KR102236190B1 - Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same - Google Patents

Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same Download PDF

Info

Publication number
KR102236190B1
KR102236190B1 KR1020200071568A KR20200071568A KR102236190B1 KR 102236190 B1 KR102236190 B1 KR 102236190B1 KR 1020200071568 A KR1020200071568 A KR 1020200071568A KR 20200071568 A KR20200071568 A KR 20200071568A KR 102236190 B1 KR102236190 B1 KR 102236190B1
Authority
KR
South Korea
Prior art keywords
thin film
sio
film
sin
encapsulation
Prior art date
Application number
KR1020200071568A
Other languages
Korean (ko)
Other versions
KR20200075796A (en
Inventor
최원국
임근용
최원준
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020200071568A priority Critical patent/KR102236190B1/en
Publication of KR20200075796A publication Critical patent/KR20200075796A/en
Application granted granted Critical
Publication of KR102236190B1 publication Critical patent/KR102236190B1/en

Links

Images

Classifications

    • H01L51/448
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • H01L51/0001
    • H01L51/0097
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 고분자기판의 양면 상에 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막을 2회 반복 적층시키고, SiNx와 SiOx의 계면에 형성되는 SiOxNy의 물리적 특성을 강화시킴으로써 2x10-6g/m2/day 이하의 매우 우수한 수분투습율(WVTR, water vapor transmission rate)를 갖는 유기광전자소자의 봉지필름 및 그 제조방법에 관한 것으로서, 본 발명에 따른 유기광전자소자의 봉지필름은 플렉서블 기판; 및 상기 플렉서블 기판의 양면 각각에 형성된 3중층 구조의 박막 적층체;를 포함하여 이루어지며, 상기 3중층 구조의 박막 적층체는 SiNx 박막, SiOxNy 박막, SiOx 박막이 순차적으로 적층된 형태이며, 상기 3중층 구조의 박막 적층체가 상기 플렉서블 기판의 양면 각각에 2번 반복하여 적층되며, 첫번째 박막 적층체의 SiOx 박막과 두번째 박막 적층체의 SiNx 박막 사이에 SiOxNy 박막이 더 구비되며, 봉지필름의 수분투습율(WVTR, water vapor transmission rate)가 2x10-6g/m2/day 이하인 것을 특징으로 한다. In the present invention, a three-layered thin film in which SiN x , SiO x N y , and SiO x are sequentially stacked on both sides of a polymer substrate is repeatedly laminated twice, and SiO x N y formed at the interface between SiN x and SiO x It relates to a sealing film of an organic optoelectronic device having a very excellent water vapor transmission rate (WVTR, water vapor transmission rate) of 2x10 -6 g/m 2 /day or less by enhancing the physical properties of, and a method for manufacturing the same, according to the present invention. The encapsulation film of the organic optoelectronic device may include a flexible substrate; And a three-layered thin film laminate formed on each side of the flexible substrate, wherein the three-layered thin film laminate is a SiN x thin film, a SiO x Ny thin film, and a SiO x thin film sequentially stacked. The three-layered thin film laminate is repeatedly laminated on each side of the flexible substrate twice, and a SiO x N y thin film is formed between the SiO x thin film of the first thin film stack and the SiN x thin film of the second thin film stack. It is further provided, characterized in that the water vapor transmission rate (WVTR, water vapor transmission rate) of the encapsulation film is 2x10 -6 g/m 2 /day or less.

Description

유기광전자소자의 봉지필름 및 그 제조방법{Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same}Encapsulation film for organic optoelectronic devices and manufacturing method thereof {Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same}

본 발명은 유기광전자소자의 봉지필름 및 그 제조방법에 관한 것으로서, 보다 상세하게는 고분자기판의 양면 상에 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막을 2회 반복 적층시키고, SiNx와 SiOx의 계면에 형성되는 SiOxNy의 물리적 특성을 강화시킴으로써 2x10-6g/m2/day 이하의 매우 우수한 수분투습율(WVTR, water vapor transmission rate)를 갖는 유기광전자소자의 봉지필름 및 그 제조방법에 관한 것이다.The present invention relates to a sealing film for an organic optoelectronic device and a method of manufacturing the same, and more particularly, a three-layered thin film in which SiN x , SiO x N y , and SiO x are sequentially stacked on both sides of a polymer substrate is formed twice. It has a very excellent water vapor transmission rate (WVTR, water vapor transmission rate) of 2x10 -6 g/m 2 /day or less by repeatedly stacking and enhancing the physical properties of SiO x N y formed at the interface between SiN x and SiO x. It relates to an organic optoelectronic device encapsulation film and a method of manufacturing the same.

유기발광다이오드(OLED), 양자점 발광다이오드(QLED), 유기태양전지 등과 같은 유기광전자소자는 유기물질을 사용함에 따라 유연성과 함께 우수한 평탄도를 갖추고 있어 차세대 광전자소자로 주목을 받고 있다. Organic optoelectronic devices such as organic light-emitting diodes (OLED), quantum dot light-emitting diodes (QLEDs), and organic solar cells are attracting attention as next-generation optoelectronic devices because they have flexibility and excellent flatness as they use organic materials.

한편, 유기물은 수분이나 산소 등의 외부적 요인에 민감하게 반응하는 취약한 특성이 있다. 특히, OLED 경우 산소나 수분에 의해 발광재료 및 전극재료가 산화되어 디스플레이에 흑점 및 화소 수축 등과 같은 문제점이 발생하여 수명 감소 현상이 발생한다. 이에, 관련 구성 재료들이 산소나 수분에 분해되는 것을 방지하기 위해 봉지(encapsulation) 기술은 필수적인 기술 중 하나이다. On the other hand, organic substances have a weak characteristic of reacting sensitively to external factors such as moisture or oxygen. In particular, in the case of OLED, the light emitting material and the electrode material are oxidized by oxygen or moisture, causing problems such as black spots and shrinking of pixels in the display, resulting in a reduction in lifespan. Accordingly, an encapsulation technique is one of essential technologies to prevent the related constituent materials from being decomposed by oxygen or moisture.

유기광전자소자의 고분자 기판 또는 유리기판 상에 형성되는 봉지막(encapsulation layer)이 수분에 대해 요구되는 내구성을 얻기 위해서는 10-5g/m2/day 내지 10-6g/m2/day의 초저(ultra low) 수분투습율을 갖추어야 한다. In order to obtain the required durability against moisture, the encapsulation layer formed on the polymer substrate or the glass substrate of the organic optoelectronic device is extremely low of 10 -5 g/m 2 /day to 10 -6 g/m 2 /day. (ultra low) moisture permeability must be provided.

광전자소자의 봉지막으로 금속 통 (metal can), 유리봉지막(glass lid)이 널리 사용되고 있으며, 유리봉지막은 우수한 내수분침투 특성을 구비하고 있으나, 유연성이 요구되는 유기광전자소자에 적용하기에는 적합하지 않다. Metal cans and glass lids are widely used as encapsulation films for optoelectronic devices, and glass encapsulation films have excellent moisture permeation properties, but are not suitable for application to organic optoelectronic devices that require flexibility. not.

유기광전자소자의 봉지기술로 Vitex system社는 Barix 공법을 제시한 바 있다(미국등록특허 US7767498호). Barix 공법은 무기막과 유기막을 반복 적층하여 봉지막을 완성하는 기술이다. 구체적으로, 유기단분자를 증착한 후 자외선 경화를 통해 고분자화하여 유기막을 형성하고, 이어 유기막 상에 산화알루미늄(Al2O3)와 같은 무기막을 형성하며, 이러한 유기막과 무기막의 적층 공정을 4회 이상 반복 실시하여 봉지막을 완성한다. Barix 공법은 내수분침투 특성이 우수하나, 적층 공정의 4회 이상 반복됨에 따라 공정시간 및 비용이 증가하고 또한, 유기물의 선택에 제한이 있다. As an organic optoelectronic device encapsulation technology, Vitex System Corp. proposed the Barix method (US Patent No. US7767498). The Barix method is a technology that repeatedly stacks an inorganic film and an organic film to complete the encapsulation film. Specifically, after depositing an organic monomolecule, it is polymerized through ultraviolet curing to form an organic film, and then an inorganic film such as aluminum oxide (Al 2 O 3 ) is formed on the organic film, and the stacking process of the organic film and the inorganic film Repeat 4 or more times to complete the encapsulation film. The Barix method has excellent moisture permeation resistance, but the process time and cost increase as the lamination process is repeated four or more times, and there is a limit to the selection of organic materials.

최근, 3M社는 다층 진공박막 봉지기술, GE社는 다층박막 구조의 하이브리드 봉지기술을 제시한 바 있다. 3M의 다층 진공박막 봉지기술은 Barix 공법과 같은 유/무기막 다층 박막기술이며 차이점으로는 다층 진공박막 공정을 사용하여 공정시간과 비용을 줄인 기술이다. GE의 다층박막 구조의 하이브리드 봉지기술은 화학기상증착 단일장비를 이용하여 실리콘옥시나이트라이드막(SiOxNy)과 실리콘옥시카바이드막(SiOxCy)을 순차적으로 적층하는 기술이다. GE의 봉지기술의 경우 단일장비의 공정으로 공정시간을 줄일 수 있으나, 핀홀(pin hole) 등의 결함으로 인하여 내수분 침투 특성이 나쁘다. Recently, 3M has proposed a multi-layer vacuum thin film encapsulation technology, and GE has a multi-layered thin film structure hybrid encapsulation technology. 3M's multi-layer vacuum thin film encapsulation technology is the same organic/inorganic multi-layer thin film technology as the Barix method, and the difference is a technology that reduces process time and cost by using a multi-layer vacuum thin film process. GE's hybrid encapsulation technology of a multi-layered thin film structure is a technology that sequentially stacks a silicon oxynitride film (SiO x N y ) and a silicon oxy carbide film (SiO x C y) using a single chemical vapor deposition device. In the case of GE's encapsulation technology, the process time can be shortened by a single device process, but the moisture-resistance penetration characteristics are poor due to defects such as pin holes.

3M과 GE 이외에도 유기광전자소자의 봉지기술에 대해 많은 연구가 진행되고 있으나, 현재까지 유기광전자소자의 봉지기술 중 양산검증이 된 기술은 Vitex system사의 Barix 공법기술 뿐이다. In addition to 3M and GE, many studies are being conducted on the encapsulation technology of organic optoelectronic devices, but the only technology that has been mass-produced among the encapsulation technologies of organic optoelectronic devices so far is Vitex System's Barix technology.

한편, 본 출원인은 한국등록특허 제1610006호를 통해 단일층 실리콘 옥시나이트라이드(SiOxNy)막의 봉지막을 제시한 바 있다. 다만, 본 출원인의 한국등록특허 제1610006호에 개시된 봉지막은 10-5g/m2/day 내지 10-6g/m2/day의 초저(ultra low) 수분투습율에는 부합되지 않는 특성을 나타낸다. Meanwhile, the applicant of the present invention has proposed an encapsulation film of a single-layer silicon oxynitride (SiOxNy) film through Korean Patent No. 1610006. However, the encapsulation film disclosed in Korean Patent No. 1610006 of the present applicant exhibits a characteristic that does not correspond to an ultra low moisture permeability of 10 -5 g/m 2 /day to 10 -6 g/m 2 /day. .

미국등록특허 US7767498호US registered patent US7767498

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 고분자기판의 양면 상에 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막을 2회 반복 적층시키고, SiNx와 SiOx의 모든 계면에 형성되는 SiOxNy의 물리적 특성을 강화시킴으로써 2x10-6g/m2/day 이하의 매우 우수한 수분투습율(WVTR, water vapor transmission rate)를 갖는 유기광전자소자의 봉지필름 및 그 제조방법을 제공하는데 그 목적이 있다. The present invention was conceived to solve the above problems, and a three-layered thin film in which SiN x , SiO x N y , and SiO x are sequentially stacked on both sides of a polymer substrate is repeatedly laminated twice, and SiN x Encapsulation of an organic optoelectronic device having a very good water vapor transmission rate (WVTR) of less than 2x10 -6 g/m 2 /day by enhancing the physical properties of SiO x N y formed at all interfaces of and SiO x An object thereof is to provide a film and a method of manufacturing the same.

또한, 본 발명은 유/무기막이 반복 적층되는 Barix 공법 및 3M과 GE의 봉지기술에 대비하여 공정시간의 단축과 함께 유기물 대체를 통한 제조비용의 절감을 구현할 수 있는 유기광전자소자의 봉지필름 및 그 제조방법을 제공하는데 그 목적이 있다.In addition, the present invention is a sealing film of an organic optoelectronic device that can realize a reduction in manufacturing cost by replacing organic materials and shortening the process time compared to the Barix method in which organic/inorganic films are repeatedly laminated and the encapsulation technology of 3M and GE. Its purpose is to provide a manufacturing method.

상기의 목적을 달성하기 위한 본 발명에 따른 유기광전자소자의 봉지필름은 플렉서블 기판; 및 상기 플렉서블 기판의 양면 각각에 형성된 3중층 구조의 박막 적층체;를 포함하여 이루어지며, 상기 3중층 구조의 박막 적층체는 SiNx 박막, SiOxNy 박막, SiOx 박막이 순차적으로 적층된 형태이며, 상기 3중층 구조의 박막 적층체가 상기 플렉서블 기판의 양면 각각에 2번 반복하여 적층되며, 첫번째 박막 적층체의 SiOx 박막과 두번째 박막 적층체의 SiNx 박막 사이에 SiOxNy 박막이 더 구비되며, 봉지필름의 수분투습율(WVTR, water vapor transmission rate)가 2x10-6g/m2/day 이하인 것을 특징으로 한다. The sealing film of the organic optoelectronic device according to the present invention for achieving the above object comprises: a flexible substrate; And a three-layered thin film laminate formed on each side of the flexible substrate, wherein the three-layered thin film laminate is a SiN x thin film, a SiO x Ny thin film, and a SiO x thin film sequentially stacked. The three-layered thin film laminate is repeatedly laminated on each side of the flexible substrate twice, and a SiO x N y thin film is formed between the SiO x thin film of the first thin film stack and the SiN x thin film of the second thin film stack. It is further provided, characterized in that the water vapor transmission rate (WVTR, water vapor transmission rate) of the encapsulation film is 2x10 -6 g/m 2 /day or less.

상기 플렉서블 기판은 고분자물질로 이루어진다. The flexible substrate is made of a polymer material.

상기 SiOxNy 박막은 3∼8nm의 두께, SiOx 박막은 85∼120nm의 두께를 갖는다. The SiO x N y film is the thickness of the 3~8nm, SiO x thin film has a thickness of 85~120nm.

본 발명에 따른 유기광전자소자의 봉지필름 제조방법은 플렉서블 기판을 준비하는 제 1 단계; 플렉서블 기판 양면 각각에 SiNx 박막을 적층하는 제 2 단계; SiNx 박막 상에 SiO2 졸(sol)을 딥코팅하는 제 3 단계; 플렉서블 기판을 열처리하여 SiO2 졸을 SiOx 박막으로 변환시킴과 함께 SiNx 박막과 SiOx 박막의 계면에 SiOxNy 박막을 형성시키는 제 4 단계; 제 4 단계에 의해 형성된 SiOx 박막 상에 SiNx 박막을 적층함과 함께, SiNx 박막과 제 4 단계에 의해 형성된 SiOx 박막 사이에 SiOxNy 박막이 형성되는 제 5 단계; 제 5 단계에 의해 형성된 SiNx 박막 상에 SiO2 졸(sol)을 딥코팅하는 제 6 단계; 및 플렉서블 기판을 열처리하여 제 6 단계에 의해 형성된 SiO2 졸을 SiOx 박막으로 변환시킴과 함께 SiNx 박막과 SiOx 박막의 계면에 SiOxNy 박막을 형성시키는 제 7 단계;를 포함하여 이루어지며, 제조된 봉지필름의 수분투습율(WVTR, water vapor transmission rate)가 2x10-6g/m2/day 이하인 것을 특징으로 한다. The method for manufacturing an encapsulation film for an organic optoelectronic device according to the present invention comprises: a first step of preparing a flexible substrate; A second step of laminating a SiN x thin film on both surfaces of the flexible substrate; A third step of dip coating a SiO 2 sol on the SiN x thin film; A fourth step of heat-treating the flexible substrate to convert the SiO 2 sol into a SiO x thin film and forming a SiO x N y thin film at the interface between the SiN x thin film and the SiO x thin film; The step of claim 5 is also laminated with a SiN x thin film on the SiO x film formed by the step 4, the SiO x N y thin film formed between the SiO x film formed by the SiN x film and the fourth step; A sixth step of dip coating a SiO 2 sol on the SiN x thin film formed by the fifth step; And a seventh step of heat-treating the flexible substrate to convert the SiO 2 sol formed by the sixth step into a SiO x thin film and forming a SiO x N y thin film at the interface between the SiN x thin film and the SiO x thin film. It is characterized in that the water vapor transmission rate (WVTR) of the produced encapsulation film is 2x10 -6 g/m 2 /day or less.

상기 제 3 단계 및 제 6 단계에서, SiO2 졸(sol)의 코팅두께는 85∼120nm이다. 또한, 상기 제 4 단계, 제 5 단계 및 제 7 단계에서, 형성된 SiOxNy 박막의 두께는 3∼8nm이다. In the third and sixth steps, the coating thickness of the SiO 2 sol is 85 to 120 nm. In addition, in the fourth step, the fifth step, and the seventh step, the thickness of the formed SiO x N y thin film is 3 to 8 nm.

상기 제 4 단계 및 제 7 단계에서, 열처리온도는 110∼130℃이고, 열처리시간은 8∼12시간이다. 또한, 상기 제 3 단계 및 제 6 단계에서, SiO2 졸(sol)의 딥코팅시 인출속도(withdrawal speed)는 1∼3mm/s이다. In the fourth and seventh steps, the heat treatment temperature is 110 to 130°C, and the heat treatment time is 8 to 12 hours. In addition, in the third and sixth steps, the withdrawal speed during dip coating of the SiO 2 sol is 1 to 3 mm/s.

상기 제 4 단계, 제 5 단계 및 제 7 단계에서, SiNx 박막과 SiOx 박막의 계면에 SiNx과 SiOx의 고상확산에 의해 SiOxNy 박막이 형성된다. 또한, 상기 제 2 단계 및 제 5 단계에서, PECVD공정에 의해 SiOx 박막 상에 SiNx 박막이 적층되며, PECVD공정 진행시 공정온도는 110∼130℃이다.In the fourth step, the fifth step and the seventh step, is formed with a SiN x film and the SiO x thin film interface in SiN x and SiO x N y film by solid phase diffusion SiO x on the. In addition, in the second and fifth steps, a SiN x thin film is deposited on the SiO x thin film by a PECVD process, and the process temperature is 110 to 130°C during the PECVD process.

본 발명에 따른 유기광전자소자의 봉지필름 및 그 제조방법은 다음과 같은 효과가 있다. The sealing film of an organic optoelectronic device and a method of manufacturing the same according to the present invention have the following effects.

2x10-6g/m2/day 이하의 매우 우수한 수분투습율(WVTR)를 갖는 봉지필름을 제조할 수 있다. 또한, 고가의 유기막을 SiO2 졸(sol)로 대체할 수 있어 제조비용을 절감할 수 있다. 이와 함께, 플렉서블 기판 상에 SiNx 박막, SiOxNy 박막, SiOx 박막이 순차적으로 적층된 3중층 구조의 박막 적층체를 2회 반복 적층함을 통해 봉지필름이 완성됨에 따라, 제조공정을 간략화할 수 있다.It is possible to prepare an encapsulation film having a very excellent moisture permeability (WVTR) of 2x10 -6 g/m 2 /day or less. In addition, since an expensive organic film can be replaced with SiO 2 sol, manufacturing cost can be reduced. In addition, as the encapsulation film is completed, the manufacturing process is completed by repeatedly laminating a three-layered thin film stack in which a SiN x thin film, a SiO x N y thin film, and a SiO x thin film are sequentially stacked on the flexible substrate. Can be simplified.

도 1은 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름의 구성도.
도 2는 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름의 제조방법을 설명하기 위한 순서도.
도 3a 내지 도 3e는 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름의 제조방법을 설명하기 위한 공정단면도.
도 4a는 실험예 1을 통해 제조된 봉지필름의 SEM 사진.
도 4b는 실험예 1을 통해 제조된 봉지필름의 TEM 사진.
도 5a는 실험예 1을 통해 제조된 봉지필름의 SEM 사진.
도 5b는 실험예 1을 통해 제조된 봉지필름의 TEM 사진.
도 6은 실험예 1 및 실험예 2를 통해 제조된 봉지필름 각각에 대한 원자간력현미경(AFM) 사진.
도 7a은 실험예 1 및 실험예 2를 통해 제조된 봉지필름에 대한 광투과 시뮬레이션 결과.
도 7b는 실험예 1 및 실험예 2를 통해 제조된 봉지필름에 대한 실제 광투과 측정 결과.
도 8a 내지 도 8d는 서로 다른 딥코팅 인출속도가 적용된 실험예 1에 따른 봉지필름의 SEM 사진.
도 9는 서로 다른 딥코팅 인출속도가 적용된 실험예 1에 따른 봉지필름의 Aquatran2 수분투습율 결과.
도 10은 인출속도 1mm/s, 3mm/s가 적용된 실험예 1에 따른 봉지필름의 삼중수소법 수분투습율 결과.
도 11은 서로 다른 열처리시간이 적용된 실험예 1에 따른 봉지필름의 삼중수소법 수분투습율 결과.
도 12는 실험예 1 및 실험예 2에 따른 봉지필름의 삼중수소법 수분투습율 결과.
도 13은 실험예 1 및 실험예 2에 따른 봉지필름이 적용된 양자점 발광다이오드의 반감수명 측정 결과.
1 is a configuration diagram of an encapsulation film of an organic optoelectronic device according to an embodiment of the present invention.
2 is a flow chart illustrating a method of manufacturing an encapsulation film for an organic optoelectronic device according to an embodiment of the present invention.
3A to 3E are cross-sectional views illustrating a method of manufacturing an encapsulation film for an organic optoelectronic device according to an embodiment of the present invention.
Figure 4a is a SEM photograph of the encapsulation film prepared through Experimental Example 1.
Figure 4b is a TEM photograph of the encapsulation film prepared through Experimental Example 1.
Figure 5a is a SEM photograph of the encapsulation film prepared through Experimental Example 1.
Figure 5b is a TEM photograph of the encapsulation film prepared through Experimental Example 1.
6 is an atomic force microscope (AFM) photograph of each of the encapsulation films prepared through Experimental Example 1 and Experimental Example 2. FIG.
7A is a light transmission simulation result for the encapsulation film prepared through Experimental Example 1 and Experimental Example 2. FIG.
7B is an actual light transmission measurement result for the encapsulation film prepared through Experimental Example 1 and Experimental Example 2. FIG.
8A to 8D are SEM photographs of the encapsulation film according to Experimental Example 1 to which different dip coating withdrawal speeds were applied.
9 is a result of Aquatran2 moisture permeability of the encapsulation film according to Experimental Example 1 to which different dip coating withdrawal speeds were applied.
10 is a tritium method moisture permeability result of the encapsulation film according to Experimental Example 1 to which the drawing speed 1mm/s and 3mm/s were applied.
11 is a tritium method moisture permeability result of the encapsulation film according to Experimental Example 1 to which different heat treatment times were applied.
12 is a tritium method moisture permeability results of the encapsulation film according to Experimental Example 1 and Experimental Example 2.
13 is a half-life measurement result of the quantum dot light emitting diode to which the encapsulation film according to Experimental Example 1 and Experimental Example 2 was applied.

본 발명은 유기광전자소자의 봉지필름에 관한 기술을 제시한다. The present invention proposes a technology for an organic optoelectronic device encapsulation film.

본 발명에서, 유기광전자소자는 앞서 '발명의 배경이 되는 기술'에서 언급한 바와 같이 유기발광다이오드(OLED), 양자점 발광다이오드(QLED), 유기태양전지 등의 유연성을 갖는 광전자소자를 일컫는다. In the present invention, the organic optoelectronic device refers to an optoelectronic device having flexibility, such as an organic light-emitting diode (OLED), a quantum dot light-emitting diode (QLED), and an organic solar cell, as mentioned above in'Technology behind the invention'.

본 발명에 따른 유기광전자소자의 봉지필름(encapsulation thin film)은 유기광전자소자를 봉지하여 유기광전자소자의 기판 상에 형성된 제반 구성물질 예를 들어, 광흡수층, 반도체층 등을 외부 환경과 격리시키는 역할을 하며, 특히 외부의 수분이 유기광전자소자 내부로 침투하는 것을 방지하는 역할을 한다. The encapsulation thin film of the organic optoelectronic device according to the present invention serves to encapsulate the organic optoelectronic device to isolate all constituent materials, such as light absorbing layer, semiconductor layer, etc., formed on the substrate of the organic optoelectronic device from the external environment. In particular, it plays a role of preventing external moisture from penetrating into the organic optoelectronic device.

본 발명에 따른 봉지필름은 광흡수층, 반도체층 등의 구성물질 증착공정이 완료된 유기광전자소자가 준비된 상태에서 구성물질을 모두 봉지하는 형태로 유기광전자소자의 기판 상에 에폭시(epoxy) 등을 매개로 접착될 수 있다. The encapsulation film according to the present invention is a form of encapsulating all of the constituent materials in a state in which an organic optoelectronic device having completed the constituent material deposition process such as a light absorbing layer and a semiconductor layer is prepared. Can be glued.

본 발명에 따른 봉지필름은 상술한 바와 같이 유연성을 갖는 유기광전자소자에 적용되며, 이에 따라 본 발명에 따른 봉지필름 역시 유연성을 구비해야 하며, 유연성을 구비하기 위해 본 발명에 따른 봉지필름은 플렉서블 기판을 모체(base substrate)로 한다. The encapsulation film according to the present invention is applied to an organic optoelectronic device having flexibility as described above, and accordingly, the encapsulation film according to the present invention must also have flexibility, and in order to have flexibility, the encapsulation film according to the present invention is a flexible substrate. Is the base substrate.

앞서 '발명의 배경이 되는 기술'에서 유기광전자소자의 봉지막으로 양산검증이 된 기술은 무기막과 유기막을 반복 적층하여 봉지막을 완성하는 Vitex system사의 Barix 공법이 현재까지 유일함을 언급한 바 있다. 그러나, Barix 공법은 적층 공정의 4회 이상 반복됨에 따라 공정시간 및 비용이 증가하고, 고가의 유기물을 사용함과 함께 유기물의 선택에 제한이 있다. Previously, it was mentioned that the only technology that has been mass-produced as an encapsulation film of an organic optoelectronic device in'Technology behind the Invention' is Vitex System's Barix method, which completes the encapsulation film by repeatedly stacking an inorganic film and an organic film. . However, the Barix method increases the process time and cost as the lamination process is repeated four or more times, and there is a limitation in the selection of organic materials while using expensive organic materials.

본 발명은 고분자기판의 양면 상에 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막이 2회 반복 적층된 봉지필름을 제시한다. SiNx 박막 상에 SiO2 졸(silica sol)이 코팅되고, 열처리를 통해 SiO2 졸이 SiOx 박막으로 변환됨과 함께 SiNx 박막과 SiOx 박막의 계면에 SiOxNy 박막이 형성됨을 유도하며, 이와 같은 공정을 2회 반복 실시함으로써 본 발명에 따른 봉지필름의 제조가 가능하다. The present invention proposes an encapsulation film in which a three-layered thin film in which SiN x , SiO x N y , and SiO x are sequentially stacked on both sides of a polymer substrate is repeatedly stacked twice. SiO 2 sol is coated on the SiN x thin film , and the SiO 2 sol is converted into a SiO x thin film through heat treatment, and a SiO x N y thin film is formed at the interface between the SiN x thin film and the SiO x thin film. , By repeating this process twice, it is possible to manufacture the encapsulation film according to the present invention.

SiNx 박막 상에 코팅되는 SiO2 졸의 일부는 SiNx 박막의 핀홀(pin hole)에 채워져 수분침투 경로를 차단하는데, 이와 같은 역할은 Barix 공법의 유기막에 대응되는 것이다. 즉, Barix 공법에서의 유기막 역할을 SiO2 졸로 대체함에 따라 제조비용을 절감할 수 있다. 또한, Barix 공법이 유기막과 무기막이 4회 이상 반복 적층됨에 반해, 본 발명에 따른 봉지필름은 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막이 2회 반복 적층되는 구조임에 따라, 공정시간을 단축할 수 있다. Some of the SiO 2 sol is coated on a SiN x thin film is filled in the pin hole (pin hole) of a SiN x thin film blocks moisture penetration path, this role is corresponding to the organic film of Barix method. That is, by replacing the role of the organic film in the Barix method with SiO 2 sol, it is possible to reduce the manufacturing cost. In addition, while the Barix method is repeatedly stacked four or more times in an organic film and an inorganic film, the encapsulation film according to the present invention is a three-layered thin film in which SiN x , SiO x N y , and SiO x are sequentially stacked twice. Due to its structure, it is possible to shorten the process time.

한편, 본 발명에 따른 봉지필름의 내수분침투 특성에 가장 중요한 영향을 미치는 것은 SiNx 박막과 SiOx 박막의 계면에 형성되는 SiOxNy 박막이다. SiOxNy 박막은 SiNx 박막과 SiOx 박막의 계면에서 SiNx과 SiOx의 고상확산(solid state diffusion)에 의해 형성된다. SiOxNy 박막의 조직 구조가 치밀해질수록 내수분침투 특성이 향상되는데, SiOxNy 박막의 내수분침투 특성은 SiO2 졸의 코팅두께 및 SiOxNy 박막 형성을 위한 열처리시 열처리조건에 의해 결정된다. 여기서, SiO2 졸의 코팅두께는 SiO2 졸의 딥코팅시 인출속도(withdrawal speed of dip coating) 제어를 통해 조절할 수 있다. Meanwhile, the most important influence on the moisture permeation resistance of the encapsulation film according to the present invention is a SiO x N y thin film formed at the interface between the SiN x thin film and the SiO x thin film. SiO x N y film is formed of SiN x and SiO x solid phase diffusion (solid state diffusion) at the interface between the SiN x film and the SiO x thin film. SiO x N y As be a tissue structure of a thin film compact is improved the moisture permeation properties, SiO x N y thin film moisture permeation properties are the heat treatment when the heat treatment conditions for the coating thickness and SiO x N y thin film formed of SiO 2 sol Is determined by Here, the coating thickness of the SiO 2 sol may be adjusted via a take-off speed (withdrawal speed of dip coating) when dip coating of SiO 2 sol control.

본 발명은 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막이 2회 반복 적층된 봉지필름을 형성함에 있어서, SiO2 졸의 딥코팅시 코팅두께 및 SiOxNy 박막 형성을 위한 열처리시 열처리조건을 최적화함으로써 봉지필름의 내수분침투 특성을 극대화시키는 기술을 제시한다. The invention SiN x, SiO x N y, SiO x is in as the thin film of the tri-layered structure sequentially stacked to form a two times a laminated sealant film, SiO 2 sol dip coating thickness and SiO x N y during the coating of the We propose a technology that maximizes the moisture permeation resistance of the encapsulation film by optimizing the heat treatment conditions during heat treatment for thin film formation.

본 발명에 따르면, SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막이 2회 반복 적층된 봉지필름의 수분투습율(WVTR, water vapor transmission rate)는 2x10-6g/m2/day 이하이다. 이러한 수분투습율 특성을 갖는 봉지필름 제조시, SiO2 졸의 딥코팅시 최적 코팅두께는 85∼120nm이며, SiOxNy 박막 형성을 위한 열처리시 최적 열처리조건은 110∼130℃에서의 8∼12시간이다. SiO2 졸의 코팅두께 85∼120nm는 SiO2 졸의 딥코팅시 인출속도를 1∼3mm/s로 조절함으로써 구현할 수 있다. According to the present invention, the water vapor transmission rate (WVTR, water vapor transmission rate) of the encapsulation film in which a three-layered thin film in which SiN x , SiO x N y , and SiO x are sequentially stacked twice is repeatedly stacked is 2x10 -6 g /m 2 /day or less. When manufacturing an encapsulation film having such moisture permeability characteristics, the optimum coating thickness for dip coating of SiO 2 sol is 85 to 120 nm, and the optimum heat treatment condition for heat treatment for forming a SiO x N y thin film is 8 to at 110 to 130°C. It's 12 hours. 85~120nm thick coating of SiO 2 sol may be achieved by controlling the take-off rate at the time of dip coating of SiO 2 sol in 1~3mm / s.

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름 및 그 제조방법을 상세히 설명하기로 한다. Hereinafter, an encapsulation film of an organic optoelectronic device and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the drawings.

도 1을 참조하면, 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름은 플렉서블 기판(flexible substrate)(10)을 구비한다. 상기 플렉서블 기판(10)은 유연성을 갖는 기판으로서 PET(polyethylene terephthalate)와 같은 고분자물질로 구성할 수 있다. Referring to FIG. 1, an encapsulation film of an organic optoelectronic device according to an embodiment of the present invention includes a flexible substrate 10. The flexible substrate 10 is a flexible substrate and may be made of a polymer material such as polyethylene terephthalate (PET).

상기 플렉서블 기판(10)의 양면 상에는 SiNx, SiOxNy, SiOx가 순차적으로 적층된 3중층 구조의 박막 적층체가 2회 반복 적층되어 구비된다. 구체적으로, 플렉서블 기판(10)의 일면 상에 SiNx 박막(21), SiOxNy 박막(23), SiOx 박막(22)이 순차적으로 적층되어 있으며, 이와 같은 SiNx 박막(21), SiOxNy 박막(23) 및 SiOx 박막(22)으로 이루어진 3중층 구조의 박막 적층체(20)가 2회 반복 적층된 형태를 이룬다. 플렉서블 기판(10)의 다른 일면 상에도 플렉서블 기판(10)의 일면과 동일하게 상기 3중층 구조의 박막 적층체(20)가 2회 반복 적층되어 구비된다. On both sides of the flexible substrate 10, a three-layered thin film laminate in which SiN x , SiO x N y , and SiO x are sequentially stacked is repeatedly stacked twice. Specifically, on one surface of the flexible substrate 10, a SiN x thin film 21, a SiO x N y thin film 23, and a SiO x thin film 22 are sequentially stacked, and such a SiN x thin film 21, SiO x N y thin film 23 and the SiO x thin film (22) 3-layer thin film multilayer body 20 of the structure composed of the form of two times the laminated form. Also on the other surface of the flexible substrate 10, the thin film stack 20 having the three-layer structure is repeatedly stacked twice, similarly to the one surface of the flexible substrate 10.

SiNx 박막(21), SiOxNy 박막(23) 및 SiOx 박막(22)으로 이루어진 3중층 구조의 박막 적층체(20)에 있어서, SiNx 박막(21)은 약 400nm, SiOxNy 박막(23)은 3∼8nm, SiOx 박막(22)은 85∼120nm의 두께를 갖는다. SiNx 박막(21)과 SiOx 박막(22)의 계면에 형성된 SiOxNy 박막(23)은 치밀한 조직구조를 구비하여 봉지필름의 내수분침투 특성에 결정적인 역할을 하며, SiOxNy 박막(23)은 치밀한 조직구조는 후술하는 본 발명의 일 실시예에 따른 유기광전자소자의 제조방법에서 기술되는 SiO2 졸의 딥코팅시 최적 코팅두께 및 SiOxNy 박막(23) 형성을 위한 열처리시 최적 열처리조건에 의해 결정된다. 또한, SiOx 박막(22)은 SiO2 졸(silica sol)이 열처리에 의해 변환된 것이며, SiOxNy 박막(23)은 열처리시 SiNx와 SiOx의 고상확산에 의해 형성된다. In the thin film stack 20 of a three-layer structure consisting of a SiN x thin film 21, a SiO x N y thin film 23 and a SiO x thin film 22, the SiN x thin film 21 is about 400 nm, SiO x N The y thin film 23 has a thickness of 3 to 8 nm, and the SiO x thin film 22 has a thickness of 85 to 120 nm. SiN x films 21 and the interface between SiO x N y thin film 23 formed on the SiO x thin film 22 plays a decisive role in the moisture permeation properties of the sealing film provided with a dense tissue structures, SiO x N y films (23) is a heat treatment for forming an optimum coating thickness and SiO x N y thin film 23 when dip coating of SiO 2 sol described in the method for manufacturing an organic optoelectronic device according to an embodiment of the present invention to be described later. Is determined by the optimum heat treatment conditions. In addition, the SiO x thin film 22 is converted from SiO 2 sol by heat treatment, and the SiO x N y thin film 23 is formed by solid phase diffusion of SiN x and SiO x during heat treatment.

이와 함께, 첫번째 박막 적층체와 두번째 박막 적층체 사이에 SiOxNy 박막(23)이 구비된다. 정확히는, 첫번째 박막 적층체의 SiOx 박막(22)과 두번째 박막 적층체의 SiNx 박막(21) 사이에 SiOxNy 박막(23)이 형성되어 구비된다. 첫번째 박막 적층체의 SiOx 박막(22)과 두번째 박막 적층체의 SiNx 박막(21) 사이에 구비되는 SiOxNy 박막(23)은 두번째 박막 적층체의 SiNx 박막(21) 증착시 SiNx와 SiOx의 고상확산에 의해 형성된다. In addition, a SiO x Ny thin film 23 is provided between the first thin film stack and the second thin film stack. Precisely, between the first thin-film laminate of the SiO x thin film 22 and the second thin film SiN x thin film 21 of the laminate is provided with a SiO x N y thin film 23 is formed. The SiO x N y thin film 23 provided between the SiO x thin film 22 of the first thin film stack and the SiN x thin film 21 of the second thin film stack is SiN x N y thin film 23 of the second thin film stack when the SiN x thin film 21 is deposited. It is formed by solid phase diffusion of x and SiO x.

다음으로, 본 발명의 일 실시예에 따른 유기광전자소자의 제조방법을 설명하기로 한다. Next, a method of manufacturing an organic optoelectronic device according to an embodiment of the present invention will be described.

도 2 및 도 3a를 참조하면, 플렉서블 기판(10)을 준비한다(S201). 플렉서블 기판(10)은 유연성을 구비한 기판으로서 고분자기판으로 구성할 수 있으며, 고분자기판을 구성하는 고분자물질로는 일 실시예로 PET(polyethylene terephthalate) 등을 이용할 수 있다. 2 and 3A, a flexible substrate 10 is prepared (S201). The flexible substrate 10 may be formed of a polymer substrate as a substrate having flexibility, and as an example, polyethylene terephthalate (PET) may be used as a polymer material constituting the polymer substrate.

플렉서블 기판(10)이 준비된 상태에서, 플렉서블 기판(10)의 양면 상에 SiNx 박막(21)을 적층한다(S202)(도 3b 참조). SiNx 박막(21)은 일 실시예로, PECVD(plasma enhanced chemical vapor deposition) 방법을 이용하여 적층할 수 있다. PECVD를 이용한 SiNx 박막(21) 적층시 전구체로는 SiH4, 암모니아(NH3) 및 질소(N2)를 이용하며, 공정온도는 110∼130℃로 400nm의 두께로 증착할 수 있다. With the flexible substrate 10 prepared, SiN x thin films 21 are stacked on both surfaces of the flexible substrate 10 (S202) (see FIG. 3B). The SiN x thin film 21 may be deposited using a plasma enhanced chemical vapor deposition (PECVD) method as an example. When the SiN x thin film 21 is stacked using PECVD, SiH 4 , ammonia (NH 3 ) and nitrogen (N 2 ) are used as precursors, and the process temperature is 110 to 130°C and can be deposited to a thickness of 400 nm.

플렉서블 기판(10) 양면 상에 SiNx 박막(21)이 적층된 상태에서, 질소분위기 하에서 SiNx 박막(21) 상에 SiO2 졸(silica sol)을 딥코팅(dip coating)하여 85∼120nm의 두께로 코팅한다(S203)(도 3c 참조). SiO2 졸의 코팅두께 85∼120nm는 딥코팅시 인출속도(withdrawal speed)를 1∼3mm/s로 조절함으로써 구현할 수 있다. In a state in which SiN x thin films 21 are stacked on both sides of the flexible substrate 10 , SiO 2 sol is dip coated on the SiN x thin film 21 under a nitrogen atmosphere, It is coated with a thickness (S203) (see FIG. 3C). The coating thickness of the SiO 2 sol can be achieved by adjusting the withdrawal speed of 1 to 3 mm/s during dip coating.

SiO2 졸의 코팅두께(또는 SiO2 졸의 딥코팅시 인출속도)는 최종 완성되는 봉지필름의 내수분침투 특성에 밀접한 영향을 미친다. SiO2 졸의 코팅두께가 85∼120nm보다 작거나 큰 경우 모두 내수분침투 특성이 저하된다. 후술하는 본 발명의 실험을 통해 확인한 결과, SiO2 졸의 코팅두께가 85∼120nm(인출속도 1∼3mm/s)인 경우 수분투습율(WVTR, water vapor transmission rate)가 4.3∼5.7x10-4g/m2/day로 우수한 반면, SiO2 졸의 코팅두께가 약 40nm(인출속도 0.5mm/s)인 경우에는 수분투습율(WVTR)가 2.0x10-3g/m2/day, SiO2 졸의 코팅두께가 약 225nm(인출속도 5mm/s)인 경우에는 수분투습율(WVTR)가 1.8x10-3g/m2/day로 내수분침투 특성이 양호하지 못하다. 이는, SiO2 졸의 코팅두께가 85∼120nm보다 크면 코팅된 SiO2 졸에 균열(crack)이 발생되어 핀홀이 발생됨과 함께 SiOxNy 생성반응이 저하되며, SiO2 졸의 코팅두께가 85∼120nm보다 작으면 SiOxNy 생성을 위한 전구체가 줄어들게 되어 SiOxNy 생성반응이 저하되기 때문인 것으로 유추된다. The coating thickness of the SiO 2 sol (or take-off rate at the time of dip coating of SiO 2 sol) will have a close affect on the moisture penetration characteristics of the sealant film to be finally completed. When the coating thickness of the SiO 2 sol is less than or greater than 85 to 120 nm, the moisture permeation resistance is deteriorated. As a result of confirming through the experiment of the present invention described later, when the coating thickness of the SiO 2 sol is 85 to 120 nm (withdrawal speed 1 to 3 mm/s), the water vapor transmission rate (WVTR) is 4.3 to 5.7x10 -4 While excellent at g/m 2 /day, when the coating thickness of SiO 2 sol is about 40 nm (draw speed 0.5 mm/s), the moisture permeability (WVTR) is 2.0x10 -3 g/m 2 /day, SiO 2 When the coating thickness of the sol is about 225nm (withdrawal speed of 5mm/s), the moisture permeability (WVTR) is 1.8x10 -3 g/m 2 /day, which is not good in moisture penetration resistance. This is because the coating thickness of the SiO 2 sol is a crack (crack) occurred on the coated SiO 2 sol is greater than 85~120nm pinholes and the SiO x N y resulting reaction decreases with balsaengdoem, the coating thickness of the SiO 2 sol 85 If it is less than ∼120 nm, it is inferred that this is because the precursor for SiO x N y generation decreases and the SiO x N y generation reaction is degraded.

플렉서블 기판(10) 양면 상에 SiNx 박막(21) 및 SiO2 졸이 순차적으로 적층된 상태에서, 열처리를 진행한다. 상기 열처리를 통해 SiO2 졸은 SiOx 박막(22)으로 변환되며, SiNx와 SiOx의 계면에는 SiNx와 SiOx의 고상확산(solid state diffusion)에 의해 SiOxNy 박막(23)이 형성된다(S204)(도 3d 참조). 상기 열처리시 열처리온도는 110∼130℃이고, 열처리시간은 8∼12시간이 적용된다. 열처리온도가 110∼130℃보다 낮은 경우에도 SiOxNy 박막(23)이 형성되나 조직구조가 치밀하지 못하며, 열처리시간이 8∼12시간보다 작으면 마찬가지로 치밀한 구조의 SiOxNy 박막(23)이 생성되지 않는다. In a state in which the SiN x thin film 21 and the SiO 2 sol are sequentially stacked on both sides of the flexible substrate 10, heat treatment is performed. Through the heat-treated SiO 2 sol is converted into a SiO x thin film (22), SiN x and SiO x of the surface, the SiN x and SiO x of the solid phase diffusion (solid state diffusion) to the SiO x N y thin film 23 by the It is formed (S204) (see Fig. 3D). During the heat treatment, the heat treatment temperature is 110 to 130°C, and the heat treatment time is 8 to 12 hours. Even when the heat treatment temperature is lower than 110 to 130°C, the SiO x N y thin film 23 is formed, but the structure is not dense. If the heat treatment time is less than 8 to 12 hours, the SiO x N y thin film 23 has a similarly dense structure. ) Is not created.

이상의 공정을 통해 플렉서블 기판(10) 양면 상에 SiNx 박막(21), SiOxNy 박막(23) 및 SiOx 박막(22)이 순차적으로 적층된 3중층 구조의 박막 적층체(20)가 완성된다. 상기 3중층 구조의 박막 적층체(20)가 완성된 상태에서, 도 3e에 도시한 바와 같이 3중층 구조의 박막 적층체(20) 형성공정을 1회 더 실시하여 3중층 구조의 박막 적층체(20)가 2회 반복 적층된 구조를 완성한다(S205). Through the above process, a three-layered thin film stack 20 in which a SiN x thin film 21, a SiO x N y thin film 23 and a SiO x thin film 22 are sequentially stacked on both sides of the flexible substrate 10 is formed. It is completed. In the state where the three-layered thin film laminate 20 is completed, as shown in FIG. 3E, the process of forming the three-layered thin film laminate 20 is carried out once more to form a three-layered thin film laminate ( 20) completes the repeated stacked structure twice (S205).

두번째 박막 적층체 형성공정을 진행하는 과정에서, SiNx 박막(21) 증착시 첫번째 박막 적층체의 SiOx 박막(22)과 두번째 박막 적층체의 SiNx 박막(21) 사이에 SiOxNy 박막(23)이 형성된다. SiNx 박막(21)은 전술한 바와 같이 PECVD공정을 통해 증착되는데, 이 때 PECVD공정이 공정온도 110∼130℃ 하에서 진행됨에 따라, 두번째 박막 적층체의 SiNx 박막(21) 증착시 SiNx와 SiOx의 고상확산에 의해 SiOxNy 박막(23)이 형성된다. The second thin-film stack while going through the body formation step, SiN x thin film 21 during the deposition SiO x N y thin film between the first SiO x thin film of the thin film multilayer body 22 and the SiN x thin film 21 of the second thin film multilayer body (23) is formed. SiN x thin film 21 is deposited through the PECVD process, as described above, at this time, when, SiN x thin-film 21 deposited on the second thin film multilayer body according to the PECVD process proceeds under process temperature 110~130 ℃ SiN x, and The SiO x N y thin film 23 is formed by solid phase diffusion of SiO x.

이에 따라, 최종적으로 플렉서블 기판(10)의 양면 상에 SiNx 박막(21), SiOxNy 박막(23) 및 SiOx 박막(22)이 순차적으로 적층된 3중층 구조의 박막 적층체(20)가 2회 반복 적층된 구조가 완성되고, 첫번째 박막 적층체의 SiOx 박막(22)과 두번째 박막 적층체의 SiNx 박막(21) 사이에는 SiOxNy 박막(23)이 추가적으로 형성되며, 본 발명에 따른 유기광전자소자의 봉지필름은 플렉서블 기판(10) 상면과 하면 각각에 3개의 SiOxNy 박막(23)을 구비한다. Accordingly, finally, on both sides of the flexible substrate 10, the SiN x thin film 21, the SiO x N y thin film 23, and the SiO x thin film 22 are sequentially stacked in a three-layered thin film stack 20 ) is two times the layered structure is finished, between the first thin-film laminate of the SiO x thin film 22 and the second thin film SiN x thin film 21 of the laminated body and SiO x N y thin film 23 is additionally formed, The sealing film of the organic optoelectronic device according to the present invention includes three SiO x N y thin films 23 on the upper and lower surfaces of the flexible substrate 10, respectively.

최종 완성된 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름에 있어서, 플렉서블 기판(10)의 양면 각각에 3개의 SiOxNy 박막(23)이 존재함에 따라 봉지필름의 내수분침투 특성이 배가된다. In the final completed encapsulation film of an organic optoelectronic device according to an embodiment of the present invention, as three SiO x N y thin films 23 exist on each side of the flexible substrate 10, the moisture permeation resistance of the encapsulation film This doubles.

이상, 본 발명의 일 실시예에 따른 유기광전자소자의 봉지필름 및 그 제조방법에 대해 설명하였다. 이하에서는, 실험예를 통해 본 발명을 보다 구체적으로 설명하기로 한다.In the above, the sealing film of the organic optoelectronic device and a method of manufacturing the same according to an embodiment of the present invention have been described. Hereinafter, the present invention will be described in more detail through experimental examples.

<실험예 1 : 단일 적층체 구조의 봉지필름 제조><Experimental Example 1: Preparation of an encapsulation film having a single laminate structure>

PECVD 챔버 내에 PET기판을 장착시킨 상태에서, 챔버 내에 SiH4, NH3, N2 기체를 각각 25, 100, 380 sccm으로 주입한 후, 400W의 RF power를 인가함과 함께 430 mTorr의 공정압력을 8분간 유지시켜 PET 기판의 양면에 약 400nm 두께의 SiNx을 형성하였다. 이어, N2 분위기에서 SiO2 졸을 PET기판 양면의 SiNx 상에 딥코팅하고 오븐에서 120℃의 온도로 10시간 열처리하였다. SiO2 졸의 딥코팅시, 인출속도를 0.5mm/s, 1mm/s, 3mm/s, 5mm/s로 달리하여 SiO2 졸이 각각 약 40nm, 약 85nm, 약 117nm, 약 225nm의 두께로 코팅되도록 하였다(도 8a 내지 도 8d 참조). With the PET substrate mounted in the PECVD chamber, SiH 4 , NH 3 , and N 2 gases were injected into the chamber at 25, 100 and 380 sccm, respectively, and then 400W of RF power was applied and a process pressure of 430 mTorr was applied. By holding for 8 minutes, SiN x having a thickness of about 400 nm was formed on both sides of the PET substrate. Then, SiO 2 sol was dip-coated on SiN x on both sides of the PET substrate in an N 2 atmosphere, and heat-treated in an oven at 120° C. for 10 hours. When dip coating of a SiO 2 sol, the take-off speed of 0.5mm / s, 1mm / s, by changing to 3mm / s, 5mm / s SiO 2 sol is about 40nm, from about 85nm, about 117nm, coated to a thickness of about 225nm It was made to be (see Figs. 8A to 8D).

<실험예 2 : 이중 적층체 구조의 봉지필름 제조><Experimental Example 2: Preparation of an encapsulation film having a double layered structure>

실험예 1의 공정을 1회 더 실시하여 이중 적층체 구조의 봉지필름을 완성하였다. The process of Experimental Example 1 was carried out once more to complete the encapsulation film having a double laminate structure.

<실험예 3 : 봉지필름의 구조><Experimental Example 3: Structure of Encapsulation Film>

실험예 1 및 실험예 2를 통해 제조된 봉지필름의 구조, 두께를 확인하기 위해 SEM, TEM 측정을 실시하였다. SEM and TEM measurements were performed to confirm the structure and thickness of the encapsulation films prepared through Experimental Example 1 and Experimental Example 2.

실험예 1의 SiO2 졸이 약 117nm로 코팅된 단일 적층체 봉지필름에 대해 SEM 및 TEM 측정을 실시한 결과, 도 4a의 SEM 사진에 나타난 바와 같이 약 100nm의 SiOx 박막이 형성되어 있음을 확인할 수 있으며, 도 4b의 TEM 사진을 참조하면 SiNx 박막과 SiOx 박막의 계면에 약 4∼5nm 두께의 SiOxNy 박막이 형성되었음이 확인되었다. As a result of performing SEM and TEM measurements on the single layered encapsulation film coated with about 117 nm of the SiO 2 sol of Experimental Example 1, it can be seen that a SiO x thin film of about 100 nm was formed as shown in the SEM photograph of FIG. 4A. And, referring to the TEM photograph of FIG. 4B, it was confirmed that a SiO x N y thin film having a thickness of about 4 to 5 nm was formed at the interface between the SiN x thin film and the SiO x thin film.

또한, 실험예 2의 SiO2 졸이 약 117nm로 코팅된 이중 적층체 봉지필름에 대해 SEM 및 TEM 측정을 실시한 결과, 도 5a의 SEM 사진을 통해 SiNx 박막, SiOxNy 박막 및 SiOx 박막으로 이루어진 3중층 구조의 박막 적층체가 2회 반복하여 적층된 구조임을 확인할 수 있으며, 도 5b의 TEM 사진을 참조하면 첫번째 적층체의 SiOxNy 박막 두께가 4.16nm, 두번째 적층체의 SiOxNy 박막 두께가 4.07nm임을 확인할 수 있다. In addition, SEM and TEM measurements were performed on the double-layered encapsulation film coated with about 117 nm of the SiO 2 sol of Experimental Example 2, as a result of a SiN x thin film, a SiO x N y thin film, and a SiO x thin film through the SEM photograph of FIG. 5A. It can be seen that the three-layer structure of the thin film laminate is stacked by repeating twice, and referring to the TEM photograph of FIG. 5B, the SiO x N y thin film thickness of the first laminate is 4.16 nm, and the SiO x N of the second laminate is It can be seen that the thickness of the y thin film is 4.07 nm.

<실험예 4 : 봉지필름의 표면거칠기 특성><Experimental Example 4: Surface roughness characteristics of the encapsulation film>

실험예 1 및 실험예 2를 통해 제조된 봉지필름의 표면거칠기 특성을 살펴본 결과, 도 6에 도시한 바와 같이 실험예 1의 봉지필름의 Ra는 0.35nm, 실험예 2의 봉지필름의 Ra는 0.32nm로 모두 양호하다. As a result of examining the surface roughness characteristics of the encapsulation films prepared through Experimental Example 1 and Experimental Example 2, Ra of the encapsulation film of Experimental Example 1 was 0.35 nm, and Ra of the encapsulation film of Experimental Example 2 was 0.32, as shown in FIG. Both are good in nm.

<실험예 5 : 봉지필름의 광투과 특성><Experimental Example 5: Light transmission characteristics of the encapsulation film>

봉지필름을 구성하는 각 물질의 굴절률과 두께를 설정하기 위해서 엘립소미터(Ellipsometer)로 측정하여 맥클라우드 프로그램(Essential Macleod program)을 통해 시뮬레이션(Simulation)하였다(도 7a 참조). SiNx, SiOxNy, SiOx의 굴절률은 각각 1.77, 1.66, 1.48로 측정되었다. 시뮬레이션 결과, SiNx는 85.36%(T400-700nm)의 평균투과율을 보였으며, 실험예 1에 따른 봉지필름 및 실험예 2에 따른 봉지필름은 91.71%, 89.21%(T400-700nm)의 높은 평균 광투과율을 보였다. In order to set the refractive index and thickness of each material constituting the encapsulation film, it was measured with an ellipsometer and simulated through the Essential Macleod program (see FIG. 7A). The refractive indices of SiN x , SiO x N y , and SiO x were measured to be 1.77, 1.66 and 1.48, respectively. As a result of the simulation, SiN x showed an average transmittance of 85.36% (T 400-700nm ), and the encapsulation film according to Experimental Example 1 and the encapsulation film according to Experimental Example 2 were as high as 91.71% and 89.21% (T 400-700nm). It showed an average light transmittance.

도 7b는 실험예 1 및 실험예 2에 따른 봉지필름의 실제 광투과율을 측정한 결과이다. 도 7b를 참조하면, 도 7a에서의 시뮬레이션 결과와 같이 실험예 1 및 실험예 2에 따른 봉지필름은 각각 86.62%와 84.35%(T400-700nm) 의 높은 평균 광투과율을 나타내었다. 이는 SiNx, SiOxNy, SiOx의 굴절률 차이로 인해 반사율이 감소하여 투명도가 개선된 것으로 유추된다.Figure 7b is a result of measuring the actual light transmittance of the encapsulation film according to Experimental Example 1 and Experimental Example 2. Referring to FIG. 7B, as shown in the simulation result in FIG. 7A, the encapsulation films according to Experimental Example 1 and Experimental Example 2 exhibited high average light transmittances of 86.62% and 84.35% (T 400-700nm), respectively. It is inferred that the reflectance decreases due to the difference in refractive indices of SiN x , SiO x N y , and SiO x and thus the transparency is improved.

<실험예 6 : 봉지필름의 내수분침투 특성><Experimental Example 6: Moisture Penetration Resistance of Encapsulation Film>

실험예 1 및 실험예 2를 통해 제조된 봉지필름에 대해 Aquatran2(MOCON社)와 삼중수소법을 이용하여 수분투습율(WVTR, water vapor transmission rate)를 측정하였다. The water vapor transmission rate (WVTR, water vapor transmission rate) was measured using Aquatran2 (MOCON) and the tritium method for the encapsulation films prepared through Experimental Example 1 and Experimental Example 2.

Aquatran2(MOCON社)를 이용하여 실험예 1을 통해 제조된 봉지필름에 대해 수분투습율(WVTR)를 측정하였다. 이 때, SiO2 졸의 코팅두께가 약 40nm(인출속도 0.5mm/s), 약 85nm(인출속도 1mm/s), 약 117nm(인출속도 3mm/s), 약 225nm(인출속도 5mm/s)로 서로 다른 봉지필름 각각에 대해 수분투습율(WVTR)를 측정하였다. 측정결과, 도 9에 도시한 바와 같이 인출속도 0.5mm/s(코팅두께 약 40nm)와 인출속도 5mm/s(코팅두께 약 225nm)인 경우에는 각각 2.0x10-3g/m2/day, 1.8x10-3g/m2/day로 내수분침투 특성이 양호하지 못하였다. 반면, 인출속도 1mm/s(코팅두께 약 85nm)와 3mm/s(코팅두께 약 117nm)인 경우에는 수분투습율(WVTR)가 각각 4.3x10-4g/m2/day, 5.7x10-4g/m2/day로 우수한 내수분침투 특성을 보였다. Water moisture permeability (WVTR) was measured for the encapsulation film prepared in Experimental Example 1 using Aquatran2 (MOCON). At this time, the coating thickness of the SiO 2 sol is about 40 nm (withdrawal speed of 0.5 mm/s), about 85 nm (withdrawal speed of 1 mm/s), about 117 nm (withdrawal speed of 3 mm/s), and about 225 nm (withdrawal speed of 5 mm/s) The moisture permeability (WVTR) was measured for each of the different encapsulation films. As a result of the measurement, as shown in FIG. 9, in the case of a drawing speed of 0.5 mm/s (coating thickness of about 40 nm) and a drawing speed of 5 mm/s (coating thickness of about 225 nm), 2.0x10 -3 g/m 2 /day, 1.8, respectively. The moisture penetration resistance was not good at x10 -3 g/m 2 /day. On the other hand, in the case of withdrawal speed of 1mm/s (coating thickness about 85nm) and 3mm/s (coating thickness about 117nm), the moisture permeability (WVTR) is 4.3x10 -4 g/m 2 /day, 5.7x10 -4 g, respectively. /m 2 /day showed excellent moisture penetration resistance.

Aquatran2(MOCON社) 수분투습율 특성이 우수한 결과를 나타낸 실험예 1의 인출속도 1mm/s(코팅두께 약 85nm)와 3mm/s(코팅두께 약 117nm)에 따른 봉지필름에 대해 삼중수소법을 이용하여 수분투습율을 재차 측정하였다. 구체적으로, 물과 방사성 동위원소인 삼중수소(tritium)이 포함된 물(HTO)을 이용하여 최대 136 시간까지 상기 봉지필름의 수분투습율을 측정하였다. HTO 분자들은 봉지막을 투과하여 beta-ray detector로 운반되며, 이와 같은 측정 시스템은 약 10-7 g/m2/day의 투과율 레벨까지 측정이 가능하다.Using the tritium method for the encapsulation film according to the pullout speed of 1mm/s (coating thickness about 85nm) and 3mm/s (coating thickness about 117nm) of Experimental Example 1 showing excellent results of Aquatran2 (MOCON) moisture permeability characteristics Thus, the moisture permeability was measured again. Specifically, the moisture permeability of the encapsulation film was measured for up to 136 hours using water and water (HTO) containing tritium, which is a radioactive isotope. HTO molecules pass through the encapsulation membrane and are transported to the beta-ray detector, and such a measurement system can measure up to a transmittance level of about 10 -7 g/m 2 /day.

삼중수소법을 이용한 수분투습율 측정 결과, 도 10에 도시한 바와 같이 인출속도 1mm/s(코팅두께 약 85nm)인 실험예 1의 봉지필름은 6.46x10-5g/m2/day, 인출속도 3mm/s(코팅두께 약 117nm)인 실험예 1의 봉지필름은 6.23x10-5g/m2/day로 모두 우수한 내수분침투 특성을 나타내었다. 참고로, 삼중수소법을 이용한 수분투습율 측정의 대상인 인출속도 1mm/s, 3mm/s인 실험예 1의 봉지필름은 열처리시간이 5시간 적용된 것이다.As a result of measuring the moisture permeability using the tritium method, the sealing film of Experimental Example 1 having a drawing speed of 1 mm/s (coating thickness of about 85 nm) was 6.46×10 -5 g/m 2 /day, drawing speed as shown in FIG. The encapsulation film of Experimental Example 1 having 3mm/s (coating thickness of about 117nm) exhibited excellent moisture permeation resistance at 6.23x10 -5 g/m 2 /day. For reference, the encapsulation film of Experimental Example 1 with a pullout speed of 1 mm/s and 3 mm/s, which is the target of the moisture permeability measurement using the tritium method, was applied for 5 hours of heat treatment.

<실험예 6 : 열처리시간에 따른 내수분침투 특성><Experimental Example 6: Moisture penetration resistance according to heat treatment time>

SiO2 졸의 SiOx 박막으로의 변환 및 SiOxNy 박막 생성을 위한 열처리시 열처리시간에 따른 내수분침투 특성을 살펴보았다. In the heat treatment for the conversion of SiO 2 sol into a SiO x thin film and to generate a SiO x N y thin film, the moisture permeation resistance according to the heat treatment time was examined.

인출속도 3mm/s(코팅두께 약 117nm) 및 열처리온도 120℃이고, 열처리시간이 5시간, 10시간, 20시간으로 적용된 실험예 1의 봉지필름을 대상으로 삼중수소법을 이용하여 수분투습율(WVTR)를 측정하였다. 측정 결과, 도 11에 도시한 바와 같이 열처리시간이 5시간인 경우 수분투습율이 6.23x10-5g/m2/day이었고, 열처리시간이 20시간인 경우에는 3.5x10-4g/m2/day로 나타나 열처리시간이 5시간인 경우에 비해 내수분침투 특성이 악화됨을 확인하였다. 반면, 열처리시간이 10시간인 경우에는 수분투습율이 1.6x10-5g/m2/day로 가장 우수하였다. 이와 같은 실험결과에 근거하여, 최적 열처리시간은 8∼12시간인 것으로 판단되며, 열처리시간이 8시간보다 짧으면 치밀한 SiOxNy 박막 형성에 요구되는 화학적 반응이 충분히 진행되지 못하며, 12시간을 초과하면 SiO2 졸 및 첨가제로 투입되는 레진, 우레탄 아크릴레이트, 폴리디메틸실로산의 수축과 균열이 유발되어 SiOxNy 박막의 치밀화에 저해된다. Moisture moisture permeability (with a tritium method) for the sealing film of Experimental Example 1 with a drawing speed of 3mm/s (coating thickness of about 117nm) and a heat treatment temperature of 120°C, and heat treatment times of 5 hours, 10 hours, and 20 hours. WVTR) was measured. As a result of the measurement, as shown in FIG. 11, when the heat treatment time was 5 hours, the moisture permeability was 6.23x10 -5 g/m 2 /day, and when the heat treatment time was 20 hours, 3.5x10 -4 g/m 2 / It was confirmed that the moisture permeation resistance was deteriorated compared to the case where the heat treatment time was 5 hours. On the other hand, when the heat treatment time was 10 hours, the moisture permeability was the best as 1.6x10 -5 g/m 2 /day. Based on these experimental results, it is judged that the optimum heat treatment time is 8-12 hours, and if the heat treatment time is shorter than 8 hours, the chemical reaction required to form a dense SiO x N y thin film cannot sufficiently proceed, and exceeds 12 hours. When the SiO 2 sol and the resin, urethane acrylate, and polydimethylsiloxane introduced as additives, shrinkage and cracking are induced, which inhibits the densification of the SiO x N y thin film.

열처리시간 10시간이 적용된 실험예 1 및 실험예 2의 봉지필름에 대해 삼중수소법을 이용하여 수분투습율(WVTR)를 측정하였다. 이 때, 열처리온도는 120℃이고, 인출속도는 3mm/s(코팅두께 약 117nm)인 봉지필름을 대상으로 하였다. 측정 결과, 도 12에 도시한 바와 같이 실험예 1에 따른 봉지필름은 수분투습율이 1.6x10-5g/m2/day이었고, 실험예 2에 따른 봉지필름은 2x10-6g/m2/day로 초저(ultra low) 수분투습율을 나타내었다.The moisture permeability (WVTR) was measured using the tritium method for the encapsulation films of Experimental Example 1 and Experimental Example 2 to which a heat treatment time of 10 hours was applied. In this case, the heat treatment temperature was 120°C, and the drawing speed was 3mm/s (coating thickness of about 117nm). As a result of the measurement, as shown in FIG. 12, the encapsulation film according to Experimental Example 1 had a moisture permeability of 1.6x10 -5 g/m 2 /day, and the encapsulation film according to Experimental Example 2 was 2x10 -6 g/m 2 / It showed ultra low moisture permeability in day.

<실험예 7 : 양자점 발광다이오드의 수명특성><Experimental Example 7: Life Characteristics of Quantum Dot Light-Emitting Diode>

실험예 1 및 실험예 2를 통해 제조된 봉지필름을 양자점 발광다이오드의 봉지막으로 적용한 후, 각 양자점 발광다이오드의 수명 특성을 측정하였다. After applying the encapsulation film prepared through Experimental Example 1 and Experimental Example 2 as an encapsulation film of a quantum dot light-emitting diode, the lifespan characteristics of each quantum dot light-emitting diode were measured.

양자점 발광다이오드는 유리/ITO/ZnO nanoparticles/PEIE/CdSe-ZnS QDs/Poly-TPD+PVK/MoO3/Ag으로 구성되어 있고, ZnO nanoparticles는 전자수송층(ETL), PEIE는 전자주입층(EIL), CdSe-ZnS QDs는 녹색 발광층(EML), Poly-TPD+PVK는 정공수송층(HTL), MoO3는 정공주입층(HIL), 전극으로 Ag을 사용하였다. 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층은 모두 스핀코팅방법으로, Ag층은 진공증착 방식으로 제작하였다. Quantum dot light emitting diodes are composed of glass/ITO/ZnO nanoparticles/PEIE/CdSe-ZnS QDs/Poly-TPD+PVK/MoO 3 /Ag, ZnO nanoparticles are an electron transport layer (ETL), and PEIE is an electron injection layer (EIL). , CdSe-ZnS QDs was a green light emitting layer (EML), Poly-TPD+PVK was a hole transport layer (HTL), MoO 3 was a hole injection layer (HIL), and Ag was used as an electrode. The hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer were all produced by spin coating, and the Ag layer was produced by vacuum deposition.

실험결과의 비교를 위해 비교예 1 및 비교예 2를 준비하였다. 비교예 1은 봉지막이 없는 양자점 발광다이오드이고, 비교예 2는 유리봉지막(glass lid)이 적용된 양자점 발광다이오드이다. For comparison of the experimental results, Comparative Example 1 and Comparative Example 2 were prepared. Comparative Example 1 is a quantum dot light-emitting diode without an encapsulation film, and Comparative Example 2 is a quantum dot light-emitting diode to which a glass lid is applied.

수명 측정 실험은 전류 1.2 mA, 초기 효율 1000 nit로 진행하였다. 도 13은 양자점 발광다이오드소자의 시간에 따른 밝기감소비율을 측정하여 수명을 측정한 결과이다. 도 13을 참조하면, 봉지막이 없는 비교예 1의 경우 초기 밝기의 50%에 도달하는데 걸리는 시간(t50: 반감수명)이 약 86시간이었고, 유리봉지막이 적용된 비교예 2의 경우 반감수명이 360시간이었다. 실험예 1에 따른 봉지필름이 적용된 양자점 발광다이오드의 경우 반감수명이 305시간이었고, 실험예 2에 따른 봉지필름이 적용된 양자점 발광다이오드는 반감수명이 354시간에 달해 유리봉지막이 적용된 비교예 2의 360시간에 근접한 결과를 나타내었다.The life measurement experiment was conducted with a current of 1.2 mA and an initial efficiency of 1000 nit. 13 is a result of measuring the lifetime by measuring the brightness reduction ratio over time of the quantum dot light emitting diode device. Referring to FIG. 13, in the case of Comparative Example 1 without the encapsulation film, the time required to reach 50% of the initial brightness (t 50 : half-life) was about 86 hours, and in the case of Comparative Example 2 to which the glass encapsulation film was applied, the half-life was 360 It was time. In the case of the quantum dot light-emitting diode to which the encapsulation film according to Experimental Example 1 was applied, the half-life was 305 hours, and the half-life of the quantum dot light-emitting diode to which the encapsulation film according to Experimental Example 2 was applied reached 354 hours. The results were close to time.

10 : 플렉서블 기판 20 : 3중층 구조의 박막 적층체
21 : SiNx 박막 22a : SiO2
22 : SiOx 박막 23 : SiOxNy 박막
10: flexible substrate 20: thin film laminate having a three-layer structure
21: SiN x thin film 22a: SiO 2 sol
22: SiO x thin film 23: SiO x N y thin film

Claims (3)

플렉서블 기판; 및
상기 플렉서블 기판의 양면 각각에 형성된 3중층 구조의 박막 적층체;를 포함하여 이루어지며,
상기 3중층 구조의 박막 적층체는 SiNx 박막, SiOxNy 박막, SiOx 박막이 순차적으로 적층된 형태이며,
상기 3중층 구조의 박막 적층체가 상기 플렉서블 기판의 양면 각각에 2번 반복하여 적층되며,
첫번째 박막 적층체의 SiOx 박막과 두번째 박막 적층체의 SiNx 박막 사이에 SiOxNy 박막이 더 구비되며,
봉지필름의 수분투습율(WVTR, water vapor transmission rate)가 2x10-6g/m2/day 이하이며,
상기 3중층 구조의 박막 적층체에 구비된 SiOxNy 박막 그리고 첫번째 박막 적층체의 SiOx 박막과 두번째 박막 적층체의 SiNx 박막 사이에 구비된 SiOxNy 박막은, SiNx 박막과 SiOx 박막이 순차적으로 적층된 상태에서 기판의 열처리에 의해 SiNx와 SiOx의 고상확산에 의해 형성된 것이며,
상기 SiOxNy 박막은 3∼8nm의 두께, SiOx 박막은 85∼120nm의 두께를 갖는 것을 특징으로 하는 유기광전자소자의 봉지필름.
A flexible substrate; And
Containing a three-layer structure thin film laminate formed on each of both surfaces of the flexible substrate,
The three-layer structure of the thin film laminate is a form in which a SiN x thin film, a SiO x N y thin film, and a SiO x thin film are sequentially stacked,
The three-layered thin film laminate is repeatedly laminated twice on each of both sides of the flexible substrate,
A SiO x N y thin film is further provided between the SiO x thin film of the first thin film stack and the SiN x thin film of the second thin film stack,
The water vapor transmission rate (WVTR) of the encapsulation film is less than 2x10 -6 g/m 2 /day,
SiO x N y thin film provided between the three-layer structure of a thin film of SiO x N y having to laminate the thin film and the first thin-film laminate of the SiO x thin film and the SiN x film of the second thin film laminate, SiN x film and the SiO x is formed by solid phase diffusion of SiN x and SiO x by heat treatment of the substrate in a state in which thin films are sequentially stacked,
The SiO x N y thin film has a thickness of 3 to 8 nm, and the SiO x thin film has a thickness of 85 to 120 nm.
제 1 항에 있어서, 상기 플렉서블 기판은 고분자물질로 이루어지는 것을 특징으로 하는 유기광전자소자의 봉지필름.
The sealing film of claim 1, wherein the flexible substrate is made of a polymer material.
삭제delete
KR1020200071568A 2020-06-12 2020-06-12 Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same KR102236190B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200071568A KR102236190B1 (en) 2020-06-12 2020-06-12 Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200071568A KR102236190B1 (en) 2020-06-12 2020-06-12 Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180153881A Division KR102159993B1 (en) 2018-12-03 2018-12-03 Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20200075796A KR20200075796A (en) 2020-06-26
KR102236190B1 true KR102236190B1 (en) 2021-04-06

Family

ID=71136981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200071568A KR102236190B1 (en) 2020-06-12 2020-06-12 Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR102236190B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230035998A (en) 2021-09-06 2023-03-14 한국과학기술원 Highly bendable thin film encapsulation by modulation of thermal residual stress and method for fabricating the same
KR20230046075A (en) 2021-09-29 2023-04-05 한국과학기술연구원 Flexible transparent electrode having the excellent transmittance and improved prevention property against humidity permeability and the oxygen resistance and method for fabricating THE SAME and organic optoelectronic device using THE SAME

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767498B2 (en) 2005-08-25 2010-08-03 Vitex Systems, Inc. Encapsulated devices and method of making
KR101569406B1 (en) * 2009-08-19 2015-11-17 주성엔지니어링(주) Organic light emitting deivce and method for manufacturing the same
KR101268101B1 (en) * 2011-01-06 2013-05-29 성균관대학교산학협력단 Both side coating device for substrate and method thereof
KR101514594B1 (en) * 2011-03-25 2015-04-22 샤프 가부시키가이샤 Display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMIR MEZIANI et al., Materials Science-Poland, 34, 2016, pp. 315(2016.6.10.)*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230035998A (en) 2021-09-06 2023-03-14 한국과학기술원 Highly bendable thin film encapsulation by modulation of thermal residual stress and method for fabricating the same
KR20230046075A (en) 2021-09-29 2023-04-05 한국과학기술연구원 Flexible transparent electrode having the excellent transmittance and improved prevention property against humidity permeability and the oxygen resistance and method for fabricating THE SAME and organic optoelectronic device using THE SAME

Also Published As

Publication number Publication date
KR20200075796A (en) 2020-06-26

Similar Documents

Publication Publication Date Title
Wu et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al 2 O 3 and polymer layers
US7492091B2 (en) Diffusion barrier layer and method for manufacturing a diffusion barrier layer
TWI590503B (en) Edge barrier film for electronic devices
KR20090091556A (en) Organic/inorganic hybrid passivation layer for blocking moisture/oxygen transmission and improving gas barrier property
KR102236190B1 (en) Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same
KR101465212B1 (en) Ultra-flexible encapsulation thin-film
Chen et al. Low-temperature atomic layer deposition of Al 2 O 3/alucone nanolaminates for OLED encapsulation
CN106158901B (en) Hybrid film, preparation method thereof and flexible OLED display
EP2508339B1 (en) Barrier film and an electronic device comprising the same
US11569479B2 (en) Multilayer encapsulation, method for encapsulating and optoelectronic component
WO2019041866A1 (en) Film packaging structure and display apparatus having same
KR100615228B1 (en) Organic electroluminescent display device having improved water absorbing capacity and a method for preparing the same
CN100568580C (en) Panel display apparatus and manufacture method thereof
WO2020206980A1 (en) Flexible oled display apparatus and preparation method therefor
KR102159993B1 (en) Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same
KR20110096755A (en) Organic light emitting display device and method for fabricating the same
KR20140067079A (en) Multilayer structure offering improved impermeability to gases
EP3598502B1 (en) Package structure, display panel and display device
CN111162188A (en) Thin film packaging structure, preparation method thereof and display panel
CN108346754B (en) OLED substrate and device structure, OLED substrate and device manufacturing method
US20210114363A1 (en) Method for manufacturing hybrid moisture barrier layer
KR101083551B1 (en) Passivation thin film
KR102182521B1 (en) Barrier fabric substrate with high flexibility and manufacturing method thereof
CN112724444A (en) Ultrahigh barrier film for industrial packaging and preparation method thereof
US20230180509A1 (en) Encapsulation structure and encapsulation method for flexible organic light-emitting diode device

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant