KR102231216B1 - Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby - Google Patents

Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby Download PDF

Info

Publication number
KR102231216B1
KR102231216B1 KR1020200055920A KR20200055920A KR102231216B1 KR 102231216 B1 KR102231216 B1 KR 102231216B1 KR 1020200055920 A KR1020200055920 A KR 1020200055920A KR 20200055920 A KR20200055920 A KR 20200055920A KR 102231216 B1 KR102231216 B1 KR 102231216B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
composite material
metal
heat
resin
Prior art date
Application number
KR1020200055920A
Other languages
Korean (ko)
Inventor
이종길
허수형
정용희
한송희
김재환
Original Assignee
(주)비에스엠신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)비에스엠신소재 filed Critical (주)비에스엠신소재
Priority to KR1020200055920A priority Critical patent/KR102231216B1/en
Application granted granted Critical
Publication of KR102231216B1 publication Critical patent/KR102231216B1/en
Priority to PCT/KR2021/005853 priority patent/WO2021230608A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a manufacturing method of a heating composite material using a metal-coated carbon fiber, the heating composite material manufactured by the same, a molded body including the heating composite material, and a heating product including the molded body. The heating composite material of the present invention is manufactured by impregnating a bundle of the metal-coated carbon fibers with a resin, and the heating composite material has excellent heating performance.

Description

금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법 및 상기 제조방법에 의한 발열복합소재 {Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby}[Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby}

본 발명은 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법, 상기 제조방법으로 제조된 발열복합소재, 상기 발열복합소재를 포함하는 성형체, 및 상기 성형체를 포함하는 발열제품에 관한 것이다. The present invention relates to a method of manufacturing a heating composite material using a metal-coated carbon fiber, a heating composite material manufactured by the above manufacturing method, a molded body including the heating composite material, and a heating product including the molded body.

발열제품 관련시장은 건축 난방용 발열체, 사우나 및 찜질기용 발열체, 농수산물 건조 및 산업용 발열체 등으로 발열하는 제품 어디에나 적용 가능하고, 최근에는 실내 마루, 원예, 침구, 건강 기구, 축사 등에서는 에너지의 효율적인 사용을 위해 발열시트의 사용이 증가하고 있는 추세이다. The market related to heating products can be applied to all products that generate heat by heating elements for building heating, heating elements for saunas and steamers, drying agricultural and marine products, and industrial heating elements.In recent years, efficient use of energy is possible in indoor floors, gardening, bedding, health appliances, and livestock houses. Hazardous heating sheets are being used on an increasing trend.

발열복합소재는 판형, 조립형, 필름, 시트로 일정한 온도가 필요한 전자제품, 난방용품, 생활용품, 의료용품, 미용용품, 기능성 의류 등 다양한 생활용품에 사용할 수 있고, 비교적 저온인 150℃ 이하의 산업용 항온유지 장치에 주로 사용되는 제품이다.Heat-generating composite materials can be used in various household goods such as electronic products, heating supplies, household goods, medical supplies, beauty supplies, functional clothing, etc. that require a constant temperature as a plate type, assembly type, film, or sheet. This product is mainly used for industrial thermostats.

발열복합소재는 건축용 난방 분야에서 면상 발열체 범위가 확대되고 있으며 기존의 선상 발열체와 비교할 때 발열량이 높으며 신속한 난방 조절이 가능한 장점으로 인해 적용 범위가 점차 확대되고 있다. 고온 발열체 분야는 현재 금속 열선 및 ITO 나노입자 발열체가 주로 적용되는데 발열체 구조, 높은 공정 비용, 온도 제약 등으로 인해 적용 범위가 제한되고 있다.The range of heating composite materials is expanding in the field of heating for construction, and its application range is gradually expanding due to the advantage of having a high calorific value and being able to quickly control heating compared to existing on-board heating elements. In the field of high-temperature heating elements, metal heating wires and ITO nanoparticle heating elements are currently mainly applied, and the scope of application is limited due to the structure of the heating element, high process cost, and temperature constraints.

난방 복합소재는 공기 공조 시스템, 공기 청정 시스템, 보조 난방 기구 등 현재 고온 발열체의 산업적 수요가 증가하고 있으며 저렴한 코팅 방식을 통해 다양한 기판에 적용할 수 있기 때문에 타 발열체에 비해 충분한 경쟁력을 가진다는 장점이 있다.Heating composite materials are currently in the industrial demand for high-temperature heating elements such as air conditioning systems, air cleaning systems, auxiliary heating devices, etc., and have the advantage of having sufficient competitiveness compared to other heating elements because they can be applied to various substrates through inexpensive coating methods. have.

또한, 전기 및 하이브리드 자동차 보급과 함께 향후 이차 전지 사용량이 늘어감에 따라 베터리 효율 향상을 위해 고효율 면상 발열체 시장도 급격히 증가될 것으로 예상되고, 이 밖에도 내충격성, 유연성이 필요한 발열필름, 발열직물, 발열 고무 등 다양한 분야에 기술이 적용되어 활용될 것으로 기대된다.In addition, as the use of rechargeable batteries increases in the future along with the spread of electric and hybrid vehicles, the market for high-efficiency planar heating elements is expected to increase rapidly to improve battery efficiency. It is expected that the technology will be applied and utilized in various fields such as rubber.

국내의 발열 제품 관련 시장은 수 조원 규모로 추산되고 있고, 특히 건물 및 수송용 난방 제품의 경우 전기 스토브, 전기 장판, 전기 온열기, 전기온풍기 등이 메이져 제품군을 형성하며 연 2~3천억원 규모의 시장을 형성하고 있다.The market for heating products in Korea is estimated at several trillion won, and in the case of heating products for buildings and transportation, electric stoves, electric blankets, electric heaters, electric heaters, etc. form a major product line, and a market worth 2~300 billion won per year. Is forming.

현재 면상 발열체의 경우 저온 발열 온도의 제약으로 인해 난방 제품에 부분적으로 활용되고 있으며 연 200억 수준의 국내 시장을 형성하고 있고, 향후 고효율 발열 제품 개발 시 시장 규모를 크게 증가할 것으로 예상된다.Currently, the planar heating element is partially used for heating products due to the limitation of low-temperature heating temperature, and it is forming a domestic market of 20 billion won per year, and it is expected to increase the size of the market when developing high-efficiency heating products in the future.

