KR102234586B1 - Method for production of siderophore using mushrooms - Google Patents

Method for production of siderophore using mushrooms Download PDF

Info

Publication number
KR102234586B1
KR102234586B1 KR1020190132158A KR20190132158A KR102234586B1 KR 102234586 B1 KR102234586 B1 KR 102234586B1 KR 1020190132158 A KR1020190132158 A KR 1020190132158A KR 20190132158 A KR20190132158 A KR 20190132158A KR 102234586 B1 KR102234586 B1 KR 102234586B1
Authority
KR
South Korea
Prior art keywords
ser
glu
pro
leu
strain
Prior art date
Application number
KR1020190132158A
Other languages
Korean (ko)
Inventor
노현수
김민식
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Priority to KR1020190132158A priority Critical patent/KR102234586B1/en
Application granted granted Critical
Publication of KR102234586B1 publication Critical patent/KR102234586B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/375Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Basidiomycetes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01012Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (1.2.1.12)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention is to solve the problem that siderophore biosynthesis is interrupted when iron ions are present in the medium of Agaricus bisporus. Transformants in which HapX genes, a transcription factor related to siderophore biosynthesis to stop expression by iron ions, are controlled by an expression promoter are produced. As a result, Agaricus bisporus transformant T2 strain has the improved production capacity of siderophore more than 10 times, regardless of the presence or absence of iron ions, compared to wild-type Agaricus bisporus.

Description

버섯에서 시데로포아를 생산하는 방법 {Method for production of siderophore using mushrooms}How to produce siderophore from mushrooms {Method for production of siderophore using mushrooms}

본 발명은 버섯에서 시데로포아 (siderophore)를 생산하는 방법에 관한 것이다.The present invention relates to a method for producing siderophores from mushrooms.

철이온 (Fe3+)은 생명체 내에서 단백질 혹은 유기성 저분자물질과 결합하여 각종 산화환원 반응에 관여하는 필수미량영양소이다. 자연환경에서 철은 생명체가 흡수하기 어려운 조건으로 존재하기 때문에, 미생물들은 철의 효과적인 흡수방법의 하나로 시데로포아 (siderophore)를 세포외로 분비하여 철이온을 흡착한 후 다시 세포내로 흡수하는 방법으로 철을 확보하는 전략을 취한다. 시데로포아는 배위결합을 통하여 금속이온과 결합하는 저분자 유기물질로서, 구조적으로 카르복실레이트류 (carboxylates), 하이드록사메이트류 (hydroxamayes), 카테콜레이트류 (catecholates) 등으로 나뉜다 (Aznar and Dellagi (2015) J. Exp. Bot. 66, 3001-2010).Iron ions (Fe 3+ ) are essential micronutrients involved in various redox reactions by binding to proteins or organic low molecular weight substances in living organisms. In the natural environment, iron exists under conditions that are difficult for living organisms to absorb. As one of the effective methods of absorbing iron, microorganisms secrete siderophores to the outside of the cell, adsorb iron ions, and then absorb iron into the cells. Take a strategy to ensure that. Sideropoa is a low-molecular organic material that binds to metal ions through coordination bonds, and is structurally divided into carboxylates, hydroxamayes, and catecholates (Aznar and Dellagi ( 2015) J. Exp. Bot. 66, 3001-2010).

한편, 시데로포아는 철이온의 흡착 기능은 다양한 분야에 응용되고 있다. 병원성 미생물의 경우 철이온의 이용능력이 병원성에 영향을 미치는데, Pseudomonas spp.가 생산하는 시데로포아인 desferol은 의약품으로 개발되어 병원성 미생물의 병원성을 약화시키기 위해 이용되고 있다 (Visca et al. The Dual Personality of Iron Chelators: Growth Inhibitors or Promoters? Antimicrob Agents Chemother. 2013;57:2432-2433). 또한, 항생제의 흡수를 방해하여 항생제 내성을 나타내는 경우 항생제를 시데로포아 결합체 형태로 처리하여 항생제 흡수를 촉진시켜 항생제 내성 미생물을 제어하려는 시도도 이루어 지고 있다. 뿐만 아니라, 시데로포아는 철이온 이외의 다른 중금속과의 결합능력이 있어서 이를 이용하여 오염수의 중금속 제거에 사용하려는 시도가 이루어 지고 있다 (Saha et al. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int. 2016;23:3984-3999). On the other hand, sideropoa has been applied in various fields for its adsorption function of iron ions. In the case of pathogenic microorganisms, the ability to use iron ions affects the pathogenicity , and desferol, a sideropoa produced by Pseudomonas spp ., has been developed as a pharmaceutical and is used to weaken the pathogenicity of pathogenic microorganisms (Visca et al. The Dual Personality of Iron Chelators: Growth Inhibitors or Promoters?Antimicrob Agents Chemother.2013;57:2432-2433). In addition, when antibiotic resistance is indicated by interfering with the absorption of antibiotics, attempts have been made to control antibiotic-resistant microorganisms by treating antibiotics in the form of sideropoa conjugates to promote antibiotic absorption. In addition, since siderophores have the ability to bind heavy metals other than iron ions, attempts have been made to use them to remove heavy metals from contaminated water (Saha et al. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int. 2016;23:3984-3999).

최근 연구결과에 따르면, 유산균인 Lactobacillus casei 가 생산하는 시데로포아인 ferrichrome이 쥐 모델시스템에서 대장암을 효과적으로 막아주는 결과가 보고되었다 (Konishi et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nature communications 2016;7:12365). 이는 그 동안 유산균이 대장암에 효과를 보여주는, 중요한 역할을 수행하는 물질이 시데로포아일 가능성을 의미한다. 시데로포아는 미생물의 종류에 따라서 다양한 구조를 가지고 있으며, 일부 주요 시데로포아의 경우 구조적인 복잡성으로 인하여 화학적 합성은 매우 어렵다.According to recent research results, it has been reported that ferrichrome, a sideropoa produced by the lactobacillus casei , effectively prevents colon cancer in a mouse model system (Konishi et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated. apoptosis.Nature communications 2016;7:12365). This means that sideropoa is a substance that plays an important role in which lactic acid bacteria have been shown to have an effect on colon cancer. Sideropoa has various structures depending on the type of microorganism, and chemical synthesis is very difficult in the case of some major sideropores due to structural complexity.

곰팡이류에서 시데로포아는 하이드록사메이트류 시데로포아인 페리크롬 (ferrichrome)과 퓨사리닌 (fusarinine)이 주종으로, 이들은 비 리보좀 펩타이드 생합성 효소 복합체 (nonribosomal peptide synthetase assembly, NRPS)의 활성을 통하여 생합성된다. Aspergillus fumigatus를 모델로 하는 생합성 경로에 따르면, 하이드록사메이트류 시데로포아는 비단백질성 아미노산인 L-오르니틴 (L-ornithine)을 전구체로 하여 생합성 된다. L-오르니틴은 SidA 유전자가 코딩하는 ornithine-N5-monooxygenase에 의하여 N5-hydroxyornithine 으로 전환되고, N5-hydroxyornithine 는 N-acyltransferase류 효소 SidF 및 SidL 활성에 의하여 각각 N5-acylation되고, 이들이 SidD, SidC NRPS 활성을 통하여 각각 fusarinine C와 ferrichrome이 생합성된다. 버섯류 중에서는 양송이버섯에서 Aspergillus 등 자낭균에서와 마찬가지로 ferrichrome 과 fusarinine 등 하이드록사메이트류 시데로포아의 존재가 밝혀졌다 (Eng-Wilmot et al. 1992).In fungi, sideropoa is mainly composed of hydroxamate sideropoa, ferrichrome and fusarinine, which are biosynthesized through the activity of nonribosomal peptide synthetase assembly (NRPS). do. According to the biosynthetic pathway modeled on Aspergillus fumigatus, hydroxamates sideropoa are biosynthesized using L-ornithine, a non-proteinaceous amino acid, as a precursor. L-ornithine is converted to N5-hydroxyornithine by the ornithine-N5-monooxygenase encoded by the SidA gene, and N5-hydroxyornithine is N5-acylated by the activities of the N-acyltransferase enzymes SidF and SidL, respectively, and these are SidD and SidC NRPS. Through activity, fusarinine C and ferrichrome are biosynthesized, respectively. Among the mushrooms, the presence of hydroxamate sideropoa such as ferrichrome and fusarinine was found in the mushrooms, as in Aspergillus and other aspergillus (Eng-Wilmot et al. 1992).

상기한 문헌 연구를 통하여 자낭균에서 Sid 유전자와 전사인자들이 시데로포아의 생합성에 관여하는 것으로 밝혀졌으나, 담자균인 식용버섯에서는 관련 연구가 전무하다. Through the above literature studies, it was found that the Sid gene and transcription factors are involved in the biosynthesis of sideropoa in Ascythemia, but there are no related studies in the basidiomycete edible mushroom.

따라서, 본 발명은 식용버섯인 양송이버섯에서 시데로포아를 고농도 생산하기 위하여, 담자균내에 시데로포아 생합성에 관여하는 유전자들을 발굴하였고, 이들 중 시데로포아 생합성을 결정하는 유전자를 결정하였으며, 이를 통하여 HapX 유전자의 동종 유전자 (homologous gene), AbHapX가 시데로포아 생합성에 결정적인 조절인자임을 밝혔다. 한편, 양송이버섯 AbHapX는 철의 결핍조건에서만 발현되므로 배지 중 철이온이 존재하는 경우 HapX의 발현이 억제되었다. 때문에 버섯균의 배양을 통한 시데로포아의 생산을 위해서는 철이온이 결핍된 최소배지를 사용해야한다. 반면 최소배지를 사용하는 경우 버섯균의 성장이 극히 저해되어 목표하는 시데로포아의 고농도 생산을 달성하기 힘들게 된다.Accordingly, the present invention discovered genes involved in the biosynthesis of sideropoa in Basidiomycetes in order to produce a high concentration of sideropoa in the edible mushroom mushroom, and the genes that determine sideropoa biosynthesis were determined, through which It was revealed that AbHapX, a homologous gene of the HapX gene, is a crucial regulator of sideropore biosynthesis. On the other hand, the mushroom AbHapX was expressed only under iron-deficient conditions, so the presence of iron ions in the medium inhibited HapX expression. Therefore, for the production of sideropoa through cultivation of mushroom bacteria, a minimal medium deficient in iron ions must be used. On the other hand, when the minimal medium is used, the growth of mushroom fungi is extremely inhibited, making it difficult to achieve the high-concentration production of the targeted sideropoa.

이러한 문제를 해결하기 위하여 본 발명에서는 HapX 유전자 상시발현을 통하여 철이온의 존재시에도 시데로포아가 과량생산되는 형질전환체를 통하여 시데로포아 과량생산을 시도하였고, 통상적인 복합영양배지 조건에서도 시데로포아를 대량생산하는 버섯형질전환체를 제작하여 본 발명을 완성하였다.In order to solve this problem, in the present invention, through the constant expression of the HapX gene, excessive production of sideropoa was attempted through a transformant in which sideropoa is overproduced even in the presence of iron ions. The present invention was completed by producing a mushroom transformant that mass-produces lofoa.

본 발명은 통상적인 복합영양배지 조건에서도 시데로포아를 대량생산하는 버섯형질전환체를 제공하는 것을 목적으로 하며, 이를 통하여 시데로포아를 대량 생산하는 방법을 제공한다. An object of the present invention is to provide a mushroom transformant that mass-produces sideropoa even under conventional complex nutrient medium conditions, and provides a method for mass-producing sideropoa through this.

상기한 과제를 해결하기 위하여, 본 발명은 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터를 제공한다.In order to solve the above problems, the present invention provides a recombinant vector having enhanced siderophore production capacity including a glyceraldehyde phosphate dehydrogenase (GPD) promoter and an AbHapX gene operably linked to the promoter.

본 발명의 일 실시예에 있어서, “GPD 프로모터”는 서열번호 3으로 표시되고, “AbHapX 유전자”는 서열번호 4로 표시되는 것을 특징으로 할 수 있다.In one embodiment of the present invention, the "GPD promoter" may be represented by SEQ ID NO: 3, and the "AbHapX gene" may be represented by SEQ ID NO: 4.

또한, 본 발명은 ‘GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터’가 형질도입된 시데로포아 생산능이 강화된 균주를 제공한다.In addition, the present invention is a'GPD (glyceraldehyde phosphate dehydrogenase) promoter and a siderophore (siderophore)-producing ability enhanced recombinant vector containing the AbHapX gene operably linked to the promoter' transduced siderophore production capacity is enhanced. Strains are provided.

본 발명의 일 실시예에 있어서, “벡터가 형질도입된 시데로포아 생산능이 강화된 균주”는 아그로박테리움 투메파키엔스 AGL-1 (Agrobacterium tumefaciens AGL-1) 균주인 것을 특징으로 할 수 있다.In one embodiment of the present invention, the "vector-transduced siderophore-producing strain" may be characterized in that it is an Agrobacterium tumefaciens AGL-1 (Agrobacterium tumefaciens AGL-1) strain.

또한, 본 발명은 기탁번호 KCTC18789P된, 시데로포아 생산능이 강화된 신규 아가리쿠스 비스포루스 (Agaricus bisporus) 균주를 제공한다.In addition, the present invention provides a novel Agaricus bisporus (Agaricus bisporus) strain with accession number KCTC18789P, enhanced siderophore production ability.

본 발명의 일 실시예에 있어서, “아가리쿠스 비스포루스 균주”는 철이온 (Fe3+) 결합능력이 증가한 것을 특징으로 할 수 있다.In one embodiment of the present invention, the "Agaricus bisporus strain" may be characterized by an increased iron ion (Fe 3+) binding ability.

본 발명의 일 실시예에 있어서, “아가리쿠스 비스포루스 균주”는 철이온 (Fe3+)의 존재 유무와 관계없이 6000 mAU 내지 6500 mAU의 시데로포아가 생산되는 것을 특징으로으로 할 수 있다.In an embodiment of the present invention, the "Agaricus bisporus strain" may be characterized in that 6000 mAU to 6500 mAU of sideropoa is produced regardless of the presence or absence of iron ions (Fe 3+ ).

또한, 본 발명은 ‘GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터’가 형질도입된 ‘시데로포아 생산능이 강화된 아그로박테리움 투메파키엔스 AGL-1 (Agrobacterium tumefaciens AGL-1) 균주’가 도입된 시데로포아 생산능이 강화된 양송이버섯을 제공한다.In addition, the present invention is a'siderophore-producing ability-enhanced recombinant vector including a GPD (glyceraldehyde phosphate dehydrogenase) promoter and AbHapX gene operably linked to the promoter'transduced'siderophore-producing ability is enhanced. Agrobacterium tumefaciens AGL-1 (Agrobacterium tumefaciens AGL-1) strain'introduced sideropoa-producing ability is enhanced to provide a mushroom mushroom.

또한, 본 발명은 ‘GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터’를 포함하는 시데로포아 생산용 조성물을 제공한다.In addition, the present invention provides a composition for producing siderophores comprising a'GPD (glyceraldehyde phosphate dehydrogenase) promoter and a siderophore-producing ability enhanced recombinant vector comprising the AbHapX gene operably linked to the promoter' do.

또한, 본 발명은 기탁번호 KCTC18789P된, 시데로포아 생산능이 강화된 신규 아가리쿠스 비스포루스 (Agaricus bisporus) 균주, 상기 균주의 파쇄액, 상기 균주의 배양상등액, 상기균주의 자실체 또는 이의 혼합물을 포함하는 시데로포아 생산용 조성물을 제공한다. In addition, the present invention comprises a new Agaricus bisporus strain, the lysate of the strain, the culture supernatant of the strain, a fruiting body of the strain, or a mixture thereof, with accession number KCTC18789P, enhanced siderophore production capability. It provides a composition for producing sideropoa.

또한, 본 발명은 AbHapX 유전자를 과발현 시키는 단계를 포함하는 버섯에서 시데로포아를 생산하는 방법을 제공한다.In addition, the present invention provides a method for producing sideropoa in mushrooms comprising the step of overexpressing the AbHapX gene.

본 발명의 일 실시예에 있어서, “버섯”은 양송이버섯인 것을 특징으로 할 수 있다.In one embodiment of the present invention, the "mushroom" may be characterized in that it is a mushroom.

본 발명의 일 실시예에 있어서, “AbHapX 유전자를 과발현 시키는 단계”는 ‘GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터’ 또는 ‘GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터가 형질도입된 시데로포아 생산능이 강화된 균주’를 이용한 것을 특징으로 할 수 있다.In one embodiment of the present invention, the "step of overexpressing the AbHapX gene" is a recombination with enhanced siderophore production capability including a'GPD (glyceraldehyde phosphate dehydrogenase) promoter and AbHapX gene operably linked to the promoter. Vector' or'a strain with enhanced siderophore-producing ability transduced with a recombinant vector having enhanced siderophore-producing ability including a GPD (glyceraldehyde phosphate dehydrogenase) promoter and AbHapX gene operably linked to the promoter' It can be characterized by using.

본 발명은 양송이버섯이 배지 중 철이온이 존재할 시, 시데로포아 생합성이 중단되는 문제를 해결하기 위하여, 철이온에 의하여 발현이 중단되는 시데로포아 생합성관련 전사인자인 HapX 유전자가 상시 발현 프로모터에 의하여 조절되는 형질전환체를 제작하였다. 이를 통한 양송이버섯 형질전환체 균주는 야생형 양송이버섯에 비하여 철 이온의 존재유무와 관계없이 시데로포아를 10배 이상 생산하는 것을 확인하였다.In the present invention, in order to solve the problem that siderophore biosynthesis is stopped when iron ions are present in the culture medium of mushrooms, the HapX gene, a transcription factor related to sideropoa biosynthesis, whose expression is stopped by iron ions, is in a constant expression promoter. A transformant that was controlled by was produced. Through this, it was confirmed that the mutant mushroom transformant strain produced more than 10 times the siderophore, regardless of the presence or absence of iron ions, compared to the wild type mushroom mushroom.

도 1은 본 발명의 AbHapX 단백질 서열내에서 HapX가 가지는 bZip 전사인자 도메인과, 효모 Hap4 결합 단백질 결합 도메인이 존재함을 확인한 도이다.
도 2는 본 발명의 AbHapX가 담자균의 HapX와 같은 그룹으로 묶임을 곰팡이들의 HapX 단백질의 분류도로 확인한 도이다 (양송이버섯 AbHapX의 위치는 화살표로 표시).
도 3은 본 발명의 양송이버섯 재조합 벡터 pBGgHg2-hapX를 벡터맵으로 나타낸 도이다.
도 4는 본 발명의 양송이버섯 형질전환체의 제작과정을 나타낸 도이다.
도 5는 본 발명의 양송이버섯 형질전환체의 DNA 마커를 분석한 도이다.
도 6은 본 발명의 양송이버섯 형질전환체의 RT-PCR 결과를 나타낸 도이다.
도 7은 본 발명의 양송이버섯 형질전환체의 b-tubulin 대비 AbHapX, AbSidD 유전자 발현량을 분석한 도이다.
도 8은 본 발명의 양송이버섯 형질전환체의 안정성 확인한 도이다.
도 9는 본 발명의 양송이버섯 형질전환체가 생산하는 시데로포아를 HPLC로 분석한 도이다.
도 10은 본 발명의 양송이버섯 형질전환체를 크롬 아주롤 S (Chrome azurol S; CAS)를 이용하여 시데로포아 철이온 결합능력을 검증한 도이다.
1 is a diagram confirming the existence of the bZip transcription factor domain and the yeast Hap4 binding protein binding domain of HapX in the AbHapX protein sequence of the present invention.
Figure 2 is a diagram confirming the classification of HapX protein of fungi that AbHapX of the present invention is grouped into the same group as HapX of Basidiomyces (the location of AbHapX in mushrooms is indicated by an arrow).
Figure 3 is a diagram showing a vector map of the mushroom recombinant vector pBGgHg2-hapX of the present invention.
Figure 4 is a diagram showing the manufacturing process of the mushroom transformant of the present invention.
Figure 5 is a diagram showing the analysis of the DNA markers of the mutant mushroom transformant of the present invention.
6 is a diagram showing the RT-PCR results of the mushroom transformant of the present invention.
7 is a diagram showing the analysis of the expression levels of AbHapX and AbSidD genes compared to b-tubulin of the mushroom transformant of the present invention.
Figure 8 is a diagram confirming the stability of the mushroom transformant of the present invention.
9 is a diagram showing the analysis of sideropoa produced by the mushroom transformant of the present invention by HPLC.
FIG. 10 is a diagram illustrating the ability to bind sideropoa iron ions using the mutton mushroom transformant of the present invention using Chrome azurol S (CAS).

본 발명은 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a recombinant vector having enhanced siderophore production capability, including a glyceraldehyde phosphate dehydrogenase (GPD) promoter and an AbHapX gene operably linked to the promoter.

본 발명의 일 실시예에 있어서, 상기 GPD 프로모터는 서열번호 3으로 표시되고, 상기 AbHapX 유전자는 서열번호 4로 표시되는 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the GPD promoter may be represented by SEQ ID NO: 3, and the AbHapX gene may be represented by SEQ ID NO: 4, but is not limited thereto.

또한, 본 발명은 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터가 형질도입된 시데로포아 생산능이 강화된 균주를 제공하는 것을 목적으로 한다.In addition, the present invention provides a strain having enhanced siderophore-producing ability transduced with a recombinant vector having enhanced siderophore production capability including a glyceraldehyde phosphate dehydrogenase (GPD) promoter and an AbHapX gene operably linked to the promoter. It aims to provide.

본 발명의 일 실시예에 있어서, 상기 벡터가 형질도입된 시데로포아 생산능이 강화된 균주는 아그로박테리움 투메파키엔스 AGL-1 (Agrobacterium tumefaciens AGL-1) 균주인 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the vector-transduced siderophore-producing strain is enhanced may be characterized in that Agrobacterium tumefaciens AGL-1 (Agrobacterium tumefaciens AGL-1) strain, but limited thereto. It does not become.

또한, 본 발명은 기탁번호 KCTC18789P된, 시데로포아 생산능이 강화된 신규 아가리쿠스 비스포루스 (Agaricus bisporus) 균주를 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a novel Agaricus bisporus strain with accession number KCTC18789P, enhanced sideropoa production ability.

본 발명의 일 실시예에 있어서, 상기 아가리쿠스 비스포루스 균주는 철이온 (Fe3+) 결합능력이 증가한 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the Agaricus bisporus strain may be characterized by an increased iron ion (Fe 3+) binding capacity, but is not limited thereto.

본 발명의 일 실시예에 있어서, 상기 아가리쿠스 비스포루스 균주는 철이온 (Fe3+)의 존재 유무와 관계없이 6000 mAU 내지 6500 mAU의 시데로포아가 생산되는 것을 특징으로으로 할 수 있으나 이에 한정되는 것은 아니다.In an embodiment of the present invention, the Agaricus bisporus strain may be characterized in that 6000 mAU to 6500 mAU of sideropoa is produced regardless of the presence or absence of iron ions (Fe 3+ ), but limited thereto. It does not become.

또한, 본 발명은 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터가 형질도입된 시데로포아 생산능이 강화된 아그로박테리움 투메파키엔스 AGL-1 (Agrobacterium tumefaciens AGL-1) 균주가 도입된 시데로포아 생산능이 강화된 양송이버섯을 제공하는 것을 목적으로 한다.In addition, the present invention is a glyceraldehyde phosphate dehydrogenase (GPD) promoter and a recombinant vector with enhanced siderophore production capability including the AbHapX gene operably linked to the promoter. It is an object of the present invention to provide a mushroom mushroom with enhanced siderophore-producing ability into which the Agrobacterium tumefaciens AGL-1 strain is introduced.

또한, 본 발명은 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터를 포함하는 시데로포아 생산용 조성물을 제공하는 것을 목적으로 한다.In addition, the present invention provides a composition for producing siderophores comprising a recombinant vector having enhanced siderophore production capability including a GPD (glyceraldehyde phosphate dehydrogenase) promoter and an AbHapX gene operably linked to the promoter. The purpose.

또한, 본 발명은 기탁번호 KCTC18789P된, 시데로포아 생산능이 강화된 신규 아가리쿠스 비스포루스 (Agaricus bisporus) 균주, 상기 균주의 파쇄액, 상기 균주의 배양상등액, 상기균주의 자실체 또는 이의 혼합물을 포함하는 시데로포아 생산용 조성물을 제공하는 것을 목적으로 한다. In addition, the present invention comprises a new Agaricus bisporus strain, the lysate of the strain, the culture supernatant of the strain, a fruiting body of the strain, or a mixture thereof, with accession number KCTC18789P, enhanced siderophore production capability. It is an object of the present invention to provide a composition for producing sideropoa.

마지막으로, 본 발명은 AbHapX 유전자를 과발현 시키는 단계를 포함하는 버섯에서 시데로포아를 생산하는 방법을 제공하는 것을 목적으로 한다.Finally, an object of the present invention is to provide a method for producing sideropoa in mushrooms comprising the step of overexpressing the AbHapX gene.

본 발명의 일 실시예에 있어서, 상기 버섯은 양송이버섯인 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the mushroom may be characterized in that it is a mushroom mushroom, but is not limited thereto.

본 발명의 일 실시예에 있어서, 상기 AbHapX 유전자를 과발현 시키는 단계는 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터 또는 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터가 형질도입된 시데로포아 생산능이 강화된 균주를 이용한 것을 특징으로 할 수 있으나 이에 한정되는 것은 아니다.In one embodiment of the present invention, the step of overexpressing the AbHapX gene comprises a glyceraldehyde phosphate dehydrogenase (GPD) promoter and an AbHapX gene operably linked to the promoter. It is characterized by using a strain having enhanced siderophore-producing ability transduced with a recombinant vector having enhanced siderophore production capability including a glyceraldehyde phosphate dehydrogenase (GPD) promoter and AbHapX gene operably linked to the promoter. However, it is not limited thereto.

이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현 예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허 청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.Hereinafter, the present invention will be described in detail as an embodiment of the present invention with reference to the accompanying drawings. However, the following implementation examples are presented as examples of the present invention, and if it is determined that a detailed description of a technique or configuration well known to those skilled in the art may unnecessarily obscure the subject matter of the present invention, the detailed description may be omitted. However, the present invention is not limited thereby. The present invention is capable of various modifications and applications within the scope of equality interpreted from the description of the claims to be described later and therefrom.

또한, 본 명세서에서 사용되는 용어 (terminology)들은 본 발명의 바람직한 실시 예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In addition, terms used in the present specification are terms used to properly express preferred embodiments of the present invention, which may vary depending on the intention of users or operators, or customs in the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the contents throughout the present specification. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 '%'는 별도의 언급이 없는 경우, 고체/고체는 (w/w) %, 고체/액체는 (w/v) %, 그리고 액체/액체는 (v/v) %이다.Throughout this specification,'%' used to indicate the concentration of a specific substance is (w/w)% for solid/solid, (w/v)% for solid/liquid, and Liquid/liquid is (v/v) %.

일 측면에서, 본 발명은 GPD (glyceraldehyde phosphate dehydrogenase) 프로모터 및 상기 프로모터에 작동가능하게 연결된 AbHapX 유전자를 포함하는 시데로포아 (siderophore) 생산능이 강화된 재조합 벡터를 제공한다.In one aspect, the present invention provides a recombinant vector having enhanced siderophore production capability, including a glyceraldehyde phosphate dehydrogenase (GPD) promoter and an AbHapX gene operably linked to the promoter.

본 발명에서 용어, "재조합 벡터"란 적당한 숙주세포에서 목적 단백질 또는 목적 RNA을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.In the present invention, the term "recombinant vector" refers to a vector capable of expressing a protein of interest or RNA of interest in a suitable host cell, and refers to a genetic construct comprising essential regulatory elements operably linked to express a gene insert.

본 발명에서 용어, "작동가능하게 연결된 (operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결 (functional linkage)되어 있는 것을 말한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩하는 핵산서열의 발현에 영향을 미칠 수 있다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.In the present invention, the term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest to perform a general function. For example, a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect the expression of the encoding nucleic acid sequence. The operative linkage with the recombinant vector can be prepared using gene recombination techniques well known in the art, and site-specific DNA cleavage and linkage use enzymes generally known in the art.

본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al.(2001), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.The vector system of the present invention can be constructed through various methods known in the art, and specific methods for this are disclosed in Sambrook et al. (2001), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, This document is incorporated herein by reference.

이하, 실시예를 통하여 본 발명을 보다 자세히 설명한다. 다만, 상기 실시예 및 실험예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다. Hereinafter, the present invention will be described in more detail through examples. However, the above embodiments and experimental examples are presented as examples of the present invention, and if it is determined that a detailed description of a technique or configuration well known to those skilled in the art may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. And the invention is not limited thereby. The present invention is capable of various modifications and applications within the scope of equality interpreted from the description of the claims to be described later and therefrom.

준비예 1. 버섯균의 배양조건Preparation Example 1. Culture conditions of mushroom fungus

농가로부터 수집한 야생형 양송이버섯균 3종을 다양한 퇴비 추출물을 수집하여 건조시킨 후 50 g/L 로 추출하고 배양하며 성장특성을 조사하였다. 하기 표 1의 배지조성으로 고체평판배지에서 각 균주를 접종한 후, 25℃ 에서 2주간 배양하고 배양된 균사체의 지름을 측정하였다. 그 결과, 양송이버섯 NH 균주가 톱밥 추출물 3번 배지에서 가장 우수한 성장을 보였다.Three kinds of wild-type mushroom fungi collected from farms were collected and dried from various compost extracts, extracted at 50 g/L, and cultured, and their growth characteristics were investigated. After inoculating each strain in a solid plate medium with the medium composition shown in Table 1, it was cultured at 25° C. for 2 weeks, and the diameter of the cultured mycelium was measured. As a result, the Mushroom Mushroom NH strain showed the best growth in the sawdust extract No. 3 medium.

배지badge 조성Furtherance 균주별 성장 (cm)Growth by strain (cm) NHNH HOHO TMTM PDAPDA PDA 24 g/LPDA 24 g/L 1.2±0.11.2±0.1 1.4±0.11.4±0.1 1.1±0.11.1±0.1 톱밥 1Sawdust 1 PDA 24 g/L, 톱밥1 추출물 20%PDA 24 g/L, sawdust 1 extract 20% 2.2±0.22.2±0.2 2.0±0.22.0±0.2 2.4±0.12.4±0.1 톱밥 2Sawdust 2 PDA 24 g/L, 톱밥2 추출물 20%PDA 24 g/L, sawdust 2 extract 20% 2.3±0.22.3±0.2 2.4±0.22.4±0.2 2.2±0.12.2±0.1 톱밥 3Sawdust 3 PDA 24 g/L, 톱밥3 추출물 20%PDA 24 g/L, sawdust 3 extract 20% 2.5±0.22.5±0.2 2.4±0.22.4±0.2 2.4±0.22.4±0.2 볏짚Rice straw PDA 24 g/L, 볏짚 추출물 20%PDA 24 g/L, rice straw extract 20% 2.2±0.22.2±0.2 2.3±0.12.3±0.1 2.3±0.22.3±0.2 왕겨chaff PDA 24 g/L, 왕겨 추출물 20%PDA 24 g/L, rice husk extract 20% 2.1±0.12.1±0.1 2.0±0.22.0±0.2 2.0±0.12.0±0.1 밀짚straw PDA 24 g/L, 밀짚 추출물 20%PDA 24 g/L, 20% straw extract 1.7±0.21.7±0.2 1.5±0.21.5±0.2 2.4±0.12.4±0.1

준비예 2. AbHapX 및 Pgpd (GDP 프로모터)유전자의 확보Preparation Example 2. Securing AbHapX and Pgpd (GDP promoter) genes

상기 준비예 1의 양송이버섯 NH 균주로 부터 AbHapX 유전자를 확보하기 위하여, 버섯균을 potato-dextrose 액체배지 (PDB)에 2주간 배양하였다. 배양액을 원심분리하여 균사체를 확보하고, 균사체로부터 염색체 DNA를 추출하였다.In order to secure the AbHapX gene from the Mushroom NH strain of Preparation Example 1, the mushroom fungi were cultured in a potato-dextrose liquid medium (PDB) for 2 weeks. The culture medium was centrifuged to obtain mycelium, and chromosomal DNA was extracted from the mycelium.

분리된 염색체 DNA 에서 AbHapX 유전자를 얻기 위하여, 기존 곰팡이균 유래 HapX 유전자의 염기서열을 비교 분석하여 HapX 유전자의 양말단에 해당하는 염기서열을 확보하고 이를 바탕으로 프라이머 세트 (표2)를 제작하였다.In order to obtain the AbHapX gene from the isolated chromosomal DNA, the base sequences of the HapX gene derived from existing fungi were compared and analyzed to obtain nucleotide sequences corresponding to both ends of the HapX gene, and based on this, a primer set (Table 2) was prepared.

 용도purpose 서열번호Sequence number 프라이머 이름Primer name 서열 (5' to 3')Sequence (5' to 3') AbHapX 제작Made by AbHapX 1One hapX-FhapX-F GAATTCATTTAAATCATGTCCGCAGCACTCCTACGAATTCATTTAAATCATGTCCGCAGCACTCCTAC 22 hapX-RhapX-R GAATTCGGGCCCATTTGGGGAACGTCAGTCGTGAATTCGGGCCCATTTGGGGAACGTCAGTCGT

제작된 프라이머와 상기 추출한 염색체 DNA 를 이용하여 통상적인 PCR 방법으로 양송이버섯 NH 균주의 HapX 유전자를 증폭하였고 염기서열을 결정하였다. 양송이버섯 AbHapX 유전자는 총 4750bp의 길이를 가지고 있으며 (서열번호 4), 유전자내에 12개의 인트론이 포함되어 있었다. HapX 유전자의 상시발현을 위하여 하우스 키핑 (house-keeping) 유전자인 GDP (glyceraldehyde phosphate dehydrogenase)의 발현을 조절하는 GDP 프로모터 (서열번호 3; Pgpd)를 사용하기로 하고, GPD 염기서열의 upstream 264 bp를 상기한 AbHapX 유전자 확보과정과 유사한 방법으로 PCR 로 확보하였다.Using the prepared primers and the extracted chromosomal DNA, the HapX gene of the Mushroom NH strain was amplified by a conventional PCR method, and the base sequence was determined. Mushroom AbHapX gene has a total length of 4750bp (SEQ ID NO: 4), and 12 introns were included in the gene. For the constant expression of the HapX gene, a GDP promoter (SEQ ID NO: 3; Pgpd) that regulates the expression of a house-keeping gene, GDP (glyceraldehyde phosphate dehydrogenase), was used, and the upstream 264 bp of the GPD sequence was used. It was obtained by PCR in a similar manner to the above-described AbHapX gene acquisition process.

준비예 3. AbHapX 유전자의 분석Preparation Example 3. Analysis of AbHapX gene

확보된 AbHapX유전자가 코딩하는 단백질 서열을 단백질 번역툴 (https://web.expasy.org/translate/)을 이용하여 분석하여 1258개의 아미노산으로 이루어진 단백질 서열을 확보하였다 (서열번호 5). The protein sequence encoded by the obtained AbHapX gene was analyzed using a protein translation tool (https://web.expasy.org/translate/) to obtain a protein sequence consisting of 1258 amino acids (SEQ ID NO: 5).

본 단백질이 HapX 단백질인지를 확인하기 위하여, Motif Scan (https://myhits.isb-sib.ch/cgi-bin/motif_scan) 프로그램으로 단백질 서열내에서 HapX가 가지는 bZip 전사인자 도메인과, 효모 Hap4 결합 단백질 결합 도메인이 존재함을 도 1과 같이 확인하였다. 또한, 서열이 알려진 곰팡이 HapX와 비교한 결과에서도 AbHapX가 담자균의 HapX와 같은 그룹으로 묶임을 도 2와 같이 확인하였다. 상기와 같은 결과들은 AbHapX 가 양송이버섯의 HapX 임을 알려주는 것임을 알 수 있다.In order to confirm whether this protein is a HapX protein, the Motif Scan (https://myhits.isb-sib.ch/cgi-bin/motif_scan) program is used to bind the bZip transcription factor domain of HapX and the yeast Hap4 in the protein sequence. It was confirmed as shown in FIG. 1 that the protein binding domain exists. In addition, it was confirmed as shown in FIG. 2 that AbHapX is grouped into the same group as HapX of Basidiomyces in the result of comparison with the fungal HapX whose sequence is known. It can be seen that the above results indicate that AbHapX is HapX of mushroom mushrooms.

실시예 1. 재조합 벡터 제작 및 Example 1. Recombinant vector construction and Agrobacterium tumefaciens Agrobacterium tumefaciens 형질전환체 제작Transformant production

Binary vector인 pBGgHg로부터 eGFP 유전자를 제거하고, GPD promoter에 의하여 조절되는 AbHapX 유전자를 삽입하여 도 3과 같은 재조합 벡터 (pBGgHg2-hapX)를 제작하였다.The eGFP gene was removed from the binary vector pBGgHg, and the AbHapX gene regulated by the GPD promoter was inserted to prepare a recombinant vector (pBGgHg2-hapX) as shown in FIG. 3.

제작된 pBGgHg2-hapX를 Agrobacterium tumefaciens AGL-1 균주에 도입하였다. 이를 위하여 A. tumefaciens AGL-1 균주를 10 mL LB 배지에 접종하고 28℃에서 OD600nm 값이 0.5~0.8이 될 때까지 배양하고, 배양액을 13000rpm으로 10분간 원심분리하여 세균을 분리하였다. 분리된 세균을 1X TE 버퍼에 현탁하여 세척 후 다시 원심분리하였다. 분리된 A. tumefaciens AGL-1 균을 2 mL 10% LB 배지에 재현탁하고, 250 μL씩 분주하고 액체 질소에 급속 냉동 후 -70℃에 보관하였다. The prepared pBGgHg2-hapX was introduced into the Agrobacterium tumefaciens AGL-1 strain. To this end, A. tumefaciens AGL-1 strain was inoculated into 10 mL LB medium, cultured at 28° C. until an OD 600 nm value of 0.5 to 0.8, and the culture solution was centrifuged at 13000 rpm for 10 minutes to isolate the bacteria. The separated bacteria were suspended in 1X TE buffer, washed, and then centrifuged again. The isolated A. tumefaciens AGL-1 bacteria were resuspended in 2 mL 10% LB medium, dispensed at 250 μL, and rapidly frozen in liquid nitrogen and stored at -70°C.

pBGgHg2-hapX의 도입을 위하여 상기 제작된 Competent cell 에 100 ng/μL의 pBGgHg2-hapX 벡터 10 μL를 첨가하고 혼합하여 37℃ 에서 5분간 열처리 하였다. 이후, 1 mL LB 배지를 첨가하고 2시간 동안 28℃에서 배양하고, 원심분리하여 세포를 분리하였다. 분리된 세포를 200 μL의 LB 배지에 현탁하고 kanamycin 50 mg/L 포함된 LB agar배지에 도말하여 28℃에서 2일간 배양하여 pBGgHg2-hapX로 형질전환된 A. tumefaciens AGL-1 균을 확보하였다.For the introduction of pBGgHg2-hapX, 10 μL of 100 ng/μL of pBGgHg2-hapX vector was added to the prepared Competent cell, mixed, and heat-treated at 37° C. for 5 minutes. Thereafter, 1 mL LB medium was added, cultured at 28° C. for 2 hours, and centrifuged to separate cells. The isolated cells were suspended in 200 μL of LB medium, plated on LB agar medium containing 50 mg/L of kanamycin, and cultured at 28° C. for 2 days to obtain A. tumefaciens AGL-1 transformed with pBGgHg2-hapX.

실시예 2. 양송이버섯 형질전환체 제작Example 2. Preparation of Mushroom Mushroom Transformants

양송이버섯 NH 균주에 AbHapX 유전자를 도입하기 위하여 상기 형질전환된 A. tumefaciens AGL-1 균주을 100 mL LB 배지에서 OD600nm값이 0.8이 될 때까지 28℃에서 배양하였다. 배양액을 5000 rpm에서 원심분리하여 상층액을 제거하고, 침전된 균을 200 μM Acetosyringone이 포함된 100 mL AB-IM 배지 (Glucose 2 g/L, Glycerol 5 mL/L, NH4Cl 1g/L, MgSO4 0.3 g/L, KCl 0.15 g/L, CaCl2 0.01 g/L, FeSO4 0.0025 g/L, 0.5M MES buffer(pH5.3) 80mL/L)에 현탁하고 6시간동안 25℃에서 배양하였다.In order to introduce the AbHapX gene into the Mushroom NH strain, the transformed A. tumefaciens AGL-1 strain was cultured at 28° C. in 100 mL LB medium until the OD 600 nm value became 0.8. The culture medium was centrifuged at 5000 rpm to remove the supernatant, and the precipitated bacteria were collected in 100 mL AB-IM medium containing 200 μM Acetosyringone (Glucose 2 g/L, Glycerol 5 mL/L, NH 4 Cl 1 g/L, MgSO 4 0.3 g/L, KCl 0.15 g/L, CaCl 2 0.01 g/L, FeSO 4 0.0025 g/L, 0.5M MES buffer (pH5.3) 80 mL/L) and incubated at 25°C for 6 hours I did.

양송이버섯의 주름 조직을 1 mm 크기로 자르고, pBGgHg2-hapX로 형질전환된 A. tumefaciens AGL-1 배양액과 섞고 15분간 배양하였다. 배양한 주름 조직을 멸균한 3MM paper를 올린 AB-IM agar 배지 (Glucose 2 g/L, Glycerol 5 mL/L, NH4Cl 1g/L, MgSO4 0.3 g/L, KCl 0.15 g/L, CaCl2 0.01 g/L, FeSO4 0.0025 g/L, 0.5M MES buffer(pH5.3) 80 mL/L, Agar 16 g/L, Kanamycin 50 mg/L) 위에 일정한 간격으로 올린 후 3일간 25℃에서 배양하였다.The wrinkled tissue of mushrooms was cut into 1 mm size, mixed with A. tumefaciens AGL-1 culture solution transformed with pBGgHg2-hapX, and incubated for 15 minutes. AB-IM agar medium (Glucose 2 g/L, Glycerol 5 mL/L, NH 4 Cl 1 g/L, MgSO 4 0.3 g/L, KCl 0.15 g/L, CaCl 2 0.01 g/L, FeSO 4 0.0025 g/L, 0.5M MES buffer (pH5.3) 80 mL/L, Agar 16 g/L, Kanamycin 50 mg/L) at regular intervals and then at 25°C for 3 days Cultured.

배양이 끝난 양송이버섯의 주름 조직을 1차 선택 배지 (PDB 24 g/L, Compost extract 200 mL/L, Agar 16 g/L, HygromycinB 30 mg/L, Cefotaxime 150 mg/L, Ampicillin 100 mg/L, Kanamycin 100 mg/L, Chloramphenicol 25 mg/L, Gentamycin 100 mg/L)로 옮긴 후 25℃에서 10일간 배양하였다. 1차 선택 배지에서 균사가 자라 나오는 조직을 2차 선택 배지 (PDB 24 g/L, Compost extract 200 mL/L, Agar 16 g/L, HygromycinB 50 mg/L)로 옮겨 다시 25℃에서 10일간 배양하였다. 균사가 뻗어 나와 배지에 정착하는 조직의 균사를 분리하여 새로운 2차 선택 배지로 계대배양하여 형질전환체를 분리하였다 (도 4 참조).The cultivation of the wrinkled mushrooms of mushrooms is the primary selective medium (PDB 24 g/L, Compost extract 200 mL/L, Agar 16 g/L, HygromycinB 30 mg/L, Cefotaxime 150 mg/L, Ampicillin 100 mg/L) , Kanamycin 100 mg/L, Chloramphenicol 25 mg/L, Gentamycin 100 mg/L) and incubated for 10 days at 25°C. The tissue where the mycelium grows in the primary selective medium is transferred to the secondary selective medium (PDB 24 g/L, Compost extract 200 mL/L, Agar 16 g/L, HygromycinB 50 mg/L) and cultured again at 25°C for 10 days. I did. Transformants were isolated by separating the hyphae of the tissues that the hyphae protruded and settled in the medium and subcultured with a new secondary selective medium (see FIG. 4).

실시예 3. 형질전환체의 확인Example 3. Identification of transformants

상기한 Agrobacterium 을 이용한 형질전환법을 통하여 만들어진 형질전환체의 성공적인 형질전환여부를 삽입된 Pgpd-AbHapX유전자, 벡터 쪽 hph 유전자, 버섯의 ITS유전자 마커의 존재유무로 확인하였다. 그 결과, 도 5에서와 같이 총 172개의 시료 중 42개의 시료에서 성공적인 형질전환을 나타내는 세가지 마커가 검출되어 총 24.4%의 형질전환 성공률을 보였다.The successful transformation of the transformant produced through the above-described transformation method using Agrobacterium was confirmed by the presence or absence of the inserted Pgpd-AbHapX gene, the vector side hph gene, and the mushroom ITS gene marker. As a result, as shown in FIG. 5, three markers representing successful transformation were detected in 42 samples out of a total of 172 samples, showing a total transformation success rate of 24.4%.

확인된 형질전환체들이 AbHapX 유전자를 발현하는지를 확인하기 위하여 T1, T2, T3, T4 네개의 양송이버섯 형질전환체와 야생형 양송이버섯을 각각 FeCl3 0.1 mM 이 포함되거나 포함되지 않은 최소액체배지에서 1주일간 배양한 후, total RNA를 추출하였다. 상기 추출된 RNA를 RT-PCR 분석을 통하여 시데로포아 생합성 유전자의 mRNA 발현을 분석하였다. 그 결과, 도 6에서와 같이 야생형의 경우 철이온이 없을 경우에만 AbHapX 유전자가 발현되었으나, 네개의 형질전환체에서는 철이온의 존재 유무와 상관없이 모두 AbHapX가 발현되었다.To confirm whether the identified transformants express the AbHapX gene, the four Mushroom Mushroom Transformants T1, T2, T3, and T4 and the wild-type Mushroom Mushrooms were each prepared in a minimal liquid medium containing 0.1 mM FeCl 3 or not for 1 week. After incubation, total RNA was extracted. The extracted RNA was analyzed for mRNA expression of sideropoa biosynthetic gene through RT-PCR analysis. As a result, as shown in FIG. 6, AbHapX gene was expressed only in the absence of iron ions in the wild type, but AbHapX was expressed in all four transformants regardless of the presence or absence of iron ions.

또한 도 7에서와 같이 T1, T2 및 T3 에서는 시데로포아 생합성의 최종단계인 NRPS 효소유전자를 coding하는 AbSidD 유전자가 AbHapX 의 발현과 유사한 패턴으로 발현됨을 확인하였다.In addition, as shown in FIG. 7, it was confirmed that in T1, T2 and T3, the AbSidD gene encoding the NRPS enzyme gene, which is the final step of sideropoa biosynthesis, was expressed in a pattern similar to that of AbHapX.

실시예 4. 형질전환체의 안정성 분석Example 4. Stability analysis of transformants

형질전환체가 도입된 유전자를 안정적으로 유지하는지 알아보기 위하여, 항생제 (hygromycin)가 없는 PDA배지에서 각 형질전환체를 연속적으로 20회 계대배양하였다. 배양 결과, 계대배양 회수가 증가하더라도 균사의 성장능력에는 변화가 없었으며, 균사체 콜로니모양에서도 변화가 없었다. 또한, 도 8에서와 같이 20세대 후 염색체 DNA 상 AbHapX 및 hph 유전자가 안정적으로 유지됨을 확인하였다. 상기와 같은 결과는 AbHapX유전자가 양송이버섯 유전체에 성공적으로 삽입되었음을 증명하는 것이다.In order to find out whether the transformant stably maintains the introduced gene, each transformant was serially subcultured 20 times in PDA medium without antibiotics (hygromycin). As a result of cultivation, even if the number of subcultures increased, there was no change in the growth capacity of the mycelium, and there was no change in the shape of the mycelium colony. In addition, it was confirmed that AbHapX and hph genes were stably maintained on chromosomal DNA after 20 generations as shown in FIG. The above results prove that the AbHapX gene was successfully inserted into the mushroom genome.

실시예 5. 시데로포아의 생산 확인Example 5. Confirmation of production of sideropoa

형질전환체의 시데로포아 생산능을 상기한 액체배지에서 배양하며 상등액내 시데로포아 농도를 HPLC 로 분석하여 검증하였다. HPLC 분석에는 C18 column을 사용하였다. 도 9에서 나타낸 것과 같이 야생형 양송이버섯은 철이온 존재하에서 배양하였을 때, 배양액내 시데로포아는 관찰되지않았고, 철이온 없을 때에만 600 mAU의 시데로포아가 생산되었다. 반면, 형질전환체 T1에서는 철이온의 존재 유무와 관계없이 6000 mAU 이상의 시데로포아가 생산되어 형질전환체의 시데로포아 생산능이 철이온에 상관없이 10배이상 향상되는 결과를 보였다.The ability of the transformant to produce siderophores was cultured in the above-described liquid medium, and the concentration of siderophores in the supernatant was analyzed by HPLC to verify. A C18 column was used for HPLC analysis. As shown in FIG. 9, when wild-type mushroom mushrooms were cultured in the presence of iron ions, no siderophores in the culture medium were observed, and 600 mAU of sideropores were produced only in the absence of iron ions. On the other hand, in transformant T1, sideropores of 6000 mAU or more were produced regardless of the presence or absence of iron ions, and the sideropore production ability of the transformants was improved by more than 10 times regardless of iron ions.

실시예 6. 시데로포아의 철 결합능 확인Example 6. Confirmation of iron binding ability of sideropoa

형질전환체의 시데로포아 생산능력을 크롬 아주롤 S (Chrome azurol S; CAS)를 이용한 철이온 결합능력으로 조사하였다. CAS와 철이온이 결합한 CAS-철이온 복합체 (CAS-Fe3+)는 650 nm 근처에서 강력한 흡광능력을 보인다. 반면, 철이온이 없는 CAS는 650 nm 흡광이 줄어들기 때문에, 흡광도의 변화를 관찰하면 시데로포아의 생산을 검증할 수 있다.The ability of transformants to produce sideropoa was investigated by the ability to bind iron ions using Chrome azurol S (CAS). CAS-iron ion complex (CAS-Fe 3+ ), in which CAS and iron ions are bound, shows strong absorption ability near 650 nm. On the other hand, CAS without iron ions reduces absorbance at 650 nm, so observing the change in absorbance can verify the production of sideropoa.

본 발명에서는 야생형 및 형질전환체 T2를 복합배지에서 1주일간 배양한 후, 철이온과 결합한 CAS 시약 (0.75 ml)에 배양액(0.25 ml)을 첨가하여 흡광도를 조사하였다.In the present invention, after culturing wild-type and transformant T2 in a complex medium for 1 week, absorbance was investigated by adding a culture solution (0.25 ml) to a CAS reagent (0.75 ml) bound with iron ions.

도 10에서 나타난 것과 같이 야생형 배양액의 경우, CAS-철이온 복합체의 흡광도는 변화가 없었는데, 이는 야생형 양송이버섯은 CAS-Fe3+ 에서 철이온을 뺏는 시데로포아가 생산되지 않음을 나타낸다. 반면, 형질전환체 T2에서는 650 nm의 흡광도가 급격히 감소하는 것을 관찰하였다. 이러한 결과는 형질전환체가 만드는 시데로포아가 실제로 철이온과 결합하는 활성을 가진 시데로포아임을 나타내는 것이다.In the case of the wild-type culture medium as shown in Figure 10, there was no change in the absorbance of the CAS-iron ion complex, which indicates that the wild-type mushrooms do not produce siderophores that take iron ions from CAS-Fe 3+. On the other hand, it was observed that the absorbance of 650 nm was rapidly decreased in transformant T2. These results indicate that the siderophore produced by the transformant is actually sideropoa with the activity of binding to iron ions.

본 발명자는 상기 실시예에서 확인한 것과 같이 양송이버섯 형질전환체 T2 균주가 야생형 양송이버섯에 비하여 철 이온의 존재유무와 무관하게 10배 이상 시데로포아 생산능력의 향상 및 철이온 결합능력의 우수함을 확인하여 본 발명을 완성하였다. As confirmed in the above examples, the present inventors confirmed that the Mushroom Mushroom Transformant T2 strain improved sideropoa production capacity by 10 times or more and the excellent iron ion binding ability compared to the wild-type Mushroom Mushroom, regardless of the presence or absence of iron ions. Thus, the present invention was completed.

이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다.So far, the present invention has been looked at around its preferred embodiments.

본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Those of ordinary skill in the art to which the present invention pertains will be able to understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from a descriptive point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the above description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

생물자원센터Biological Resource Center KCTC18789PKCTC18789P 2019101820191018

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for production of siderophore using mushrooms <130> PN1910-510 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of AbHapX gene <400> 1 gaattcattt aaatcatgtc cgcagcactc ctac 34 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of AbHapX gene <400> 2 gaattcgggc ccatttgggg aacgtcagtc gt 32 <210> 3 <211> 264 <212> DNA <213> Artificial Sequence <220> <223> GDP promoter <400> 3 gaggtccgca agtagattga aagttcagta cgtttttaac aatagagcat tttcgaggct 60 tgcgtcattc tgtgtcaggc tagcagttta taagcgttga ggatctagag ctgctgttcc 120 cgcgtctcga atgttctcgg tgtttagggg ttagcaatct gatatgataa taatttgtga 180 tgacatcgat agtacaaaaa ccccaattcc ggtcacatcc accatctccg ttttctccca 240 tctacacaca acaacttatc gccg 264 <210> 4 <211> 4860 <212> DNA <213> Agaricus bisporus <400> 4 catgtccgca gcactcctac aagatccaga agacattgac tactctgata tcgaaaacaa 60 gtaaactcga aggctacctg tagatcaacg tactcactgt ctgctagata caaaatccaa 120 tatgatgaaa gtttcgataa cgtgctcctt gtagatggtg tacccatcat cggaaaggac 180 aagctcgaaa aattgttggc aaaaatctgc aaagagttct cgagaaaggg ggttactatc 240 aaacctgatg acattcacgt cccatgggac gattcgactg gcaaaagcaa agggtgtgtg 300 tgcaacccaa aaactttttt cccggctaca ttttctcacc tacggttacg aaacagtttc 360 atctttgtag agcttcgcag tgttgacgag gctaatcttg ctttggtgtc gctccacaac 420 catccgtttg atgccagaca tatcttcaag cttaatcggt ttaccgatat agagaaattt 480 gcagaacttg atgaagtata tgtagagcca gaagaggaag agttcgctcc caaggtaagt 540 ctgtgtttcc agggaagcat tctttggtga aattaatgac gattatagga acatttgagg 600 gcttggttgg cagatcctca aggacgggat caatatgtca cataccgtgg cgaagaggtt 660 ttaattcact ggcatgggaa gccttcacag tatgagattg catacaaacc agtgcgttct 720 tttccccccg taatccatgt ttagcctctc agttccgaat ggtaggaatg gaaagatttt 780 ctctacgttg cgtggtcgcc attaggtacc tatgtcgcaa ccttacaccg gcaaggcgtc 840 cgactatggg gtggtccatc ctggaagcca caacaaagat ttgctcatcc ctttgtcaag 900 ttgattgatt tctccccatg cgagaactat atcgtcacat ggtctaatga gccaattgtt 960 gttcctgagg gtgccgtaca aggtcctcaa tatttctcac cagacgacga aggaaacaat 1020 atagctgtct gggacatcaa atctggacat cttcttcgca cattctccac atatcacgaa 1080 ggcgaaaccc ctggacagaa aaagcagatg caatggccga tcttgaaatg gagtccagac 1140 gataaattca tcgcacgctt gaccccgagt cagatgataa gcatttacga gcttccggac 1200 atgggcttgc acgggaaaaa gagtttgaag atagaaggcg tcgtagattt cgagtggtgt 1260 cctcttgggg aaagagataa agaggtgacg gagagagatg caaaaggagg aattaaaacg 1320 acgaagaaag cgcgggaaaa catgcttgtg tattggaccc ccgaagtggt gaaccaacca 1380 gcgcgtgtta ctttactcag cttccccggt cgttcaatct tgcgtcaaaa aaatcttttc 1440 aatgtcactg aagtaagttc actgttggga gatttgatat cgttgcttac gcgctactta 1500 gtgtaagctt tattggcaaa accaaggaga cttcctttgc gtcaaggtcg atcgacatac 1560 gaaaaccaaa aaatctattt tttgcaacct ggagatcttt cgaatgcgcg aaaaggactt 1620 cccagttgaa gtcattgaac tcaaaggtat acatcctatt ttggtcttgg tcatattctc 1680 actcacagct aattcccaga cactgtaact gatttctcat gggaaccaaa gggagatagg 1740 tttgcaattg tttctagtag cgatcccaac ctggggaatc ccggtcctgg catcactgtg 1800 aagaccgacg tcggtttcta tcaactcgat cactccaaaa atgattttag gctcttgcgt 1860 gagtttattc ccttgtccgt cattcgccaa tttaacgcgt ggcaggtaca ctttcttctc 1920 gcacgagtaa tgccattcgg tggtctccac gagggcgcca tgtggtgcta gcaactgtcg 1980 gttcctctac caaatcggaa ctggaatttt gggatcttga ctttaactct gacgatgcga 2040 atcgaaagga aggccaagct tctaaggatg attggggcag tggaatccag ttacttgggt 2100 ctgccgacca ctatggtgtc acagacgttg aatgggatcc aagtggccga tatctcgcta 2160 ccagcgcgag cgcttggact cacacggtac cggatttcgc accttatact tgaccacttg 2220 acgacgttgc ctttcctttc cttttatagc tagagaacgg ttatgcagtc tgggatttcc 2280 gaggacaaga actaacaaag cagatccaag atcgtttcaa gcaatttatt tggcggccga 2340 ggccccctac tctactgaca aaggagcaac aaaggactat tagaaggaac ctgcgagagt 2400 atagtcgcgt attcgatgag gaggatgcgg ccgaggaaag caatgttagc gcagagcttg 2460 ttgctttgcg gaaacgtctt gtggacgaat ggaatgcttg gcgtacattg cgcaaacggg 2520 aattggctga tgaacgtggg cacaaaaccg ataagcacga agtgagcgag gccaaggagg 2580 agattgaggt gtgggtagac gaagtcattg aacaaatcga ggaggtatta gaataatgaa 2640 tgtagggtcg gtttcgatcg catcccctgc ttggattcga attcacgcat tgatgagaaa 2700 ataagattgg ggcacatggc tgcccggaaa agaggaatgg tccgggaaga aataagctgt 2760 ttgtctgaat gaccgatcgc ctatttcgtg acagaggccg gtaatcgtgg atacgcctga 2820 ggaatctctc actcttccgt cgtgacggct tacacgtcgc ggaaaaatgg acacgcacgc 2880 tcgcgaaggc gctcatcctg ggacaggccc gcttctcacg ccacggtgtg aacttgatga 2940 aggcggggtt gcgtccccgc gggaccgaag ttgccggcta cggtaatctg ataagacaac 3000 ctccggcatc attaaagacc gtctctccct ccactttccc cgtcgcacat gtcgactccc 3060 tccccctctc ctactactct ctgggcaaca ggtatttcct ctccatctcc ctcctcttct 3120 tcctctctca tcgccgcaaa gcttccaagg aatgggtcat acaacccaaa cccaagcccg 3180 ggcgcaagcc taagaaagac ttgtcggccg ccgtcaagga cgaggaagag gcatgtgttg 3240 cctaccttcc cctttccagc gcatgctaat ctattgtcta gagtgactcc aagggccgtc 3300 gggtccagaa taggtgggtt atcgcaatca gatagtcgaa tgtcacccat ctcatcagtt 3360 tcggcagagc tgctcagcgc gctttccgcg agcgcaagca atctcaacta gccgagctac 3420 aatcacgtat acaacaatac gaacaaggag agatcgaacg caatgtcgcg cttcagaaca 3480 tcgcaaaacg cttgaaggaa gagaatgaag ctctgcgaag ggaaaattct ctgctcaaag 3540 agagaataac aaagcaagag caagagcagc gggcagccaa cgaaaagaag cgttggagag 3600 acaattcccc cggtagtgtc cattcaccta aagctcctgc acgcaagaaa ccgcgcttca 3660 gtcccgaaac acacgacaag cctttgtcaa cttatttgcc ttccccccct tcgatgctcg 3720 attcccccaa ctcttcaaat tcatcggaca gcggattttc acccatgtac gaagtgcaat 3780 cttccgaagc gacgcaccct atcatcgcca acatcgatct aaacaataca aatagatcaa 3840 tatctctcga gtcctttgat tactctcctt ctttcaattg tggattctgt agcgacgata 3900 caccttgtgt ctgcagagag cttgctgcgc aacaggtttc tgagcgctcg aatctcagca 3960 atttcaagtc ggaggaattt acgggtgttg ttcatctaga gccggctcca caaccccaat 4020 cgagccggtc ttccatccta gataatctgc ccgcttatcg gccccctgtg cccctccgcc 4080 gccgtgaaac cccttgtacg gttaactcga tttttccagt tcaggtcttg ccagaaactc 4140 gaccccctac catctcttct cagccaacat gttcgggaga cccatcgaac tgtctcgctt 4200 gcgcagatga tgcctttggt aaggccttct gttctgcaat taaagagacg attgctgctc 4260 gcccttcctg tgttgattat cccggaggtg ttccatcatc ttctcacaat ccttgtaaca 4320 gccgaggcgg ttgtgaacat tgtatatcag atccgacggc gaacctcaat ggctatgatt 4380 cttcagaatc aattcctacg aacgcggcgt ggcagcaaat caaggctcac cccaacgtct 4440 catttgccga cctctcttta cttgctaatg tggtggccag ccgctcgaga tgtactggtc 4500 cccggatccc actttctcca agtccagaat caaagtttac tcctccgaca ccaccccttg 4560 ccccgcccgc cgacaatgag actattgtac tcacagaccc tcatgcgcaa tataaagaga 4620 aagagaaagc tcagcgtgag ggggcctcac ctccacctcg ggacgtttta gctcgctgtg 4680 ggagaatccg cgaagtttca acgtctgcgg tgcacgacgc cctacgacta cttgatgtca 4740 agttcccata gctggcatca gaacgatttg taaattgcat aactagtatt ttgtatatga 4800 tcaatcctca atgtagtata tattacacca ttacattata acgactgacg ttccccaaat 4860 4860 <210> 5 <211> 1258 <212> PRT <213> Agaricus bisporus <400> 5 Met Ser Ala Ala Leu Leu Gln Asp Pro Glu Asp Ile Asp Tyr Ser Asp 1 5 10 15 Ile Glu Asn Lys Tyr Lys Ile Gln Tyr Asp Glu Ser Phe Asp Asn Val 20 25 30 Leu Leu Val Asp Gly Val Pro Ile Ile Gly Lys Asp Lys Leu Glu Lys 35 40 45 Leu Leu Ala Lys Ile Cys Lys Glu Phe Ser Arg Lys Gly Val Thr Ile 50 55 60 Lys Pro Asp Asp Ile His Val Pro Trp Asp Asp Ser Thr Gly Lys Ser 65 70 75 80 Lys Gly Phe Ile Phe Val Glu Leu Arg Ser Val Asp Glu Ala Asn Leu 85 90 95 Ala Leu Val Ser Leu His Asn His Pro Phe Asp Ala Arg His Ile Phe 100 105 110 Lys Leu Asn Arg Phe Thr Asp Ile Glu Lys Phe Ala Glu Leu Asp Glu 115 120 125 Val Tyr Val Glu Pro Glu Glu Glu Glu Phe Ala Pro Lys Glu His Leu 130 135 140 Arg Ala Trp Leu Ala Asp Pro Gln Gly Arg Asp Gln Tyr Val Thr Tyr 145 150 155 160 Arg Gly Glu Glu Val Leu Ile His Trp His Gly Lys Pro Ser Gln Tyr 165 170 175 Glu Ile Ala Tyr Lys Pro Glu Trp Lys Asp Phe Leu Tyr Val Ala Trp 180 185 190 Ser Pro Leu Gly Thr Tyr Val Ala Thr Leu His Arg Gln Gly Val Arg 195 200 205 Leu Trp Gly Gly Pro Ser Trp Lys Pro Gln Gln Arg Phe Ala His Pro 210 215 220 Phe Val Lys Leu Ile Asp Phe Ser Pro Cys Glu Asn Tyr Ile Val Thr 225 230 235 240 Trp Ser Asn Glu Pro Ile Val Val Pro Glu Gly Ala Val Gln Gly Pro 245 250 255 Gln Tyr Phe Ser Pro Asp Asp Glu Gly Asn Asn Ile Ala Val Trp Asp 260 265 270 Ile Lys Ser Gly His Leu Leu Arg Thr Phe Ser Thr Tyr His Glu Gly 275 280 285 Glu Thr Pro Gly Gln Lys Lys Gln Met Gln Trp Pro Ile Leu Lys Trp 290 295 300 Ser Pro Asp Asp Lys Phe Ile Ala Arg Leu Thr Pro Ser Gln Met Ile 305 310 315 320 Ser Ile Tyr Glu Leu Pro Asp Met Gly Leu His Gly Lys Lys Ser Leu 325 330 335 Lys Ile Glu Gly Val Val Asp Phe Glu Trp Cys Pro Leu Gly Glu Arg 340 345 350 Asp Lys Glu Val Thr Glu Arg Asp Ala Lys Gly Gly Ile Lys Thr Thr 355 360 365 Lys Lys Ala Arg Glu Asn Met Leu Val Tyr Trp Thr Pro Glu Val Val 370 375 380 Asn Gln Pro Ala Arg Val Thr Leu Leu Ser Phe Pro Gly Arg Ser Ile 385 390 395 400 Leu Arg Gln Lys Asn Leu Phe Asn Val Thr Glu Cys Lys Leu Tyr Trp 405 410 415 Gln Asn Gln Gly Asp Phe Leu Cys Val Lys Val Asp Arg His Thr Lys 420 425 430 Thr Lys Lys Ser Ile Phe Cys Asn Leu Glu Ile Phe Arg Met Arg Glu 435 440 445 Lys Asp Phe Pro Val Glu Val Ile Glu Leu Lys Asp Thr Val Thr Asp 450 455 460 Phe Ser Trp Glu Pro Lys Gly Asp Arg Phe Ala Ile Val Ser Ser Ser 465 470 475 480 Asp Pro Asn Leu Gly Asn Pro Gly Pro Gly Ile Thr Val Lys Thr Asp 485 490 495 Val Gly Phe Tyr Gln Leu Asp His Ser Lys Asn Asp Phe Arg Leu Leu 500 505 510 Arg Thr Leu Ser Ser Arg Thr Ser Asn Ala Ile Arg Trp Ser Pro Arg 515 520 525 Gly Arg His Val Val Leu Ala Thr Val Gly Ser Ser Thr Lys Ser Glu 530 535 540 Leu Glu Phe Trp Asp Leu Asp Phe Asn Ser Asp Asp Ala Asn Arg Lys 545 550 555 560 Glu Gly Gln Ala Ser Lys Asp Asp Trp Gly Ser Gly Ile Gln Leu Leu 565 570 575 Gly Ser Ala Asp His Tyr Gly Val Thr Asp Val Glu Trp Asp Pro Ser 580 585 590 Gly Arg Tyr Leu Ala Thr Ser Ala Ser Ala Trp Thr His Thr Leu Glu 595 600 605 Asn Gly Tyr Ala Val Trp Asp Phe Arg Gly Gln Glu Leu Thr Lys Gln 610 615 620 Ile Gln Asp Arg Phe Lys Gln Phe Ile Trp Arg Pro Arg Pro Pro Thr 625 630 635 640 Leu Leu Thr Lys Glu Gln Gln Arg Thr Ile Arg Arg Asn Leu Arg Glu 645 650 655 Tyr Ser Arg Val Phe Asp Glu Glu Asp Ala Ala Glu Glu Ser Asn Val 660 665 670 Ser Ala Glu Leu Val Ala Leu Arg Lys Arg Leu Val Asp Glu Trp Asn 675 680 685 Ala Trp Arg Thr Leu Arg Lys Arg Glu Leu Ala Asp Glu Arg Gly His 690 695 700 Lys Thr Asp Lys His Glu Val Ser Glu Ala Lys Glu Glu Ile Glu Val 705 710 715 720 Trp Val Asp Glu Val Ile Glu Gln Ile Glu Glu Gly Arg Pro Ser Leu 725 730 735 Pro Pro Leu Ser Pro Ser His Met Ser Thr Pro Ser Pro Ser Pro Thr 740 745 750 Thr Leu Trp Ala Thr Ala Ser Lys Glu Trp Val Ile Gln Pro Lys Pro 755 760 765 Lys Pro Gly Arg Lys Pro Lys Lys Asp Leu Ser Ala Ala Val Lys Asp 770 775 780 Glu Glu Glu Ser Asp Ser Lys Gly Arg Arg Val Gln Asn Arg Ala Ala 785 790 795 800 Gln Arg Ala Phe Arg Glu Arg Lys Gln Ser Gln Leu Ala Glu Leu Gln 805 810 815 Ser Arg Ile Gln Gln Tyr Glu Gln Gly Glu Ile Glu Arg Asn Val Ala 820 825 830 Leu Gln Asn Ile Ala Lys Arg Leu Lys Glu Glu Asn Glu Ala Leu Arg 835 840 845 Arg Glu Asn Ser Leu Leu Lys Glu Arg Ile Thr Lys Gln Glu Gln Glu 850 855 860 Gln Arg Ala Ala Asn Glu Lys Lys Arg Trp Arg Asp Asn Ser Pro Gly 865 870 875 880 Ser Val His Ser Pro Lys Ala Pro Ala Arg Lys Lys Pro Arg Phe Ser 885 890 895 Pro Glu Thr His Asp Lys Pro Leu Ser Thr Tyr Leu Pro Ser Pro Pro 900 905 910 Ser Met Leu Asp Ser Pro Asn Ser Ser Asn Ser Ser Asp Ser Gly Phe 915 920 925 Ser Pro Met Tyr Glu Val Gln Ser Ser Glu Ala Thr His Pro Ile Ile 930 935 940 Ala Asn Ile Asp Leu Asn Asn Thr Asn Arg Ser Ile Ser Leu Glu Ser 945 950 955 960 Phe Asp Tyr Ser Pro Ser Phe Asn Cys Gly Phe Cys Ser Asp Asp Thr 965 970 975 Pro Cys Val Cys Arg Glu Leu Ala Ala Gln Gln Val Ser Glu Arg Ser 980 985 990 Asn Leu Ser Asn Phe Lys Ser Glu Glu Phe Thr Gly Val Val His Leu 995 1000 1005 Glu Pro Ala Pro Gln Pro Gln Ser Ser Arg Ser Ser Ile Leu Asp Asn 1010 1015 1020 Leu Pro Ala Tyr Arg Pro Pro Val Pro Leu Arg Arg Arg Glu Thr Pro 1025 1030 1035 1040 Cys Thr Val Asn Ser Ile Phe Pro Val Gln Val Leu Pro Glu Thr Arg 1045 1050 1055 Pro Pro Thr Ile Ser Ser Gln Pro Thr Cys Ser Gly Asp Pro Ser Asn 1060 1065 1070 Cys Leu Ala Cys Ala Asp Asp Ala Phe Gly Lys Ala Phe Cys Ser Ala 1075 1080 1085 Ile Lys Glu Thr Ile Ala Ala Arg Pro Ser Cys Val Asp Tyr Pro Gly 1090 1095 1100 Gly Val Pro Ser Ser Ser His Asn Pro Cys Asn Ser Arg Gly Gly Cys 1105 1110 1115 1120 Glu His Cys Ile Ser Asp Pro Thr Ala Asn Leu Asn Gly Tyr Asp Ser 1125 1130 1135 Ser Glu Ser Ile Pro Thr Asn Ala Ala Trp Gln Gln Ile Lys Ala His 1140 1145 1150 Pro Asn Val Ser Phe Ala Asp Leu Ser Leu Leu Ala Asn Val Val Ala 1155 1160 1165 Ser Arg Ser Arg Cys Thr Gly Pro Arg Ile Pro Leu Ser Pro Ser Pro 1170 1175 1180 Glu Ser Lys Phe Thr Pro Pro Thr Pro Pro Leu Ala Pro Pro Ala Asp 1185 1190 1195 1200 Asn Glu Thr Ile Val Leu Thr Asp Pro His Ala Gln Tyr Lys Glu Lys 1205 1210 1215 Glu Lys Ala Gln Arg Glu Gly Ala Ser Pro Pro Pro Arg Asp Val Leu 1220 1225 1230 Ala Arg Cys Gly Arg Ile Arg Glu Val Ser Thr Ser Ala Val His Asp 1235 1240 1245 Ala Leu Arg Leu Leu Asp Val Lys Phe Pro 1250 1255 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for production of siderophore using mushrooms <130> PN1910-510 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of AbHapX gene <400> 1 gaattcattt aaatcatgtc cgcagcactc ctac 34 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of AbHapX gene <400> 2 gaattcgggc ccatttgggg aacgtcagtc gt 32 <210> 3 <211> 264 <212> DNA <213> Artificial Sequence <220> <223> GDP promoter <400> 3 gaggtccgca agtagattga aagttcagta cgtttttaac aatagagcat tttcgaggct 60 tgcgtcattc tgtgtcaggc tagcagttta taagcgttga ggatctagag ctgctgttcc 120 cgcgtctcga atgttctcgg tgtttagggg ttagcaatct gatatgataa taatttgtga 180 tgacatcgat agtacaaaaa ccccaattcc ggtcacatcc accatctccg ttttctccca 240 tctacacaca acaacttatc gccg 264 <210> 4 <211> 4860 <212> DNA <213> Agaricus bisporus <400> 4 catgtccgca gcactcctac aagatccaga agacattgac tactctgata tcgaaaacaa 60 gtaaactcga aggctacctg tagatcaacg tactcactgt ctgctagata caaaatccaa 120 tatgatgaaa gtttcgataa cgtgctcctt gtagatggtg tacccatcat cggaaaggac 180 aagctcgaaa aattgttggc aaaaatctgc aaagagttct cgagaaaggg ggttactatc 240 aaacctgatg acattcacgt cccatgggac gattcgactg gcaaaagcaa agggtgtgtg 300 tgcaacccaa aaactttttt cccggctaca ttttctcacc tacggttacg aaacagtttc 360 atctttgtag agcttcgcag tgttgacgag gctaatcttg ctttggtgtc gctccacaac 420 catccgtttg atgccagaca tatcttcaag cttaatcggt ttaccgatat agagaaattt 480 gcagaacttg atgaagtata tgtagagcca gaagaggaag agttcgctcc caaggtaagt 540 ctgtgtttcc agggaagcat tctttggtga aattaatgac gattatagga acatttgagg 600 gcttggttgg cagatcctca aggacgggat caatatgtca cataccgtgg cgaagaggtt 660 ttaattcact ggcatgggaa gccttcacag tatgagattg catacaaacc agtgcgttct 720 tttccccccg taatccatgt ttagcctctc agttccgaat ggtaggaatg gaaagatttt 780 ctctacgttg cgtggtcgcc attaggtacc tatgtcgcaa ccttacaccg gcaaggcgtc 840 cgactatggg gtggtccatc ctggaagcca caacaaagat ttgctcatcc ctttgtcaag 900 ttgattgatt tctccccatg cgagaactat atcgtcacat ggtctaatga gccaattgtt 960 gttcctgagg gtgccgtaca aggtcctcaa tatttctcac cagacgacga aggaaacaat 1020 atagctgtct gggacatcaa atctggacat cttcttcgca cattctccac atatcacgaa 1080 ggcgaaaccc ctggacagaa aaagcagatg caatggccga tcttgaaatg gagtccagac 1140 gataaattca tcgcacgctt gaccccgagt cagatgataa gcatttacga gcttccggac 1200 atgggcttgc acgggaaaaa gagtttgaag atagaaggcg tcgtagattt cgagtggtgt 1260 cctcttgggg aaagagataa agaggtgacg gagagagatg caaaaggagg aattaaaacg 1320 acgaagaaag cgcgggaaaa catgcttgtg tattggaccc ccgaagtggt gaaccaacca 1380 gcgcgtgtta ctttactcag cttccccggt cgttcaatct tgcgtcaaaa aaatcttttc 1440 aatgtcactg aagtaagttc actgttggga gatttgatat cgttgcttac gcgctactta 1500 gtgtaagctt tattggcaaa accaaggaga cttcctttgc gtcaaggtcg atcgacatac 1560 gaaaaccaaa aaatctattt tttgcaacct ggagatcttt cgaatgcgcg aaaaggactt 1620 cccagttgaa gtcattgaac tcaaaggtat acatcctatt ttggtcttgg tcatattctc 1680 actcacagct aattcccaga cactgtaact gatttctcat gggaaccaaa gggagatagg 1740 tttgcaattg tttctagtag cgatcccaac ctggggaatc ccggtcctgg catcactgtg 1800 aagaccgacg tcggtttcta tcaactcgat cactccaaaa atgattttag gctcttgcgt 1860 gagtttattc ccttgtccgt cattcgccaa tttaacgcgt ggcaggtaca ctttcttctc 1920 gcacgagtaa tgccattcgg tggtctccac gagggcgcca tgtggtgcta gcaactgtcg 1980 gttcctctac caaatcggaa ctggaatttt gggatcttga ctttaactct gacgatgcga 2040 atcgaaagga aggccaagct tctaaggatg attggggcag tggaatccag ttacttgggt 2100 ctgccgacca ctatggtgtc acagacgttg aatgggatcc aagtggccga tatctcgcta 2160 ccagcgcgag cgcttggact cacacggtac cggatttcgc accttatact tgaccacttg 2220 acgacgttgc ctttcctttc cttttatagc tagagaacgg ttatgcagtc tgggatttcc 2280 gaggacaaga actaacaaag cagatccaag atcgtttcaa gcaatttatt tggcggccga 2340 ggccccctac tctactgaca aaggagcaac aaaggactat tagaaggaac ctgcgagagt 2400 atagtcgcgt attcgatgag gaggatgcgg ccgaggaaag caatgttagc gcagagcttg 2460 ttgctttgcg gaaacgtctt gtggacgaat ggaatgcttg gcgtacattg cgcaaacggg 2520 aattggctga tgaacgtggg cacaaaaccg ataagcacga agtgagcgag gccaaggagg 2580 agattgaggt gtgggtagac gaagtcattg aacaaatcga ggaggtatta gaataatgaa 2640 tgtagggtcg gtttcgatcg catcccctgc ttggattcga attcacgcat tgatgagaaa 2700 ataagattgg ggcacatggc tgcccggaaa agaggaatgg tccgggaaga aataagctgt 2760 ttgtctgaat gaccgatcgc ctatttcgtg acagaggccg gtaatcgtgg atacgcctga 2820 ggaatctctc actcttccgt cgtgacggct tacacgtcgc ggaaaaatgg acacgcacgc 2880 tcgcgaaggc gctcatcctg ggacaggccc gcttctcacg ccacggtgtg aacttgatga 2940 aggcggggtt gcgtccccgc gggaccgaag ttgccggcta cggtaatctg ataagacaac 3000 ctccggcatc attaaagacc gtctctccct ccactttccc cgtcgcacat gtcgactccc 3060 tccccctctc ctactactct ctgggcaaca ggtatttcct ctccatctcc ctcctcttct 3120 tcctctctca tcgccgcaaa gcttccaagg aatgggtcat acaacccaaa cccaagcccg 3180 ggcgcaagcc taagaaagac ttgtcggccg ccgtcaagga cgaggaagag gcatgtgttg 3240 cctaccttcc cctttccagc gcatgctaat ctattgtcta gagtgactcc aagggccgtc 3300 gggtccagaa taggtgggtt atcgcaatca gatagtcgaa tgtcacccat ctcatcagtt 3360 tcggcagagc tgctcagcgc gctttccgcg agcgcaagca atctcaacta gccgagctac 3420 aatcacgtat acaacaatac gaacaaggag agatcgaacg caatgtcgcg cttcagaaca 3480 tcgcaaaacg cttgaaggaa gagaatgaag ctctgcgaag ggaaaattct ctgctcaaag 3540 agagaataac aaagcaagag caagagcagc gggcagccaa cgaaaagaag cgttggagag 3600 acaattcccc cggtagtgtc cattcaccta aagctcctgc acgcaagaaa ccgcgcttca 3660 gtcccgaaac acacgacaag cctttgtcaa cttatttgcc ttccccccct tcgatgctcg 3720 attcccccaa ctcttcaaat tcatcggaca gcggattttc acccatgtac gaagtgcaat 3780 cttccgaagc gacgcaccct atcatcgcca acatcgatct aaacaataca aatagatcaa 3840 tatctctcga gtcctttgat tactctcctt ctttcaattg tggattctgt agcgacgata 3900 caccttgtgt ctgcagagag cttgctgcgc aacaggtttc tgagcgctcg aatctcagca 3960 atttcaagtc ggaggaattt acgggtgttg ttcatctaga gccggctcca caaccccaat 4020 cgagccggtc ttccatccta gataatctgc ccgcttatcg gccccctgtg cccctccgcc 4080 gccgtgaaac cccttgtacg gttaactcga tttttccagt tcaggtcttg ccagaaactc 4140 gaccccctac catctcttct cagccaacat gttcgggaga cccatcgaac tgtctcgctt 4200 gcgcagatga tgcctttggt aaggccttct gttctgcaat taaagagacg attgctgctc 4260 gcccttcctg tgttgattat cccggaggtg ttccatcatc ttctcacaat ccttgtaaca 4320 gccgaggcgg ttgtgaacat tgtatatcag atccgacggc gaacctcaat ggctatgatt 4380 cttcagaatc aattcctacg aacgcggcgt ggcagcaaat caaggctcac cccaacgtct 4440 catttgccga cctctcttta cttgctaatg tggtggccag ccgctcgaga tgtactggtc 4500 cccggatccc actttctcca agtccagaat caaagtttac tcctccgaca ccaccccttg 4560 ccccgcccgc cgacaatgag actattgtac tcacagaccc tcatgcgcaa tataaagaga 4620 aagagaaagc tcagcgtgag ggggcctcac ctccacctcg ggacgtttta gctcgctgtg 4680 ggagaatccg cgaagtttca acgtctgcgg tgcacgacgc cctacgacta cttgatgtca 4740 agttcccata gctggcatca gaacgatttg taaattgcat aactagtatt ttgtatatga 4800 tcaatcctca atgtagtata tattacacca ttacattata acgactgacg ttccccaaat 4860 4860 <210> 5 <211> 1258 <212> PRT <213> Agaricus bisporus <400> 5 Met Ser Ala Ala Leu Leu Gln Asp Pro Glu Asp Ile Asp Tyr Ser Asp 1 5 10 15 Ile Glu Asn Lys Tyr Lys Ile Gln Tyr Asp Glu Ser Phe Asp Asn Val 20 25 30 Leu Leu Val Asp Gly Val Pro Ile Ile Gly Lys Asp Lys Leu Glu Lys 35 40 45 Leu Leu Ala Lys Ile Cys Lys Glu Phe Ser Arg Lys Gly Val Thr Ile 50 55 60 Lys Pro Asp Asp Ile His Val Pro Trp Asp Asp Ser Thr Gly Lys Ser 65 70 75 80 Lys Gly Phe Ile Phe Val Glu Leu Arg Ser Val Asp Glu Ala Asn Leu 85 90 95 Ala Leu Val Ser Leu His Asn His Pro Phe Asp Ala Arg His Ile Phe 100 105 110 Lys Leu Asn Arg Phe Thr Asp Ile Glu Lys Phe Ala Glu Leu Asp Glu 115 120 125 Val Tyr Val Glu Pro Glu Glu Glu Glu Phe Ala Pro Lys Glu His Leu 130 135 140 Arg Ala Trp Leu Ala Asp Pro Gln Gly Arg Asp Gln Tyr Val Thr Tyr 145 150 155 160 Arg Gly Glu Glu Val Leu Ile His Trp His Gly Lys Pro Ser Gln Tyr 165 170 175 Glu Ile Ala Tyr Lys Pro Glu Trp Lys Asp Phe Leu Tyr Val Ala Trp 180 185 190 Ser Pro Leu Gly Thr Tyr Val Ala Thr Leu His Arg Gln Gly Val Arg 195 200 205 Leu Trp Gly Gly Pro Ser Trp Lys Pro Gln Gln Arg Phe Ala His Pro 210 215 220 Phe Val Lys Leu Ile Asp Phe Ser Pro Cys Glu Asn Tyr Ile Val Thr 225 230 235 240 Trp Ser Asn Glu Pro Ile Val Val Pro Glu Gly Ala Val Gln Gly Pro 245 250 255 Gln Tyr Phe Ser Pro Asp Asp Glu Gly Asn Asn Ile Ala Val Trp Asp 260 265 270 Ile Lys Ser Gly His Leu Leu Arg Thr Phe Ser Thr Tyr His Glu Gly 275 280 285 Glu Thr Pro Gly Gln Lys Lys Gln Met Gln Trp Pro Ile Leu Lys Trp 290 295 300 Ser Pro Asp Asp Lys Phe Ile Ala Arg Leu Thr Pro Ser Gln Met Ile 305 310 315 320 Ser Ile Tyr Glu Leu Pro Asp Met Gly Leu His Gly Lys Lys Ser Leu 325 330 335 Lys Ile Glu Gly Val Val Asp Phe Glu Trp Cys Pro Leu Gly Glu Arg 340 345 350 Asp Lys Glu Val Thr Glu Arg Asp Ala Lys Gly Gly Ile Lys Thr Thr 355 360 365 Lys Lys Ala Arg Glu Asn Met Leu Val Tyr Trp Thr Pro Glu Val Val 370 375 380 Asn Gln Pro Ala Arg Val Thr Leu Leu Ser Phe Pro Gly Arg Ser Ile 385 390 395 400 Leu Arg Gln Lys Asn Leu Phe Asn Val Thr Glu Cys Lys Leu Tyr Trp 405 410 415 Gln Asn Gln Gly Asp Phe Leu Cys Val Lys Val Asp Arg His Thr Lys 420 425 430 Thr Lys Lys Ser Ile Phe Cys Asn Leu Glu Ile Phe Arg Met Arg Glu 435 440 445 Lys Asp Phe Pro Val Glu Val Ile Glu Leu Lys Asp Thr Val Thr Asp 450 455 460 Phe Ser Trp Glu Pro Lys Gly Asp Arg Phe Ala Ile Val Ser Ser Ser 465 470 475 480 Asp Pro Asn Leu Gly Asn Pro Gly Pro Gly Ile Thr Val Lys Thr Asp 485 490 495 Val Gly Phe Tyr Gln Leu Asp His Ser Lys Asn Asp Phe Arg Leu Leu 500 505 510 Arg Thr Leu Ser Ser Arg Thr Ser Asn Ala Ile Arg Trp Ser Pro Arg 515 520 525 Gly Arg His Val Val Leu Ala Thr Val Gly Ser Ser Thr Lys Ser Glu 530 535 540 Leu Glu Phe Trp Asp Leu Asp Phe Asn Ser Asp Asp Ala Asn Arg Lys 545 550 555 560 Glu Gly Gln Ala Ser Lys Asp Asp Trp Gly Ser Gly Ile Gln Leu Leu 565 570 575 Gly Ser Ala Asp His Tyr Gly Val Thr Asp Val Glu Trp Asp Pro Ser 580 585 590 Gly Arg Tyr Leu Ala Thr Ser Ala Ser Ala Trp Thr His Thr Leu Glu 595 600 605 Asn Gly Tyr Ala Val Trp Asp Phe Arg Gly Gln Glu Leu Thr Lys Gln 610 615 620 Ile Gln Asp Arg Phe Lys Gln Phe Ile Trp Arg Pro Arg Pro Pro Thr 625 630 635 640 Leu Leu Thr Lys Glu Gln Gln Arg Thr Ile Arg Arg Asn Leu Arg Glu 645 650 655 Tyr Ser Arg Val Phe Asp Glu Glu Asp Ala Ala Glu Glu Ser Asn Val 660 665 670 Ser Ala Glu Leu Val Ala Leu Arg Lys Arg Leu Val Asp Glu Trp Asn 675 680 685 Ala Trp Arg Thr Leu Arg Lys Arg Glu Leu Ala Asp Glu Arg Gly His 690 695 700 Lys Thr Asp Lys His Glu Val Ser Glu Ala Lys Glu Glu Ile Glu Val 705 710 715 720 Trp Val Asp Glu Val Ile Glu Gln Ile Glu Glu Gly Arg Pro Ser Leu 725 730 735 Pro Pro Leu Ser Pro Ser His Met Ser Thr Pro Ser Pro Ser Pro Thr 740 745 750 Thr Leu Trp Ala Thr Ala Ser Lys Glu Trp Val Ile Gln Pro Lys Pro 755 760 765 Lys Pro Gly Arg Lys Pro Lys Lys Asp Leu Ser Ala Ala Val Lys Asp 770 775 780 Glu Glu Glu Ser Asp Ser Lys Gly Arg Arg Val Gln Asn Arg Ala Ala 785 790 795 800 Gln Arg Ala Phe Arg Glu Arg Lys Gln Ser Gln Leu Ala Glu Leu Gln 805 810 815 Ser Arg Ile Gln Gln Tyr Glu Gln Gly Glu Ile Glu Arg Asn Val Ala 820 825 830 Leu Gln Asn Ile Ala Lys Arg Leu Lys Glu Glu Asn Glu Ala Leu Arg 835 840 845 Arg Glu Asn Ser Leu Leu Lys Glu Arg Ile Thr Lys Gln Glu Gln Glu 850 855 860 Gln Arg Ala Ala Asn Glu Lys Lys Arg Trp Arg Asp Asn Ser Pro Gly 865 870 875 880 Ser Val His Ser Pro Lys Ala Pro Ala Arg Lys Lys Pro Arg Phe Ser 885 890 895 Pro Glu Thr His Asp Lys Pro Leu Ser Thr Tyr Leu Pro Ser Pro Pro 900 905 910 Ser Met Leu Asp Ser Pro Asn Ser Ser Asn Ser Ser Asp Ser Gly Phe 915 920 925 Ser Pro Met Tyr Glu Val Gln Ser Ser Glu Ala Thr His Pro Ile Ile 930 935 940 Ala Asn Ile Asp Leu Asn Asn Thr Asn Arg Ser Ile Ser Leu Glu Ser 945 950 955 960 Phe Asp Tyr Ser Pro Ser Phe Asn Cys Gly Phe Cys Ser Asp Asp Thr 965 970 975 Pro Cys Val Cys Arg Glu Leu Ala Ala Gln Gln Val Ser Glu Arg Ser 980 985 990 Asn Leu Ser Asn Phe Lys Ser Glu Glu Phe Thr Gly Val Val His Leu 995 1000 1005 Glu Pro Ala Pro Gln Pro Gln Ser Ser Arg Ser Ser Ile Leu Asp Asn 1010 1015 1020 Leu Pro Ala Tyr Arg Pro Pro Val Pro Leu Arg Arg Arg Glu Thr Pro 1025 1030 1035 1040 Cys Thr Val Asn Ser Ile Phe Pro Val Gln Val Leu Pro Glu Thr Arg 1045 1050 1055 Pro Pro Thr Ile Ser Ser Gln Pro Thr Cys Ser Gly Asp Pro Ser Asn 1060 1065 1070 Cys Leu Ala Cys Ala Asp Asp Ala Phe Gly Lys Ala Phe Cys Ser Ala 1075 1080 1085 Ile Lys Glu Thr Ile Ala Ala Arg Pro Ser Cys Val Asp Tyr Pro Gly 1090 1095 1100 Gly Val Pro Ser Ser Ser His Asn Pro Cys Asn Ser Arg Gly Gly Cys 1105 1110 1115 1120 Glu His Cys Ile Ser Asp Pro Thr Ala Asn Leu Asn Gly Tyr Asp Ser 1125 1130 1135 Ser Glu Ser Ile Pro Thr Asn Ala Ala Trp Gln Gln Ile Lys Ala His 1140 1145 1150 Pro Asn Val Ser Phe Ala Asp Leu Ser Leu Leu Ala Asn Val Val Ala 1155 1160 1165 Ser Arg Ser Arg Cys Thr Gly Pro Arg Ile Pro Leu Ser Pro Ser Pro 1170 1175 1180 Glu Ser Lys Phe Thr Pro Pro Thr Pro Pro Leu Ala Pro Pro Ala Asp 1185 1190 1195 1200 Asn Glu Thr Ile Val Leu Thr Asp Pro His Ala Gln Tyr Lys Glu Lys 1205 1210 1215 Glu Lys Ala Gln Arg Glu Gly Ala Ser Pro Pro Pro Arg Asp Val Leu 1220 1225 1230 Ala Arg Cys Gly Arg Ile Arg Glu Val Ser Thr Ser Ala Val His Asp 1235 1240 1245 Ala Leu Arg Leu Leu Asp Val Lys Phe Pro 1250 1255

Claims (13)

삭제delete 삭제delete 삭제delete 삭제delete 양송이버섯에서의 시데로포아 생산능이 강화된 신규 아가리쿠스 비스포루스 (Agaricus bisporus) 균주에서,
상기 균주는 배지에 철이온의 존재 유무와 관계없이 시데로포아를 생성하는 것을 특징으로 하고,
상기 균주는 철이온 (Fe3+) 결합능력이 증가된 것을 특징으로 하는, 양송이버섯에서의 시데로포아 생산능이 강화된 신규 아가리쿠스 비스포루스 (Agaricus bisporus) 균주 (수탁번호 KCTC18789P).
In a novel Agaricus bisporus strain with enhanced sideropoa production capacity in mushroom mushrooms,
The strain is characterized in that it generates sideropoa regardless of the presence or absence of iron ions in the medium,
The strain is a novel Agaricus bisporus (Agaricus bisporus) strain (accession number KCTC18789P), characterized in that the iron ion (Fe3+) binding ability is increased, the ability to produce siderophores in mushroom mushrooms is enhanced.
삭제delete 제5항에 있어서,
상기 균주는 철이온 (Fe3+)의 존재 유무와 관계없이 6000 mAU 내지 6500 mAU의 시데로포아가 생산되는 것을 특징으로 하는, 균주.
The method of claim 5,
The strain is characterized in that, regardless of the presence or absence of iron ions (Fe3+) 6000 mAU to 6500 mAU of sideropoa is produced, strain.
제5항의 균주로 부터 재배되는, 시데로포아 생산능이 강화된 양송이버섯.Cultivated from the strain of claim 5, the mushroom mushrooms with enhanced production of siderophores. 삭제delete 제5항의 균주, 상기 균주의 파쇄액, 상기 균주의 배양상등액, 상기균주의 자실체 또는 이의 혼합물을 포함하는, 양송이버섯에서의 시데로포아 생산용 조성물.The composition for production of sideropoa in mushroom mushroom, comprising the strain of claim 5, the lysate of the strain, the culture supernatant of the strain, the fruiting body of the strain, or a mixture thereof. 제5항의 균주로 부터 양송이버섯을 재배하는 단계를 포함하는, 양송이버섯에서 시데로포아를 생산하는 방법.
A method for producing sideropoa from mushrooms, comprising the step of cultivating mushrooms from the strain of claim 5.
삭제delete 삭제delete
KR1020190132158A 2019-10-23 2019-10-23 Method for production of siderophore using mushrooms KR102234586B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190132158A KR102234586B1 (en) 2019-10-23 2019-10-23 Method for production of siderophore using mushrooms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190132158A KR102234586B1 (en) 2019-10-23 2019-10-23 Method for production of siderophore using mushrooms

Publications (1)

Publication Number Publication Date
KR102234586B1 true KR102234586B1 (en) 2021-04-05

Family

ID=75461677

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190132158A KR102234586B1 (en) 2019-10-23 2019-10-23 Method for production of siderophore using mushrooms

Country Status (1)

Country Link
KR (1) KR102234586B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Angelique C.W. Franken 등. BRIEFINGS IN FUNCTIONAL GENOMICS. Vol. 13, No. 6, 페이지 482-492 (2014.07.25.)* *
C. Burns 등. Fungal Genetics and Biology. Vol. 42, 페이지 191-199 (2005.01.05.)* *

Similar Documents

Publication Publication Date Title
JP7473137B2 (en) A novel strain of Pseudozyma antarctica
CN111454924B (en) Trichoderma viride histone acetylase encoding gene TvGCN5 and application thereof
Ozkan et al. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria
FI104264B (en) Process for improving the production of secondary metabolites by the use of grouped biosynthetic genes
JP2022110110A (en) Recombinant oxalate decarboxylase expressed in filamentous fungal host cell
CN114667346B (en) EanB enzyme mutant and application thereof
Baker Induction of rhizosphere competence in the biocontrol fungus Trichoderma
CN113563481A (en) Aflatoxin B capable of being degraded simultaneously1Construction method and application of mutant of zearalenone fusion enzyme
Fan et al. The endo-β-1, 4-glucanase of Bacillus amyloliquefaciens is required for optimum endophytic colonization of plants
CN113881579A (en) Method for synthesizing trichoderma long-chain antibacterial peptide and improving antibacterial activity
KR102234586B1 (en) Method for production of siderophore using mushrooms
CN109652436A (en) A kind of Recombinant Lactococcus lactis bacterial strain and its preparation method and application
CN110607311B (en) DSF quorum sensing signal degradation gene and application thereof
CN110352961B (en) Genetically engineered escherichia coli strain and application thereof
CN114181881A (en) Novel attenuated listeria monocytogenes construction method based on amino acid modification and application
US11530415B2 (en) Genetically engineered Streptomyces capable of thaxtomin production in the absence of thaxtomin-inducing conditions and methods of producing thaxtomin
US9340809B2 (en) Microbial conversion of sugar acids and means therein
EP4061925A1 (en) Methods of fermentation of recombinant bacillus spores
CN111378675A (en) Biosynthesis gene of eremophilane sesquiterpene in catharanthus roseus and application
Ma et al. Homologous expression of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistance as a dominant selectable marker
CN111286481A (en) Pseudomonas stutzeri mutant strain and construction method and application thereof
Lee et al. Combination strategy to increase cyclosporin A productivity by Tolypocladium niveum using random mutagenesis and protoplast transformation
CN113564143B (en) Construction method and application of mutant of hydrolase capable of degrading zearalenone
AU2018252745A1 (en) Method of improving resistance to substrate analog of nitric acid in microalga
Jeong et al. Improvement of fibrinolytic activity of Bacillus subtilis 168 by integration of a fibrinolytic gene into the chromosome

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant