KR102229098B1 - Manufacturing method of composition for antibiotic water pipe - Google Patents

Manufacturing method of composition for antibiotic water pipe Download PDF

Info

Publication number
KR102229098B1
KR102229098B1 KR1020210015303A KR20210015303A KR102229098B1 KR 102229098 B1 KR102229098 B1 KR 102229098B1 KR 1020210015303 A KR1020210015303 A KR 1020210015303A KR 20210015303 A KR20210015303 A KR 20210015303A KR 102229098 B1 KR102229098 B1 KR 102229098B1
Authority
KR
South Korea
Prior art keywords
copper
water pipe
precursor solution
mixing
resin
Prior art date
Application number
KR1020210015303A
Other languages
Korean (ko)
Inventor
강미진
조종수
이동민
조은
임윤수
남궁완석
윤정국
김남길
Original Assignee
주식회사 프라코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프라코 filed Critical 주식회사 프라코
Priority to KR1020210015303A priority Critical patent/KR102229098B1/en
Application granted granted Critical
Publication of KR102229098B1 publication Critical patent/KR102229098B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0011Biocides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2223/00Use of polyalkenes or derivatives thereof as reinforcement
    • B29K2223/04Polymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals
    • B29K2505/10Copper

Abstract

The present invention relates to a method of manufacturing an antibacterial copper fusion polyethylene water pipe. More particularly, the method includes the steps of: preparing a porous body formed therein with a microporous material by mixing, heating and then quenching a positive binding resin and a porous forming agent; impregnating an aqueous copper precursor solution in the microporous material by mixing the prepared porous body with the aqueous copper precursor solution; preparing a wet copper carrier by reducing copper ions in the aqueous copper precursor solution after adding reduced metal to the porous body in which the aqueous copper precursor solution is impregnated, and recovering the oxidized reduced metal; drying the prepared wet copper carrier; coating the dried copper carrier with an emulsion positive binding resin and drying the same; and preparing a water pipe by mixing the coated and dried copper carrier with a polyethylene resin. According to the present invention, the water pipe has excellent antibacterial and long-term antibacterial properties to decrease the formation of scale therein, erosion of the water pipe is prevented, and the antibacterial agent is not eluted, so that human stability is excellent even when applied as a water supply pipe.

Description

항균성 구리융합 폴리에틸렌 수도관의 제조방법{MANUFACTURING METHOD OF COMPOSITION FOR ANTIBIOTIC WATER PIPE}Manufacturing method of antibacterial copper fusion polyethylene water pipe {MANUFACTURING METHOD OF COMPOSITION FOR ANTIBIOTIC WATER PIPE}

본 발명은 항균성 구리융합 폴리에틸렌 수도관의 제조방법에 관한 것으로, 더욱 상세하게는 항균성이 우수함은 물론, 항균제인 구리의 용출이 없어 인체 안전성이 우수하고, 장기 항균성 역시 우수한 항균성 구리융합 폴리에틸렌 수도관의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an antimicrobial copper fused polyethylene water pipe, and more particularly, a method of manufacturing an antimicrobial copper fused polyethylene water pipe having excellent antibacterial properties and excellent human safety due to no elution of copper, an antibacterial agent, and also excellent long-term antibacterial properties. It is about.

일반적으로 수도관은 주철관이나 아연관 등의 금속제 관을 사용하고 있으나, 장기간 사용할 경우 관 내부를 흐르는 수돗물에 의하여 내벽이 쉽게 부식되기 때문에 장기간 사용시 부식된 녹이 수돗물과 섞여 적수 또는 백수 등의 오염물을 발생시켜서 음용할 수 없게 되고, 상기와 같은 부식으로 인해 수도관에 누수가 발생되거나 통수 능력의 감소로 인하여 관의 수명이 현저하게 단축되는 문제점이 있었다.In general, water pipes are made of metal such as cast iron pipes or zinc pipes, but when used for a long time, the inner wall is easily corroded by the tap water flowing inside the pipe, so when used for a long time, the corroded rust mixes with tap water and generates contaminants such as red water or white water. Drinking becomes impossible, and water leakage occurs in the water pipe due to corrosion as described above, or the life of the pipe is remarkably shortened due to a decrease in water passing capacity.

최근에는 금속제 관을 대신하여 PE, PVC 등의 합성수지 재질의 수도관이 사용되고 있다. 상기 합성수지 재질의 수도관은 무게가 가벼워 취급 및 운반이 용이하고 접착제 또는 소켓연결 및 버트 융착법을 통하여 접착과 보수가 간편하다는 장점을 지니고 있다. Recently, water pipes made of synthetic resins such as PE and PVC have been used instead of metal pipes. The synthetic resin water pipe has the advantage of being easy to handle and transport because of its light weight, and that it is easy to adhere and repair through an adhesive or socket connection and butt fusion method.

그러나 PE 소재의 수도관은 내부에 물을 저속으로 흘리거나 장기 체류시킬 경우 대장균과 같은 유해 미생물이 쉽게 번식되며, 이러한 미생물 번식으로 인한 세균막의 반복 형성으로 수도관 내벽에 스케일이 형성되거나, 수도관이 침식되는 등의 단점이 있다.However, PE water pipes easily propagate harmful microorganisms such as E. coli when water flows inside the water at a low speed or stay for a long time, and scale is formed on the inner wall of the water pipe or the water pipe is eroded due to the repetitive formation of bacterial membranes due to the reproduction of these microorganisms. There are disadvantages such as.

또한, PVC 소재의 수도관은 관 내부와의 마찰로 인해 관 표면에 정전기가 발생하고, 이로 인해 물속에 포함된 이물질이 관 내벽에 흡착되는 문제가 있었다.In addition, the PVC material water pipe has a problem that static electricity is generated on the surface of the pipe due to friction with the inside of the pipe, and thus foreign substances contained in the water are adsorbed to the inner wall of the pipe.

이러한 문제를 해소하기 위하여 등록특허 제10-1128054호에서는 수도관에 PE 수지에 항균성 세라믹 물질을 혼합하여 내경 코팅층을 형성함으로써, 항균성을 갖도록 하는 방법이 제안되었다. 그러나 PE 수지는 다른 물질과 접착 또는 화학적 결합을 하지 않아, 수도관으로 사용시 항균성 세라믹 물질이 수도관 내를 흐르는 물로 빠르게 용출 소실되어 항균 효과가 쉽게 소멸되는 단점이 있었다.In order to solve this problem, Korean Patent No. 10-1128054 proposes a method of forming an inner diameter coating layer by mixing a PE resin with an antimicrobial ceramic material in a water pipe to have antibacterial properties. However, since PE resin does not adhere or chemically bond with other materials, when used as a water pipe, the antimicrobial ceramic material quickly elutes into the water flowing through the water pipe, and the antibacterial effect disappears easily.

KR 10-1128054 B1KR 10-1128054 B1

본 발명의 목적은 항균성이 우수함은 물론, 구리의 용출이 없어 인체 안전성이 우수하고, 장기 항균성 역시 우수한 항균성 구리융합 폴리에틸렌 수도관의 제조방법을 제공하는 데 있다.An object of the present invention is to provide a method of manufacturing an antimicrobial copper fused polyethylene water pipe having excellent antimicrobial properties as well as excellent human safety due to no elution of copper, and excellent long-term antimicrobial properties.

상기한 목적을 달성하기 위한 본 발명의 항균성 구리융합 폴리에틸렌 수도관 의 제조방법은, 양성결합수지 및 다공질형성제를 혼합하고, 이를 가열 후, 급랭함으로써, 미세 다공질이 형성된 다공질체를 제조하는 단계와, 상기 제조된 다공질체를 구리전구체 수용액과 혼합하여 상기 미세 다공질에 구리전구체 수용액을 담지하는 단계와, 상기 구리전구체 수용액이 담지된 다공질체에 환원금속을 첨가하여 상기 구리전구체 수용액의 구리이온을 환원시켜 습윤 구리담체를 제조하고, 산화된 환원금속은 회수하는 단계와, 상기 제조된 습윤 구리담체를 건조하는 단계와, 상기 건조된 구리담체를 에멀젼 양성결합수지로 코팅하고 건조하는 단계와, 상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하여 수도관을 제조하는 단계를 포함하는 것을 특징으로 한다.The method of manufacturing an antimicrobial copper fusion polyethylene water pipe of the present invention for achieving the above object comprises the steps of preparing a porous body having microporous materials by mixing an amphoteric binding resin and a porosity forming agent, heating it, and then quenching it, The prepared porous material is mixed with an aqueous copper precursor solution to support an aqueous copper precursor solution on the microporous material, and a reducing metal is added to the porous material on which the aqueous copper precursor solution is supported to reduce copper ions in the aqueous copper precursor solution. Preparing a wet copper carrier, recovering the oxidized reduced metal, drying the prepared wet copper carrier, coating and drying the dried copper carrier with an emulsion amphoteric resin, and the coating and It characterized in that it comprises the step of manufacturing a water pipe by mixing the dried copper carrier with a polyethylene resin.

상기 양성결합수지 및 다공질형성제를 혼합하고, 이를 가열 후, 급랭함으로써, 미세 다공질이 형성된 다공질체를 제조하는 단계에서, 상기 양성결합수지는 말레인산에틸렌공중합체(Maleic anhydride Ethylene Copolymer), 에틸렌비닐아세테이트 공중합체(Ethylene vinyl Acetate Copolymer) 및 염화 폴리에틸렌(Chlorinated Polyethylene) 중 1종 이상의 것이고, 상기 다공질형성제는 수산화알루미늄이며, 상기 양성결합수지와 다공질형성제를 1:2~10 중량비로 혼합하고, 180~330℃로 가열 후, -200~-1℃로 급랭함으로써, 가열과정에서 다공질형성제인 수산화알루미늄은 축합반응에 의해 수증기 상태의 물 분자를 분리하고, 상기 수증기 상태의 물 분자가 급랭됨으로써, 미세 다공질에 물 입자가 포함된 상태로 다공질체를 제조하는 것임을 특징으로 한다. In the step of preparing a porous body in which microporous materials are formed by mixing the amphoteric binding resin and the porous mass former, heating it, and then rapidly cooling it, the amphoteric binding resin is maleic anhydride ethylene copolymer, ethylene vinyl acetate Copolymer (Ethylene vinyl Acetate Copolymer) and chlorinated polyethylene (Chlorinated Polyethylene) is at least one type, the porous forming agent is aluminum hydroxide, the amphoteric binding resin and the porous forming agent are mixed in a weight ratio of 1: 2 to 10, 180 After heating to ~330℃ and then quenching to -200~-1℃, aluminum hydroxide, which is a porous material in the heating process, separates water molecules in the water vapor state by condensation reaction, and the water molecules in the water vapor state are quenched. It is characterized in that the porous body is manufactured in a state in which water particles are included in the porous body.

상기 제조된 다공질체를 구리전구체 수용액과 혼합하고 교반하여 상기 미세 다공질에 구리전구체 수용액을 담지하는 단계에서, 상기 구리전구체는 질산구리, 염화구리 및 황산구리 중 1종 이상의 것이며, 상기 미세 다공질에 포함된 물 입자를 구리전구체 수용액으로 치환하는 것임을 특징으로 한다.In the step of mixing and stirring the prepared porous material with an aqueous copper precursor solution to support the aqueous copper precursor solution on the microporous material, the copper precursor is at least one of copper nitrate, copper chloride, and copper sulfate, and included in the microporous material. It is characterized in that water particles are substituted with an aqueous copper precursor solution.

상기 환원금속은 알루미늄, 아연 및 철 중 1종 이상의 것이며, 그 입자 크기는 1~100㎛이고, 상기 에멀젼 양성결합수지는 에틸렌 비닐 아세테이트 코폴리머 에멀젼(Ethylene Vinyl Acetate Copolymer Emusion)이며, 상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하여 수도관을 제조하는 단계는, 상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 0.2~2:9 중량비로 혼합하는 것임을 특징으로 한다.The reduced metal is one or more of aluminum, zinc, and iron, and the particle size is 1-100㎛, and the emulsion amphoteric resin is ethylene vinyl acetate copolymer emulsion, and the coating and drying The step of preparing a water pipe by mixing the obtained copper carrier with a polyethylene resin is characterized in that the coated and dried copper carrier is mixed with a polyethylene resin in a weight ratio of 0.2 to 2:9.

본 발명의 항균성 구리융합 폴리에틸렌 수도관의 제조방법에 하면, 항균성, 장기 항균성이 우수하여 수도관 내부의 스케일 형성이 저감되며, 수도관의 침식이 방지되고, 항균제 역시 용출되지 않아 상수도관으로 적용하더라도 인체 안정성이 우수하다는 장점이 있다.According to the method of manufacturing an antimicrobial copper fused polyethylene water pipe of the present invention, it has excellent antibacterial and long-term antibacterial properties, which reduces the formation of scale inside the water pipe, prevents erosion of the water pipe, and does not dissolve the antimicrobial agent, so that the human body stability is improved It has the advantage of being excellent.

도 1은 본 발명에 의한 항균성 구리융합 폴리에틸렌 수도관의 제조방법을 나타낸 순서도.
도 2는 본 발명의 실시예 1에 의해 제조된 다공질체의 전자현미경 사진.
1 is a flow chart showing a method of manufacturing an antimicrobial copper fusion polyethylene water pipe according to the present invention.
2 is an electron micrograph of a porous body manufactured according to Example 1 of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 수도관이란 상수도관, 하수도관을 모두 포함한다.In the present invention, the water pipe includes both a water supply pipe and a sewer pipe.

종래 폴리에틸렌(PE) 소재의 수도관에 항균제를 단순 혼합하여 항균 수도관을 제조하는 방법은, 폴리에틸렌 수지의 특성상 항균제와의 결합성이 좋지 못해 수도관으로 사용시 항균제가 쉽게 용출됨으로써, 인체 안정성 및 항균 지속성이 좋지 못한 문제가 있었다.The conventional method of manufacturing an antibacterial water pipe by simply mixing an antibacterial agent into a water pipe made of polyethylene (PE) material has poor binding with the antibacterial agent due to the characteristics of the polyethylene resin, so that the antibacterial agent is easily eluted when used as a water pipe, so the human body stability and antibacterial persistence are good There was a problem.

따라서, 본 발명은 폴리에틸렌 수지와 항균제를 융합시켜 수도관을 제조함으로써, 항균제의 용출을 방지하여 인체 안정성, 항균성 및 항균 지속성을 개선한다는 데 특징이 있는 것이다. Accordingly, the present invention is characterized in that a water pipe is manufactured by fusing a polyethylene resin and an antibacterial agent, thereby preventing the dissolution of the antimicrobial agent, thereby improving human stability, antibacterial activity, and antibacterial persistence.

더욱 구체적으로, 본 발명에 의한 항균성 구리융합 폴리에틸렌 수도관의 제조방법은, 양성결합수지 및 다공질형성제를 혼합하고, 이를 가열 후, 급랭함으로써, 미세 다공질이 형성된 다공질체를 제조하는 단계와, 상기 제조된 다공질체를 구리전구체 수용액과 혼합하여 상기 미세 다공질에 구리전구체 수용액을 담지하는 단계와, 상기 구리전구체 수용액이 담지된 다공질체에 환원금속을 첨가하여 상기 구리전구체 수용액의 구리이온을 환원시켜 습윤 구리담체를 제조하고, 산화된 환원금속은 회수하는 단계와, 상기 제조된 습윤 구리담체를 건조하는 단계와, 상기 건조된 구리담체를 에멀젼 양성결합수지로 코팅하고 건조하는 단계와, 상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하여 수도관을 제조하는 단계를 포함하는 것을 특징으로 한다.More specifically, the method of manufacturing an antimicrobial copper fusion polyethylene water pipe according to the present invention includes the steps of preparing a porous body having microporous material by mixing an amphoteric binding resin and a porous mass-forming agent, heating it, and then rapidly cooling it, and the preparation Wet copper by mixing the obtained porous material with an aqueous copper precursor solution to support the aqueous copper precursor solution on the fine porous material, and by adding a reducing metal to the porous material on which the aqueous copper precursor solution is supported to reduce copper ions in the aqueous copper precursor solution. Preparing a carrier, recovering the oxidized reduced metal, drying the prepared wet copper carrier, coating and drying the dried copper carrier with an emulsion amphoteric resin, and drying the coated and dried copper carrier. It characterized in that it comprises the step of manufacturing a water pipe by mixing a copper carrier with a polyethylene resin.

이하, 본 발명을 첨부된 도 1을 참조하여 단계별로 상세히 설명한다.Hereinafter, the present invention will be described in detail step by step with reference to FIG. 1.

양성결합수지 및 다공질형성제를 혼합하고, 이를 가열 후, 급랭함으로써, 미세 다공질이 형성된 다공질체를 제조하는 단계Mixing an amphoteric binding resin and a porous mass-forming agent, heating the same, and then rapidly cooling the mixture to prepare a porous body having fine porous masses.

먼저, 양성결합수지와 다공질형성제를 혼합한다.First, the amphoteric binding resin and the porous mass former are mixed.

상기 양성결합수지는 말레인산에틸렌공중합체(Maleic anhydride Ethylene Copolymer), 에틸렌비닐아세테이트 공중합체(Ethylene vinyl Acetate Copolymer) 및 염화 폴리에틸렌(Chlorinated Polyethylene) 중 1종 이상의 것을 사용할 수 있는바, 이러한 양성결합수지는 사전에 에틸렌과 공중합되어 있어 폴리에틸렌 수지와의 결합이 용이하며, 중합성분인 무수말레인산, 아세트산비닐, 염화비닐 등은 구리 등의 금속 소재들과도 결합이 가능하다는 특징을 갖는다. 즉, 상기 양성결합수지에 먼저, 항균제인 구리를 결합시킨 후, 폴리에틸렌 수지와 상기 양성결합수지를 복합함으로써, 타물질의 접착성 및 결합성이 없는 폴리에틸렌 수지와 항균제인 구리를 일체성으로 견고하게 결합시킬 수 있게 되어 장기간 사용하더라도 항균제인 구리의 용출이 없게 되는 것이다.As the amphoteric binding resin, at least one of maleic anhydride ethylene copolymer, ethylene vinyl acetate copolymer, and chlorinated polyethylene may be used. Because it is copolymerized with ethylene, it is easy to bond with polyethylene resin, and maleic anhydride, vinyl acetate, and vinyl chloride, which are polymeric components, can be bonded to metal materials such as copper. That is, by first bonding copper as an antimicrobial agent to the amphoteric binding resin, and then combining the polyethylene resin and the amphoteric resin, the polyethylene resin without adhesion and binding of other substances and copper as an antimicrobial agent are unitarily and firmly combined. Since it can be combined, there is no elution of copper, which is an antimicrobial agent, even if it is used for a long time.

그리고 상기 다공질형성제로는 수산화알루미늄(Aluminum Hydroxide)을 사용한다. 상기 수산화알루미늄은 180~300℃의 온도에서 물 분자를 잃고 안정적인 세라믹 소재인 α-산화알루미늄을 형성하는 재료이다. 이러한 산화알루미늄은 수도관의 내마모성을 증가시킨다.And as the porous forming agent, aluminum hydroxide is used. The aluminum hydroxide is a material that loses water molecules at a temperature of 180 to 300°C and forms α-aluminum oxide, which is a stable ceramic material. This aluminum oxide increases the wear resistance of water pipes.

상기 양성결합수지 및 다공질형성제를 혼합비는 1:2~10 중량비임이 바람직한바, 이는 다공질체 내 충분한 미세 다공질을 형성하여 항균제인 구리를 다량 담지하면서도, 구리와의 결합성을 고려한 것이다. The mixing ratio of the amphoteric binding resin and the porosity forming agent is preferably 1: 2 to 10 weight ratio, which forms sufficient microporosity in the porous body to support a large amount of copper, which is an antimicrobial agent, while considering the binding property with copper.

그리고 상기 혼합시 분산제로 스테아린산아연을 더 혼합할 수도 있는바, 그 실시를 제한하지 않는다. 이때, 그 혼합비는 상기 양성결합수지, 다공질형성제 및 스테아린산 아연이 1:2~10:1~4 중량비 정도이면 족하다.Further, zinc stearate may be further mixed as a dispersant during the mixing, and the implementation is not limited. At this time, the mixing ratio is sufficient if the amphoteric binding resin, the porosity forming agent, and zinc stearate are about a weight ratio of 1:2-10:1-4.

다음으로, 상기 양성결합수지 및 상기 다공질형성제의 혼합물을 180~330℃로가열된 압출기의 실린더로 투입한다. 상기 실린더 내에서 상기 양성결합수지는 용융되고, 상기 다공질형성제인 수산화알루미늄은 물 분자를 축합반응에 의해 분리함으로써, 안정적인 세라믹 소재인 α-산화알루미늄이 되고, 상기 분리된 물 분자는 용융물 내 수증기 상태로 가압 팽창하게 된다. Next, the mixture of the amphoteric binding resin and the porous forming agent is introduced into a cylinder of an extruder heated to 180 to 330°C. In the cylinder, the amphoteric resin is melted, and the porous forming agent, aluminum hydroxide, separates water molecules by a condensation reaction to become α-aluminum oxide, a stable ceramic material, and the separated water molecules are in a vapor state in the melt. It expands under pressure.

그리고 이를 실린더의 배출구로 상기 용융물을 토출시키면서 -200~-1℃로 급랭한다. 이러한 급랭을 통해 상기 용융물은 그대로 응고되고, 내부의 수증기 역시 그대로 응결됨으로써, 내부에 물 입자를 포함하는 양성결합수지와 산화알루미늄으로 구성된 다공질체가 제조되게 된다. 즉, 상기 물 분자의 자리들이 미세 다공질이며, 이러한 미세 다공질은 구경이 0.1~1000nm이고, 상기 다공질체는 겉비중(물 이자 제외)이 0.03~0.33이다.And it is rapidly cooled to -200 ~ -1 ℃ while discharging the melt to the outlet of the cylinder. Through such rapid cooling, the melt is solidified as it is, and water vapor inside is also solidified as it is, so that a porous body composed of aluminum oxide and an amphoteric resin containing water particles therein is manufactured. That is, the sites of the water molecule are microporous, the microporous has a diameter of 0.1 to 1000 nm, and the porous body has an outer specific gravity (excluding water) of 0.03 to 0.33.

본 발명에서 상기 다공질체의 입도는 제한하지 않으나, 10~5,000㎛ 정도의 입도일 수 있는바, 이는 토출구의 크기를 조절하거나, 토출 후 분쇄하여 입도를 조절하는 것임은 당연하다.In the present invention, the particle size of the porous body is not limited, but may be about 10 to 5,000 μm, and it is natural that the size of the discharge port is adjusted or the particle size is pulverized after discharge.

상기 제조된 다공질체를 구리전구체 수용액과 혼합하여 상기 미세 다공질에 구리전구체 수용액을 담지하는 단계Mixing the prepared porous material with an aqueous copper precursor solution to support the aqueous copper precursor solution on the microporous material

다음으로, 상기 제조된 다공질체를 구리전구체 수용액과 혼합함으로써, 상기 다공질체 내 포함된 물 분자를 상기 구리전구체 수용액과 치환시켜 미세 다공질에 구리전구체 수용액이 담지되도록 한다. 즉, 상기 구리전구체 수용액이 상기 다공질체 내 미세 분포되는 것이다.Next, by mixing the prepared porous material with the aqueous copper precursor solution, water molecules contained in the porous material are substituted with the aqueous copper precursor solution so that the aqueous copper precursor solution is supported on the microporous material. That is, the aqueous copper precursor solution is finely distributed in the porous body.

여기서, 상기 구리전구체 수용액은 항균제인 구리를 미세 입자로 수도관에 형성되도록 하기 위한 것으로, 질산구리, 염화구리 및 황산구리 중 1종 이상을 사용할 수 있다. 이때, 상기 구리전구체는 상기 제조된 다공질체와 5~30:100 중량비 정도의 양을 사용하면 족한바, 구리전구체 수용액의 농도, 즉 물의 사용량은 제한하지 않는다.Here, the copper precursor aqueous solution is for forming copper as an antimicrobial agent into fine particles in the water pipe, and at least one of copper nitrate, copper chloride, and copper sulfate may be used. At this time, the copper precursor is sufficient if the amount of the prepared porous material and 5 to 30:100 weight ratio is used, and the concentration of the aqueous copper precursor solution, that is, the amount of water used, is not limited.

상기 구리전구체 수용액이 담지된 다공질체에 환원금속을 첨가하여 상기 구리전구체 수용액의 구리이온을 환원시켜 습윤 구리담체를 제조하고, 산화된 환원금속은 회수하는 단계Adding a reducing metal to the porous material carrying the aqueous copper precursor solution to reduce copper ions in the aqueous copper precursor solution to prepare a wet copper carrier, and recovering the oxidized reduced metal

다음으로, 상기 구리전구체 수용액이 담지된 다공질체에 환원금속을 첨가함으로써, 상기 구리전구체 수용액의 구리이온을 환원시켜 구리(Cu) 또는 산화구리(CuO)로 형성되도록 한다.Next, by adding a reducing metal to the porous body carrying the aqueous copper precursor solution, copper ions in the aqueous copper precursor solution are reduced to form copper (Cu) or copper oxide (CuO).

더욱 구체적으로, 상기 구리전구체 수용액과의 혼합을 통해 상기 구리전구체 수용액이 담지된 다공질체는 상기 수용액 내 존재하게 되는바, 환원금속을 상기 수용액 내에 pH가 6.9~7.1이 될 때까지 서서히 첨가하여 구리이온을 환원시킴으로써, 습윤 구리담체를 제조하는 것이다. 그리고 산화된 환원금속은 침강시켜 회수한다.More specifically, the porous body on which the copper precursor aqueous solution is supported is present in the aqueous solution through mixing with the copper precursor aqueous solution, and a reduced metal is gradually added to the aqueous solution until the pH becomes 6.9 to 7.1. By reducing ions, a wet copper carrier is prepared. And the oxidized reduced metal is recovered by sedimentation.

상기 환원금속으로는 구리 이온을 금속으로 환원시킬 수 있는 금속분말을 사용하면 족한바, 예시적으로 알루미늄, 아연, 철 중 1종 이상을 사용할 수 있다. 그리고 그 입자 크기는 제한하지 않으나, 원활한 환원 반응을 위해 1~100㎛ 정도면 족하다. As the reducing metal, it suffices to use a metal powder capable of reducing copper ions to a metal. For example, at least one of aluminum, zinc, and iron may be used. And the particle size is not limited, but about 1-100㎛ is sufficient for smooth reduction reaction.

상기 제조된 습윤 구리담체를 건조하는 단계Drying the prepared wet copper carrier

다음으로, 상기 제조된 습윤 구리담체를 건조한다. 이때, 상기 건조방법은 제한하지 않는다. 여기서, 상기 습윤 구리담체 내 환원된 구리(Cu) 또는 산화구리(CuO)는 건조 과정에서도 산화되어 Cu2O 또는 CuO의 안정적인 산화금속이 됨으로써, 반영구적인 항균성을 형성하게 된다. 상기 구리담체 내 환원된 구리(Cu) 또는 산화구리(CuO)는 나노 입자 또는 서브 마이크로 입자로 존재함으로써 반응성이 커서 손쉽게 Cu2O 또는 CuO가 되는 것이다.Next, the prepared wet copper carrier is dried. At this time, the drying method is not limited. Here, the reduced copper (Cu) or copper oxide (CuO) in the wet copper carrier is oxidized even in the drying process to become a stable metal oxide of Cu 2 O or CuO, thereby forming semi-permanent antibacterial properties. The reduced copper (Cu) or copper oxide (CuO) in the copper carrier is highly reactive because it exists as nanoparticles or submicroparticles, and thus easily becomes Cu 2 O or CuO.

상기 건조된 구리담체를 에멀젼 양성결합수지로 코팅하고 건조하는 단계Coating the dried copper carrier with an emulsion amphoteric resin and drying

다음으로, 상기 건조된 구리담체를 에멀젼 양성결합수지로 코팅하고, 함수율 0.1% 이하로 건조한다.Next, the dried copper carrier is coated with an emulsion amphoteric resin, and dried to a moisture content of 0.1% or less.

상기 코팅은 상기 구리담체 내 산화구리가 수도관의 압출과정에서 단독으로 폴리에틸렌 수지 쪽으로 전이되어 저결합 상태가 발생될 수 있으므로, 이를 방지하기 위한 것이다. 즉, 구리담체의 입자 표면을 에멀젼 양성결합수지로 코팅함으로써, 폴리에틸렌 수지와의 용융 압출시, 양성결합수지가 먼저 산화구리와 접착된 후 2차적으로 폴리에틸렌 수지와 용융 혼합되므로 완벽한 일체성 결합을 하게 된다.The coating is intended to prevent this, since copper oxide in the copper carrier may be transferred to the polyethylene resin alone during the extrusion process of the water pipe, resulting in a low bonding state. That is, by coating the surface of the particles of the copper carrier with an emulsion amphoteric resin, during melt extrusion with the polyethylene resin, the amphoteric resin is first bonded to the copper oxide and then secondly melted and mixed with the polyethylene resin, so that perfect integral bonding is achieved. do.

상기 에멀젼 양성결합수지로는 결합성을 고려할 때 에틸렌 비닐 아세테이트 코폴리머 에멀젼(Ethylene Vinyl Acetate Copolymer Emusion)을 사용함이 바람직하며, 그 코팅방법 및 건조방법은 제한하지 않는다.As the emulsion amphoteric resin, it is preferable to use an ethylene vinyl acetate copolymer emulsion in consideration of binding properties, and a coating method and a drying method thereof are not limited.

상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하여 수도관을 제조하는 단계Manufacturing a water pipe by mixing the coated and dried copper carrier with a polyethylene resin

그리고 상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하고, 이를 용융 압출하여 수도관을 제조한다. 상기 용융 압출방법은 종래 기술에 의한다.Then, the coated and dried copper carrier is mixed with a polyethylene resin and melt-extruded to manufacture a water pipe. The melt extrusion method is according to the prior art.

이때, 상기 코팅 및 건조된 구리담체와 폴리에틸렌 수지와의 혼합비는 9:0.2~2 중량비인 것이 바람직한바, 수도관의 물성 및 항균성을 고려한 것이다. At this time, the mixing ratio of the coated and dried copper carrier and the polyethylene resin is preferably 9:0.2 to 2 weight ratio, considering the physical properties and antibacterial properties of the water pipe.

아울러, 상기 수도관은 단일관의 형태가 아닌, 이중관 또는 삼중관의 형태일 수도 있는바, 내층은 상기한 바와 같이 구리담체가 융합된 폴리에틸렌 수지로 압출하고, 그 외 중층 및 외층은 일반 폴리에틸렌 수지로 압출할 수 있는바, 이를 제한하지 않는다.In addition, the water pipe may be in the form of a double pipe or a triple pipe instead of a single pipe, and the inner layer is extruded with a polyethylene resin fused with a copper carrier as described above, and the other middle and outer layers are made of a general polyethylene resin. It can be extruded, but it is not limited thereto.

상기와 같이 제조된 본 발명의 수도관은 앞서 설명된 바와 같이, 구리가 산화물의 형태로 양성결합수지의 담체 내 극미세 입자로 분포됨으로써, 폴리에틸렌 수지와의 결합성이 우수하고, 항균 활성이 우수함은 물론, 물속에서 장기간 사용하더라도 산화되거나 용출되지 않아 영구적인 항균성을 형성한다는 장점이 있다. As described above, the water pipe of the present invention prepared as described above has excellent binding properties with polyethylene resin and excellent antibacterial activity by distributing copper in the form of oxide as ultrafine particles in the carrier of the amphoteric resin. Of course, even if it is used for a long time in water, it is not oxidized or eluted, so it has the advantage of forming a permanent antibacterial property.

이하, 구체적인 실시예를 통해 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail through specific examples.

(실시예 1)(Example 1)

말레인산에틸렌공중합체, 수산화알루미늄, 스테아린산아연을 1:4:2 중량비로 혼합하고, 이를 260℃로 가열된 용융식 압출기 실린더에 투입하였다. 상기 실린더 내의 스크류의 용융 체류시간은 3분으로 설정하였으며, 스쿠류의 토출 압력에 의하여 실린더 헤드의 배출구로 용융물을 토출시키면서 동시에 -18℃로 냉각시켰다. 상기 냉각물은 내부에 0.1~1000nm의 물입자가 형성된 복합물로 겉비중(수분입자제외) 0.25인 다공질체였으며, 그 평균입도는 325㎛ 정도 였다. 도 2는 제조된 다공질체의 전자현미경 사진이다.Ethylene maleate copolymer, aluminum hydroxide, and zinc stearate were mixed in a weight ratio of 1:4:2, and then put into a melt-type extruder cylinder heated to 260°C. The melt residence time of the screw in the cylinder was set to 3 minutes, and the melt was discharged to the outlet of the cylinder head by the discharge pressure of the screw and cooled to -18°C at the same time. The coolant was a composite material with water particles of 0.1 to 1000 nm formed therein, and was a porous body having an outer specific gravity (excluding moisture particles) of 0.25, and an average particle size of about 325 μm. 2 is an electron micrograph of the manufactured porous body.

다음으로, 질산구리를 평균입도 450㎛로 분쇄하고, 이를 물에 용해시켜 질산구리 수용액을 제조하였다. 그리고 이에 상기 다공질체를 투입하고, 실온에서 60분간 교반함으로써, 상기 다공질체 내부의 물입자를 질산구리 수용액으로 치환시켰다. 이때, 사용된 질산구리, 물, 다공질체는 1:15:10 중량비였다.Next, copper nitrate was pulverized to an average particle size of 450 μm and dissolved in water to prepare an aqueous copper nitrate solution. Then, the porous body was added thereto and stirred at room temperature for 60 minutes, thereby replacing the water particles inside the porous body with an aqueous copper nitrate solution. At this time, the copper nitrate, water, and porous material used were in a weight ratio of 1:15:10.

그리고 상기 다공질체가 투입된 상태의 수용액에 환원금속으로 10㎛의 입자크기를 갖는 아연금속 분말을 서서히 첨가하여 상기 수용액의 pH가 7이 되도록 하여 습윤 구리담체를 제조하고, 질산화된 아연 분말을 침강시켜 분리하였다. 그리고 이를 60℃에서 8시간 건조하여 구리담체를 제조하였다. Then, zinc metal powder having a particle size of 10 μm as a reducing metal was gradually added to the aqueous solution in the state in which the porous body was added to make the pH of the aqueous solution 7 to prepare a wet copper carrier, and the nitrified zinc powder was precipitated and separated. I did. And it was dried at 60 ℃ for 8 hours to prepare a copper carrier.

다음으로, 상기 구리담체를 EVA에멀젼(고형분 5%) 수용액에 침지하여 건져냄으로써, 습식 코팅하고, 이를 함수율 0.1% 가 되도록 65℃에서 건조하였다.Next, the copper carrier was immersed in an EVA emulsion (5% solid content) aqueous solution to remove it, and wet-coated, and dried at 65° C. so as to have a water content of 0.1%.

그리고 이를 PE 파이프 제조용 고밀도폴리에틸렌(HDPE)(대한유화 P600)과 9:1 중량비로 혼합하여 구리융합 폴리에틸렌 수지를 제조하고, 이를 용융 압출하여 두께 5.7mm의 내층을 성형하고, 이에 고밀도폴리에틸렌(HDPE)(대한유화 P600)를 이용하여 두께 15mm의 중층, 두께 5mm의 외층을 차례로 성형하여 직경이 315mm인 항균성 구리융합 폴리에틸렌 상수도관을 제조하였다.And it is mixed with high-density polyethylene (HDPE) (Daehan Emulsification P600) for manufacturing PE pipes in a weight ratio of 9:1 to prepare a copper fused polyethylene resin, and melt-extruded to form an inner layer with a thickness of 5.7 mm, and thus high-density polyethylene (HDPE) An antimicrobial copper fusion polyethylene water pipe having a diameter of 315 mm was manufactured by sequentially forming a 15 mm thick intermediate layer and a 5 mm thick outer layer using (Daehan Petrochemical P600).

또한, 항균성을 시험하기 위하여 구리융합 폴리에틸렌 수지만을 이용하여 가로 50mm, 세로 50mm, 두께 2mm 크기의 시편을 제조하였다. In addition, in order to test antibacterial properties, specimens having a width of 50 mm, a length of 50 mm, and a thickness of 2 mm were prepared using only copper fused polyethylene resin.

(실시예 2)(Example 2)

실시예 1과 동일하게 실시하되, 양성결합수지로서 말레인산에틸렌공중합체를 대신하여 에틸렌비닐아세테이트공중합체를 사용하였으며, 구리전구체로 질산구리를 대신하여 황산구리를, 환원금속으로 아연 분말을 대신하여 알루미늄 분말을 사용하였다.Conducted in the same manner as in Example 1, except that ethylene vinyl acetate copolymer was used in place of the ethylene maleate copolymer as the amphoteric binding resin, copper sulfate was substituted for copper nitrate as the copper precursor, and aluminum powder was substituted for zinc powder as the reducing metal. Was used.

(비교예 1)(Comparative Example 1)

고밀도폴리에틸렌(HDPE)(대한유화 P600)만을 이용하여 가로 50mm, 세로 50mm, 두께 2mm 크기의 시편을 제조하였다. Specimens having a width of 50 mm, a length of 50 mm, and a thickness of 2 mm were prepared using only high-density polyethylene (HDPE) (Daehan Petrochemical P600).

(시험예 1)(Test Example 1)

상기 실시예 1, 2 및 비교예 1의 항균성을 테스트하였다.The antimicrobial properties of Examples 1 and 2 and Comparative Example 1 were tested.

상기 항균성 테스트는 JIS Z 2801:2010, 필름밀착법에 의하여 진행하였으며, 균주로는 Staphylococcus aureus ATCC 6538P(황색포도상구균)와 Escherichia coil ATCC 8739(대장균)를 사용하였다. 그 결과는 하기 표 1과 같았다.The antimicrobial test was conducted by JIS Z 2801:2010, a film adhesion method, and Staphylococcus aureus ATCC 6538P (yellow staphylococcus) and Escherichia coil ATCC 8739 (Escherichia coli) were used as strains. The results were shown in Table 1 below.

시험예 1 결과Test Example 1 result 균주Strain 상태state 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 황색포도상구균Staphylococcus aureus 접종직 후 균수Number of bacteria right after vaccination 1.0×104 1.0×10 4 -- -- 24h 후 균수Number of bacteria after 24h 2.5×104 2.5×10 4 <0.63<0.63 <0.63<0.63 항균활성치Antibacterial activity -- 4.7(99.9%)4.7 (99.9%) 4.7(99.9%)4.7 (99.9%) 대장균Escherichia coli 접종직 후 균수Number of bacteria right after vaccination 1.0×104 1.0×10 4 -- -- 24h 후 균수Number of bacteria after 24h 9.4×105 9.4×10 5 <0.63<0.63 <0.63<0.63 항균활성치Antibacterial activity -- 0.62(99.9%)0.62 (99.9%) 0.62(99.9%)0.62 (99.9%) 시험방법Test Methods 표준필름 : Stomacher®400POLY-BAG
시험조건 : 시험 균 액을 (35±1)℃, 90% .RH.에서 24h 정치 배양 후 균 수 측정
항균효과 : 항균활성치 2.0 log 이상
Standard film: Stomacher®400POLY-BAG
Test conditions: Measure the number of bacteria after incubating the test bacteria solution at (35±1)℃, 90% .RH for 24 hours.
Antibacterial effect: more than 2.0 log of antibacterial activity

상기 표 1에서와 같이, 본 발명의 실시예 1, 2는 항균성이 우수함을 확인할 수 있었다. As shown in Table 1, it was confirmed that Examples 1 and 2 of the present invention have excellent antimicrobial properties.

(시험예 2)(Test Example 2)

상기 실시예 1, 2의 수도관의 일측을 밀봉하고, 수돗물 1L를 투입한 후 타측을 밀봉하여, 25℃의 항온조에서 48시간을 보관하고, 구리 성분의 용출 여부를 확인하였다. 상기 구리 성분의 용출 여부는 AAS(Atomic absorption Spectrometer, 미합중국 소재 Varian사 제품)을 이용하여 테스트 하였다.One side of the water pipe of Examples 1 and 2 was sealed, and the other side was sealed after adding 1L of tap water, and stored for 48 hours in a thermostat at 25°C, and whether or not the copper component was eluted. Whether or not the copper component was eluted was tested using AAS (Atomic Absorption Spectrometer, manufactured by Varian, USA).

그 결과는 하기 표 2와 같았다.The results were shown in Table 2 below.

시험예 2 결과(ppm)Test Example 2 result (ppm) 구분division 실시예 1Example 1 실시예 2Example 2 48시간 후 수돗물 내 CuCu in tap water after 48 hours 00 00

상기 표 2에서와 같이, 실시예 1, 2는 구리 성분의 용출이 없음을 확인할 수 있었다. As shown in Table 2, in Examples 1 and 2, it was confirmed that there was no elution of the copper component.

상술한 실시예는 본 발명의 바람직한 예에 대해 기재한 것이지만 본 발명은 이에 국한되지 않고 본 발명의 기술적인 사상에서 벗어나지 않는 범위 내에서 다양한 형태로 변경하여 실시할 수 있음은 본 발명의 기술분야에 속하는 통상의 기술자들에게 있어 당연한 것임을 명시한다.Although the above-described embodiments have been described for preferred examples of the present invention, the present invention is not limited thereto and can be implemented in various forms without departing from the technical spirit of the present invention. It is stated that it is natural for ordinary technicians to belong.

Claims (5)

양성결합수지 및 다공질형성제를 혼합하고, 이를 가열 후, 급랭함으로써, 미세 다공질이 형성된 다공질체를 제조하는 단계와,
상기 제조된 다공질체를 구리전구체 수용액과 혼합하여 상기 미세 다공질에 구리전구체 수용액을 담지하는 단계와,
상기 구리전구체 수용액이 담지된 다공질체에 환원금속을 첨가하여 상기 구리전구체 수용액의 구리이온을 환원시켜 습윤 구리담체를 제조하고, 산화된 환원금속은 회수하는 단계와,
상기 제조된 습윤 구리담체를 건조하는 단계와,
상기 건조된 구리담체를 에멀젼 양성결합수지로 코팅하고 건조하는 단계와,
상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하여 수도관을 제조하는 단계를 포함하는 것을 특징으로 하는 항균성 구리융합 폴리에틸렌 수도관의 제조방법.
Mixing an amphoteric binding resin and a porous mass-forming agent, heating the same, and then rapidly cooling it to prepare a porous body having microporous materials; and
Mixing the prepared porous material with an aqueous copper precursor solution to support the aqueous copper precursor solution on the microporous material; and
Adding a reducing metal to the porous material carrying the aqueous copper precursor solution to reduce copper ions in the aqueous copper precursor solution to prepare a wet copper carrier, and recovering the oxidized reduced metal;
Drying the prepared wet copper carrier,
Coating the dried copper carrier with an emulsion amphoteric resin and drying,
The method of manufacturing an antimicrobial copper fusion polyethylene water pipe, comprising the step of preparing a water pipe by mixing the coated and dried copper carrier with a polyethylene resin.
제1항에 있어서,
상기 양성결합수지 및 다공질형성제를 혼합하고, 이를 가열 후, 급랭함으로써, 미세 다공질이 형성된 다공질체를 제조하는 단계에서,
상기 양성결합수지는 말레인산에틸렌공중합체(Maleic anhydride Ethylene Copolymer), 에틸렌비닐아세테이트 공중합체(Ethylene vinyl Acetate Copolymer) 및 염화 폴리에틸렌(Chlorinated Polyethylene) 중 1종 이상의 것이고,
상기 다공질형성제는 수산화알루미늄이며,
상기 양성결합수지와 다공질형성제를 1:2~10 중량비로 혼합하고, 180~330℃로 가열 후, -200~-1℃로 급랭함으로써, 가열과정에서 다공질형성제인 수산화알루미늄은 축합반응에 의해 수증기 상태의 물 분자를 분리하고, 상기 수증기 상태의 물 분자가 급랭됨으로써, 미세 다공질에 물 입자가 포함된 상태로 다공질체를 제조하는 것임을 특징으로 하는 항균성 구리융합 폴리에틸렌 수도관의 제조방법.
The method of claim 1,
In the step of preparing a porous body having fine porous mass by mixing the amphoteric binding resin and the porous mass forming agent, heating it, and then rapidly cooling it,
The amphoteric binding resin is one or more of maleic anhydride ethylene copolymer, ethylene vinyl acetate copolymer, and chlorinated polyethylene,
The porosity forming agent is aluminum hydroxide,
The amphoteric binding resin and the porous forming agent are mixed in a weight ratio of 1:2 to 10, heated to 180 to 330°C, and then rapidly cooled to -200 to -1°C. A method of manufacturing an antimicrobial copper fusion polyethylene water pipe, characterized in that the water molecules in the water vapor state are separated, and the water molecules in the water vapor state are rapidly cooled, thereby manufacturing a porous body in a state in which the water particles are contained in the microporous substance.
제2항에 있어서,
상기 제조된 다공질체를 구리전구체 수용액과 혼합하고 교반하여 상기 미세 다공질에 구리전구체 수용액을 담지하는 단계에서,
상기 구리전구체는 질산구리, 염화구리 및 황산구리 중 1종 이상의 것이며,
상기 미세 다공질에 포함된 물 입자를 구리전구체 수용액으로 치환하는 것임을 특징으로 하는 항균성 구리융합 폴리에틸렌 수도관의 제조방법.
The method of claim 2,
In the step of mixing and stirring the prepared porous material with an aqueous copper precursor solution to support the aqueous copper precursor solution on the microporous material,
The copper precursor is at least one of copper nitrate, copper chloride and copper sulfate,
A method of manufacturing an antimicrobial copper fusion polyethylene water pipe, characterized in that the water particles contained in the microporous material are replaced with an aqueous copper precursor solution.
제2항에 있어서,
상기 환원금속은 알루미늄, 아연 및 철 중 1종 이상의 것이며, 그 입자 크기는 1~100㎛이고,
상기 에멀젼 양성결합수지는 에틸렌 비닐 아세테이트 코폴리머 에멀젼(Ethylene Vinyl Acetate Copolymer Emusion)인 것을 특징으로 하는 항균성 구리융합 폴리에틸렌 수도관의 제조방법.
The method of claim 2,
The reduced metal is one or more of aluminum, zinc, and iron, and the particle size is 1-100㎛,
The emulsion amphoteric resin is an ethylene vinyl acetate copolymer emulsion (Ethylene Vinyl Acetate Copolymer Emusion), characterized in that the antimicrobial copper fusion polyethylene water pipe manufacturing method.
제2항에 있어서,
상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 혼합하여 수도관을 제조하는 단계는,
상기 코팅 및 건조된 구리담체를 폴리에틸렌 수지와 0.2~2:9 중량비로 혼합하는 것임을 특징으로 하는 항균성 구리융합 폴리에틸렌 수도관의 제조방법.
The method of claim 2,
The step of preparing a water pipe by mixing the coated and dried copper carrier with a polyethylene resin,
The method for producing an antimicrobial copper fusion polyethylene water pipe, characterized in that mixing the coated and dried copper carrier with a polyethylene resin in a weight ratio of 0.2 to 2:9.
KR1020210015303A 2021-02-03 2021-02-03 Manufacturing method of composition for antibiotic water pipe KR102229098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210015303A KR102229098B1 (en) 2021-02-03 2021-02-03 Manufacturing method of composition for antibiotic water pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210015303A KR102229098B1 (en) 2021-02-03 2021-02-03 Manufacturing method of composition for antibiotic water pipe

Publications (1)

Publication Number Publication Date
KR102229098B1 true KR102229098B1 (en) 2021-03-18

Family

ID=75232153

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210015303A KR102229098B1 (en) 2021-02-03 2021-02-03 Manufacturing method of composition for antibiotic water pipe

Country Status (1)

Country Link
KR (1) KR102229098B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309368A (en) * 1998-02-25 1999-11-09 Rengo Co Ltd Composition containing inorganic porous crystal-hydrophilic polymer composite body and its molded product
KR100793930B1 (en) * 2006-12-29 2008-01-16 이종호 Composition for antibiotic water pipe and manufacturing method of the same and antibiotic water pipe thereby
KR101128054B1 (en) 2011-07-08 2012-03-29 건설화성 주식회사 The composition and the manufacturing method of the antibiotic water pipe which uses the ceramic
KR101766865B1 (en) * 2017-01-12 2017-08-11 주식회사 테라하임 Method for a preparation of organic-inorganic complex resin comprising silver nano particles and water pipe using the complex resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309368A (en) * 1998-02-25 1999-11-09 Rengo Co Ltd Composition containing inorganic porous crystal-hydrophilic polymer composite body and its molded product
KR100793930B1 (en) * 2006-12-29 2008-01-16 이종호 Composition for antibiotic water pipe and manufacturing method of the same and antibiotic water pipe thereby
KR101128054B1 (en) 2011-07-08 2012-03-29 건설화성 주식회사 The composition and the manufacturing method of the antibiotic water pipe which uses the ceramic
KR101766865B1 (en) * 2017-01-12 2017-08-11 주식회사 테라하임 Method for a preparation of organic-inorganic complex resin comprising silver nano particles and water pipe using the complex resin

Similar Documents

Publication Publication Date Title
US6068931A (en) Self-lubricating bearing material and plain bearing of such a bearing material
US4544600A (en) Resin compositions containing metals such as aluminum
EP0323544A2 (en) Foam nucleation system for fluoropolymers
MXPA05000943A (en) Carbon black-containing crosslinked polyethylene pipe having resistnce to chlorine and hypochlorous acid.
KR101960771B1 (en) Polyvinyl chloride resin composition for a triple tube and polyvinyl chloride triple tube using that resin composition
KR102229098B1 (en) Manufacturing method of composition for antibiotic water pipe
JP3197458B2 (en) Cold-resistant, halogen-free flame-retardant polyolefin resin composition
KR101720537B1 (en) Moisture absorbent film composition and product using moisture absorbent
CN104629164A (en) Spraying-free polyolefin composition with special aesthetic effect and a preparation method and application thereof
KR20080019647A (en) Method for producing nickel particles and nickel particles produced by the method, and electroconductive paste using the nickel particles
JP2000080172A (en) Masterbatch resin pellet and preparation thereof
US4844753A (en) Method for forming insulating films on electromagnetic steel plates
EP2168998B1 (en) Fluororesin sheet for gasket, method for manufacturing the same, and sheet gasket
KR101629888B1 (en) Polyethylene surface coated water pipe having a function of antibacterial and far infrared and manufacturing method thereof
JP3432264B2 (en) Microporous membrane
JPS6356425A (en) Polyethylene resin pipe with multi-layer structure
US4183840A (en) Poly(phenylene sulfide) resin coating composition
WO2023134404A1 (en) Polycarbonate composition, preparation method therefor and application thereof
KR101675750B1 (en) Method for preparing anti-bacrerial activated carbon filter having a controlled elution property of silver anti-bacterial agent
JPH01245039A (en) Flame retardant and flame retardant resin composition using said flame retardant
GB2141719A (en) Ethylene polymer compositions
KR101605510B1 (en) Polyvinyl-Chloride Pipe Having Improved Corrosion Resistance And Durability
JPS6131446A (en) Ethylene-propylene rubber composition having tracking resistance
JP3912442B2 (en) Method for producing polymer porous tubular membrane
CN112778635A (en) Polypropylene composite material for antibacterial weather-resistant refrigerator liner and preparation method thereof

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant