KR102230103B1 - High-strength steel sheet having excellent formability and its manufacturing method - Google Patents

High-strength steel sheet having excellent formability and its manufacturing method Download PDF

Info

Publication number
KR102230103B1
KR102230103B1 KR1020187020618A KR20187020618A KR102230103B1 KR 102230103 B1 KR102230103 B1 KR 102230103B1 KR 1020187020618 A KR1020187020618 A KR 1020187020618A KR 20187020618 A KR20187020618 A KR 20187020618A KR 102230103 B1 KR102230103 B1 KR 102230103B1
Authority
KR
South Korea
Prior art keywords
steel sheet
coated steel
temperature
hot
coated
Prior art date
Application number
KR1020187020618A
Other languages
Korean (ko)
Other versions
KR20180095671A (en
Inventor
엘레나 우타
베로니끄 에베르
Original Assignee
아르셀러미탈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아르셀러미탈 filed Critical 아르셀러미탈
Publication of KR20180095671A publication Critical patent/KR20180095671A/en
Application granted granted Critical
Publication of KR102230103B1 publication Critical patent/KR102230103B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

냉간 압연 및 열처리된 강 시트는 0.17% ≤ 탄소 ≤ 0.24%, 1.9% ≤ 망간 ≤ 2.2%, 0.5% ≤ 규소 ≤ 1%, 0.5% ≤ 알루미늄 ≤ 1.2%, 여기서 Si + Al ≥ 1.3%, 0.05% ≤ 크롬 ≤ 0.2%, 0.015% ≤ 니오븀 ≤ 0.03%, 황 ≤ 0.003%, 인 ≤ 0.03% 및 선택적으로 0.005% ≤ 티타늄 ≤ 0.05%, 0.001% ≤ 몰리브덴 ≤ 0.05% 을 포함하는 조성을 갖고, 잔부는 철 및 제련으로부터 기인한 불가피적 불순물로 이루어지고, 상기 코팅된 강 시트의 미세조직은, 면적 분율로, 오스테나이트상이 0.9 내지 1.1% 의 탄소 함량을 갖는 10 내지 20% 의 잔류 오스테나이트, 40 내지 55% 의 다각형 페라이트, 15 내지 40% 의 입상 베이나이트 및 5% 이상의 템퍼링된 마르텐사이트를 포함하고, 템퍼링된 마르텐사이트 및 잔류 오스테나이트의 합은 20 내지 30% 이다. Cold rolled and heat treated steel sheet is 0.17% ≤ carbon ≤ 0.24%, 1.9% ≤ manganese ≤ 2.2%, 0.5% ≤ silicon ≤ 1%, 0.5% ≤ aluminum ≤ 1.2%, where Si + Al ≥ 1.3%, 0.05% ≤ chromium ≤ 0.2%, 0.015% ≤ niobium ≤ 0.03%, sulfur ≤ 0.003%, phosphorus ≤ 0.03% and optionally 0.005% ≤ titanium ≤ 0.05%, 0.001% ≤ molybdenum ≤ 0.05%, the balance being iron And inevitable impurities resulting from smelting, and the microstructure of the coated steel sheet is, by area fraction, 10 to 20% of retained austenite, 40 to 55, in which the austenite phase has a carbon content of 0.9 to 1.1%. % Polygonal ferrite, 15 to 40% granular bainite and at least 5% tempered martensite, the sum of tempered martensite and retained austenite is 20 to 30%.

Description

우수한 성형성을 갖는 고강도 강 시트 및 그 제조 방법High-strength steel sheet having excellent formability and its manufacturing method

본 발명은 자동차의 제조에 사용하기에 적합한 기계적 특성이 우수한 강 시트 및 그 제조 방법에 관한 것으로, 특히 본 발명은 고강도 고성형성을 제공한다.The present invention relates to a steel sheet having excellent mechanical properties suitable for use in the manufacture of automobiles, and a method of manufacturing the same, and in particular, the present invention provides high strength and high formability.

최근에는, 지구 환경 보전의 관점에서 연비와 탄소 배출량에 대한 강조가 커짐에 따라 자동차 중량의 감소가 필요하다; 결과적으로 더 높은 강도, 연신율 및 허용가능한 기계적 성질을 갖는 강 시트의 개발이 요구된다. 따라서, 자동차 강 부품은 한편으로는 높은 성형성 및 연성, 다른 한편으로는 높은 인장 강도와 같은 일반적으로 함께 얻기 어려운 것으로 간주되는 2가지 특성을 만족시키는 것이 요구된다.In recent years, as the emphasis on fuel economy and carbon emissions increases in terms of global environmental conservation, reduction in vehicle weight is necessary; As a result, there is a need for the development of steel sheets with higher strength, elongation and acceptable mechanical properties. Therefore, automotive steel parts are required to satisfy two properties that are generally considered difficult to obtain together, such as high formability and ductility on the one hand and high tensile strength on the other.

집중된 연구와 개발 노력으로 재료의 강도를 높여 차량 중량을 줄였다. 반대로, 강 시트의 강도가 증가하면 성형성이 저하되므로, 높은 강도 및 높은 성형성을 갖는 재료의 개발이 필요하다. Through intensive research and development efforts, the strength of the material was increased to reduce the vehicle weight. Conversely, when the strength of the steel sheet increases, the formability decreases, and therefore, it is necessary to develop a material having high strength and high formability.

따라서 TRIP (Transformation Induced Plasticity) 강과 같은 우수한 성형성을 갖는 고강도 강이 개발되었다. TRIP 강은 스트레인으로 점진적으로 변형되는 오스테나이트를 포함하는 복잡한 구조로 인해 기계적 강도와 성형성 사이에 양호한 균형을 제공한다. TRIP 강은 또한 마르텐사이트 및 오스테나이트 (MA) 및 베이나이트의 섬과 같은 콤포넌트 및 연성 콤포넌트인 페라이트를 포함할 수 있다. TRIP 강은 매우 높은 강화 능력을 가지므로 충돌시에 또는 자동차 부품의 성형 중에 변형이 잘 분산될 수 있게 한다. 따라서, 종래의 강으로 제조된 것만큼 복잡하지만 개선된 기계적 성질을 갖는 부품을 제조하는 것이 가능하며, 이는 다시 기계적 성능면에서 동일한 기능적 사양을 따르도록 부품의 두께를 감소시키는 것을 가능하게 한다. 따라서 이 강은 차량의 중량 감소 및 안전성 증가의 요건에 대한 효과적인 대응책이다. 열간 압연 또는 냉간 압연 강 시트의 분야에서, 이 유형의 강은 특히 자동차용 구조 및 안전 부품을 위한 적용을 가지고 있다. 강에 고강도 및 고성형성을 부여하여 고강도 및 고성형성 강종 및 고강도 및 고성형성 강 시트를 제조하는 방법이 다양하게 시도되고 있다.Therefore, high-strength steel having excellent formability such as TRIP (Transformation Induced Plasticity) steel has been developed. TRIP steel provides a good balance between mechanical strength and formability due to its complex structure containing austenite that gradually deforms into strain. TRIP steels may also contain components such as martensite and austenite (MA) and islands of bainite, and ferrite, which is a ductile component. The TRIP steel has a very high reinforcing ability, so that the deformation can be well dispersed in the event of a collision or during the molding of automobile parts. Thus, it is possible to manufacture parts that are as complex as those made from conventional steel but with improved mechanical properties, which in turn make it possible to reduce the thickness of the parts to conform to the same functional specifications in terms of mechanical performance. Therefore, this steel is an effective countermeasure to the requirements of reducing vehicle weight and increasing safety. In the field of hot rolled or cold rolled steel sheets, this type of steel has application in particular for structural and safety parts for automobiles. Various attempts have been made to produce a high strength and high formability steel grade and a high strength and high formability steel sheet by imparting high strength and high formability to steel.

US9074272 는 0.1-0.28% C, 1.0-2.0% Si, 1.0-3.0% Mn 의 화학 조성을 갖고 잔부가 철 및 불가피한 불순물로 이루어진 강을 기술한다. 미세조직은 9 내지 17% 의 잔류 오스테나이트, 40 내지 65% 의 베이나이트계 페라이트, 30 내지 50% 의 다각형 페라이트 및 5% 미만의 마르텐사이트를 함유한다. 이는 우수한 연신율을 갖는 냉간 압연된 강 시트를 언급하지만, US9074272 에 기술된 발명은 다수의 구조용 자동차 부품에 대해 지금 요구되고 있는 900 MPa 의 인장 강도를 달성하지 못한다.US9074272 describes a steel with a chemical composition of 0.1-0.28% C, 1.0-2.0% Si, 1.0-3.0% Mn and the balance consisting of iron and unavoidable impurities. The microstructure contains 9 to 17% of retained austenite, 40 to 65% of bainite-based ferrite, 30 to 50% of polygonal ferrite and less than 5% of martensite. It refers to a cold rolled steel sheet with good elongation, but the invention described in US9074272 does not achieve the tensile strength of 900 MPa, which is now required for many structural automotive parts.

US 2015/0152533 은 C: 0.12-0.18%, Si: 0.05-0.2%, Mn: 1.9-2.2%, Al: 0.2-0.5%, Cr: 0.05-0.2%, Nb: 0.01-0.06%, P: 0.02% 이하, S: 0.003% 이하, N: 0.008% 이하, Mo: 0.1% 이하, B: 0.0007% 이하, Ti: 0.01% 이하, Ni: 0.1% 이하, Cu: 0.1% 이하를 함유하고, 잔부가 철 및 불가피한 불순물로 이루어지는 고강도 강을 제조하는 방법을 개시하고 있다. 강 시트는 50-90 부피% 의 페라이트 (베이나이트계 페라이트 포함), 5-40 부피% 의 마르텐사이트, 15 부피% 이하의 잔류 오스테나이트 및 10 부피% 이하의 다른 구조 성분으로 이루어진 미세조직을 갖는다. US2015/0152533 에 개시된 강이 상당한 양의 마르텐사이트 (즉, 40% 이하) 를 함유한다고 하여도, 이 강은 900 MPa 의 인장 강도 수준을 달성하지 못한다.US 2015/0152533 Silver C: 0.12-0.18%, Si: 0.05-0.2%, Mn: 1.9-2.2%, Al: 0.2-0.5%, Cr: 0.05-0.2%, Nb: 0.01-0.06%, P: 0.02 % Or less, S: 0.003% or less, N: 0.008% or less, Mo: 0.1% or less, B: 0.0007% or less, Ti: 0.01% or less, Ni: 0.1% or less, Cu: 0.1% or less, the balance Disclosed is a method of manufacturing a high-strength steel composed of iron and unavoidable impurities. The steel sheet has a microstructure consisting of 50-90% by volume of ferrite (including bainite-based ferrite), 5-40% by volume of martensite, up to 15% by volume of retained austenite and up to 10% by volume of other structural components. . Even though the steel disclosed in US2015/0152533 contains a significant amount of martensite (ie, 40% or less), the steel does not achieve a tensile strength level of 900 MPa.

또한 문헌 JP 2001/254138 은 0.05-0.3% 의 C, 0.3-2.5% 의 Si, 0.5-3.0% 의 Mn 및 0.001-2.0% 의 Al 의 화학 조성을 갖고 잔부가 철 및 불가피한 불순물로 이루어진 강을 기술하고 있다. 이 조직은 탄소의 질량 농도가 1% 이상이고 부피 분율이 3 내지 50% 인 잔류 오스테나이트 및 50 내지 97% 양의 페라이트를 함유한다. 이 발명은 자동차용 복합 구조 부품을 형성하기 위해 높은 연성과 관련된 특정한 기계적 강도를 필요로 하는 강을 제조하는데 사용될 수 없다.In addition, document JP 2001/254138 describes a steel having a chemical composition of 0.05-0.3% C, 0.3-2.5% Si, 0.5-3.0% Mn, and 0.001-2.0% Al, and the balance consisting of iron and unavoidable impurities. have. This structure contains residual austenite with a mass concentration of at least 1% carbon and a volume fraction of 3 to 50% and ferrite in an amount of 50 to 97%. This invention cannot be used to manufacture steels that require specific mechanical strengths associated with high ductility to form automotive composite structural parts.

또한 EP2765212 는 마르텐사이트 면적율 5-70%, 잔류 오스테나이트의 면적율 5-40%, 상부 베이나이트 중의 베이나이트계 페라이트의 면적율 5% 이상, 그 합계가 40% 이상인 미세조직을 갖고 마르텐사이트의 25% 이상이 템퍼링된 마르텐사이트이고 다각형 페라이트 면적율이 10% 초과 50% 미만인 우수한 연성 및 신장 플랜 지성을 갖는 고강도 강 시트를 제안하고 있다.In addition, EP2765212 has a microstructure in which the area ratio of martensite is 5-70%, the area ratio of retained austenite is 5-40%, the area ratio of bainite ferrite in the upper bainite is 5% or more, and the total is 40% or more, and 25% of martensite. The above is a tempered martensite and proposes a high-strength steel sheet having excellent ductility and elongation flangeability having a polygonal ferrite area ratio of more than 10% and less than 50%.

따라서, 전술한 문헌들의 견지에서, 본 발명의 목적은 복잡한 자동차 부품 및 부재를 제조하기 위해 현재의 자동차 제조 프랙티스에 맞추기 위한 용량으로 더 큰 중량 감소를 얻을 수 있게 하는 강 시트를 제공하는 것이다.Accordingly, in view of the aforementioned documents, it is an object of the present invention to provide a steel sheet that makes it possible to obtain a greater weight reduction with a capacity to fit current automotive manufacturing practices for manufacturing complex automotive parts and members.

본 발명의 목적은, 하기의 것을 동시에 가지는 이용가능한 냉간-압연 강 시트를 제조함으로써 이들 문제를 해결하는 것이다:It is an object of the present invention to solve these problems by producing a usable cold-rolled steel sheet having the following at the same time:

- 980 MPa 이상, 바람직하게는 1050 MPa 초과 또는 1100 MPa 초과의 최대 인장 강도 TS,-A maximum tensile strength TS of not less than 980 MPa, preferably more than 1050 MPa or more than 1100 MPa,

- 550 MPa 초과의 항복 강도,-Yield strength greater than 550 MPa,

- 0.60 이상의 항복 비,-A yield ratio of 0.60 or more,

- 17% 이상, 바람직하게는 19% 초과의 총 연신율 TE,-A total elongation TE of at least 17%, preferably more than 19%,

- 18% 이상의 구멍 확장 비율 (ISO 표준 16630:2009 에 따라 측정됨).-Hole expansion ratio of 18% or more (measured according to ISO standard 16630:2009).

바람직하게는, 이러한 강은 성형, 특히 압연에 대한 양호한 적합성, 양호한 용접성 및 양호한 코팅성을 갖는다.Preferably, these steels have good suitability for forming, in particular rolling, good weldability and good coatability.

본 발명의 다른 목적은 액체 금속 취화 균열에 대한 내성이 우수한 강을 제조하는 것이다.Another object of the present invention is to produce a steel having excellent resistance to liquid metal embrittlement cracking.

본 발명의 또 다른 목적은 제조 파라미터의 약간의 작은 변화에 대하여 너무 민감하지 않으면서 종래의 산업적 응용과 양립할 수 있는 시트의 제조 방법을 이용가능하게 만드는 것이다.Another object of the present invention is to make available a method of making a sheet that is compatible with conventional industrial applications without being too sensitive to slight small changes in manufacturing parameters.

도 1 은 본 발명 강의 미세조직을 나타내는 현미경 사진이다; 템퍼링된 마르텐사이트 및 오스테나이트는 흐릿한 구성요소로 나타나고 나머지 부분은 페라이트 및 입상 베이나이트이다.
도 2a 는 본 발명의 강 시트에서의 템퍼링된 마르텐사이트의 균질 분포를 도시하고, 도 2b 는 기준 강 시트에서의 마르텐사이트의 비균질 분포를 도시한다.
1 is a micrograph showing the microstructure of the steel of the present invention; The tempered martensite and austenite appear as hazy constituents, and the remainder is ferrite and granular bainite.
FIG. 2A shows the homogeneous distribution of tempered martensite in the steel sheet of the present invention, and FIG. 2B shows the heterogeneous distribution of martensite in the reference steel sheet.

본 발명에 따른 강 시트는 후술되는 특정 조성을 나타낸다.The steel sheet according to the present invention exhibits a specific composition described below.

탄소는 본 발명의 강에 0.17% 내지 0.24% 존재한다. 탄소는 TRIP 효과를 통해 미세조직의 형성에서 그리고 강도 및 연성에서 중요한 역할을 한다: 탄소가 0.17% 미만일 때는 상당한 TRIP 효과를 얻는 것이 불가능하다. 0.24% 초과에서는, 용접성이 저하된다. 탄소 함량은 유리하게는 고강도 및 고연신율을 동시에 얻도록 0.20 내지 0.24% 를 포함한다.Carbon is present in the steel of the present invention from 0.17% to 0.24%. Carbon plays an important role in the formation of microstructures through the TRIP effect and in strength and ductility: it is not possible to obtain a significant TRIP effect when the carbon content is less than 0.17%. If it exceeds 0.24%, weldability deteriorates. The carbon content advantageously comprises 0.20 to 0.24% so as to obtain high strength and high elongation at the same time.

현재의 강에는 망간이 1.9% 내지 2.2% 첨가된다. 망간은 페라이트에서 고용체 치환에 의한 경화를 제공하는 원소이다. 요구되는 인장 강도를 얻기 위해서는 최소 1.9 중량% 의 함량이 필요하다. 그럼에도 불구하고, 2.2% 를 초과하면, 망간은 베이나이트의 형성을 지연시키고, 추후 단계에서 잔류 오스테나이트가 아닌 마르텐사이트로 변형되는 저감된 양의 탄소를 갖는 오스테나이트의 형성을 더욱 향상시키며, 이는 요구된 특성에 유해하다.Manganese is added in the range of 1.9% to 2.2% in current steels. Manganese is an element that provides hardening by solid solution substitution in ferrite. A minimum content of 1.9% by weight is required to obtain the required tensile strength. Nevertheless, if it exceeds 2.2%, manganese delays the formation of bainite and further enhances the formation of austenite with a reduced amount of carbon that is transformed into martensite rather than residual austenite in a later step, which It is harmful to the required properties.

규소는 본 발명의 강에 0.5% 내지 1% 의 양으로 첨가된다. 규소는 안정화를 위해 오스테나이트에 탄소를 집중시키는 것을 가능하게 하는 일차 냉각에 이어지는 균등화 단계 동안에 탄화물의 침전을 늦춤으로써 미세조직의 형성에 중요한 역할을 한다. 규소는 알루미늄과 조합되어 효과적인 역할을 하며, 특정 특성과 관련하여 0.5% 이상의 함량 수준에서 최상의 결과가 얻어진다. 그러나, 1% 보다 많은 양으로 규소를 첨가하면, 제품의 표면에 부착되는 산화물의 형성을 촉진함으로써 용융 코팅성에 악영향을 미쳐서 용접성을 감소시킨다. 이는 또한, 스폿 용접 중에 오스테나이트 결정입계로의 액체 Zn 침투에 의한 액체 금속 취화를 초래할 수 있다. 1% 이하의 함량은 양호한 코팅성뿐만 아니라 용접에 대해 매우 양호한 적합성을 동시에 제공한다. 규소 함량은 베이나이트 대신에 취성 마르텐사이트의 형성을 제한하기 위해 바람직하게는 0.7 내지 0.9% 일 수 있다.Silicon is added to the steel of the present invention in an amount of 0.5% to 1%. Silicon plays an important role in the formation of microstructures by slowing the precipitation of carbides during the leveling step following primary cooling, which makes it possible to concentrate carbon in the austenite for stabilization. Silicon plays an effective role in combination with aluminum and the best results are obtained at content levels above 0.5% with regard to certain properties. However, if silicon is added in an amount greater than 1%, the melt coatability is adversely affected by promoting the formation of oxides adhering to the surface of the product, thereby reducing weldability. This can also lead to liquid metal embrittlement due to liquid Zn penetration into the austenite grain boundaries during spot welding. A content of less than 1% simultaneously provides not only good coatability but also very good suitability for welding. The silicon content may preferably be 0.7 to 0.9% in order to limit the formation of brittle martensite instead of bainite.

알루미늄은 탄화물의 침전을 크게 늦추고 잔류 오스테나이트를 안정화시킴으로써 본 발명에서 중요한 역할을 한다. 이 효과는 알루미늄 함량이 0.5% 내지 1.2% 로 포함될 때에 얻어진다. 바람직하게는 알루미늄 함량은 0.7% 이상, 0.9% 이하일 수 있다. 또한, 높은 수준의 Al 은 내화재료의 부식을 증가시키고 압연의 상류에서 강을 주조하는 동안에 노즐을 막히게 할 위험이 있다고 일반적으로 생각된다. 또한 알루미늄은 네거티브 편석에 의해 매크로 편석을 유발할 수 있다. 과량의 경우, 알루미늄은 고온 연성을 감소시키고 연속 주조 중에 결함이 나타날 위험성을 증가시킨다. 주조 조건을 주의깊게 제어하지 않으면, 미크로 및 매크로 편석 결함으로 인해 어닐링된 강 시트에 중앙 편석이 발생한다. 이 중앙 밴드는 주변 매트릭스보다 더 단단하며, 재료의 성형성에 악영향을 미친다.Aluminum plays an important role in the present invention by significantly slowing the precipitation of carbides and stabilizing residual austenite. This effect is obtained when the aluminum content is included in the range of 0.5% to 1.2%. Preferably, the aluminum content may be 0.7% or more and 0.9% or less. In addition, it is generally thought that high levels of Al increase the corrosion of refractory materials and there is a risk of clogging the nozzles during casting steel upstream of rolling. Also, aluminum can cause macro segregation by negative segregation. In the case of excess, aluminum reduces hot ductility and increases the risk of defects appearing during continuous casting. If the casting conditions are not carefully controlled, central segregation occurs in the annealed steel sheet due to micro and macro segregation defects. This central band is harder than the surrounding matrix and adversely affects the formability of the material.

전술한 개별적인 제한 외에도, 알루미늄 및 규소의 합계는 1.3% 이상, 바람직하게는 1.4% 이상이어야 하는데, 그 이유는 양 원소가 잔류 오스테나이트의 안정화에 상승적으로 기여하여 어닐링 사이클 동안에, 더 구체적으로는 베이나이트 변태 동안에 탄화물의 침전을 상당히 늦추기 때문이다. 이는 탄소에 의한 오스테나이트의 부화를 얻는 것을 가능하게 하여, 강 시트에 있어서 실온에서의 안정화를 가져온다. In addition to the individual limitations mentioned above, the sum of aluminum and silicon should be at least 1.3%, preferably at least 1.4%, because both elements synergistically contribute to the stabilization of retained austenite during the annealing cycle, more specifically bays. This is because it significantly slows the precipitation of carbides during the night transformation. This makes it possible to obtain enrichment of austenite by carbon, resulting in stabilization at room temperature in the steel sheet.

또한, 본 발명자들은, Si/10 > 0.30% - C (Si 및 C 는 중량% 로 표시) 일 때에, LME (liquid metal embrittlement phenomenon: 액체 금속 취화 현상) 에 기인하여, 규소가 코팅 시트의 스폿 용접에 대해, 특히 아연도금 또는 합금도금 또는 전기 아연도금 시트에 해롭다는 것을 발견했다. LME 가 발생하면 용접 조인트의 용접 금속에서 그리고 열영향부에서 결정입계에 균열이 발생한다. 따라서, 특히 시트가 코팅되어야 하는 경우에는 (C + Si/10) 은 0.30% 이하로 유지되어야 한다.In addition, the inventors of the present invention, when Si/10> 0.30%-C (Si and C are expressed in wt%), due to LME (liquid metal embrittlement phenomenon), silicon is spot welding of the coated sheet In particular, it has been found to be harmful to galvanized or alloyed or electrogalvanized sheets. When LME occurs, cracks occur in the grain boundaries in the weld metal of the weld joint and in the heat affected zone. Therefore, (C + Si/10) should be kept below 0.30%, especially when the sheet is to be coated.

본 발명자들은 또한, LME 발생을 줄이기 위해서는, 고려되는 조성의 도메인에 대해, Al 함량이 6(C+Mn/10) - 2.5% 이상이어야 함을 발견했다.The inventors have also found that in order to reduce the occurrence of LME, the Al content should be 6(C+Mn/10)-2.5% or more for the domain of the composition considered.

크롬은 0.05% 내지 0.2% 의 양으로 본 발명의 강에 첨가된다. 망간처럼 크롬은 마르텐사이트 형성을 촉진시키는 담금질성을 증가시킨다. 크롬 함량이 0.05% 보다 높으면, 요구되는 인장 강도에 도달하는 것이 유용하다. 그러나, 크롬 함량이 0.2% 보다 높으면, 베이나이트 형성이 지연되고, 따라서 균등화 단계 동안에 오스테나이트가 탄소에 충분히 농축되지 않는다; 실제로 이 오스테나이트는 주위 온도로 냉각되는 동안에 다소 전적으로 마르텐사이트로 변형되고, 연신율이 너무 낮다. 따라서, 크롬 함량은 0.05 내지 0.2% 이다.Chromium is added to the steel of the present invention in an amount of 0.05% to 0.2%. Like manganese, chromium increases the hardenability that promotes martensite formation. If the chromium content is higher than 0.05%, it is useful to reach the required tensile strength. However, if the chromium content is higher than 0.2%, the bainite formation is delayed, and thus the austenite is not sufficiently concentrated in carbon during the equalization step; In practice this austenite transforms somewhat entirely into martensite during cooling to ambient temperature, and the elongation is too low. Therefore, the chromium content is 0.05 to 0.2%.

니오븀은 0.015 내지 0.03 의 양으로 본 발명의 강에 첨가되어 석출 경화에 의해 강도를 부여하기 위해 탄질화물의 형성을 유발한다. 니오븀은 가열 동안에 재결정을 지연시키기 때문에, 유지 온도의 끝에서 그리고 그 결과로서 전체 어닐링 이후에 형성된 미세조직은 더 미세화되어 제품의 경화를 초래한다. 그러나, 니오븀 함량이 0.03% 를 초과하면, 탄질화물이 다량 형성되고, 강의 연성을 저하시키는 경향이 있다. Niobium is added to the steel of the present invention in an amount of 0.015 to 0.03 to induce the formation of carbonitrides to impart strength by precipitation hardening. Since niobium delays recrystallization during heating, the microstructure formed at the end of the holding temperature and consequently after full annealing becomes finer, leading to hardening of the product. However, when the niobium content exceeds 0.03%, a large amount of carbonitrides is formed, and there is a tendency to lower the ductility of the steel.

티타늄은 본 발명의 강에 0.005% 내지 0.05% 의 양으로 첨가될 수 있는 임의의 원소이다. 니오븀처럼, 티타늄은 침전되어 탄질화물을 형성하고 경화에 기여한다. 그러나 티타늄은 또한, 주조 제품의 응고 동안에 나타나는 큰 TiN 의 형성에 관여한다. 따라서, 구멍 확장에 해로운 거친 TiN 을 회피하기 위해 티타늄의 양은 0.05% 로 제한된다. 티타늄 함량이 0.005% 미만으로 첨가되는 경우에는, 본 발명의 강에 어떠한 영향도 주지 않는다. Titanium is any element that can be added to the steel of the present invention in an amount of 0.005% to 0.05%. Like niobium, titanium precipitates to form carbonitrides and contributes to hardening. However, titanium is also involved in the formation of large TiN that appears during solidification of the cast product. Therefore, the amount of titanium is limited to 0.05% in order to avoid coarse TiN which is detrimental to hole expansion. When the titanium content is added below 0.005%, it does not have any effect on the steel of the present invention.

몰리브덴은 본 발명의 강에 0.001% 내지 0.05% 의 양으로 첨가될 수 있는 임의의 원소이다. 몰리브덴은 담금질성을 높이고 베이나이트 형성을 지연시키고 베이나이트에서의 탄화물 침전을 회피하는데 효과적인 역할을 할 수 있다. 그러나, 몰리브덴의 첨가는 합금 원소의 첨가 비용을 과도하게 증가시키므로, 경제적 인 이유로 그 함량은 0.05% 로 제한된다. Molybdenum is any element that can be added to the steel of the present invention in an amount of 0.001% to 0.05%. Molybdenum can play an effective role in improving hardenability, delaying bainite formation, and avoiding carbide precipitation in bainite. However, since the addition of molybdenum excessively increases the cost of adding the alloying element, its content is limited to 0.05% for economic reasons.

본 발명의 황 함량은 가능한 낮게 유지되어야 한다; 따라서 본 발명에서 황의 함량은 0.004% 이하이다. 0.004% 이상의 황 함량은 MnS (황화 망간) 와 같은 황화물의 과도한 존재로 인해 연성을 감소시키며, 이는 강의 가공성을 감소시키고 또한 균열 발생의 원인이 된다.The sulfur content of the present invention should be kept as low as possible; Therefore, the content of sulfur in the present invention is 0.004% or less. Sulfur content of 0.004% or more reduces ductility due to the excessive presence of sulfides such as MnS (manganese sulfide), which reduces the workability of the steel and also causes cracking.

인은 본 발명의 강에 0.03% 이하의 양으로 존재할 수 있다. 인은 고용체에서 경화하지만 고온 연성 및 스폿 용접에 대한 적합성을 크게 감소시키는 원소이다. 이러한 이유로, 양호한 고온 연성 및 스폿 용접에 대한 양호한 적합성을 얻기 위해서, 인의 함유량은 0.03% 로 제한되어야 한다.Phosphorus may be present in the steel of the present invention in an amount up to 0.03%. Phosphorus is an element that hardens in solid solution but greatly reduces its suitability for high temperature ductility and spot welding. For this reason, in order to obtain good high temperature ductility and good suitability for spot welding, the phosphorus content should be limited to 0.03%.

본 발명의 강 시트는 양이 면적 분율로 주어진 여러 상을 포함하는 특정 미세조직을 나타낸다.The steel sheet of the present invention exhibits a specific microstructure comprising several phases whose quantity is given as an area fraction.

다각형 페라이트 성분은 본 발명의 강에 향상된 연신율을 부여하고, 요구되는 수준에서 연신율 및 구멍 확장 비율을 보장한다. 다각형 페라이트는 부드럽고 본질적으로 연성인 성분이다. 이는 낮은 고용체 탄소 함량 및 매우 낮은 전위 밀도를 갖기 때문에 냉각 단계에서 형성되는 규칙적인 페라이트와 구별될 수 있다. 다각형 페라이트는 최소 40% 의 양으로 그리고 최대 55% 의 수준으로 존재해야 한다. 다각형 페라이트는 템퍼링된 마르텐사이트와 같은 존재하는 다른 경질 상과 비교하여 그 부드러움 때문에 그리고 0.005% 정도로 낮을 수 있는 다각형 페라이트에 존재하는 탄소의 매우 제한된 양 때문에 본 발명에 연신을 부여한다. 또한 전위 밀도가 낮기 때문에 구멍 확장 비율에 기여한다. 이 다각형 페라이트는 임계간 어닐링에 상당하는 온도에서의 가열 및 유지 중에 주로 형성된다. 일정량의 규칙적인 페라이트가 냉각 중에 형성될 수 있지만, 망간 함량 때문에, 냉각 단계에서 나타나는 규칙적인 페라이트 함량은 항상 5% 미만이다.The polygonal ferrite component imparts improved elongation to the steel of the present invention and ensures elongation and hole expansion ratio at the required level. Polygonal ferrite is a soft and essentially ductile component. It can be distinguished from regular ferrites formed in the cooling step because of its low solid solution carbon content and very low dislocation density. Polygonal ferrites should be present in an amount of at least 40% and at a level of up to 55%. Polygonal ferrite imparts elongation to the invention because of its softness compared to other hard phases present such as tempered martensite and because of the very limited amount of carbon present in the polygonal ferrite, which can be as low as 0.005%. In addition, since the dislocation density is low, it contributes to the hole expansion ratio. This polygonal ferrite is mainly formed during heating and holding at a temperature equivalent to an intercritical annealing. A certain amount of regular ferrite can be formed during cooling, but because of the manganese content, the regular ferrite content that appears in the cooling step is always less than 5%.

본 발명의 강에 존재하는 입상 베이나이트는 본 발명의 입상 베이나이트가 매우 낮은 탄화물 밀도를 갖기 때문에 종래의 베이나이트 조직과 구별된다. 여기서 낮은 탄화물 밀도는 100 ㎛2 의 면적 단위당 100 개 이하의 탄화물을 의미한다. 전위 밀도가 높기 때문에 (1015/m-2 근방), 이 입상 베이나이트는 다각형 페라이트와 반대로 본 발명의 강에 고강도를 부여한다. 입상 베이나이트의 양은 15 내지 40% 이다. The granular bainite present in the steel of the present invention is distinguished from the conventional bainite structure because the granular bainite of the present invention has a very low carbide density. Here, a low carbide density means 100 or less carbides per area unit of 100 μm 2. Since the dislocation density is high (around 10 15 /m -2 ), this granular bainite imparts high strength to the steel of the present invention, as opposed to polygonal ferrite. The amount of granular bainite is 15 to 40%.

잔류 오스테나이트는 10 내지 20% 의 양으로 구성성분으로서 존재하며, TRIP 효과를 보장하기 위한 필수 성분이다. 본 발명의 잔류 오스테나이트는 0.9 내지 1.1% 의 탄소 백분율을 갖는데, 이는 실온에서 오스테나이트를 안정화시키고 TRIP 효과를 향상시키는데 중요한 역할을 하고, 이는 본 발명에 적절한 성형성을 제공한다. 또한, 탄소가 풍부한 잔류 오스테나이트는 오스테나이트에서의 탄소의 용해도가 높기 때문에 입상 베이나이트의 형성에 기여하고, 이는 베이나이트에서의 탄화물의 생성을 지연시킨다. 바람직한 실시형태에서, 이러한 잔류 오스테나이트의 평균 입자 크기는 2 ㎛ 보다 작다. 잔류 오스테나이트는 시그마메트리 (sigmametry) 라고 불리우는 자기 방법으로 측정되는데, 이는 강자성체인 다른 상들과는 달리 상자성인 오스테나이트를 불안정하게 하는 열처리 전후의 강의 자기 모멘트를 측정하는 것으로 이루어진다. Retained austenite is present as a component in an amount of 10 to 20%, and is an essential component to ensure the TRIP effect. The retained austenite of the present invention has a carbon percentage of 0.9 to 1.1%, which plays an important role in stabilizing the austenite at room temperature and improving the TRIP effect, which provides suitable moldability for the present invention. In addition, the carbon-rich residual austenite contributes to the formation of granular bainite because the solubility of carbon in the austenite is high, which delays the formation of carbides in the bainite. In a preferred embodiment, the average particle size of this retained austenite is less than 2 μm. Retained austenite is measured by a magnetic method called sigmametry, which, unlike other ferromagnetic phases, consists of measuring the magnetic moment of the steel before and after heat treatment that makes paramagnetic austenite unstable.

또한, 본 발명의 강은 적어도 5% 의 템퍼링된 마르텐사이트를 포함하는데, 이는 일차 오스테나이트 입자로부터 발생된 각 입자 내부에서 일 방향으로 길게 연장된 미세한 라스들 (laths) 로 구성되는 성분이고, <111> 방향을 따르는 라스들 사이에는 미세한 강 탄화물이 침전된다. 이러한 마르텐사이트의 템퍼링은 마르텐사이트와 페라이트 또는 베이나이트 사이의 경도 갭의 감소로 인하여 항복 강도를 증가시키는 것을 허용하고, 동일한 이유로 그리고 마르텐사이트의 감소로 인해 구멍 확장 비율을 증가시킨다. 템퍼링된 마르텐사이트 및 잔류 오스테나이트의 합계의 함량은 20 내지 30%, 바람직하게는 25 내지 30% 이다. 템퍼링된 마르텐사이트 및 오스테나이트는 마르텐사이트-오스테나이트 섬의 형태로 존재할 수도 있거나 또는 개별적으로 별개의 미세조직의 형태로 존재할 수도 있다. 본 강은, 비템퍼링된 마르텐사이트가 경질 상이며 그에 따라 강의 항복 강도를 감소시키고 또한 본 발명의 강의 성형성을 감소시키므로, 임의의 비템퍼링된 마르텐사이트를 함유하지 않는다.In addition, the steel of the present invention contains at least 5% of tempered martensite, which is a component composed of fine laths elongated in one direction within each particle generated from primary austenite particles, < Fine steel carbides are deposited between the laths along the 111> direction. This tempering of martensite allows to increase the yield strength due to the decrease in the hardness gap between martensite and ferrite or bainite, and for the same reason and due to the reduction of martensite increases the rate of hole expansion. The total content of tempered martensite and retained austenite is 20 to 30%, preferably 25 to 30%. The tempered martensite and austenite may exist in the form of martensite-austenite islands or may exist individually in the form of separate microstructures. The present steel does not contain any untempered martensite, since the untempered martensite is a hard phase and thus reduces the yield strength of the steel and also reduces the formability of the steel of the present invention.

본 발명의 바람직한 실시형태에서, 템퍼링된 마르텐사이트 함량의 분포의 균질성은 다음과 같은 방식으로 특성화된다: 템퍼링된 마르텐사이트 분율 (TM) 은 강 시트에서 50×50 ㎛2 의 임의의 영역에서 측정되고 평균 분율 (TM*) 과 비교된다. 템퍼링된 마르텐사이트의 분포는 |(TM)-(TM*)| ≤ 1.5% 이면 균질로 규정된다. 이러한 균질한 분배는 구멍 확장 비율을 향상시킨다. In a preferred embodiment of the invention, the homogeneity of the distribution of the tempered martensite content is characterized in the following way: The tempered martensite fraction (TM) is measured in an arbitrary area of 50×50 μm 2 in the steel sheet and Compared to the average fraction (TM * ). The distribution of tempered martensite is |(TM)-(TM * )| If ≤ 1.5%, it is defined as homogeneous. This homogeneous distribution improves the hole expansion rate.

본 발명에 따른 강 시트는 임의의 적합한 프로세스에 의해 제조될 수 있다. 그러나, 이하에 설명하는 프로세스를 이용하는 것이 바람직하다.The steel sheet according to the invention can be produced by any suitable process. However, it is preferable to use the process described below.

반제품의 주조는 잉곳의 형태로 또는 얇은 슬래브 또는 얇은 스트립의 형태로 수행될 수 있으며, 두께는 슬래브의 경우 약 220 mm 에서 얇은 스트립 또는 슬래브의 경우 수십 밀리미터까지이다.Casting of semi-finished products can be carried out in the form of ingots or in the form of thin slabs or thin strips, the thickness of which ranges from about 220 mm for slabs to tens of millimeters for thin strips or slabs.

간략화를 위해, 아래의 설명은 반제품으로서의 슬래브에 초점을 맞출 것이다. 전술한 화학 조성을 갖는 슬래브는 연속 주조에 의해 제조되며, 본 발명의 제조 방법에 따라 추가 가공을 위해 제공된다. 여기서, 슬래브는 연속 주조 동안 고온으로 사용될 수 있거나, 먼저 실온으로 냉각된 다음에 재가열될 수도 있다.For simplicity, the description below will focus on the slab as a semi-finished product. Slabs having the above-described chemical composition are produced by continuous casting and are provided for further processing according to the production method of the present invention. Here, the slab may be used at a high temperature during continuous casting, or it may be cooled to room temperature first and then reheated.

열간 압연되는 슬래브의 온도는 바람직하게 Ac3 점 이상이고 적어도 1000℃ 이상이고, 1280℃ 이하이어야 한다. 여기에 언급된 온도는 슬래브의 모든 지점에서 오스테나이트 범위에 도달하는 것을 보장하도록 규정되어 있다. 슬래브의 온도가 1000℃ 보다 낮은 경우, 압연 밀에 과도한 하중이 가해지고, 또한, 강의 온도가 압연 중에 페라이트 변태 온도로 저하될 수도 있다. 따라서, 압연이 완전한 오스테나이트 구역에 있음을 보장하기 위해, 재가열은 1000℃ 이상에서 수행되어야 한다. 또한, 거친 페라이트 입자를 초래하여 열간 압연 중에 입자의 재결정 능력을 감소시키는 오스테나이트 입자의 부적당한 성장을 회피하기 위해 온도는 1280℃ 를 초과해서는 안된다. 또한, 1280℃ 초과의 온도는 열간 압연 중에 유해한 두꺼운 층 산화물의 형성 위험을 높인다. 마무리 압연 온도는 850℃ 이상이어야 한다. 열간 압연 대상인 강이 완전한 오스테나이트 구역에서 압연되는 것을 보장하기 위해 Ar3 점보다 높은 마무리 압연 온도를 갖는 것이 바람직하다.The temperature of the slab to be hot-rolled should preferably be at least the Ac3 point, at least 1000°C, and at least 1280°C. The temperatures mentioned here are specified to ensure that the austenite range is reached at all points in the slab. When the temperature of the slab is lower than 1000°C, an excessive load is applied to the rolling mill, and the temperature of the steel may also be lowered to the ferrite transformation temperature during rolling. Therefore, to ensure that the rolling is in the complete austenite zone, reheating has to be carried out at 1000°C or higher. In addition, the temperature should not exceed 1280° C. in order to avoid inappropriate growth of austenite particles, which results in coarse ferrite particles and reduces the recrystallization ability of the particles during hot rolling. In addition, temperatures above 1280° C. increase the risk of formation of harmful thick layer oxides during hot rolling. The finish rolling temperature should be 850℃ or higher. It is desirable to have a finish rolling temperature higher than the Ar3 point to ensure that the steel to be hot rolled is rolled in the complete austenite zone.

이어서, 이러한 방식으로 얻어진 열간 압연된 강 시트는 본 발명의 필수적인 미세조직을 얻기 위해 35 내지 55℃/s 의 냉각 속도로 580℃ 이하의 권취 온도까지 냉각되는데, 그 이유는 냉각 속도의 이러한 범위가 베이나이트의 형성에 도움이 되기 때문이다. 냉각 속도는 마르텐사이트의 과도한 형성을 회피하기 위해 55℃/s 를 초과해서는 안된다. 권취 온도는 580℃ 이하이어야 하는데, 그 이유는 이 온도보다 높으면 미크로 편석과 입자간 산화가 심화될 위험이 있기 때문이다. 본 발명의 열간 압연된 강 시트의 바람직한 권취 온도는 450 내지 550℃ 이다.Subsequently, the hot-rolled steel sheet obtained in this way is cooled to a coiling temperature of 580°C or less at a cooling rate of 35 to 55°C/s to obtain the essential microstructure of the present invention, because this range of cooling rates is This is because it helps in the formation of bainite. The cooling rate should not exceed 55°C/s to avoid excessive formation of martensite. The coiling temperature should be 580℃ or less, because if it is higher than this temperature, there is a risk that micro-segregation and intergranular oxidation may intensify. The preferred winding temperature of the hot-rolled steel sheet of the present invention is 450 to 550°C.

이어서, 열간 압연된 강 시트는 바람직하게는 125℃/h 이하의 냉각 속도로 실온으로 냉각된다.Subsequently, the hot-rolled steel sheet is cooled to room temperature, preferably at a cooling rate of 125° C./h or less.

그 후, 스케일을 제거하기 위해 열간 압연된 강 시트에 대해 산세가 수행되고, 열간 압연된 시트는 전형적으로 30 내지 90% 의 두께 감소로 냉간 압연된다.Thereafter, pickling is performed on the hot-rolled steel sheet to remove scale, and the hot-rolled sheet is cold-rolled, typically with a thickness reduction of 30 to 90%.

냉간 압연 공정에서 얻어진 냉간 압연된 강 시트는 본 발명의 강에 요구되는 기계적 특성 및 미세조직을 부여하도록 임계간 어닐링 및 후속의 다른 열처리 공정을 거친다.The cold rolled steel sheet obtained in the cold rolling process is subjected to critical annealing and subsequent other heat treatment processes to impart the mechanical properties and microstructure required to the steel of the present invention.

냉간 압연된 강 시트는 페라이트 대 오스테나이트의 비율이 60:40 내지 35:65 가 되도록 1 내지 20℃/s, 바람직하게는 2℃/s 보다 큰 가열 속도로 Ac1 내지 Ac3, 바람직하게는 780 내지 950℃ 의 균열 온도까지 연속적으로 어닐링된다. 균열은 바람직하게는 10초 초과 동안 수행되고, 600초 이하이어야 한다.The cold rolled steel sheet has a heating rate of 1 to 20°C/s, preferably greater than 2°C/s so that the ratio of ferrite to austenite is from 60:40 to 35:65, and from Ac1 to Ac3, preferably from 780 to It is annealed continuously to a soaking temperature of 950°C. The cracking is preferably carried out for more than 10 seconds and should not be more than 600 seconds.

그 다음으로, 시트는 25℃/s 보다 높은 속도로 440 내지 480℃ 의 베이나이트 온도 변태 범위로 냉각되며, 이로써 30℃/s 이상의 냉각 속도가 선호된다. 이론에 구속되지는 않지만, 본 발명자들은 마르텐사이트 형성의 균질성이 주로 어닐링 이후의 이러한 높은 냉각 속도로 인한 것이라고 생각한다.The sheet is then cooled to a bainite temperature transformation range of 440 to 480° C. at a rate higher than 25° C./s, whereby a cooling rate of 30° C./s or more is preferred. While not wishing to be bound by theory, the inventors believe that the homogeneity of martensite formation is primarily due to this high cooling rate after annealing.

이어서, 강 시트는 베이나이트 형성을 유발시키도록 이 온도에서 20 내지 250초, 바람직하게는 30 내지 100초 동안 유지된다. 냉간 압연된 강 시트를 20초 미만으로 유지하면, 베이나이트의 양이 너무 적고 오스테나이트의 농축이 충분하지 않아 잔류 오스테나이트의 양이 10% 미만으로 된다. 250초를 초과하면, 베이나이트에서의 탄화물의 석출을 유발하여, 최종 냉각 전에 탄소에서 오스테나이트가 고갈된다. 440 내지 480℃ 에서 유지하는 것은 입상 베이나이트를 형성하고 탄소에서의 오스테나이트 농축을 촉진하기 위해 수행된다. The steel sheet is then held at this temperature for 20 to 250 seconds, preferably 30 to 100 seconds, to cause bainite formation. If the cold-rolled steel sheet is kept for less than 20 seconds, the amount of bainite is too small and the concentration of austenite is insufficient, so that the amount of retained austenite becomes less than 10%. If it exceeds 250 seconds, it causes precipitation of carbides in the bainite, resulting in depletion of austenite in the carbon before final cooling. Holding at 440 to 480°C is carried out to form granular bainite and promote austenite concentration in carbon.

이어서, 용융 아연도금 (GI) 이 아연 또는 아연 합금 욕에 담금으로써 수행되는데, 그 온도는 440 내지 475℃ 일 수 있으며, 이어서 GI 생성물은 잔류 오스테나이트를 얻고 마르텐사이트 함량을 제한하기 위해 1 내지 20℃/s, 바람직하게는 5 내지 15℃/s 의 냉각 속도로 실온으로 냉각된다.Subsequently, hot dip galvanization (GI) is carried out by immersing in a zinc or zinc alloy bath, the temperature of which may be 440 to 475°C, and then the GI product is 1 to 20 to obtain residual austenite and limit the martensite content. It is cooled to room temperature at a cooling rate of °C/s, preferably 5 to 15 °C/s.

이어서, 아연도금된 강 시트는 배치 어닐링 (batch annealing) 처리를 받는다. 이 배치 어닐링 중에, 아연도금된 강 시트는 12 내지 250 시간 동안, 바람직하게는 12 내지 30 시간 동안 170 내지 350℃, 바람직하게는 170 내지 250℃ 의 온도로 가열된 후에, 실온으로 냉각된다. 이는 프레시 마르텐사이트를 효과적으로 템퍼링하기 위해 수행된다.Then, the galvanized steel sheet is subjected to a batch annealing treatment. During this batch annealing, the galvanized steel sheet is heated to a temperature of 170 to 350°C, preferably 170 to 250°C for 12 to 250 hours, preferably 12 to 30 hours, and then cooled to room temperature. This is done to effectively temper fresh martensite.

Yes

본원에 제시된 다음의 시험, 예시, 비유적 예시 및 표는 본질적으로 비제한적이고 단지 예시의 목적으로 고려되어야 하며, 본 발명의 유리한 특징을 나타내며, 대규모 실험후에 본 발명자들에 의해 선택된 공정 파라미터의 중요성을 설명하고 본 발명의 강에 의해 성취될 수 있는 특성을 확립할 것이다.The following tests, illustrations, figurative examples and tables presented herein are non-limiting in nature and should be considered for illustrative purposes only, and represent advantageous features of the invention, and the importance of the process parameters selected by the inventors after large-scale experiments. We will explain and establish the properties that can be achieved by the steel of the present invention.

시험 샘플들의 강 시트들의 조성은 표 1 에 있으며, 여기서 강 시트들은 각각 표 2 에 모아진 공정 파라미터에 따라 제조된다. 표 3 은 얻어진 미세조직을 나타내고, 표 4 는 사용 특성의 평가 결과를 나타낸다.The composition of the steel sheets of the test samples is in Table 1, where the steel sheets are each manufactured according to the process parameters gathered in Table 2. Table 3 shows the obtained microstructure, and Table 4 shows the evaluation results of the use characteristics.

측정 방법의 차이로 인하여, ISO 표준에 따른 구멍 확장 비율 HER 의 값은 JFS T 1001 (일본 철강 연맹 표준) 에 따른 구멍 확장 비율 λ 의 값과 매우 다르고 비교될 수 없다는 점이 강조되어야 한다. 인장 강도 TS 및 총 연신율 TE 는 2009년 10월에 발표된 ISO 표준 ISO 6892-1 에 따라 측정된다. 측정 방법의 차이로 인해, 특히 사용된 시험편의 기하학적 형태의 차이로 인해, ISO 표준에 따라 측정된 총 연신율 TE 의 값은 JIS Z 2201-05 표준에 따라 측정된 총 연신율의 값과 매우 상이하고, 특히 그보다 낮다.It should be emphasized that due to the difference in measurement methods, the value of the hole expansion ratio HER according to the ISO standard is very different from the value of the hole expansion ratio λ according to JFS T 1001 (Japan Iron and Steel Federation standard) and cannot be compared. Tensile strength TS and total elongation TE are measured according to ISO standard ISO 6892-1 published in October 2009. Due to the difference in the measurement method, in particular due to the difference in the geometric shape of the specimens used, the value of the total elongation TE measured according to the ISO standard is very different from the value of the total elongation measured according to the JIS Z 2201-05 standard, Especially lower than that.

표 1 - 강 조성Table 1-Steel composition

표 1 은 조성이 중량 백분율로 표시되는 강을 나타낸다. 강 조성 I1 내지 I6 이 본 발명에 따른 시트의 제조를 위한 것이고, 또한 이 표는 표에서 R1 내지 9 로 나타낸 참조 강 조성을 규정한다.Table 1 shows steels whose composition is expressed as a weight percentage. The steel compositions I1 to I6 are for the production of the sheet according to the invention, and this table also defines the reference steel composition indicated by R1 to 9 in the table.

[표 1][Table 1]

Figure 112018070667054-pct00001
Figure 112018070667054-pct00001

표 2 - 공정 파라미터Table 2-Process parameters

표 2 는 표 1 에 도시된 강 샘플에 구현된 어닐링 공정 파라미터를 상세하게 나타낸다. 표 1 은 또한 본 발명 강 및 참조 강의 베이나이트 변태 온도의 표를 나타낸다. 베이나이트 변태 온도의 계산은 다음을 사용하여 수행된다:Table 2 shows in detail the annealing process parameters implemented in the steel samples shown in Table 1. Table 1 also shows a table of bainite transformation temperatures of the inventive and reference steels. The calculation of the bainite transformation temperature is carried out using:

Bs=839-(86*[Mn]+23*[Si]+67*[Cr]+33*[Ni]+75*[Mo])-270*(1-EXP(-1,33*[C]))Bs=839-(86*[Mn]+23*[Si]+67*[Cr]+33*[Ni]+75*[Mo])-270*(1-EXP(-1,33*[C ]))

Ac1 은 "Darstellung der Umwandlungen fur technische Anwendungen und Moglichkeiten ihrer Beeinflussung, H.P. Hougardy, Werkstoffkunde Stahl Band 1, 198-231, Verlag Stahleisen, Dusseldorf, 1984" 에 기재된 식을 이용하여 계산된다:Ac1 is calculated using the formula described in "Darstellung der Umwandlungen fur technische Anwendungen und Moglichkeiten ihrer Beeinflussung, H.P. Hougardy, Werkstoffkunde Stahl Band 1, 198-231, Verlag Stahleisen, Dusseldorf, 1984":

Ac1 = 739 - 22*C - 7*Mn + 2*Si + 14*Cr + 13*Mo - 13*Ni.Ac1 = 739-22*C-7*Mn + 2*Si + 14*Cr + 13*Mo-13*Ni.

이 식에서, Ac1 은 섭씨이고, C, Mn, Si, Cr, Mo 및 Ni 는 강의 C, Mn, Si, Cr, Mo 및 Ni 의 중량% 이다. In this formula, Ac1 is in degrees Celsius, and C, Mn, Si, Cr, Mo and Ni are the weight percent of C, Mn, Si, Cr, Mo and Ni of the steel.

Ac3 은 Thermo-Calc® 소프트웨어를 사용하여 계산된다.Ac3 is calculated using Thermo-Calc® software.

강 샘플들은 1000℃ 내지 1280℃ 의 온도로 가열되고 나서, 850℃ 이상의 마무리 온도로 열간 압연된 후에 580℃ 이하의 온도에서 권취되었다. 열간 압연된 코일은 30 내지 80% 의 두께 감소로 냉간 압연되었다. 이 냉간 압연된 강 시트들은 후술하는 열처리를 받았다. 그런 다음, 강 시트들은 460℃ 의 온도에서 아연 욕에서 용융 코팅되고 24 시간 동안 배치 어닐링을 받았다.The steel samples were heated to a temperature of 1000° C. to 1280° C., then hot rolled to a finishing temperature of 850° C. or higher, and then wound at a temperature of 580° C. or lower. The hot rolled coil was cold rolled with a thickness reduction of 30 to 80%. These cold-rolled steel sheets were subjected to heat treatment described later. Then, the steel sheets were hot-dip coated in a zinc bath at a temperature of 460° C. and subjected to batch annealing for 24 hours.

[표 2a][Table 2a]

Figure 112018070667054-pct00002
Figure 112018070667054-pct00002

[표 2b][Table 2b]

Figure 112018070667054-pct00003
Figure 112018070667054-pct00003

[표 2c][Table 2c]

Figure 112018070667054-pct00004
Figure 112018070667054-pct00004

표 3 - 미세조직Table 3-Microstructure

표 3 은 본 발명 강 및 참조 강의 미세조직 조성을 결정하기 위한 주사 전자 현미경과 같은 상이한 현미경들에서 표준에 따라 수행된 시험 결과를 나타낸다.Table 3 shows the results of tests performed according to the standard in different microscopes, such as scanning electron microscopy for determining the microstructure composition of the inventive steel and the reference steel.

결과는 중량 퍼센트로 표현되는 잔류 오스테나이트의 탄소 함량을 제외하고 면적 비율로 규정된다. 모든 발명예들은 균질한 마르텐사이트 분배를 갖는 반면, 모든 비교예들은 비균질한 분배를 갖는 것으로 관찰되었다.The result is defined as a percentage of the area, excluding the carbon content of the retained austenite expressed in weight percent. It was observed that all inventive examples had a homogeneous martensite distribution, while all comparative examples had a non-homogeneous distribution.

[표 3][Table 3]

Figure 112020105012904-pct00009
Figure 112020105012904-pct00009

표 4 - 기계적 특성Table 4-Mechanical properties

표 4 는 본 발명 강 및 참조 강의 기계적 특성을 예시한다. 인장 시험은 NF EN ISO 6892-1 표준에 따라 수행된다. 구멍 확장 비율은 ISO16630:2009 에 따라 측정되며, 여기서 10 펀칭된 mm 의 샘플이 변형된다. 변형 및 균열 발생 후, 구멍 직경이 측정되고, HER% 는 100*(Df-Di)/Di 로 계산된다.Table 4 illustrates the mechanical properties of the inventive and reference steels. Tensile tests are performed according to the NF EN ISO 6892-1 standard. The hole expansion ratio is measured according to ISO16630:2009, where a sample of 10 punched mm is deformed. After deformation and cracking, the hole diameter is measured and the HER% is calculated as 100*(Df-Di)/Di.

여기에는 표준에 따라 수행된 다양한 기계적 테스트의 결과가 다음 표에 요약되어 있다.Here the results of various mechanical tests performed according to the standard are summarized in the following table.

[표 4][Table 4]

Figure 112018070667054-pct00006
Figure 112018070667054-pct00006

스폿 용접성과 관련하여, 본 발명에 따른 시트는 조성이 C + Si/10 ≤ 0.30% 인 경우에 낮은 LME 감도를 갖는다. 이는, 이러한 강재를 사용하면, 차체와 같은 저항 스폿 용접부를 포함하는 구조를 생산할 수 있다는 것을 의미하는데, 이 경우, 저항 스폿 용접부에서의 균열 수의 확률은 평균값이 저항 스폿 용접부당 5 개 미만이고 10 미만일 확률이 98% 이다.Regarding spot weldability, the sheet according to the invention has a low LME sensitivity when the composition is C + Si/10 ≤ 0.30%. This means that by using such a steel material, it is possible to produce a structure including resistance spot welds such as a vehicle body. In this case, the probability of the number of cracks in the resistance spot weld is less than 5 per resistance spot weld and 10 The probability is less than 98%.

특히, 적어도 2 개의 강 시트의 저항 스폿 용접부를 포함하는 용접 구조물은, 본 발명에 따른 방법에 의해 C + Si/10 ≤ 0.30% 및 Al ≥ 6(C + Mn/10) - 2.5% 이고 또한 Zn 또는 Zn 합금으로 코팅된 제 1 강 시트를 제조하고, C + Si/10 ≤ 0.30% 및 Al ≥ 6(C + Mn/10) - 2.5% 이도록 조성을 갖는 제 2 강 시트를 제공하고, 제 1 강 시트를 제 2 강 시트에 저항 스폿 용접함으로써 제조될 수 있다. 제 2 강 시트는, 예를 들어 본 발명에 따른 방법에 의해 제조될 수 있고, Zn 또는 Zn 합금으로 코팅될 수 있다. In particular, a welded structure comprising resistance spot welds of at least two steel sheets is C + Si/10 ≤ 0.30% and Al ≥ 6 (C + Mn/10)-2.5% by the method according to the invention and also Zn Alternatively, to prepare a first steel sheet coated with a Zn alloy, and provide a second steel sheet having a composition such that C + Si/10 ≤ 0.30% and Al ≥ 6 (C + Mn/10)-2.5%, and the first steel It can be produced by resistance spot welding the sheet to the second steel sheet. The second steel sheet can be produced, for example, by the method according to the invention and can be coated with Zn or a Zn alloy.

따라서, LME 민감도가 낮은 용접 구조물이 얻어진다. 예를 들어, 적어도 10 개의 저항 스폿 용접부를 포함하는 이러한 용접 구조물에 대해, 저항 스폿 용접부당 평균 균열 수는 5 미만이다.Thus, a welded structure with low LME sensitivity is obtained. For example, for such a welded structure comprising at least 10 resistance spot welds, the average number of cracks per resistance spot weld is less than 5.

본 발명에 따른 저항 스폿 용접에 의해 선택적으로 용접된 강 시트는, 제조 공정 중에 높은 성형성을 제공하고 충돌시에 높은 에너지 흡수를 제공하기 때문에 자동차의 구조 부품의 제조에 이롭게 사용된다. 본 발명에 따른 저항 스폿 용접부는 또한, 용접 영역에 위치하는 균열의 최종 개시 및 전파가 훨씬 감소되기 때문에 자동차의 구조 부품의 제조에 이롭게 사용된다. The steel sheet selectively welded by resistance spot welding according to the present invention is advantageously used in the manufacture of structural parts of automobiles because it provides high formability during the manufacturing process and high energy absorption in the event of a collision. The resistance spot weld according to the present invention is also advantageously used in the manufacture of structural parts of automobiles because the final initiation and propagation of cracks located in the welding area is much reduced.

Claims (19)

코팅된 강 시트로서,
상기 강 시트는 중량% 로 표시되는 하기의 원소들,
0.17% ≤ 탄소 ≤ 0.24%,
1.9% ≤ 망간 ≤ 2.2%,
0.5% ≤ 규소 ≤ 1%,
0.5% ≤ 알루미늄 ≤ 1.2%,
여기서 Si + Al ≥ 1.3%,
0.05% ≤ 크롬 ≤ 0.2%,
0.015% ≤ 니오븀 ≤ 0.03%,
황 ≤ 0.004%,
인 ≤ 0.03%
을 포함하고, 가능하게는, 하기의 선택적 원소들,
0.005% ≤ 티타늄 ≤ 0.05%,
0.001% ≤ 몰리브덴 ≤ 0.05%
중의 하나 이상을 포함하는 조성을 갖고,
잔부는 철 및 제련으로부터 기인한 불가피적 불순물로 이루어지고, 상기 코팅된 강 시트의 미세조직은, 면적 분율로, 오스테나이트상이 0.9 내지 1.1% 의 탄소 함량을 갖는 10 내지 20% 의 잔류 오스테나이트, 40 내지 55% 의 다각형 페라이트, 15 내지 40% 의 입상 베이나이트 및 5% 이상의 템퍼링된 마르텐사이트를 포함하고, 템퍼링된 마르텐사이트 및 잔류 오스테나이트의 합은 20 내지 30% 이고, 상기 코팅된 강 시트는 템퍼링되지 않은 마르텐사이트를 갖지 않고, 상기 코팅된 강 시트는 인장 강도가 980 MPa 이상, 항복 강도가 550 MPa 초과, 항복 강도 대 인장 강도의 비율이 0.60 이상, 총 연신율이 17% 이상이고, ISO 표준 16630:2009 에 따라 측정된 구멍 확장 비율이 18% 이상인, 코팅된 강 시트.
As a coated steel sheet,
The steel sheet contains the following elements expressed in weight percent,
0.17% ≤ carbon ≤ 0.24%,
1.9% ≤ manganese ≤ 2.2%,
0.5% ≤ silicon ≤ 1%,
0.5% ≤ aluminum ≤ 1.2%,
Where Si + Al ≥ 1.3%,
0.05% ≤ chromium ≤ 0.2%,
0.015% ≤ niobium ≤ 0.03%,
Sulfur ≤ 0.004%,
Phosphorus ≤ 0.03%
And, possibly, the following optional elements,
0.005% ≤ titanium ≤ 0.05%,
0.001% ≤ molybdenum ≤ 0.05%
It has a composition comprising at least one of,
The balance consists of iron and inevitable impurities resulting from smelting, and the microstructure of the coated steel sheet is 10 to 20% of retained austenite with a carbon content of 0.9 to 1.1% in the austenite phase, as an area fraction, 40 to 55% of polygonal ferrite, 15 to 40% of granular bainite and 5% or more of tempered martensite, the sum of the tempered martensite and retained austenite is 20 to 30%, the coated steel sheet Does not have untempered martensite, the coated steel sheet has a tensile strength of 980 MPa or more, a yield strength of 550 MPa or more, a ratio of yield strength to tensile strength of 0.60 or more, and a total elongation of 17% or more, and ISO Coated steel sheet with a hole expansion ratio of at least 18% measured according to Standard 16630:2009.
제 1 항에 있어서,
상기 조성은 중량% 로 0.7% ≤ Si ≤ 0.9% 를 포함하는 것을 특징으로 하는 코팅된 강 시트.
The method of claim 1,
The composition is a coated steel sheet, characterized in that it comprises 0.7% ≤ Si ≤ 0.9% by weight.
제 1 항 또는 제 2 항에 있어서,
상기 조성은 중량% 로 0.7% ≤ Al ≤ 0.9% 를 포함하는 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
The composition is a coated steel sheet, characterized in that it comprises 0.7% ≤ Al ≤ 0.9% by weight.
제 1 항 또는 제 2 항에 있어서,
규소와 알루미늄 함량의 합계가 1.4% 를 초과하는 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
Coated steel sheet, characterized in that the sum of silicon and aluminum content exceeds 1.4%.
제 1 항 또는 제 2 항에 있어서,
탄소 및 규소 함량은 C + Si/10 ≤ 0.30% 이도록 되어 있는 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
Coated steel sheet, characterized in that the carbon and silicon content is C + Si/10 ≤ 0.30%.
제 1 항 또는 제 2 항에 있어서,
알루미늄, 탄소 및 망간 함량은 Al ≥ 6(C + Mn/10) - 2.5% 이도록 되어 있는 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
A coated steel sheet, characterized in that the content of aluminum, carbon and manganese is Al ≥ 6 (C + Mn/10)-2.5%.
제 1 항 또는 제 2 항에 있어서,
잔류 오스테나이트와 템퍼링된 마르텐사이트의 합이 25% 내지 30% 인 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
Coated steel sheet, characterized in that the sum of retained austenite and tempered martensite is 25% to 30%.
제 1 항 또는 제 2 항에 있어서,
상기 강 시트의 50×50 ㎛2 의 임의의 영역에서 측정한 템퍼링된 마르텐사이트 분율 (TM) 및 평균 템퍼링된 마르텐사이트 분율 (TM*) 이 |(TM)-(TM*)| ≤ 1.5% 이도록 되어 있는 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
The tempered martensite fraction (TM) and the average tempered martensite fraction (TM * ) measured in an arbitrary area of 50×50 μm 2 of the steel sheet are |(TM)-(TM * )| Coated steel sheet, characterized in that ≤ 1.5%.
삭제delete 제 1 항에 있어서,
인장 강도가 1000 MPa 내지 1100 MPa 이고, 구멍 확장 비율이 18% 내지 23% 인 것을 특징으로 하는 코팅된 강 시트.
The method of claim 1,
Coated steel sheet, characterized in that the tensile strength is 1000 MPa to 1100 MPa, and the hole expansion ratio is 18% to 23%.
삭제delete 제 1 항 또는 제 2 항에 있어서,
상기 강 시트는 용융 아연도금되는 것을 특징으로 하는 코팅된 강 시트.
The method according to claim 1 or 2,
The coated steel sheet, characterized in that the steel sheet is hot-dip galvanized.
제 1 항 또는 제 2 항에 기재된 코팅된 강 시트의 제조 방법으로서,
하기의 연속 단계들:
- 제 1 항 또는 제 2 항에 따른 조성의 반제품을 제공하는 단계,
- 상기 반제품을 1000℃ 내지 1280℃ 의 온도로 재가열하는 단계,
- 열간 압연 종료 온도가 850℃ 이상인 오스테나이트 범위에서 상기 반제품을 완전히 압연하여, 열간 압연된 강 시트를 얻는 단계,
- 상기 열간 압연된 강 시트를 35 내지 55℃/s 의 냉각 속도로 580℃ 이하의 권취 온도로 냉각하고, 상기 열간 압연된 강 시트를 권취하는 단계,
- 상기 열간 압연된 강 시트를 실온으로 냉각하는 단계,
- 상기 열간 압연된 강 시트를 산세척하는 단계,
- 상기 열간 압연된 강 시트를 냉간 압연하여, 냉간 압연된 강 시트를 얻는 단계,
- 이어서, 상기 냉간 압연된 강 시트를 1 내지 20℃/s 의 가열 속도로 600s 미만 동안 Ac1 내지 Ac3 의 균열 (soaking) 온도로 연속적으로 어닐링하는 단계,
- 이어서, 상기 시트를 25 ℃/s 초과의 속도로 400 내지 480℃ 의 온도로 냉각하고, 상기 냉간 압연된 강 시트를 20 내지 250초 동안 유지하는 단계,
- 상기 냉간 압연된 강 시트를 아연 또는 아연 합금 욕에서 용융 도금 (hot dipping) 에 의해 코팅하는 단계,
- 상기 냉간 압연된 강 시트를 실온으로 냉각하는 단계,
- 이어서, 코팅된 상기 냉간 압연된 강 시트를 1 내지 20 ℃/s 의 속도로 12 내지 250h 동안 170 내지 350℃ 의 균열 온도까지 배치 어닐링 (batch annealing) 하고, 이어서 상기 시트를 실온으로 냉각하는 단계
를 포함하는 코팅된 강 시트의 제조 방법.
As a method for producing a coated steel sheet according to claim 1 or 2,
The following successive steps:
-Providing a semi-finished product of the composition according to claim 1 or 2,
-Reheating the semi-finished product to a temperature of 1000°C to 1280°C,
-Obtaining a hot-rolled steel sheet by completely rolling the semi-finished product in an austenite range having a hot rolling end temperature of 850°C or higher,
-Cooling the hot-rolled steel sheet to a winding temperature of 580°C or less at a cooling rate of 35 to 55°C/s, and winding the hot-rolled steel sheet,
-Cooling the hot-rolled steel sheet to room temperature,
-Pickling the hot-rolled steel sheet,
-Cold rolling the hot-rolled steel sheet to obtain a cold-rolled steel sheet,
-Subsequently, continuously annealing the cold-rolled steel sheet at a soaking temperature of Ac1 to Ac3 for less than 600s at a heating rate of 1 to 20°C/s,
-Then, cooling the sheet to a temperature of 400 to 480°C at a rate of more than 25°C/s, and holding the cold-rolled steel sheet for 20 to 250 seconds,
-Coating the cold-rolled steel sheet by hot dipping in a zinc or zinc alloy bath,
-Cooling the cold-rolled steel sheet to room temperature,
-Subsequently, batch annealing the coated cold-rolled steel sheet to a soaking temperature of 170 to 350°C for 12 to 250 h at a rate of 1 to 20°C/s, and then cooling the sheet to room temperature.
Method for producing a coated steel sheet comprising a.
제 13 항에 있어서,
상기 권취 온도는 베이나이트 변태 개시 온도 Bs 보다 낮은 것을 특징으로 하는 코팅된 강 시트의 제조 방법.
The method of claim 13,
The winding temperature is a method of manufacturing a coated steel sheet, characterized in that lower than the bainite transformation initiation temperature Bs.
제 13 항에 있어서,
상기 균열 온도는 780℃ 내지 900℃ 이고, 균열은 10 내지 600s 동안 실시되는 것을 특징으로 하는 코팅된 강 시트의 제조 방법.
The method of claim 13,
The cracking temperature is 780 ℃ to 900 ℃, the method for producing a coated steel sheet, characterized in that the cracking is carried out for 10 to 600s.
제 13 항에 있어서,
상기 시트는 연속 어닐링 후에 30℃/s 초과의 냉각 속도로 400 내지 480℃ 의 온도로 냉각되는 것을 특징으로 하는 코팅된 강 시트의 제조 방법.
The method of claim 13,
The sheet is a method for producing a coated steel sheet, characterized in that the sheet is cooled to a temperature of 400 to 480°C at a cooling rate of more than 30°C/s after continuous annealing.
제 16 항에 있어서,
상기 강 시트는 아연 또는 아연 합금 욕에서 코팅된 후에 20℃/s 미만의 냉각 속도로 냉각되는 것을 특징으로 하는 코팅된 강 시트의 제조 방법.
The method of claim 16,
The method for producing a coated steel sheet, wherein the steel sheet is coated in a zinc or zinc alloy bath and then cooled at a cooling rate of less than 20°C/s.
제 13 항에 있어서,
상기 강 시트는 170℃ 내지 250℃ 에서 12 내지 30h 동안 배치 어닐링되는 것을 특징으로 하는 코팅된 강 시트의 제조 방법.
The method of claim 13,
The steel sheet is a method for producing a coated steel sheet, characterized in that the batch anneal for 12 to 30h at 170 ℃ to 250 ℃.
삭제delete
KR1020187020618A 2016-01-18 2017-01-17 High-strength steel sheet having excellent formability and its manufacturing method KR102230103B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2016/000024 2016-01-18
PCT/IB2016/000024 WO2017125773A1 (en) 2016-01-18 2016-01-18 High strength steel sheet having excellent formability and a method of manufacturing the same
PCT/IB2017/000018 WO2017125809A1 (en) 2016-01-18 2017-01-17 High strength steel sheet having excellent formability and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20180095671A KR20180095671A (en) 2018-08-27
KR102230103B1 true KR102230103B1 (en) 2021-03-19

Family

ID=55300730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187020618A KR102230103B1 (en) 2016-01-18 2017-01-17 High-strength steel sheet having excellent formability and its manufacturing method

Country Status (13)

Country Link
US (1) US11466335B2 (en)
EP (1) EP3405340A1 (en)
JP (1) JP6751766B2 (en)
KR (1) KR102230103B1 (en)
CN (1) CN108463340B (en)
BR (1) BR112018013375B1 (en)
CA (1) CA3009117C (en)
MA (1) MA43659A (en)
MX (1) MX2018008561A (en)
RU (1) RU2712591C1 (en)
UA (1) UA119838C2 (en)
WO (2) WO2017125773A1 (en)
ZA (1) ZA201804092B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749818B2 (en) * 2016-02-29 2020-09-02 株式会社神戸製鋼所 High-strength steel sheet and method for manufacturing the same
WO2019122978A1 (en) * 2017-12-21 2019-06-27 Arcelormittal Welded steel part used as motor vehicle part, hot pressed steel part, and method of manufacturing said welded steel part
CN108950405B (en) * 2018-08-14 2020-02-18 武汉钢铁有限公司 800 MPa-grade multi-phase steel with good flanging performance and production method thereof
US20220056543A1 (en) * 2018-09-20 2022-02-24 Arcelormittal Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
WO2020058748A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
MA54266B1 (en) * 2018-11-30 2023-03-31 Arcelormittal Hot rolled annealed steel sheet with high hole expansion ratio and method for producing same
SE542893C2 (en) * 2018-11-30 2020-08-18 Voestalpine Stahl Gmbh A resistance spot welded joint comprising a zinc coated ahss steel sheet
ES2929345T3 (en) 2019-02-18 2022-11-28 Tata Steel Ijmuiden Bv High strength steel with improved mechanical properties
WO2020229877A1 (en) * 2019-05-15 2020-11-19 Arcelormittal A cold rolled martensitic steel and a method for it's manufacture
WO2020245626A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2020245627A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2020250009A1 (en) * 2019-06-12 2020-12-17 Arcelormittal A cold rolled martensitic steel and a method of martensitic steel thereof
PT3754035T (en) * 2019-06-17 2022-04-21 Tata Steel Ijmuiden Bv Method of heat treating a cold rolled steel strip
EP3754036B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Heat treatment of high strength cold rolled steel strip
EP3754034B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Heat treatment of cold rolled steel strip
PT3754037T (en) * 2019-06-17 2022-04-19 Tata Steel Ijmuiden Bv Method of heat treating a high strength cold rolled steel strip
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
WO2021176249A1 (en) * 2020-03-02 2021-09-10 Arcelormittal High strength cold rolled and galvannealed steel sheet and manufacturing process thereof
CN111893379B (en) * 2020-07-13 2022-01-18 首钢集团有限公司 780 MPa-grade reinforced forming hot-dip galvanized dual-phase steel and manufacturing method thereof
WO2022018501A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
CN111996467B (en) * 2020-09-28 2022-05-20 首钢集团有限公司 980 MPa-grade galvanized high-strength steel and preparation method thereof
CN114763595B (en) * 2021-01-15 2023-07-07 宝山钢铁股份有限公司 Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet
CN114807736A (en) * 2021-01-21 2022-07-29 宝山钢铁股份有限公司 LME (laser-induced plasticity) resistant steel and manufacturing method thereof
CN113416887B (en) * 2021-05-21 2022-07-19 鞍钢股份有限公司 Automobile super-high formability 980 MPa-grade galvanized steel plate and preparation method thereof
CN114032452A (en) * 2021-10-11 2022-02-11 鞍钢集团北京研究院有限公司 High-strength-ductility cold-rolled TRIP steel plate and preparation method thereof
CN116987974B (en) * 2023-08-14 2024-04-09 东北大学 High-strength high-toughness low-permeability medium manganese steel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251201A (en) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd Hot rolled sheet steel
WO2013144373A1 (en) 2012-03-30 2013-10-03 Voestalpine Stahl Gmbh High strength cold rolled steel sheet and method of producing such steel sheet
JP2015014026A (en) 2013-07-04 2015-01-22 新日鐵住金株式会社 Cold rolled steel sheet and production method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924108B2 (en) 2000-03-13 2007-06-06 新日本製鐵株式会社 Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing
JP4716359B2 (en) 2005-03-30 2011-07-06 株式会社神戸製鋼所 High strength cold-rolled steel sheet excellent in uniform elongation and method for producing the same
KR20080100835A (en) * 2006-03-31 2008-11-19 가부시키가이샤 고베 세이코쇼 High-strength cold rolled steel sheet excelling in chemical treatability
US7979194B2 (en) 2007-07-16 2011-07-12 Cummins Inc. System and method for controlling fuel injection
JP5167487B2 (en) * 2008-02-19 2013-03-21 Jfeスチール株式会社 High strength steel plate with excellent ductility and method for producing the same
JP5332981B2 (en) * 2009-07-08 2013-11-06 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet excellent in ductility and corrosion resistance and method for producing the same
CN102712980B (en) 2010-01-26 2014-07-02 新日铁住金株式会社 High-strength cold-rolled steel sheet, and process for production thereof
JP5719545B2 (en) 2010-08-13 2015-05-20 新日鐵住金株式会社 High strength thin steel sheet with excellent elongation and press forming stability
RU2562582C1 (en) 2011-08-09 2015-09-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-rolled steel plate with high ratio between yield strength and ultimate strength, with high characteristics of impact energy absorption at low temperature, and softening resistance of heat-affected zone (haz), and method of its manufacturing
BR112014007530B1 (en) * 2011-09-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation high strength hot dip galvanized steel sheet and process for producing it
EP2765212B1 (en) * 2011-10-04 2017-05-17 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
JP6290168B2 (en) * 2012-03-30 2018-03-07 フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテル ハフツングVoestalpine Stahl Gmbh High-strength cold-rolled steel sheet and method for producing such a steel sheet
KR102073442B1 (en) 2012-06-05 2020-02-04 티센크루프 스틸 유럽 악티엔게젤샤프트 Steel, sheet steel product and process for producing a sheet steel product
WO2015080242A1 (en) 2013-11-29 2015-06-04 新日鐵住金株式会社 Hot-formed steel sheet member, method for producing same, and steel sheet for hot forming
CA2947382C (en) * 2014-04-15 2022-07-12 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product with high yield strength and flat cold-rolled steel product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251201A (en) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd Hot rolled sheet steel
WO2013144373A1 (en) 2012-03-30 2013-10-03 Voestalpine Stahl Gmbh High strength cold rolled steel sheet and method of producing such steel sheet
JP2015014026A (en) 2013-07-04 2015-01-22 新日鐵住金株式会社 Cold rolled steel sheet and production method thereof

Also Published As

Publication number Publication date
CN108463340B (en) 2021-07-06
WO2017125809A1 (en) 2017-07-27
US11466335B2 (en) 2022-10-11
JP2019506530A (en) 2019-03-07
US20210040576A1 (en) 2021-02-11
WO2017125773A1 (en) 2017-07-27
CN108463340A (en) 2018-08-28
MA43659A (en) 2018-11-28
BR112018013375A2 (en) 2018-12-04
CA3009117A1 (en) 2017-07-27
RU2712591C1 (en) 2020-01-29
ZA201804092B (en) 2019-03-27
CA3009117C (en) 2020-10-27
JP6751766B2 (en) 2020-09-09
UA119838C2 (en) 2019-08-12
KR20180095671A (en) 2018-08-27
MX2018008561A (en) 2018-11-09
BR112018013375B1 (en) 2022-08-09
EP3405340A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
KR102230103B1 (en) High-strength steel sheet having excellent formability and its manufacturing method
KR102325721B1 (en) Tempered and coated steel sheet with excellent formability and manufacturing method thereof
KR102325717B1 (en) Tempered and coated steel sheet with excellent formability and manufacturing method thereof
JP6354909B2 (en) High-strength steel sheet, high-strength galvanized steel sheet, and production methods thereof
JP6620474B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
JP5114691B2 (en) Hot stamping molded body, hot stamping steel plate manufacturing method, and hot stamping molded body manufacturing method
KR102159872B1 (en) High-strength steel sheet and its manufacturing method
TWI412605B (en) High strength steel sheet and method for manufacturing the same
KR101647902B1 (en) High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP5811020B2 (en) High-strength steel sheet with high toughness, high workability and formability, and excellent delayed fracture characteristics due to hydrogen embrittlement
US20140120371A1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
KR101846116B1 (en) Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
JP6586776B2 (en) High strength steel plate with excellent formability and method for producing the same
KR101845321B1 (en) High strength multi-phase steel having excellent forming properties
KR20100046057A (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
KR20140007476A (en) Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
WO2019123043A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP2013139591A (en) High-strength hot-rolled steel sheet with excellent workability and method for producing the same
KR101489243B1 (en) High strength galvannealed steel sheet having excellent formability and coating adhesion and method for manufacturing the same
JP6032173B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having a maximum tensile strength of 980 MPa and excellent delayed fracture resistance
WO2018051402A1 (en) Steel sheet
CN116368253A (en) High-strength steel sheet excellent in heat stability and method for producing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant