KR102222017B1 - Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method - Google Patents

Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method Download PDF

Info

Publication number
KR102222017B1
KR102222017B1 KR1020190074181A KR20190074181A KR102222017B1 KR 102222017 B1 KR102222017 B1 KR 102222017B1 KR 1020190074181 A KR1020190074181 A KR 1020190074181A KR 20190074181 A KR20190074181 A KR 20190074181A KR 102222017 B1 KR102222017 B1 KR 102222017B1
Authority
KR
South Korea
Prior art keywords
biofilm
nanoplastic
nanoplastics
functional group
surface functional
Prior art date
Application number
KR1020190074181A
Other languages
Korean (ko)
Other versions
KR20200145958A (en
Inventor
최용준
정선욱
이건후
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020190074181A priority Critical patent/KR102222017B1/en
Priority to PCT/KR2020/007964 priority patent/WO2020256465A2/en
Publication of KR20200145958A publication Critical patent/KR20200145958A/en
Application granted granted Critical
Publication of KR102222017B1 publication Critical patent/KR102222017B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B6/00Cleaning by electrostatic means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

본 발명은 나노플라스틱 응집 및 흡착능을 가지는 야생형 및 표면 작용기 변형된 미생물 바이오필름을 이용한 나노플라스틱 제거 방법에 관한 것으로,
본 발명에 따른 나노플라스틱 제거방법은 단시간 내에 수용액에 존재하는 나노플라스틱을 99%이상 제거할 수 있는 효과가 있다.
The present invention relates to a method for removing nanoplastics using a wild-type and surface functional group-modified microbial biofilm having nanoplastic aggregation and adsorption capacity,
The nanoplastic removal method according to the present invention has the effect of removing 99% or more of the nanoplastics present in the aqueous solution within a short time.

Description

야생형 및 표면 작용기가 변형된 미생물 바이오필름을 이용한 나노플라스틱 제거방법{Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method}{Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method}

본 발명은 나노플라스틱 응집 및 흡착능을 가지는 야생형 및 표면 작용기 변형된 미생물 바이오필름을 이용한 나노플라스틱 제거 방법에 관한 것이다.The present invention relates to a method for removing nanoplastics using a wild-type and surface functional group-modified microbial biofilm having nanoplastic aggregation and adsorption capacity.

플라스틱 폐기물들은 자연에 노출되었을 때 자연적 풍화 등에 의해 5 mm 이하의 마이크로 플라스틱으로 쪼개진다. 그러나, 이 쪼개지는 과정은 마이크로 크기에서 멈추지 않고 더 진행되어 나노플라스틱 (< 1 μm)까지 쪼개진다. 마이크로플라스틱은 여러 가지 문제점을 안고 있지만 이를 제거하는 방법은 어렵지 않다. 마이크로플라스틱에 의해 오염된 물을 필터링하면 마이크로플라스틱을 제거해 깨끗한 물로 정화시킬 수 있다. 그러나 나노플라스틱은 크기가 너무 작아 필터링으로 제거가 불가능하며, 나노플라스틱은 작은 크기 때문에 마이크로플라스틱과는 다른 문제점들을 안고 있다. 나노플라스틱은 매우 작기 때문에 생물막을 오갈 수 있으며, 독성을 나타내며, 검출과 분석이 극히 어렵다. 그리고 이 작은 크기때문에 제거 또한 어렵다. 나노플라스틱은 수 밀리미터(< 5 mm)에 해당하는 미세플라스틱과 달리 눈이나 현미경으로도 관찰이 어려울 정도로 작은 플라스틱이다. 이와 더불어 미세플라스틱이 환경과 생물에 미치는 영향은 알려져 있지만, 나노플라스틱에 대한 구체적인 체내 흡수나 분포, 그리고 생물학적 영향에 대해선 아직까지 알려져 있지 않았다. 이러한 상황이기에 나노플라스틱을 제거하는 방법의 필요성이 대두되고 있다. When plastic waste is exposed to nature, it is split into microplastics less than 5 mm by natural weathering. However, this cleaving process does not stop at the micro-scale, but proceeds further, breaking down to nanoplastics (< 1 μm). Microplastics have a number of problems, but how to get rid of them is not difficult. Filtering the water contaminated by microplastics can remove microplastics and purify them with clean water. However, nanoplastics are too small to be removed by filtering, and nanoplastics have different problems from microplastics because of their small size. Because nanoplastics are very small, they can cross biofilms, show toxicity, and are extremely difficult to detect and analyze. And because of this small size, it is also difficult to remove. Nanoplastics are plastics that are small enough to be difficult to observe even with an eye or a microscope, unlike microplastics that are several millimeters (< 5 mm). In addition, the effects of microplastics on the environment and organisms are known, but the specific absorption, distribution, and biological effects of nanoplastics in the body are not yet known. In this situation, there is a need for a method to remove nanoplastics.

나노플라스틱은 표면 전하를 띄고 있어 나노플라스틱 간에는 반 데르 발스 힘에 의한 인력과 전하에 의한 척력이 존재한다. 이 척력 때문에 나노플라스틱은 응집되지 않고 분산된 나노입자 형태로 존재한다. 이 척력의 원인인 표면 전하가 상쇄된다면 나노플라스틱은 뭉치거나 흡착된다. 즉, 전하가 상쇄되어 척력이 약해지면 뭉치기 때문에 애초에 나노플라스틱으로 존재할 수가 없다. 나노플라스틱은 그 종류도 다양하고 여러 가지 물질이 흡착되기 때문에 그 성질이 매우 다양하다. 그러나 이 표면전하는 모든 나노플라스틱이 공통적으로 가지는 특성이기 때문에 이 특성을 역이용하여 나노플라스틱을 제거하는 방법을 고안할 수 있다.Because nanoplastics have surface charges, there is an attractive force by van der Waals force and a repulsive force by electric charge between the nanoplastics. Because of this repulsive force, nanoplastics do not aggregate and exist in the form of dispersed nanoparticles. If the surface charge, which is the cause of this repulsive force, is canceled, the nanoplastics are aggregated or adsorbed. In other words, when the repulsive force is weakened due to the cancellation of the electric charge, it cannot exist as a nanoplastic in the first place because it aggregates. Nanoplastics have a wide variety of properties, and because various substances are adsorbed, their properties are very diverse. However, since this surface charge is a property that all nanoplastics have in common, a method to remove nanoplastics can be devised by using this property inversely.

미생물의 바이오필름은 다양한 종류의 유기물이 얽히고 설킨 집합체이고(비특허문헌 1, PERIODICUM BIOLOGORUM Vol.109, No.2, 2007; Characteristics and significance of microbial biofilm formation), 다양한 종류의 작용기가 표면에 존재한다. 이러한 작용기들은 서로 띄는 전하가 다르다. 본 발명자들은 야생형 바이오필름이 표면 양전하를 띄는 나노플라스틱을 급속도로 응집 및 흡착시키는 것을 확인하여 야생형 바이오필름의 나노플라스틱 제거 능력을 확인했다. 그러나 야생형 바이오필름은 표면 음전하 나노플라스틱을 제거하지 못하였다. 바이오필름에는 음전하를 띄는 작용기와 양전하를 띄는 작용기가 둘 다 존재하지만, 음전하를 띄는 작용기가 더 지배적이기 때문에 양전하 작용기들의 표면 음전하 나노플라스틱 제거 능력을 방해한다는 가설을 세웠다. 따라서 음전하 작용기의 대표 격인 COO-를 강산과 메탄올로 COOCH3로 에스터반응을 일으켜 음전하를 막았다. 이를 표면 작용기 변형된 바이오필름이라 부른다. 이 변형된 바이오필름은 표면 음전하 나노플라스틱을 급속도로 응집 및 흡착시켜, 제거능력이 생겼음을 확인했다. 이렇게 야생형 바이오필름으로 표면 양전하 나노플라스틱을, 변형된 바이오필름으로 음전하 나노플라스틱을 응집 및 흡착시켰다. 이 과정을 통해 나노플라스틱 응집체의 부피가 커졌기 때문에, 필터링을 적용하여 제거하는 방법으로 나노플라스틱을 99% 이상 제거할 수 있는 것을 확인하여 본 발명을 완성하였다.Microbial biofilm is a entangled and shaggy aggregate of various types of organic matter (Non-Patent Document 1, PERIODICUM BIOLOGORUM Vol.109, No.2, 2007; Characteristics and significance of microbial biofilm formation), and various types of functional groups exist on the surface. . These functional groups have a different charge. The present inventors confirmed that the wild-type biofilm rapidly aggregated and adsorbed nanoplastics having a positive surface charge, thereby confirming the nanoplastic removal ability of the wild-type biofilm. However, the wild-type biofilm could not remove the surface negatively charged nanoplastics. In the biofilm, both negatively charged functional groups and positively charged functional groups exist, but it was hypothesized that positively charged functional groups interfere with the ability of positively charged functional groups to remove surface negatively charged nanoplastics because the negatively charged functional groups are more dominant. Therefore, COO - , a representative group of negatively charged functional groups, was subjected to esterification with strong acid and methanol to COOCH 3 to prevent negative charges. This is called a surface functional group modified biofilm. This modified biofilm was confirmed that the surface negatively charged nanoplastics were rapidly agglomerated and adsorbed, resulting in removal capability. Thus, the surface positively charged nanoplastics were aggregated and adsorbed with the wild-type biofilm and the negatively charged nanoplastics were aggregated with the modified biofilm. Since the volume of the nanoplastic aggregates increased through this process, it was confirmed that more than 99% of the nanoplastics can be removed by applying filtering to remove them, thereby completing the present invention.

본 발명의 일 측면에서의 목적은 나노플라스틱을 99% 이상 제거할 수 있는 나노플라스틱 제거방법을 제공하는 것이다.An object of the present invention is to provide a nanoplastic removal method capable of removing 99% or more of nanoplastics.

본 발명의 다른 일 측면에서의 목적은 나노플라스틱 제거용 흡착제를 제공하는 것이다.Another object of the present invention is to provide an adsorbent for removing nanoplastics.

본 발명의 다른 일 측면에서의 목적은 나노플라스틱 제거용 응집제를 제공하는 것이다.Another object of the present invention is to provide a coagulant for removing nanoplastics.

본 발명의 또 다른 일 측면에서의 목적은 나노플라스틱의 응집을 유도하여 검출이 가능하게 하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method of inducing agglomeration of nanoplastics to enable detection.

상기 목적을 달성하기 위하여,To achieve the above object,

본 발명의 일 측면은 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키는 단계를 포함하는, 나노플라스틱 제거방법을 제공한다.One aspect of the present invention provides a nanoplastic removal method comprising the step of contacting a microbial biofilm with the nanoplastic.

또한, 본 발명의 다른 일 측면은, 미생물 바이오필름(microbial biofilm)을 포함하는 나노플라스틱 제거용 흡착제를 제공한다.In addition, another aspect of the present invention provides an adsorbent for removing nanoplastics including a microbial biofilm.

나아가, 본 발명의 다른 일 측면은, 미생물 바이오필름(microbial biofilm)을 포함하는 나노플라스틱 제거용 응집제를 제공한다.Further, another aspect of the present invention provides a coagulant for removing nanoplastics including a microbial biofilm.

나아가, 본 발명의 또 다른 일 측면은, 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키는 단계를 포함하는, 나노플라스틱 검출방법을 제공한다.Further, another aspect of the present invention provides a nanoplastic detection method comprising the step of contacting a microbial biofilm with the nanoplastic.

본 발명에 따른 나노플라스틱 제거방법은 단시간 내에 수용액에 존재하는 나노플라스틱을 99%이상 제거할 수 있는 효과가 있다.The nanoplastic removal method according to the present invention has the effect of removing 99% or more of the nanoplastics present in the aqueous solution within a short time.

도 1은 메틸로박테리움 히스패니컴 균주의 야생형 바이오필름에 의해 표면 양전하를 띠는 나노플라스틱 형광 Amine-PS가 응집 및 흡착된 모습을 촬영한 도이다.
도 2는 야생형 바이오필름에 의해 응집된 Amine-PS 응집체의 크기 분포를 바이오필름을 넣기 전과 비교한 그래프이다. 또한 응집체들의 물리적 충격에 대한 저항성을 나타내기 위해 볼텍싱(vortexing)과 초음파처리(ultrasonication) 후의 응집체들의 크기 분포 변화를 나타낸 그래프이다.
도 3은 야생형 바이오필름에 의해 응집된 형광 Amine-PS 응집체들이 자연적으로 바닥에 가라앉은 모습을 형광촬영한 도이다.
도 4는 야생형 바이오필름에 형광 Amine-PS들이 흡착되어 바이오필름도 형광을 나타내게 된 것을 형광촬영한 도이다.
도 5는 야생형 바이오필름에 Amine-PS들이 응집 및 흡착되어있는 모습을 전자주사현미경 (SEM)으로 촬영한 도이다.
도 6은 야생형 바이오필름의 표면 작용기를 변형시키는 방법을 나타낸 도면이다.
도 7은 야생형 바이오필름과 표면 작용기 변화된 바이오필름을 FT-IR로 측정한 적외선 스펙트럼을 나타낸 도이다.
도 8은 작용기가 변형된 바이오필름을 강염기 (0.25 M NaOH)에 넣어 에스터 결합 가수분해를 유도하여 나온 메탄올을 측정한 그래프이다.
도 9은 야생형 바이오필름과 작용기가 변형된 바이오필름의 pH 별 표면전하 변화를 비교한 그래프이다.
도 10은 작용기가 변형된 바이오필름과 표면 음전하를 띄는 나노플라스틱인 형광 Sulfate-PS가 응집 및 흡착된 모습을 촬영한 도이다.
도 11은 작용기가 변형된 바이오필름에 의해 응집된 Sulfate-PS 응집체들의 크기 분포를 변형된 바이오필름 넣기 전과 야생형 바이오필름을 넣은 후를 비교한 그래프이다. 또한 응집체들의 기계적 충격에 대한 저항성을 나타내기 위해 볼텍싱(vortexing)과 초음파처리(ultrasonication) 후의 크기 분포 변화를 나타낸 도이다.
도 12는 형광 Sulfate-PS 응집체들이 자연적으로 가라앉은 모습을 형광촬영한 도이다.
도 13은 형광 Sulfate-PS가 흡착되어 형광을 나타내게 된 작용기가 변형된 바이오필름을 형광촬영한 도이다.
도 14는 Sulfate-PS가 흡착된 작용기가 변형된 바이오필름을 전자주사현미경(SEM)으로 촬영한 도이다.
도 15는 야생형 바이오필름으로 응집 및 흡착시킨 Amine-PS 수용액을 멤브레인 필터로 여과하여 Amine-PS를 제거시킨 결과를 형광촬영하여 나타낸 도이다.
도 16은 야생형 바이오필름으로 응집 및 흡착시킨 후 여과하는 방법에 의한 Amine-PS 제거율을 반응 시간별로 나타낸 그래프이다.
도 17은 야생형 바이오필름으로 응집 및 흡착시킨 후 여과하는 방법에 의한 Amine-PS 제거율을 Amine-PS 용액의 pH별로 나타낸 그래프이다.
도 18은 작용기가 변형된 바이오필름으로 응집 및 흡착시킨 Sulfate-PS 수용액을 멤브레인 필터로 여과하여, Sulfate-PS를 제거시킨 결과를 형광촬영하여 나타낸 도이다.
도 19는 작용기가 변형된 바이오필름으로 응집 및 흡착시킨 후 여과하는 방법에 의한 Sulfate-PS 제거율을 반응시킨 시간별로 나타낸 그래프이다.
도 20은 변형된 바이오필름으로 응집 및 흡착시킨 후 여과하는 방법에 의한 Sulfate-PS 제거율을 Sulfate-PS 용액의 pH별로 나타낸 그래프이다.
1 is a diagram photographing a state in which a nanoplastic fluorescent Amine-PS having a positive surface charge is aggregated and adsorbed by a wild-type biofilm of a methylobacterium hispanicum strain.
Figure 2 is a graph comparing the size distribution of the Amine-PS aggregates aggregated by the wild-type biofilm compared to before putting the biofilm. In addition, it is a graph showing the change in the size distribution of the aggregates after vortexing and ultrasonication in order to show the resistance to the physical impact of the aggregates.
FIG. 3 is a diagram showing fluorescence photographing of fluorescent Amine-PS aggregates aggregated by a wild-type biofilm naturally sinking to the floor.
FIG. 4 is a diagram of fluorescence photographing that fluorescent Amine-PS is adsorbed onto a wild-type biofilm and thus the biofilm also exhibits fluorescence.
5 is a diagram photographed with an electron scanning microscope (SEM) of the aggregation and adsorption of Amine-PS on a wild-type biofilm.
6 is a diagram showing a method of modifying the surface functional groups of a wild-type biofilm.
7 is a diagram showing an infrared spectrum measured by FT-IR of a wild-type biofilm and a biofilm having a surface functional group changed.
Figure 8 is a graph measuring methanol produced by inducing ester-linked hydrolysis by putting a biofilm having a modified functional group in a strong base (0.25 M NaOH).
9 is a graph comparing surface charge changes by pH of a wild-type biofilm and a biofilm having a functional group modified.
10 is a diagram photographing a state in which a biofilm with a functional group modified and a fluorescent Sulfate-PS, a nanoplastic having a surface negative charge, are aggregated and adsorbed.
11 is a graph comparing the size distribution of Sulfate-PS aggregates agglomerated by the functional group-modified biofilm before the modified biofilm and after the wild-type biofilm. In addition, it is a diagram showing the change in size distribution after vortexing and ultrasonic treatment in order to show the resistance of the aggregates to mechanical impact.
FIG. 12 is a diagram of fluorescent Sulfate-PS aggregates naturally subsided.
13 is a diagram illustrating fluorescence imaging of a biofilm with a functional group modified to show fluorescence by adsorbing fluorescent Sulfate-PS.
14 is a diagram photographed by an electron scanning microscope (SEM) of a biofilm having a modified functional group on which Sulfate-PS is adsorbed.
FIG. 15 is a diagram showing a result of removing Amine-PS by filtering an aqueous Amine-PS solution aggregated and adsorbed with a wild-type biofilm through a membrane filter by fluorescence imaging.
16 is a graph showing the Amine-PS removal rate by reaction time by a method of aggregation and adsorption with a wild-type biofilm and then filtering.
FIG. 17 is a graph showing the Amine-PS removal rate by a method of aggregation and adsorption with a wild-type biofilm and then filtration by pH of an Amine-PS solution.
FIG. 18 is a diagram showing a result of removing Sulfate-PS by filtering an aqueous Sulfate-PS solution agglomerated and adsorbed with a functional group-modified biofilm through a membrane filter by fluorescence imaging.
19 is a graph showing the reaction of Sulfate-PS removal rate by a method of agglomeration and adsorption with a biofilm having a functional group modified and then filtering.
20 is a graph showing the Sulfate-PS removal rate by a method of agglomeration and adsorption with a modified biofilm and then filtration by pH of a Sulfate-PS solution.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키는 단계를 포함하는, 나노플라스틱 제거방법을 제공한다.One aspect of the present invention provides a nanoplastic removal method comprising the step of contacting a microbial biofilm with the nanoplastic.

이때, 상기 미생물 바이오필름은 야생형(wild type) 바이오필름 및 표면작용기가 개질된 바이오필름으로 이루어진 군으로부터 선택되는 1종 이상의 바이오필름일 수 있다. 상기 야생형(wild type) 바이오필름은 음전하를 띄어, 양전하를 띄는 나노플라스틱을 응집 및 흡착시킬 수 있고, 상기 표면작용기가 개질된 바이오필름은 양전하를 띄어, 음전하를 띄는 나노플라스틱을 응집 및 흡착시킬 수 있다. 즉, 나노플라스틱 제거시 미생물 바이오필름을 야생형(wild type) 바이오필름과 표면작용기가 개질된 바이오필름을 함께 사용할 경우 나노플라스틱이 띄는 전하 종류에 상관없이 매우 우수한 나노플라스틱 제거가 가능하다.In this case, the microbial biofilm may be one or more biofilms selected from the group consisting of a wild type biofilm and a biofilm with modified surface functional groups. The wild type biofilm has a negative charge, so that nanoplastics having a positive charge can be aggregated and adsorbed, and the biofilm having a modified surface functional group has a positive charge, so that nanoplastics having a negative charge can be aggregated and adsorbed. have. That is, when the microbial biofilm is used in combination with a wild type biofilm and a biofilm modified with a surface functional group when removing nanoplastics, very excellent nanoplastic removal is possible regardless of the kind of charge that the nanoplastic stands out.

한편, 상기 표면작용기가 개질된 바이오필름은, 야생형 바이오필름을 산과 알코올 존재하에 반응시켜, 야생형 바이오필름에 존재하던 -COO- 기를 에스테르화하여 제조되는 것일 수 있다. 야생형 바이오필름이 전체적으로 음전하를 띄는 가장 큰 이유는 야생형 바이오필름 표면에 존재하는 -COO- 기에 의한 것인데, 에스테르화를 수행할 경우 음전하가 막아질 수 있다. 이에, 야생형 바이오필름에 존재하던 양전하에 의해 표면작용기가 개질된 바이오필름은 전체적으로 양전하를 띌 수 있게 된다.Meanwhile, the surface functional group-modified biofilm may be prepared by reacting a wild-type biofilm in the presence of an acid and an alcohol to esterify the -COO-group present in the wild-type biofilm. The biggest reason that the wild-type biofilm has a negative charge as a whole is due to the -COO- group present on the surface of the wild-type biofilm, and if esterification is performed, negative charges can be blocked. Accordingly, the biofilm whose surface functional groups have been modified by the positive charge existing in the wild-type biofilm can take on a positive charge as a whole.

상기 산은 공지된 강산을 사용할 수 있으며, 바람직하게는 염산을 사용할 수 있다. 상기 알코올은 공지된 알코올이라면 제한 없이 사용할 수 있으나, 바람직하게는 메탄올을 사용할 수 있다.The acid may be a known strong acid, preferably hydrochloric acid. The alcohol may be used without limitation as long as it is a known alcohol, but methanol may be preferably used.

상기 미생물 바이오필름은 메틸로박테리움(Methylobacterium) 속 미생물 바이오필름일 수 있다.The microbial biofilm may be a microbial biofilm of the genus Methylobacterium.

보다 구체적으로, 상기 메틸로박테리움(Methylobacterium) 속 미생물은 M. hispanicum, M. adhaesivum, M. aerolatum, M. aminovorans, M. aquaticum, M. brachiatum, M. brachythecii, M. bullatum, M. cerastii, M. dankookense, M. extorquens, M. fujisawaense, M. gnaphalii, M. goesingense, M. gossipiicola, M. gregans, M. haplocladii, M. iners, M. isbiliense, M. jeotgali, M. komagatae, M. longum, M. marchantiae, M. mesophilicum, M. nodulans, M. organophilum, M. oryzae, M. oxalidis, M. persicinum, M. phyllosphaerae, M. phyllostachyos, M. platani, M. podarium, M. populi, M. pseudosasae, M. pseudosasicola, M. radiotolerans, M. rhodesianum, M. rhodinum, M. salsuginis, M. soli, M. suomiense, M. tardum, M. tarhaniae, M. thiocyanatum, M. thuringiense, M. trifolii, M. variabile, 및 M. zatmanii로 이루어지는 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 메틸로박테리움 히스패니컴(Methylobacterium hispanicum)일 수 있다.More specifically, the microorganisms of the genus Methylobacterium are M. hispanicum, M. adhaesivum, M. aerolatum, M. aminovorans, M. aquaticum, M. brachiatum, M. brachythecii, M. bullatum, M. cerastii , M. dankookense, M. extorquens, M. fujisawaense, M. gnaphalii, M. goesingense, M. gossipiicola, M. gregans, M. haplocladii, M. iners, M. isbiliense, M. jeotgali, M. komagatae, M. longum, M. marchantiae, M. mesophilicum, M. nodulans, M. organophilum, M. oryzae, M. oxalidis, M. persicinum, M. phyllosphaerae, M. phyllostachyos, M. platani, M. podarium, M. populi , M. pseudosasae, M. pseudosasicola, M. radiotolerans, M. rhodesianum, M. rhodinum, M. salsuginis, M. soli, M. suomiense, M. tardum, M. tarhaniae, M. thiocyanatum, M. thuringiense, M. trifolii, M. variabile, and M. zatmanii may be one or more selected from the group consisting of, preferably methylobacterium hispanicum (Methylobacterium hispanicum).

상기 나노플라스틱은 1μm 미만의 평균 직경범위를 갖는 나노플라스틱일 수 있다. 본 발명이 적용될 수 있는 나노플라스틱의 몇 가지 평균 직경범위를 예로 들자면, 1 내지 900 nm 범위일 수 있고, 1 내지 800 nm 범위일 수 있고, 1 내지 700 nm 범위일 수 있고, 1 내지 600 nm 범위일 수 있고, 1 내지 500 nm 범위일 수 있고, 1 내지 400 nm 범위일 수 있고, 1 내지 300 nm 범위일 수 있고, 1 내지 200 nm 범위일 수 있고, 1 내지 100 nm 범위일 수 있고, 10 내지 900 nm 범위일 수 있고, 50 내지 900 nm 범위일 수 있고, 100 내지 900 nm 범위일 수 있고, 10 내지 500 nm 범위일 수 있고, 50 내지 300 nm 범위일 수 있고, 70 내지 200 nm 범위일 수 있고, 80 내지 150 nm 범위일 수 있고, 90 내지 110 nm 범위일 수 있고, 100 nm 일 수 있다.The nanoplastic may be a nanoplastic having an average diameter range of less than 1 μm. To take several average diameter ranges of nanoplastics to which the present invention can be applied, for example, it may be in the range of 1 to 900 nm, may be in the range of 1 to 800 nm, may be in the range of 1 to 700 nm, and in the range of 1 to 600 nm. May be, 1 to 500 nm range, 1 to 400 nm range, 1 to 300 nm range, 1 to 200 nm range, 1 to 100 nm range, 10 To 900 nm, 50 to 900 nm, 100 to 900 nm, 10 to 500 nm, 50 to 300 nm, and 70 to 200 nm May be, 80 to 150 nm range, 90 to 110 nm range, and 100 nm.


상기 나노플라스틱은 폴리스티렌, 폴리에틸렌, 폴리프로필렌 및 폴리에틸렌 테레프탈레이트로 이루어지는 나노플라스틱일 수 있다.

The nanoplastic may be a nanoplastic made of polystyrene, polyethylene, polypropylene, and polyethylene terephthalate.

상기 나노플라스틱 제거방법은, 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시켜 나노플라스틱의 응집과 흡착을 유도한 후, 여과를 통해 나노플라스틱을 제거하는 단계를 더 포함할 수 있다.The nanoplastic removal method may further include the step of inducing aggregation and adsorption of the nanoplastic by contacting the microbial biofilm with the nanoplastic, and then removing the nanoplastic through filtration.

또한, 상기 나노플라스틱 제거방법은, 나노플라스틱이 분산된 수용액에 미생물 바이오필름(microbial biofilm)을 처리하여 나노플라스틱의 응집과 흡착을 유도하는 것일 수 있다.In addition, the nanoplastic removal method may be to induce aggregation and adsorption of the nanoplastic by treating a microbial biofilm in an aqueous solution in which the nanoplastic is dispersed.

본 발명의 다른 일 측면은, 미생물 바이오필름(microbial biofilm)을 포함하는 나노플라스틱 제거용 흡착제를 제공한다.Another aspect of the present invention provides an adsorbent for removing nanoplastics including a microbial biofilm.

본 발명의 또 다른 일 측면은, 미생물 바이오필름(microbial biofilm)을 포함하는 나노플라스틱 제거용 응집제를 제공한다.Another aspect of the present invention provides a coagulant for removing nanoplastics including a microbial biofilm.

이때, 상기 미생물 바이오필름에 관한 구체적인 내용은 전술한 바와 동일하므로, 중복 설명을 피하기 위해 생략한다.At this time, since the detailed information on the microbial biofilm is the same as described above, it will be omitted to avoid redundant description.

본 발명의 또 다른 일 측면은, 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키는 단계를 포함하는, 나노플라스틱 검출방법을 제공한다.Another aspect of the present invention provides a nanoplastic detection method comprising the step of contacting a microbial biofilm with the nanoplastic.

나노플라스틱의 경우 그 크기가 매우작아 일반적으로 검출이 어려우나, 본 발명과 같이 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키면 나노플라스틱의 응집이 유도되므로 나노플라스틱 검출이 용이하다.In the case of nanoplastics, their size is very small and it is generally difficult to detect. However, as in the present invention, when a microbial biofilm is brought into contact with the nanoplastics, aggregation of the nanoplastics is induced, so the detection of the nanoplastics is easy.

이하, 본 발명을 실시예 및 실험예를 통해 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples and experimental examples.

단, 후술하는 실시예 및 실험예는 본 발명을 일 측면에서 구체적으로 예시하는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.However, the examples and experimental examples to be described later are only to specifically illustrate the present invention in one aspect, and the present invention is not limited thereto.

실시예 1.Example 1. 메틸로박테리움 히스패니컴 균주의 야생형 바이오필름을 이용한 표면 양전하 나노플라스틱 응집 및 흡착 확인Confirmation of surface positively charged nanoplastic aggregation and adsorption using wild type biofilm of methylobacterium hispanicum strain

저장되어 있는 메틸로박테리움 히스패니컴 균주를 TGY (Agar 1.5%) 고체배지에 스트리킹(streaking)하여 콜로니(colony)가 뜰 때까지 30℃에서 3일간 키운 후, 싱글 콜로니(single colony)만 따서 TGY 액체배지 (0.5% (w/v)의 트립톤, 0.1% (w/v)의 글루코스 및 0.3% (w/v)의 효모 추출물) 4 ml가 담긴 14 ml tube에 넣고 30℃ 200 rpm에서 3일간 전배양하였다. 6 well plate의 한 well에 TGY 액체배지 4 ml를 넣고 상기 전배양한 바이오필름 용액 400 ㎕를 첨가하여 30℃에서 3일간 본배양하고, 접종하기 전에 피펫팅하여 전배양 용액의 바이오필름을 잘게 분쇄하였다. 3일 후 형성된 바이오필름을 핀셋으로 건져 증류수 4 ml이 담긴 새로운 well에 넣어 200 rpm으로 1분간 세척하는 과정을 세 번 반복하였다. 새로운 well에 표면 양전하 나노플라스틱 (Amine modified fluorescence polystyrene latex beads, 100 nm, sigma aldrich) 2.5% Amine-PS 현탁액을 증류수에 50배 희석한 0.05% 현탁액 3 ml을 넣고, well에 담겨있는 Amine-PS 0.05% 현탁액에 첨가하였다. 바이오필름을 넣은 후 80 rpm으로 흔들어주어 응집 및 흡착을 유도한 후 변화를 관찰하였다.The stored methylobacterium hispanicum strain was streaked in TGY (Agar 1.5%) solid medium and grown at 30°C for 3 days until colonies emerged, and then only single colonies were picked. Put in a 14 ml tube containing 4 ml of TGY liquid medium (0.5% (w/v) tryptone, 0.1% (w/v) glucose and 0.3% (w/v) yeast extract) at 30° C. 200 rpm. It was pre-cultured for 3 days. Add 4 ml of TGY liquid medium to one well of a 6-well plate, add 400 µl of the pre-cultured biofilm solution, and incubate for 3 days at 30°C, pipette before inoculation to crush the biofilm of the pre-culture solution. I did. After 3 days, the formed biofilm was removed with tweezers and put into a new well containing 4 ml of distilled water, and the process of washing for 1 minute at 200 rpm was repeated three times. In a new well, add 3 ml of a 0.05% suspension obtained by diluting a 2.5% Amine-PS suspension 50 times in distilled water (Amine modified fluorescence polystyrene latex beads, 100 nm, sigma aldrich), and Amine-PS 0.05 contained in the well. % Suspension. After inserting the biofilm, it was shaken at 80 rpm to induce aggregation and adsorption, and then the change was observed.

1-1. 바이오필름에 의한 표면 양전하 나노플라스틱 응집 및 흡착 관찰1-1. Observation of surface positively charged nanoplastic aggregation and adsorption by biofilm

[비교예 1][Comparative Example 1]

비교예 1-1. 바이오필름이 첨가되지 않은 현탁액Comparative Example 1-1. Suspension without added biofilm

비교예 1-2. 바이오필름을 증류수에 첨가Comparative Example 1-2. Add biofilm to distilled water

그 결과 빠르게 응집 및 흡착이 일어나 입자가 형성된 것이 확인되었다(도 1 참조). 비교예 1-2와 달리 바이오필름이 Amine-PS와 같은 노란 빛을 발광하는 것으로 보아 흡착이 일어났음을 확인했다. 비교예 1-1은 여전히 노란 빛을 발광하는 반면 실시예는 응집 및 흡착에 의해 노란 빛이 입자들과 바이오필름에 집중되고 용액에는 형광이 비교예 1-2의 증류수만큼 발광하지 않음을 확인할 수 있다. 따라서 바이오필름에 의한 나노플라스틱의 응집 및 흡착에 의해 나노플라스틱 오염이 정화되었음을 확인하였다. As a result, it was confirmed that agglomeration and adsorption occurred rapidly and particles were formed (see FIG. 1). Unlike Comparative Example 1-2, it was confirmed that adsorption occurred as the biofilm emit yellow light such as Amine-PS. Comparative Example 1-1 still emits yellow light, whereas in Example, yellow light is concentrated on the particles and biofilm by aggregation and adsorption, and it can be seen that fluorescence does not emit as much as distilled water in Comparative Example 1-2 in the solution. have. Therefore, it was confirmed that the nanoplastic contamination was purified by aggregation and adsorption of the nanoplastic by the biofilm.

1-2. Amine-PS 응집체들의 크기 및 물리적 충격에 대한 저항성 확인.1-2. Confirmation of the size of Amine-PS aggregates and their resistance to physical impact.

Dynamic light scattering(DLS)으로 비교예 1-1 현탁액의 Amine-PS 입자 크기와, 실험예 1의 응집체들의 크기를 확인하였다. 바이오필름의 외부 용액에서 응집이 발생하기 때문에 바이오필름을 핀셋으로 걷어내고 응집체들이 존재하는 상등액을 채취하여 DLS으로 측정하면 응집체들의 크기를 알 수 있다. 비교예 1-1의 Amine-PS에 비해 실시예 1의 Amine-PS 응집체들의 평균 부피는 2×108배 가까이 증가했다. 또한 측정된 응집체의 최소 지름은 6560 nm로 나노플라스틱 (< 1000 nm)은 없었다. 또한 물리적 충격에 대한 저항성을 확인하기 위해 각각 볼텍싱(vortexing) 30초와 초음파처리(ultrasonication) 30초(130 watts, 20 kHz)를 하고, 다시 DLS 으로 측정하였다. 그 결과, 응집체 평균 크기에 큰 변화가 일어나지 않아 물리적 충격에 대한 저항성을 확인하였다(도 2 참조).Dynamic light scattering (DLS) was used to confirm the size of the Amine-PS particles of the suspension in Comparative Example 1-1 and the size of the aggregates of Experimental Example 1. Since aggregation occurs in the external solution of the biofilm, the size of the aggregates can be determined by removing the biofilm with tweezers and collecting the supernatant containing aggregates and measuring by DLS. Compared to the Amine-PS of Comparative Example 1-1, the average volume of the Amine-PS aggregates of Example 1 was increased by 2×10 8 times. In addition, the minimum diameter of the measured aggregate was 6560 nm, and there was no nanoplastic (< 1000 nm). In addition, vortexing 30 seconds and ultrasonication 30 seconds (130 watts, 20 kHz) were performed, respectively, to confirm the resistance to physical shock, and measured again by DLS. As a result, there was no significant change in the average size of the aggregate, and thus resistance to physical impact was confirmed (see FIG. 2).

1-3. 응집에 의한 Amine-PS 격리 및 수질 정화 확인1-3. Confirmation of Amine-PS sequestration and water purification by aggregation

실시예 1의 Amine-PS는 뭉쳐서 바닥에 가라앉고, 상등액은 정화되어 형광을 띄지 않음을 확인하였다. 반면에 비교예 1의 Amine-PS 현탁액은 형광이 용액 전체에 고르게 분포하여 정화되지 않았음을 확인했다. 실험예 1-2에서 볼텐싱(vortexing)과 초음파처리(ultrasonication)의 경우에서도 수질 정화를 확인하였다(도 3 참조).It was confirmed that the Amine-PS of Example 1 aggregated and settled on the floor, and the supernatant was purified and did not exhibit fluorescence. On the other hand, it was confirmed that the Amine-PS suspension of Comparative Example 1 was not purified because fluorescence was evenly distributed throughout the solution. In Experimental Example 1-2, water purification was also confirmed in the case of vortexing and ultrasonic treatment (see FIG. 3).

1-4. 바이오필름의 Amine-PS 흡착 사실 형광 확인.1-4. Fluorescence confirmation of Amine-PS adsorption of biofilm.

바이오필름에 흡착되지 않은 응집체들의 형광을 제거하기 위해 상기 실시예 1의 바이오필름을 핀셋으로 건져서 증류수를 넣은 새로운 well에 넣고 200 rpm으로 세척하는 과정을 3회 반복하였다. 상기 세척한 바이오필름을 다시 새로운 증류수에 넣고 형광촬영 하였고, 비교예 1-2의 바이오필름도 마찬가지의 과정을 거쳤다. 비교예 1-2와 달리 바이오필름 전체에 걸쳐 형광이 관찰되는 것으로 보아 응집뿐만 아니라 흡착도 일어났음을 확인하였다(도 4 참조).In order to remove the fluorescence of the aggregates not adsorbed on the biofilm, the biofilm of Example 1 was removed with tweezers, placed in a new well containing distilled water, and washed at 200 rpm 3 times. The washed biofilm was put in fresh distilled water and subjected to fluorescence imaging, and the biofilm of Comparative Example 1-2 also went through the same process. Unlike Comparative Example 1-2, as fluorescence was observed throughout the biofilm, it was confirmed that not only aggregation but also adsorption occurred (see FIG. 4).

1-5. 바이오필름의 Amine-PS 흡착 사실 SEM 확인.1-5. SEM confirmation of Amine-PS adsorption of biofilm.

상기 실시예 1과 비교예 1-2의 바이오필름을 주사전자현미경 (SEM, scattering electron microscope)로 관찰하였다. 실시예 1에서는 비교예 1-2에서 관찰되지 않던 나노플라스틱 입자들이 세포 외부 섬유들에 응집되고 흡착된 것을 확인하였다. 이는 바이오필름이 표면 양전하 나노플라스틱 흡착 능력이 있음을 제시한다(도 5 참조).The biofilms of Example 1 and Comparative Example 1-2 were observed with a scanning electron microscope (SEM). In Example 1, it was confirmed that nanoplastic particles, which were not observed in Comparative Example 1-2, were aggregated and adsorbed to the outer fibers of the cell. This suggests that the biofilm has the ability to adsorb surface positively charged nanoplastics (see Fig. 5).

야생형 바이오필름은 표면 양전하 나노플라스틱 (Amine-PS) 제거 능력이 있지만, 표면 음전하 나노플라스틱 (Sulfate-PS)의 경우 그러한 능력이 발견되지 않았다. (도 10) 따라서 표면 작용기 변화를 통해 이를 해결하고자 하였다. 바이오필름에는 다양한 종류의 작용기가 존재한다. 음전하를 띄는 COO-와 양전하를 띄는 NH3 +가 그 예이다. 음전하 작용기는 양전하 상쇄와 반대 전하 간 인력을 통해 표면 양전하 나노플라스틱을 응집 및 흡착시킨다. 야생형 바이오필름이 표면 음전하 나노플라스틱을 응집 및 흡착시키지 못하는 건, 바이오필름 표면에 양전하 작용기보다 음전하 작용기가 지배적으로 존재해, 양전하 작용기의 표면 음전하 나노플라스틱 응집 및 흡착능을 저해시킨다고 판단하였다. 따라서 음전하 작용기의 전하를 봉쇄하기 위해 표면 작용기 변화를 유도하였다. 바이오필름을 0.1 M HCl 함유된 메탄올에 넣고 65℃ 12시간 반응시키면, 표면 작용기 R-COO-가 R-COOCH3로 변화된다. R-COO-는 음전하를 띄는 데 비해 R-COOCH3는 전하를 띄지 않는다. 따라서 바이오필름 표면의 강한 음전하가 상쇄되어, 표면 음전하 나노플라스틱을 응집 및 흡착시킬 수 있게 된다. (도 6)Wild-type biofilm has the ability to remove surface positively charged nanoplastics (Amine-PS), but no such ability was found in the case of surface negatively charged nanoplastics (Sulfate-PS). (FIG. 10) Therefore, it was attempted to solve this by changing the surface functional group. Various kinds of functional groups exist in biofilm. Examples are COO - negatively charged and NH 3 + positively charged. The negatively charged functional group aggregates and adsorbs the surface positively charged nanoplastics through the attraction between the positive charge cancellation and the opposite charge. It was judged that the fact that the wild-type biofilm did not aggregate and adsorb the surface negatively charged nanoplastics is that the negatively charged functional groups exist more predominantly than the positively charged functional groups on the surface of the biofilm, thereby inhibiting the aggregation and adsorption of the positively charged functional groups of the surface negatively charged nanoplastics. Therefore, in order to block the charge of the negatively charged functional group, a change in the surface functional group was induced. When the biofilm is put in methanol containing 0.1 M HCl and reacted at 65° C. for 12 hours, the surface functional group R-COO - is changed to R-COOCH 3. R-COO - has a negative charge, whereas R-COOCH 3 has no charge. Therefore, the strong negative charge on the surface of the biofilm is canceled, and the surface negatively charged nanoplastics can be aggregated and adsorbed. (Fig. 6)

실시예 2-1. FT-IR specta 비교를 통한 표면 작용기 변화 확인.Example 2-1. Confirmation of surface functional group change through FT-IR specta comparison.

Petri dish에 TGY 액체배지 25 ml 넣고 전배양 용액을 500 μl 첨가하였다. 총 10 개를 준비하였다. 30℃에서 3일간 배양한 후, 형성된 10개의 바이오필름을 모두 핀셋으로 건져 DW로 세척하였다. 50 ml Conical tube에 0.1 M HCl 함유 메탄올을 40 ml 채웠다. 세척한 바이오필름은 모두 핀셋으로 건져 Conical tube에 넣었다. 65℃에서 12시간 반응시켜 표면 작용기 변형을 유도하였다. 반응 후 Conical tube를 4000 rpm에서 1분 원심분리 하고 상등액을 버리고 세척을 위해 메탄올을 50 ml까지 마저 채우고 200 rpm에서 5분간 회전하였다. 다시 4000 rpm에서 1분 원심분리하고 상등액 버리고 이번에는 DW로 50 ml까지 채우고 200 rpm에서 5분 흔들어주었다. DW로 세척을 2번 더 하고 상등액을 버리고 -80℃에서 급속냉동 1시간 한 후 -65℃에서 동결건조 overnight하였다. 그리고 FT-IR 측정하였다.25 ml of TGY liquid medium was added to the Petri dish, and 500 μl of the pre-culture solution was added. A total of 10 were prepared. After incubation at 30° C. for 3 days, all 10 biofilms formed were removed with tweezers and washed with DW. A 50 ml Conical tube was filled with 40 ml of methanol containing 0.1 M HCl. All washed biofilms were removed with tweezers and placed in a conical tube. The reaction was carried out at 65° C. for 12 hours to induce surface functional group modification. After the reaction, the Conical tube was centrifuged at 4000 rpm for 1 minute, the supernatant was discarded, and methanol was even filled up to 50 ml for washing and rotated at 200 rpm for 5 minutes. Centrifuged again at 4000 rpm for 1 minute, discarded the supernatant, this time filled to 50 ml with DW, and shaken at 200 rpm for 5 minutes. After washing twice with DW and discarding the supernatant, quick freezing at -80°C for 1 hour and then freeze-dried overnight at -65°C. And FT-IR was measured.

비교예 2-1. 표면 작용기 변화 반응시키지 않은, 야생형 바이오필름Comparative Example 2-1. Wild-type biofilm without surface functional group change reaction

그 결과 비교예 2-1에 없던 새로운 ester bond의 구성성분에 해당하는 peak 3개를 확인하였다. 또한 1440 cm-1의 peak은 비교예 2-1에서는 우측 이웃 peak보다 작았는데, 실시예 2-1에서는 우측 이웃 peak보다 커진 것을 확인하였다. 이는 (C-H)에 해당하는 peak으로, C-H의 비율이 늘어났음을 의미한다. 이는 의도했던 표면 작용기인 methyl ester bond가 늘어났음을 나타낸다. As a result, three peaks corresponding to the constituents of a new ester bond that were not present in Comparative Example 2-1 were confirmed. In addition, the peak of 1440 cm-1 was smaller than the right neighboring peak in Comparative Example 2-1, but it was confirmed that it was larger than the right neighboring peak in Example 2-1. This is a peak corresponding to (C-H), meaning that the ratio of C-H has increased. This indicates that the intended surface functional group, the methyl ester bond, was increased.

실시예 2-2. 표면 작용기 변화량의 확인Example 2-2. Confirmation of the amount of change in surface functional groups

상기 표면 작용기 변형된 바이오필름을 강염기의 물에 넣으면 가수분해 반응이 유도되어 R-COOCH3가 R-COOH와 메탄올로 다시 분리된다. 따라서 표면 작용기 변형된 바이오필름을 강염기에 넣고 반응시켜 나온 메탄올을 측정하면 메탄올에 의해 에스터 결합이 형성 즉, 표면 작용기 변형이 일어났음을 확인할 수 있고 그 정도를 정량화 할 수도 있다. 이를 확인하기 위해 2개의 250 ml 삼각 플라스크에 각각 TGY 액체배지 50 ml와 전배양한 용액 500 μl를 넣은 것을 30℃에서 4일간 배양하였다. 이 배양용액을 50 ml conical tube에 넣고 4000 rpm에서 원심분리를 1분간 하였다. 상등액은 버리고, 다른 배양용액을 넣고 4000 rpm에서 원심분리를 1분간 하고 상등액 버렸다. 증류수로 40 ml까지 채우고, 세척을 위해 200 rpm에서 5분동안 흔들어 주었다. 원심분리를 4000 rpm에서 1분간 하고, 상등액 버린 후 증류수로 세척했다. 상등액을 버린 후에 -80℃ 급속냉동을 1시간동안 하여 -65℃동결건조 overnight하였다. When the surface functional group-modified biofilm is added to strong base water, a hydrolysis reaction is induced to separate R-COOCH3 into R-COOH and methanol again. Therefore, when the biofilm having the surface functional group modified is added to a strong base and reacted and the resulting methanol is measured, it can be confirmed that the ester bond is formed by methanol, that is, the surface functional group modification has occurred, and the degree can be quantified. To confirm this, 50 ml of TGY liquid medium and 500 μl of the pre-cultured solution were added to two 250 ml Erlenmeyer flasks, respectively, and incubated at 30° C. for 4 days. This culture solution was placed in a 50 ml conical tube and centrifuged at 4000 rpm for 1 minute. The supernatant was discarded, another culture solution was added, centrifuged at 4000 rpm for 1 minute, and the supernatant was discarded. Filled up to 40 ml with distilled water, and shaken for 5 minutes at 200 rpm for washing. Centrifugation was performed at 4000 rpm for 1 minute, and the supernatant was discarded and washed with distilled water. After discarding the supernatant, -80 ℃ rapid freezing was carried out for 1 hour and freeze-dried overnight at -65 ℃.

동결건조한 야생형 바이오필름이 담겨있는 50 ml conical tube에 0.1 M HCl 함유 메탄올 5 ml를 넣어 강하게 흔들어주고, 200 rpm에서 5분간 회전 후 65℃에서 12시간 반응시켰다. 그 후에 conical tube에 DW를 50 ml까지 채우고 200 rpm에서 5분간 회전 후 4000 rpm에서 원심분리를 5분간 하는 세척과정을 5번 반복하였다. 마지막 원심분리는 4000 rpm에서 10분간 하였다. 상등액 버리고 -80℃ 급속냉동 1시간을 한 후에 -65℃ 동결건조를 overnight하였다. 동결건조한 표면 작용기 변형된 바이오필름의 무게를 잰 다음 새 15 ml conical tube로 옮기고, 무게×(ml/mg)의 0.25 M NaOH를 넣었다. 이를 볼텍싱하여 강하게 섞어주고, 200 rpm으로 30분 흔들어준 다음에 4℃에서 overnight 하였다. 그 후에 4000rpm에서 10분간 원심분리한 후에 상등액을 0.2 μm CA syringe filter로 필터링하였다. 상기 필터링 한 용액에 내부표준(internal standard)으로 1-butanol 1 mM 넣고, GC/FID을 이용하여 메탄올(methanol)양을 측정하였다(도 8 참조). (GC/FID 조건 : Injector temp 250℃, column temp 40℃, detector temp 270℃, run time 5 min, 1:100 split)5 ml of methanol containing 0.1 M HCl was added to a 50 ml conical tube containing lyophilized wild-type biofilm, and shaken vigorously, rotated at 200 rpm for 5 minutes, and reacted at 65° C. for 12 hours. After that, the washing process was repeated 5 times in which the conical tube was filled with DW up to 50 ml, rotated at 200 rpm for 5 minutes, and centrifuged at 4000 rpm for 5 minutes. The last centrifugation was performed at 4000 rpm for 10 minutes. The supernatant was discarded and freeze-dried overnight at -65°C after 1 hour of rapid freezing at -80°C. After weighing the freeze-dried surface functional group-modified biofilm, it was transferred to a new 15 ml conical tube, and 0.25 M NaOH of weight×(ml/mg) was added. This was vortexed and mixed strongly, and then shaken at 200 rpm for 30 minutes, and then overnight at 4°C. Then, after centrifugation at 4000 rpm for 10 minutes, the supernatant was filtered with a 0.2 μm CA syringe filter. 1 mM of 1-butanol was added to the filtered solution as an internal standard, and the amount of methanol was measured using GC/FID (see FIG. 8). (GC/FID condition: Injector temp 250℃, column temp 40℃, detector temp 270℃, run time 5 min, 1:100 split)

[비교예 2][Comparative Example 2]

비교예 2-2-1. 실시예 2-2에서 0.25 M NaOH 대신 증류수 첨가Comparative Example 2-2-1. Distilled water was added instead of 0.25 M NaOH in Example 2-2

비교예 2-2-2. 실시예 2-2에서 표면작용기 변형 전, 즉 야생형 바이오필름에 0.25 M NaOH 넣고 이후 과정 동일 처리Comparative Example 2-2-2. In Example 2-2, before modification of the surface functional group, that is, 0.25 M NaOH was added to the wild-type biofilm and then the same process was performed.

비교예에서 모두 메탄올이 검출되지 않았고, 실시예 2-2에서만 메탄올이 검출되었다. 비교예 2-2-1의 결과로 가수분해 반응 전 워싱이 제대로 되지 않아 잔여 메탄올이 남아있다거나 하는 등의 실험의 신뢰성에 대한 의심을 제거할 수 있고, 강염기에 의한 가수분해가 올바로 이루어졌음을 알 수 있다. 비교예 2-2-2는 메탄올이 검출되지 않은 것으로 보아 야생형 바이오필름의 표면에는 메틸 에스터가 없거나 극히 적었다는 것을 확인할 수 있다. 따라서 표면작용기 변형에 의해 메탄올이 메틸 에스터 형태로 바이오필름의 표면 작용기로 들어갔음을 확인할 수 있다. Methanol was not detected in any of the comparative examples, and methanol was detected only in Example 2-2. As a result of Comparative Example 2-2-1, doubts about the reliability of the experiment, such as that the washing before the hydrolysis reaction was not properly carried out, and residual methanol remained, can be eliminated, and that the hydrolysis by the strong base was performed correctly. Able to know. In Comparative Example 2-2-2, since methanol was not detected, it could be confirmed that there was no or very little methyl ester on the surface of the wild-type biofilm. Therefore, it can be confirmed that methanol entered the surface functional group of the biofilm in the form of methyl ester by the modification of the surface functional group.

실시예 2-3. 표면 작용기 변화에 의한 바이오필름 표면 전하 변화 확인.Example 2-3. Confirmation of biofilm surface charge change due to surface functional group change.

6 well palte에 TGY 4 ml와 전배양 400 μl로 30℃에서 3일간 배양한 후, 배양한 야생형 바이오필름을 증류수로 세척하였다. 1.5 ml microtube에 0.1 M HCl 함유한 메탄올 1 ml와 세척한 바이오필름을 넣고, 65℃에서 12시간동안 반응시켜 표면 작용기 변화를 유도하였다. 상기 표면 작용기 변화된 바이오필름을 핀셋으로 건져 메탄올과 증류수로 차례로 세척하였다. 96 well plate에 증류수 100μl와 세척한 변형된 바이오필름을 넣고,-80℃로 급속냉동 후 -65℃로 동결건조하였다. pH 2, 4, 6, 8, 10, 12의 증류수 1 ml에 동결건조한 변형된 바이오필름을 각각 넣고, 피펫팅으로 분쇄한 후 ELSZ-1000 (Otsuka, japan)으로 Zeta potential을 측정하였다. After incubating for 3 days at 30° C. with 4 ml of TGY and 400 μl of pre-culture in a 6 well palte, the cultured wild-type biofilm was washed with distilled water. In a 1.5 ml microtube, 1 ml of methanol containing 0.1 M HCl and the washed biofilm were placed, and reacted at 65° C. for 12 hours to induce a change in surface functional groups. The biofilm having the surface functional group changed was taken out with tweezers and washed sequentially with methanol and distilled water. 100 μl of distilled water and the washed modified biofilm were put in a 96 well plate, and then rapidly frozen at -80°C and freeze-dried at -65°C. Freeze-dried modified biofilm was added to 1 ml of distilled water of pH 2, 4, 6, 8, 10, 12, respectively, pulverized by pipetting, and the Zeta potential was measured with ELSZ-1000 (Otsuka, japan).

비교예 2-3. 야생형 바이오필름의 Zeta potential 측정.Comparative Example 2-3. Zeta potential measurement of wild-type biofilm.

그 결과, 비교예 2-3의 야생형 바이오필름은 pH 4~12 범위에서 안정적인 음전하를 띄는 반면에 실시예 2-2의 표면 작용기 변형된 바이오필름은 pH 2~10 범위에서 안정적인 양전하를 띄어, 음전하 작용기 전하 봉쇄에 의해 정전기적 특성이 변화했음을 확인하였다(도 9 참조).As a result, the wild-type biofilm of Comparative Example 2-3 exhibits a stable negative charge in the pH range of 4 to 12, while the surface functional group-modified biofilm of Example 2-2 exhibits a stable positive charge in the pH range of 2 to 10. It was confirmed that electrostatic properties were changed due to functional group charge blocking (see FIG. 9).

표면 작용기 변형된 바이오필름을 이용한 표면 음전하 나노플라스틱 응집 및 흡착 사실 확인Confirmation of agglomeration and adsorption of negatively charged surface nanoplastics using biofilm modified with surface functional groups

6 well plate에 TGY 4 ml와 전배양액 400 μl을 넣고, 30℃로 3일간 키운 야생형 바이오필름을 증류수에 세척하였다. 1.5 ml microtube에 0.1 M HCl 함유된 메탄올 1 ml를 넣고, 세척한 바이오필름을 핀셋으로 넣었다. 이를 65℃에서 12시간동안 반응시킨 후, 메탄올과 물로 세척하였다. 새로운 6 well에 표면 음전하 나노플라스틱 (Sulfate modified fluorescence polystyrene latex beads, 100 nm, sigma aldrich) sulfate-PS 2.5% 현탁액을 증류수에 50배 희석한 0.05% 현탁액 3 ml을 넣었다. well에 담겨있는 0.05% 현탁액에 작용기 변형된 바이오필름을 3개 넣고 80 rpm으로 흔들어 응집 및 흡착을 유도하였다. 반응을 시작한지 1분이 지난 후부터 응집 및 흡착이 일어나 입자가 형성된 것이 확인되었다(도 10 참조).4 ml of TGY and 400 μl of pre-culture were added to a 6 well plate, and the wild-type biofilm grown at 30° C. for 3 days was washed with distilled water. 1 ml of methanol containing 0.1 M HCl was added to a 1.5 ml microtube, and the washed biofilm was put in with tweezers. This was reacted at 65° C. for 12 hours, and then washed with methanol and water. In a new 6 well, 3 ml of a 0.05% suspension diluted 50 times in distilled water was added to a 2.5% sulfate-PS suspension of surface negatively charged nanoplastic (Sulfate modified fluorescence polystyrene latex beads, 100 nm, sigma aldrich). Three biofilms with functional group modification were added to the 0.05% suspension contained in the well and shaken at 80 rpm to induce aggregation and adsorption. It was confirmed that agglomeration and adsorption occurred from 1 minute after starting the reaction to form particles (see FIG. 10).

[비교예 3][Comparative Example 3]

비교예 3-1 실시예 3과 같은 현탁액만 80 rpm에서 회전하였다. Comparative Example 3-1 Only the same suspension as in Example 3 was rotated at 80 rpm.

비교예 3-2 실시예 3과 같은 현탁액에 실시예 1의 야생형 바이오필름을 넣고 80 rpm에서 회전하였다. Comparative Example 3-2 The wild-type biofilm of Example 1 was added to the same suspension as in Example 3 and rotated at 80 rpm.

비교예 3-3 증류수에 넣은 표면 작용기 변화된 바이오필름 Comparative Example 3-3 Biofilm with changed surface functional groups added to distilled water

3-1. 표면 작용기 변형된 바이오필름에 의한 표면 음전하 나노플라스틱 응집 및 흡착 관찰3-1. Observation of surface negatively charged nanoplastic aggregation and adsorption by surface functional group-modified biofilm

비교예 3-3과 다르게 바이오필름이 Sulfate-PS와 같은 분홍 빛을 발광하는 것으로 보아 흡착이 일어났음을 확인하였다. 비교예 3-1과 비교예 3-2는 여전히 분홍 빛을 발광하는 반면 실시예 3은 응집 및 흡착에 의해 분홍 빛이 입자들과 바이오필름에 집중되고, 용액에는 형광이 비교예 3-3의 증류수만큼 발광하지 않음을 확인하였다. 따라서 바이오필름에 의한 나노플라스틱의 응집 및 흡착에 의해 나노플라스틱 오염으로부터 정화되었음을 확인하였다. Unlike Comparative Example 3-3, it was confirmed that adsorption occurred as the biofilm emit pink light such as Sulfate-PS. Comparative Example 3-1 and Comparative Example 3-2 still emit pink light, whereas in Example 3, pink light was concentrated on the particles and the biofilm by aggregation and adsorption, and the fluorescence of Comparative Example 3-3 was concentrated in the solution. It was confirmed that it did not emit light as much as distilled water. Therefore, it was confirmed that it was purified from nanoplastic contamination by aggregation and adsorption of the nanoplastic by the biofilm.

3-2. Sulfate-PS 응집체들의 크기 및 물리적 충격에 대한 저항성 확인.3-2. Confirmation of the size of sulfate-PS aggregates and their resistance to physical impact.

Dynamic light scattering(DLS)으로 비교예 3-1의 현탁액의 Sulfate-PS 입자 크기와, 실시예 3의 응집체들의 크기를 확인하였다. 변형된 바이오필름의 외부 용액에서 응집이 발생하기 때문에 변형된 바이오필름을 핀셋으로 걷어내고 응집체들이 존재하는 상등액을 채취하여 DLS 측정하면 응집체들의 크기를 알 수 있다. 비교예 3-1의 Sulfate-PS에 비해 실시예 3의 Sulfate-PS 응집체들의 평균 부피는 5×109배 이상 증가했다. 또한 측정된 응집체의 최소 지름은 2379.1 nm로 나노플라스틱 (< 1000 nm)은 없었다. 물리적 충격에 대한 저항성을 확인하기 위해 각각 볼텍싱(vortexing) 30초와 초음파처리(ultrasonication) 30초 (130 watts, 20 kHz)동안 하고, 다시 DLS 측정하였다. 그 결과, 응집체 평균 크기에 큰 변화가 일어나지 않아 물리적 충격에 대한 저항성을 확인하였다(도 11 참조).Dynamic light scattering (DLS) confirmed the size of the Sulfate-PS particles of the suspension of Comparative Example 3-1 and the size of the aggregates of Example 3. Since aggregation occurs in the external solution of the deformed biofilm, the size of the aggregates can be determined by removing the deformed biofilm with tweezers and collecting the supernatant containing aggregates and measuring DLS. Compared to the Sulfate-PS of Comparative Example 3-1, the average volume of the Sulfate-PS aggregates of Example 3 was increased by 5×10 9 times or more. In addition, the minimum diameter of the measured aggregate was 2379.1 nm, and there was no nanoplastic (< 1000 nm). In order to check the resistance to physical shock, vortexing was performed for 30 seconds and ultrasonication was performed for 30 seconds (130 watts, 20 kHz), respectively, and DLS was measured again. As a result, there was no significant change in the average size of the aggregate, and thus resistance to physical impact was confirmed (see FIG. 11).

3-3. 응집에 의한 Sulfate-PS 격리 및 수질 정화 확인3-3. Sulfate-PS sequestration by flocculation and confirmation of water purification

실시예 3의 Sulfate-PS는 뭉쳐서 바닥에 가라앉고, 상등액은 정화되어 형광을 띄지 않음을 확인하였다. 반면에 비교예 3-1, 3-2의 Sulfate-PS 현탁액은 형광이 용액 전체에 고르게 분포하며 전혀 정화되지 않았음을 확인했다. 실험예 3-2에서 볼텍싱(vortexing)과 초음파처리(ultrasonication)의 경우에서도 수질 정화를 확인하였다(도 12 참조).It was confirmed that the Sulfate-PS of Example 3 aggregated and settled on the floor, and the supernatant was purified and did not exhibit fluorescence. On the other hand, it was confirmed that the fluorescence of the Sulfate-PS suspensions of Comparative Examples 3-1 and 3-2 were evenly distributed throughout the solution and were not purified at all. Water purification was also confirmed in the case of vortexing and ultrasonic treatment in Experimental Example 3-2 (see FIG. 12).

3-4. 표면 작용기 변형된 바이오필름의 Sulfate-PS 흡착 사실 형광 확인.3-4. Fluorescence confirmation of Sulfate-PS adsorption of the surface functional group-modified biofilm.

바이오필름에 흡착되지 않은 응집체들의 형광을 제거하기 위해 상기 실시예 3의 바이오필름을 핀셋으로 건져 증류수를 넣은 새로운 well에 넣고 200 rpm으로 세척하는 과정을 3회 반복하였다. 상기 세척한 바이오필름을 다시 새로운 증류수에 넣고 형광촬영을 하였고, 비교예 3-3의 바이오필름도 마찬가지의 과정을 거쳤다. 비교예 3-3와 달리 바이오필름 전체에 걸쳐 형광이 관찰되는 것으로 보아 응집 뿐 아니라 흡착도 일어났음을 확인하였다(도 13 참조).In order to remove the fluorescence of the aggregates not adsorbed on the biofilm, the biofilm of Example 3 was removed with tweezers, placed in a new well containing distilled water, and washed at 200 rpm 3 times. The washed biofilm was put again in fresh distilled water and subjected to fluorescence imaging, and the biofilm of Comparative Example 3-3 also went through the same process. Unlike Comparative Example 3-3, as fluorescence was observed throughout the biofilm, it was confirmed that not only aggregation but also adsorption occurred (see FIG. 13).

3-5. 변형된 바이오필름의 Sulfate-PS 흡착 사실 SEM 확인.3-5. SEM confirmation of Sulfate-PS adsorption of the modified biofilm.

상기 실시예 3과 비교예 3-2 및 3-3의 바이오필름을 주사전자현미경 (SEM, scattering electron microscope)로 관찰하였다. 실시예 2에서는 비교예 3-2 및 3-3에서 관찰되지 않던 나노플라스틱 입자들이 세포 외부 섬유들에 응집되고 흡착된 사실을 확인하였다. 따라서 변형된 바이오필름이 표면 음전하 나노플라스틱 흡착 능력이 있음을 확인하였다(도 14 참조).The biofilms of Example 3 and Comparative Examples 3-2 and 3-3 were observed with a scanning electron microscope (SEM). In Example 2, it was confirmed that nanoplastic particles, which were not observed in Comparative Examples 3-2 and 3-3, were aggregated and adsorbed on external fibers. Therefore, it was confirmed that the modified biofilm has the ability to adsorb surface negatively charged nanoplastics (see FIG. 14).

바이오필름을 이용한 응집 및 흡착 후 필터링 함으로써 나노플라스틱 제거Removal of nanoplastics by filtering after aggregation and adsorption using biofilm

4-1. 야생형 바이오필름으로 Amine-PS 응집 및 흡착 후 필터링하여 제거4-1. Amine-PS coagulation and adsorption with wild-type biofilm and filtering to remove

바이오필름을 이용한 나노플라스틱 응집 및 흡착으로 나노플라스틱의 크기가 커졌기 때문에 필터링을 이용하여 제거하였다. 6 well plate에 Amine-PS 0.05% 현탁액 1 ml와 바이오필름을 넣고, 120 rpm으로 15분동안 반응시켰다. PVDF syringe filter (pore size 0.2 μm, hyundai micro)에 1 ml 주사기를 장착하고 응집 용액을 필터링 시켰다. 필터의 가장자리를 가위로 자르고 안의 필터 멤브레인을 꺼내어, 하루동안 건조하였다. 이를 Bio-rad Chemi-Doc MP imaging system으로 Epi-blue (460-490 nm)로 발광시키고 590/110 nm standard filter를 사용하여 형광촬영을 하였다. 바이오필름을 넣지 않은 대조군에 비해 실험군 필터는 강한 형광을 띄고, 그 여과액은 형광을 띄지 않아 Amine-PS가 필터에 모두 걸려 물이 정화되었음을 확인하였다. 반면, 대조군의 필터는 형광이 매우 약하고, 그 여과액에서 강한 형광을 띄어 물의 정화가 거의 일어나지 않았음을 확인하였다.Since the size of the nanoplastic increased due to the aggregation and adsorption of the nanoplastic using the biofilm, it was removed by filtering. 1 ml of Amine-PS 0.05% suspension and biofilm were added to a 6 well plate, and reacted at 120 rpm for 15 minutes. A 1 ml syringe was mounted on a PVDF syringe filter (pore size 0.2 μm, hyundai micro), and the agglutination solution was filtered. The edge of the filter was cut with scissors, the filter membrane inside was taken out, and dried for one day. This was emitted with Epi-blue (460-490 nm) with a Bio-rad Chemi-Doc MP imaging system, and fluorescence was photographed using a 590/110 nm standard filter. Compared to the control group in which the biofilm was not added, the filter of the experimental group showed strong fluorescence, and the filtrate did not show fluorescence, so that Amine-PS was caught in the filter and the water was purified. On the other hand, it was confirmed that the filter of the control group had very weak fluorescence, and the filtrate showed strong fluorescence, so that almost no water purification occurred.

4-2. 야생형 바이오필름과의 반응시간 별 Amine-PS 제거율4-2. Amine-PS removal rate by reaction time with wild-type biofilm

야생형 바이오필름의 시간별 제거율을 확인하기 위하여 6 well plate에서 TGY 4 ml와 전배양 용액 400 ul를 넣고, 30℃에서 3일간 배양한 바이오필름 2개를 증류수로 세척하였다. 6 well에 Amine-PS 0.05% 현탁액 1.5 ml과 세척한 바이오필름을 첨가하고, 120 rpm에서 반응시켰다. 반응 시작 후 30초, 1분, 5분, 15분, 1시간 후에 각각 150 μl씩 샘플링하여 PVDF syringe filter로 필터링 하였다. 대조군은 바이오필름 없이 120 rpm으로 1시간 회전시킨 Amine-PS 현탁액을 필터링하였다. n=3. 그 결과, 반응시간 1분 만에 제거율은 99%를 넘는 것은 확인하였다(도 16 참조).In order to check the removal rate of wild-type biofilm over time, 4 ml of TGY and 400 ul of pre-culture solution were added to a 6 well plate, and two biofilms cultured at 30° C. for 3 days were washed with distilled water. 1.5 ml of Amine-PS 0.05% suspension and the washed biofilm were added to 6 wells, and reacted at 120 rpm. After the reaction was started, 150 μl each was sampled 30 seconds, 1 minute, 5 minutes, 15 minutes, and 1 hour, and filtered with a PVDF syringe filter. The control group filtered the Amine-PS suspension rotated at 120 rpm for 1 hour without biofilm. n=3. As a result, it was confirmed that the removal rate exceeded 99% in 1 minute of reaction time (see FIG. 16).

4-3. pH 변화에 따른 Amine-PS 제거율 4-3. Amine-PS removal rate according to pH change

12 well plate에서 TGY 2 ml와 전배양 용액 200 ul를 넣고, 30℃에서 3일간 배양한 바이오필름을 증류수로 세척한 후, 미리 증류수 100 μl를 넣어둔 96 well에 첨가하고, -80℃에서 급속냉동 후 동결건조하였다. 증류수에 NaOH 1 M과 HCl 1 M로 pH 조절하여 pH 2, 4, 6, 8, 10의 pH 의 증류수를 제조하였다. pH 조절된 증류수에 2.5% Amine-PS를 50배 희석하여 pH별 0.05% Amine-PS 현탁액을 제조하였다. 동결건조한 바이오필름이 담겨있는 96 well에 pH 조절된 0.05% Amine-PS 현탁액 150μl를 넣고 300 rpm에서 15분간 회전시켰다. 15분 후 PVDF syringe filter로 150μl를 필터링 하였다. 대조군은 바이오필름이 없는 채 300 rpm 15분 회전하고 필터링 한 것이다. 그 결과, pH 4~10 범위에서 제거율은 99% 이상임을 확인하였다(n=3). In a 12 well plate, add 2 ml of TGY and 200 ul of the pre-culture solution, wash the biofilm cultured at 30°C for 3 days with distilled water, and then add it to 96 wells containing 100 μl of distilled water in advance, and rapidly at -80°C. Freeze-dried after freezing. Distilled water having a pH of 2, 4, 6, 8, and 10 was prepared by adjusting the pH with 1 M of NaOH and 1 M of HCl in distilled water. A 0.05% Amine-PS suspension for each pH was prepared by diluting 2.5% Amine-PS 50 times in distilled water adjusted to pH. 150 μl of a pH-adjusted 0.05% Amine-PS suspension was added to 96 wells containing the lyophilized biofilm and rotated at 300 rpm for 15 minutes. After 15 minutes, 150 μl was filtered with a PVDF syringe filter. The control was rotated for 15 minutes at 300 rpm without biofilm and filtered. As a result, it was confirmed that the removal rate was 99% or more in the range of pH 4-10 (n=3).

4-4. 표면 작용기 변화된 바이오필름으로 Sulfate-PS 응집 및 흡착 후 필터링하여 제거4-4. Sulfate-PS coagulation and adsorption with a biofilm with a changed surface functional group, followed by filtering to remove

6 well plate에 Sulfate-PS 0.05% 현탁액 1 ml을 넣고, 6 well plate에서 키우고 변형시킨 표면 작용기 변화된 바이오필름을 넣고 120 rpm으로 15분동안 반응시켰다. CA syringe filter (pore size 0.2 μm, hyundai micro)에 1 ml 주사기를 장착하고 응집 용액을 필터링 시켰다. 필터의 가장자리를 가위로 자르고 안의 필터 멤브레인을 꺼내어 하루동안 건조하였다. 이를 Bio-rad Chemi-Doc MP imaging system으로 Epi-blue (460-490 nm)로 발광시키고 590/110 nm standard filter를 사용하여 형광촬영을 하였다. 바이오필름을 넣지 않거나 야생형 바이오필름을 넣은 대조군에 비해 실험군 필터는 강한 형광을 발하고, 그 여과액은 형광을 발하지 않아 Sulfate-PS가 필터에 모두 걸려 물이 정화되었음을 확인하였다. 반면 대조군의 필터는 형광이 매우 약하고, 그 여과액에서 강한 형광을 발하여 물의 정화가 거의 일어나지 않았음을 확인하였다. (도 18 참조)1 ml of Sulfate-PS 0.05% suspension was added to a 6 well plate, and the biofilm grown in a 6 well plate and modified surface functional group was added and reacted at 120 rpm for 15 minutes. A 1 ml syringe was mounted on a CA syringe filter (pore size 0.2 μm, hyundai micro) and the coagulation solution was filtered. The edge of the filter was cut with scissors, the inner filter membrane was taken out and dried for one day. This was emitted with Epi-blue (460-490 nm) with a Bio-rad Chemi-Doc MP imaging system, and fluorescence was photographed using a 590/110 nm standard filter. Compared to the control group in which no biofilm or wild-type biofilm was added, the filter of the experimental group emit strong fluorescence, and the filtrate did not emit fluorescence, so it was confirmed that all of the Sulfate-PS was caught in the filter and the water was purified. On the other hand, it was confirmed that the filter of the control group had very weak fluorescence, and the filtrate emitted strong fluorescence, so that almost no water purification occurred. (See Fig. 18)

4-5. 표면 작용기가 변화된 바이오필름의 반응시간 별 Sulfate-PS 제거율4-5. Sulfate-PS removal rate by reaction time of biofilm with changed surface functional group

표면 작용기가 변화된 바이오필름의 시간별 제거율을 확인하기 위하여 6 well plate에서 TGY 4 ml와 전배양 용액 400 ul를 넣고, 30℃에서 3일간 배양한 바이오필름을 증류수로 세척하였다. 1.5 ml microtube에 0.1 M HCl 함유 메탄올을 1 ml 넣고, 세척한 바이오필름을 핀셋으로 건져 넣고, 65℃에서 12시간 반응시킨 후, 메탄올과 증류수로 세척하였다. 96 well plate에 증류수 100 μl와 세척한 표면 작용기 변화된 바이오필름을 넣고, -80℃에서 급속냉동 후, -65℃으로 동결건조하였다. 동결건조한 표면 작용기 변화된 바이오필름 두 개를 6 well plate에 넣어 같은 well에서 Sulfate-PS 0.05% 현탁액 1.5 ml를 넣고, 200 rpm에서 반응시켰다. 반응 시작 후 30 초, 1 분, 5 분, 15 분, 1 시간 후에 각각 150 μl씩 샘플링하여 CA syringe filter로 필터링하였다. 대조군은 바이오필름 없이 1시간 120 rpm 회전시킨 현탁액이다(n=3). 그 결과, 반응시간 30초 동안 제거율은 99%를 넘는 것을 확인하였다(도 19 참조).In order to check the time-dependent removal rate of the biofilm having a changed surface functional group, 4 ml of TGY and 400 ul of the pre-culture solution were added to a 6 well plate, and the biofilm cultured at 30° C. for 3 days was washed with distilled water. 1 ml of methanol containing 0.1 M HCl was added to a 1.5 ml microtube, and the washed biofilm was taken out with tweezers, reacted at 65° C. for 12 hours, and washed with methanol and distilled water. 100 μl of distilled water and a biofilm with changed surface functional groups were put in a 96 well plate, and then rapidly frozen at -80°C, and freeze-dried at -65°C. Two lyophilized biofilms with changed surface functional groups were put into a 6 well plate, 1.5 ml of a 0.05% Sulfate-PS suspension was added in the same well, and reacted at 200 rpm. 150 μl each was sampled 30 seconds, 1 minute, 5 minutes, 15 minutes, and 1 hour after the start of the reaction, and filtered with a CA syringe filter. The control group was a suspension rotated at 120 rpm for 1 hour without biofilm (n=3). As a result, it was confirmed that the removal rate exceeded 99% during the reaction time of 30 seconds (see FIG. 19).

4-6. pH 변화에 따른 Sulfate-PS 제거율4-6. Sulfate-PS removal rate according to pH change

12 well plate에서 TGY 2 ml와 전배양 용액 200 ul를 넣고, 30℃에서 3일간 배양한 바이오필름을 증류수로 세척한 후, 0.1 M HCl 함유 메탄올 1 ml 들어있는 1.5 ml microtube에 넣고, 65℃에서 12시간 동안 반응시켰다. 반응 후 메탄올과 증류수로 세척하고 미리 증류수 100μl를 넣어둔 96 well에 첨가하고, -80℃에서 급속냉동 후 동결건조 하였다. 증류수에 NaOH 1 M과 HCl 1 M로 pH 조절하여 pH 4, 6, 8, 10의 증류수를 제조하였다. pH가 조절된 증류수에 2.5% Sulfate-PS를 50배 희석하여 pH별 0.05% Sulfate-PS 현탁액을 제조하였다. 동결건조한 표면 작용기 변화된 바이오필름이 담겨있는 96 well에 pH가 조절된 0.05% Sulfate-PS 현탁액을 150μl를 넣고, 300 rpm에서 15분 동안 회전시켰다. 15분 후에 CA syringe filter로 150μl를 필터링 하고 여과액의 형광을 측정하여 제거율을 계산하였다. 대조군은 바이오필름이 없는 채 300 rpm 15분 회전하고 필터링 한 것, 표면 작용기 변화된 바이오필름 대신 야생형 바이오필름과 반응시킨 것이다. 그 결과, pH 4~10 범위에서 제거율은 99% 이상임을 확인하였다(n=3).In a 12 well plate, add 2 ml of TGY and 200 ul of the pre-culture solution, wash the biofilm cultured at 30°C for 3 days with distilled water, and put it in a 1.5 ml microtube containing 1 ml of methanol containing 0.1 M HCl, and at 65°C. It was reacted for 12 hours. After the reaction, it was washed with methanol and distilled water, added to 96 wells in which 100 μl of distilled water was put in advance, and freeze-dried after rapid freezing at -80°C. Distilled water of pH 4, 6, 8, and 10 was prepared by adjusting the pH with 1 M of NaOH and 1 M of HCl in distilled water. A 0.05% Sulfate-PS suspension for each pH was prepared by diluting 2.5% Sulfate-PS 50 times in distilled water whose pH was adjusted. 150 μl of a pH-adjusted 0.05% Sulfate-PS suspension was added to 96 wells containing a biofilm with a lyophilized surface functional group changed, and rotated at 300 rpm for 15 minutes. After 15 minutes, 150 μl was filtered with a CA syringe filter, and the fluorescence of the filtrate was measured to calculate the removal rate. The control group rotated and filtered for 15 minutes at 300 rpm without biofilm, and reacted with wild-type biofilm instead of biofilm with a surface functional group changed. As a result, it was confirmed that the removal rate was 99% or more in the range of pH 4-10 (n=3).

Claims (15)

미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키는 단계를 포함하는, 나노플라스틱 제거방법이되,
상기 미생물 바이오필름은 표면작용기가 개질된 바이오필름이며,
상기 표면작용기가 개질된 바이오필름은 양전하를 띄어, 음전하를 띄는 나노플라스틱을 응집 및 흡착시키는 것을 특징으로 하는, 나노플라스틱 제거방법.
It is a nanoplastic removal method comprising the step of contacting a microbial biofilm with the nanoplastic,
The microbial biofilm is a biofilm having a modified surface functional group,
The surface functional group-modified biofilm has a positive charge, characterized in that the agglomeration and adsorption of the nanoplastic having a negative charge, nanoplastic removal method.
제1항에 있어서,
상기 미생물 바이오필름은 야생형(wild type) 바이오필름을 더 포함하는 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The microbial biofilm further comprises a wild type biofilm.
제2항에 있어서,
상기 야생형(wild type) 바이오필름은 음전하를 띄어, 양전하를 띄는 나노플라스틱을 응집 및 흡착시키는 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 2,
The wild type biofilm has a negative charge, characterized in that the agglomeration and adsorption of the nanoplastic having a positive charge, nanoplastic removal method.
삭제delete 제1항에 있어서,
상기 표면작용기가 개질된 바이오필름은,
야생형 바이오필름을 산과 알코올 존재하에 반응시켜, 야생형 바이오필름에 존재하던 -COO- 기를 에스테르화하여 제조되는 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The surface functional group-modified biofilm,
A method for removing nanoplastics, characterized in that produced by reacting a wild-type biofilm in the presence of an acid and an alcohol, and esterifying the -COO-group present in the wild-type biofilm.
제5항에 있어서,
상기 산은 염산이고;
상기 알코올은 메탄올인 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 5,
The acid is hydrochloric acid;
The alcohol is methanol, characterized in that, nanoplastic removal method.
제1항에 있어서,
상기 미생물 바이오필름은 메틸로박테리움(Methylobacterium) 속 미생물 바이오필름인 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The microbial biofilm is a method of removing nanoplastics, characterized in that the microbial biofilm of the genus Methylobacterium.
제1항에 있어서,
상기 나노플라스틱은 1μm 미만의 평균 직경범위를 갖는 나노플라스틱인 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The nanoplastic is characterized in that the nanoplastic having an average diameter range of less than 1μm, nanoplastic removal method.
제1항에 있어서,
상기 나노플라스틱은 폴리스티렌, 폴리에틸렌, 폴리프로필렌 및 폴리에틸렌 테레프탈레이트로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The nanoplastic is characterized in that at least one selected from the group consisting of polystyrene, polyethylene, polypropylene, and polyethylene terephthalate.
제1항에 있어서,
상기 나노플라스틱 제거방법은,
미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시켜 나노플라스틱의 응집과 흡착을 유도한 후, 여과를 통해 나노플라스틱을 제거하는 단계를 더 포함하는 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The nanoplastic removal method,
After inducing the aggregation and adsorption of the nanoplastic by contacting the microbial biofilm with the nanoplastic, the method further comprising removing the nanoplastic through filtration.
제1항에 있어서,
상기 나노플라스틱 제거방법은,
나노플라스틱이 분산된 수용액에 미생물 바이오필름(microbial biofilm)을 처리하여 나노플라스틱의 응집과 흡착을 유도하는 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 1,
The nanoplastic removal method,
A method for removing nanoplastics, characterized in that by treating a microbial biofilm in an aqueous solution in which the nanoplastics are dispersed to induce aggregation and adsorption of the nanoplastics.
제11항에 있어서,
상기 나노플라스틱 제거방법은,
나노플라스틱의 응집을 유도한 후 침전시키는 단계를 더 포함하는 것을 특징으로 하는, 나노플라스틱 제거방법.
The method of claim 11,
The nanoplastic removal method,
A method for removing nanoplastics, further comprising the step of inducing agglomeration of the nanoplastics and then precipitating them.
미생물 바이오필름으로서, 그 표면작용기가 개질되어 양전하를 띄며, 음전하를 띄는 나노플라스틱을 응집 및 흡착시키는 것을 특징으로 하는 미생물 바이오필름(microbial biofilm)을 포함하는 나노플라스틱 제거용 흡착제.
As a microbial biofilm, an adsorbent for removing nanoplastics comprising a microbial biofilm, characterized in that the surface functional groups are modified to have a positive charge and agglomerate and adsorb nanoplastics having a negative charge.
미생물 바이오필름으로서, 그 표면작용기가 개질되어 양전하를 띄며, 음전하를 띄는 나노플라스틱을 응집 및 흡착시키는 것을 특징으로 하는 미생물 바이오필름(microbial biofilm)을 포함하는 나노플라스틱 제거용 응집제.
As a microbial biofilm, a coagulant for removing nanoplastics comprising a microbial biofilm, characterized in that the surface functional groups are modified to have a positive charge and agglomerate and adsorb nanoplastics having a negative charge.
미생물 바이오필름으로서, 그 표면작용기가 개질되어 양전하를 띄며, 음전하를 띄는 나노플라스틱을 응집 및 흡착시키는 것을 특징으로 하는 미생물 바이오필름(microbial biofilm)을 나노플라스틱에 접촉시키는 단계를 포함하는, 나노플라스틱 검출방법.As a microbial biofilm, comprising the step of contacting a microbial biofilm with a nanoplastic, characterized in that the surface functional group is modified to have a positive charge and a nanoplastic having a negative charge and agglomeration and adsorption, nanoplastic detection Way.
KR1020190074181A 2019-06-21 2019-06-21 Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method KR102222017B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190074181A KR102222017B1 (en) 2019-06-21 2019-06-21 Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method
PCT/KR2020/007964 WO2020256465A2 (en) 2019-06-21 2020-06-19 Method for removing nanoplastics by using wild-type and surface functional group-modified microbial biofilms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190074181A KR102222017B1 (en) 2019-06-21 2019-06-21 Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method

Publications (2)

Publication Number Publication Date
KR20200145958A KR20200145958A (en) 2020-12-31
KR102222017B1 true KR102222017B1 (en) 2021-03-03

Family

ID=74040565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190074181A KR102222017B1 (en) 2019-06-21 2019-06-21 Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method

Country Status (2)

Country Link
KR (1) KR102222017B1 (en)
WO (1) WO2020256465A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185004A (en) * 2021-04-20 2021-07-30 河南师范大学 Method for removing micro-plastics in water body by using aspergillus niger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307534A (en) * 2006-05-15 2007-11-29 Toshikazu Shimodaira Coagulating sedimentation apparatus using floc of microbial film without using coagulant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304404B1 (en) * 1998-09-01 2001-11-22 김창원 Dense wastewater treatment method by fixed biofilm and continuous backwash filtration
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
AU2015264014B2 (en) * 2014-05-21 2018-09-06 Nuvoda Llc Biofilm media, treatment system and method of treatment
KR20160082094A (en) * 2014-12-30 2016-07-08 김남훈 Bio-filter for adsorbing cancelling heavy metal in atmosphere and manufacturing method of th same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307534A (en) * 2006-05-15 2007-11-29 Toshikazu Shimodaira Coagulating sedimentation apparatus using floc of microbial film without using coagulant

Also Published As

Publication number Publication date
KR20200145958A (en) 2020-12-31
WO2020256465A2 (en) 2020-12-24
WO2020256465A3 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
Li et al. Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp.
Lindahl et al. Evaluation of methods for extraction of bacteria from soil
Cavallaro et al. Organic-nanoclay composite materials as removal agents for environmental decontamination
Bakken et al. Recovery of bacterial cells from soil
Xu et al. Application of magnetic nanoparticles in drinking water purification.
KR102222017B1 (en) Wild type and surface functional group modified microbial biofilm mediated nanoplastic removal method
EP2588863B1 (en) Capture of micro-organisms
Tomic et al. Complete clarification solution for processing high density cell culture harvests
Kadri et al. Nanoencapsulation and release study of enzymes from Alkanivorax borkumensis in chitosan-tripolyphosphate formulation
Tikhonov et al. Sorption of humic acids by bacteria
Azin et al. Development of carbon nanotube-mycosorbent for effective Congo red removal: optimization, isotherm and kinetic studies
Niepold et al. Evaluation of the efficiency of extraction for the quantitative estimation of hydrogen bacteria in soil
Al‐Shaeri et al. Potentiating toxicological interaction of single‐walled carbon nanotubes with dissolved metals
KR20050086484A (en) Method for removing heavy metal in incineration ash
WO2008157384A2 (en) Method of detection of microorganisms with enhanced bacteriophage amplification
KR101721796B1 (en) Method for absorbing pathogenic microorganism using micro-bead coated with graphene oxide
Delfan et al. Screening of novel bacteriophage infection in Pseudomonas putida isolated from potato disease
JP2010220610A (en) New urethane-decomposing bacteria, and utilization of the same
CN1236058C (en) Magneto tactic bacteria nano magnetic particle extracting and purifying method
Selvi et al. Degradation of cefdinir from pharmaceutical waste water using immobilized Candida sp. SMN04 and biofilm formed on gravels
CN112940997A (en) Strain for promoting shellfish larva to adhere and deform and application
Lau et al. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide
Assis et al. Immobilized lysozyme protein on fibrous medium: Preliminary results for microfiltration applications
CN112237906A (en) PHP modified magnetic nano-microsphere, preparation method and application thereof in DNA separation
US20140248680A1 (en) Compositions and Methods for Collecting Algae

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant