KR102228072B1 - A method for detecting methanol in a biospecimen - Google Patents

A method for detecting methanol in a biospecimen Download PDF

Info

Publication number
KR102228072B1
KR102228072B1 KR1020190156797A KR20190156797A KR102228072B1 KR 102228072 B1 KR102228072 B1 KR 102228072B1 KR 1020190156797 A KR1020190156797 A KR 1020190156797A KR 20190156797 A KR20190156797 A KR 20190156797A KR 102228072 B1 KR102228072 B1 KR 102228072B1
Authority
KR
South Korea
Prior art keywords
methanol
biological sample
extraction
internal standard
derivatized
Prior art date
Application number
KR1020190156797A
Other languages
Korean (ko)
Inventor
안대준
민지숙
이준배
정용애
곽성신
김유나
공보경
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020190156797A priority Critical patent/KR102228072B1/en
Application granted granted Critical
Publication of KR102228072B1 publication Critical patent/KR102228072B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/98Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving alcohol, e.g. ethanol in breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2229Headspace sampling, i.e. vapour over liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8822Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

In a methanol detection method for identifying methanol contained in a biopsy specimen according to the present invention, the method comprises: a step of collecting the biopsy specimen from a subject (a biopsy specimen extraction step); a step of forming a first specimen mixture by mixing the biopsy specimen, an internal standard aqueous solution, a saturated NaCl aqueous solution, and a methanol standard solution (a specimen mixing step); a step of derivatizing methanol and an internal standard material in the biopsy specimen (a derivatization step); and a step of extracting and analyzing the derivatized methanol and the derivatized internal standard (an extraction analysis step).

Description

생체시료 내 메탄올 검출 방법{A method for detecting methanol in a biospecimen}A method for detecting methanol in a biospecimen}

본 발명은 생체시료 내 메탄올 검출 방법에 관한 것으로, 보다 상세하게는 생체시료에 포함된 메탄올을 유도체화 시킨 다음 GC/MS(Gas chromatography-Mass Spectrometry)로 분석함으로써 생체시료 내 메탄올의 포함 여부를 보다 빠르게 확인 가능한 생체시료 내 메탄올 검출 방법에 관한 것이다.The present invention relates to a method for detecting methanol in a biological sample, and more particularly, by derivatizing methanol contained in a biological sample and then analyzing it by GC/MS (Gas chromatography-Mass Spectrometry) to determine whether methanol is included in a biological sample. It relates to a method for detecting methanol in a biological sample that can be quickly identified.

일반적으로 메탄올(methanol)은 용제, 의약품, 농약, 연료, 수지, 전자제품 등의 제조에 사용되어 주변에서 쉽게 접할 수 있기 때문에 이로 인한 인명피해가 다수 보고되어 있다. 체내에 흡수된 메탄올은 대사되어 독성이 강한 포름알데히드(formaldehyde) 및 포름산(formic acid)을 생성하여 실명 및 사망에 이르게 되며 간에서 대사과정을 거쳐 알코올 분해효소(ADH)에 의해 포름알데히드(formaldehyde)로 전환되고, 전환된 포름알데히드(formaldehyde)는 알데히드분해효소(ALDH)에 의해 포름산(formic acid)으로 대사된다. 이때 포름산(formic acid)은 망막과 신경에 독성을 야기하며 미토콘드리아의 에너지 대사를 막아 생체를 파괴시키며 중독량 및 치사량은 개인차에 따라 일정치 않으나 치사량은 일반적으로 30∼100 ㎖로 알려져 있고, 혈중 농도가 0.033%가 되면 실명, 0.114% 이상에서 사망하는 것으로 보고되어 있다.In general, methanol (methanol) is used in the manufacture of solvents, pharmaceuticals, pesticides, fuels, resins, electronic products, etc., and can be easily contacted in the surroundings, so a number of human damages have been reported. Methanol absorbed into the body is metabolized to produce highly toxic formaldehyde and formic acid, leading to blindness and death. After metabolizing in the liver, formaldehyde is formed by alcohol decomposition enzyme (ADH). And the converted formaldehyde is metabolized to formic acid by aldehyde degrading enzyme (ALDH). At this time, formic acid causes toxicity to the retina and nerves and destroys the body by blocking energy metabolism of mitochondria. The amount of poisoning and lethality is not constant depending on individual differences, but the lethal dose is generally known as 30-100 ml, and the blood concentration is When it reaches 0.033%, it is reported that blindness and death in 0.114% or more.

메탄올 음독에 의한 사망은 밀주나 의약품 오용 또는 자살을 위해 음용한 농약 등에 의해 발생하는 경우가 있으며 메탄올 음독 사고가 발생하였을 경우 응급처치 방법은 위세척 및 에탄올(ethanol) 투여 등이 있다. 체내에 들어온 메탄올은 에탄올과 대사 과정에서 경쟁 반응 관계에 있기 때문에 메탄올 음독 변사자가 발생하였을 경우 빠른 응급처치가 무엇보다 중요하며 그러기 위해서는 무엇보다 신속한 검출이 중요하다.Death from methanol poisoning may be caused by smuggling, misuse of medicines, or pesticides drunk for suicide. In the event of a methanol poisoning accident, first aid measures include gastric lavage and ethanol administration. Since methanol entering the body is in a competitive relationship with ethanol in the process of metabolism, rapid emergency treatment is most important in the case of occurrence of methanol poisoning, and for that purpose, rapid detection is more important than anything else.

메탄올 분석은 GC-FID(Gas chromatography-Flame Ionization Detector)로 분석하는 것이 일반적이다. 도 1에 도시된 바와 같이, 혈액 중 메탄올을 GC-FID로 분석하여 머무름 시간 0.96분(도 1(A))의 메탄올과 2.4분(도 1(B))의 터셔리-부틸 알코올(t-butyl alcohol) 두 개의 피크를 확인할 수 있는데 GC-FID를 이용한 분석 결과만으로는 검출되는 메탄올의 특정화가 곤란하였다. 왜냐하면, 머무름 시간 0.96분의 피크는 메탄올에서 유래한 것일 수도 있으나 에탄올의 대사 물질인 아세트알데히드(acetaldehyde)일 수도 있으며 특히 음주상태에서 메탄올을 음용하였다면 머무름 시간이 오버랩되어 0.96분의 피크가 메탄올에서 유래한 것인지 또는 에탄올 음용 후 그 대사 물질인 아세트알데히드에서 유래한 것인지에 대한 정보를 정확히 제시하지 못하는 문제점이 있었다.Methanol analysis is generally performed with Gas Chromatography-Flame Ionization Detector (GC-FID). As shown in Fig. 1, methanol in blood was analyzed by GC-FID, and methanol with a retention time of 0.96 minutes (Fig. 1(A)) and tertiary-butyl alcohol (t- butyl alcohol) two peaks can be identified, but it was difficult to specify the methanol detected only by the analysis result using GC-FID. Because the 0.96 minute retention time peak may be derived from methanol, but may be acetaldehyde, a metabolite of ethanol. Especially, if methanol is consumed while drinking, the retention time overlaps and the 0.96 minute peak is derived from methanol. There was a problem in that information on whether it was derived from acetaldehyde, a metabolite, or not, after drinking ethanol, could not be accurately presented.

이런 이유로 머무름 시간만으로 분석하는 GC-FID에 의한 메탄올 분석은 정성 및 정량에 어려움이 있다. 이를 극복하기 위해 GC/MS(Gas chromatography-Mass Spectrometry)를 이용한 분석이 가능하지만, 이 또한 도 2에 도시된 바와 같이 메탄올의 분자량이 산소(O2)와 유사하고, 특히 헤드스페이스(headspace)에서 포집하여 주입할 경우 시료 중의 수분에 의한 칼럼 브리딩(column bleeding) 현상이 발생할 수 있는 문제점이 있었다.For this reason, methanol analysis by GC-FID, which is analyzed only with retention time, has difficulty in qualitative and quantification. To overcome this, it is possible to analyze using GC/MS (Gas chromatography-Mass Spectrometry), but as shown in FIG. 2, the molecular weight of methanol is similar to that of oxygen (O 2 ), especially in the headspace. When collected and injected, there is a problem in that column bleeding may occur due to moisture in the sample.

대한민국 공개특허공보 제10-2015-0109995호(2015.10.02)Republic of Korea Patent Publication No. 10-2015-0109995 (2015.10.02) 대한민국 공개특허공보 제10-2009-0131560호(2009.12.29)Republic of Korea Patent Publication No. 10-2009-0131560 (2009.12.29) 대한민국 등록특허공보 제10-2040820호(2019.10.30)Republic of Korea Patent Publication No. 10-2040820 (2019.10.30)

본 발명은 상기와 같은 종래 기술이 가지는 문제점을 해결하기 위하여 제안된 것으로, 생체시료에 포함된 메탄올을 유도체화 시킨 다음 GC/MS로 분석함으로써 생체시료 내 메탄올의 포함 여부를 빠르게 확인 가능하며, 이를 법과학적 사건뿐만 아니라 메탄올 음독 시 응급처치를 위한 메탄올 검출에 적용하여 변사자가 메탄올에 의한 중독임을 보다 빠르고 정확하게 규명할 수 있는 생체시료 내 메탄올 검출 방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the problems of the prior art as described above. By derivatizing methanol contained in a biological sample and then analyzing it by GC/MS, it is possible to quickly check whether methanol is contained in a biological sample. The purpose of this study is to provide a method for detecting methanol in biological samples that can be applied to detect methanol for emergency treatment in the event of methanol intoxication, as well as forensic and scientific events, so that a person can quickly and accurately identify that poisoning by methanol.

본 발명에 따르는 생체시료에 포함된 메탄올을 확인하는 메탄올 검출 방법에 있어서,In the methanol detection method for identifying methanol contained in a biological sample according to the present invention,

대상체로부터 생체시료를 채취하는 단계(생체시료 추출단계)와;Collecting a biological sample from the subject (biological sample extraction step);

생체시료와, 내부표준물질 수용액과, NaCl 포화수용액과, 메탄올 표준용액이 혼합되어 제1 시료혼합물이 형성되는 단계(시료 혼합단계)와;A step in which a first sample mixture is formed by mixing a biological sample, an aqueous solution of an internal standard substance, a saturated NaCl aqueous solution, and a methanol standard solution (sample mixing step);

상기 생체시료 내 메탄올(methanol)과 내부표준물질을 유도체화 시키는 단계(유도체화 단계)와;Derivatizing methanol and an internal standard in the biological sample (derivatization step);

상기 유도체화된 메탄올과 유도체화된 내부표준물질을 추출하여 분석하는 단계(추출분석단계)로 이루어지는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법을 제공한다.It provides a method for detecting methanol in a biological sample, comprising the step of extracting and analyzing the derivatized methanol and the derivatized internal standard material (extraction analysis step).

상기에서, 생체시료는 혈액이고, 내부표준물질 수용액은 0.1% 중수소로 치환된 에탄올 수용액이며;In the above, the biological sample is blood, and the aqueous solution of the internal standard substance is an aqueous ethanol solution substituted with 0.1% deuterium;

상기 시료 혼합단계에서 혈액:내부표준물질 수용액:NaCl수용액:메탄올 표준용액의 혼합 비율은 1:1:2:1인 것을 특징으로 한다.In the sample mixing step, the mixing ratio of blood: an aqueous solution of an internal standard substance: an aqueous NaCl solution: a standard solution of methanol is 1:1:2:1.

상기에서, 유도체화 단계에서는 pyran계 화합물과 산 촉매를 첨가하여 메탄올과 내부표준물질을 유도체화 시키는 것을 특징한다.In the above, in the derivatization step, methanol and an internal standard are derivatized by adding a pyran-based compound and an acid catalyst.

상기에서, 유도체화 단계에서는 제1 시료혼합물에 화합물 첨가 후 산촉매가 첨가되며;In the above, in the derivatization step, an acid catalyst is added after the compound is added to the first sample mixture;

상기 pyran계 화합물은 생체시료 부피의 0.1v/v%∼100v/v% 혼합되는 것을 특징으로 한다.The pyran-based compound is characterized in that 0.1v/v% to 100v/v% of the volume of the biological sample is mixed.

상기에서, pyran계 화합물은 DHP(3,4-Dihydro-2H-pyran)인 것을 특징으로 한다.In the above, the pyran-based compound is characterized in that DHP (3,4-Dihydro-2H-pyran).

상기에서, 산 촉매는 진한 염산, 황산, 질산 중 하나인 것을 특징으로 한다.In the above, the acid catalyst is characterized in that one of concentrated hydrochloric acid, sulfuric acid, and nitric acid.

상기에서, 산 촉매인 진한 염산은 생체시료 부피의 0.1v/v%∼50v/v% 혼합되는 것을 특징으로 한다.In the above, the acid catalyst, concentrated hydrochloric acid, is characterized in that 0.1v/v% to 50v/v% of the volume of the biological sample is mixed.

상기에서, 추출분석단계에서는 용매 추출법(solvent extraction) 또는 고상 미세 추출법(SPME)으로 추출되는 것을 특징으로 한다.In the above, the extraction analysis step is characterized in that the extraction is performed by a solvent extraction method or a solid state fine extraction method (SPME).

상기에서, 고상 미세 추출법(SPME)은 Carboxen/PDMS, polyacrylate(PA), PDMS, carbowax/DVB 중 하나로 이루어지는 것을 특징으로 한다.In the above, the solid state fine extraction method (SPME) is characterized by consisting of one of Carboxen/PDMS, polyacrylate (PA), PDMS, and carbowax/DVB.

상기에서, 추출분석단계에서는 Carboxen/PDMS 추출법으로 이루어지는 것을 특징으로 한다.In the above, the extraction analysis step is characterized in that it is made of the Carboxen / PDMS extraction method.

상기에서, 포르메이트(formate) 분석단계를 더 포함하는 것을 특징으로 한다.In the above, it characterized in that it further comprises a formate (formate) analysis step.

본 발명에 따르는 생체시료 내 메탄올 검출 방법은 생체시료 내 메탄올의 포함 여부를 용이하며 신속하게 확인 가능하고 경제적이다. 이를 법과학적 사건에 적용하여 변사자가 메탄올에 의한 중독임을 보다 빠르고 정확하게 규명할 수 있는 효과가 있다.The method for detecting methanol in a biological sample according to the present invention is economical and can easily and quickly determine whether methanol is contained in a biological sample. By applying this to a forensic case, there is an effect that it can more quickly and accurately identify that the victim is poisoned by methanol.

도 1은 GC-FID에 의한 생체시료의 분석 결과를 도시한 그래프이며,
도 2는 GC/MS를 이용한 메탄올의 분석 결과를 도시한 그래프이고,
도 3은 메탄올과 DHP의 반응식(A)과 중수소로 치환된 에탄올(D5-ethanol)과 DHP의 반응식(B)을 도시한 도면이며,
도 4는 유도체화된 메탄올과 유도체화된 중수소로 치환된 에탄올(D5-ethanol)의 GC/MS에 의한 분석 결과를 도시한 그래프이고,
도 5는 유도체화된 메탄올 이온의 질량 스펙트럼 결과를 도시한 그래프이며,
도 6은 유도체화된 중수소로 치환된 에탄올(D5-ethanol) 이온의 질량 스펙트럼 결과를 도시한 그래프이고,
도 7은 베이스 이온(A)과 유도체화된 메탄올 이온(B) 및 유도체화된 중수소로 치환된 에탄올 이온(C)의 분자 구조를 도시한 도면이며,
도 8은 표준 메탄올 용액을 첨가한 변사자의 혈액에 대한 GC/MS 크로마토그램을 도시한 그래프이고,
도 9는 유도체화된 내부표준물질에 대한 유도체화된 메탄올의 면적 비율을 플로팅한 보정 곡선을 도시한 그래프이며,
도 10은 이온크로마토그래피를 이용하여 포르메이트(formate)에 대해 분석한 결과를 도시한 그래프이며,
도 11은 이온크로마토그래피에 의한 포르메이트(formate)의 보정 곡선을 도시한 그래프이며,
도 12는 본 방법의 적용 방법을 설명하기 위한 도면이다.
1 is a graph showing the analysis result of a biological sample by GC-FID,
2 is a graph showing the analysis result of methanol using GC/MS,
3 is a diagram showing a reaction equation (A) of methanol and DHP and a reaction equation (B) of ethanol substituted with deuterium (D5-ethanol) and DHP,
4 is a graph showing the analysis results of derivatized methanol and ethanol (D5-ethanol) substituted with derivatized deuterium by GC/MS,
5 is a graph showing a mass spectrum result of derivatized methanol ions,
6 is a graph showing a mass spectrum result of an ethanol (D5-ethanol) ion substituted with derivatized deuterium,
7 is a diagram showing the molecular structures of a base ion (A), a derivatized methanol ion (B), and an ethanol ion (C) substituted with derivatized deuterium,
FIG. 8 is a graph showing a GC/MS chromatogram of blood of a consortium to which a standard methanol solution was added,
9 is a graph showing a calibration curve plotting the area ratio of derivatized methanol to the derivatized internal standard,
10 is a graph showing the results of analyzing formate using ion chromatography,
11 is a graph showing a correction curve of formate by ion chromatography,
12 is a diagram for explaining an application method of the present method.

이하에서 도면을 참조하여 본 발명에 따르는 생체시료 내 메탄올 검출 방법에 대하여 상세하게 설명한다.Hereinafter, a method for detecting methanol in a biological sample according to the present invention will be described in detail with reference to the drawings.

도 3은 메탄올과 DHP의 반응식(A)과 중수소로 치환된 에탄올(D5-ethanol)과 DHP의 반응식(B)을 도시한 도면이며, 도 4는 유도체화된 메탄올과 유도체화된 중수소로 치환된 에탄올(D5-ethanol)의 GC-FID에 의한 분석 결과를 도시한 그래프이고, 도 5는 유도체화된 메탄올 이온의 질량 스펙트럼 결과를 도시한 그래프이며, 도 6은 유도체화된 중수소로 치환된 에탄올(D5-ethanol) 이온의 질량 스펙트럼 결과를 도시한 그래프이고, 도 7은 베이스 이온(A)과 유도체화된 메탄올 이온(B) 및 유도체화된 중수소로 치환된 에탄올 이온(C)의 분자 구조를 도시한 도면이며, 도 8은 표준 메탄올 용액을 첨가한 변사자의 혈액에 대한 GC/MS 크로마토그램을 도시한 그래프이고, 도 9는 유도체화된 내부표준물질에 대한 유도체화된 메탄올의 면적 비율을 플로팅한 보정 곡선을 도시한 그래프이며, 도 10은 이온 크로마토그램을 이용하여 포르메이트(formate)에 대해 분석한 결과를 도시한 그래프이며, 도 11은 이온크로마토그래피에 의한 포르메이트(formate)의 보정 곡선을 도시한 그래프이며, 도 12는 본 방법의 적용 방법을 설명하기 위한 도면이다.3 is a diagram showing the reaction formula (A) of methanol and DHP and the reaction formula (B) of ethanol (D5-ethanol) and DHP substituted with deuterium, and FIG. 4 is a diagram showing the reaction formula (B) of derivatized methanol and derivatized deuterium. It is a graph showing the analysis result of ethanol (D5-ethanol) by GC-FID, FIG. 5 is a graph showing the mass spectrum result of derivatized methanol ion, and FIG. 6 is a graph showing the result of derivatized deuterium-substituted ethanol ( D5-ethanol) is a graph showing the result of the mass spectrum of the ion, and Figure 7 shows the molecular structure of the base ion (A), the derivatized methanol ion (B) and the ethanol ion (C) substituted with the derivatized deuterium Fig. 8 is a graph showing a GC/MS chromatogram of blood of a convicted person to which a standard methanol solution has been added, and Fig. 9 is a plot of the area ratio of derivatized methanol to the derivatized internal standard. A graph showing a correction curve, FIG. 10 is a graph showing a result of analysis of formate using an ion chromatogram, and FIG. 11 is a correction curve of a formate by ion chromatography. It is a graph, and FIG. 12 is a diagram for explaining an application method of the present method.

본 발명에 따르는 생체시료 내 메탄올 검출 방법은 메탄올(methanol)을 유도체화 시킨 다음 GC/MS(Gas Chromatography-Mass Spectrometry)를 이용하여 분석하는 방법이다. 생체시료 내 메탄올에 대한 GC/MS 분석은 표준첨가법(standard addition method)으로 이루어진다.The method for detecting methanol in a biological sample according to the present invention is a method of derivatizing methanol and then analyzing using GC/MS (Gas Chromatography-Mass Spectrometry). GC/MS analysis for methanol in biological samples is performed by standard addition method.

상기 생체시료 내 메탄올 검출 방법은 생체시료 추출단계(ST-100)와, 시료 혼합단계(ST-200)와, 유도체화단계(ST-300)와, 추출분석단계(ST-400)로 이루어진다(도 12 참조).The method for detecting methanol in a biological sample consists of a biological sample extraction step (ST-100), a sample mixing step (ST-200), a derivatization step (ST-300), and an extraction analysis step (ST-400) ( 12).

생체시료 추출단계(ST-100)에서는 대상체로부터 생체시료를 추출한다. 이하에서 생체시료는 혈액을 예로 설명한다.In the biological sample extraction step (ST-100), a biological sample is extracted from the subject. Hereinafter, the biological sample will be described using blood as an example.

시료 혼합단계(ST-200)에서는 대상체로부터 추출된 혈액과, 내부표준물질 수용액과, NaCl포화수용액과, 메탄올 표준용액이 혼합되어 제1 시료혼합물이 형성된다.In the sample mixing step (ST-200), a first sample mixture is formed by mixing blood extracted from the subject, an aqueous solution of an internal standard substance, a saturated NaCl aqueous solution, and a standard methanol solution.

상기 내부표준물질은 혈액 내 포함된 메탄올의 정량을 위한 것으로써 도 3의 (B)에 도시된 바와 같은 5개의 중수소로 치환된 에탄올(D5-EtOH)이 사용된다. 상기 내부표준물질로는 Sigma-Aldrich(Darmstadt, Hessen, GER)가 사용되었다.The internal standard is for quantification of methanol contained in blood, and ethanol (D5-EtOH) substituted with five deuteriums as shown in (B) of FIG. 3 is used. Sigma-Aldrich (Darmstadt, Hessen, GER) was used as the internal standard material.

상기 내부표준물질은 일반 자연환경에 존재할 가능성이 극히 희박할 뿐만 아니라 메탄올의 거동과 유사하고, 특히 에탄올이 함유된 음주자 혈액에서 에탄올의 정량분석에도 적용할 수 있는 장점이 있다.The internal standard substance is not only extremely unlikely to exist in a general natural environment, but also has the advantage of being similar to the behavior of methanol, and is particularly applicable to quantitative analysis of ethanol in the blood of drinkers containing ethanol.

상기 NaCl수용액은 시료 용액의 이온세기(ionic strength)를 증가시켜 기체상으로 분석대상물질의 휘발성을 증가시키기 위한 것이다.The NaCl aqueous solution is for increasing the volatility of the analyte in the gas phase by increasing the ionic strength of the sample solution.

상기 제1 시료혼합물에서 혈액:내부표준물질 수용액:NaCl포화수용액:메탄올 표준용액의 혼합 비율은 1:1:2:1로 이루어진다. 이때, 상기 내부표준물질 수용액은 0.1%인 중수소로 치환된 에탄올(D5-EtOH) 수용액이고, NaCl수용액의 농도는 그 온도에서의 NaCl 포화수용액이다. In the first sample mixture, a mixing ratio of blood: an aqueous solution of an internal standard substance: a saturated aqueous NaCl solution: a standard solution of methanol is 1:1:2:1. At this time, the aqueous solution of the internal standard substance is an aqueous solution of ethanol (D5-EtOH) substituted with 0.1% deuterium, and the concentration of the aqueous NaCl solution is a saturated aqueous solution of NaCl at that temperature .

상기 제1 시료혼합물은 10 ㎖ 바이알(vial)에 혈액 100 ㎕와, 내부표준물질 수용액 100 ㎕와, NaCl수용액 200 ㎕와, 메탄올 표준용액 100 ㎕가 혼합되어 이루어진다. 메탄올 표준용액으로는 Supelco(Bellefonte, PA, USA)사의 analytical standard grade가 사용 되었다.The first sample mixture is formed by mixing 100 µl of blood, 100 µl of an internal standard solution, 200 µl of NaCl aqueous solution, and 100 µl of a methanol standard solution in a 10 ml vial. As the methanol standard solution, an analytical standard grade manufactured by Supelco (Bellefonte, PA, USA) was used.

상기 제1 시료혼합물에서 메탄올 표준용액의 농도는 0.025%, 0.05%, 0.10%, 0.15% 및 0.20%의 농도로 이루어지며, 메탄올 표준용액의 각 농도에 대해 혈액과, 내부표준물질 수용액과, NaCl수용액이 5개의 바이알에서 각각 혼합된다.In the first sample mixture, the concentration of the methanol standard solution is 0.025%, 0.05%, 0.10%, 0.15%, and 0.20%. For each concentration of the methanol standard solution, blood, an aqueous solution of an internal standard substance, and NaCl The aqueous solution is mixed in each of 5 vials.

상기 유도체화 단계(ST-300)에서는 메탄올을 유도체 하기 위해 각각의 바이알에 DHP(3,4-Dihydro-2H-pyran)를 첨가하여 균질화 시킨 후 산 촉매를 첨가하여 유도체화 시킨다. 상기 DHP는 유기합성에서 알코올(alcohol)에 대한 보호기로서 적용되기도 하는 화합물이다.In the derivatization step (ST-300), in order to derivatize methanol, DHP (3,4-Dihydro-2H-pyran) is added to each vial to homogenize it, and then an acid catalyst is added to derivatize it. The DHP is a compound that is also applied as a protecting group for alcohol in organic synthesis.

상기 DHP는 생체시료 부피의 0.1v/v%∼100v/v% 범위로 첨가된다. DHP는 바람직하게는 25v/v%∼50v/v% 범위로 첨가되며, 더 바람직하게는 생체시료의 35v/v% 첨가된다. 이하에서 DHP는 생체시료 100 ㎕당 35 ㎕ 첨가된다. 상기 DHP로는 TCI(Kita-ku, Tokyo, JPN)가 사용되었다.The DHP is added in the range of 0.1v/v% to 100v/v% of the volume of the biological sample. DHP is preferably added in the range of 25v/v% to 50v/v%, and more preferably 35v/v% of the biological sample is added. In the following, 35 µl of DHP is added per 100 µl of a biological sample. remind TCI (Kita-ku, Tokyo, JPN) was used as the DHP.

상기 산 촉매는 진한 염산, 황산, 질산 중의 하나로 이루어진다. 상기 산 촉매로는 진한 염산이 가장 바람직하다. 상기 산 촉매로 진한 염산이 선택될 경우, 진한 염산은 생체시료 부피의 0.1v/v%∼50v/v% 범위로 첨가된다. 진한 염산은 바람직하게는 생체시료의 15v/v%∼35v/v% 범위로 첨가되며, 더 바람직하게는 생체시료의 25v/v% 첨가된다. 이하에서 진한 염산은 생체시료 100 ㎕당 25 ㎕ 첨가된다.The acid catalyst consists of one of concentrated hydrochloric acid, sulfuric acid, and nitric acid. As the acid catalyst, concentrated hydrochloric acid is most preferred. When concentrated hydrochloric acid is selected as the acid catalyst, concentrated hydrochloric acid is added in the range of 0.1v/v% to 50v/v% of the volume of the biological sample. Concentrated hydrochloric acid is preferably added in the range of 15v/v% to 35v/v% of the biological sample, more preferably 25v/v% of the biological sample. Below, concentrated hydrochloric acid is added 25 µl per 100 µl of a biological sample.

유도체화를 위한 이 반응은 친핵성 첨가반응(nucleophilic addition reaction)을 통해 진행되었으며, 반응 결과 메탄올은 2-메톡시테트라하이드로피란(2-methoxytetrahydropyran)을 형성하였고(도 3(A)), 내부표준물질은 2-D5-에톡시테트라하이드로피란(2-D5-ethoxytetrahydropyran)을 형성하였다(도 3(B)).This reaction for derivatization was carried out through a nucleophilic addition reaction, and as a result of the reaction, methanol formed 2-methoxytetrahydropyran (Fig. 3(A)), and internal standard The material formed 2-D5-ethoxytetrahydropyran (FIG. 3(B)).

상기 추출분석단계(ST-400)에서는 반응 결과 생성된 2-메톡시테트라하이드로피란의 GC/MS 분석을 위하여 여러가지 전처리 기법이 사용된다. 전처리 기법으로는 액체-액체 추출법(liquid-liquid extraction), 고체상 추출법(solid phase extraction), 고상 미세 추출법(SPME;solidphase Micro Extraction) 등이 있다. 본 발명에서는 바이알의 해드스페이스(heaspace)에서 고상 미세 추출법(SPME)을 이용하여 추출을 시행하였다.In the extraction analysis step (ST-400), various pretreatment techniques are used for GC/MS analysis of 2-methoxytetrahydropyran produced as a result of the reaction. Pretreatment techniques include liquid-liquid extraction, solid phase extraction, and solid phase micro extraction (SPME). In the present invention, extraction was performed using a solid state fine extraction method (SPME) in the headspace of the vial.

전처리 시료 추출을 위한 SPME fiber로는 Carboxen-polydimethylsiloxane(CAR/PDMS), polyacrylate(PA), polydimethylsiloxane(PDMS), Carbowax/divinylbenzene(Carbowax/DVB) 등이 있으며, 이 중 CAR/PDMS로 구성된 SPME fiber를 사용하는 것이 가장 바람직하다.SPME fibers for pretreatment sample extraction include Carboxen-polydimethylsiloxane (CAR/PDMS), polyacrylate (PA), polydimethylsiloxane (PDMS), and Carbowax/divinylbenzene (Carbowax/DVB). Among them, SPME fiber composed of CAR/PDMS is used. It is most desirable to do it.

상기 SPME fiber는 Supelco(Bellefonte, PA, USA)사의 CAR/PDMS, PDMS, PA 및 carbowax/DVB가 있으며, 본 발명에서는 CAR/PDMS로 구성된 75 ㎛ SPME fiber를 사용하는 것이 바람직하다.The SPME fiber includes CAR/PDMS, PDMS, PA and carbowax/DVB from Supelco (Bellefonte, PA, USA), and in the present invention, it is preferable to use a 75 μm SPME fiber composed of CAR/PDMS.

상기 추출분석단계(ST-400)에서는 유도체화 단계(ST-300)에서 생성된 2-메톡시테트라하이드로피란을 SPME를 이용하여 추출한 후 이를 바로 GC/MS로 분석한다.In the extraction analysis step (ST-400), 2-methoxytetrahydropyran produced in the derivatization step (ST-300) is extracted using SPME, and then immediately analyzed by GC/MS.

GC/MS에 의한 분석은 Agilent Technologies(Foster City, CA, USA)사의 7890B GC 및 5977B MSD 시스템을 이용하였으며, DB-5MS UI capillary column(30m length×0.23㎜ i.d., 0.25 ㎛ film thickness, J&W Scientific, Folsom, CA, USA)을 이용하여 99.999% He 캐리어 가스(carrier gas)로 1.0 ㎖/min로 일정한 흐름으로 이루어졌다.Analysis by GC/MS was performed using a 7890B GC and 5977B MSD system from Agilent Technologies (Foster City, CA, USA), and DB-5MS UI capillary column (30m length×0.23㎜ id, 0.25 μm film thickness, J&W Scientific, Folsom, CA, USA) using 99.999% He carrier gas (carrier gas) was made with a constant flow of 1.0 ml / min.

인젝터(injector) 온도는 260℃, 인터페이스(interface) 온도는 280℃, 오븐(oven) 온도는 40℃에서 3분 유지 후에 250℃까지 10℃/min으로 승온하여 3분 유지하였다. 용매 지연 시간은 유도체화 시약인 DHP의 영향을 배제하기 위해 4.2분을 설정하였고, 스플릿(split)비율 10:1에서 질량 스펙트럼은 70 eV의 EI 모드로 분석하였다.The injector temperature was 260°C, the interface temperature was 280°C, and the oven temperature was maintained at 40°C for 3 minutes, and then the temperature was raised to 250°C at 10°C/min and maintained for 3 minutes. The solvent delay time was set to 4.2 minutes to exclude the influence of the derivatization reagent DHP, and the mass spectrum was analyzed in an EI mode of 70 eV at a split ratio of 10:1.

상기 분석을 통해 도 4에 도시된 분석 결과와 같이 머무름 시간 5.9분에서 유도체화된 메탄올인 2-메톡시테트라하이드로피란을 확인할 수 있었고, 7.3분에서 유도체화된 내부표준물질인 2-D5-에톡시테트라하이드로피란을 확인할 수 있었다.Through the above analysis, it was possible to confirm 2-methoxytetrahydropyran, which is methanol derivatized at a retention time of 5.9 minutes, as shown in the analysis result shown in FIG. 4, and to 2-D5-, which is an internal standard derivatized at 7.3 minutes. Toxytetrahydropyran could be confirmed.

또한, 도 5와 도 6을 통하여 각 성분에 대한 질량스펙트럼을 확인할 수 있다. 도 5와 도 6에서 베이스 이온(base ion)의 분자량은 m/z 85로 도 7(A)의 분자구조와 같고, 메탄올에 의한 2-메톡시테트라하이드로피란 이온의 분자량은 m/z 115로 도 7(B)의 분자구조와 같으며, 내부표준물질에 의한 2-D5-에톡시테트라하이드로피란 이온의 분자량은 m/z 134로 도 7(C)의 분자구조와 같다.In addition, the mass spectrum for each component can be confirmed through FIGS. 5 and 6. In FIGS. 5 and 6, the molecular weight of the base ion is m/z 85, which is the same as the molecular structure of FIG. 7(A), and the molecular weight of the 2-methoxytetrahydropyran ion by methanol is m/z 115. It is the same as the molecular structure of Fig. 7(B), and the molecular weight of the 2-D5-ethoxytetrahydropyran ion by the internal standard is m/z 134, which is the same as the molecular structure of Fig. 7(C).

상기 생체시료인 혈액에 대해 시료 혼합단계(ST-200)에서 메탄올(methanol)을 0∼0.20% 농도 범위에서 표준 첨가하여 유도체화 시킨 GC/MS 분석 결과는 도 8과 같았으며, 메탄올의 m/z 115인 이온 면적에 대하여 내부표준물질의 m/z 134인 이온의 면적 비를 적용하여 도 9와 같은 검정 곡선을 도출하였다. 상기 검정 곡선의 직선성에 대해서는 r2 값이 0.9999로 매우 우수하였으며, 검출 한계(detection limit)는 0.56 ㎍/㎖이었고, 정량 한계(quantification limit)는 1.7 ㎍/㎖이었다. 검출 한계 및 정량 한계에 대해서는 10개의 블랭크(blank) 시료의 S/N 비가 3 및 10을 초과하는 농도로 계산하였다.GC/MS analysis results obtained by derivatizing the blood as a biological sample by standard addition of methanol in a concentration range of 0 to 0.20% in the sample mixing step (ST-200) are shown in FIG. A calibration curve as shown in FIG. 9 was derived by applying an area ratio of ions of m/z 134 of the internal standard to the ion area of z 115. For the linearity of the calibration curve, the r 2 value was very good at 0.9999, the detection limit was 0.56 µg/ml, and the quantification limit was 1.7 µg/ml. For the limit of detection and limit of quantification, the S/N ratio of 10 blank samples was calculated as a concentration exceeding 3 and 10.

본 발명에 따르는 생체시료 내 메탄올 검출 방법에서는 포르메이트(formate) 분석 단계(ST-500)가 더 포함될 수 있다.In the method for detecting methanol in a biological sample according to the present invention, a formate analysis step (ST-500) may be further included.

상기 포르메이트(formate)는 메탄올 음독 시 발생하는 대사체이다. 상기 포르메이트는 IC(Ion Chromatography)를 이용하여 분석한다.The formate (formate) is a metabolite generated when drinking methanol. The formate is analyzed using IC (Ion Chromatography).

도 10(A)에 도시된 바와 같이, 생체시료인 혈액을 탈염수로 50배 희석하여 분석하였으며, 그 결과 머무름 시간 3.7분에서 포르메이트가 검출되었고, 이를 확인하기 위하여 25 ㎍/㎖의 포르메이트를 탈염수로 희석된 시료에 1:1로 첨가함으로써 도 10(B)와 같이 도 10(A)에서 머무름 시간 3.7분에 확인된 피크가 포르메이트 임을 확인할 수 있었다.As shown in FIG. 10(A), blood, which is a biological sample, was diluted 50 times with demineralized water and analyzed. As a result, formate was detected at a retention time of 3.7 minutes, and 25 µg/ml of formate was used to confirm this. By adding 1:1 to the sample diluted with demineralized water, it was confirmed that the peak identified at the retention time of 3.7 minutes in FIG. 10(A) as shown in FIG. 10(B) was formate.

포르메이트 정량을 위하여 포르메이트를 탈염수에 희석하여 포르메이트 농도가 5∼50 ㎍/㎖가 되도록 한 다음 분석하여(도10(C)참조) 면적으로 도 11과 같은 검정 곡선을 도출하였으며, r2=0.9997의 우수한 직선성을 나타내었다.For the quantification of formate, formate was diluted in demineralized water so that the formate concentration was 5-50 µg/ml, and then analyzed (see Fig. 10(C)) to derive a calibration curve as shown in Fig. 11 as an area, and r 2 It showed excellent linearity of =0.9997.

상기 포르메이트 분석 단계(ST-500)에서 IC 분석을 위한 음이온 용리제(anion eluent)는 Thermo Fisher Scientific(Sunnyvale, CA, USA)가 사용되었으며, 혈액에 포함된 포르메이트 정량을 위해 사용된 표준 포르메이트는 AccuStandard(New Haven, CT, USA)사의 100 ppm standard stock solution을 탈염수로 희석하여 사용하였다.Thermo Fisher Scientific (Sunnyvale, CA, USA) was used as an anion eluent for IC analysis in the formate analysis step (ST-500), and a standard format used for quantification of formate contained in blood Mate was used by diluting 100 ppm standard stock solution of AccuStandard (New Haven, CT, USA) with demineralized water.

포르메이트의 IC 분석은 Dionex((part of Thermo Scientific) Sunnyvale, CA, USA)의 ICS 5000시스템을 사용하여 5 ㎕ 주입하여 분석하였다. 칼럼 오염방지를 위해 Thermo Scientific(Sunnyvale, CA, USA)의 IonPac AG-11 4 ㎜ guard 칼럼을 이용하였으며, IonPac AS-11 4 ㎜ 칼럼으로 분리하였다. 용리제(Eluent)는 Thermo Scientific의 4.5 mM/1.5 mM 농도의 carbonate/bicarbonate 용리제를 1 ㎖/min isocratic flow rate로 Thermo Scientific의 ASRS 4 ㎜ 서프레서(suppressor)에 전류 26 ㎃를 인가하여 전기전도도 검출기(conductivity detector)로 분석하였다.IC analysis of formate was analyzed by injecting 5 µl using the ICS 5000 system of Dionex ((part of Thermo Scientific) Sunnyvale, CA, USA). To prevent column contamination, an IonPac AG-11 4 mm guard column of Thermo Scientific (Sunnyvale, CA, USA) was used, and the IonPac AS-11 4 mm column was separated. Eluent is an electric conductivity by applying a current of 26 ㎃ to a Thermo Scientific ASRS 4 mm suppressor at a 1 ml/min isocratic flow rate of 4.5 mM/1.5 mM carbonate/bicarbonate eluent of Thermo Scientific. It was analyzed by a detector (conductivity detector).

본 발명에 따르는 생체시료 내 메탄올 검출 방법은 생체시료에 포함된 메탄올을 유도체화 시킨 다음 GC/MS로 분석함으로써 혈액 내 메탄올의 포함 여부를 빠르고 간편하게 확인 가능하며, 메탄올 음용자가 나타날 경우 이를 통해 신속하게 메탄올 음용 여부를 확인하여 메탄올에 의한 사망원인을 규명할 수 있을 뿐만 아니라 메탄올 음용자의 빠른 응급 처치가 가능하게 된다.In the method for detecting methanol in a biological sample according to the present invention, the methanol contained in the biological sample is derivatized and then analyzed by GC/MS to quickly and easily determine whether the blood contains methanol. By checking whether to drink methanol, the cause of death from methanol can be identified, as well as quick emergency treatment for methanol drinkers.

Claims (11)

생체시료에 포함된 메탄올을 확인하는 메탄올 검출 방법에 있어서,
대상체로부터 생체시료를 채취하는 단계(ST-100;생체시료 추출단계)와;
생체시료와, 내부표준물질 수용액과, NaCl 포화수용액과, 메탄올 표준용액이 혼합되어 제1 시료혼합물이 형성되는 단계(ST-200;시료 혼합단계)와;
상기 생체시료 내 메탄올(methanol)과 내부표준물질을 유도체화 시키는 단계(ST-300;유도체화 단계)와;
상기 유도체화된 메탄올과 유도체화된 내부표준물질을 추출하여 분석하는 단계(ST-400;추출분석단계)로 이루어지는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.
In the methanol detection method for identifying methanol contained in a biological sample,
Collecting a biological sample from the subject (ST-100; extracting a biological sample);
A step in which a first sample mixture is formed by mixing a biological sample, an internal standard aqueous solution, a saturated NaCl aqueous solution, and a methanol standard solution (ST-200; sample mixing step);
Derivatizing methanol and an internal standard in the biological sample (ST-300; derivatization step);
A method for detecting methanol in a biological sample comprising the step of extracting and analyzing the derivatized methanol and the derivatized internal standard material (ST-400; extraction analysis step).
제 1항에 있어서, 상기 생체시료는 혈액이고, 내부표준물질 수용액은 0.1% 중수소로 치환된 에탄올 수용액이며;
상기 시료 혼합단계(ST-200)에서 혈액:내부표준물질 수용액:NaCl수용액:메탄올 표준용액의 혼합 비율은 1:1:2:1인 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.
The method of claim 1, wherein the biological sample is blood, and the aqueous solution of the internal standard substance is an aqueous ethanol solution substituted with 0.1% deuterium;
In the sample mixing step (ST-200), the mixing ratio of blood: an aqueous solution of an internal standard substance: an aqueous NaCl solution: a standard solution of methanol is 1:1:2:1.
제 1항 또는 제 2항에 있어서, 상기 유도체화 단계(ST-300)에서는 pyran계 화합물과 산 촉매를 첨가하여 메탄올과 내부표준물질을 유도체화 시키는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 1 or 2, wherein in the derivatization step (ST-300), methanol and an internal standard are derivatized by adding a pyran-based compound and an acid catalyst. 제 3항에 있어서, 상기 유도체화 단계(ST-300)에서는 제1 시료혼합물에 pyran계 화합물 첨가 후 산촉매가 첨가되며;
상기 pyran계 화합물은 생체시료 부피의 0.1v/v%∼100v/v% 혼합되는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.
The method of claim 3, wherein in the derivatization step (ST-300), an acid catalyst is added after the pyran-based compound is added to the first sample mixture;
The method for detecting methanol in a biological sample, wherein the pyran-based compound is mixed with 0.1v/v% to 100v/v% of the volume of the biological sample.
제 4항에 있어서, 상기 pyran계 화합물은 DHP(3,4-Dihydro-2H-pyran)인 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 4, wherein the pyran-based compound is DHP (3,4-Dihydro-2H-pyran). 제 3항에 있어서, 상기 산 촉매는 진한 염산, 황산, 질산 중 하나인 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 3, wherein the acid catalyst is one of concentrated hydrochloric acid, sulfuric acid, and nitric acid. 제 6항에 있어서, 상기 산 촉매인 진한 염산은 생체시료 부피의 0.1v/v%∼50v/v% 혼합되는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 6, wherein the acid catalyst, concentrated hydrochloric acid, is mixed with 0.1v/v% to 50v/v% of the volume of the biological sample. 제 1항 또는 제 2항에 있어서, 상기 추출분석단계(ST-400)에서는 용매 추출법(solvent extraction) 또는 고상 미세 추출법(SPME)으로 추출되는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method for detecting methanol in a biological sample according to claim 1 or 2, wherein in the extraction analysis step (ST-400), the extraction is performed by a solvent extraction method or a solid phase fine extraction method (SPME). 제 8항에 있어서, 상기 고상 미세 추출법(SPME)은 Carboxen/PDMS, polyacrylate(PA), PDMS, carbowax/DVB 중 하나로 이루어지는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 8, wherein the solid state micro-extraction method (SPME) comprises one of Carboxen/PDMS, polyacrylate (PA), PDMS, and carbowax/DVB. 제 9항에 있어서, 상기 추출분석단계(ST-400)에서는 Carboxen/PDMS 추출법으로 이루어지는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 9, wherein the extraction analysis step (ST-400) comprises a Carboxen/PDMS extraction method. 제 1항에 있어서, 포르메이트(formate) 분석단계(ST-500)를 더 포함하는 것을 특징으로 하는 생체시료 내 메탄올 검출 방법.The method of claim 1, further comprising a formate analysis step (ST-500).
KR1020190156797A 2019-11-29 2019-11-29 A method for detecting methanol in a biospecimen KR102228072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190156797A KR102228072B1 (en) 2019-11-29 2019-11-29 A method for detecting methanol in a biospecimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190156797A KR102228072B1 (en) 2019-11-29 2019-11-29 A method for detecting methanol in a biospecimen

Publications (1)

Publication Number Publication Date
KR102228072B1 true KR102228072B1 (en) 2021-03-15

Family

ID=75134331

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190156797A KR102228072B1 (en) 2019-11-29 2019-11-29 A method for detecting methanol in a biospecimen

Country Status (1)

Country Link
KR (1) KR102228072B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102647396B1 (en) * 2023-05-03 2024-03-13 경찰대학 산학협력단 Method for determining document creation time

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131560A (en) 2008-06-18 2009-12-29 아주대학교산학협력단 Method for preparing dimethylether from methanol
KR20150109995A (en) 2014-03-21 2015-10-02 주식회사 인터내셔널 사이언티픽 스탠다드 A method for detecting porphyrin in a biospecimen using LC-MS/MS
US20150299760A1 (en) * 2012-11-21 2015-10-22 Oslo Universitetssykehus Hf Systems and methods for monitoring biological fluids
WO2017077392A1 (en) * 2015-11-06 2017-05-11 Oslo Universitetssykehus Hf Methods and devices for detecting methanol poisoning using formate oxidase
KR20180047229A (en) * 2016-10-31 2018-05-10 한국과학기술연구원 A method for determination of ethylene oxide in foodstuff using derivatization
KR102040820B1 (en) 2016-11-28 2019-11-06 주식회사 엘지화학 Removing unit of methanol and acetone and manufacturing system of phenol and bisphenol a comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131560A (en) 2008-06-18 2009-12-29 아주대학교산학협력단 Method for preparing dimethylether from methanol
US20150299760A1 (en) * 2012-11-21 2015-10-22 Oslo Universitetssykehus Hf Systems and methods for monitoring biological fluids
KR20150109995A (en) 2014-03-21 2015-10-02 주식회사 인터내셔널 사이언티픽 스탠다드 A method for detecting porphyrin in a biospecimen using LC-MS/MS
WO2017077392A1 (en) * 2015-11-06 2017-05-11 Oslo Universitetssykehus Hf Methods and devices for detecting methanol poisoning using formate oxidase
KR20180047229A (en) * 2016-10-31 2018-05-10 한국과학기술연구원 A method for determination of ethylene oxide in foodstuff using derivatization
KR102040820B1 (en) 2016-11-28 2019-11-06 주식회사 엘지화학 Removing unit of methanol and acetone and manufacturing system of phenol and bisphenol a comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
제34회 한국법과학회, 'ICT 융합환경에서 법과학 증거의 연계성(CDC)과 인증', 2018. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102647396B1 (en) * 2023-05-03 2024-03-13 경찰대학 산학협력단 Method for determining document creation time

Similar Documents

Publication Publication Date Title
Beck et al. Amphetamines detected in exhaled breath from drug addicts: a new possible method for drugs-of-abuse testing
Plassmann et al. Detecting a wide range of environmental contaminants in human blood samples—combining QuEChERS with LC-MS and GC-MS methods
Vela-Soria et al. A new treatment by dispersive liquid–liquid microextraction for the determination of parabens in human serum samples
Wang et al. Determination of 17 illicit drugs in oral fluid using isotope dilution ultra-high performance liquid chromatography/tandem mass spectrometry with three atmospheric pressure ionizations
Frıas et al. Analyses of lindane, vinclozolin, aldrin, p, p′-DDE, o, p′-DDT and p, p′-DDT in human serum using gas chromatography with electron capture detection and tandem mass spectrometry
Van Hoof et al. Multi‐residue liquid chromatography/tandem mass spectrometric analysis of beta‐agonists in urine using molecular imprinted polymers
Yoshioka et al. A simple method for the simultaneous determination of mushroom toxins by liquid chromatography–time-of-flight mass spectrometry
Gunnar et al. Fast gas chromatography–negative‐ion chemical ionization mass spectrometry with microscale volume sample preparation for the determination of benzodiazepines and α‐hydroxy metabolites, zaleplon and zopiclone in whole blood
Alves et al. Determination of cocaine and metabolites in hair by column-switching LC-MS-MS analysis
Lokhnauth et al. Solid phase micro‐extraction coupled with ion mobility spectrometry for the analysis of ephedrine in urine
Wurita et al. Sensitive determination of ethylene glycol, propylene glycol and diethylene glycol in human whole blood by isotope dilution gas chromatography–mass spectrometry, and the presence of appreciable amounts of the glycols in blood of healthy subjects
Sterz et al. Enrichment and properties of urinary pre-S-phenylmercapturic acid (pre-SPMA)
Fernández et al. A rapid analytical method based on microwave-assisted extraction for the determination of drugs of abuse in vitreous humor
Wu et al. Simultaneous determination of six alkaloids in blood and urine using a hydrophilic interaction liquid chromatography method coupled with electrospray ionization tandem mass spectrometry
Shaner et al. Quantitation of fentanyl analogs in dried blood spots by flow-through desorption coupled to online solid phase extraction tandem mass spectrometry
Tomková et al. Analysis of selected designer benzodiazepines by ultra high performance liquid chromatography with high‐resolution time‐of‐flight mass spectrometry and the estimation of their partition coefficients by micellar electrokinetic chromatography
Liu et al. Rapid determination of cyanide in human plasma and urine by gas chromatography–mass spectrometry with two-step derivatization
Chia et al. Simultaneous derivatization and extraction of amphetamine-like drugs in urine with headspace solid-phase microextraction followed by gas chromatography–mass spectrometry
Yilmaz et al. Simple high‐performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2, 4‐dinitrophenylhydrazine
KR102228072B1 (en) A method for detecting methanol in a biospecimen
Nishio et al. Quantification of 2-aminothiazoline-4-carboxylic acid as a reliable marker of cyanide exposure using chemical derivatization followed by liquid chromatography–tandem mass spectrometry
Frenich et al. Quantitative determination of endocrine‐disrupting polychlorinated biphenyls and organochlorinated pesticides in human serum using gas chromatography with electron‐capture detection and tandem mass spectrometry
Freire et al. Microwave assisted extraction for the determination of ethyl glucuronide in urine by gas chromatography‐mass spectrometry
Kage et al. Determination of fluoride in human whole blood and urine by gas chromatography-mass spectrometry
Woźniakiewicz et al. Development of the MAE/UHPLC-MS-TOF method for determination of benzodiazepines in human bio-fluids for toxicological analysis

Legal Events

Date Code Title Description
GRNT Written decision to grant