KR102224821B1 - Mutant Strain with Limonene Production Ability - Google Patents

Mutant Strain with Limonene Production Ability Download PDF

Info

Publication number
KR102224821B1
KR102224821B1 KR1020180134522A KR20180134522A KR102224821B1 KR 102224821 B1 KR102224821 B1 KR 102224821B1 KR 1020180134522 A KR1020180134522 A KR 1020180134522A KR 20180134522 A KR20180134522 A KR 20180134522A KR 102224821 B1 KR102224821 B1 KR 102224821B1
Authority
KR
South Korea
Prior art keywords
nucleotide sequence
seq
saccharomyces
gene encoded
limonene
Prior art date
Application number
KR1020180134522A
Other languages
Korean (ko)
Other versions
KR20200051311A (en
Inventor
이진원
양정모
조숙형
나정걸
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020180134522A priority Critical patent/KR102224821B1/en
Publication of KR20200051311A publication Critical patent/KR20200051311A/en
Application granted granted Critical
Publication of KR102224821B1 publication Critical patent/KR102224821B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/002Preparation of hydrocarbons or halogenated hydrocarbons cyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01034Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01088Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03009Malate synthase (2.3.3.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01036Mevalonate kinase (2.7.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • C12Y401/03001Isocitrate lyase (4.1.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 리모넨 생산능을 증가시키는 유전자를 포함하는 재조합 벡터, 상기 재조합 벡터로 형질전환된 사카로미세스(Saccharomyces) 속 변이 균주 및 상기 변이 균주를 이용한 리모넨 제조 방법에 관한 것으로, 상기 변이 균주는 야생형 균주와 비교하여 현저히 증가된 리모넨 생산능을 나타낸다. The present invention relates to a recombinant vector comprising a gene that increases limonene production ability, a mutant strain in Saccharomyces genus transformed with the recombinant vector, and a method for producing limonene using the mutant strain, wherein the mutant strain is a wild type Compared with the strain, it shows a remarkably increased limonene production ability.

Description

리모넨 생산능을 갖는 변이 균주{Mutant Strain with Limonene Production Ability}Mutant Strain with Limonene Production Ability {Mutant Strain with Limonene Production Ability}

본 발명은 리모넨 생산능을 갖는 변이 균주에 관한 것이다.The present invention relates to a mutant strain having limonene-producing ability.

삭제delete

리모넨(Limonene)은 C10 터페노이드(terpenoid)에 속하는 물질로써 향료성분으로 넓은 분야에 사용되는 상업적 가치가 높은 물질이다. 또한 리모넨은 최근에 화학공업에 사용되는 해로운 유기용매를 대체할 수 있는 생독성이 비교적 적은 대체 유기용매로의 가치에 주목받고 있으며, 이를 위해 안정적인 대량 생산 방법 연구의 필요성이 대두되고 있다. 기존의 리모넨 은 오렌지와 같은 Citrus 계열 식물의 껍질에서 추출하여 사용하였으나, 공급량이 많지 않고 안정적이지 못하다는 한계점을 가지고 있다. 하지만, 미생물을 이용한 리모넨 생산 연구를 진행하여 상업화 할 경우, 대체 유기용매뿐 아니라 다양한 사용처에 필요한 수요에 대한 안정적인 공급이 가능할 것이다. Limonene is a substance belonging to C10 terpenoid and is a substance with high commercial value used in a wide field as a fragrance component. In addition, limonene has recently attracted attention for its value as an alternative organic solvent with relatively low biotoxicity that can replace harmful organic solvents used in the chemical industry, and for this purpose, the need for a stable mass production method research is emerging. Existing limonene was extracted from the bark of Citrus-based plants such as oranges, but it has a limitation in that the supply is not large and is not stable. However, if the research on the production of limonene using microorganisms is carried out and commercialized, it will be possible to provide a stable supply for the demand required not only for an alternative organic solvent but also for various uses.

일반적으로 미생물을 통한 리모넨 생산연구는 탄수화물(글루코오스, 갈락토오스 등)을 탄소원으로 진행되어 왔으나, 생합성 경로 자체가 매우 길고 진핵생물인 식물의 유전자를 발현시켜야 한다는 점에서 생산효율이 높이 나오지 않는 문제가 있다. In general, studies on the production of limonene through microorganisms have been conducted using carbohydrates (glucose, galactose, etc.) as a carbon source, but there is a problem that production efficiency does not come out high in that the biosynthetic pathway itself is very long and the genes of eukaryote plants must be expressed .

Saccharomyces cerevisiae 균주 내에서 아세트산과 에탄올은 주요 대사 중간체인 Acetyl-CoA로 직접 전환되어 세포 내 에너지 생성 및 세포 구성성분 동화작용을 위한 TCA Cycle - Glyoxylate Shunt 혹은 지방산 생합성 경로로 유입되거나 세포막 구성성분인 에르고스테롤(Ergosterol)을 합성하기 위한 메발로네이트(Mevalonate) 경로로 유입된다. 생산물인 리모넨은 메발로네이트 경로를 거쳐 생성된 DMAPP(Dimethylallyl-Pyrophosphate)와 IPP(Isopentenyl-Pyrophosphate)가 중합되어 생성된 GPP(Geranyl-Pyrophosphate)로부터 NPP(Neryl-Pyrophosphate)를 거쳐 합성된다. In Saccharomyces cerevisiae strain, acetic acid and ethanol are directly converted to Acetyl-CoA, a major metabolic intermediate, to generate intracellular energy and assimilate cellular components. (Ergosterol) is introduced into the mevalonate route for synthesis. The product limonene is synthesized through NPP (Neryl-Pyrophosphate) from GPP (Geranyl-Pyrophosphate) produced by polymerization of DMAPP (Dimethylallyl-Pyrophosphate) and IPP (Isopentenyl-Pyrophosphate) produced through the mevalonate route.

삭제delete

본 발명자들은 증가된 리모넨 생산능을 갖는 변이 균주를 제조하고자 노력하였고, 그 결과, 리모넨 합성 경로에 관여하는 다양한 효소의 유전자 재조합을 통해 제조한 변이 균주에서 증가된 리모넨 생산능을 확인함으로써 본 발명을 완성하였다.The present inventors have tried to produce a mutant strain having an increased limonene-producing ability, and as a result, the present invention by confirming the increased limonene-producing ability in a mutant strain prepared through genetic recombination of various enzymes involved in the limonene synthesis pathway. Completed.

따라서, 본 발명의 목적은 리모넨 합성 경로에 관여하는 유전자를 포함하는 재조합 벡터를 제공하는 것이다. Accordingly, an object of the present invention is to provide a recombinant vector comprising a gene involved in the limonene synthesis pathway.

본 발명의 다른 목적은 상기 재조합 벡터로 형질전환된 리모넨 생산능 변이 균주를 제공하는 것이다.Another object of the present invention is to provide a limonene-producing mutant strain transformed with the recombinant vector.

본 발명의 또 다른 목적은 본 발명의 변이 균주를 이용한 리모넨 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing limonene using the mutant strain of the present invention.

삭제delete

본 발명의 일 양태에 따르면, 본 발명은 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 및According to one aspect of the present invention, the present invention is a mutant limonene synthase (truncated limonene synthase) gene encoded by the nucleotide sequence of the sequence listing first sequence; And

서열목록 제2서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Geranyl-PP 합성 효소(truncated Geranyl-PP synthase) 유전자, 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자, 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoA acetyltransferase, ERG10) 유전자, 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자, 서열목록 제6서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소/NADH 의존성 HMG-CoA 환원 효소(Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase) 유전자, 서열목록 제7서열의 뉴클레오타이드 서열에 의해 인코딩되는 메발로네이트 키나아제(Mevalonate kinase, ERG12) 유전자, 서열목록 제8서열의 뉴클레오타이드 서열에 의해 인코딩되는 IPP 델타 이소머라아제(Isopentenyl-diphosphate delta isomerase, IDI1) 유전자, 서열목록 제9서열의 뉴클레오타이드 서열에 의해 인코딩되는 아이소시트레이트 리아제(Isocitrate Lyase, ICL1) 유전자 및 서열목록 제10서열의 뉴클레오타이드 서열에 의해 인코딩되는 말산염 합성 효소(Malate Synthase, MLS1) 유전자로 이루어진 군으로부터 선택되는 1종 이상의 유전자를 포함하는 재조합 벡터에 관한 것이다. A mutant Geranyl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 2, and a mutant Neryl-PP synthase encoded by the nucleotide sequence of SEQ ID NO: 3 synthase) gene, acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4, mutations encoded by the nucleotide sequence of SEQ ID NO: 5 NADPH-dependent HMG-CoA Acetyl-CoA Acetyltransferase/NADH-dependent HMG-CoA Reductase (Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA) encoded by the truncated NADPH-dependent HMG-CoA Reductase gene, the nucleotide sequence of SEQ ID NO: 6 Reductase) gene, mevalonate kinase (ERG12) gene encoded by the nucleotide sequence of SEQ ID NO: 7, IPP delta isomerase (Isopentenyl-diphosphate delta) encoded by the nucleotide sequence of SEQ ID NO: 8 isomerase, IDI1) gene, Isocitrate Lyase (ICL1) gene encoded by the nucleotide sequence of SEQ ID NO: 9 and Malate Synthase, which is encoded by the nucleotide sequence of SEQ ID NO: 10. It relates to a recombinant vector comprising at least one gene selected from the group consisting of MLS1) genes.

본 발명자들은 증가된 리모넨 생산능을 갖는 변이 균주를 제조하고자 노력하였고, 그 결과, 리모넨 합성 경로에 관여하는 다양한 효소의 유전자 재조합을 통해 제조한 변이 균주에서 증가된 리모넨 생산능을 확인하였다.The present inventors tried to produce a mutant strain having an increased limonene-producing ability, and as a result, it was confirmed that the limonene-producing ability was increased in the mutant strain prepared through genetic recombination of various enzymes involved in the limonene synthesis pathway.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 및 서열목록 제2서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Geranyl-PP 합성 효소(truncated Geranyl-PP synthase) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; And it may be a recombinant vector comprising a mutated Geranyl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 2.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; It may be a recombinant vector containing a mutated Neryl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 3.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자; 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoA acetyltransferase, ERG10) 유전자; 및 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; A mutant Neryl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 3; Acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4; And it may be a recombinant vector comprising a mutant NADPH dependent HMG-CoA reductase (truncated NADPH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO:5.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자; 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoA acetyltransferase, ERG10) 유전자; 및 서열목록 제6서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소/NADH 의존성 HMG-CoA 환원 효소(Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; A mutant Neryl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 3; Acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4; And an acetyl-CoA acetyltransferase/NADH dependent HMG-CoA reductase (Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO:6.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자; 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoA acetyltransferase, ERG10) 유전자; 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자; 및 서열목록 제7서열의 뉴클레오타이드 서열에 의해 인코딩되는 메발로네이트 키나아제(Mevalonate kinase, ERG12) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; A mutant Neryl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 3; Acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4; A mutant NADPH-dependent HMG-CoA reductase (truncated NADPH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO: 5; And a mevalonate kinase (ERG12) gene encoded by the nucleotide sequence of SEQ ID NO:7.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자; 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoA acetyltransferase, ERG10) 유전자; 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자; 서열목록 제7서열의 뉴클레오타이드 서열에 의해 인코딩되는 메발로네이트 키나아제(Mevalonate kinase, ERG12) 유전자; 및 서열목록 제8서열의 뉴클레오타이드 서열에 의해 인코딩되는 IPP 델타 이소머라아제(Isopentenyl-diphosphate delta isomerase, IDI1) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; A mutant Neryl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 3; Acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4; A mutant NADPH-dependent HMG-CoA reductase (truncated NADPH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO: 5; Mevalonate kinase (ERG12) gene encoded by the nucleotide sequence of SEQ ID NO: 7; And an IPP delta isomerase (Isopentenyl-diphosphate delta isomerase, IDI1) gene encoded by the nucleotide sequence of SEQ ID NO: 8.

본 발명의 일 구현예에 따르면, 상기 재조합 벡터는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자; 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoA acetyltransferase, ERG10) 유전자; 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자; 서열목록 제7서열의 뉴클레오타이드 서열에 의해 인코딩되는 메발로네이트 키나아제(Mevalonate kinase, ERG12) 유전자; 서열목록 제8서열의 뉴클레오타이드 서열에 의해 인코딩되는 IPP 델타 이소머라아제(Isopentenyl-diphosphate delta isomerase, IDI1) 유전자; 서열목록 제9서열의 뉴클레오타이드 서열에 의해 인코딩되는 아이소시트레이트 리아제(Isocitrate Lyase, ICL1) 유전자 및 서열목록 제10서열의 뉴클레오타이드 서열에 의해 인코딩되는 말산염 합성 효소(Malate Synthase, MLS1) 유전자를 포함하는 재조합 벡터일 수 있다. According to one embodiment of the present invention, the recombinant vector comprises a mutated limonene synthase gene encoded by the nucleotide sequence of the first sequence of sequence listing; A mutant Neryl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 3; Acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4; A mutant NADPH-dependent HMG-CoA reductase (truncated NADPH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO: 5; Mevalonate kinase (ERG12) gene encoded by the nucleotide sequence of SEQ ID NO: 7; IPP delta isomerase (Isopentenyl-diphosphate delta isomerase, IDI1) gene encoded by the nucleotide sequence of SEQ ID NO: 8; Including the Isocitrate Lyase (ICL1) gene encoded by the nucleotide sequence of SEQ ID NO: 9 and the malate synthase (MLS1) gene encoded by the nucleotide sequence of SEQ ID NO: 10 It can be a recombinant vector.

상기 용어 "벡터(vector)"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단을 의미한다. 예를 들어, 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노연관 바이러스 벡터와 같은 바이러스 벡터를 포함한다.The term "vector" means a means for expressing a gene of interest in a host cell. For example, plasmid vectors, cosmid vectors and bacteriophage vectors, adenovirus vectors, retroviral vectors, and viral vectors such as adeno-associated virus vectors.

상기 재조합 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 상기 발현용 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 단백질을 발현하는 데 사용되는 통상의 것을 사용할 수 있다.The recombinant vector can typically be constructed as a vector for cloning or as a vector for expression. The expression vector may be a conventional one used in the art to express foreign proteins in plants, animals, or microorganisms.

또한, 상기 재조합 벡터는 당업계에 공지된 다양한 방법을 통해 구축될 수 있다.In addition, the recombinant vector can be constructed through various methods known in the art.

삭제delete

본 발명의 다른 일 양태에 따르면, 본 발명은 상기 재조합 벡터로 형질전환된 리모넨(limonene) 생산능을 갖는 변이 균주에 관한 것이다. According to another aspect of the present invention, the present invention relates to a mutant strain having the ability to produce limonene transformed with the recombinant vector.

본 발명의 일 구현예에 따르면, 목적 단백질이 삽입된 발현벡터를 숙주세포에 삽입함으로써 리모넨 생산능이 향상된 형질전환체를 만들 수 있으며, 상기 형질전환체는 상기 재조합 벡터를 적절한 숙주 세포에 도입시킴으로써 얻어진 것일 수 있다. 상기 숙주세포는 상기 발현벡터를 안정되면서 연속적으로 클로닝 또는 발현시킬 수 있는 세포로서 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있고, 예를 들어, 사카로미세스(Saccharomyces) 속 균주일 수 있다.According to an embodiment of the present invention, a transformant with improved limonene production capability can be made by inserting an expression vector into which the target protein is inserted into a host cell, and the transformant is obtained by introducing the recombinant vector into an appropriate host cell. Can be. The host cell is a cell capable of stably and continuously cloning or expressing the expression vector, and any host cell known in the art may be used, for example, it may be a strain of the genus Saccharomyces.

본 발명의 일 구현예에 따르면, 상기 사카로미세스(Saccharomyces) 속 균주는 사카로미세스 세레비지에(Saccharomyces cerevisiae), 사카로미세스 유바룸(Saccharomyces uqvarum), 사카로미세스 엘립소이데우스(Saccharomyces ellipsoideus), 사카로미세스 카를스베르겐시스(Saccharomyces carlsbergensis), 사카로미세스 사케(Saccharomyces sake), 사카로미세스 코레아누스(Saccharomyces coreanus), 사카로미세스 리폴리티카(Saccharomyces lipolytica) 사카로미세스 보울라디(Saccharomyces boulardii) 또는 사카로미세스 파스토리아누스(Saccharomyces pastorianus) 일 수 있고, 예를 들어, 사카로미세스 세레비지에(Saccharomyces cerevisiae) 일 수 있다. According to an embodiment of the present invention, the strain of the genus Saccharomyces is Saccharomyces cerevisiae , Saccharomyces uqvarum , Saccharomyces ellipsoideus . , Saccharomyces carlsbergensis , Saccharomyces sake , Saccharomyces coreanus , Saccharomyces lipolytica Saccharomyces bouladii ) Or Saccharomyces pastorianus , for example, Saccharomyces cerevisiae .

상기 재조합 벡터의 숙주 세포 내로의 운반(도입)은, 당업계에 널리 알려진 운반 방법을 사용할 수 있다. 상기 운반 방법은 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 또는 전기 천공 방법 등을 사용할 수 있고, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀매개 형질감염법 및 유전자 밤바드먼트 등을 사용할 수 있으나, 이에 한정하지는 않는다.Transport (introduction) of the recombinant vector into a host cell may use a transport method well known in the art. For example, when the host cell is a prokaryotic cell, a CaCl 2 method or an electroporation method may be used, and when the host cell is a eukaryotic cell, a microinjection method, a calcium phosphate precipitation method, an electroporation method, Liposome-mediated transfection method and gene bombardment may be used, but are not limited thereto.

상기 형질 전환된 숙주 세포를 선별하는 방법은 선택 표지에 의해 발현되는 표현형을 이용하여, 당업계에 널리 알려진 방법에 따라 용이하게 실시할 수 있다. 예를 들어, 상기 선택 표지가 특정 항생제 내성 유전자인 경우에는, 상기 항생제가 함유된 배지에서 형질전환체를 배양함으로써 형질전환체를 용이하게 선별할 수 있다.The method of selecting the transformed host cell can be easily carried out according to a method well known in the art using a phenotype expressed by a selection label. For example, when the selection marker is a specific antibiotic resistance gene, the transformant can be easily selected by culturing the transformant in a medium containing the antibiotic.

본 발명의 일 구현예에 따르면, 상기 변이 균주는 상기 재조합 벡터로 형질전환되지 않은 대조군과 비교하여 리모넨 생산량이 현저히 증가되는 효과를 나타낸다.According to an embodiment of the present invention, the mutant strain exhibits an effect of remarkably increasing the amount of limonene production compared to a control group not transformed with the recombinant vector.

본 명세서에서 용어 "리모넨(limonene)"은 아이소프렌 단위가 두 개 반복된 테르펜 중 하나로, 오렌지향의 성분이며, 화학식은 C10H16 이다. 소나무와 감귤류(특히 오렌지 및 레몬의 껍질)에 풍부하게 들어있는 식물성 정유로 명칭도 레몬에서 유래한 것이다. 그 특유의 향기로 인해 향료의 원료나 방향제로 사용된다. 광학적 이성질체로 d- 및 l-리모넨이 존재한다. d-리모넨은 오렌지 등의 감귤류에 많으며 l-리모넨은 소나무과 식물에 많이 함유되어 있다. 리모넨은 항균제, 항바이러스제, 항진균제, 항유충제, 곤충 유인제, 방취제, 착취제 등의 다양한 특성을 가지며 맛을 생성하는 효과도 있다. In the present specification, the term "limonene" is one of terpenes in which two isoprene units are repeated, and is an orange-flavored component, and the chemical formula is C 10 H 16 . It is a vegetable essential oil that is abundant in pine and citrus fruits (especially the peel of oranges and lemons), and the name comes from lemon. Due to its unique scent, it is used as a raw material for perfume or as a fragrance. As optical isomers, d- and l-limonene exist. d-limonene is found in citrus fruits such as oranges, and l-limonene is found in pine trees. Limonene has various properties such as antibacterial, antiviral, antifungal, anti-larva, insect attractant, deodorant, and deodorant, and has the effect of generating taste.

본 발명의 일 구현예에 따르면, 상기 변이 균주는 1개 이상의 재조합 벡터에 의해 형질전환되는 것일 수 있다. According to an embodiment of the present invention, the mutant strain may be transformed by one or more recombinant vectors.

삭제delete

본 발명의 다른 일 양태에 따르면, 본 발명은 상기 변이 균주를 배양하는 단계를 포함하는 리모넨 제조 방법에 관한 것이다. According to another aspect of the present invention, the present invention relates to a method for producing limonene comprising culturing the mutant strain.

본 발명의 일 구현예에 따르면, 상기 변이 균주를 전배양 또는 종배양 하는데 있어서 공지된 다양한 배양 방법을 통해 배양할 수 있다.According to an embodiment of the present invention, the mutant strain may be cultured through various known culture methods in pre-culture or seed culture.

본 발명에 천연배지 또는 합성배지를 사용할 수 있으며, 배지의 탄소원으로는 예를 들어, 아세트산, 에탄올, 글루코오스, 수크로오스, 덱스트린, 글리세롤, 녹말 등이 사용될 수 있고, 질소원으로는 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 대두 케이크, 우레아, 티오우레아, 암모늄염, 나이트레이트 및 기타 유기 또는 무기 질소-함유 화합물이 사용될 수 있으나, 이러한 성분에 한정되는 것은 아니다.Natural or synthetic medium can be used in the present invention, and the carbon source of the medium may be, for example, acetic acid, ethanol, glucose, sucrose, dextrin, glycerol, starch, etc., and as a nitrogen source, peptone, meat extract, yeast Extracts, dried yeast, soybean cake, urea, thiourea, ammonium salts, nitrates and other organic or inorganic nitrogen-containing compounds may be used, but are not limited to these ingredients.

본 발명의 일 구현예에 따르면, 상기 변이 균주를 배양한 배양액으로부터 리모넨을 수득할 수 있다. According to an embodiment of the present invention, limonene may be obtained from a culture solution obtained by culturing the mutant strain.

삭제delete

도 1은 아세트산과 에탄올이 Saccharomyces cerevisiae 생체 내에서 리모넨을 포함하여 다양한 생화학 물질로 전환되는 대사회로를 나타낸 그림이다.
도 2는 DMAPP, IPP로부터 리모넨과 에르고스테롤을 생산하는 생산 회로를 나타낸 그림이다.
도 3은 Acetyl-CoA로부터 DMAPP, IPP까지의 메발로네이트 경로를 나타낸 그림이다.
도 4는 글리옥실레이트 Shunt에 대한 모식도이다.
도 5는 본 발명의 일 실시예에 따른 변이 균주에 대한 플라스크 배양 결과를 나타낸다. 검정색 막대는 600 nm에서의 흡광도를 나타내고, 흰색 막대는 아세트산 및 에탄올의 총 소비량을 나타내며, 회색 막대는 도데칸 층에서의 리모넨 농도를 나타낸다.
도 6a는 본 발명의 일 실시예에 따른 SCAL06 변이 균주에 대한 회분 배양 결과를 나타낸다.
도 6b는 본 발명의 일 실시예에 따른 SCAL11 변이 균주에 대한 회분 배양 결과를 나타낸다. 검정색 다이아몬드는 에탄올 농도(mM)를 나타내고, 검정색 삼각형은 아세트산 농도(mM)를 나타내며, 회색 사각형은 600 nm에서의 흡광도를 나타내고, 회색 원은 도데칸 층에서의 리모넨 농도를 나타낸다.
1 is a diagram showing a metabolic circuit in which acetic acid and ethanol are converted into various biochemical substances including limonene in Saccharomyces cerevisiae.
Figure 2 is a diagram showing a production circuit for producing limonene and ergosterol from DMAPP and IPP.
3 is a diagram showing the mevalonate pathway from Acetyl-CoA to DMAPP and IPP.
4 is a schematic diagram of glyoxylate shunt.
5 shows the flask culture results for the mutant strain according to an embodiment of the present invention. Black bars represent absorbance at 600 nm, white bars represent total consumption of acetic acid and ethanol, and gray bars represent limonene concentration in the dodecane layer.
Figure 6a shows the batch culture results for the SCAL06 mutant strain according to an embodiment of the present invention.
Figure 6b shows the batch culture results for the SCAL11 mutant strain according to an embodiment of the present invention. The black diamond represents the ethanol concentration (mM), the black triangle represents the acetic acid concentration (mM), the gray square represents the absorbance at 600 nm, and the gray circle represents the limonene concentration in the dodecane layer.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예 1: 리모넨 합성 경로와 관련된 유전자에 대한 벡터 제작Example 1: Vector construction for a gene related to the limonene synthesis pathway

사카로미세스 세레비시아 생체 내에서 Acetyl-CoA로부터 합성된 C5 단량체 DMAPP와 IPP는 Geranyl-PP (Geranyl Pyrophosphate) - Farnesyl-PP(Farnesyl Pyrophosphate)를 거쳐 세포 중요 성분인 에르고스테롤(Ergosterol)을 합성하게 된다. 리모넨 합성의 전구체인 Geranyl-PP에서 Farneyl-PP가 합성되는 단계는 DMAPP와 IPP를 Geranyl-PP로 합성하는 Geranyl-PP 합성 효소가 같이 관여하며, 활성이 매우 높기 때문에 리모넨 합성 효소 유전자의 발현만으로 리모넨의 생산이 어렵다고 알려져 있다. 따라서 시그널 펩타이드가 제거된 Codon-Optimized Truncated (S)-리모넨 합성 효소(trLS from Mentha spicata)와 더불어 Farnesyl-PP 합성 효소 활성이 적다고 알려진 시그널 펩타이드가 제거된 Codon-Optimized Geranyl-PP 합성 효소(trGPPS2 from Abies grandis) 혹은 Geranyl-PP와 이성질체 관계이며 Farnesyl-PP로의 추가 반응의 기질이 될 수 없는 Neryl Pyrophosphate (Neryl-PP)를 합성하는 시그널 펩타이드가 제거된 Codon-Optimized Neryl-PP 합성 효소(trNDPS1 from Solanum lycopersicum)를 Acetate-Ethanol Inducible ICL1 프로모터, ADH1 - CYC1 터미네이터와 조합하여 Yeast Episomal Plasmid pESC-TRP 벡터에 Gibson Assembly 기법 (NEB)을 이용하여 삽입 (pASC-TRP1, 2 벡터) 및 발현시켜 리모넨 생산이 가능하도록 하였다.Saccharomyces cerevisiae In vivo, the C5 monomers DMAPP and IPP synthesized from Acetyl-CoA are synthesized through Geranyl-PP (Geranyl Pyrophosphate)-Farnesyl-PP (Farnesyl Pyrophosphate) to synthesize Ergosterol, an important cell component do. In the step of synthesizing Farneyl-PP from Geranyl-PP, a precursor of limonene synthesis, both DMAPP and Geranyl-PP synthase synthesizing IPP into Geranyl-PP are involved. Is known to be difficult to produce. Therefore, Codon-Optimized Geranyl-PP synthase (trGPPS2) from which the signal peptide known to have low Farnesyl-PP synthase activity, along with Codon-Optimized Truncated (S)-limonene synthase (trLS from Mentha spicata) from which the signal peptide was removed, was removed. from Abies grandis ) or Geranyl-PP and the signal peptide synthesizing Neryl Pyrophosphate (Neryl-PP), which has an isomer relationship with Geranyl-PP and cannot be a substrate for further reaction to Farnesyl-PP, has been removed from Codon-Optimized Neryl-PP synthase (trNDPS1 from Solanum lycopersicum ) was inserted into Yeast Episomal Plasmid pESC-TRP vector by combining Acetate-Ethanol Inducible ICL1 promoter, ADH1-CYC1 terminator using Gibson Assembly technique (NEB) and expression to produce limonene I made it possible.

프라이머 primer 서열(5'-3')Sequence (5'-3') 서열목록 번호Sequence listing number PICL1(trLS)_F (MluI)PICL1(trLS)_F (MluI) AGTATAATGTTACATGCGTAC ACGCGT TTTTGCTACTCGTCATCCGAT AGTATAATGTTACATGCGTAC ACGCGT TTTTGCTACTCGTCATCCGAT 1111 PICL1(trLS)__RPICL1(trLS)__R GACGTTCCATTTTTCGTTGACTTTTTGTTATGTTATG GACGTTCCAT TTTTCGTTGACTTTTTGTTATGTTATG 1212 trLS_FtrLS_F TCAACGAAAAATGGAACGTCGTTCTGGTAATT TCAACGAAAA ATGGAACGTCGTTCTGGTAATT 1313 trLS_RtrLS_R TAGAGCGGATTTAAGCAAATGGCTCGAACAA TAGAGCGGAT TTAAGCAAATGGCTCGAACAA 1414 TCYC1_FTCYC1_F ATTTGCTTAAATCCGCTCTAACCGAAAAGG ATTTGCTTAA ATCCGCTCTAACCGAAAAGG 1515 TCYC1_RTCYC1_R AGTAGCAAAACTTCGAGCGTCCCAAAAC AGTAGCAAAA CTTCGAGCGTCCCAAAAC 1616 PICL1(trGPPS2, trNDPS1)_FPICL1(trGPPS2, trNDPS1)_F ACGCTCGAAGTTTTGCTACTCGTCATCCGAT ACGCTCGAAG TTTTGCTACTCGTCATCCGAT 1717 PICL1(trGPPS2)_FPICL1(trGPPS2)_F AATTCTACCATTTTTCGTTGACTTTTTGTTATGTTATG AATTCTACCAT TTTTCGTTGACTTTTTGTTATGTTATG 1818 trGPPS2_FtrGPPS2_F GTCAACGAAAAATGGTAGAATTTGATTTTAACAAATATATGG GTCAACGAAAA ATGGTAGAATTTGATTTTAACAAATATATGG 1919 trGPPS2_R (XhoI)trGPPS2_R (XhoI) CGAAGAATTGTTAATTAA GAGCTC TTAATTTTGTCTGAATGCAACATAATC CGAAGAATTGTTAATTAA GAGCTC TTAATTTTGTCTGAATGCAACATAATC 2020 PICL1(trNDPS1)_RPICL1(trNDPS1)_R TGGCGGACATTTTCGTTGACTTTTTGTTATGTTATG TGGCGGACA TTTTCGTTGACTTTTTGTTATGTTATG 2121 trNDPS1_FtrNDPS1_F TCAACGAAAAATGTCCGCCAGAGGATTG TCAACGAAAA ATGTCCGCCAGAGGATTG 2222 trNDPS1_R (XhoI)trNDPS1_R (XhoI) CGAAGAATTGTTAATTAA GAGCTC TTAATATGTGTGTCCACCGAATCT CGAAGAATTGTTAATTAA GAGCTC TTAATATGTGTGTCCACCGAATCT 2323

실시예 2: 메발로네이트 합성 경로와 관련된 유전자에 대한 벡터 제작Example 2: Vector construction for genes related to the mevalonate synthesis pathway

리모넨의 고농도 생산을 위해서는 Acetyl-CoA로부터 DMAPP, IPP 까지의 메발로네이트 경로의 흐름을 강화하는 것이 필요하다. 기존 문헌으로부터 메발로네이트 경로의 Bottle-Neck인 4개의 단계를 확인하였으며 유전자 과발현을 통해 이 Bottle-Neck을 해결함으로써 리모넨 생산량이 어떻게 증가하는지 양상을 확인하였다.For high-concentration production of limonene, it is necessary to enhance the flow of the mevalonate pathway from Acetyl-CoA to DMAPP and IPP. From the existing literature, the four stages of the bottle-neck of the mevalonate pathway were identified, and the pattern of how limonene production increased by solving the bottle-neck through gene overexpression was confirmed.

2-1. 메발로네이트 합성 상위 경로와 관련된 유전자에 대한 벡터 제작2-1. Vector construction for genes related to the upstream pathway of mevalonate synthesis

Acetyl-CoA로부터 메발로네이트까지의 단계를 상위 경로라 칭하며, 상위 경로 중 Bottle-Neck 단계를 먼저 강화하고자 하였다. 두 분자의 Acetyl-CoA가 중합되어 Acetoacetyl-CoA가 되고 메발로네이트 경로로 유입되는 시점인 Acetyl-CoA Acetyltransferase 유전자(ERG10, Homologous Expression)와 3-Hydroxy-3-Methyl-Glutaryl-CoA (HMG-CoA)를 환원시켜 메발로네이트를 합성하는 Truncated NADPH Dependent HMG-CoA Reductase (trHMG1, Homologous Expression) 혹은 Codon-Optimized Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase (mvaE from Enterococcus faecalis) 를 Acetate-Ethanol Inducible PCK1 프로모터, ADH1 - CYC1 터미네이터와 조합하여 Yeast Episomal Plasmid pESC-LEU 벡터에 Gibson Assembly 기법(NEB)을 이용하여 삽입 (pASC-LEU1, 2 벡터) 및 발현시켜 리모넨 생산량 증가를 확인하였다. The stage from Acetyl-CoA to mevalonate is called the upper route, and the bottle-neck stage among the higher routes was to be strengthened first. Acetyl-CoA Acetyltransferase gene (ERG10, Homologous Expression) and 3-Hydroxy-3-Methyl-Glutaryl-CoA (HMG-CoA ) To synthesize mevalonate by reducing Truncated NADPH Dependent HMG-CoA Reductase (trHMG1, Homologous Expression) or Codon-Optimized Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase ( mvaE from Enterococcus faecalis ) Acetate-Ethanible PCK1 In combination with the promoter, ADH1-CYC1 terminator, the Yeast Episomal Plasmid pESC-LEU vector was inserted (pASC-LEU1, 2 vectors) and expressed using Gibson Assembly technique (NEB) to confirm the increase in limonene production.

프라이머 primer 서열(5'-3')Sequence (5'-3') 서열목록 번호Sequence listing number PPCK1(ERG10)_F (MluI)PPCK1(ERG10)_F (MluI) AGTATAATGTTACATGCGTAC ACGCGT GATCTGGATTTCCTAATTTGGATACA AGTATAATGTTACATGCGTAC ACGCGT GATCTGGATTTCCTAATTTGGATACA 2424 PPCK1(ERG10)_RPPCK1(ERG10)_R GTTCTGAGACATGTTGTTATTTTATTATGGAATAATTAGTTGC GTTCTGAGACAT GTTGTTATTTTATTATGGAATAATTAGTTGC 2525 ERG10_FERG10_F TAAAATAACAACATGTCTCAGAACGTTTACATTGTATCG TAAAATAACAAC ATGTCTCAGAACGTTTACATTGTATCG 2626 ERG10_RERG10_R TTAGAGCGGATTCATATCTTTTCAATGACAATAGAGGA TTAGAGCGGAT TCATATCTTTTCAATGACAATAGAGGA 2727 TCYC1_FTCYC1_F AAAAGATATGAATCCGCTCTAACCGAAAAGG AAAAGATATGA ATCCGCTCTAACCGAAAAGG 2828 TCYC1_RTCYC1_R AATCCAGATCCTTCGAGCGTCCCAAAAC AATCCAGATC CTTCGAGCGTCCCAAAAC 2929 PPCK1(trHMG1)_FPPCK1(trHMG1)_F ACGCTCGAAGGATCTGGATTTCCTAATTTGGATACA ACGCTCGAAG GATCTGGATTTCCTAATTTGGATACA 3030 PPCK1(trHMG1)_RPPCK1(trHMG1)_R CTGCTGCCATGTTGTTATTTTATTATGGAATAATTAGTTGC CTGCTGCCAT GTTGTTATTTTATTATGGAATAATTAGTTGC 3131 trHMG1_FtrHMG1_F AAATAACAACATGGCAGCAGACCAATTGGTGAAAACT AAATAACAAC ATGGCAGCAGACCAATTGGTGAAAACT 3232 trHMG1_R (XhoI)trHMG1_R (XhoI) CGAAGAATTGTTAATTAA GAGCTC TTAGGATTTAATGCAGGTGACG CGAAGAATTGTTAATTAA GAGCTC T TAGGATTTAATGCAGGTGACG 3333 PPCK1(mvaE)_RPPCK1(mvaE)_R ACCGTTTTCATGTTGTTATTTTATTATGGAATAATTAGTTGC ACCGTTTTCAT GTTGTTATTTTATTATGGAATAATTAGTTGC 3434 mvaE_FmvaE_F AAAATAACAACATGAAAACGGTTGTTATTATTGATGC AAAATAACAAC ATGAAAACGGTTGTTATTATTGATGC 3535 mvaE_F (XhoI)mvaE_F (XhoI) CGAAGAATTGTTAATTAAGAGCTCTTATTGTTTTCTGAGATCATTCAAGATAG CGAAGAATTGTTAATTAAGAGCTC TTATTGTTTTCTGAGATCATTCAAGATAG 3636

2-2. 메발로네이트 합성 상위 경로와 관련된 유전자에 대한 벡터 제작2-2. Vector construction for genes related to the upstream pathway of mevalonate synthesis

메발로네이트로부터 DMAPP와 IPP까지의 단계를 하위 경로라 칭하며, 하위 경로 중 Bottle-Neck 단계를 강화하여 추가적인 리모넨 생산량 증가를 확인하였다. 메발로네이트가 ATP에 의해 인산화 되어 Phosphomevalonate (Mevalonate-P)가 되는 메발로네이트 키나아제 유전자(ERG12, Homologous Expression)만을 발현하거나, ERG13을 DMAPP와 IPP간의 이성질체화를 통해 DMAPP와 IPP의 비율을 조절하는 IPP Delta-Isomerase (IDI1, Homologous Expression)를 같이 Acetate-Ethanol Inducible FBP1 프로모터, ADH1 - CYC1 터미네이터와 조합하여 Yeast Episomal Plasmid pESC-HIS Vector에 Gibson Assembly 기법 (NEB)을 이용하여 삽입 (pASC-HIS1, 2 벡터) 및 발현시켜 리모넨 생산량 증가를 확인하였다.The step from mevalonate to DMAPP and IPP is called a sub-path, and the bottle-neck step among the sub-paths was reinforced to confirm an additional increase in limonene production. Mevalonate is phosphorylated by ATP to express only mevalonate kinase gene (ERG12, Homologous Expression), which becomes Phosphomevalonate (Mevalonate-P), or ERG13 isomerization between DMAPP and IPP to control the ratio of DMAPP and IPP. IPP Delta-Isomerase (IDI1, Homologous Expression) was combined with Acetate-Ethanol Inducible FBP1 promoter and ADH1-CYC1 terminator and inserted into Yeast Episomal Plasmid pESC-HIS Vector using Gibson Assembly technique (NEB) (pASC-HIS1, 2 Vector) and expression to confirm an increase in limonene production.

프라이머 primer 서열(5'-3')Sequence (5'-3') 서열목록 번호Sequence listing number PFBP1(ERG12, IDI1) _F (MluI)PFBP1(ERG12, IDI1) _F (MluI) AGTATAATGTTACATGCGTAC ACGCGT AACCCATCAAACTGCATGGT AGTATAATGTTACATGCGTAC ACGCGT AACCCATCAAACTGCATGGT 3737 PFBO1(ERG12)_RPFBO1(ERG12)_R GGTAATGACATATGTGTGGTAGTATGAGGGATGTTT GGTAATGACAT ATGTGTGGTAGTATGAGGGATGTTT 3838 ERG12_FERG12_F TACCACACATATGTCATTACCGTTCTTAACTTCTGC TACCACACAT ATGTCATTACCGTTCTTAACTTCTGC 3939 ERG12_R (XhoI)ERG12_R (XhoI) CGAAGAATTGTTAATTAA GAGCTC TTATGAAGTCCATGGTAAATTCGTG CGAAGAATTGTTAATTAA GAGCTC TTATGAAGTCCATGGTAAATTCGTG 4040 PFBP1(IDI1)_RPFBP1(IDI1)_R CGGCAGTCATATGTGTGGTAGTATGAGGGATGTTT CGGCAGTCAT ATGTGTGGTAGTATGAGGGATGTTT 4141 IDI1_FIDI1_F TACCACACATATGACTGCCGACAACAATAGTATG TACCACACAT ATGACTGCCGACAACAATAGTATG 4242 IDI1_RIDI1_R TTAGAGCGGATTTATAGCATTCTATGAATTTGCCTGT TTAGAGCGGAT TTATAGCATTCTATGAATTTGCCTGT 4343 TCYC1_FTCYC1_F AATGCTATAAATCCGCTCTAACCGAAAAGG AATGCTATAA ATCCGCTCTAACCGAAAAGG 4444 TCYC1_RTCYC1_R TTGATGGGTTCTTCGAGCGTCCCAAAAC TTGATGGGTT CTTCGAGCGTCCCAAAAC 4545 PFBP1(ERG12)_FPFBP1(ERG12)_F ACGCTCGAAGAACCCATCAAACTGCATGGT ACGCTCGAAG AACCCATCAAACTGCATGGT 4646

실시예 3: 글리옥실산 회로와 관련된 유전자에 대한 벡터 제작Example 3: Vector construction for genes related to the glyoxylic acid cycle

비 탄수화물 탄소원인 아세트산과 에탄올을 이용하여 균이 생장 및 대사할 때 세포 구성성분 합성을 위한 당신생합성(Gluconeogenesis)를 위해서는 TCA Cycle의 이산화탄소 배출을 막고 탄소를 옥살산(Oxaloacetate)로 축적하기 위한 Glyoxylate Shunt의 활성화 및 유지가 필요하다. 아세트산과 에탄올 활용능력 증대를 위해 Glyoxylate Shunt 구성 유전자 Isocitrate Lyase(ICL1, Homologous Expression), 말산염 합성 효소(MLS1, Homologous Expression)를 Acetate-Ethanol Inducible PGI1 프로모터, ADH1 - CYC1 터미네이터와 조합하여 pESC-URA 벡터에 Gibson Assembly 기법을 이용하여 삽입 (pASC-URA 벡터) 및 발현시켜 리모넨 생산량의 변화를 확인하였다.When bacteria grow and metabolize using acetic acid and ethanol, which are non-carbohydrate carbon sources, Glyoxylate Shunt is used to prevent the emission of carbon dioxide from the TCA cycle and accumulate carbon as oxalic acid for gluconeogenesis for synthesizing cellular components. It needs to be activated and maintained. The pESC-URA vector by combining the Glyoxylate Shunt component gene Isocitrate Lyase (ICL1, Homologous Expression) and malate synthase (MLS1, Homologous Expression) with the Acetate-Ethanol Inducible PGI1 promoter, ADH1-CYC1 terminator to increase the ability to utilize acetic acid and ethanol. In the Gibson Assembly technique, it was inserted (pASC-URA vector) and expressed to confirm the change in the production of limonene.

프라이머 primer 서열(5'-3')Sequence (5'-3') 서열목록 번호Sequence listing number PPGI1(ICL1)_F (MluI)PPGI1(ICL1)_F (MluI) AGTATAATGTTACATGCGTAC ACGCGT TAACAAAAATCACGATCTGGGT AGTATAATGTTACATGCGTAC ACGCGT TAACAAAAATCACGATCTGGGT 4747 PPGI1(ICL1)_RPPGI1(ICL1)_R GGATAGGCATTTTTAGGCTGGTATCTTGATTCTAAAT GGATAGGCAT TTTTAGGCTGGTATCTTGATTCTAAAT 4848 ICL1_FICL1_F CAGCCTAAAAATGCCTATCCCCGTTGG CAGCCTAAAA ATGCCTATCCCCGTTGG 4949 ICL1_RICL1_R GTTAGAGCGGATCTATTTCTTTACGCCATTTTCTTTG GTTAGAGCGGAT CTATTTCTTTACGCCATTTTCTTTG 5050 TCYC1_FTCYC1_F TAAAGAAATAGATCCGCTCTAACCGAAAAGG TAAAGAAATAG ATCCGCTCTAACCGAAAAGG 5151 TCYC1_RTCYC1_R ATTTTTGTTACTTCGAGCGTCCCAAAAC ATTTTTGTTA CTTCGAGCGTCCCAAAAC 5252 PPGI1(MLS1)_FPPGI1(MLS1)_F ACGCTCGAAGTAACAAAAATCACGATCTGGGT ACGCTCGAAG TAACAAAAATCACGATCTGGGT 5353 PPGI1(MLS1)_RPPGI1(MLS1)_R CCTTAACCATTTTTAGGCTGGTATCTTGATTCTAAAT CCTTAACCAT TTTTAGGCTGGTATCTTGATTCTAAAT 5454 MLS1_FMLS1_F CAGCCTAAAAATGGTTAAGGTCAGTTTGGATAACG CAGCCTAAAA ATGGTTAAGGTCAGTTTGGATAACG 5555 MLS1_R (XhoI)MLS1_R (XhoI) CGAAGAATTGTTAATTAA GAGCTC TCACAATTTGCTCAAATCAGTG CGAAGAATTGTTAATTAA GAGCTC TCACAATTTGCTCAAATCAGTG 5656

DesignationDesignation GenotypeGenotype NotesNotes SCAL00SCAL00 pESC-TRP, TRP1, pESC-LEU, LEU2, pESC-HIS, HIS3pESC-TRP, TRP1, pESC-LEU, LEU2, pESC-HIS, HIS3 Positive ControlPositive Control SCAL01SCAL01 pSCAL-TRP1, TRP1, PICL1-trGPPS2-TADH1, PICL1-trLS-TCYC1
pESC-LEU, LEU2, pESC-HIS, HIS3
pSCAL-TRP1, TRP1, P ICL1 -trGPPS2-T ADH1 , P ICL1 -trLS-T CYC1
pESC-LEU, LEU2, pESC-HIS, HIS3
Codon optimized
trLS from
Mentha spicate

Codon optimized
trGPPS2 from
Abies grandis
Codon optimized
trLS from
Mentha spicate

Codon optimized
trGPPS2 from
Abies grandis
SCAL02SCAL02 pSCAL-TRP2, TRP1, PICL1-trNDPS1-TADH1, PICL1-trLS-TCYC1
pESC-LEU, LEU2, pESC-HIS, HIS3
pSCAL-TRP2, TRP1, P ICL1 -trNDPS1-T ADH1 , P ICL1 -trLS-T CYC1
pESC-LEU, LEU2, pESC-HIS, HIS3
Codon optimized
trNDPS1 from
Solanum lycospersicum
Codon optimized
trNDPS1 from
Solanum lycospersicum
SCAL03SCAL03 pSCAL-TRP2, TRP1, PICL1-trNDPS1-TADH1, PICL1-trLS-TCYC1
pSCAL-LEU1, LEU2, PPCK1-ERG10-TADH1, PPCK1-trHMG1-TCYC1
pESC-HIS, HIS3
pSCAL-TRP2, TRP1, P ICL1 -trNDPS1-T ADH1 , P ICL1 -trLS-T CYC1
pSCAL-LEU1, LEU2, P PCK1 -ERG10-T ADH1 , P PCK1 -trHMG1-T CYC1
pESC-HIS, HIS3
SCAL04SCAL04 pSCAL-TRP2, TRP1, PICL1-trNDPS1-TADH1, PICL1-trLS-TCYC1
pSCAL-LEU2, LEU2, PPCK1-ERG10-TADH1, PPCK1-mvaE-TCYC1
pESC-HIS, HIS3
pSCAL-TRP2, TRP1, P ICL1 -trNDPS1-T ADH1 , P ICL1 -trLS-T CYC1
pSCAL-LEU2, LEU2, P PCK1 -ERG10-T ADH1 , P PCK1 - mvaE -T CYC1
pESC-HIS, HIS3
Codon optimized
mvaE from
Enterococcus faecalis
Codon optimized
mvaE from
Enterococcus faecalis
SCAL05SCAL05 pSCAL-TRP2, TRP1, PICL1-trNDPS1-TADH1, PICL1-trLS-TCYC1
pSCAL-LEU1, LEU2, PPCK1-ERG10-TADH1, PPCK1-trHMG1-TCYC1
pSCAL-HIS1, HIS3, PFBP1-ERG12-TADH1
pSCAL-TRP2, TRP1, P ICL1 -trNDPS1-T ADH1 , P ICL1 -trLS-T CYC1
pSCAL-LEU1, LEU2, P PCK1 -ERG10-T ADH1 , P PCK1 -trHMG1-T CYC1
pSCAL-HIS1, HIS3, P FBP1 -ERG12-T ADH1
SCAL06SCAL06 pSCAL-TRP2, TRP1, PICL1-trNDPS1-TADH1, PICL1-trLS-TCYC1
pSCAL-LEU1, LEU2, PPCK1-ERG10-TADH1, PPCK1-trHMG1-TCYC1
pSCAL-HIS2, HIS3, PFBP1-ERG12-TADH1, PFBP1-IDI1-TCYC1
pSCAL-TRP2, TRP1, P ICL1 -trNDPS1-T ADH1 , P ICL1 -trLS-T CYC1
pSCAL-LEU1, LEU2, P PCK1 -ERG10-T ADH1 , P PCK1 -trHMG1-T CYC1
pSCAL-HIS2, HIS3, P FBP1 -ERG12-T ADH1 , P FBP1 -IDI1-T CYC1
SCAL11SCAL11 pSCAL-TRP2, TRP1, PICL1-trNDPS1-TADH1, PICL1-trLS-TCYC1
pSCAL-LEU1, LEU2, PPCK1-ERG10-TADH1, PPCK1-trHMG1-TCYC1
pSCAL-HIS2, HIS3, PFBP1-ERG12-TADH1, PFBP1-IDI1-TCYC1
pSCAL-URA, URA3, PPGI1-ICL1-TADH1, ,PPGI1-MLS1-TCYC1
pSCAL-TRP2, TRP1, P ICL1 -trNDPS1-T ADH1 , P ICL1 -trLS-T CYC1
pSCAL-LEU1, LEU2, P PCK1 -ERG10-T ADH1 , P PCK1 -trHMG1-T CYC1
pSCAL-HIS2, HIS3, P FBP1 -ERG12-T ADH1 , P FBP1 -IDI1-T CYC1
pSCAL-URA, URA3, P PGI1 -ICL1-T ADH1 , ,P PGI1 -MLS1-T CYC1

실시예 4: 변이 균주 제작Example 4: Production of mutant strains

전배양한 배양액을 50 mL YPAD 배지에 OD600이 0.25가 되도록 접종하고, OD600이 1.0이 될 때까지 배양한 다음, 1000Xg로 5분간 원심분리하고 10 mL LTE 버퍼로 재현탁(Resuspension)한 후 다시 1000Xg 로 5분간 원심분리하였다. 0.5 mL LTE 버퍼로 재현탁한 후 50 μL씩 분주하고 1 μg의 형질전환할 벡터 첨가하였다. 300 μL의 Transformation Mix를 첨가하고 30℃에서 30분간 배양 후 42℃에서 15분 배양하였다. 100 μL를 Seletion Agar Plate (SD dropout Agar) 에 도말 후 30℃에서 2일 배양하였다. The pre-cultured culture solution was inoculated in 50 mL YPAD medium so that OD600 became 0.25, incubated until OD600 became 1.0, centrifuged at 1000Xg for 5 minutes, resuspended in 10 mL LTE buffer, and then again 1000Xg. It was centrifuged for 5 minutes. After resuspending in 0.5 mL LTE buffer, 50 μL was dispensed and 1 μg of the vector to be transformed was added. 300 μL of Transformation Mix was added, followed by incubation at 30°C for 30 minutes and then at 42°C for 15 minutes. 100 μL was spread on Seletion Agar Plate (SD dropout Agar) and incubated for 2 days at 30°C.

실시예 5: 재조합 변이 균주의 리모넨 생산 수율 확인Example 5: Confirmation of the yield of limonene production of the recombinant mutant strain

5-1. 배지 조성5-1. Medium composition

SD MediaSD Media SAE MediaSAE Media Phosphate BufferPhosphate Buffer 150mM (pH 5.7)150mM (pH 5.7) Carbon SubstrateCarbon Substrate Dextrose 20 g/LDextrose 20 g/L Acetate Buffer 50mM
Ethanol 150mM
Acetate Buffer 50mM
Ethanol 150mM
Ammonium SulfateAmmonium Sulfate 5 g/L5 g/L Monopotassium PhosphateMonopotassium Phosphate 1 g/L1 g/L Magnesium SulfateMagnesium Sulfate 0.5 g/L0.5 g/L Sodium ChlorideSodium Chloride 0.1 g/L0.1 g/L Calcium ChlorideCalcium Chloride 0.1 g/L0.1 g/L Boric AcidBoric Acid 0.5 mg/L0.5 mg/L Manganese SulfateManganese Sulfate 0.4 mg/L0.4 mg/L Zinc SulfateZinc Sulfate 0.4 mg/L0.4 mg/L Ferric ChlorideFerric Chloride 0.2 mg/L0.2 mg/L Sodium MolybdateSodium Molybdate 0.2 mg/L0.2 mg/L Potassium IodidePotassium Iodide 0.1 mg/L0.1 mg/L Copper SulfateCopper Sulfate 0.04 mg/L0.04 mg/L InositolInositol 2 mg/L2 mg/L NiacinNiacin 0.4 mg/L0.4 mg/L Pyridoxin HClPyridoxin HCl 0.4 mg/L0.4 mg/L Thiamine HClThiamine HCl 0.4 mg/L0.4 mg/L Calcium PantothenateCalcium Pantothenate 0.4 mg/L0.4 mg/L RiboflavinRiboflavin 0.2 mg/L0.2 mg/L p-Aminobenzoic Acidp-Aminobenzoic Acid 0.2 mg/L0.2 mg/L Folic AcidFolic Acid 2 μg/L2 μg/L BiotinBiotin 2 μg/L2 μg/L Adenine SulfateAdenine Sulfate 200 mg/L200 mg/L UracilUracil 100 mg/L (Exceptional in -URA)100 mg/L (Exceptional in -URA) L-Lysine HClL-Lysine HCl 150 mg/L150 mg/L L-TryptophanL-Tryptophan 200 mg/L (Exceptional in -TRP)200 mg/L (Exceptional in -TRP) L-LeucineL-Leucine 300 mg/L (Exceptional in -LEU)300 mg/L (Exceptional in -LEU) L-HistidineL-Histidine 100 mg/L (Exceptional in -HIS)100 mg/L (Exceptional in -HIS) L-Arginine HClL-Arginine HCl 20 mg/L20 mg/L L-AspartateL-Aspartate 100 mg/L100 mg/L L-GlutamateL-Glutamate 100 mg/L100 mg/L L-MethionineL-Methionine 20 mg/L20 mg/L L-PhenylalanineL-Phenylalanine 50 mg/L50 mg/L L-SerineL-Serine 375 mg/L375 mg/L L-ThreonineL-Threonine 200 mg/L200 mg/L L-TyrosineL-Tyrosine 30 mg/L30 mg/L L-ValineL-Valine 150 mg/L150 mg/L

5-2. 배양 및 분석 조건5-2. Culture and analysis conditions

배지 & 배양Media & Culture 배양 조건Culture conditions 분석analysis SAE-TRP-LEU-HIS(-URA) 배지
(합성 아세테이트-알코올 배지)
150 mM pH 5.7 인산완충액
50 mM 아세트산 나트륨
150 mM 에탄올
O.D. = 0.6 접종
From SD-TRP-LEU-HIS(-URA) 배양
(합성 덱스트로스 배지)
배양 4시간째 도데칸 층(10% v/v)
SAE-TRP-LEU-HIS(-URA) medium
(Synthetic Acetate-Alcohol Medium)
150 mM pH 5.7 phosphate buffer
50 mM sodium acetate
150 mM ethanol
OD = 0.6 inoculation
From SD-TRP-LEU-HIS(-URA) culture
(Synthetic dextrose medium)
Dodecane layer at 4 hours of incubation (10% v/v)
배플 플라스크
교반: 250 rpm
워킹 볼륨: 50 mL
온도: 30℃
72시간 배양
Baffle flask
Agitation: 250 rpm
Working volume: 50 mL
Temperature: 30℃
72 hours incubation
수상(Aqueous Phase)
기기: HPLC (Younglin)
컬럼: Hi Plex-H Column
온도: 80℃
이동상: 0.1N H2SO4
유기상(Organic Phase)
기기: GC-MS (Agilent)
컬럼: HP5-MS Column
온도: 50℃ →? 90℃? →? 96℃?
이동상: 헬륨
Aqueous Phase
Instrument: HPLC (Younglin)
Column: Hi Plex-H Column
Temperature: 80℃
Mobile phase: 0.1NH 2 SO 4
Organic Phase
Instrument: GC-MS (Agilent)
Column: HP5-MS Column
Temperature: 50℃ →? 90℃? →? 96℃?
Mobile phase: helium
회분 배양
교반: 300 rpm
통기: 1.5 vvm
워킹 볼륨: 1L
온도: 30℃
72시간 배양
Batch culture
Agitation: 300 rpm
Aeration: 1.5 vvm
Working volume: 1L
Temperature: 30℃
72 hours incubation

72시간 동안 플라스크에서 배양한 결과, 리모넨 생산량은 SCAL01<SCAL02 (trNDPS), SCAL04<SCAL03 (trHMG1), SCAL05 < SCAL06 (ERG12, IDI)의 결과를 보였다. Glyoxylate Shunt Expression(SCAL11)의 결과 생산속도는 감소하였지만 수율의 증가를 보였다(도 5 및 표 8). As a result of incubation in the flask for 72 hours, the production of limonene was SCAL01<SCAL02 (trNDPS), SCAL04<SCAL03 (trHMG1), and SCAL05 <SCAL06 (ERG12, IDI). As a result of Glyoxylate Shunt Expression (SCAL11), the production rate decreased, but the yield increased (FIG. 5 and Table 8).

Cell Growth (A600)Cell Growth (A600) C2 Consumption (mM)C2 Consumption (mM) Limonene Production (mg/L)Limonene Production (mg/L) SCAL00SCAL00 14.89614.896 0.824720.82472 15.6724215.67242 00 00 00 SCAL01SCAL01 12.4612.46 0.606220.60622 15.4417315.44173 0.399570.39957 1.80321.8032 0.177240.17724 SCAL02SCAL02 12.84512.845 0.484520.48452 15.6724215.67242 00 2.05562.0556 0.190240.19024 SCAL03SCAL03 12.05412.054 0.657740.65774 15.5964815.59648 0.131540.13154 7.81887.8188 0.983040.98304 SCAL04SCAL04 14.16814.168 0.578290.57829 15.6724215.67242 00 2.65082.6508 0.376040.37604 SCAL05SCAL05 7.9737.973 0.725740.72574 15.0503915.05039 0.825880.82588 6.80486.8048 0.059580.05958 SCAL06SCAL06 11.36811.368 0.377030.37703 15.5602615.56026 0.194270.19427 9.21569.2156 2.773382.77338 SCAL11SCAL11 4.997674.99767 0.552670.55267 8.822818.82281 0.145030.14503 7.052147.05214 1.450271.45027

72시간 동안 회분 배양한 결과, SCAL06의 생장 속도가 더 빨랐지만(도 6a 및 표 9), SCAL11에서 리모넨 생산량이 약 12.6 mg/L Dodecane의 농도로 나타나 가장 높은 생산량을 기록하였다(도 6b 및 표 10).As a result of batch culture for 72 hours, the growth rate of SCAL06 was faster (FIG. 6A and Table 9), but the limonene production in SCAL11 appeared at a concentration of about 12.6 mg/L Dodecane, recording the highest production amount (FIG. 6B and Table 9). 10).

Time (h)Time (h) Cell Growth (A600)Cell Growth (A600) Acetate (mM)Acetate (mM) Ethanol (mM)Ethanol (mM) Limonene (mg/L)Limonene (mg/L) 00 0.6450.645 47.5826547.58265 142.1597142.1597 00 44 1.4941.494 47.9427147.94271 134.7505134.7505 00 88 1.561.56 47.5528847.55288 116.7933116.7933 0.605490.60549 1111 1.6741.674 46.789246.7892 108.2449108.2449 0.837130.83713 2222 2.2082.208 42.7948642.79486 75.2644375.26443 1.886871.88687 3434 3.333.33 31.9162831.91628 48.6529948.65299 3.706323.70632 4848 5.8635.863 11.0676511.06765 19.3625419.36254 7.11037.1103 5858 7.4367.436 00 00 9.404299.40429 7272 7.3267.326 00 00 10.3335310.33353

Time (h)Time (h) Cell Growth (A600)Cell Growth (A600) Acetate (mM)Acetate (mM) Ethanol (mM)Ethanol (mM) Limonene (mg/L)Limonene (mg/L) 00 0.6270.627 48.0040248.00402 142.4696142.4696 00 44 1.2241.224 48.8807448.88074 135.1548135.1548 00 88 1.351.35 48.8053348.80533 121.0565121.0565 0.841010.84101 1111 1.4521.452 48.59348.593 111.9966111.9966 1.391031.39103 2222 1.7581.758 47.1672747.16727 77.1959477.19594 2.225972.22597 3434 2.5382.538 41.4030241.40302 45.1005245.10052 4.94244.9424 4848 3.8063.806 29.8434629.84346 24.4312624.43126 8.462498.46249 5858 4.724.72 21.2413821.24138 14.465114.4651 10.2048710.20487 7272 6.0616.061 00 00 12.6423512.64235

<110> SOGANG UNIVERSITY RESEARCH FOUNDATION <120> Mutant Strain with Limonene Production Ability <130> PN180368 <160> 56 <170> KoPatentIn 3.0 <210> 1 <211> 1635 <212> DNA <213> Artificial Sequence <220> <223> trLS, Codon-Optimized Truncated (S)-Limonene Synthase <400> 1 atggaacgtc gttctggtaa ttataatcca tctagatggg atgttaattt tatacaatct 60 ttgttgtcgg attataaaga ggataagcac gttattagag cttctgaatt ggttactttg 120 gttaaaatgg aattggaaaa agaaactgat caaattagac aattggaatt gatagacgat 180 ttgcagagaa tgggtttgtc cgatcatttc caaaatgaat tcaaagaaat cttgagctct 240 atttatttgg atcatcacta ttataaaaac ccattcccaa aagaagaaag ggacttgtac 300 tctacatctc tggctttcag attgctgcga gagcatggtt ttcaagtggc tcaagaagtt 360 tttgattctt ttaagaatga ggaaggcgaa tttaaggaat ccttgtctga tgataccaga 420 ggtttgttgc agttgtacga ggcttctttt ttgttgaccg agggtgagac aactttggaa 480 tctgcgagag aattcgctac caagtttttg gaagagaagg tcaacgaagg tggggttgat 540 ggggacttgt tgacgcgtat tgcttacagt ttggatattc ctctacattg gaggattaaa 600 cgaccaaacg ctccagtctg gattgaatgg tacagaaaaa gacccgatat gaatccagtt 660 gttttggaat tggcaattct cgatttgaat attgtacaag ctcagttcca ggaagaactt 720 aaagagtctt ttaggtggtg gaggaataca ggattcgtag aaaaattgcc gttcgcaaga 780 gatagactcg ttgaatgtta cttttggaat actggtatta tcgaaccgcg tcaacacgct 840 tctgcccgca tcatgatggg taaagttaat gctcttataa cggttattga tgacatctat 900 gatgtttacg gaactttgga agaattggag cagtttacgg acttgatcag gaggtgggat 960 atcaattcta tagatcagtt gcctgactat atgcagttgt gttttttggc ccttaataat 1020 tttgtcgatg atacttctta tgacgttatg aaggagaagg gtgtgaatgt tattccttat 1080 ttgagacaat cttgggttga cttggctgat aaatacatgg ttgaagctag atggttttat 1140 ggtggacata agccaagctt ggaagagtac ttggagaact cttggcaatc tatttctggc 1200 ccttgcatgt taacacacat attcttccgt gttacagact cattcactaa agaaaccgtt 1260 gatagtttgt ataagtatca cgatttggtt cgctggagct cttttgttct gagattggct 1320 gacgatttgg gtacttctgt ggaggaggtg tcccggggtg acgttcccaa gtctttgcaa 1380 tgttacatgt ctgactataa cgcttcggaa gcggaagcta ggaaacatgt taaatggttg 1440 atcgctgaag tttggaaaaa aatgaacgct gaaagagttt ctaaggattc cccttttggc 1500 aaggatttta ttgggtgcgc tgtggacctt ggtagaatgg ctcaattgat gtaccataac 1560 ggtgacggcc atggtactca acatccaatt atacatcaac aaatgactag aactttgttc 1620 gagccatttg cttaa 1635 <210> 2 <211> 897 <212> DNA <213> Artificial Sequence <220> <223> trGPPS2, Codon-Optimized Geranyl-PP Synthase <400> 2 atggtagaat ttgattttaa caaatatatg gactctaagg caatgactgt gaacgaagct 60 ttaaataaag ccattccttt aagataccca caaaaaatat atgagtcgat gagatattct 120 ttattagcgg gtggtaaaag agtccgtcca gtactttgca tcgcagcatg cgaacttgtc 180 ggtggtaccg aagaattagc tattccaaca gcatgcgcca ttgaaatgat ccatactatg 240 agtttaatgc atgatgatct accctgtatc gataacgacg atttaaggag gggcaagccg 300 acaaatcata aaatatttgg cgaggatacg gcagtcacag ctggtaatgc tttacatagc 360 tatgcttttg aacacattgc tgtgtccact tcaaagacag tgggtgcaga tagaatatta 420 aggatggtga gtgaattggg tcgagctacc ggctcagaag gtgttatggg aggacaaatg 480 gttgatattg cttccgaagg cgatccatca atcgatttgc aaactttaga gtggattcac 540 attcataaga ccgcaatgtt actagaatgt agtgttgtat gtggagctat aatagggggt 600 gcttctgaaa ttgtaattga aagagctaga agatacgcaa gatgtgtcgg tttattattt 660 caggttgttg atgacatctt agatgttacg aaaagctctg acgaactagg taaaactgcg 720 ggaaaggatt taatttcaga caaagcaaca taccctaagt tgatgggttt agaaaaagct 780 aaagaattct ccgacgaact tctaaatcgt gctaagggtg aattgtcttg tttcgatcca 840 gttaaagctg ctcctttatt gggacttgct gattatgttg cattcagaca aaattaa 897 <210> 3 <211> 783 <212> DNA <213> Artificial Sequence <220> <223> trNDPS1, Codon-Optimized Neryl-PP Synthase <400> 3 atgtccgcca gaggattgaa caaaattagt tgttctttga atctgcaaac ggaaaagttg 60 tgttatgagg ataatgacaa cgatttggat gaggaattga tgcctaagca tattgcattg 120 attatggatg gcaatagacg ttgggctaaa gataaaggct tggaagttta tgaaggacat 180 aaacatatta ttccaaagct aaaagagatc tgtgatattt cttctaagtt ggggattcaa 240 atcattacag cttttgcatt ttcaaccgag aactggaaga ggtccaagga agaagtcgac 300 tttttgctac agatgtttga agaaatatac gatgaatttt ctagatcggg tgtgagagta 360 agtattatcg gttgtaaaag cgatttgccc atgacgctcc aaaagtgcat cgctctaact 420 gaagaaacta ctaaaggaaa taagggtttg cacttggtaa ttgcgcttaa ctacggtggc 480 tactatgaca tattgcaggc cacaaagtca atagttaata aggccatgaa cggtcttctt 540 gacgtcgaag acataaataa aaacttgttc gatcaagaat tggagagcaa atgcccaaat 600 cctgacctgt tgatcagaac cgggggtgag caaagggttt caaacttcct gctttggcaa 660 ctagcatata ccgaattcta cttcactaac acattgtttc cagatttcgg tgaggaagat 720 ttgaaagaag ctataatgaa ctttcaacag agacatagaa gattcggtgg acacacatat 780 taa 783 <210> 4 <211> 1197 <212> DNA <213> Artificial Sequence <220> <223> ERG10, Acetyl-CoA Acetyltransferase <400> 4 atgtctcaga acgtttacat tgtatcgact gccagaaccc caattggttc attccagggt 60 tctctatcct ccaagacagc agtggaattg ggtgctgttg ctttaaaagg cgccttggct 120 aaggttccag aattggatgc atccaaggat tttgacgaaa ttatttttgg taacgttctt 180 tctgccaatt tgggccaagc tccggccaga caagttgctt tggctgccgg tttgagtaat 240 catatcgttg caagcacagt taacaaggtc tgtgcatccg ctatgaaggc aatcattttg 300 ggtgctcaat ccatcaaatg tggtaatgct gatgttgtcg tagctggtgg ttgtgaatct 360 atgactaacg caccatacta catgccagca gcccgtgcgg gtgccaaatt tggccaaact 420 gttcttgttg atggtgtcga aagagatggg ttgaacgatg cgtacgatgg tctagccatg 480 ggtgtacacg cagaaaagtg tgcccgtgat tgggatatta ctagagaaca acaagacaat 540 tttgccatcg aatcctacca aaaatctcaa aaatctcaaa aggaaggtaa attcgacaat 600 gaaattgtac ctgttaccat taagggattt agaggtaagc ctgatactca agtcacgaag 660 gacgaggaac ctgctagatt acacgttgaa aaattgagat ctgcaaggac tgttttccaa 720 aaagaaaacg gtactgttac tgccgctaac gcttctccaa tcaacgatgg tgctgcagcc 780 gtcatcttgg tttccgaaaa agttttgaag gaaaagaatt tgaagccttt ggctattatc 840 aaaggttggg gtgaggccgc tcatcaacca gctgatttta catgggctcc atctcttgca 900 gttccaaagg ctttgaaaca tgctggcatc gaagacatca attctgttga ttactttgaa 960 ttcaatgaag ccttttcggt tgtcggtttg gtgaacacta agattttgaa gctagaccca 1020 tctaaggtta atgtatatgg tggtgctgtt gctctaggtc acccattggg ttgttctggt 1080 gctagagtgg ttgttacact gctatccatc ttacagcaag aaggaggtaa gatcggtgtt 1140 gccgccattt gtaatggtgg tggtggtgct tcctctattg tcattgaaaa gatatga 1197 <210> 5 <211> 1584 <212> DNA <213> Artificial Sequence <220> <223> trHMG1, Truncated HMG-CoA Reductase <400> 5 atggcagcag accaattggt gaaaactgaa gtcaccaaga agtcttttac tgctcctgta 60 caaaaggctt ctacaccagt tttaaccaat aaaacagtca tttctggatc gaaagtcaaa 120 agtttatcat ctgcgcaatc gagctcatca ggaccttcat catctagtga ggaagatgat 180 tcccgcgata ttgaaagctt ggataagaaa atacgtcctt tagaagaatt agaagcatta 240 ttaagtagtg gaaatacaaa acaattgaag aacaaagagg tcgctgcctt ggttattcac 300 ggtaagttac ctttgtacgc tttggagaaa aaattaggtg atactacgag agcggttgcg 360 gtacgtagga aggctctttc aattttggca gaagctcctg tattagcatc tgatcgttta 420 ccatataaaa attatgacta cgaccgcgta tttggcgctt gttgtgaaaa tgttataggt 480 tacatgcctt tgcccgttgg tgttataggc cccttggtta tcgatggtac atcttatcat 540 ataccaatgg caactacaga gggttgtttg gtagcttctg ccatgcgtgg ctgtaaggca 600 atcaatgctg gcggtggtgc aacaactgtt ttaactaagg atggtatgac aagaggccca 660 gtagtccgtt tcccaacttt gaaaagatct ggtgcctgta agatatggtt agactcagaa 720 gagggacaaa acgcaattaa aaaagctttt aactctacat caagatttgc acgtctgcaa 780 catattcaaa cttgtctagc aggagattta ctcttcatga gatttagaac aactactggt 840 gacgcaatgg gtatgaatat gatttctaaa ggtgtcgaat actcattaaa gcaaatggta 900 gaagagtatg gctgggaaga tatggaggtt gtctccgttt ctggtaacta ctgtaccgac 960 aaaaaaccag ctgccatcaa ctggatcgaa ggtcgtggta agagtgtcgt cgcagaagct 1020 actattcctg gtgatgttgt cagaaaagtg ttaaaaagtg atgtttccgc attggttgag 1080 ttgaacattg ctaagaattt ggttggatct gcaatggctg ggtctgttgg tggatttaac 1140 gcacatgcag ctaatttagt gacagctgtt ttcttggcat taggacaaga tcctgcacaa 1200 aatgttgaaa gttccaactg tataacattg atgaaagaag tggacggtga tttgagaatt 1260 tccgtatcca tgccatccat cgaagtaggt accatcggtg gtggtactgt tctagaacca 1320 caaggtgcca tgttggactt attaggtgta agaggcccgc atgctaccgc tcctggtacc 1380 aacgcacgtc aattagcaag aatagttgcc tgtgccgtct tggcaggtga attatcctta 1440 tgtgctgccc tagcagccgg ccatttggtt caaagtcata tgacccacaa caggaaacct 1500 gctgaaccaa caaaacctaa caatttggac gccactgata taaatcgttt gaaagatggg 1560 tccgtcacct gcattaaatc ctaa 1584 <210> 6 <211> 2412 <212> DNA <213> Artificial Sequence <220> <223> Codon Optimized mvaE, Codon-Optimized Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase <400> 6 atgaaaacgg ttgttattat tgatgctttg agaactccaa tagggaaata taagggttct 60 ttgtctcaag tttctgcggt tgatttgggt actcatgtca ctactcagtt gttgaagaga 120 cattctacta tttctgaaga aatcgatcag gttatttttg gtaatgtttt gcaagctggc 180 aatggtcaaa atcctgctag acaaattgct atcaattcag gtttgtctca cgaaattcca 240 gctatgactg ttaatgaagt atgtgggtct ggcatgaagg ctgtgatttt ggctaaacaa 300 ttgattcaat tgggggaagc tgaggttttg attgccggtg gaattgaaaa tatgtctcaa 360 gcgccaaaat tacaaaggtt taactatgaa actgagagtt acgatgctcc attctcttct 420 atgatgtatg atggtttgac tgatgctttt tcgggccaag ctatgggttt gactgctgaa 480 aatgttgctg aaaagtatca tgtaactagg gaagagcaag atcaattttc tgttcattct 540 cagttgaaag ccgctcaagc acaagctgaa ggaatctttg ctgatgaaat tgctcctttg 600 gaagtttctg gtactttggt tgaaaaagat gagggtatta gacctaattc tagcgttgaa 660 aaacttggta ctttgaagac tgtttttaaa gaggatggta ctgttactgc tggtaatgcc 720 agtactatta atgacggtgc ttcagctttg attattgctt ctcaagagta cgctgaagct 780 cacggactcc cttatttggc tattattaga gactctgttg aggtcggtat tgatcctgct 840 tacatgggta tttctccgat taaagctatt cagaaattgc tagctagaaa tcaattgact 900 actgaagaaa ttgatttgta cgaaattaac gaagcttttg ctgctacttc tattgtagtt 960 caaagagaat tggctttgcc ggaggagaaa gtgaatatat atggtggtgg aatttccttg 1020 ggtcacgcta taggtgctac gggtgctaga ttactcactt ctttgtctta tcagttgaac 1080 caaaaagaaa agaagtatgg tgttgcttct ttgtgcattg gtggtgggtt gggtttggct 1140 atgttgttgg aaaggccaca gcaaaaaaaa aactctagat tctaccaaat gtcgccagaa 1200 gaaaggttgg cttctcttct caatgaaggt caaatttctg ctgatactaa gaaagaattt 1260 gaaaatactg ctttgtcttc tcaaatcgct aatcatatga ttgagaatca aatctctgaa 1320 actgaagttc ccatgggtgt tggtttgcat ttgacagttg acgagaccga ttacttggtt 1380 ccaatggcta ctgaagaacc atctgttatt gctgctttgt caaatggtgc taagattgct 1440 caaggtttta aaactgttaa tcagcaaaga ttgatgaggg gtcaaatagt tttctacgat 1500 gttgctgacg ctgaatcttt gattgatgag ttgcaggtcc gtgaaactga gatttttcaa 1560 caagccgaac tttcttatcc aagtatcgtg aaaagaggtg gtgggttgag agatttgcaa 1620 tatcgggctt tcgacgaatc tttcgtttct gttgatttct tggttgatgt aaaagacgct 1680 atgggcgcta atattgttaa cgctatgttg gaaggtgttg ctgaattgtt tcgagaatgg 1740 tttgcggaac agaaaatttt gttcagtatt ttgtctaatt atgctacgga atctgttgtt 1800 actatgaaaa cagcgattcc cgtgtctaga ttgtcaaaag gttctaatgg tcgagaaatt 1860 gccgaaaaaa tcgttttggc ttctagatat gctagcttgg acccataccg cgctgttacc 1920 cataacaaag gtattatgaa tggtattgaa gctgtcgttt tagctactgg taatgacact 1980 agagctgttt ctgcttcttg tcatgctttc gcagttaaag aaggtagata ccaaggtttg 2040 acatcttgga ctttggacgg tgaacaactt attggtgaaa tttctgttcc attggctctt 2100 gcaactgtag gtggtgctac taaagtttta cctaagtctc aggctgctgc tgacttgttg 2160 gccgttacgg atgctaagga gttgtctaga gttgttgctg ctgttggtct ggctcagaat 2220 ttggccgctt tgagagcatt ggtgtctgaa gggattcaga aaggtcacat ggctttgcag 2280 gctagatcgt tagctatgac tgttggggct acaggtaaag aagtcgaagc tgttgctcaa 2340 cagttgaaga gacaaaaaac tatgaatcaa gatagagctt tagctatctt gaatgatctc 2400 agaaaacaat aa 2412 <210> 7 <211> 1332 <212> DNA <213> Artificial Sequence <220> <223> ERG12, Mevalonate Kinase <400> 7 atgtcattac cgttcttaac ttctgcaccg ggaaaggtta ttatttttgg tgaacactct 60 gctgtgtaca acaagcctgc cgtcgctgct agtgtgtctg cgttgagaac ctacctgcta 120 ataagcgagt catctgcacc agatactatt gaattggact tcccggacat tagctttaat 180 cataagtggt ccatcaatga tttcaatgcc atcaccgagg atcaagtaaa ctcccaaaaa 240 ttggccaagg ctcaacaagc caccgatggc ttgtctcagg aactcgttag tcttttggat 300 ccgttgttag ctcaactatc cgaatccttc cactaccatg cagcgttttg tttcctgtat 360 atgtttgttt gcctatgccc ccatgccaag aatattaagt tttctttaaa gtctacttta 420 cccatcggtg ctgggttggg ctcaagcgcc tctatttctg tatcactggc cttagctatg 480 gcctacttgg gggggttaat aggatctaat gacttggaaa agctgtcaga aaacgataag 540 catatagtga atcaatgggc cttcataggt gaaaagtgta ttcacggtac cccttcagga 600 atagataacg ctgtggccac ttatggtaat gccctgctat ttgaaaaaga ctcacataat 660 ggaacaataa acacaaacaa ttttaagttc ttagatgatt tcccagccat tccaatgatc 720 ctaacctata ctagaattcc aaggtctaca aaagatcttg ttgctcgcgt tcgtgtgttg 780 gtcaccgaga aatttcctga agttatgaag ccaattctag atgccatggg tgaatgtgcc 840 ctacaaggct tagagatcat gactaagtta agtaaatgta aaggcaccga tgacgaggct 900 gtagaaacta ataatgaact gtatgaacaa ctattggaat tgataagaat aaatcatgga 960 ctgcttgtct caatcggtgt ttctcatcct ggattagaac ttattaaaaa tctgagcgat 1020 gatttgagaa ttggctccac aaaacttacc ggtgctggtg gcggcggttg ctctttgact 1080 ttgttacgaa gagacattac tcaagagcaa attgacagct tcaaaaagaa attgcaagat 1140 gattttagtt acgagacatt tgaaacagac ttgggtggga ctggctgctg tttgttaagc 1200 gcaaaaaatt tgaataaaga tcttaaaatc aaatccctag tattccaatt atttgaaaat 1260 aaaactacca caaagcaaca aattgacgat ctattattgc caggaaacac gaatttacca 1320 tggacttcat aa 1332 <210> 8 <211> 867 <212> DNA <213> Artificial Sequence <220> <223> IDI1, Isopentenyl-PP Delta-Isomerase <400> 8 atgactgccg acaacaatag tatgccccat ggtgcagtat ctagttacgc caaattagtg 60 caaaaccaaa cacctgaaga cattttggaa gagtttcctg aaattattcc attacaacaa 120 agacctaata cccgatctag tgagacgtca aatgacgaaa gcggagaaac atgtttttct 180 ggtcatgatg aggagcaaat taagttaatg aatgaaaatt gtattgtttt ggattgggac 240 gataatgcta ttggtgccgg taccaagaaa gtttgtcatt taatggaaaa tattgaaaag 300 ggtttactac atcgtgcatt ctccgtcttt attttcaatg aacaaggtga attactttta 360 caacaaagag ccactgaaaa aataactttc cctgatcttt ggactaacac atgctgctct 420 catccactat gtattgatga cgaattaggt ttgaagggta agctagacga taagattaag 480 ggcgctatta ctgcggcggt gagaaaacta gatcatgaat taggtattcc agaagatgaa 540 actaagacaa ggggtaagtt tcacttttta aacagaatcc attacatggc accaagcaat 600 gaaccatggg gtgaacatga aattgattac atcctatttt ataagatcaa cgctaaagaa 660 aacttgactg tcaacccaaa cgtcaatgaa gttagagact tcaaatgggt ttcaccaaat 720 gatttgaaaa ctatgtttgc tgacccaagt tacaagttta cgccttggtt taagattatt 780 tgcgagaatt acttattcaa ctggtgggag caattagatg acctttctga agtggaaaat 840 gacaggcaaa ttcatagaat gctataa 867 <210> 9 <211> 1674 <212> DNA <213> Artificial Sequence <220> <223> ICL1, Isocitrate Lyase <400> 9 atgcctatcc ccgttggaaa tacgaagaac gattttgcag ctttacaagc aaaactagat 60 gcagatgctg ccgaaattga gaaatggtgg tctgactcac gttggagtaa gactaagaga 120 aattattcag ccagagatat tgctgttaga cgcgggacat tcccaccaat cgaataccca 180 tcttcggtca tggccagaaa attattcaag gtattagaga agcatcacaa tgagggtaca 240 gtctctaaaa ctttcggtgc cctagatcct gtccagattt ctcaaatggc aaaatactta 300 gacacaatct atatttctgg ttggcagtgt tcatcaactg cttccacctc aaatgaacct 360 ggtccagact tagctgatta tccaatggac accgttccaa acaaagtgga acatttgttc 420 aaggcccaat tgtttcacga cagaaaacaa ctagaggcac ggtcaaaggc taaatctcag 480 gaagaactcg atgagatggg tgccccaatt gactacctaa caccaattgt cgctgatgca 540 gacgcaggcc acggcggttt aaccgcagtc ttcaaattga ccaagatgtt cattgagcgt 600 ggtgctgctg ggatccacat ggaagaccag acatctacaa ataagaaatg tgggcatatg 660 gcaggaagat gtgttatacc cgttcaggaa catgttaaca gattggtgac tattagaatg 720 tgtgctgata tcatgcattc tgacttaatt gtcgttgcta ggactgattc agaagcagcc 780 actttgatta gctcaaccat cgataccaga gatcattatt tcattgtcgg tgccaccaat 840 ccaaatatcg agccatttgc cgaagtttta aatgatgcca tcatgagtgg tgcatcagga 900 caagaactag ctgacattga acaaaaatgg tgtagagacg ctggactcaa gttattccat 960 gaagccgtca ttgatgaaat tgaaagatca gccctgtcaa ataagcaaga attgattaag 1020 aaattcacct ctaaagtggg tccattgact gaaacatccc acagagaagc caagaagctc 1080 gctaaagaaa ttcttggcca cgaaattttc ttcgactggg agctaccacg cgtaagggaa 1140 gggttgtacc gttacagagg tgggacgcaa tgttctatca tgagggcccg tgcatttgct 1200 ccatatgctg atttggtatg gatggaatct aactacccag acttccaaca ggccaaggag 1260 tttgcagaag gtgttaaaga gaaattccct gaccaatggc tagcttacaa cttgtctcca 1320 tcctttaact ggccaaaagc catgtccgtt gatgaacaac acaccttcat ccaaaggctg 1380 ggtgatctag gttacatctg gcaatttatc acattggccg gtttacacac taacgcttta 1440 gctgtccata acttctctcg tgactttgcc aaggatggga tgaaagctta tgcccagaat 1500 gttcagcaga gggaaatgga cgatggtgtt gatgtgttga aacatcaaaa atggtctggt 1560 gcggagtaca tcgatgggtt attgaagtta gctcaaggtg gtgttagcgc aacagctgct 1620 atgggaaccg gtgtcacaga agatcaattc aaagaaaatg gcgtaaagaa atag 1674 <210> 10 <211> 1665 <212> DNA <213> Artificial Sequence <220> <223> MLS1, Malate Synthase <400> 10 atggttaagg tcagtttgga taacgtcaaa ttactggtgg atgttgataa ggagcctttc 60 tttaaaccat ctagtactac agtgggagat attcttacca aggatgctct agagttcatt 120 gttcttttac acagaacttt caacaacaag agaaaacaat tattggaaaa cagacaagtt 180 gttcagaaga aattagactc gggctcctat catctggatt tcctgcctga aactgcaaat 240 attagaaatg atcccacttg gcaaggtcca attttggcac cggggttaat taataggtca 300 acggaaatca cagggcctcc attgagaaat atgctgatca acgctttgaa tgctcctgtg 360 aacacctata tgactgattt tgaagattca gcttcaccta cttggaacaa catggtttac 420 ggtcaagtta atctctacga cgcgatcaga aatcaaatcg attttgacac accaagaaaa 480 tcgtacaaat tgaatggaaa tgtggccaac ttgcccacta ttatcgtgag accccgtggt 540 tggcacatgg tggaaaagca cctttatgta gatgatgaac caatcagcgc ttccatcttt 600 gattttggtt tatatttcta ccataatgcc aaagaattaa tcaaattggg caaaggtcct 660 tacttctatt tgccaaagat ggagcaccac ttggaagcta aactatggaa cgacgtcttc 720 tgtgtagctc aagattacat tgggatccca aggggtacaa tcagagctac tgtgttgatt 780 gaaactttgc ctgctgcttt ccaaatggaa gagatcatct atcaattaag acaacattct 840 agtgggttga attgcggacg ttgggactat attttctcta caatcaagag attaagaaat 900 gatcctaatc acattttgcc caatagaaat caagtgacta tgacttcccc attcatggat 960 gcatacgtga aaagattaat caatacctgt catcggaggg gtgttcatgc catgggtggt 1020 atggctgcgc aaatccctat caaagacgac ccggcagcca atgaaaaggc catgactaaa 1080 gtccgtaatg ataagattag agagctgaca aatggacatg atgggtcatg ggttgcacac 1140 ccagcactgg cccctatttg taatgaagtt ttcattaata tgggaacacc aaaccaaatc 1200 tatttcattc ctgaaaacgt tgtaacggct gctaatctgc tggaaaccaa aattccaaat 1260 ggtgagatta ctaccgaggg aattgtacaa aacttggata tcgggttgca gtacatggaa 1320 gcttggctca gaggctctgg atgtgtgccc atcaacaact tgatggaaga cgccgccact 1380 gctgaagtgt ctcgttgtca attgtatcaa tgggtgaaac acggtgttac tctaaaggac 1440 acgggagaaa aggtcacccc agaattaacc gaaaagattc taaaagaaca agtggaaaga 1500 ctgtctaagg caagtccatt gggtgacaag aacaaattcg cgctggccgc taagtatttc 1560 ttgccagaaa tcagaggcga gaaattcagt gaatttttga ctacattgtt gtacgacgaa 1620 attgtgtcca ctaaggcgac gcccactgat ttgagcaaat tgtga 1665 <210> 11 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trLS)_F (MluI) <400> 11 agtataatgt tacatgcgta cacgcgtttt tgctactcgt catccgat 48 <210> 12 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trLS)__R <400> 12 gacgttccat ttttcgttga ctttttgtta tgttatg 37 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> trLS_F <400> 13 tcaacgaaaa atggaacgtc gttctggtaa tt 32 <210> 14 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> trLS_R <400> 14 tagagcggat ttaagcaaat ggctcgaaca a 31 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 15 atttgcttaa atccgctcta accgaaaagg 30 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 16 agtagcaaaa cttcgagcgt cccaaaac 28 <210> 17 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trGPPS2, trNDPS1)_F <400> 17 acgctcgaag ttttgctact cgtcatccga t 31 <210> 18 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trGPPS2)_F <400> 18 aattctacca tttttcgttg actttttgtt atgttatg 38 <210> 19 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> trGPPS2_F <400> 19 gtcaacgaaa aatggtagaa tttgatttta acaaatatat gg 42 <210> 20 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> trGPPS2_R (XhoI) <400> 20 cgaagaattg ttaattaaga gctcttaatt ttgtctgaat gcaacataat c 51 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trNDPS1)_R <400> 21 tggcggacat tttcgttgac tttttgttat gttatg 36 <210> 22 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> trNDPS1_F <400> 22 tcaacgaaaa atgtccgcca gaggattg 28 <210> 23 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> trNDPS1_R (XhoI) <400> 23 cgaagaattg ttaattaaga gctcttaata tgtgtgtcca ccgaatct 48 <210> 24 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(ERG10)_F (MluI) <400> 24 agtataatgt tacatgcgta cacgcgtgat ctggatttcc taatttggat aca 53 <210> 25 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(ERG10)_R <400> 25 gttctgagac atgttgttat tttattatgg aataattagt tgc 43 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> ERG10_F <400> 26 taaaataaca acatgtctca gaacgtttac attgtatcg 39 <210> 27 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> ERG10_R <400> 27 ttagagcgga ttcatatctt ttcaatgaca atagagga 38 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 28 aaaagatatg aatccgctct aaccgaaaag g 31 <210> 29 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 29 aatccagatc cttcgagcgt cccaaaac 28 <210> 30 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(trHMG1)_F <400> 30 acgctcgaag gatctggatt tcctaatttg gataca 36 <210> 31 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(trHMG1)_R <400> 31 ctgctgccat gttgttattt tattatggaa taattagttg c 41 <210> 32 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> trHMG1_F <400> 32 aaataacaac atggcagcag accaattggt gaaaact 37 <210> 33 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> trHMG1_R (XhoI) <400> 33 cgaagaattg ttaattaaga gctcttagga tttaatgcag gtgacg 46 <210> 34 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(mvaE)_R <400> 34 accgttttca tgttgttatt ttattatgga ataattagtt gc 42 <210> 35 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> mvaE_F <400> 35 aaaataacaa catgaaaacg gttgttatta ttgatgc 37 <210> 36 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> mvaE_F (XhoI) <400> 36 cgaagaattg ttaattaaga gctcttattg ttttctgaga tcattcaaga tag 53 <210> 37 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> PFBP1(ERG12, IDI1) _F (MluI) <400> 37 agtataatgt tacatgcgta cacgcgtaac ccatcaaact gcatggt 47 <210> 38 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> PFBO1(ERG12)_R <400> 38 ggtaatgaca tatgtgtggt agtatgaggg atgttt 36 <210> 39 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ERG12_F <400> 39 taccacacat atgtcattac cgttcttaac ttctgc 36 <210> 40 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> ERG12_R (XhoI) <400> 40 cgaagaattg ttaattaaga gctcttatga agtccatggt aaattcgtg 49 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PFBP1(IDI1)_R <400> 41 cggcagtcat atgtgtggta gtatgaggga tgttt 35 <210> 42 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> IDI1_F <400> 42 taccacacat atgactgccg acaacaatag tatg 34 <210> 43 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> IDI1_R <400> 43 ttagagcgga tttatagcat tctatgaatt tgcctgt 37 <210> 44 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 44 aatgctataa atccgctcta accgaaaagg 30 <210> 45 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 45 ttgatgggtt cttcgagcgt cccaaaac 28 <210> 46 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PFBP1(ERG12)_F <400> 46 acgctcgaag aacccatcaa actgcatggt 30 <210> 47 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(ICL1)_F (MluI) <400> 47 agtataatgt tacatgcgta cacgcgttaa caaaaatcac gatctgggt 49 <210> 48 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(ICL1)_R <400> 48 ggataggcat ttttaggctg gtatcttgat tctaaat 37 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ICL1_F <400> 49 cagcctaaaa atgcctatcc ccgttgg 27 <210> 50 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> ICL1_R <400> 50 gttagagcgg atctatttct ttacgccatt ttctttg 37 <210> 51 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 51 taaagaaata gatccgctct aaccgaaaag g 31 <210> 52 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 52 atttttgtta cttcgagcgt cccaaaac 28 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(MLS1)_F <400> 53 acgctcgaag taacaaaaat cacgatctgg gt 32 <210> 54 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(MLS1)_R <400> 54 ccttaaccat ttttaggctg gtatcttgat tctaaat 37 <210> 55 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> MLS1_F <400> 55 cagcctaaaa atggttaagg tcagtttgga taacg 35 <210> 56 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> MLS1_R (XhoI) <400> 56 cgaagaattg ttaattaaga gctctcacaa tttgctcaaa tcagtg 46 <110> SOGANG UNIVERSITY RESEARCH FOUNDATION <120> Mutant Strain with Limonene Production Ability <130> PN180368 <160> 56 <170> KoPatentIn 3.0 <210> 1 <211> 1635 <212> DNA <213> Artificial Sequence <220> <223> trLS, Codon-Optimized Truncated (S)-Limonene Synthase <400> 1 atggaacgtc gttctggtaa ttataatcca tctagatggg atgttaattt tatacaatct 60 ttgttgtcgg attataaaga ggataagcac gttattagag cttctgaatt ggttactttg 120 gttaaaatgg aattggaaaa agaaactgat caaattagac aattggaatt gatagacgat 180 ttgcagagaa tgggtttgtc cgatcatttc caaaatgaat tcaaagaaat cttgagctct 240 atttatttgg atcatcacta ttataaaaac ccattcccaa aagaagaaag ggacttgtac 300 tctacatctc tggctttcag attgctgcga gagcatggtt ttcaagtggc tcaagaagtt 360 tttgattctt ttaagaatga ggaaggcgaa tttaaggaat ccttgtctga tgataccaga 420 ggtttgttgc agttgtacga ggcttctttt ttgttgaccg agggtgagac aactttggaa 480 tctgcgagag aattcgctac caagtttttg gaagagaagg tcaacgaagg tggggttgat 540 ggggacttgt tgacgcgtat tgcttacagt ttggatattc ctctacattg gaggattaaa 600 cgaccaaacg ctccagtctg gattgaatgg tacagaaaaa gacccgatat gaatccagtt 660 gttttggaat tggcaattct cgatttgaat attgtacaag ctcagttcca ggaagaactt 720 aaagagtctt ttaggtggtg gaggaataca ggattcgtag aaaaattgcc gttcgcaaga 780 gatagactcg ttgaatgtta cttttggaat actggtatta tcgaaccgcg tcaacacgct 840 tctgcccgca tcatgatggg taaagttaat gctcttataa cggttattga tgacatctat 900 gatgtttacg gaactttgga agaattggag cagtttacgg acttgatcag gaggtgggat 960 atcaattcta tagatcagtt gcctgactat atgcagttgt gttttttggc ccttaataat 1020 tttgtcgatg atacttctta tgacgttatg aaggagaagg gtgtgaatgt tattccttat 1080 ttgagacaat cttgggttga cttggctgat aaatacatgg ttgaagctag atggttttat 1140 ggtggacata agccaagctt ggaagagtac ttggagaact cttggcaatc tatttctggc 1200 ccttgcatgt taacacacat attcttccgt gttacagact cattcactaa agaaaccgtt 1260 gatagtttgt ataagtatca cgatttggtt cgctggagct cttttgttct gagattggct 1320 gacgatttgg gtacttctgt ggaggaggtg tcccggggtg acgttcccaa gtctttgcaa 1380 tgttacatgt ctgactataa cgcttcggaa gcggaagcta ggaaacatgt taaatggttg 1440 atcgctgaag tttggaaaaa aatgaacgct gaaagagttt ctaaggattc cccttttggc 1500 aaggatttta ttgggtgcgc tgtggacctt ggtagaatgg ctcaattgat gtaccataac 1560 ggtgacggcc atggtactca acatccaatt atacatcaac aaatgactag aactttgttc 1620 gagccatttg cttaa 1635 <210> 2 <211> 897 <212> DNA <213> Artificial Sequence <220> <223> trGPPS2, Codon-Optimized Geranyl-PP Synthase <400> 2 atggtagaat ttgattttaa caaatatatg gactctaagg caatgactgt gaacgaagct 60 ttaaataaag ccattccttt aagataccca caaaaaatat atgagtcgat gagatattct 120 ttattagcgg gtggtaaaag agtccgtcca gtactttgca tcgcagcatg cgaacttgtc 180 ggtggtaccg aagaattagc tattccaaca gcatgcgcca ttgaaatgat ccatactatg 240 agtttaatgc atgatgatct accctgtatc gataacgacg atttaaggag gggcaagccg 300 acaaatcata aaatatttgg cgaggatacg gcagtcacag ctggtaatgc tttacatagc 360 tatgcttttg aacacattgc tgtgtccact tcaaagacag tgggtgcaga tagaatatta 420 aggatggtga gtgaattggg tcgagctacc ggctcagaag gtgttatggg aggacaaatg 480 gttgatattg cttccgaagg cgatccatca atcgatttgc aaactttaga gtggattcac 540 attcataaga ccgcaatgtt actagaatgt agtgttgtat gtggagctat aatagggggt 600 gcttctgaaa ttgtaattga aagagctaga agatacgcaa gatgtgtcgg tttattattt 660 caggttgttg atgacatctt agatgttacg aaaagctctg acgaactagg taaaactgcg 720 ggaaaggatt taatttcaga caaagcaaca taccctaagt tgatgggttt agaaaaagct 780 aaagaattct ccgacgaact tctaaatcgt gctaagggtg aattgtcttg tttcgatcca 840 gttaaagctg ctcctttatt gggacttgct gattatgttg cattcagaca aaattaa 897 <210> 3 <211> 783 <212> DNA <213> Artificial Sequence <220> <223> trNDPS1, Codon-Optimized Neryl-PP Synthase <400> 3 atgtccgcca gaggattgaa caaaattagt tgttctttga atctgcaaac ggaaaagttg 60 tgttatgagg ataatgacaa cgatttggat gaggaattga tgcctaagca tattgcattg 120 attatggatg gcaatagacg ttgggctaaa gataaaggct tggaagttta tgaaggacat 180 aaacatatta ttccaaagct aaaagagatc tgtgatattt cttctaagtt ggggattcaa 240 atcattacag cttttgcatt ttcaaccgag aactggaaga ggtccaagga agaagtcgac 300 tttttgctac agatgtttga agaaatatac gatgaatttt ctagatcggg tgtgagagta 360 agtattatcg gttgtaaaag cgatttgccc atgacgctcc aaaagtgcat cgctctaact 420 gaagaaacta ctaaaggaaa taagggtttg cacttggtaa ttgcgcttaa ctacggtggc 480 tactatgaca tattgcaggc cacaaagtca atagttaata aggccatgaa cggtcttctt 540 gacgtcgaag acataaataa aaacttgttc gatcaagaat tggagagcaa atgcccaaat 600 cctgacctgt tgatcagaac cgggggtgag caaagggttt caaacttcct gctttggcaa 660 ctagcatata ccgaattcta cttcactaac acattgtttc cagatttcgg tgaggaagat 720 ttgaaagaag ctataatgaa ctttcaacag agacatagaa gattcggtgg acacacatat 780 taa 783 <210> 4 <211> 1197 <212> DNA <213> Artificial Sequence <220> <223> ERG10, Acetyl-CoA Acetyltransferase <400> 4 atgtctcaga acgtttacat tgtatcgact gccagaaccc caattggttc attccagggt 60 tctctatcct ccaagacagc agtggaattg ggtgctgttg ctttaaaagg cgccttggct 120 aaggttccag aattggatgc atccaaggat tttgacgaaa ttatttttgg taacgttctt 180 tctgccaatt tgggccaagc tccggccaga caagttgctt tggctgccgg tttgagtaat 240 catatcgttg caagcacagt taacaaggtc tgtgcatccg ctatgaaggc aatcattttg 300 ggtgctcaat ccatcaaatg tggtaatgct gatgttgtcg tagctggtgg ttgtgaatct 360 atgactaacg caccatacta catgccagca gcccgtgcgg gtgccaaatt tggccaaact 420 gttcttgttg atggtgtcga aagagatggg ttgaacgatg cgtacgatgg tctagccatg 480 ggtgtacacg cagaaaagtg tgcccgtgat tgggatatta ctagagaaca acaagacaat 540 tttgccatcg aatcctacca aaaatctcaa aaatctcaaa aggaaggtaa attcgacaat 600 gaaattgtac ctgttaccat taagggattt agaggtaagc ctgatactca agtcacgaag 660 gacgaggaac ctgctagatt acacgttgaa aaattgagat ctgcaaggac tgttttccaa 720 aaagaaaacg gtactgttac tgccgctaac gcttctccaa tcaacgatgg tgctgcagcc 780 gtcatcttgg tttccgaaaa agttttgaag gaaaagaatt tgaagccttt ggctattatc 840 aaaggttggg gtgaggccgc tcatcaacca gctgatttta catgggctcc atctcttgca 900 gttccaaagg ctttgaaaca tgctggcatc gaagacatca attctgttga ttactttgaa 960 ttcaatgaag ccttttcggt tgtcggtttg gtgaacacta agattttgaa gctagaccca 1020 tctaaggtta atgtatatgg tggtgctgtt gctctaggtc acccattggg ttgttctggt 1080 gctagagtgg ttgttacact gctatccatc ttacagcaag aaggaggtaa gatcggtgtt 1140 gccgccattt gtaatggtgg tggtggtgct tcctctattg tcattgaaaa gatatga 1197 <210> 5 <211> 1584 <212> DNA <213> Artificial Sequence <220> <223> trHMG1, Truncated HMG-CoA Reductase <400> 5 atggcagcag accaattggt gaaaactgaa gtcaccaaga agtcttttac tgctcctgta 60 caaaaggctt ctacaccagt tttaaccaat aaaacagtca tttctggatc gaaagtcaaa 120 agtttatcat ctgcgcaatc gagctcatca ggaccttcat catctagtga ggaagatgat 180 tcccgcgata ttgaaagctt ggataagaaa atacgtcctt tagaagaatt agaagcatta 240 ttaagtagtg gaaatacaaa acaattgaag aacaaagagg tcgctgcctt ggttattcac 300 ggtaagttac ctttgtacgc tttggagaaa aaattaggtg atactacgag agcggttgcg 360 gtacgtagga aggctctttc aattttggca gaagctcctg tattagcatc tgatcgttta 420 ccatataaaa attatgacta cgaccgcgta tttggcgctt gttgtgaaaa tgttataggt 480 tacatgcctt tgcccgttgg tgttataggc cccttggtta tcgatggtac atcttatcat 540 ataccaatgg caactacaga gggttgtttg gtagcttctg ccatgcgtgg ctgtaaggca 600 atcaatgctg gcggtggtgc aacaactgtt ttaactaagg atggtatgac aagaggccca 660 gtagtccgtt tcccaacttt gaaaagatct ggtgcctgta agatatggtt agactcagaa 720 gagggacaaa acgcaattaa aaaagctttt aactctacat caagatttgc acgtctgcaa 780 catattcaaa cttgtctagc aggagattta ctcttcatga gatttagaac aactactggt 840 gacgcaatgg gtatgaatat gatttctaaa ggtgtcgaat actcattaaa gcaaatggta 900 gaagagtatg gctgggaaga tatggaggtt gtctccgttt ctggtaacta ctgtaccgac 960 aaaaaaccag ctgccatcaa ctggatcgaa ggtcgtggta agagtgtcgt cgcagaagct 1020 actattcctg gtgatgttgt cagaaaagtg ttaaaaagtg atgtttccgc attggttgag 1080 ttgaacattg ctaagaattt ggttggatct gcaatggctg ggtctgttgg tggatttaac 1140 gcacatgcag ctaatttagt gacagctgtt ttcttggcat taggacaaga tcctgcacaa 1200 aatgttgaaa gttccaactg tataacattg atgaaagaag tggacggtga tttgagaatt 1260 tccgtatcca tgccatccat cgaagtaggt accatcggtg gtggtactgt tctagaacca 1320 caaggtgcca tgttggactt attaggtgta agaggcccgc atgctaccgc tcctggtacc 1380 aacgcacgtc aattagcaag aatagttgcc tgtgccgtct tggcaggtga attatcctta 1440 tgtgctgccc tagcagccgg ccatttggtt caaagtcata tgacccacaa caggaaacct 1500 gctgaaccaa caaaacctaa caatttggac gccactgata taaatcgttt gaaagatggg 1560 tccgtcacct gcattaaatc ctaa 1584 <210> 6 <211> 2412 <212> DNA <213> Artificial Sequence <220> <223> Codon Optimized mvaE, Codon-Optimized Acetyl-CoA Acetyltransferase/NADH Dependent HMG-CoA Reductase <400> 6 atgaaaacgg ttgttattat tgatgctttg agaactccaa tagggaaata taagggttct 60 ttgtctcaag tttctgcggt tgatttgggt actcatgtca ctactcagtt gttgaagaga 120 cattctacta tttctgaaga aatcgatcag gttatttttg gtaatgtttt gcaagctggc 180 aatggtcaaa atcctgctag acaaattgct atcaattcag gtttgtctca cgaaattcca 240 gctatgactg ttaatgaagt atgtgggtct ggcatgaagg ctgtgatttt ggctaaacaa 300 ttgattcaat tgggggaagc tgaggttttg attgccggtg gaattgaaaa tatgtctcaa 360 gcgccaaaat tacaaaggtt taactatgaa actgagagtt acgatgctcc attctcttct 420 atgatgtatg atggtttgac tgatgctttt tcgggccaag ctatgggttt gactgctgaa 480 aatgttgctg aaaagtatca tgtaactagg gaagagcaag atcaattttc tgttcattct 540 cagttgaaag ccgctcaagc acaagctgaa ggaatctttg ctgatgaaat tgctcctttg 600 gaagtttctg gtactttggt tgaaaaagat gagggtatta gacctaattc tagcgttgaa 660 aaacttggta ctttgaagac tgtttttaaa gaggatggta ctgttactgc tggtaatgcc 720 agtactatta atgacggtgc ttcagctttg attattgctt ctcaagagta cgctgaagct 780 cacggactcc cttatttggc tattattaga gactctgttg aggtcggtat tgatcctgct 840 tacatgggta tttctccgat taaagctatt cagaaattgc tagctagaaa tcaattgact 900 actgaagaaa ttgatttgta cgaaattaac gaagcttttg ctgctacttc tattgtagtt 960 caaagagaat tggctttgcc ggaggagaaa gtgaatatat atggtggtgg aatttccttg 1020 ggtcacgcta taggtgctac gggtgctaga ttactcactt ctttgtctta tcagttgaac 1080 caaaaagaaa agaagtatgg tgttgcttct ttgtgcattg gtggtgggtt gggtttggct 1140 atgttgttgg aaaggccaca gcaaaaaaaa aactctagat tctaccaaat gtcgccagaa 1200 gaaaggttgg cttctcttct caatgaaggt caaatttctg ctgatactaa gaaagaattt 1260 gaaaatactg ctttgtcttc tcaaatcgct aatcatatga ttgagaatca aatctctgaa 1320 actgaagttc ccatgggtgt tggtttgcat ttgacagttg acgagaccga ttacttggtt 1380 ccaatggcta ctgaagaacc atctgttatt gctgctttgt caaatggtgc taagattgct 1440 caaggtttta aaactgttaa tcagcaaaga ttgatgaggg gtcaaatagt tttctacgat 1500 gttgctgacg ctgaatcttt gattgatgag ttgcaggtcc gtgaaactga gatttttcaa 1560 caagccgaac tttcttatcc aagtatcgtg aaaagaggtg gtgggttgag agatttgcaa 1620 tatcgggctt tcgacgaatc tttcgtttct gttgatttct tggttgatgt aaaagacgct 1680 atgggcgcta atattgttaa cgctatgttg gaaggtgttg ctgaattgtt tcgagaatgg 1740 tttgcggaac agaaaatttt gttcagtatt ttgtctaatt atgctacgga atctgttgtt 1800 actatgaaaa cagcgattcc cgtgtctaga ttgtcaaaag gttctaatgg tcgagaaatt 1860 gccgaaaaaa tcgttttggc ttctagatat gctagcttgg acccataccg cgctgttacc 1920 cataacaaag gtattatgaa tggtattgaa gctgtcgttt tagctactgg taatgacact 1980 agagctgttt ctgcttcttg tcatgctttc gcagttaaag aaggtagata ccaaggtttg 2040 acatcttgga ctttggacgg tgaacaactt attggtgaaa tttctgttcc attggctctt 2100 gcaactgtag gtggtgctac taaagtttta cctaagtctc aggctgctgc tgacttgttg 2160 gccgttacgg atgctaagga gttgtctaga gttgttgctg ctgttggtct ggctcagaat 2220 ttggccgctt tgagagcatt ggtgtctgaa gggattcaga aaggtcacat ggctttgcag 2280 gctagatcgt tagctatgac tgttggggct acaggtaaag aagtcgaagc tgttgctcaa 2340 cagttgaaga gacaaaaaac tatgaatcaa gatagagctt tagctatctt gaatgatctc 2400 agaaaacaat aa 2412 <210> 7 <211> 1332 <212> DNA <213> Artificial Sequence <220> <223> ERG12, Mevalonate Kinase <400> 7 atgtcattac cgttcttaac ttctgcaccg ggaaaggtta ttatttttgg tgaacactct 60 gctgtgtaca acaagcctgc cgtcgctgct agtgtgtctg cgttgagaac ctacctgcta 120 ataagcgagt catctgcacc agatactatt gaattggact tcccggacat tagctttaat 180 cataagtggt ccatcaatga tttcaatgcc atcaccgagg atcaagtaaa ctcccaaaaa 240 ttggccaagg ctcaacaagc caccgatggc ttgtctcagg aactcgttag tcttttggat 300 ccgttgttag ctcaactatc cgaatccttc cactaccatg cagcgttttg tttcctgtat 360 atgtttgttt gcctatgccc ccatgccaag aatattaagt tttctttaaa gtctacttta 420 cccatcggtg ctgggttggg ctcaagcgcc tctatttctg tatcactggc cttagctatg 480 gcctacttgg gggggttaat aggatctaat gacttggaaa agctgtcaga aaacgataag 540 catatagtga atcaatgggc cttcataggt gaaaagtgta ttcacggtac cccttcagga 600 atagataacg ctgtggccac ttatggtaat gccctgctat ttgaaaaaga ctcacataat 660 ggaacaataa acacaaacaa ttttaagttc ttagatgatt tcccagccat tccaatgatc 720 ctaacctata ctagaattcc aaggtctaca aaagatcttg ttgctcgcgt tcgtgtgttg 780 gtcaccgaga aatttcctga agttatgaag ccaattctag atgccatggg tgaatgtgcc 840 ctacaaggct tagagatcat gactaagtta agtaaatgta aaggcaccga tgacgaggct 900 gtagaaacta ataatgaact gtatgaacaa ctattggaat tgataagaat aaatcatgga 960 ctgcttgtct caatcggtgt ttctcatcct ggattagaac ttattaaaaa tctgagcgat 1020 gatttgagaa ttggctccac aaaacttacc ggtgctggtg gcggcggttg ctctttgact 1080 ttgttacgaa gagacattac tcaagagcaa attgacagct tcaaaaagaa attgcaagat 1140 gattttagtt acgagacatt tgaaacagac ttgggtggga ctggctgctg tttgttaagc 1200 gcaaaaaatt tgaataaaga tcttaaaatc aaatccctag tattccaatt atttgaaaat 1260 aaaactacca caaagcaaca aattgacgat ctattattgc caggaaacac gaatttacca 1320 tggacttcat aa 1332 <210> 8 <211> 867 <212> DNA <213> Artificial Sequence <220> <223> IDI1, Isopentenyl-PP Delta-Isomerase <400> 8 atgactgccg acaacaatag tatgccccat ggtgcagtat ctagttacgc caaattagtg 60 caaaaccaaa cacctgaaga cattttggaa gagtttcctg aaattattcc attacaacaa 120 agacctaata cccgatctag tgagacgtca aatgacgaaa gcggagaaac atgtttttct 180 ggtcatgatg aggagcaaat taagttaatg aatgaaaatt gtattgtttt ggattgggac 240 gataatgcta ttggtgccgg taccaagaaa gtttgtcatt taatggaaaa tattgaaaag 300 ggtttactac atcgtgcatt ctccgtcttt attttcaatg aacaaggtga attactttta 360 caacaaagag ccactgaaaa aataactttc cctgatcttt ggactaacac atgctgctct 420 catccactat gtattgatga cgaattaggt ttgaagggta agctagacga taagattaag 480 ggcgctatta ctgcggcggt gagaaaacta gatcatgaat taggtattcc agaagatgaa 540 actaagacaa ggggtaagtt tcacttttta aacagaatcc attacatggc accaagcaat 600 gaaccatggg gtgaacatga aattgattac atcctatttt ataagatcaa cgctaaagaa 660 aacttgactg tcaacccaaa cgtcaatgaa gttagagact tcaaatgggt ttcaccaaat 720 gatttgaaaa ctatgtttgc tgacccaagt tacaagttta cgccttggtt taagattatt 780 tgcgagaatt acttattcaa ctggtgggag caattagatg acctttctga agtggaaaat 840 gacaggcaaa ttcatagaat gctataa 867 <210> 9 <211> 1674 <212> DNA <213> Artificial Sequence <220> <223> ICL1, Isocitrate Lyase <400> 9 atgcctatcc ccgttggaaa tacgaagaac gattttgcag ctttacaagc aaaactagat 60 gcagatgctg ccgaaattga gaaatggtgg tctgactcac gttggagtaa gactaagaga 120 aattattcag ccagagatat tgctgttaga cgcgggacat tcccaccaat cgaataccca 180 tcttcggtca tggccagaaa attattcaag gtattagaga agcatcacaa tgagggtaca 240 gtctctaaaa ctttcggtgc cctagatcct gtccagattt ctcaaatggc aaaatactta 300 gacacaatct atatttctgg ttggcagtgt tcatcaactg cttccacctc aaatgaacct 360 ggtccagact tagctgatta tccaatggac accgttccaa acaaagtgga acatttgttc 420 aaggcccaat tgtttcacga cagaaaacaa ctagaggcac ggtcaaaggc taaatctcag 480 gaagaactcg atgagatggg tgccccaatt gactacctaa caccaattgt cgctgatgca 540 gacgcaggcc acggcggttt aaccgcagtc ttcaaattga ccaagatgtt cattgagcgt 600 ggtgctgctg ggatccacat ggaagaccag acatctacaa ataagaaatg tgggcatatg 660 gcaggaagat gtgttatacc cgttcaggaa catgttaaca gattggtgac tattagaatg 720 tgtgctgata tcatgcattc tgacttaatt gtcgttgcta ggactgattc agaagcagcc 780 actttgatta gctcaaccat cgataccaga gatcattatt tcattgtcgg tgccaccaat 840 ccaaatatcg agccatttgc cgaagtttta aatgatgcca tcatgagtgg tgcatcagga 900 caagaactag ctgacattga acaaaaatgg tgtagagacg ctggactcaa gttattccat 960 gaagccgtca ttgatgaaat tgaaagatca gccctgtcaa ataagcaaga attgattaag 1020 aaattcacct ctaaagtggg tccattgact gaaacatccc acagagaagc caagaagctc 1080 gctaaagaaa ttcttggcca cgaaattttc ttcgactggg agctaccacg cgtaagggaa 1140 gggttgtacc gttacagagg tgggacgcaa tgttctatca tgagggcccg tgcatttgct 1200 ccatatgctg atttggtatg gatggaatct aactacccag acttccaaca ggccaaggag 1260 tttgcagaag gtgttaaaga gaaattccct gaccaatggc tagcttacaa cttgtctcca 1320 tcctttaact ggccaaaagc catgtccgtt gatgaacaac acaccttcat ccaaaggctg 1380 ggtgatctag gttacatctg gcaatttatc acattggccg gtttacacac taacgcttta 1440 gctgtccata acttctctcg tgactttgcc aaggatggga tgaaagctta tgcccagaat 1500 gttcagcaga gggaaatgga cgatggtgtt gatgtgttga aacatcaaaa atggtctggt 1560 gcggagtaca tcgatgggtt attgaagtta gctcaaggtg gtgttagcgc aacagctgct 1620 atgggaaccg gtgtcacaga agatcaattc aaagaaaatg gcgtaaagaa atag 1674 <210> 10 <211> 1665 <212> DNA <213> Artificial Sequence <220> <223> MLS1, Malate Synthase <400> 10 atggttaagg tcagtttgga taacgtcaaa ttactggtgg atgttgataa ggagcctttc 60 tttaaaccat ctagtactac agtgggagat attcttacca aggatgctct agagttcatt 120 gttcttttac acagaacttt caacaacaag agaaaacaat tattggaaaa cagacaagtt 180 gttcagaaga aattagactc gggctcctat catctggatt tcctgcctga aactgcaaat 240 attagaaatg atcccacttg gcaaggtcca attttggcac cggggttaat taataggtca 300 acggaaatca cagggcctcc attgagaaat atgctgatca acgctttgaa tgctcctgtg 360 aacacctata tgactgattt tgaagattca gcttcaccta cttggaacaa catggtttac 420 ggtcaagtta atctctacga cgcgatcaga aatcaaatcg attttgacac accaagaaaa 480 tcgtacaaat tgaatggaaa tgtggccaac ttgcccacta ttatcgtgag accccgtggt 540 tggcacatgg tggaaaagca cctttatgta gatgatgaac caatcagcgc ttccatcttt 600 gattttggtt tatatttcta ccataatgcc aaagaattaa tcaaattggg caaaggtcct 660 tacttctatt tgccaaagat ggagcaccac ttggaagcta aactatggaa cgacgtcttc 720 tgtgtagctc aagattacat tgggatccca aggggtacaa tcagagctac tgtgttgatt 780 gaaactttgc ctgctgcttt ccaaatggaa gagatcatct atcaattaag acaacattct 840 agtgggttga attgcggacg ttgggactat attttctcta caatcaagag attaagaaat 900 gatcctaatc acattttgcc caatagaaat caagtgacta tgacttcccc attcatggat 960 gcatacgtga aaagattaat caatacctgt catcggaggg gtgttcatgc catgggtggt 1020 atggctgcgc aaatccctat caaagacgac ccggcagcca atgaaaaggc catgactaaa 1080 gtccgtaatg ataagattag agagctgaca aatggacatg atgggtcatg ggttgcacac 1140 ccagcactgg cccctatttg taatgaagtt ttcattaata tgggaacacc aaaccaaatc 1200 tatttcattc ctgaaaacgt tgtaacggct gctaatctgc tggaaaccaa aattccaaat 1260 ggtgagatta ctaccgaggg aattgtacaa aacttggata tcgggttgca gtacatggaa 1320 gcttggctca gaggctctgg atgtgtgccc atcaacaact tgatggaaga cgccgccact 1380 gctgaagtgt ctcgttgtca attgtatcaa tgggtgaaac acggtgttac tctaaaggac 1440 acgggagaaa aggtcacccc agaattaacc gaaaagattc taaaagaaca agtggaaaga 1500 ctgtctaagg caagtccatt gggtgacaag aacaaattcg cgctggccgc taagtatttc 1560 ttgccagaaa tcagaggcga gaaattcagt gaatttttga ctacattgtt gtacgacgaa 1620 attgtgtcca ctaaggcgac gcccactgat ttgagcaaat tgtga 1665 <210> 11 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trLS)_F (MluI) <400> 11 agtataatgt tacatgcgta cacgcgtttt tgctactcgt catccgat 48 <210> 12 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trLS)__R <400> 12 gacgttccat ttttcgttga ctttttgtta tgttatg 37 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> trLS_F <400> 13 tcaacgaaaa atggaacgtc gttctggtaa tt 32 <210> 14 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> trLS_R <400> 14 tagagcggat ttaagcaaat ggctcgaaca a 31 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 15 atttgcttaa atccgctcta accgaaaagg 30 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 16 agtagcaaaa cttcgagcgt cccaaaac 28 <210> 17 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trGPPS2, trNDPS1)_F <400> 17 acgctcgaag ttttgctact cgtcatccga t 31 <210> 18 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trGPPS2)_F <400> 18 aattctacca tttttcgttg actttttgtt atgttatg 38 <210> 19 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> trGPPS2_F <400> 19 gtcaacgaaa aatggtagaa tttgatttta acaaatatat gg 42 <210> 20 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> trGPPS2_R (XhoI) <400> 20 cgaagaattg ttaattaaga gctcttaatt ttgtctgaat gcaacataat c 51 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> PICL1(trNDPS1)_R <400> 21 tggcggacat tttcgttgac tttttgttat gttatg 36 <210> 22 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> trNDPS1_F <400> 22 tcaacgaaaa atgtccgcca gaggattg 28 <210> 23 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> trNDPS1_R (XhoI) <400> 23 cgaagaattg ttaattaaga gctcttaata tgtgtgtcca ccgaatct 48 <210> 24 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(ERG10)_F (MluI) <400> 24 agtataatgt tacatgcgta cacgcgtgat ctggatttcc taatttggat aca 53 <210> 25 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(ERG10)_R <400> 25 gttctgagac atgttgttat tttattatgg aataattagt tgc 43 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> ERG10_F <400> 26 taaaataaca acatgtctca gaacgtttac attgtatcg 39 <210> 27 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> ERG10_R <400> 27 ttagagcgga ttcatatctt ttcaatgaca atagagga 38 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 28 aaaagatatg aatccgctct aaccgaaaag g 31 <210> 29 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 29 aatccagatc cttcgagcgt cccaaaac 28 <210> 30 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(trHMG1)_F <400> 30 acgctcgaag gatctggatt tcctaatttg gataca 36 <210> 31 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(trHMG1)_R <400> 31 ctgctgccat gttgttattt tattatggaa taattagttg c 41 <210> 32 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> trHMG1_F <400> 32 aaataacaac atggcagcag accaattggt gaaaact 37 <210> 33 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> trHMG1_R (XhoI) <400> 33 cgaagaattg ttaattaaga gctcttagga tttaatgcag gtgacg 46 <210> 34 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PPCK1(mvaE)_R <400> 34 accgttttca tgttgttatt ttattatgga ataattagtt gc 42 <210> 35 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> mvaE_F <400> 35 aaaataacaa catgaaaacg gttgttatta ttgatgc 37 <210> 36 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> mvaE_F (XhoI) <400> 36 cgaagaattg ttaattaaga gctcttattg ttttctgaga tcattcaaga tag 53 <210> 37 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> PFBP1(ERG12, IDI1) _F (MluI) <400> 37 agtataatgt tacatgcgta cacgcgtaac ccatcaaact gcatggt 47 <210> 38 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> PFBO1(ERG12)_R <400> 38 ggtaatgaca tatgtgtggt agtatgaggg atgttt 36 <210> 39 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ERG12_F <400> 39 taccacacat atgtcattac cgttcttaac ttctgc 36 <210> 40 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> ERG12_R (XhoI) <400> 40 cgaagaattg ttaattaaga gctcttatga agtccatggt aaattcgtg 49 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PFBP1(IDI1)_R <400> 41 cggcagtcat atgtgtggta gtatgaggga tgttt 35 <210> 42 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> IDI1_F <400> 42 taccacacat atgactgccg acaacaatag tatg 34 <210> 43 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> IDI1_R <400> 43 ttagagcgga tttatagcat tctatgaatt tgcctgt 37 <210> 44 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 44 aatgctataa atccgctcta accgaaaagg 30 <210> 45 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 45 ttgatgggtt cttcgagcgt cccaaaac 28 <210> 46 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PFBP1(ERG12)_F <400> 46 acgctcgaag aacccatcaa actgcatggt 30 <210> 47 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(ICL1)_F (MluI) <400> 47 agtataatgt tacatgcgta cacgcgttaa caaaaatcac gatctgggt 49 <210> 48 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(ICL1)_R <400> 48 ggataggcat ttttaggctg gtatcttgat tctaaat 37 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ICL1_F <400> 49 cagcctaaaa atgcctatcc ccgttgg 27 <210> 50 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> ICL1_R <400> 50 gttagagcgg atctatttct ttacgccatt ttctttg 37 <210> 51 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_F <400> 51 taaagaaata gatccgctct aaccgaaaag g 31 <210> 52 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TCYC1_R <400> 52 atttttgtta cttcgagcgt cccaaaac 28 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(MLS1)_F <400> 53 acgctcgaag taacaaaaat cacgatctgg gt 32 <210> 54 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PPGI1(MLS1)_R <400> 54 ccttaaccat ttttaggctg gtatcttgat tctaaat 37 <210> 55 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> MLS1_F <400> 55 cagcctaaaa atggttaagg tcagtttgga taacg 35 <210> 56 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> MLS1_R (XhoI) <400> 56 cgaagaattg ttaattaaga gctctcacaa tttgctcaaa tcagtg 46

Claims (13)

서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 및
서열목록 제2서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Geranyl-PP 합성 효소(truncated Geranyl-PP synthase) 유전자; 또는 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자를 포함하는 재조합 벡터.
A mutant limonene synthase gene encoded by the nucleotide sequence of SEQ ID NO: 1; And
A mutated Geranyl-PP synthase gene encoded by the nucleotide sequence of SEQ ID NO: 2; Or a recombinant vector comprising a mutant Neryl-PP synthase (truncated Neryl-PP synthase) gene encoded by the nucleotide sequence of SEQ ID NO: 3.
제1항에 있어서, 상기 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 리모넨 합성 효소(truncated limonene synthase) 유전자; 및 서열목록 제3서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 Neryl-PP 합성 효소(truncated Neryl-PP synthase) 유전자를 포함하는 재조합 벡터는,
서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoAacetyltransferase, ERG10) 유전자; 및
서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자; 또는 서열목록 제6서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소/NADH 의존성 HMG-CoA 환원 효소(Acetyl-CoAAcetyltransferase/NADH Dependent HMG-CoA Reductase) 유전자를 더 포함하는 것인, 재조합 벡터.
According to claim 1, The mutant limonene synthase (truncated limonene synthase) gene encoded by the nucleotide sequence of the first sequence of the sequence listing; And a recombinant vector comprising a mutant Neryl-PP synthase (truncated Neryl-PP synthase) gene encoded by the nucleotide sequence of SEQ ID NO: 3,
Acetyl-CoA acetyltransferase (ERG10) gene encoded by the nucleotide sequence of SEQ ID NO: 4; And
A mutant NADPH-dependent HMG-CoA reductase (truncated NADPH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO: 5; Or the acetyl-CoA acetyltransferase/NADH dependent HMG-CoA reductase (Acetyl-CoAAcetyltransferase/NADH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO:6.
제2항에 있어서, 상기 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 아세틸-CoA 아세틸전달효소(Acetyl-CoAacetyltransferase, ERG10) 유전자; 및 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 변이 NADPH 의존성 HMG-CoA 환원 효소(truncated NADPH Dependent HMG-CoA Reductase) 유전자를 더 포함하는 재조합 벡터는,
서열목록 제7서열의 뉴클레오타이드 서열에 의해 인코딩되는 메발로네이트 키나아제(Mevalonate kinase, ERG12) 유전자를 더 포함하는 것인, 재조합 벡터.
According to claim 2, The acetyl-CoA acetyltransferase (Acetyl-CoAacetyltransferase, ERG10) gene encoded by the nucleotide sequence of the fourth sequence; And a recombinant vector further comprising a mutant NADPH-dependent HMG-CoA reductase (truncated NADPH Dependent HMG-CoA Reductase) gene encoded by the nucleotide sequence of SEQ ID NO: 5,
The recombinant vector further comprises a mevalonate kinase (ERG12) gene encoded by the nucleotide sequence of SEQ ID NO:7.
제3항에 있어서, 상기 서열목록 제7서열의 뉴클레오타이드 서열에 의해 인코딩되는 메발로네이트 키나아제(Mevalonate kinase, ERG12) 유전자를 더 포함하는 재조합 벡터는,
서열목록 제8서열의 뉴클레오타이드 서열에 의해 인코딩되는 IPP 델타 이소머라아제(Isopentenyl-diphosphate delta isomerase, IDI1) 유전자를 더 포함하는 것인, 재조합 벡터.
The method of claim 3, wherein the recombinant vector further comprises a mevalonate kinase (ERG12) gene encoded by the nucleotide sequence of SEQ ID NO:7,
The recombinant vector further comprises an IPP delta isomerase (Isopentenyl-diphosphate delta isomerase, IDI1) gene encoded by the nucleotide sequence of SEQ ID NO: 8.
제4항에 있어서, 상기 서열목록 제8서열의 뉴클레오타이드 서열에 의해 인코딩되는 IPP 델타 이소머라아제(Isopentenyl-diphosphate delta isomerase, IDI1) 유전자를 포함하는 재조합 벡터는,
서열목록 제9서열의 뉴클레오타이드 서열에 의해 인코딩되는 아이소시트레이트 리아제(Isocitrate Lyase, ICL1) 유전자; 및 서열목록 제10서열의 뉴클레오타이드 서열에 의해 인코딩되는 말산염 합성 효소(Malate Synthase, MLS1) 유전자를 더 포함하는 것인, 재조합 벡터.
The method of claim 4, wherein the recombinant vector comprising the IPP delta isomerase (Isopentenyl-diphosphate delta isomerase, IDI1) gene encoded by the nucleotide sequence of SEQ ID NO: 8,
Isocitrate Lyase (ICL1) gene encoded by the nucleotide sequence of SEQ ID NO: 9; And a malate synthase (MLS1) gene encoded by the nucleotide sequence of SEQ ID NO: 10.
삭제delete 삭제delete 삭제delete 제1항 내지 제5항 중 어느 한 항의 재조합 벡터로 형질전환된 리모넨(limonene) 생산능을 갖는 변이 균주.
A mutant strain having limonene-producing ability transformed with the recombinant vector of claim 1.
제 9 항에 있어서, 상기 변이 균주는 사카로미세스(Saccharomyces) 속 균주인 것인, 변이 균주.
The mutant strain according to claim 9, wherein the mutant strain is a strain of the genus Saccharomyces.
제 10 항에 있어서, 상기 사카로미세스 속 균주는 사카로미세스 세레비지에(Saccharomyces cerevisiae), 사카로미세스 유바룸(Saccharomyces uqvarum), 사카로미세스 엘립소이데우스(Saccharomyces ellipsoideus), 사카로미세스 카를스베르겐시스(Saccharomyces carlsbergensis), 사카로미세스 사케(Saccharomyces sake), 사카로미세스 코레아누스(Saccharomyces coreanus), 사카로미세스 리폴리티카(Saccharomyces lipolytica) 사카로미세스 보울라디(Saccharomyces boulardii) 또는 사카로미세스 파스토리아누스(Saccharomyces pastorianus)인 것인, 변이 균주.
The method of claim 10, wherein the strain of the genus Saccharomyces is Saccharomyces cerevisiae , Saccharomyces uqvarum , Saccharomyces ellipsoideus, Saccharomyces carles Bergensis ( Saccharomyces carlsbergensis ), Saccharomyces sake (Saccharomyces sake ), Saccharomyces coreanus (Saccharomyces coreanus ), Saccharomyces lipolytica (Saccharomyces lipolytica) Saccharomyces bouladi (Saccharomyces boulardii ) or Saccharomyces boulardii Torianus ( Saccharomyces pastorianus ) that is, a mutant strain.
제 9 항에 있어서, 상기 변이 균주는 1개 이상의 재조합 벡터에 의해 형질전환되는 것인, 변이 균주.
The mutant strain according to claim 9, wherein the mutant strain is transformed by one or more recombinant vectors.
제 9 항의 변이 균주를 배양하는 단계를 포함하는 리모넨(limonene) 제조 방법. Limonene production method comprising the step of culturing the mutant strain of claim 9.
KR1020180134522A 2018-11-05 2018-11-05 Mutant Strain with Limonene Production Ability KR102224821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180134522A KR102224821B1 (en) 2018-11-05 2018-11-05 Mutant Strain with Limonene Production Ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180134522A KR102224821B1 (en) 2018-11-05 2018-11-05 Mutant Strain with Limonene Production Ability

Publications (2)

Publication Number Publication Date
KR20200051311A KR20200051311A (en) 2020-05-13
KR102224821B1 true KR102224821B1 (en) 2021-03-08

Family

ID=70729650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180134522A KR102224821B1 (en) 2018-11-05 2018-11-05 Mutant Strain with Limonene Production Ability

Country Status (1)

Country Link
KR (1) KR102224821B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948266A (en) * 2023-01-06 2023-04-11 大连理工大学 Method for enhancing utilization of acetic acid by microorganisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Genbank Accession number L13459(1993.12.27.)
Xuan Cao 등. Biotechnology for Biofuels. Vol. 9, No. 214, 페이지 1-11 (2016.10.11.)*

Also Published As

Publication number Publication date
KR20200051311A (en) 2020-05-13

Similar Documents

Publication Publication Date Title
Zhu et al. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction
Jiang et al. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution
Dai et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae
ES2386359T3 (en) Genetically modified host cells and use thereof to produce isoprenoid compounds
Wang et al. Overproduction of α-farnesene in Saccharomyces cerevisiae by farnesene synthase screening and metabolic engineering
JP2018507698A (en) De novo microbial synthesis of terpenes
EP2952576B1 (en) Recombinant microorganism for preparing terpenoid and method for constructing recombinant microorganism
CN1970770A (en) Improved production of isoprenoids
CN111690690B (en) Saccharomyces cerevisiae for producing farnesene
CN102812129A (en) Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
CN106661540A (en) Production of xylitol from glucose by a recombinant strain
CN106367361B (en) A kind of saccharomyces cerevisiae engineered yeast strain and its construction method, application
CN101384719A (en) Method for producing terpenes and MEP-transformed microorganisms therefore
Jiang et al. A “push-pull-restrain” strategy to improve citronellol production in Saccharomyces cerevisiae
CN109971664B (en) Bacterial strain for high yield of astaxanthin and application thereof
CN112695003B (en) Genetically engineered bacterium for high yield of cembratriene-alcohol and construction method and application thereof
Menon IN-SILICO ANALYSIS OF TERPENOIDS IN SACCHAROMYCES CEREVISIAE
CN109988722A (en) A kind of method of recombinant Saccharomyces cerevisiae bacterial strain and its application and production tyrosol and/or rhodioside
Zhu et al. Efficient utilization of carbon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as the substrate
KR102224821B1 (en) Mutant Strain with Limonene Production Ability
Domratcheva et al. The influence of chemical mutagenesis on the properties of the cyclosporine a high-producer strain Tolypocladium inflatum VKM F-3630D
CN114657078B (en) Construction method and application of saccharomyces cerevisiae strain for high yield of cannabidiol
CN109689857A (en) The production method of recombinant cell and isoprene or terpene
Zhang et al. Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering
CN112175848B (en) Yeast strain for producing patchouli alcohol and construction method and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant