KR102220452B1 - Deposition method of nano size particle on a porous electrode and the electrode thereby - Google Patents

Deposition method of nano size particle on a porous electrode and the electrode thereby Download PDF

Info

Publication number
KR102220452B1
KR102220452B1 KR1020190056436A KR20190056436A KR102220452B1 KR 102220452 B1 KR102220452 B1 KR 102220452B1 KR 1020190056436 A KR1020190056436 A KR 1020190056436A KR 20190056436 A KR20190056436 A KR 20190056436A KR 102220452 B1 KR102220452 B1 KR 102220452B1
Authority
KR
South Korea
Prior art keywords
mixed solution
particles
electrode
porous electrode
forming
Prior art date
Application number
KR1020190056436A
Other languages
Korean (ko)
Other versions
KR20200131609A (en
Inventor
전상윤
유영성
송선주
남궁연
박수만
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020190056436A priority Critical patent/KR102220452B1/en
Publication of KR20200131609A publication Critical patent/KR20200131609A/en
Application granted granted Critical
Publication of KR102220452B1 publication Critical patent/KR102220452B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 2 이상의 물질로 구성되는 나노 입자의 전구체 용액을 형성하는 단계, 상기 전구체 용액에 요소를 포함하는 용액을 첨가하여 혼합용액 1을 형성하는 단계, 상기 혼합용액 1에 마크로(macro) 입자를 첨가하여 혼합용액 2를 형성하는 단계, 상기 혼합용액 2를 가열하는 단계 및 상기 혼합용액 2를 가열하는 단계에 의해 생성된 분말을 하소하는 단계를 포함하는 다공성 전극 표면에 나노 단위 입자를 석출시키는 방법으로서, 본 발명에 의하면, 목표 물질의 표면에 나노 크기의 입자를 석출시키되, 종래보다 안정한 입자의 생성이 가능하게 하고, 비교적 단순한 공정으로 제조할 수 있게 한다.The present invention provides a step of forming a precursor solution of nanoparticles composed of two or more substances, forming a mixed solution 1 by adding a solution containing urea to the precursor solution, and forming macro particles in the mixed solution 1 A method of depositing nano-unit particles on a surface of a porous electrode, comprising adding to form mixed solution 2, heating the mixed solution 2, and calcining the powder produced by heating the mixed solution 2 As a result, according to the present invention, nano-sized particles are precipitated on the surface of a target material, but more stable particles can be produced than before and can be manufactured by a relatively simple process.

Description

다공성 전극 표면에 나노 단위 입자를 석출시키는 방법 및 그 방법에 의해 제조되는 전극 물질{DEPOSITION METHOD OF NANO SIZE PARTICLE ON A POROUS ELECTRODE AND THE ELECTRODE THEREBY}A method of depositing nano-unit particles on the surface of a porous electrode, and an electrode material manufactured by the method {DEPOSITION METHOD OF NANO SIZE PARTICLE ON A POROUS ELECTRODE AND THE ELECTRODE THEREBY}

본 발명은 전극에 입자를 석출시키는 방법에 관한 것으로서, 특히 나노 단위의 입자를 전극에 석출시키는 방법에 관한 것이다.The present invention relates to a method of depositing particles on an electrode, and in particular, to a method of depositing nano-scale particles on an electrode.

나노 단위의 입자 따위를 전극에 석출시키는 방법을 통틀어 infiltration method라 한다. 이러한 infiltration method에는 여러 종류의 공정 방법이 있으며, 주로 요소(Urea)가 분해될 때 생성되는 리간드(ligand)를 이용한 양이온 석출법이 이용된다.The method of depositing nano-scale particles on the electrode is collectively referred to as the infiltration method. There are several types of process methods for this infiltration method, and a cation precipitation method using a ligand generated when urea is decomposed is mainly used.

도 1은 요소(Urea)가 분해될 때 존재하는 이온들의 시간에 따른 농도 변화를 나타낸 것이다. 요소를 사용한 석출은 고체상의 용해도곱(solubility product)를 따르기 때문에 각자 다른 용해도곱을 가지는 물질의 석출시 한계가 존재한다. 각 이온의 석출 조건은 predominance diagram을 통해 유추가 가능하고, 도 2는 Sm, Co, Sr 이온의 predominance diagram을 나타낸 것이다.1 shows the change in concentration of ions present when urea is decomposed over time. Since the precipitation using urea follows the solubility product of the solid phase, there is a limit to the precipitation of substances with different solubility products. Predominance conditions of each ion can be inferred through a predominance diagram, and FIG. 2 shows a predominance diagram of Sm, Co, and Sr ions.

즉, 다종 양이온의 경우, 도 3a 내지 도 4에서 참조되는 바와 같이, 원하는 조성의 물질을 만들기 위해 고려해야 할 요소(온도, 압력, pH 등)들이 많고, 더 나아가 물질의 단일 상, 그리고 적합한 화학양론(stoichiometry)을 얻는 데 어려움이 따른다.That is, in the case of a polycation, there are many factors (temperature, pressure, pH, etc.) to be considered in order to make a material of a desired composition, as referenced in FIGS. 3A to 4, and furthermore, a single phase of the material, and a suitable stoichiometry. Difficulty in obtaining (stoichiometry) follows.

도 3은 요소(Urea) 대 양이온 농도 비가 10(도 3a), 50(도 3b)일 때의 수용액 내의 양이온 농도 변화이고, 도 4는 요소(Urea) 대 양이온 농도 비가 10, 50 일 때 석출된 물질의 열처리 후 XRD pattern을 나타낸 것이다.3 is a change in cation concentration in an aqueous solution when the ratio of urea to cation concentration is 10 (Fig. 3a) and 50 (Fig. 3b), and Fig. 4 is a precipitated when the ratio of urea to cation concentration is 10 and 50. It shows the XRD pattern after heat treatment of the material.

이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.The matters described in the background art are provided to help understanding the background of the invention, and may include matters other than the prior art already known to those of ordinary skill in the field to which this technology belongs.

한국등록특허공보 제10-1465385호Korean Patent Publication No. 10-1465385

본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 목표 물질의 표면에 나노 크기의 입자를 석출시키되, 종래보다 안정한 입자의 생성이 가능하게 하고, 비교적 단순한 공정으로 제조할 수 있게 하는 다공성 전극 표면에 나노 단위 입자를 석출시키는 방법 및 그 방법에 의해 제조되는 전극 물질을 제공하는 데 그 목적이 있다.The present invention was conceived to solve the above-described problems, and the present invention is to precipitate nano-sized particles on the surface of a target material, but it is possible to produce more stable particles than the conventional porosity, which makes it possible to manufacture with a relatively simple process. An object thereof is to provide a method of depositing nano-unit particles on an electrode surface and an electrode material prepared by the method.

본 발명의 일 관점에 의한 다공성 전극 표면에 나노 단위 입자를 석출시키는 방법은, 2 이상의 물질로 구성되는 나노 입자의 전구체 용액을 형성하는 단계, 상기 전구체 용액에 요소를 포함하는 용액을 첨가하여 혼합용액 1을 형성하는 단계, 상기 혼합용액 1에 마크로(macro) 입자를 첨가하여 혼합용액 2를 형성하는 단계, 상기 혼합용액 2를 가열하는 단계 및 상기 혼합용액 2를 가열하는 단계에 의해 생성된 분말을 하소하는 단계를 포함한다.A method of depositing nano-unit particles on a surface of a porous electrode according to an aspect of the present invention includes forming a precursor solution of nanoparticles composed of two or more substances, and adding a solution containing urea to the precursor solution to obtain a mixed solution Forming 1, forming a mixed solution 2 by adding macro particles to the mixed solution 1, heating the mixed solution 2, and heating the mixed solution 2 And calcining.

그 결과, 상기 하소하는 단계에 의해 생성되는 전극 물질의 표면에 증착되는 입자의 크기는 100nm 이하인 것을 특징으로 한다.As a result, the size of the particles deposited on the surface of the electrode material generated by the calcining step is characterized in that 100 nm or less.

그리고, 상기 전구체 용액을 형성하는 단계의 출발물질은 Sm(NO3)3·6H2O (samarium nitrate hexa-hydrate), Sr(NO3)2 (strontium nitrate), Co(NO3)2·6H2O (cobalt nitrate hexa-hydrate)인 것을 특징으로 한다.And, the starting material of the step of forming the precursor solution is Sm(NO3)3·6H2O (samarium nitrate hexa-hydrate), Sr(NO3)2 (strontium nitrate), Co(NO3)2·6H2O (cobalt nitrate hexa- hydrate).

또한, 상기 전구체 용액을 형성하는 단계는 증류수 및 EtOH(Ethanol)에 상기 출발물질을 30분 동안 혼합하여 형성하는 것을 특징으로 한다.In addition, the step of forming the precursor solution is characterized in that it is formed by mixing the starting material in distilled water and EtOH (Ethanol) for 30 minutes.

그리고, 상기 혼합용액 1을 형성하는 단계는 상기 요소와 ACAC(Acetylacetone)을 첨가하여 형성하는 것을 특징으로 한다.In addition, the step of forming the mixed solution 1 is characterized in that it is formed by adding the urea and ACAC (Acetylacetone).

여기서, 상기 증류수, 상기 EtOH 및 상기 ACAC의 부피비는 1:4:5인 것을 특징으로 한다.Here, the volume ratio of the distilled water, the EtOH, and the ACAC is 1:4:5.

이에 따라 상기 혼합용액 1의 농도는 0.1mol/L인 것을 특징으로 한다.Accordingly, the concentration of the mixed solution 1 is characterized in that 0.1 mol/L.

한편, 상기 마크로(macro) 입자를 첨가하여 혼합용액 2를 형성하는 단계는 LSCF6428 powder를 첨가하여 형성할 수 있다.Meanwhile, the step of forming the mixed solution 2 by adding macro particles may be formed by adding LSCF6428 powder.

그리고, 상기 혼합용액 2를 가열하는 단계는 450℃에서 실시하는 것을 특징으로 한다.And, the step of heating the mixed solution 2 is characterized in that carried out at 450 ℃.

나아가, 상기 분말을 하소하는 단계는 800℃에서 실시하는 것을 특징으로 한다.Further, the step of calcining the powder is characterized in that it is carried out at 800 ℃.

본 발명의 전극 물질은 상기의 어느 방법에 의해 제조될 수 있다.The electrode material of the present invention can be manufactured by any of the above methods.

본 발명은 infiltration 법이라 부르는 macro particle에 nano particle을 증착시키는 방법으로서, 일례로 든 고체산화물 연료전지 전극 물질의 경우뿐만이 아닌 PCFC(Proton Ceramic Fuel Cell), 전기화학센서 등 다방면으로 적용이 가능한 장점이 있다.The present invention is a method of depositing nanoparticles on macro particles called infiltration, and has advantages that can be applied in various fields such as PCFC (Proton Ceramic Fuel Cell) and electrochemical sensors, as well as the case of the solid oxide fuel cell electrode material as an example. have.

그리고, 본 발명에 따르면 종래의 요소(Urea) decomposition 법이 가지는 나노 입자의 조성 불균일과 같은 문제의 발생을 최소화 할 수 있어 보다 화학적으로 안정한 입자의 생성이 가능하고 목표 물질 자체에 나노 입자를 증착시킴으로써 종래의 법에선 부차적으로 수행해야 하는 열처리 및 소결 따위의 과정이 생략되므로 불필요하게 소모되는 시간을 줄일 수 있다.In addition, according to the present invention, it is possible to minimize the occurrence of problems such as non-uniform composition of nanoparticles of the conventional urea decomposition method, thereby enabling the generation of more chemically stable particles and by depositing nanoparticles on the target material itself. In the conventional method, since processes such as heat treatment and sintering, which are secondary to be performed, are omitted, unnecessary time can be reduced.

기술된 것처럼 물질의 표면 위에 직접 나노 크기 입자들을 석출 시켜 촉매역할을 수행시키는 방법이기 때문에 기존 단일 물질의 전기 화학적 성능 보다 더 높은 성능 상승 기대치를 가질 수 있다. 또한 용액의 농도를 조절하는 방법으로 보다 쉽게 전극 내에 석출되는 입자들의 크기, 모양을 바꿀 수 있으며 이를 통한 전극 자체의 성능 증가에 지대한 영향을 끼칠 수 있게 된다.As described above, since nano-sized particles are deposited directly on the surface of a material to perform a catalytic role, it is possible to have higher performance expectations than the electrochemical performance of the existing single material. In addition, by controlling the concentration of the solution, the size and shape of the particles precipitated in the electrode can be more easily changed, and through this, the performance of the electrode itself can be greatly affected.

도 1은 요소(Urea)가 분해될 때 존재하는 이온들의 시간에 따른 농도 변화를 나타낸 것이다.
도 2는 Sm, Co, Sr 이온의 predominance diagram을 나타낸 것이다.
도 3은 요소(Urea) 대 양이온 농도 비가 10(도 3a), 50(도 3b)일 때의 수용액 내의 양이온 농도 변화를 나타낸 것이다.
도 4는 요소(Urea) 대 양이온 농도 비가 10, 50 일 때 석출된 물질의 열처리 후 XRD pattern을 나타낸 것이다.
도 5는 본 발명에 의한 석출 제조 방법을 도시한 것이다.
도 6은 SSC가 적용된 LSCF6428 전극 물질의 XRD pattern을 나타낸 것이다.
도 7a 및 도 7b는 LSCF6428 전극 물질에 적용된 SSC 나노 단위 사이즈의 입자 SEM 이미지이다.
도 8a는 commercial LSCF6428 cathode, 도 8b는 SSC infiltrated LSCF6428 cathode의 I-V 그래프이다.
도 9a는 commercial LSCF6428 cathode, 도 9b는 SSC infiltrated LSCF6428 cathode의 EIS 그래프이다.
1 shows the change in concentration of ions present when urea is decomposed over time.
2 shows a predominance diagram of Sm, Co, and Sr ions.
3 shows the change in the cation concentration in the aqueous solution when the ratio of urea to cation concentration is 10 (Fig. 3A) and 50 (Fig. 3B).
4 shows the XRD pattern after heat treatment of the precipitated material when the urea to cation concentration ratio is 10 or 50.
Figure 5 shows a precipitation manufacturing method according to the present invention.
6 shows the XRD pattern of the LSCF6428 electrode material to which SSC is applied.
7A and 7B are SEM images of SSC nano-sized particles applied to the LSCF6428 electrode material.
Figure 8a is a commercial LSCF6428 cathode, Figure 8b is an IV graph of the SSC infiltrated LSCF6428 cathode.
Figure 9a is a commercial LSCF6428 cathode, Figure 9b is an EIS graph of the SSC infiltrated LSCF6428 cathode.

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, operational advantages of the present invention, and objects achieved by the implementation of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.

본 발명의 바람직한 실시 예를 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지의 기술이나 반복적인 설명은 그 설명을 줄이거나 생략하기로 한다.In describing a preferred embodiment of the present invention, known techniques or repetitive descriptions that may unnecessarily obscure the subject matter of the present invention will be reduced or omitted.

도 5는 본 발명에 의한 석출 제조 방법을 도시한 것이다.Figure 5 shows a precipitation manufacturing method according to the present invention.

이하, 도 5를 참조하여 다공성 전극 표면에 나노 단위 입자를 석출시키는 방법 및 그 방법에 의해 제조되는 전극 물질을 설명하기로 한다.Hereinafter, a method of depositing nano-unit particles on a surface of a porous electrode and an electrode material prepared by the method will be described with reference to FIG. 5.

본 발명은 종래의 요소 가수분해법의 경우에 서로 다른 석출조건을 갖는 물질의 석출시 한계가 있던 것을 개선하여 불필요한 석출을 배제할 수 있으며, 조성이 균일한 나노 입자의 생성이 가능하게 하는 석출 방법으로, 이러한 본 발명의 방법에 따라 제조된 전극물질은 그 표면에 나노 사이즈의 SCC 입자가 석출되는 것을 특징으로 하며, 그에 따라 기존 사용 전극 대비 우수한 전력밀도를 가지며, 전극 저항의 감소로 인해 전체 저항이 줄어드는 효과를 발휘한다.The present invention is a precipitation method that improves the limitation in precipitation of substances having different precipitation conditions in the case of the conventional urea hydrolysis method so that unnecessary precipitation can be eliminated and nanoparticles having a uniform composition can be generated. , The electrode material prepared according to the method of the present invention is characterized in that nano-sized SCC particles are precipitated on the surface thereof, and thus has excellent power density compared to the existing electrode, and the overall resistance is reduced due to the decrease in electrode resistance. It has a diminishing effect.

이를 달성하기 위해 sol-gel법을 통한 infiltration을 수행하고, sol-gel법은 요소(Urea)를 통한 공동침전(con-precipitation) 후 결정핵생성(nucleation)이 일어나는 방법과 달리 hydration과 condensation 반응을 이용하여 불필요한 석출 및 상의 생성을 배제할 수 있고, 그 중 연소법(combustion method)를 통해 나노 단위의 입자를 증착시키고자 한다.In order to achieve this, infiltration is performed through the sol-gel method, and the sol-gel method performs hydration and condensation reactions, unlike the method in which nucleation occurs after con-precipitation through urea. By using it, unnecessary precipitation and formation of a phase can be eliminated, and among them, nano-scale particles are to be deposited through a combustion method.

본 발명의 실시예에서 예시하는 해당 물질은 La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)powder를 backbone으로 하여 sol-gel 법 중 하나인 combustion method(연소법)를 통해 제조된다.The material exemplified in the embodiments of the present invention is prepared by using the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) powder as a backbone and using the combustion method, one of the sol-gel methods.

본 발명의 실시예에서 출발물질은 Sm(NO3)3·6H2O (samarium nitrate hexa-hydrate), Sr(NO3)2 (strontium nitrate), Co(NO3)2·6H2O (cobalt nitrate hexa-hydrate) 총 3가지 물질을 사용하였다. 각 물질의 몰 비는 Sm0.5Sr0.5CoO3-δ(SSC)를 제조하기에 알맞은 양으로 계산되는 것이 바람직하고. Solvent는 증류수(DI water), Ethanol(EtOH) 그리고 Acetylacetone (ACAC)를 사용하였으며 부피 비는 각각 1:4:5로 solution을 제조하였다.In the embodiment of the present invention, starting materials are Sm(NO3)3·6H2O (samarium nitrate hexa-hydrate), Sr(NO3)2 (strontium nitrate), Co(NO3)2·6H2O (cobalt nitrate hexa-hydrate) in total 3 Eggplant materials were used. The molar ratio of each substance is preferably calculated in an amount suitable to produce Sm0.5Sr0.5CoO3-δ (SSC). Distilled water (DI water), Ethanol (EtOH), and Acetylacetone (ACAC) were used as the solvent, and the volume ratio was 1:4:5, respectively, to prepare a solution.

위와 같이 ACAC는 연료로서 사용되었으며 요소(Urea) 또한 같은 역할로 2g을 사용하였음. Solution은 0.1mol/L를 기준으로 하여 제조하였다.As above, ACAC was used as fuel and urea also used 2g for the same role. The solution was prepared on the basis of 0.1 mol/L.

먼저, 출발물질과 증류수, EtOH을 30분 동안 혼합하여 전구체 용액을 형성하고(S10), 그 후 요소(Urea)와 ACAC를 첨가하여 상온에서 1시간 혼합함으로써 혼합용액 1을 형성한다(S20).First, the starting material, distilled water, and EtOH are mixed for 30 minutes to form a precursor solution (S10), and then urea and ACAC are added and mixed for 1 hour at room temperature to form mixed solution 1 (S20).

혼합용액 1에 macro 입자를 첨가하여 혼합용액 2를 형성하는데(S30), 본 실시예에서는 LSCF6428 powder를 첨가하고 균일한 분산을 유도하기 위해 하루 동안 혼합한다.Macro particles are added to the mixed solution 1 to form the mixed solution 2 (S30). In this example, LSCF6428 powder is added and mixed for a day to induce a uniform dispersion.

그런 다음, 혼합용액 2를 가열하는 단계(S40)에 의하고, Hot plate의 온도를 450℃로 설정하여 가열할 수 있고, 용액은 밝은 분홍빛에서 어두운 자두 색으로 변한다. 약 10분 후 가스가 발생하며 불꽃이 이는 것을 확인할 수 있으며, 잔불이 꺼진 후의 분말을 다시 800℃에서 6시간 동안 하소(calcine)함으로써(S50), 다공성 전극 표면에 나노 단위의 입자가 석출된 전극물질을 생성시킨다(S60).Then, by the step of heating the mixed solution 2 (S40), it can be heated by setting the temperature of the hot plate to 450°C, and the solution changes from light pink to dark plum color. After about 10 minutes, it can be seen that gas is generated and sparks are formed. After the remaining light is turned off, the powder is calcined again at 800°C for 6 hours (S50), whereby nano-scale particles are deposited on the surface of the porous electrode. To create a substance (S60).

도 6은 하소 후 SSC가 적용된 LSCF6428 전극 물질의 XRD pattern이며, 도 7a 및 도 7b는 LSCF6428 전극 물질에 적용된 SSC 나노 단위 사이즈의 입자 SEM 이미지이고, 도 8a는 commercial LSCF6428 cathode, 도 8b는 SSC infiltrated LSCF6428 cathode의 I-V 그래프이며, 도 9a는 commercial LSCF6428 cathode, 도 9b는 SSC infiltrated LSCF6428 cathode의 EIS 그래프이다.6 is an XRD pattern of the LSCF6428 electrode material to which SSC is applied after calcination, FIGS. 7A and 7B are SEM images of SSC nano-sized particles applied to the LSCF6428 electrode material, FIG. It is an IV graph of the cathode, FIG. 9A is an EIS graph of a commercial LSCF6428 cathode, and FIG. 9B is an SSC infiltrated LSCF6428 cathode.

상술한 방법에 의해 제조된 전극의 성능 측정은 임피던스 분광법(EIS) 및 I-V curve를 통해 이루어졌다.The performance measurement of the electrode manufactured by the above-described method was performed through impedance spectroscopy (EIS) and an I-V curve.

I-V 측정은 800℃ 부터 650℃까지 50℃ 단위로 측정을 진행하였다. 도 8a, 도 8b의 I-V 그래프를 통해 알 수 있듯이 SSC가 infiltration된 LSCF6428 cathode의 출력이 상용 LSCF6428 cathode 보다 모든 온도 대역에서 출력이 높은 것을 확인 할 수 있다. 이는 두 그래프의 전류밀도 차이를 통해 infiltration 후의 전극활성화 분극이 상대적으로 낮아진 결과로 볼 수 있다. 즉 공기극에서의 반응 site 증가로 인한 산소 환원 반응이 원활해져 전극활성화 분극을 줄인 것으로 볼 수가 있다.I-V measurement was performed from 800°C to 650°C in 50°C units. As can be seen from the I-V graphs of FIGS. 8A and 8B, it can be seen that the output of the LSCF6428 cathode in which SSC is infiltration is higher in all temperature bands than the commercial LSCF6428 cathode. This can be seen as a result of relatively low electrode activation polarization after infiltration through the difference in current density between the two graphs. In other words, the oxygen reduction reaction due to the increase in the reaction site in the air electrode becomes smooth, and it can be seen that electrode activation polarization is reduced.

도 9a, 도 9b에서 참조되는 EIS의 경우에도 SSC가 infiltration된 LSCF6428 cathode의 경우 모든 온도 대역에서 전체 저항이 줄어든 것을 확인할 수 있다. 이는 온도 별 두 그래프의 오믹 저항(Ohmic resistance)이 차이가 없는 것으로 보아 오믹에 의한 영향은 비슷하거나 동일하며 결론적으로 전극 저항이 줄어든 것에 기인한 것임을 알 수 있고. Infiltration 된 SSC가 촉매 역할을 수행함으로써 공기극에서의 저항을 현저히 줄인 것으로 판단할 수 있다.In the case of the EIS referenced in FIGS. 9A and 9B, it can be seen that in the case of the LSCF6428 cathode in which the SSC is infiltration, the total resistance is reduced in all temperature bands. This is because there is no difference in the ohmic resistance of the two graphs for each temperature, so the effect of the ohmic is similar or the same, and consequently, it can be seen that it is due to the decrease in electrode resistance. It can be judged that the infiltration SSC significantly reduced the resistance at the cathode by performing the catalyst role.

이상과 같은 본 발명은 예시된 도면을 참조하여 설명되었지만, 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형될 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이며, 본 발명의 권리범위는 첨부된 특허청구범위에 기초하여 해석되어야 할 것이다.Although the present invention as described above has been described with reference to the illustrated drawings, it is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have Therefore, such modifications or variations will have to belong to the claims of the present invention, and the scope of the present invention should be interpreted based on the appended claims.

S10 : 전구체 용액 형성 단계
S20 : 혼합용액 1 형성단계
S30 : 혼합용액 2 형성단계
S40 : 혼합용액 2 가열단계
S50 : 분말 하소 단계
S60 : 전극물질 생성단계
S10: precursor solution formation step
S20: mixed solution 1 formation step
S30: mixed solution 2 formation step
S40: mixed solution 2 heating step
S50: powder calcination step
S60: electrode material generation step

Claims (11)

2 이상의 물질로 구성되는 나노 입자의 전구체 용액을 증류수 및 EtOH(Ethanol)에 출발물질을 30분 동안 혼합하여 형성하는 단계;
상기 전구체 용액에 요소와 ACAC(Acetylacetone)을 첨가하여 혼합용액 1을 형성하는 단계;
상기 혼합용액 1에 마크로(macro) 입자를 첨가하여 혼합용액 2를 형성하는 단계;
상기 혼합용액 2를 가열하는 단계; 및
상기 혼합용액 2를 가열하는 단계에 의해 생성된 분말을 하소하는 단계를 포함하고,
상기 증류수, 상기 EtOH 및 상기 ACAC의 부피비는 1:4:5인 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
Forming a precursor solution of nanoparticles composed of two or more substances by mixing a starting material with distilled water and EtOH (Ethanol) for 30 minutes;
Forming a mixed solution 1 by adding urea and ACAC (Acetylacetone) to the precursor solution;
Forming a mixed solution 2 by adding macro particles to the mixed solution 1;
Heating the mixed solution 2; And
Comprising the step of calcining the powder produced by the step of heating the mixed solution 2,
The volume ratio of the distilled water, the EtOH and the ACAC is characterized in that 1:4:5,
A method of depositing nano-unit particles on the surface of a porous electrode.
청구항 1에 있어서,
상기 하소하는 단계에 의해 생성되는 전극 물질의 표면에 증착되는 입자의 크기는 100nm 이하인 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
The method according to claim 1,
Characterized in that the size of the particles deposited on the surface of the electrode material produced by the calcining step is 100 nm or less,
A method of depositing nano-unit particles on the surface of a porous electrode.
청구항 2에 있어서,
상기 전구체 용액을 형성하는 단계의 상기 출발물질은 Sm(NO3)3·6H2O (samarium nitrate hexa-hydrate), Sr(NO3)2 (strontium nitrate), Co(NO3)2·6H2O (cobalt nitrate hexa-hydrate)인 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
The method according to claim 2,
The starting materials in the step of forming the precursor solution are Sm(NO3)3·6H2O (samarium nitrate hexa-hydrate), Sr(NO3)2 (strontium nitrate), Co(NO3)2·6H2O (cobalt nitrate hexa-hydrate) Characterized in that),
A method of depositing nano-unit particles on the surface of a porous electrode.
삭제delete 삭제delete 삭제delete 청구항 1에 있어서,
상기 혼합용액 1의 농도는 0.1mol/L인 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
The method according to claim 1,
The concentration of the mixed solution 1 is characterized in that 0.1 mol / L,
A method of depositing nano-unit particles on the surface of a porous electrode.
청구항 2에 있어서,
상기 마크로(macro) 입자를 첨가하여 혼합용액 2를 형성하는 단계는 LSCF6428 powder를 첨가하여 형성하는 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
The method according to claim 2,
The step of forming the mixed solution 2 by adding macro particles is formed by adding LSCF6428 powder,
A method of depositing nano-unit particles on the surface of a porous electrode.
청구항 2에 있어서,
상기 혼합용액 2를 가열하는 단계는 450℃에서 실시하는 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
The method according to claim 2,
The step of heating the mixed solution 2 is characterized in that carried out at 450 ℃,
A method of depositing nano-unit particles on the surface of a porous electrode.
청구항 9에 있어서,
상기 분말을 하소하는 단계는 800℃에서 실시하는 것을 특징으로 하는,
다공성 전극 표면에 나노 단위 입자를 석출시키는 방법.
The method of claim 9,
The step of calcining the powder is characterized in that carried out at 800 ℃,
A method of depositing nano-unit particles on the surface of a porous electrode.
청구항 1의 방법에 의해 제조되는 전극 물질.An electrode material produced by the method of claim 1.
KR1020190056436A 2019-05-14 2019-05-14 Deposition method of nano size particle on a porous electrode and the electrode thereby KR102220452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190056436A KR102220452B1 (en) 2019-05-14 2019-05-14 Deposition method of nano size particle on a porous electrode and the electrode thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190056436A KR102220452B1 (en) 2019-05-14 2019-05-14 Deposition method of nano size particle on a porous electrode and the electrode thereby

Publications (2)

Publication Number Publication Date
KR20200131609A KR20200131609A (en) 2020-11-24
KR102220452B1 true KR102220452B1 (en) 2021-02-25

Family

ID=73679584

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190056436A KR102220452B1 (en) 2019-05-14 2019-05-14 Deposition method of nano size particle on a porous electrode and the electrode thereby

Country Status (1)

Country Link
KR (1) KR102220452B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300157B1 (en) * 2009-12-28 2013-08-26 주식회사 포스코 Composite ceramic contact material for solid oxide fuel cell and method of preparing ceramic contact material
KR101465385B1 (en) 2014-01-08 2014-11-25 성균관대학교산학협력단 A micron sized anode active material containing titanium dioxide nanoparticles and method for the preparation thereof

Also Published As

Publication number Publication date
KR20200131609A (en) 2020-11-24

Similar Documents

Publication Publication Date Title
Huang et al. Synthesis and applications of nanoporous perovskite metal oxides
Deganello et al. Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach
Rioja-Monllor et al. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
Tarancón et al. Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerisation
Ghosh et al. Synthesis and characterization of lanthanum strontium manganite
Ozlu Torun et al. Thermal characterization of Er-doped and Er–Gd co-doped ceria-based electrolyte materials for SOFC
Ostroushko et al. Oxide material synthesis by combustion of organicinorganic compositions
Li et al. Cobalt-free double perovskite cathode GdBaFeNiO5+ δ and electrochemical performance improvement by Ce0. 8Sm0. 2O1. 9 impregnation for intermediate-temperature solid oxide fuel cells
CN102617139A (en) Preparation method for strontium titanate lanthanum based powder material
JP2012110800A (en) Perovskite type catalyst and method for production thereof
Marrero-López et al. Preparation of thin layer materials with macroporous microstructure for SOFC applications
KR101346960B1 (en) Manufacturing method of porous yttria stabilized zirconia
JP6181941B2 (en) Perovskite complex oxide precursor powder and method for producing the same
KR102220452B1 (en) Deposition method of nano size particle on a porous electrode and the electrode thereby
Lin et al. A cathode-supported SOFC with thin Ce0. 8Sm0. 2O1. 9 electrolyte prepared by a suspension spray
KR102220265B1 (en) Nickel doped metal oxide of perovskite structure and method of manufacturing the same and catalyst for high temperature membrane reactor using the same
KR102041110B1 (en) Perovskite type metal compound oxide and method of manufacturing the same
Ainirad et al. A systematic study on the synthesis of Ca, Gd codoped cerium oxide by combustion method
JP2014159642A (en) Method for fabricating nickel-cermet electrode
CN108054394B (en) Synthetic method of strontium titanate-based material for solid oxide fuel cell
EP1880437A1 (en) Cathode for a large-surface fuel cell
Kulkarni et al. Taguchi design of experiments for optimization of ionic conductivity in nanocrystalline Gadolinium doped Ceria
KR100898219B1 (en) Porous nano composite powder, method of fabricating thereof, solid oxide fuel electrode and fuel cell using the same
Vinchhi et al. Effect of Doping Concentration on Grain Boundary Conductivity of Samaria Doped Ceria Composites
CN114635150A (en) Novel solid oxide electrolytic cell oxygen electrode and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right