난방 복합소재는 기존의 금속판에 니크롬선, 탄소 섬유, 탄소나노튜브(CNT), 세라믹 분말 등을 이용해 적당한 혼합과 분산으로 일정한 전기저항을 유지할 수 있도록 소재를 제작한 상태에서 필름 형상으로 압출하여 제조하는 방법 또는 금속이나 플라스틱 지지판에 혼합 물질을 일정하게 분산시키기 위해 여러 가지 방법으로 접착시켜 일정거리에서 전기를 인가하여 발열시키는 방법으로 제작하는 방식으로 제조한다. 여기에서, 발열을 위한 혼합 물질을 보호하기 위해 이종 재질을 추가로 접착하여 다층을 갖는 발열 필름을 제조하는 방법이 주로 사용된다.The heating composite material is manufactured by extruding it into a film shape in a state where the material is manufactured to maintain a constant electrical resistance by appropriate mixing and dispersion using nichrome wire, carbon fiber, carbon nanotube (CNT), ceramic powder, etc. on an existing metal plate. In order to uniformly disperse the mixed material on a metal or plastic support plate, it is manufactured by bonding it in various ways and applying electricity at a certain distance to generate heat. Here, in order to protect the mixed material for heat generation, a method of manufacturing a heating film having a multilayer by additionally adhering different materials is mainly used.

한편, 중국을 비롯한 여러 나라들이 석탄 가격이 오르면서 난방비에 부담이 가중되고 석탄을 이용한 난방은 환경오염 문제까지 대두되고 있기 때문에 발열 필름을 이용한 난방용품의 수요가 증가하고 있으며, 점차 산업이 발달하면서 상기 나열된 분야의 발열필름 수요가 점차 증가하기 때문에 전력소모가 적고 제조비용이 적게드는 발열필름의 중요성이 점점 커질 것으로 전망된다.Meanwhile, as the price of coal in China and other countries rises, the burden on heating costs is increasing, and the problem of environmental pollution using coal is increasing, so the demand for heating products using heating films is increasing, and as the industry gradually develops. As the demand for heating films in the above-listed fields gradually increases, the importance of heating films, which consumes less power and lowers manufacturing costs, is expected to increase.

대한민국 등록특허 제1754924호Republic of Korea Patent No. 1755924

본 발명은 전술한 바와 같은 종래 기술상의 필요성을 해소하기 위한 것으로, 금속도금 탄소섬유 다발에 수지를 함침하여 제조된 발열 복합소재와 이의 제조방법을 제공하는 것에 목적이 있다.The present invention is to solve the necessity of the prior art as described above, and an object of the present invention is to provide a heat-generating composite material manufactured by impregnating a resin into a metal-plated carbon fiber bundle and a method for manufacturing the same.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위하여, 본 발명은 하기 단계를 포함하는, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method of manufacturing a heating composite material using a metal-coated carbon fiber, including the following steps.

금속코팅 탄소섬유를 제조하는 단계(S1);Manufacturing a metal-coated carbon fiber (S1);

상기 S1 단계에서 제조된 탄소섬유의 다발을 수지함침조에 통과시켜, 수지가 함침된 금속코팅 탄소섬유를 제조하는 단계(S2);Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal coated carbon fiber (S2);

상기 S2 단계에서 제조된 탄소섬유를 냉각하여 함침된 수지를 경화하는 단계(S3);Curing the impregnated resin by cooling the carbon fiber prepared in step S2 (S3);

상기 S3 단계에서 경화된 탄소섬유를 건조하는 단계(S4); 및 Drying the carbon fiber cured in the step S3 (S4); And

상기 S4 단계에서 건조된 탄소섬유를 일정한 길이로 절단하여 펠렛화하여 발열복합소재를 제조하는 단계(S5).The step of manufacturing a heat-generating composite material by cutting the carbon fiber dried in step S4 into a predetermined length and pelletizing it (S5).

본 발명의 일구현예로, 상기 S1 단계는,In one embodiment of the present invention, the step S1,

탄소섬유를 제1금속으로 무전해 도금하는 단계(S1-1); 및Electroless plating of carbon fibers with a first metal (S1-1); And

상기 S1-1단계에서 무전해 도금된 탄소섬유를 제2금속으로 전해 도금하는 단계(S1-2)를 포함하는 것일 수 있다. The carbon fiber electrolessly plated in step S1-1 may be electroplated with a second metal (S1-2).

본 발명의 다른 구현예로, 상기 S2 단계의 탄소섬유의 다발은, 모노필라멘트가 100 내지 50,000가닥 포함되는 것일 수 있다.In another embodiment of the present invention, the bundle of carbon fibers in step S2 may include 100 to 50,000 strands of monofilament.

본 발명의 또다른 구현예로, 상기 S2 단계의 함침은, 0.5 내지 10 kg/cm2의 압력으로 수지가 압출되는 수지함침조에서 수행되는 것일 수 있다.In another embodiment of the present invention, the impregnation in step S2 may be performed in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2.

본 발명의 또다른 구현예로, 상기 수지는 폴리아마이드(PA), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 및 폴리에테르에테르케톤(PEEK) 으로 이루어지는 군으로부터 선택되는 1종 이상의 열가소성 수지인 것일 수 있다.In another embodiment of the present invention, the resin is polyamide (PA), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC) , Polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), At least one thermoplastic resin selected from the group consisting of acrylonitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK) It can be.

본 발명의 또다른 구현예로, 상기 발열복합소재는, 금속코팅 탄소섬유 5 내지 40 중량% 및 수지 60 내지 95 중량%를 포함하는 것일 수 있다.In another embodiment of the present invention, the heating composite material may include 5 to 40% by weight of metal-coated carbon fiber and 60 to 95% by weight of resin.

본 발명의 또다른 구현예로, 상기 S4 단계의 건조는, 1 내지 10kg/cm2의 압력으로 가해지는 공기압 또는 100℃ 내지 150℃의 열풍을 통해 수행되는 것일 수 있다.In another embodiment of the present invention, the drying in step S4 may be performed through air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air of 100° C. to 150° C.

본 발명의 또다른 구현예로, 상기 S5 단계의 펠렛화는, 건조된 탄소섬유를 1 내지 15mm의 길이로 절단하는 것일 수 있다.In another embodiment of the present invention, the pelletization of step S5 may be to cut the dried carbon fiber into a length of 1 to 15 mm.

본 발명의 또다른 구현예로, 상기 수지는 금속, 탄소나노튜브 및 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상의 소재를 더 포함하는 것일 수 있다.In another embodiment of the present invention, the resin may further include one or more materials selected from the group consisting of metals, carbon nanotubes, and graphene.

또한, 본 발명은 상기 제조방법에 의해 제조된 발열복합소재를 제공한다.In addition, the present invention provides a heat generating composite material manufactured by the above manufacturing method.

또한, 상기 발열복합소재를 용융한 후 금형에 투입하여 사출된, 성형체를 제공한다.In addition, the heat generating composite material is melted and then injected into a mold to provide a molded body.

아울러, 상기 성형체; 및 전극이 포함되는, 발열 제품을 제공한다.In addition, the molded body; And it provides a heating product that includes an electrode.

본 발명은 수지가 함침된 금속코팅 탄소섬유를 포함하는 발열복합소재의 제조방법과, 상기 발열복합소재를 통해 제조된 성형체 및 상기 성형체를 포함하는 발열 제품에 관한 것으로, 본 발명의 제조방법에 의하면, 발열복합소재 내부의 금속코팅 탄소섬유가 일정한 배열 및 일정한 길이로 포함되어, 발열 복합소재의 전기저항을 쉽게 제어할 수 있다. The present invention relates to a method of manufacturing a heat-generating composite material including a metal-coated carbon fiber impregnated with a resin, a molded article manufactured through the heat-generating composite material, and a heat generating product including the molded article, according to the manufacturing method of the present invention. , The metal-coated carbon fiber inside the heating composite material is included in a certain arrangement and length, so that the electrical resistance of the heating composite material can be easily controlled.

또한, 본 발명의 발열복합소재는 일반적인 사출법을 통한 성형법으로 용이하게 제품화할 수 있기 때문에, 복잡한 형상을 1회의 공정으로 용이하게 제품화할 수 있는 것으로, 사용 용도, 환경, 발열성능, 제품의 내구성 등에 따라 제품제작이 수월한 장점을 갖는다.In addition, since the heat generating composite material of the present invention can be easily commercialized by a molding method through a general injection method, it is possible to easily commercialize a complex shape in a single process. It has the advantage of being easy to manufacture products according to etc.

도 1은 본 발명의 발열복합소재의 제조방법과, 상기 발열복합소재를 이용한 성형체의 제조방법 및 상기 성형체를 이용한 발열제품의 제조방법을 도식화하여 나타낸 도면이다.
도 2는 본 발명의 발열복합소재를 제조하는 제조장치를 도식화하여 나타낸 도면이다.
도 3은 본 발명의 발열복합소재와 이의 단면을 나타낸 도면이다.
도 4는 본 발명의 성형체에 전극을 연결한 발열량 측정을 위한 시험편을 나타낸 도면이다.
도 5는 본 발명의 시험편에 전력 투입량을 변화시켜 발생하는 발열온도를 측정한 결과로, 도 5a는 0.5V, 0.89A로 전력을 투입하여 측정한 열화상 결과이고, 도 5b는 1.0V, 1.8A로 전력을 투입하여 측정한 열화상 결과이며, 도 5c는 1.5V, 2.6A로 전력을 투입하여 측정한 열화상 결과이고, 도 5d는 2.0V, 3.41A로 전력을 투입하여 측정한 열화상 결과이며, 도 5e는 2.5V, 3.92A로 전력을 투입하여 측정한 열화상 결과이고, 도 5f는 3.0V, 4.36A로 전력을 투입하여 측정한 열화상 결과이며, 도 5g는 3.5V, 4.63A로 전력을 투입하여 측정한 열화상 결과를 나타낸 도면이다.
1 is a diagram schematically illustrating a method of manufacturing a heat generating composite material of the present invention, a method of manufacturing a molded body using the heat-generating composite material, and a method of manufacturing a heat generating product using the molded body.
2 is a schematic view showing a manufacturing apparatus for manufacturing a heat generating composite material of the present invention.
3 is a view showing a heat-generating composite material of the present invention and a cross-section thereof.
4 is a view showing a test piece for measuring the amount of heat generated by connecting an electrode to the molded article of the present invention.
5 is a result of measuring the heating temperature generated by varying the amount of power input to the test piece of the present invention, FIG. 5A is a thermal image result measured by applying power at 0.5V and 0.89A, and FIG. 5B is 1.0V and 1.8. A thermal image result measured by applying power to A, FIG. 5C is a thermal image result measured by applying power at 1.5V and 2.6A, and FIG. 5D is a thermal image measured by applying power at 2.0V and 3.41A. 5E is a thermal image result measured by applying power at 2.5V and 3.92A, FIG. 5F is a thermal image result measured by applying power at 3.0V and 4.36A, and FIG. 5G is 3.5V and 4.63 It is a diagram showing the result of a thermal image measured by applying power to A.

이하, 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the description of the present invention is not limited to a specific embodiment, and various transformations may be applied and various embodiments may be provided. In addition, the content described below should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention.

본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The singular expression used in the present invention includes a plurality of expressions unless the context clearly indicates otherwise. In addition, terms such as "comprise", "include" or "have" described below are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification. It is to be construed and not to preclude the possibility of the presence or addition of one or more other features, numbers, steps, actions, components, parts, or combinations thereof.

이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명은 우수한 발열 성능과 동시에, 제품화가 용이한 발열복합소재를 제조하기 위해 예의 연구한 결과, 다발형태의 금속코팅 탄소섬유에 수지를 함침시켜 펠렛형태의 발열복합소재를 제조할 경우, 발열 성능 및 물성이 모두 우수한 발열복합소재가 제조되며, 상기 발열복합소재를 통해 발열 제품으로 손쉽게 제조할 수 있다는 것을 확인하여 본 발명을 완성하였다. 본 발명의 발열복합소재의 제조방법과, 상기 발열복합소재를 사출성형하고, 전극을 인쇄 및 조립하여 발열 제품을 제조하는 과정을 도 1에 모식화하여 나타내었다.In the present invention, as a result of intensive research to manufacture a heat-generating composite material that is easy to commercialize at the same time with excellent heat-generating performance, when producing a pellet-type heat-generating composite material by impregnating a resin in a bundle-type metal-coated carbon fiber, the heat-generating performance The present invention was completed by confirming that a heat-generating composite material excellent in both and physical properties is manufactured, and can be easily manufactured as a heat-generating product through the heat-generating composite material. The method of manufacturing a heating composite material according to the present invention, and a process of manufacturing a heating product by injection molding the heating composite material, printing and assembling electrodes, are schematically shown in FIG. 1.

즉 본 발명은 하기 단계를 포함하는, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법을 제공한다:That is, the present invention provides a method of manufacturing a heat-generating composite material using a metal-coated carbon fiber, comprising the following steps:

금속코팅 탄소섬유를 제조하는 단계(S1);Manufacturing a metal-coated carbon fiber (S1);

상기 S1 단계에서 제조된 탄소섬유의 다발을 수지함침조에 통과시켜, 수지가 함침된 금속코팅 탄소섬유를 제조하는 단계(S2);Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal coated carbon fiber (S2);

상기 S2 단계에서 제조된 탄소섬유를 냉각하여 함침된 수지를 경화하는 단계(S3);Curing the impregnated resin by cooling the carbon fiber prepared in step S2 (S3);

상기 S3 단계에서 경화된 탄소섬유를 건조하는 단계(S4); 및 Drying the carbon fiber cured in the step S3 (S4); And

상기 S4 단계에서 건조된 탄소섬유를 일정한 길이로 절단하여 펠렛화하여 발열복합소재를 제조하는 단계(S5).The step of manufacturing a heat-generating composite material by cutting the carbon fiber dried in step S4 into a predetermined length and pelletizing it (S5).

본 발명은, 도 2에 모식화하여 나타낸 것과 같이, 금속코팅 탄소섬유(Metal Coated Carbon Fiber:MCF)를 이용해 열가소성 수지를 섬유다발 사이에 가압 함침시켜 제조되는 발열복합소재의 제조방법에 관한 것이다. 본 발명에서 사용되는 금속코팅 탄소섬유는, 탄소섬유의 외경에 도금 공정을 통해 금속이 코팅된 탄소섬유라면 제한없이 이용이 가능하나, 본 발명에서 제조하고자 하는 발열 성능을 만족하기 위해서는, 무전해 도금 및 전해 도금을 통해 금속이 2중으로 코팅된 탄소섬유를 사용하는 것이 바람직하다.The present invention, as schematically shown in Figure 2, relates to a method of manufacturing a heat-generating composite material manufactured by impregnating a thermoplastic resin between fiber bundles by pressure using a metal-coated carbon fiber (MCF). The metal-coated carbon fiber used in the present invention can be used without limitation as long as it is a carbon fiber coated with a metal through a plating process on the outer diameter of the carbon fiber. However, in order to satisfy the heating performance to be manufactured in the present invention, electroless plating And it is preferable to use a carbon fiber coated with a metal double through electrolytic plating.

보다 상세하게는, 상기 S1 단계는, 탄소섬유를 제1금속으로 무전해 도금하는 단계(S1-1); 및 상기 S1-1단계에서 무전해 도금된 탄소섬유를 제2금속으로 전해 도금하는 단계(S1-2)를 포함하는 것일 수 있다. 상기 제1금속 및 제2금속의 종류는 서로 같거나 또는 다를 수 있고, 바람직하게는 제1금속은 니켈 또는 구리, 제2금속은 니켈일 수 있다. 본 발명의 무전해 및 전해 공정은 국내등록특허 제1427309호에 제시된 방법을 통해 수행될 수 있으나, 이에 제한되는 것은 아니다. More specifically, the step S1 may include electroless plating of carbon fibers with a first metal (S1-1); And electroplating the carbon fiber electrolessly plated in step S1-1 with a second metal (S1-2). The types of the first metal and the second metal may be the same or different from each other, and preferably, the first metal may be nickel or copper, and the second metal may be nickel. The electroless and electrolytic process of the present invention may be performed through the method disclosed in Korean Patent No. 1427309, but is not limited thereto.

상기 S1-1 단계는 순수(pure water), 제1금속염, 착화제, 환원제, 안정제 및 pH 조절제를 포함하는 무전해 도금액에 탄소 섬유를 통과시켜 도금된 것일 수 있고, 상기 S1-2 단계는 S1-1 단계에 이어 연속적으로 수행되는 것으로 제2금속염 및 pH 완충제를 이용하여 정전압(CV, constant voltage) 5-15 Volt를 가하여 수행될 수 있으나, 상기 방법에 제한되는 것은 아니다.The step S1-1 may be plated by passing carbon fibers through an electroless plating solution containing pure water, a first metal salt, a complexing agent, a reducing agent, a stabilizer, and a pH adjusting agent, and the step S1-2 is S1 It is performed continuously following step -1, and may be performed by applying a constant voltage (CV) of 5-15 Volt using a second metal salt and a pH buffer, but is not limited to the method.

상기 S1-1 단계 및 S1-2 단계 이전에, (ⅰ) 탄소 섬유를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 탄소 섬유를 탈지 및 연화시키는 단계; (ⅱ) 상기 단계 (ⅰ)의 결과물인 탄소섬유를 아황산수소나트륨(sodium bisulfite; NaHSO3), 황산(H2SO4), 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 및 순수(pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질(conditioning)작용을 하는 에칭 공정을 실시하는 단계; (ⅲ) 상기 단계 (ⅱ)의 결과물인 탄소 섬유를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계; 및 (ⅳ) 상기 단계 (ⅲ)의 결과물인 탄소 섬유를 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시하는 단계를 포함하는 전처리 단계(S1-0)를 통해 전처리된 탄소섬유를 사용할 수 있으나, 역시 이에 제한되는 것은 아니다.Prior to the steps S1-1 and S1-2, (i) degreasing and softening the carbon fibers by passing the carbon fibers through an aqueous solution containing a surfactant, an organic solvent, and a nonionic surfactant; (Ii) The carbon fiber resulting from step (i) was used as sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) And performing an etching process for neutralizing, cleaning and conditioning by passing through an aqueous solution containing pure water. (Iii) performing a sensitizing process by passing the carbon fiber resulting from step (ii) through an aqueous PdCl 2 solution; And (iv) passing the carbon fiber resulting from step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process. Fiber may be used, but is not limited thereto.

상기 도금에 의해 생성된 금속코팅의 두께는 50 내지 500 nm일 수 있다. 상기 금속코팅의 두께에 따라 금속코팅 탄소섬유의 전기저항이 상이하게 나타날 수 있고, 바람직한 전기저항은 0.1 내지 10 Ω/m일 수 있으나, 이에 제한되는 것은 아니다.The thickness of the metal coating produced by the plating may be 50 to 500 nm. Depending on the thickness of the metal coating, the electric resistance of the metal coated carbon fiber may be different, and the preferable electric resistance may be 0.1 to 10 Ω/m, but is not limited thereto.

본 발명의 S2 단계에서 탄소섬유는 다발형태인 것을 특징으로 한다. 상기 탄소섬유의 다발은 모노필라멘트가 100 내지 50,000가닥 포함되는 것으로, 바람직하게는 1K(모노필라멘트 1,000가닥), 3K(모노필라멘트 3,000가닥), 6K(모노필라멘트 6,000가닥), 12K(모노필라멘트 12,000가닥), 48K(모노필라멘트 48,000가닥)인 탄소섬유의 다발을 사용할 수 있고, 보다 바람직하게는 8K(모노필라멘트 8,000가닥) 내지 16K(모노필라멘트 16,000)인 탄소섬유의 다발을 사용할 수 있으며, 본 발명의 실시예와 같이 12K의 탄소섬유 다발을 사용할 수 있다.In step S2 of the present invention, the carbon fibers are characterized in that they are in the form of bundles. The bundle of carbon fibers includes 100 to 50,000 strands of monofilament, preferably 1K (1,000 strands of monofilament), 3K (3,000 strands of monofilament), 6K (6,000 strands of monofilament), 12K (12,000 monofilament strands) ), 48K (monofilament 48,000 strands) can be used, and more preferably 8K (monofilament 8,000 strands) to 16K (monofilament 16,000) of carbon fibers can be used, the present invention As in the example, a 12K carbon fiber bundle may be used.

상기 금속코팅 탄소섬유는 보빈에 감긴 형태로 제공될 수 있고, 섬유 가이드롤러를 통해 수지함침조로 이송된다. 상기 섬유 가이드롤러는 금속코팅 층의 박리를 줄이기 위해 마찰력을 최소화한 것으로 사용하며, 상기 가이드롤러는 도 2에 나타낸 것과 같이 수지 함침조 및 수지의 경화가 이루어지는 냉각부의 사이에 더 구비될 수 있다. The metal-coated carbon fiber may be provided in a form wound around a bobbin, and transferred to a resin impregnation tank through a fiber guide roller. The fiber guide roller is used to minimize the frictional force to reduce the peeling of the metal coating layer, and the guide roller may be further provided between the resin impregnation tank and the cooling unit in which the resin is cured, as shown in FIG. 2.

본 발명의 상기 S2 단계는, 상기 탄소섬유의 다발에 수지를 함침시키는 단계이다. 상기 함침은, 0.5 내지 10 kg/cm2의 압력으로 수지가 압출되는 수지함침조에서 수행되는 것일 수 있다. 상기 수지는 열가소성 수지로서, 폴리아마이드 수지(PA6, PA66 등), 폴리에틸렌(PE), 폴리프로필렌(PP), 아크릴로니트릴부타디엔스티렌(ABS), 폴리카보네이트(PC), 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌(PS), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트(PMMA), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA), 폴리페닐렌에테르(PPE), 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK) 등이 사용될 수 있다. 상기 폴리아마이드는 밀도 1.14 g/cm3, 융점 220~255℃, 인장강도 83~85MPa, Izod 충격강도 7.0~7.5Kgf·cm/cm, 열변형온도 65~85℃인 것을 사용할 수 있으나 이에 제한되는 것은 아니다.The step S2 of the present invention is a step of impregnating a resin into the bundle of carbon fibers. The impregnation may be performed in a resin impregnation tank in which the resin is extruded at a pressure of 0.5 to 10 kg/cm 2. The resin is a thermoplastic resin, such as polyamide resin (PA6, PA66, etc.), polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC), Polyvinyl alcohol (PVA), polystyrene (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), acrylonitrile-styrene copolymer resin (SAN), acrylic Ronnitrile-styrene-acrylate copolymer resin (ASA), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and the like may be used. The polyamide may have a density of 1.14 g/cm 3 , a melting point of 220 to 255 °C, a tensile strength of 83 to 85 MPa, an Izod impact strength of 7.0 to 7.5 Kg f ·cm/cm, and a heat deflection temperature of 65 to 85 °C, but limited thereto. It does not become.

상기 수지는 녹는점을 고려하여 100 내지 500℃ 범위 내에서 가열하여 용융된 것이 수지압출기를 통해 수지함침조에 압출된다. 상기 수지함침량은 섬유의 단면적을 감안하여 조절되는 것으로, 수지압출기의 직경 크기를 조절하여 압력을 조절할 수 있다. 상기 압력은 1 내지 3kg/cm2인 것이, 사용되는 탄소섬유의 다발의 단면적에 있어 보다 바람직하다.The resin is heated in the range of 100 to 500 ℃ in consideration of the melting point, and the melted one is extruded into a resin impregnation tank through a resin extruder. The resin impregnation amount is adjusted in consideration of the cross-sectional area of the fiber, and the pressure can be adjusted by adjusting the diameter size of the resin extruder. It is more preferable that the pressure is 1 to 3 kg/cm 2 in terms of the cross-sectional area of the bundle of carbon fibers to be used.

본 발명의 발열복합소재는, 금속코팅 탄소섬유 5 내지 40 중량% 및 수지 60 내지 95 중량%를 포함하는 것일 수 있다. 보다 바람직하게는 금속코팅 탄소섬유 25 내지 35 중량% 및 수지 75 내지 65 중량%를 포함할 때, 발열 제품에 사용되기에 바람직한 발열성능을 갖는 발열복합소재로 제조될 수 있다.The heating composite material of the present invention may include 5 to 40% by weight of metal-coated carbon fiber and 60 to 95% by weight of resin. More preferably, when containing 25 to 35% by weight of the metal-coated carbon fiber and 75 to 65% by weight of the resin, it may be made of a heat-generating composite material having desirable heat-generating performance for use in heat-generating products.

상기 S4 단계의 건조는, 1 내지 10kg/cm2의 압력으로 가해지는 공기압 또는 100℃ 내지 150℃의 열풍을 통해 수행되는 것일 수 있으나, 상기 건조의 방법은 사용된 수지의 종류 및 공정이 수행되는 환경 등에 따라 자유롭게 선택하여 수행될 수 있다. 상기 수지의 건조가 완료되면 탄소섬유는 인발장치를 통해 펠렛타이저로 이송될 수 있다. 상기 인발장치는 섬유와 함침수지가 결합된 소재를 당겨주는 역할의 롤러형태의 장치로서, 마찰력이 높은 우레탄이나 고무롤러를 사용할 수 있다.The drying in step S4 may be performed through air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air at 100° C. to 150° C., but the method of drying is the type of resin used and the process being performed. It can be freely selected and performed according to the environment. When drying of the resin is completed, the carbon fiber may be transferred to the pelletizer through a drawing device. The pull-out device is a roller-type device that pulls the material in which the fiber and the impregnating resin are combined, and a urethane or rubber roller having high friction may be used.

상기 S5 단계의 펠렛화는, 건조된 탄소섬유를 1 내지 15mm의 길이로 절단하여 수행될 수 있다. 보다 바람직하게는 사출성형될 때 금형에 투입되는 것이 용이한 크기인 4mm 내지 8mm의 길이로 제공될 수 있다.The pelletization of step S5 may be performed by cutting the dried carbon fiber into a length of 1 to 15 mm. More preferably, it may be provided in a length of 4mm to 8mm, which is an easy size to be injected into the mold when injection-molded.

본 발명의 수지는, 제조하고자 하는 발열 제품의 특징에 맞추어 금속, 탄소나노튜브 및 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상의 소재를 더 포함할 수 있다. 상기 금속의 종류에는 제한이 없다.The resin of the present invention may further include one or more materials selected from the group consisting of metals, carbon nanotubes, and graphene according to the characteristics of the heating product to be manufactured. There is no limitation on the type of the metal.

본 발명은 상기 제조방법에 의해 제조된 발열복합소재를 제공한다. 상기 펠렛화된 발열복합소재는, 용융된 후, 금형에 주입하여 원하는 형태로 성형되어 성형체로 제작될 수 있다. 상기 성형체는 제품의 색상, 액상의 흐름성, 섬유의 분산성을 제어하기 위해 다른 종류의 펠렛을 혼합하여 투입할 수 있다.The present invention provides a heat generating composite material manufactured by the above manufacturing method. The pelletized heat generating composite material may be melted and then injected into a mold to be molded into a desired shape to be manufactured into a molded body. The molded body may be added by mixing different types of pellets in order to control the color of the product, the flowability of the liquid, and the dispersibility of the fibers.

본 발명은 상기 성형체에 전력을 투입할 수 있도록 전극을 조립하여, 발열 제품을 완성할 수 있다. 이때, 상기 발열복합소재의 전극거리에 대한 전기저항을 고려하여, 전력 투입부를 설계/제작될 수 있으며, 상기 설계/제작방법은 제조하고자 하는 발열 제품의 종류, 형태, 사용되는 환경 등에 따라서 자유롭게 선택하여 설계/제작될 수 있다.The present invention can complete the heating product by assembling the electrode so that electric power can be applied to the molded body. At this time, in consideration of the electric resistance to the electrode distance of the heating composite material, the power input unit can be designed/manufactured, and the design/manufacturing method is freely selected according to the type, shape, and environment used of the heating product to be manufactured. So it can be designed/manufactured.

상기 전극은 도전성 재료로서, 구리, 은(Ag), 금(Au), 탄소나노튜브(CNT), 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다. 상기 성형체에 도전성 재료를 사용하여 인쇄하거나 표면을 가열하여 열융착 방식으로 성형체에 삽입하는 형식으로 전극을 제작한 뒤, 연결 커넥터를 조립하여 발열 제품을 완성할 수 있다.The electrode is a conductive material, and may be at least one selected from the group consisting of copper, silver (Ag), gold (Au), carbon nanotubes (CNT), and graphene. After producing electrodes in the form of printing using a conductive material on the molded body or inserting it into the molded body by heat-sealing by heating the surface, the heating product can be completed by assembling a connection connector.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples.

[실시예][Example]

실시예 1. 발열복합소재의 제조Example 1. Preparation of heating composite material

1.1. 금속코팅 탄소섬유의 코팅두께별 전기저항 확인1.1. Check the electrical resistance of metal-coated carbon fiber by coating thickness

12K 탄소섬유를 이용해, 등록특허 제1427309호에 따른 금속도금 탄소섬유 제조방법으로 금속코팅 탄소섬유(MCF)를 제조하였다. 금속코팅 두께를 서로 상이하게 하여, 하기 표 1에 제시된 샘플-1 내지 샘플-4를 준비하였다.Using 12K carbon fiber, a metal-coated carbon fiber (MCF) was manufactured by the method of manufacturing a metal-plated carbon fiber according to Registration Patent No. 1427309. By making the metal coating thickness different from each other, Samples-1 to 4 shown in Table 1 below were prepared.

금속코팅 두께Metal coating thickness 섬유 비중Fiber specific gravity 섬유 전기저항
(Ω/m)
Fiber electrical resistance
(Ω/m)
Sample-1Sample-1 100 nm100 nm 2.132.13 44 Sample-2Sample-2 130 nm130 nm 2.242.24 33 Sample-3Sample-3 190 nm190 nm 2.452.45 22 Sample-4Sample-4 360 nm360 nm 3.03.0 1One

표 1에 나타낸 것과 같이 금속코팅의 두께에 따라 다른 섬유 전기저항이 나타났다. 이후 실시예에서는 Sample-3을 사용하였다.As shown in Table 1, different fiber electrical resistance was observed depending on the thickness of the metal coating. In the following examples, Sample-3 was used.

1. 2. Polyamide 수지의 물성1. 2. Properties of Polyamide Resin

금속코팅 탄소섬유에 함침되는 수지로 하기 표 2에 제시된 수지를 준비하였다.The resin shown in Table 2 below was prepared as a resin impregnated with the metal-coated carbon fiber.

밀도
(g/cm3)
density
(g/cm 3 )
융점
(℃)
Melting point
(℃)
인장강도
(MPa)
The tensile strength
(MPa)
Izod 충격강도
(Kgf·cm/cm)
Izod impact strength
(Kg f cm/cm)
열변형온도
(℃)
Heat deflection temperature
(℃)
PA6PA6 1.141.14 220220 8383 7.57.5 6565 PA66PA66 1.141.14 255255 8585 7.07.0 8585

이후 실시예에서는 상기 수지 중, PA6를 선택하여 사용하였다.In the following examples, among the resins, PA6 was selected and used.

1.3. 발열복합소재의 제조1.3. Manufacturing of heat-generating composite materials

도 2에 나타낸 제조장치를 이용하여, 상기 Sample-3의 12,000 가닥의 MCF 섬유에 PA6 수지를 균일하게 함침하여 복합소재를 선형으로 만들고 이를 6mm 길이로 컷팅하여 펠렛을 제조하였다.Using the manufacturing apparatus shown in FIG. 2, the 12,000 strands of MCF fibers of Sample-3 were uniformly impregnated with PA6 resin to make the composite material into a linear shape and cut it into a length of 6 mm to prepare a pellet.

상기 펠렛은 도 3에 나타낸 것과 같이, 섬유 다발 사이에 수지가 함침된 형태를 갖는다.As shown in FIG. 3, the pellet has a form in which a resin is impregnated between the fiber bundles.

실시예 2. 발열복합소재의 성형체 제조Example 2. Manufacture of molded body of heating composite material

상기 실시예 1의 펠렛을 사출성형기에 용융시켜, Plate 제품 (크기: 6 mm(T) x 12mm(W) x 100 mm, 부피 : 7.2cm3)을 제작하였다.The pellets of Example 1 were melted in an injection molding machine to prepare a Plate product (size: 6 mm (T) x 12 mm (W) x 100 mm, volume: 7.2 cm 3 ).

상기 수지가 함침되는 함량에 따른 전기저항을 측정하여, 하기 표 3에 나타내었다.The electrical resistance according to the amount of the resin impregnated was measured, and is shown in Table 3 below.

샘플 Sample MCF MCF PA 6 PA 6 전기저항 Ω/cm3 Electrical resistance Ω/cm 3 1One 10%10% 90%90% 100 ~ 200100 to 200 22 20%20% 8080 50 ~ 10050 to 100 33 30%30% 7070 15 ~ 4015 to 40 44 40%40% 6060 5 ~ 105 to 10

실시예 3. 전극이 연결된 시험편 제조Example 3. Preparation of test piece to which electrodes are connected

본 실시예 3에서는 전극이 연결된 발열제품을 제조하기 위하여, MCF 섬유 30 중량% 및 수지 70 중량%를 포함하는 펠렛을 용융시켜 금형에 투입하여, 16 mm(T) x 12mm(W) x 100 mm로 제작하여 시험편을 제작하였다.In this Example 3, in order to manufacture a heating product with an electrode connected, a pellet containing 30% by weight of MCF fiber and 70% by weight of a resin was melted and put into a mold, and then 16 mm (T) x 12 mm (W) x 100 mm. To prepare a test piece.

도 4에 나타낸 것과 같이, 제작된 시험편에 전력투입부를 제작하기 위해 양쪽 끝단에 구리전선을 열융착하여 삽입하여 전력 투입부를 제작하였다.As shown in FIG. 4, in order to manufacture the power input part in the manufactured test piece, copper wires were heat-sealed and inserted at both ends to produce a power input part.

상기 시험편에 DC 전력투입기를 연결하여 전력투입 후 10초 후 발열 온도를 열화상카메라로 측정하여, 도 5a 내지 5g에 나타내었다. A DC power injector was connected to the test piece, and the heating temperature was measured with a thermal imaging camera 10 seconds after the power was applied, and are shown in FIGS. 5A to 5G.

상기 도 5의 결과를 통해, 전력 투입량에 따라 발열 온도를 용이하게 제어하는 것이 가능하다는 것을 확인하였다.Through the results of FIG. 5, it was confirmed that it is possible to easily control the heating temperature according to the amount of power input.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the rights of the present invention are not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (12)

금속코팅 탄소섬유를 제조하는 단계(S1);
상기 S1 단계에서 제조된 탄소섬유의 다발을 수지함침조에 통과시켜, 수지가 함침된 금속코팅 탄소섬유를 제조하는 단계(S2);
상기 S2 단계에서 제조된 탄소섬유를 냉각하여 함침된 수지를 경화하는 단계(S3);
상기 S3 단계에서 경화된 탄소섬유를 건조하는 단계(S4); 및
상기 S4 단계에서 건조된 탄소섬유를 일정한 길이로 절단하여 펠렛화하여 발열복합소재를 제조하는 단계(S5)를 포함하고,
상기 S2 단계에서, 상기 수지는 폴리아마이드(PA)이고, 상기 폴리아마이드는 밀도 1.14 g/cm3, 융점 220~255℃, 인장강도 83~85MPa, Izod 충격강도 7.0~7.5Kgf·cm/cm, 열변형온도 65~85℃이고,
상기 수지는 100 내지 500℃ 범위 내에서 가열하여 용융된 것을 수지압출기를 통해 수지함침조에 압출시키고, 상기 함침은, 1 내지 3 kg/cm2의 압력으로 수지가 압출되는 수지함침조에서 수행되고,
상기 발열복합소재는 상기 금속코팅 탄소섬유 25 내지 35 중량% 및 상기 수지 75 내지 65 중량%를 포함하는,
금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법
Manufacturing a metal-coated carbon fiber (S1);
Passing the bundle of carbon fibers prepared in step S1 through a resin impregnation tank to prepare a resin-impregnated metal coated carbon fiber (S2);
Curing the impregnated resin by cooling the carbon fiber prepared in step S2 (S3);
Drying the carbon fiber cured in the step S3 (S4); And
Including the step (S5) of manufacturing a heat-generating composite material by cutting the carbon fiber dried in step S4 into a predetermined length and pelletizing it,
In the S2 step, the resin is polyamide (PA), the polyamide has a density of 1.14 g/cm 3 , a melting point of 220 to 255° C., a tensile strength of 83 to 85 MPa, and an Izod impact strength of 7.0 to 7.5 Kg f ·cm/cm , The heat deflection temperature is 65~85℃,
The resin is heated within the range of 100 to 500°C and the melted one is extruded into a resin impregnation tank through a resin extruder, and the impregnation is performed in a resin impregnation tank in which the resin is extruded at a pressure of 1 to 3 kg/cm 2,
The heating composite material comprises 25 to 35% by weight of the metal-coated carbon fiber and 75 to 65% by weight of the resin,
Manufacturing method of heat-generating composite material using metal-coated carbon fiber
제1항에 있어서,
상기 S1 단계는,
탄소섬유를 제1금속으로 무전해 도금하는 단계(S1-1); 및
상기 S1-1단계에서 무전해 도금된 탄소섬유를 제2금속으로 전해 도금하는 단계(S1-2)를 포함하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.
The method of claim 1,
The S1 step,
Electroless plating of carbon fibers with a first metal (S1-1); And
The method of manufacturing a heat-generating composite material using a metal-coated carbon fiber comprising the step of electroplating the carbon fiber electrolessly plated in step S1-1 with a second metal (S1-2).
제1항에 있어서,
상기 S2 단계의 탄소섬유의 다발은, 모노필라멘트가 100 내지 50,000가닥 포함되는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.
The method of claim 1,
The bundle of carbon fibers in step S2 is that the monofilament contains 100 to 50,000 strands, a method of manufacturing a heat-generating composite material using a metal-coated carbon fiber.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 S4 단계의 건조는, 1 내지 10kg/cm2의 압력으로 가해지는 공기압 또는 100℃ 내지 150℃의 열풍을 통해 수행되는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.
The method of claim 1,
The drying of the step S4 is performed through air pressure applied at a pressure of 1 to 10 kg/cm 2 or hot air at 100° C. to 150° C., a method of manufacturing a heat-generating composite material using metal-coated carbon fiber.
제1항에 있어서,
상기 S5 단계의 펠렛화는, 건조된 탄소섬유를 1 내지 15mm의 길이로 절단하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.
The method of claim 1,
The pelletization of the step S5 is to cut the dried carbon fiber to a length of 1 to 15 mm, the method of manufacturing a heat-generating composite material using a metal-coated carbon fiber.
제1항에 있어서,
상기 수지는 금속, 탄소나노튜브 및 그래핀으로 이루어지는 군으로부터 선택되는 1종 이상의 소재를 더 포함하는 것인, 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법.
The method of claim 1,
The resin further comprises at least one material selected from the group consisting of metal, carbon nanotubes, and graphene.
제1항의 제조방법에 의해 제조된 발열복합소재.
Heat-generating composite material manufactured by the manufacturing method of claim 1.
제10항의 발열복합소재를 용융한 후 금형에 투입하여 사출된, 성형체.
A molded article that is injected by melting the heat generating composite material of claim 10 and then injected into a mold.
제11항의 성형체; 및 전극이 포함되는, 발열 제품.
The molded article of claim 11; And an electrode, a heating product.
KR1020200055920A 2020-05-11 2020-05-11 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby KR102231216B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200055920A KR102231216B1 (en) 2020-05-11 2020-05-11 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby
PCT/KR2021/005853 WO2021230608A1 (en) 2020-05-11 2021-05-11 Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200055920A KR102231216B1 (en) 2020-05-11 2020-05-11 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Publications (1)

Publication Number Publication Date
KR102231216B1 true KR102231216B1 (en) 2021-03-23

Family

ID=75223637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200055920A KR102231216B1 (en) 2020-05-11 2020-05-11 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Country Status (2)

Country Link
KR (1) KR102231216B1 (en)
WO (1) WO2021230608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230608A1 (en) * 2020-05-11 2021-11-18 주식회사 비에스엠신소재 Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017760A (en) * 2010-08-19 2012-02-29 김경중 Heating element
KR20120129297A (en) * 2011-05-19 2012-11-28 삼성전자주식회사 Heating composite, and heating apparatus and fusing apparatus including the same
KR101427309B1 (en) * 2013-03-25 2014-08-06 주식회사 불스원신소재 Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
JP2017057246A (en) * 2015-09-14 2017-03-23 リンテック株式会社 Flexible sheet, heat-conductive member, conductive member, antistatic member, heat generator, electromagnetic wave shielding body, and method for producing flexible sheet
KR101754924B1 (en) 2016-04-11 2017-08-09 주식회사 이에스에너지 A methode for flexible carbon heating-pad
KR20180029451A (en) * 2016-09-12 2018-03-21 삼성전자주식회사 Heating element and method of manufacturing the same and apparatus comprising heating element
KR101963256B1 (en) * 2018-10-19 2019-03-29 (주)비에스엠신소재 Method for manufacturing heat generating film using metal coated carbon fiber
KR20190057008A (en) * 2017-11-17 2019-05-27 김성호 Heating sheet with strong radiant heat using carbon fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102231216B1 (en) * 2020-05-11 2021-03-23 (주)비에스엠신소재 Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017760A (en) * 2010-08-19 2012-02-29 김경중 Heating element
KR20120129297A (en) * 2011-05-19 2012-11-28 삼성전자주식회사 Heating composite, and heating apparatus and fusing apparatus including the same
KR101427309B1 (en) * 2013-03-25 2014-08-06 주식회사 불스원신소재 Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
JP2017057246A (en) * 2015-09-14 2017-03-23 リンテック株式会社 Flexible sheet, heat-conductive member, conductive member, antistatic member, heat generator, electromagnetic wave shielding body, and method for producing flexible sheet
KR101754924B1 (en) 2016-04-11 2017-08-09 주식회사 이에스에너지 A methode for flexible carbon heating-pad
KR20180029451A (en) * 2016-09-12 2018-03-21 삼성전자주식회사 Heating element and method of manufacturing the same and apparatus comprising heating element
KR20190057008A (en) * 2017-11-17 2019-05-27 김성호 Heating sheet with strong radiant heat using carbon fiber
KR101963256B1 (en) * 2018-10-19 2019-03-29 (주)비에스엠신소재 Method for manufacturing heat generating film using metal coated carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230608A1 (en) * 2020-05-11 2021-11-18 주식회사 비에스엠신소재 Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method

Also Published As

Publication number Publication date
WO2021230608A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
CN101407637B (en) Fiber reinforced composite material and preparation thereof
Carrico et al. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)
KR102231216B1 (en) Method for producing heat-generating composite material using metal-coated carbon fiber and the heat-generating composite material thereby
CN101411020A (en) Separator for fuel cell and process for producing the same
Hu et al. Design and construction of deformable heaters: Materials, structure, and applications
WO2006117679A2 (en) Electrically conductive PTFE tape
Yang et al. Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding
KR20160006677A (en) Moldable capsule and method of manufacture
CN106120458A (en) A kind of preparation method of polyimides conductive paper
US20130264332A1 (en) Conductive elastomeric heater with expandable core
CN106183212A (en) Structure/heating integral composite and preparation method thereof
CN114030179A (en) Double-channel feeding continuous fiber reinforced composite material 3D printer and control method
CN110534766A (en) A kind of resin film method prepares the material of fuel battery double plates
CN209388796U (en) A kind of insulated compound film and electric component
US20130156992A1 (en) Antistatic polyester resin molded body
Wang et al. Multifunctional electronic textiles by direct 3d printing of stretchable conductive fibers
Ning et al. Lightweight carbon fiber hybrid film for high-efficiency electromagnetic interference shielding and electro/photo-thermal conversion applications
JPS61501259A (en) Method and apparatus for producing fiber reinforced plastic bodies
KR102481070B1 (en) heating cable
Erkmen et al. Improvement in mechanical, electrical, and shape memory properties of the polystyrene‐based carbon fiber‐reinforced polymer composites containing carbon nanotubes
CN108909057A (en) A kind of carbon nanotube conducting cloth and preparation method thereof
CN101868073B (en) Line heat source
CN104327777A (en) Method using silver-coated glass fiber to prepare conducting resin
KR102526239B1 (en) Electromagnetic wave shielding composite pellets, manufacturing method thereof, and electromagnetic wave shielding products manufactured therefrom
KR20120017760A (en) Heating element

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant