m

활성산소종(ROS)은 산소를 포함하는 화학적으로 반응성 있는 화학종이다. 생물학적 시스템에서, ROS는 산소의 일반적인 대사의 자연 부산물로 형성되고 세포 신호에서 중요한 역할을 한다. ROS는 또한 COX-2에 의해 아라키돈산으로부터 프로스타글란딘 생합성의 자연 부산물로 생성된다. Reactive oxygen species (ROS) are chemically reactive species containing oxygen. In biological systems, ROS is formed as a natural by-product of the normal metabolism of oxygen and plays an important role in cellular signaling. ROS is also produced by COX-2 from arachidonic acid as a natural by-product of prostaglandin biosynthesis.

한편, 염증 상태가 ROS 생성을 유도하고 전사 인자의 인산화 조절을 통해 전사(transcription)에 영향을 주는 것으로 알려져 있다. 전사 인자 중에서, 핵 인자-카파 B(nuclear factor-kappa B;, 이하, NF-κB)는 TNF-α, IL-6, iNOS 및 COX-2와 같은 전염증성 사이토카인의 생성에서 중요한 단계로 나타나는 전염증성 유전자의 조절에 관여하기에, 세포의 산화 스트레스를 검출하고 정량화하였다.Meanwhile, it is known that the inflammatory state induces ROS production and affects transcription through the regulation of phosphorylation of transcription factors. Among the transcription factors, nuclear factor-kappa B (hereinafter, NF-κB) appears as an important step in the production of pro-inflammatory cytokines such as TNF-α, IL-6, iNOS and COX-2. Since it is involved in the regulation of pro-inflammatory genes, the oxidative stress of cells was detected and quantified.

도 6은 본 발명의 일 실험예에 따른 활성산소종(ROS)의 생성 변화를 나타낸 것으로, (A)는 LPS 유도된 세포 내의 ROS로, 형광 프로브인 DCFH-DA에 의해 녹색 형광으로 표시되고, (B)는 형광 마이크로플레이트 리더기로 형광 강도를 정량화한 그래프이다.(처리하지 않은 대조군과 비교하여 ### p < 0.001, LPS-처리 세포와 비교하여 ***p < 0.001)6 shows the change in the production of reactive oxygen species (ROS) according to an experimental example of the present invention, (A) is ROS in LPS-induced cells, indicated by green fluorescence by DCFH-DA, a fluorescent probe, (B) is a graph of quantification of fluorescence intensity with a fluorescent microplate reader ( ### p <0.001 compared to untreated control, ***p <0.001 compared to LPS-treated cells)

도 6을 참조하면, 화합물 5m은 LPS-처리 군과 비교하여 유의하게 용량 의존적으로 ROS 생성을 감소시켰다. 특히, 20μM 농도에서 5m은 20μM의 디클로페낙과 필적할만큼 ROS 생성을 상당히 감소시켰다. 따라서, 화합물 5m이 ROS의 감소와 이후 전염증성 분자의 NF-κB 전사 활성의 차단을 통해 NF-κB의 활성을 억제한다고 추측하였다.6, compound 5m significantly decreased ROS production in a dose-dependent manner compared to the LPS-treated group. In particular, 5 m at 20 μM concentration significantly reduced ROS production comparable to 20 μM diclofenac. Therefore, it was speculated that compound 5m inhibited the activity of NF-κB through reduction of ROS and subsequent blocking of NF-κB transcriptional activity of pro-inflammatory molecules.

2-5. 화합물 5m 처리에 따른 LPS-유도된 NF-κB 신호 억제 효과 확인2-5. Confirmation of LPS-induced NF-κB signal inhibition effect by compound 5m treatment

화합물 5m의 가능한 항염 메커니즘을 더 조사하기 위해, NF-κB 경로에서 5m의 효과를 시험하였다. 먼저, LPS-활성화된 RAW264.7 세포에서 5m의 처리에 따른 NF-κB p65 인산화 유도를 조사하기 위해 웨스턴 블로팅을 이용하였다. LPS 자극 후 30분 동안 세포 추출물을 수집하여 NF-κB p65 신호의 초기 상태를 검출하였다.To further investigate the possible anti-inflammatory mechanism of compound 5m, the effect of 5m in the NF-κB pathway was tested. First, Western blotting was used to investigate the induction of NF-κB p65 phosphorylation according to 5m treatment in LPS-activated RAW264.7 cells. Cell extracts were collected for 30 minutes after LPS stimulation to detect the initial state of the NF-κB p65 signal.

도 7은 본 발명의 일 실험예에 따른 NF-κB 등의 인산화 변화를 나타낸 것으로, (A)는 NF-κB p65의 공초점 현미경 이미지이고 (B)는 NF-κB 의 인산화, (C)는 IKK의 인산화 및 (D)는 IκBα의 인산화를 나타낸 그래프이다. β-액틴(β-actin)은 내부 대조군(internal control)으로 사용하였다. 결과값은 세번의 독립적인 실험의 대표값으로 나타내었다.(처리하지 않은 대조군과 비교하여 ## p < 0.01, LPS-처리 세포와 비교하여 * p < 0.05, ** p < 0.01, ***p < 0.001)Figure 7 shows the change in phosphorylation of NF-κB according to an experimental example of the present invention, (A) is a confocal microscope image of NF-κB p65, (B) is phosphorylation of NF-κB, (C) is IKK phosphorylation and (D) are graphs showing the phosphorylation of IκBα. β-actin was used as an internal control. Results are represented as representative values of three independent experiments ( ## p <0.01 compared to untreated control, * p <0.05, ** p <0.01, *** compared to LPS-treated cells. p <0.001)

도 7을 참조하면, (A)에서 녹색 형광에 의해 NF-κB p65를 시각화하고 세포핵을 DAPI 염색에 의해 시안(cyan) 형광으로 확인한 결과, 20μΜ의 화합물 5m을 처리한 경우 LPS-자극된 NF-κB의 핵 내로의 이동이 감소하는 것으로 나타났다. Referring to FIG. 7, in (A), NF-κB p65 was visualized by green fluorescence and the cell nucleus was confirmed by cyan fluorescence by DAPI staining. As a result, when 20 μΜ of compound 5m was treated, LPS-stimulated NF- It has been shown that the migration of κB into the nucleus is reduced.

(B)에서는 인산화된 NF-κB p65의 레벨이 LPS 처리에 의해 확연히 증가하나, 화합물 5m의 처리로 NF-κB p65의 인산화가 용량 의존적으로 억제되는 것으로 나타났다. In (B), the level of phosphorylated NF-κB p65 was significantly increased by LPS treatment, but it was found that the phosphorylation of NF-κB p65 was dose-dependently inhibited by treatment with compound 5m.

IκB(NF-κB의 억제제) 및 IKK(IκB-키나아제)의 인산화는 NF-κB의 핵 전이(nuclear translocation) 및 활성화 과정에 필수적이다. 독소(toxins), 병원균(pathogens) 또는 산화 스트레스와 같은 염증성 자극이 IKK의 인산화를 유도한다. 인산화된 후에, IKK는 IκBα 인산화의 촉진에 필수적인 요소이고, 인산화된 IκBα는 유비퀴틴화되고 분해되어 활성 NF-κB를 방출한다. 이어서, 활성화된 NF-κB는 핵으로 이동하여 DNA와 결합하고 전염증성 인자의 발현을 촉진한다.Phosphorylation of IκB (an inhibitor of NF-κB) and IKK (IκB-kinase) is essential for the nuclear translocation and activation process of NF-κB. Inflammatory stimuli such as toxins, pathogens or oxidative stress induce phosphorylation of IKK. After phosphorylation, IKK is an essential element in promoting IκBα phosphorylation, and phosphorylated IκBα is ubiquitinated and decomposed to release active NF-κB. Subsequently, the activated NF-κB migrates to the nucleus, binds to DNA, and promotes the expression of pro-inflammatory factors.

도 7의 (C) 및 (D)에서, LPS 자극은 인산화된 IKK의 레벨을 현저하게 증가시켰으나, 화합물 5m의 처리에 의해 확연히 감소시켰다. 게다가, 인산화된 IκBα의 레벨 또한 LPS-처리군과 비교하여 감소되었다. 이러한 결과는 화합물 5m이 RAW264.7 세포에서 ROS 레벨의 감소 및 NF-κB 활성의 억제를 통해 항염증 활성을 나타낼 수 있음을 의미한다. In Figure 7 (C) and (D), LPS stimulation significantly increased the level of phosphorylated IKK, but significantly decreased by treatment with compound 5m. In addition, the level of phosphorylated IκBα was also reduced compared to the LPS-treated group. These results indicate that compound 5m can exhibit anti-inflammatory activity through reduction of ROS level and inhibition of NF-κB activity in RAW264.7 cells.

도 8은 본 발명의 일 실험예를 통해 확인한 COX 억제제로서의 화합물 5m의 항염증 매커니즘을 나타낸다. 8 shows the anti-inflammatory mechanism of compound 5m as a COX inhibitor identified through an experimental example of the present invention.

도 8을 참조하면, 화합물 5m은 상기 실험예를 통해 LPS-자극된 RAW264.7 대식세포에서 iNOS, NO, COX-2, PGE2, TNF-α 및 IL-6를 포함하는 전염증성 인자의 발현 억제를 통해 항염증 활성을 나타내었으며, ROS 감소도 확인되었다. 또한, 화합물 5m은 IKK, IκBα 및 NF-κB의 인산화를 감소시켰다. 화합물 5m의 가능한 항염증 매커니즘은 이러한 생체 외 실험 결과에 기초하여 제안되었다. Referring to FIG. 8, compound 5m expresses pro-inflammatory factors including iNOS, NO, COX-2, PGE 2 , TNF-α and IL-6 in LPS-stimulated RAW264.7 macrophages through the above experimental example. It showed anti-inflammatory activity through inhibition, and ROS reduction was also confirmed. In addition, compound 5m reduced the phosphorylation of IKK, IκBα and NF-κB. A possible anti-inflammatory mechanism of compound 5m was proposed based on the results of these in vitro experiments.

즉, 화합물 5m은 먼저 COX-2를 억제하여 ROS 생성을 감소시킬 수 있고, 감소된 ROS의 생성은 NF-κB 활성화 및 핵 내 전이(endonuclear translocation)의 억제로 절정에 이르러 iNOS, COX-2, TNF-α 및 IL-6와 같은 전염증성 매개체의 발현을 감소시킨다. 이러한 결과는 화합물 5m의 치료 잠재력에 중요한 영향을 미칠 수 있으며, 화합물 5m은 잠재적인 항염증제로 작용할 수 있다.That is, compound 5m can first inhibit COX-2 to reduce ROS production, and the production of reduced ROS reaches its peak due to NF-κB activation and inhibition of endonuclear translocation, iNOS, COX-2, It reduces the expression of pro-inflammatory mediators such as TNF-α and IL-6. These results can have a significant impact on the therapeutic potential of compound 5m, and compound 5m can act as a potential anti-inflammatory agent.

2-6. 분자 도킹(docking)2-6. Molecular docking

COX-1 및 COX-2 억제 효과와 화합물 5m의 생체 외 항염증 활성은 분자간 도킹을 수행하여 리간드-단백질 상호작용을 상세히 이해할 수 있게 하였다. 화합물 5m과 COX 효소간의 상호작용에 대한 통찰력을 얻기 위해 양(ovine)의 COX-1(PDB ID: Ovis aries 1EQH) 및 쥐의 COX-2(PDB ID: Mus musculus 4COX)를 이용하여 도킹 시뮬레이션을 수행하였다. 화합물 5m의 계산된 도킹 포즈(docking poses)는 COX-2를 이용한 인도메타신 결정과 같은 포즈와 비교되었다. The inhibitory effect of COX-1 and COX-2 and the in vitro anti-inflammatory activity of compound 5m allowed the ligand-protein interaction to be understood in detail by performing intermolecular docking. Docking simulation was performed using ovine COX-1 (PDB ID: Ovis aries 1EQH) and rat COX-2 (PDB ID: Mus musculus 4COX) to gain insight into the interaction between compound 5m and COX enzyme. Performed. The calculated docking poses of compound 5m were compared with the same poses as indomethacin crystals using COX-2.

도 9는 본 발명의 일 실험예에 따른 리간드/COX 결합의 도킹(docking) 및 결정 구조이다. (A)는 COX-2(4COX)의 생리활성 포켓(pocket)을 확대하여 나타낸 것으로, COX-2의 소수성 또는 친수성 부분을 각각 빨간색 또는 흰색으로 나타내었고, 추가적인 큰 공간은 Val523, Arg513, 및 His90의 아미노산으로 구성되었다. (B)는 인도메타신(4COX)과 결합된 COX-2의 결정 구조를 확대한 것이고, (C)는 화합물 5m과 COX-1(1EQH)의 주변 아미노산인 Arg120 및 Tyr355와의 수소결합 상호작용을 확대한 것이며, (D)는 화합물 5m과 COX-2(4COX)의 주변 아미노산 Arg120 및 Tyr355 와의 수소결합 상호작용을 확대하여 나타낸 것이다. 4COX는 쥐의 COX-2(PDB ID: Mus musculus 4COX)이고, 1EQH는 양의 COX-1(PDB ID: Ovis aries 1EQH)이다.9 is a docking (docking) and crystal structure of the ligand / COX binding according to an experimental example of the present invention. (A) is an enlarged view of the physiologically active pocket of COX-2 (4COX), and the hydrophobic or hydrophilic portion of COX-2 is shown in red or white, respectively, and additional large spaces are Val 523 , Arg 513 , And His 90 amino acids. (B) is an enlarged crystal structure of COX-2 combined with indomethacin (4COX), and (C) is a hydrogen bond interaction between compound 5m and the surrounding amino acids of COX-1 (1EQH), Arg 120 and Tyr 355. The action is expanded, and (D) shows an expanded hydrogen bond interaction between compound 5m and the surrounding amino acids Arg 120 and Tyr 355 of COX-2 (4COX). 4COX is rat COX-2 (PDB ID: Mus musculus 4COX), 1EQH is positive COX-1 (PDB ID: Ovis aries 1EQH).

일반적으로, COX-1 및 COX-2는 아미노산 시퀀스에서 60%의 상동성(homology)을 공유하나, 도 9를 참조하면, 기질-결합 부위 및 촉매 영역에 대한 형태는 약간 다르다. COX-1 및 COX-2 효소의 비교는 COX-2가 COX-1 보다 더 크고 더 유연한 기질 채널을 가지며, (A)에서 COX-2가 아미노산 Val523, Arg513, 및 His90로 구성된 선택적 억제제와 결합할 수 있는 부위에서 더 큰 공간을 가짐을 보여준다.In general, COX-1 and COX-2 share 60% homology in the amino acid sequence, but referring to FIG. 9, the morphology for the substrate-binding site and the catalytic region is slightly different. Comparison of COX-1 and COX-2 enzymes shows that COX-2 has a larger and more flexible substrate channel than COX-1, and in (A) COX-2 is a selective inhibitor consisting of the amino acids Val 523 , Arg 513 , and His 90 It shows that it has a larger space in the area that can be combined with.

SC-558과 같은 COX-2 선택적 억제제는 큰 생체 활성 공동(cavity)에서 깊게 위치하고 특정 부위는 Arg513 및 His90에 수소결합을 형성할 수 있다. 대조적으로, 인도메타신 및 이부프로펜과 같은 비-선택적 COX 억제제 또한 긴 소수성 채널에 결합하나, COX-2에 존재하는 추가적인 포켓을 차지하지 않는다.COX-2 selective inhibitors such as SC-558 are located deep in large bioactive cavities and specific sites can form hydrogen bonds to Arg 513 and His 90. In contrast, non-selective COX inhibitors such as indomethacin and ibuprofen also bind to long hydrophobic channels, but do not occupy the additional pockets present in COX-2.

게다가, 구부러진 좁은 틈의 활성 부위 내부에 두개의 중요한 극성 아미노산이 있다. 활성 부위에서 더 깊은 곳에 위치한 아미노산 Arg120 및 Tyr355는 소수성 COX 채널에서 고전적인 비-선택적 NSAIDs의 카르복실기의 안정화에 중요한 역할을 한다. 약물의 카르복실기는 결합 부위에서 Arg120 및 Tyr355의 구아니듐(guanidium) 기와 수소결합을 형성한다. (C) 및 (D)에서. 화합물 5m은 COX-1 및 COX-2에서 NSAIDs와 동일한 수소결합 포즈를 보여주며, 이는 NSAIDs의 카르복시레이트기가 아릴-하이드라존 잔기로 대체될 수 있음을 나타낸다. 이러한 상호작용은 인도메타신의 결합 상호작용에 의해 예시되는 것처럼 COX-1/COX-2 억제 활성을 위해 거의 필수적이다. 한편, 화합물 5m은 Arg513 및 His90과 수소 결합을 형성하지 않았다. 이러한 결합의 결핍은 COX-2에 대한 5m의 선택성을 설명할 수 있다.In addition, there are two important polar amino acids inside the active site of the curved narrow cleft. The amino acids Arg 120 and Tyr 355, located deeper in the active site, play an important role in the stabilization of the carboxyl groups of classical non-selective NSAIDs in hydrophobic COX channels. The carboxyl group of the drug forms a hydrogen bond with the guanidium group of Arg 120 and Tyr 355 at the bonding site. In (C) and (D). Compound 5m shows the same hydrogen bonding pose as NSAIDs in COX-1 and COX-2, indicating that the carboxylate groups of NSAIDs can be replaced by aryl-hydrazone moieties. This interaction is almost essential for COX-1/COX-2 inhibitory activity, as exemplified by the binding interaction of indomethacin. On the other hand, compound 5m did not form a hydrogen bond with Arg 513 and His 90. This lack of binding can explain the 5m selectivity for COX-2.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.As described above, a specific part of the present invention has been described in detail, and for those of ordinary skill in the art, it is obvious that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. Do. That is, the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (13)

하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염:
[화학식 1]
Figure 112021040016514-pat00025
A compound represented by the following Formula 1, or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof:
[Formula 1]
Figure 112021040016514-pat00025
삭제delete 삭제delete 하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 염증성 질환 예방 또는 치료용 약학 조성물:
[화학식 1]
Figure 112021040016514-pat00026
A pharmaceutical composition for preventing or treating inflammatory diseases containing a compound represented by the following Formula 1, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient:
[Formula 1]
Figure 112021040016514-pat00026
삭제delete 제 4 항에 있어서,
상기 조성물은,
사이클로옥시게나제(Cyclooxygenases, COX)를 억제하는 것을 특징으로 하는 염증성 질환 예방 또는 치료용 약학 조성물.
The method of claim 4,
The composition,
A pharmaceutical composition for preventing or treating inflammatory diseases, characterized in that it inhibits cyclooxygenase (Cyclooxygenases, COX).
제 4 항에 있어서,
상기 조성물은,
활성산소종(ROS) 생성을 감소시키는 것을 특징으로 하는 염증성 질환 예방 또는 치료용 약학 조성물.
The method of claim 4,
The composition,
A pharmaceutical composition for preventing or treating inflammatory diseases, characterized in that reducing the production of reactive oxygen species (ROS).
제 4 항에 있어서,
상기 조성물은,
IKK, IκBα 및 NF-κB로 이루어진 군에서 선택되는 하나 이상의 인산화를 감소시키는 것을 특징으로 하는 염증성 질환 예방 또는 치료용 약학 조성물.
The method of claim 4,
The composition,
IKK, IκBα and NF-κB pharmaceutical composition for preventing or treating inflammatory diseases, characterized in that reducing the phosphorylation of one or more selected from the group consisting of.
제 4 항에 있어서,
상기 조성물은,
iNOS, NO, PGE2, TNF-α 및 IL-6로 이루어진 군에서 선택되는 하나 이상의 전염증성 인자의 발현을 억제하는 것을 특징으로 하는 염증성 질환 예방 또는 치료용 약학 조성물.
The method of claim 4,
The composition,
iNOS, NO, PGE 2 , TNF-α and a pharmaceutical composition for the treatment or prevention of inflammatory diseases, characterized in that inhibiting the expression of one or more pro-inflammatory factors selected from the group consisting of IL-6.
제 4 항에 있어서,
상기 염증성 질환은,
퇴행성 관절염(골관절염), 류마티스 관절염, 강직성 척추염, 패혈성 관절염 및 루푸스 관절염으로 이루어진 군에서 선택되는 관절염 질환인 것을 특징으로 하는 염증성 질환 예방 또는 치료용 약학 조성물.
The method of claim 4,
The inflammatory disease,
Degenerative arthritis (osteoarthritis), rheumatoid arthritis, ankylosing spondylitis, septic arthritis and lupus arthritis.
하기 화학식 1로 표시되는 화합물, 또는 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 염증성 질환 예방 또는 개선용 건강기능식품 조성물:
[화학식 1]
Figure 112021040016514-pat00027
A health functional food composition for preventing or improving inflammatory diseases containing a compound represented by the following Formula 1, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient:
[Formula 1]
Figure 112021040016514-pat00027
삭제delete 제 11 항에 있어서,
상기 염증성 질환은,
퇴행성 관절염(골관절염), 류마티스 관절염, 강직성 척추염, 패혈성 관절염 및 루푸스 관절염으로 이루어진 군에서 선택되는 관절염 질환인 것을 특징으로 하는 염증성 질환 예방 또는 개선용 건강기능식품 조성물.
The method of claim 11,
The inflammatory disease,
Degenerative arthritis (osteoarthritis), rheumatoid arthritis, ankylosing spondylitis, septic arthritis and lupus arthritis.
KR1020190092362A 2019-07-30 2019-07-30 Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same KR102241064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190092362A KR102241064B1 (en) 2019-07-30 2019-07-30 Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190092362A KR102241064B1 (en) 2019-07-30 2019-07-30 Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same

Publications (2)

Publication Number Publication Date
KR20210014374A KR20210014374A (en) 2021-02-09
KR102241064B1 true KR102241064B1 (en) 2021-04-16

Family

ID=74559156

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190092362A KR102241064B1 (en) 2019-07-30 2019-07-30 Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same

Country Status (1)

Country Link
KR (1) KR102241064B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015263A2 (en) 2004-07-29 2006-02-09 Threshold Pharmaceuticals, Inc. Lonidamine analogs
WO2013162469A1 (en) 2012-04-23 2013-10-31 Nanyang Technological University Tubulin inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0212925A (en) 2001-09-27 2004-10-13 Hoffmann La Roche Idol derivatives as cox inhibitors ii

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015263A2 (en) 2004-07-29 2006-02-09 Threshold Pharmaceuticals, Inc. Lonidamine analogs
WO2013162469A1 (en) 2012-04-23 2013-10-31 Nanyang Technological University Tubulin inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문 Journal of Chinese Chemical Society, Vol. 51, pp. 147-156 (2004)*
논문 Journal of Medicinal Chemistry, Vol. 43, pp. 2860-2870 (2000)*

Also Published As

Publication number Publication date
KR20210014374A (en) 2021-02-09

Similar Documents

Publication Publication Date Title
KR101934651B1 (en) Composition for Preventing or Treating TNF-mediated Disease Comprising Novel Derivatives and Method for Inhibiting TNF-activity with the Same
JP2021185192A (en) Aryl receptor modulators and methods of making and using the same
CN103945848A (en) Oral immediate release formulations for substituted quinazolinones
JP6122862B2 (en) Meglumine salt formulation of 1- (5,6-dichloro-1H-benzo [D] imidazol-2-yl) -1H-pyrazole-4-carboxylic acid
WO2016155545A1 (en) Sulfamyl-containing 1,2,5-oxadiazole derivative, preparation method therefor and use thereof in pharmaceuticals
JPWO2007020888A1 (en) Brain / nerve cell protective agent and sleep disorder therapeutic agent
CN106565696A (en) Oxadiazole derivative, preparing method of oxadiazole derivative and application of oxadiazole derivative to medicines
JP2021113819A (en) METHOD FOR MEASURING INHIBITION OF c-Jun N TERMINAL KINASE IN SKIN
WO2018010332A1 (en) Medical use of 7-hydroxy-butylphthalide
WO2017042337A1 (en) Short-chain fatty acids for use in the treatment of cardiovascular disease
WO2022233264A1 (en) Class of xanthine oxidase inhibitors
KR102241064B1 (en) Novel indole derivatives and composition for preventing or treating inflammatory diseases comprising the same
KR20190114299A (en) RHOA inhibitor and use thereof
GB2579480A (en) Composition for preventing or treating cancer containing Triazolopyridine-based derivative as active ingredient
KR101705253B1 (en) Pharmaceutical composition for prevention or treatment of inflammatory diseases comprising cerulenin or cerulenin derivative as an active ingredient
KR102395804B1 (en) A novel ido/tdo inhibitor, anti-cancer uses thereof, and anti-cancer combination therapy thereof
KR102141035B1 (en) Colon targeting composition for preventing or treating inflammatory bowel diseases
KR20190021369A (en) (Anti-PCSK9) compounds and methods of using them for the treatment and / or prevention of cardiovascular diseases
CN111315746B (en) Tryptophan hydroxylase inhibitors and pharmaceutical compositions comprising the same
KR101724425B1 (en) Composition preventing or treating cancer comprising (Z)-2-acetamido-3-(4-hydroxy-3-methoxyphenyl)acrylic acid
KR102279347B1 (en) Pharmaceutical composition for prevention and treatment of DYRK related diseases comprising pyridine compounds
KR100676761B1 (en) Pharmaceutical composition comprising cinnamaldehyde derivatives for treating and preventing inflammatory disease
KR20190114300A (en) RHOA inhibitor and use thereof
KR102443583B1 (en) Anti-Cancer Composition Inducing Cellular Senescence and Apoptosis
JP4989841B2 (en) Angiogenesis inhibitors, therapeutic or preventive agents for diseases associated with angiogenesis

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right