KR102210700B1 - Method of identifying base editing using adenosine deaminase - Google Patents

Method of identifying base editing using adenosine deaminase Download PDF

Info

Publication number
KR102210700B1
KR102210700B1 KR1020190009908A KR20190009908A KR102210700B1 KR 102210700 B1 KR102210700 B1 KR 102210700B1 KR 1020190009908 A KR1020190009908 A KR 1020190009908A KR 20190009908 A KR20190009908 A KR 20190009908A KR 102210700 B1 KR102210700 B1 KR 102210700B1
Authority
KR
South Korea
Prior art keywords
target
dna
nucleic acid
acid molecule
adenosine deaminase
Prior art date
Application number
KR1020190009908A
Other languages
Korean (ko)
Other versions
KR20190090724A (en
Inventor
김대식
Original Assignee
주식회사 툴젠
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 툴젠, 서울대학교산학협력단 filed Critical 주식회사 툴젠
Publication of KR20190090724A publication Critical patent/KR20190090724A/en
Application granted granted Critical
Publication of KR102210700B1 publication Critical patent/KR102210700B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04004Adenosine deaminase (3.5.4.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/30Phosphoric diester hydrolysing, i.e. nuclease
    • C12Q2521/301Endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/531Glycosylase

Abstract

디아미나아제 및 표적특이적 뉴클레아제를 포함하는 염기 교정용 조성물, 및 상기 염기 교정용 조성물을 이용한 염기 교정 방법 및 유전자 변형 동물 제조 방법이 제공된다.A composition for correcting a base comprising a deaminase and a target-specific nuclease, and a method for correcting a base using the composition for correcting a base and a method for producing a genetically modified animal are provided.

Description

아데노신 디아미나아제를 이용한 염기 교정 확인 방법{Method of identifying base editing using adenosine deaminase}Method of identifying base editing using adenosine deaminase {Method of identifying base editing using adenosine deaminase}

아데노신 디아미나아제 (adenosine deaminase)를 이용한 염기 교정 확인 기술과 관련된 것으로, 아데노신 디아미나아제를 포함하는 염기 교정 확인용 조성물 및 DNA에 아데노신 디아미나아제를 처리하는 단계를 포함하는 염기 교정 확인 방법이 제공된다.It relates to a base calibration verification technology using adenosine deaminase, a composition for base calibration verification comprising adenosine deaminase, and a base calibration verification method comprising the step of treating DNA with adenosine deaminase do.

CRISPR/Cas9 system은 인간세포를 비롯한 여러 동식물의 유전체 교정에 사용되어 왔지만 Cas9의 경우 DNA 절단으로 인해 표적부위에 DNA의 삽입이나 결실이 일어나게 된다. 이러한 단점을 보완하기 위해 최근에 Cas9 니케이즈 (Cas9 nickase)에 시토신 디아미나아제 (cystidine deaminase)를 연결시켜 DNA 절단 없이 C를 T(U)로 (또는 보다 낮은 빈도로, C를 G 또는 A로 변환) 변환시키는 방법이 개발되었다 (Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016) 참조). The CRISPR/Cas9 system has been used for genome editing of various animals and plants including human cells, but in the case of Cas9, DNA insertion or deletion occurs at the target site due to DNA cleavage. To compensate for these shortcomings, C to T(U) (or at a lower frequency, C to G or A) without DNA cleavage by linking cytosine deaminase to Cas9 nickase recently. Transformation) transformation method was developed (Komor, AC, Kim, YB, Packer, MS, Zuris, JA & Liu, DR Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature 533, 420-424 (2016)).

하지만 시토신 디아미나아제 (cystidine deaminase)를 이용하여 C를 T로 (또는 보다 낮은 빈도로, C를 G 또는 A로 변환) 변환하거나 C에 대응하는 반대쪽 strand의 G를 A로 (또는 보다 낮은 빈도로, G를 C 또는 T로 변환)하는 것은 가능하지만, 퓨린 계열 염기인 A 또는 T를 다른 염기로 바꾸는 방법은 알려져 있지 않았다. However, using cytosine deaminase, C to T (or at a lower frequency, C to G or A), or G at the opposite strand corresponding to C to A (or at a lower frequency). , Converting G to C or T) is possible, but a method of converting A or T, which is a purine base to another base, has not been known.

본 명세서에서는 절단 유전체 시퀀싱 (digested genome sequencing, Digenome-seq; 표적 특이적 뉴클레아제 처리 전과 후를 한 눈에 파악해 잘린 위치를 구별하는 방식)을 이용하여 아데노신 디아미나아제 (adenosine deaminase)를 표적특이적 뉴클레아제 (예컨대, Cas9 니케이즈 또는 촉매적으로 결핍된 Cas9 (dCas9) 등)에 결합시켜 만든 아데노신 염기교정 유전자 가위의 염기 교정을 확인하는 방안을 제공하며, 이를 통하여 상기 아데노신 염기교정 유전자 가위에 의한 염기 교정의 특이성을 평가할 수 있다. In the present specification, adenosine deaminase is targeted-specific using digested genome sequencing (Digenome-seq; a method of distinguishing the cut position by identifying at a glance before and after target-specific nuclease treatment). Provides a method for confirming the base correction of an adenosine nucleotide correction gene scissors made by binding to an enemy nuclease (e.g., Cas9 nickase or catalytically deficient Cas9 (dCas9), etc.), through which the adenosine nucleotide correction gene scissors The specificity of the base correction by can be evaluated.

S. pyogenes 유래 Cas9 니카아제 및 E. coli 유래 조작된 아데닌디아미나아제로 구성된 Adenine Base Editors (ABEs)는 가이드 RNA 표적 방식으로 효율적인 아데닌/구아닌 단일 뉴클레오티드 전환을 가능하게 하여, 동물 (예컨대, 인간 등의 포유류, 마우스 등의 설치류 등) 및/또는 식물의 세포에서 점돌연변이를 유도하거나 교정한다. ABE는 다른 유전자 교정 수단인 Cas9, BE (cytosine base editor) 등과 다른 off-target site를 인식하므로, 그 효율성 평가를 위하여 독립적인 방법을 개발하는 것이 필요하다. 본 명세서에서는 전체 유전체 시퀀싱 (whole genome sequencing: WGS)을 통하여, ABE의 유전체 (genome) DNA 전체에 대한 표적 특이성을 평가하는 방법을 제시한다. 상기 전체 유전체 시퀀싱은 구체적으로 Digenome-seq일 수 있다. 본 명세서에서 제공되는 Digenome-seq 기반 방법은 0.1%의 치환 빈도(substitution frequency)로 ABE 비표적 위치를 포획하기에 충분한 정도로 민감하다. 또한, 미리 조립된 ABE 리보핵산단백질, 변형된 가이드 RNA, 및 Sniper-ABE를 사용하여 인간 등의 동물 세포에서 ABE off-target 활성을 감소시킬 수 있음을 제안한다.Adenine Base Editors (ABEs) consisting of S. pyogenes- derived Cas9 nickase and E. coli- derived engineered adenine deaminase enable efficient adenine/guanine single nucleotide conversion in a guide RNA targeting method, allowing animals (e.g., humans, etc. Of mammals, rodents such as mice, etc.) and/or inducing or correcting point mutations in the cells of plants. Since ABE recognizes other off-target sites such as Cas9 and BE (cytosine base editor), which are other gene correction means, it is necessary to develop an independent method to evaluate the efficiency. In the present specification, a method of evaluating the target specificity of the entire genome of ABE through whole genome sequencing (WGS) is presented. Specifically, the whole genome sequencing may be Digenome-seq. The Digenome-seq based method provided herein is sensitive enough to capture ABE non-target locations with a substitution frequency of 0.1%. In addition, it is proposed that the use of pre-assembled ABE ribonucleic acid protein, modified guide RNA, and Sniper-ABE can reduce ABE off-target activity in animal cells such as humans.

일 예는,One example is

(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계; 및(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease Introducing a nucleic acid molecule or a plasmid containing the nucleic acid molecule into an isolated cell or treating the isolated DNA to cut one of the DNA double strands; And

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하는 단계(b) a single-strand specific endonuclease (e.g., endonuclease V) or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease) to the DNA from which one of the DNA double strands is cut VIII) of the combination) to cut the remaining DNA strands.

를 포함하는, 아데노신 디아미나아제를 사용하여 DNA에 이중 가닥 절단 (double strand break)를 생성하는 방법을 제공한다.It provides a method of generating a double strand break in DNA using adenosine deaminase comprising a.

다른 예는,Another example is,

(a) (1) 아데노신 디아미나아제, 이를 암호화 하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 이를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;(a) (1) adenosine deaminase, a nucleic acid molecule encoding the same, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a nucleic acid molecule encoding the same, or a nucleic acid molecule comprising the Introducing the plasmid into the isolated cells or treating the isolated DNA to cut one of the DNA double strands;

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하여, 이중 가닥 절단 (double-strand break)를 형성하는 단계; 및(b) a single-strand specific endonuclease (e.g., endonuclease V) or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease) to the DNA from which one of the DNA double strands is cut A combination of VIII)) to cleave the remaining DNA strands to form a double-strand break; And

(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계(c) performing whole genome sequencing on the double-stranded DNA

를 포함하는 DNA 서열 분석 방법을 제공한다.It provides a DNA sequence analysis method comprising a.

다른 예는, Another example is,

(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease Introducing a nucleic acid molecule or a plasmid containing the nucleic acid molecule into an isolated cell or treating the isolated DNA to cut one of the DNA double strands;

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하여, 이중 가닥 절단 (double-strand break)를 형성하는 단계;(b) a single-strand specific endonuclease (e.g., endonuclease V) or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease) to the DNA from which one of the DNA double strands is cut A combination of VIII)) to cleave the remaining DNA strands to form a double-strand break;

(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계; 및 (c) performing whole genome sequencing on the double-stranded DNA; And

(d) 상기 시퀀싱으로 수득한 염기서열 데이터 (sequence read)에서 상기 절단된 위치를 확인하는 단계(d) confirming the cut position in the sequence read obtained by the sequencing

를 포함하는,Containing,

표적 특이적 뉴클레아제의 절단 위치 또는 비표적 위치 (off-target site)를 검출하는 방법을 제공한다.A method of detecting a cleavage site or an off-target site of a target-specific nuclease is provided.

아데노신 디아미나아제 (adenosine deaminase)를 방향 진화(directed evolution)시킴으로써, DNA의 염기 중 A(adenosine)를 디아미네이션(deamination)시켜서 I(inosine)으로 치환시키는데 성공한 바 있다. 보다 구체적으로, Cas9 니케이즈 (nCas9) 또는 촉매적으로 결핍된 Cas9 (dCas9)에 DNA에 작동할 수 있도록 방향 진화된 아데노신 디아미나아제를 결합시킨 후, 세포 내로 도입하였을 때 DNA의 A가 G(I)로 (또는 보다 낮은 빈도로, A가 C 또는 T로 변환) 변환하는 것을 관찰하였다. By directing evolution of adenosine deaminase, A (adenosine) among the bases of DNA was deaminated and replaced with I (inosine). More specifically, Cas9 nickase (nCas9) or catalytically deficient Cas9 (dCas9) is bound to adenosine deaminase that has been directed to work on DNA, and then when introduced into cells, A of DNA is G ( I) (or at a lower frequency, A to C or T).

이러한 사항에 기초하여, 아데노신 디아미나아제를 DNA 시퀀싱에 적용한 기술을 제공한다.Based on these matters, a technique for applying adenosine deaminase to DNA sequencing is provided.

일 예는 One example is

(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계; 및(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease Introducing a nucleic acid molecule or a plasmid containing the nucleic acid molecule into an isolated cell or treating the isolated DNA to cut one of the DNA double strands; And

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하는 단계(b) a single-strand specific endonuclease (e.g., endonuclease V) or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease) to the DNA from which one of the DNA double strands is cut VIII) of the combination) to cut the remaining DNA strands.

를 포함하는, 아데노신 디아미나아제를 사용하여 DNA에 이중 가닥 절단 (double strand break)를 생성하는 방법을 제공한다.It provides a method of generating a double strand break in DNA using adenosine deaminase comprising a.

다른 예는,Another example is,

(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease Introducing a nucleic acid molecule or a plasmid containing the nucleic acid molecule into an isolated cell or treating the isolated DNA to cut one of the DNA double strands;

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하여, 이중 가닥 절단 (double-strand break)를 형성하는 단계; 및(b) a single-strand specific endonuclease (e.g., endonuclease V) or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease) to the DNA from which one of the DNA double strands is cut A combination of VIII)) to cleave the remaining DNA strands to form a double-strand break; And

(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계(c) performing whole genome sequencing on the double-stranded DNA

를 포함하는 DNA 서열 분석 방법을 제공한다.It provides a DNA sequence analysis method comprising a.

다른 예는, Another example is,

(a) (1)아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid comprising the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease Introducing a nucleic acid molecule or a plasmid containing the nucleic acid molecule into an isolated cell or treating the isolated DNA to cut one of the DNA double strands;

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는 Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하여, 이중 가닥 절단 (double-strand break)를 형성하는 단계;(b) a single-strand specific endonuclease (e.g., endonuclease V or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII) to the DNA from which one of the DNA double strands is cut ) To form a double-strand break by cutting the remaining DNA strands;

(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계; 및 (c) performing whole genome sequencing on the double-stranded DNA; And

(d) 상기 시퀀싱으로 수득한 염기서열 데이터 (sequence read)에서 상기 절단된 위치를 확인하는 단계(d) confirming the cut position in the sequence read obtained by the sequencing

를 포함하는,Containing,

표적 특이적 뉴클레아제의 절단 위치 또는 비표적 위치 (off-target site)를 검출하는 방법을 제공한다.A method of detecting a cleavage site or an off-target site of a target-specific nuclease is provided.

상기 비표적 위치 (off-target site)를 검출하는 방법은 상기 (d) 단계 이후에, 상기 확인된 절단된 위치가 표적 위치 (on-target site)가 아닌 경우, 비표적 위치 (off-target site)로 판단하는 단계 ((e) 단계)를 추가로 포함할 수 있다.The method for detecting the off-target site is, after the step (d), when the identified cut location is not an on-target site, the off-target site It may further include a step (step (e)) determining as ).

다른 예는,Another example is,

(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease Introducing a nucleic acid molecule or a plasmid containing the nucleic acid molecule into an isolated cell or treating the isolated DNA to cut one of the DNA double strands;

(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는 Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)를 처리하여, 나머지 DNA 가닥을 절단하여, 이중 가닥 절단 (double-strand break)를 형성하는 단계;(b) a single-strand specific endonuclease (e.g., endonuclease V or Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII) to the DNA from which one of the DNA double strands is cut ) To form a double-strand break by cutting the remaining DNA strands;

(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계; 및 (c) performing whole genome sequencing on the double-stranded DNA; And

(d) 상기 시퀀싱으로 수득한 염기서열 데이터 (sequence read)에서 상기 절단된 위치를 확인하는 단계(d) confirming the cut position in the sequence read obtained by the sequencing

를 포함하는, Containing,

표적 특이적 뉴클레아제의 교정 효율 및/또는 정확도 확인 방법을 제공한다. It provides a method of confirming the calibration efficiency and/or accuracy of a target-specific nuclease.

상기 표적 특이적 뉴클레아제의 교정 효율 확인 방법은 상기 (d) 단계 이후에, 상기 확인된 절단된 위치가 표적 위치 (on-target site)가 아닌 경우, 비표적 위치 (off-target site)로 판단하는 단계 ((e) 단계) 및 상기 비표적 위치에서의 절단 정도 (비표적 위치 개수 및/또는 비표적 위치에서의 절단 빈도)를 측정하여 비교 대상의 절단 정도와 비교하는 단계(e-1)를 추가로 포함할 수 있으며, 이 경우, 비표적 위치에서의 절단 정도가 낮을수록 교정 효율 및/또는 정확도가 높다고 판단할 수 있다. 상기 비교 대상은 임의의 표적 DNA의 표적 서열에 대한 표적 특이적 뉴클레아제일 수 있으며, 일 예에서, 통상적으로 사용되거나 이미 알려진 표적 특이적 뉴클레아제 (예컨대, RGEN 및 가이드 RNA 조합)들 중 선택된 어느 하나일 수 있다.The method for confirming the calibration efficiency of the target-specific nuclease is, after the step (d), when the identified cleaved position is not an on-target site, an off-target site Determining (step (e)) and measuring the degree of cutting at the non-target location (the number of non-target locations and/or the frequency of cutting at the non-target location) and comparing it with the degree of cutting of the comparison object (e-1 ) May be additionally included, and in this case, it may be determined that the lower the degree of cutting at the non-target position, the higher the calibration efficiency and/or accuracy. The comparison object may be a target-specific nuclease for the target sequence of any target DNA, and in one example, a commonly used or known target-specific nuclease (e.g., a combination of RGEN and guide RNA) is selected. It can be either.

상기 단계 (a)에 있어서, (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드는 분리된 세포 또는 분리된 DNA에 동시에 (함께) 처리될 수 있으며, 일 예에서, 아데노신 디아미나아제와 표적 특이적 뉴클레아제가 융합된 융합 단백질 (예컨대, 아데노신 디아미나아제가 N 말단쪽에 위치하고 표적 특이적 뉴클레아제가 C 말단쪼겡 위치할 수 있음), 또느 상기 융합 단백질을 암호화하는 핵산 서열 또는 상기 핵산 서열을 포함하는 플라스미드 형태로 사용될 수 있다. 이 때, (3) 표적 특이적 뉴클레아제에 따라 적절한 가이드 RNA, 또는 이를 암호화하는 핵산 분자 또는 이를 포함하는 플라스미드를 추가로 포함할 수 있다.In the above step (a), (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid containing the nucleic acid molecule, and (2) a target-specific nuclease, a target-specific nuclease. The nucleic acid molecule encoding the clease, or the plasmid containing the nucleic acid molecule may be simultaneously (together) treated with the isolated cells or the isolated DNA, and in one example, adenosine deaminase and a target-specific nuclease are fused. Fusion protein (e.g., adenosine deaminase may be located at the N-terminus and target specific nuclease may be located at the C-terminus), or a nucleic acid sequence encoding the fusion protein or a plasmid containing the nucleic acid sequence I can. In this case, (3) according to the target-specific nuclease, an appropriate guide RNA, or a nucleic acid molecule encoding the same, or a plasmid containing the same may be further included.

상기 단계 (a)에 있어서, 아데노신 디아미나아제에 의하여, DNA의 이중가닥 중 PAM 서열이 존재하는 가닥의 표적 부위 (PAM의 5' 말단쪽으로 17 내지 23 nt 부위) 내의 아데노신의 이노신으로의 전환이 일어나고, 표적특이적 뉴클레아제에 의하여 상기 아데노신-이노신 전환이 일어난 가닥 (즉, PAM 서열이 존재하는 가닥)의 반대 가닥 (상보적 가닥)에서 단일 가닥 절단 (nick)이 발생한다.In the step (a), the conversion of adenosine to inosine in the target site (17 to 23 nt toward the 5'end of PAM) of the strand in which the PAM sequence is present in the double strand of DNA by adenosine deaminase Occurs, and single-stranded cleavage (nick) occurs in the opposite strand (complementary strand) of the strand in which the adenosine-inosine conversion has occurred (ie, the strand in which the PAM sequence is present) by the target-specific nuclease.

상기 단계 (b)에 있어서, 엔도뉴클레아제 V를 사용하는 경우, 상기 단계 (a)에 의하여 단일 가닥 절단이 일어난 가닥의 반대 가닥 (즉, 아데노힌-이노신 전환이 일어난 가닥)의 상기 아데노신이 이노신으로 변환된 변이 위치에서 5' 방향 및/또는 3' 방향으로 5nt 이내, 4nt 이내, 3 nt 이내, 2nt 이내, 또는 1nt 이내에 위치하는 뉴클레오타이드의 3' 말단이 절단된다. 상기 단계 (b)에 있어서, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합을 사용하는 경우, AAG에 의하여 상기 단계 (a)에서 전환된 이노신이 제거되어 AP 부위 (apurinic site)이 생성되고, 엔도뉴클레아제 VIII는 상기 AP 부위를 인식하여 AP 부위의 3' 및 5' 말단을 절단한다. 이러한 단계 (b)를 수행함으로써, 단계 (a)에서 단일 가닥 절단이 일어난 가닥과 반대 가닥에도 단일 가닥 절단이 일어나, 결과적으로 이중 가닥 절단이 생성된다. In the step (b), in the case of using endonuclease V, the adenosine of the strand opposite to the strand in which the single strand was cleaved by the step (a) (that is, the strand in which adenohin-inosine conversion occurred) The 3'end of the nucleotide located within 5 nt, within 4 nt, within 3 nt, within 2 nt, or within 1 nt in the 5'direction and/or 3'direction from the mutant position converted to inosine is cut. In the above step (b), when a combination of Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII is used, inosine converted in step (a) is removed by AAG and the AP site (apurinic site) is generated, and endonuclease VIII recognizes the AP site and cleaves the 3'and 5'ends of the AP site. By performing this step (b), single-stranded cleavage occurs in the strand opposite to the strand where the single-stranded cleavage occurred in step (a), resulting in double-stranded cleavage.

다른 예는 Another example is

(1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드,(1) adenosine deaminase, a nucleic acid molecule encoding an adenosine deaminase, or a plasmid containing the nucleic acid molecule,

(2) 표적 특이적 뉴클레아제, 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및(2) a target-specific nuclease, a nucleic acid molecule encoding a target-specific nuclease, or a plasmid containing the nucleic acid molecule, and

(3) 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V (endonuclease V) 또는, Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합)(3) Single-strand specific endonuclease (e.g., endonuclease V) or a combination of Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease VIII))

을 포함하는, DNA 이중 가닥 절단 (double strand breaks; DSBs)용 조성물을 제공한다.It provides a composition for DNA double strand breaks (double strand breaks; DSBs) comprising a.

본 명세서에서 제공된 방법 및 조성물들에 있어서, 유전체 교정 (염기 교정) 및/또는 절단 대상이 되는 DNA는 유전체(genomic) DNA 또는 DNA 단편 (PCT 산물)일 수 있으며, 세포 내에 존재하거나 세포로부터 분리된 것일 수 있다. 상기 세포는 인간, 마우스 등의 포유류 등과 같은 진핵 세포일 수 있다. 또한, 본 명세서에서 제공된 방법 및 조성물들에 있어서, 아데노신 디아미나아제 및 표적 특이적 뉴클레아제는 직접적 또는 펩타이드 링커를 통하여 간접적으로 연결된 융합 단백질 또는 이를 암호화하는 핵산 분자 또는 상기 핵산 분자를 포함하는 플라스미드 형태로 사용될 수 있다. In the methods and compositions provided herein, the DNA to be genomic correction (base correction) and/or cleavage may be genomic DNA or DNA fragment (PCT product), and present in or isolated from cells. Can be. The cells may be eukaryotic cells such as humans and mammals such as mice. In addition, in the methods and compositions provided herein, adenosine deaminase and target-specific nuclease are a fusion protein directly or indirectly linked through a peptide linker or a nucleic acid molecule encoding the same or a plasmid comprising the nucleic acid molecule. Can be used in the form.

또한, 본 명세서에서 제공된 방법 및 조성물들에 있어서, 표적 특이적 뉴클레아제는 가이드 RNA와 함께 사용 또는 포함될 수 있다.Further, in the methods and compositions provided herein, a target specific nuclease may be used or included with a guide RNA.

이 경우, 아데노신 디아미나아제, 표적 특이적 뉴클레아제, 및 가이드 RNA는In this case, adenosine deaminase, target specific nuclease, and guide RNA are

(i) 아데노신 디아미나아제, 표적 특이적 뉴클레아제, 및 가이드 RNA의 혼합물,(i) a mixture of adenosine deaminase, target specific nuclease, and guide RNA,

(ii) 아데노신 디아미나아제 암호화 핵산 서열 또는 이를 포함하는 플라스미드, 표적 특이적 뉴클레아제 암호화 핵산 서열 또는 이를 포함하는 플라스미드, 및 가이드 RNA 또는 이의 암호화 핵산 분자를 포함하는 플라스미드의 혼합물,(ii) a mixture of an adenosine deaminase-encoding nucleic acid sequence or a plasmid containing the same, a target-specific nuclease-encoding nucleic acid sequence or a plasmid containing the same, and a plasmid containing a guide RNA or a nucleic acid molecule encoding the same,

(iii) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 및 가이드 RNA의 혼합물,(iii) a mixture of a fusion protein and guide RNA to which adenosine deaminase and target specific nuclease are linked,

(iv) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 암호화 핵산 분자 또는 상기 핵산 분자를 포함하는 플라스미드, 및 가이드 RNA 또는 이의 암호화 핵산 분자를 포함하는 플라스미드의 혼합물, 및 (iv) a mixture of a fusion protein-encoding nucleic acid molecule to which adenosine deaminase and target-specific nuclease are linked or a plasmid containing the nucleic acid molecule, and a plasmid containing a guide RNA or a nucleic acid molecule encoding the same, and

(v) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 및 가이드 RNA의 복합체 (리보핵산단백질, RNP) 또는 혼합물(v) Complex of adenosine deaminase and target-specific nuclease-linked fusion protein and guide RNA (ribonucleic acid protein, RNP) or mixture

로 이루어진 군에서 선택된 하나 이상의 형태로 사용 (예컨대, 분리된 세포 내로 도입 또는 분리된 DNA에 처리 또는 조성물에 포함)될 수 있다.It may be used in one or more forms selected from the group consisting of (eg, introduced into isolated cells or treated with isolated DNA or included in a composition).

상기 플라스미드는 상기 아데노신 디아미나아제 암호화 유전자 및/또는 불활성화된 표적특이적 뉴클레아제 암호화 유전자를 삽입하고 이를 숙주세포 내에서 발현시킬 수 있는 발현 시스템을 포함하는 모든 플라스미드일 수 있다. 상기 플라스미드는 목적 유전자 발현을 위한 요소 (elements)를 포함하는 것으로, 복제원점 (replication origin), 프로모터, 작동 유전자 (operator), 전사 종결 서열 (terminator) 등을 포함할 수 있고, 숙주 세포의 게놈 내로의 도입을 위한 적절한 효소 부위 (예컨대, 제한 효소 부위) 및/또는 임의로 숙주 세포 내로의 성공적인 도입을 확인하기 위한 선별 마커 및/또는 단백질로의 번역을 위한 리보좀 결합 부위 (ribosome binding site; RBS) 및/또는 전자 조절 인자 등을 추가로 포함할 수 있다. 상기 플라스미드는 당업계에서 사용되는 플라스미드, 예컨대, pcDNA 시리즈, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pUC19 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 숙주세포는 상기 아데노신 디아미나제에 의하여 염기 교정 또는 이중 가닥 절단을 도입하고자 하는 세포 (예컨대, 인간 세포 등의 포유류 등과 같은 진핵 세포) 또는 상기 아데노신 디아미나아제 암호화 유전자 및/또는 불활성화된 표적특이적 뉴클레아제 암호화 유전자를 발현하여 아데노신 디아미나아제 및 불활성화된 표적특이적 뉴클레아제를 발현할 수 있는 모든 세포 (예컨대, E. coli 등) 들 중에서 선택될 수 있다.The plasmid may be any plasmid including an expression system capable of inserting the adenosine deaminase-encoding gene and/or an inactivated target-specific nuclease-encoding gene and expressing it in a host cell. The plasmid contains elements for expression of a gene of interest, and may include a replication origin, a promoter, an operator, a transcription termination sequence, etc., and into the genome of a host cell. An appropriate enzyme site (e.g., a restriction enzyme site) for the introduction of and/or optionally a selectable marker to confirm successful introduction into a host cell and/or a ribosome binding site (RBS) for translation into a protein and / Or may further include an electronic control factor. The plasmid is a plasmid used in the art, such as pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX series, pET series. , pUC19, etc. may be one or more selected from the group consisting of, but is not limited thereto. The host cell is a cell to which base correction or double-strand break is introduced by the adenosine deaminase (e.g., a eukaryotic cell such as a mammal such as a human cell) or the adenosine deaminase encoding gene and/or an inactivated target It can be selected from all cells (eg, E. coli, etc.) capable of expressing a specific nuclease-encoding gene to express adenosine deaminase and an inactivated target-specific nuclease.

본 명세서에서 절단 유전체 시퀀싱 (digested genome sequencing, Digenome-seq) 기술이라 함은 뉴클레아제에 의해 절단된 유전체의 서열 분석을 의미하는 것으로, 세포에서의 전체 유전체에서의 뉴클레아제 비표적 효과 (off-target effect)를 분석하기 위한 in vitro nuclease-digested whole-genome sequencing에 적용될 수 있다. 뉴클레아제의 절단 부위에서 동일한 5' 말단을 갖는 sequence reads를 생성하며, 이들은 적절한 프로그램 (예컨대, Digenome program)에 의하여 컴퓨터로 확인 가능하다. 일 예에서, 절단 유전체 시퀀싱은 앞서 기재한 유전체 DNA (genome DNA) 서열 분석 방법 또는 뉴클레아제의 비표적 위치 (off-target site)를 검출하는 방법에서의 단계 (a), (b), 및 (c), 또는 단계 (a), (b), (c), 및 (d)를 포함하는 것으로 정의될 수 있다. 이를 다르게 설명하면, 상기 단계 (a), (b), 및 (c), 또는 단계 (a), (b), (c), 및 (d)는 절단 유전체 시퀀싱에 의하여 수행될 수 있다.In the present specification, the term digested genome sequencing (Digenome-seq) technology refers to sequence analysis of a genome cut by a nuclease, and the nuclease non-target effect in the entire genome in a cell (off -target effect) can be applied to in vitro nuclease-digested whole-genome sequencing. Sequence reads having the same 5'end at the cleavage site of the nuclease are generated, and these can be identified by a computer by an appropriate program (eg, Digenome program). In one example, the cleavage genome sequencing is performed in steps (a), (b), and in the method for sequencing genomic DNA described above or for detecting off-target sites of nucleases. (c), or may be defined as including steps (a), (b), (c), and (d). In other words, steps (a), (b), and (c), or steps (a), (b), (c), and (d) may be performed by cutting dielectric sequencing.

본 명세서에 사용된 바로서, 용어 "염기 변이 (또는 염기 치환)"은 해당 염기를 포함하는 뉴클레오타이드에 변이 (예컨대, 치환)이 일어난 것을 의미하는 것으로, "뉴클레오타이드 변이 (또는 뉴클레오타이드 치환)"와 동일한 의미로 사용될 수 있으며, 이러한 염기 변이는 대립유전자 중 하나 또는 두 개 모두에서 일어날 수 있다.As used herein, the term "base change (or base substitution)" means that a change (eg, substitution) has occurred in a nucleotide containing a corresponding base, and is the same as "nucleotide change (or nucleotide substitution)" It can be used in the sense, and this base variation can occur in one or both of the alleles.

유전체 교정 및/또는 유전자 교정 기술은, 인간 세포를 비롯한 동식물 세포의 유전체 염기서열에 표적 지향형 변이를 도입할 수 있는 기술로서, 특정 유전자를 넉아웃 (knock-out) 또는 넉인 (knock-in)하거나, 단백질을 생성하지 않는 비-코딩 DNA 서열에 변이를 도입하는 등 다양한 형태로 수행될 수 있다. 본 명세서에서 제안되는 방법은 상기 유전체 교정 및/또는 유전자 교정 기술에 사용되는 표적 특이적 뉴클레아제의 비표적 위치를 검출하는 것으로, 이는 표적 위치에만 특이적으로 작동하는 표적 특이적 뉴클레아제 시스템을 개발하는데 유용하게 이용될 수 있다.The genome editing and/or gene editing technology is a technology capable of introducing a target-oriented mutation into the genome sequence of an animal or plant cell including human cells, and knock-out or knock-in a specific gene , It can be carried out in various forms, such as introducing a mutation into a non-coding DNA sequence that does not produce a protein. The method proposed herein is to detect the non-target position of the target-specific nuclease used in the genome editing and/or gene editing technology, which is a target-specific nuclease system that works specifically only at the target position. It can be usefully used to develop.

상기 (a) 단계는 분리된 세포 또는 생체 또는 세포로부터 분리된 유전체 (genomic) DNA에 아데노신 디아미나아제와 표적 특이적 뉴클레아제를 처리하여 DNA 이중가닥 중 한 가닥을 절단하는 단계로서, 분리된 유전체 DNA를 시험관 내 (in vitro)에서 특정 표적에 특이적으로 작용하는 뉴클레아제로 절단하는 단계이다. 상기 뉴클레아제는 표적 특이적으로 제작하였더라도 특이성에 따라 다른 부위, 즉 비표적 위치를 절단할 가능성을 갖는다. 따라서 결과적으로 상기 (a) 단계에 의해, 사용된 표적 특이적 뉴클레아제가 유전체 DNA에 대하여 활성을 가질 수 있는 위치인 표적 위치 또는 다수의 비표적 위치를 절단함으로써 특정 위치가 절단된 유전체 DNA 단편(lead)을 얻을 수 있다. The step (a) is a step of cutting one of the DNA double strands by treating adenosine deaminase and a target-specific nuclease on the isolated cell or the living body or genomic DNA isolated from the cell. This is the step of cleaving genomic DNA into nucleases that act specifically on a specific target in vitro . The nuclease has the potential to cleave other sites, that is, non-target sites, depending on the specificity, even if it is produced specifically for the target. Therefore, as a result, by the step (a), a genomic DNA fragment in which a specific position is cut by cutting a target position or a plurality of non-target positions, which is a position where the target-specific nuclease used can have activity with respect to genomic DNA ( lead).

상기 분리된 유전체 DNA는 비형질전환 세포 (야생형 세포) 및/또는 표적 특이적 뉴클레아제가 발현되거나 뉴클레아제 활성을 갖도록 형질전환된 세포로부터 분리된 것일 수 있으며, 표적 특이적 뉴클레아제의 비표적 위치를 검출하고자 하는 목적에 따라 그 유래에 제한 없이 사용될 수 있다. 상기 유전체가 분리되는 세포는 모든 원핵 세포 및 진핵세포 (예컨대, 인간 등의 포유동물 세포, 진핵식물 세포 등)들 중에서 선택된 것일 수 있다.The isolated genomic DNA may be isolated from a non-transformed cell (wild type cell) and/or a cell transformed so that the target-specific nuclease is expressed or has nuclease activity, and the ratio of the target-specific nuclease Depending on the purpose of detecting the target position, it may be used without limitation in its origin. The cell from which the genome is isolated may be selected from all prokaryotic cells and eukaryotic cells (eg, mammalian cells such as humans, eukaryotic plant cells, etc.).

상기 아데노신 디아미나아제는 퓨린 대사에 관여하는 효소(EC 3.5.4.4)로서, 아데노신을 디아미네이션(deamination; 아미노기를 케토기로 치환)시켜서 이노신 (inosine)으로 변환시키는 기능하는 모든 효소를 총칭한다. 일 예에서, 아데노신 디아미나아제는 원핵세포 또는 진핵 세포, 예컨대, 진핵 동물 (예컨대, 어류, 양서류, 파충류, 조류, 포유류 등), 또는 진핵 식물 유래의 것일 수 있으며, 예컨대, 인간 아데노신 디아미나아제 (예컨대, GenBank Accession No. NP_000013.2 (코딩 유전자: NM_000022.3), NP_001308979.1 (코딩 유전자: NM_001322050.1), NP_001308980.1 (코딩 유전자: NM_001322051.1) 등), 마우스 아데노신 디아미나아제 (예컨대, GenBank Accession No. NP_001258981.1 (코딩 유전자: NM_001272052.1), NP_031424.1 (코딩 유전자: NM_007398.4) 등), E. coli TadA (NP_417054.2) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 아데노신 디아미나아제는 단백질 또는 이를 암호화하는 DNA (임의로 적절한 재조합 벡터에 포함될 수 있음), 또는 이를 암호화하는 mRNA 형태로 사용될 수 있다 또한 아데노신 디아미나아제는 기존 아데노신 디아미나아제가, 예컨대, E. coli 등의 원핵세포에서, 인위적 진화 (directed evolution; DE) 된 것일 수 있다. 인위적 진화 (directed evolution; DE)는 단백질 엔지니어링 방법 중 하나로, 돌연변이유발 과정 (변이체 라이브러리 생성), 선별 과정 (상기 변이체를 발현시키고 이 중에서 목적하는 기능(변이)을 갖는 변이체를 분리), 및 증폭 또는 재생산 과정 (다음 라운드를 위한 템플릿 생성)를 포함할 수 있고, in vivo (생체 내) 또는 in vitro에서 수행될 수 있다. 일 예에서, 상기 인위적 진화된 아데노신 디아미나아제는 E. coli TadA (NP_417054.2)를 E. coli에서 인위적 진화시킨 것일 수 있다. 일 예에서, 상기 인위적 진화된 아데노신 디아미나아제는 NP_417054.2의 N 말단의 메티오닌(M)을 제외한 아미노산 서열 중, 22번째 아미노산 잔기 (W), 35번째 아미노산 잔기 (H), 47번째 아미노산 잔기 (P), 50번째 아미노산 잔기 (R), 83번째 아미노산 잔기 (L), 105번째 아미노산 잔기 (A), 107번째 아미노산 잔기(D), 122번재 아미노산 잔기 (H), 145번째 아미노산 잔기 (S), 146번째 아미노산 잔기 (D), 151번째 아미노산 잔기 (R), 154번째 아미노산 잔기 (E), 155번째 아미노산 잔기 (I), 156번째 아미노산 잔기 (K) (이상, 아미노산 위치는 NP_417054.2의 두 번째 아미노산부터 기산함) 등으로 이루어진 군에서 선택된 하나 이상의 아미노산이 원래(야생형)와 다른 아미노산으로 치환 또는 결실된 것일 수 있으나 (참고예 2 참조), 이에 제한되는 것은 아니다.The adenosine deaminase is an enzyme involved in purine metabolism (EC 3.5.4.4), and refers to all enzymes that function to convert adenosine into inosine by deamination (deamination of an amino group with a keto group). . In one example, the adenosine deaminase may be from a prokaryotic cell or a eukaryotic cell, such as a eukaryotic animal (e.g., fish, amphibians, reptiles, birds, mammals, etc.), or from a eukaryotic plant, such as human adenosine deaminase. (E.g., GenBank Accession No. NP_000013.2 (coding gene: NM_000022.3), NP_001308979.1 (coding gene: NM_001322050.1), NP_001308980.1 (coding gene: NM_001322051.1), etc.), mouse adenosine deaminase (E.g., GenBank Accession No. NP_001258981.1 (coding gene: NM_001272052.1), NP_031424.1 (coding gene: NM_007398.4), etc.), one selected from the group consisting of E. coli TadA (NP_417054.2), etc. It can be more than that. The adenosine deaminase may be used in the form of a protein or a DNA encoding it (which may be optionally included in an appropriate recombinant vector), or in the form of an mRNA encoding the same. In addition, adenosine deaminase is a conventional adenosine deaminase, such as E. In prokaryotic cells such as coli , it may be directed evolution (DE). Directed evolution (DE) is one of the protein engineering methods, which is a mutagenesis process (generating a variant library), a selection process (expressing the variant and isolating a variant having a desired function (mutation) from among them), and amplification or It can involve a reproductive process (creating a template for the next round) and can be performed in vivo (in vivo) or in vitro. In one example, the artificially evolved adenosine deaminase may be an artificially evolved E. coli TadA (NP_417054.2) from E. coli . In one example, the artificially evolved adenosine deaminase is the 22nd amino acid residue (W), the 35th amino acid residue (H), and the 47th amino acid residue in the amino acid sequence excluding methionine (M) at the N terminal of NP_417054.2. (P), 50th amino acid residue (R), 83rd amino acid residue (L), 105th amino acid residue (A), 107th amino acid residue (D), 122nd amino acid residue (H), 145th amino acid residue (S ), 146th amino acid residue (D), 151st amino acid residue (R), 154th amino acid residue (E), 155th amino acid residue (I), 156th amino acid residue (K) (above, the amino acid position is NP_417054.2 One or more amino acids selected from the group consisting of (starting from the second amino acid of) and the like may be substituted or deleted with an amino acid different from the original (wild type) (see Reference Example 2), but are not limited thereto.

상기 표적 특이적 뉴클레아제는 유전자 가위 (programmable nuclease)라고도 불리며, 목적하는 유전체 DNA 상의 특정 위치를 인식하여 절단할 수 있는 모든 형태의 뉴클레아제를 통칭한다. The target-specific nuclease is also called a programmable nuclease, and collectively refers to all types of nucleases capable of cutting by recognizing a specific location on a genomic DNA of interest.

본 명세서에서 사용된 표적 특이적 뉴클레아제는 DNA 이중가닥 중 한 가닥을 절단하는 활성을 갖는 모든 뉴클레아제일 수 있다. The target-specific nuclease as used herein may be any nuclease having an activity of cleaving one strand of a DNA double strand.

일 구체예에서, 상기 표적 특이적 뉴클레아제는 Cas 단백질 (예컨대, Cas9 단백질(CRISPR (Clustered regularly interspaced short palindromic repeats) associated protein 9)), Cpf1 단백질 (CRISPR from Prevotella and Francisella 1) 등과 같은 타입 Ⅱ 및/또는 타입 V의 CRISPR 시스템에 수반되는 뉴클레아제 (예컨대, 엔도뉴클레아제) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 이 경우, 상기 표적 특이적 뉴클레아제는 유전체 DNA의 표적 부위로 안내하기 위한 표적 DNA 특이적 가이드 RNA를 추가로 포함할 수 있다. 상기 가이드 RNA는 생체 외 (in vitro)에서 전사된(transcribed) 것일 수 있고, 예컨대 올리고뉴클레오티드 이중가닥 또는 플라스미드 주형으로부터 전사된 것일 수 있으나, 이에 제한되지 않는다. 상기 표적 특이적 뉴클레아제는 가이드 RNA에 결합된 리보핵산-단백질 복합체를 형성(RNA-Guided Engineered Nuclease)하여 리보핵산 단백질 (RNP) 형태로 작용할 수 있다.In one embodiment, the target-specific nuclease is a Cas protein (eg, Cas9 protein (CRISPR (Clustered regularly interspaced short palindromic repeats) associated protein 9)), Cpf1 protein (CRISPR from Prevotella and Francisella 1), etc. And/or it may be one or more selected from the group consisting of nucleases (eg, endonucleases) involved in the type V CRISPR system. In this case, the target-specific nuclease may further include a target DNA-specific guide RNA for guiding to a target site of genomic DNA. The guide RNA may be transcribed in vitro, for example, may be transcribed from an oligonucleotide double strand or a plasmid template, but is not limited thereto. The target-specific nuclease may act in the form of a ribonucleic acid protein (RNP) by forming a ribonucleic acid-protein complex bound to a guide RNA (RNA-Guided Engineered Nuclease).

Cas 단백질은 CRISPR/Cas 시스템의 주요 단백질 구성 요소로, 활성화된 엔도뉴클레아제 또는 nickase를 형성할 수 있는 단백질이다.Cas protein is a major protein component of the CRISPR/Cas system, and is a protein capable of forming an activated endonuclease or nickase.

Cas 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있다. 예컨대, 상기 Cas 단백질은, Cas protein or gene information can be obtained from a known database such as GenBank of NCBI (National Center for Biotechnology Information). For example, the Cas protein,

스트렙토코커스 sp. (Streptococcus sp.), 예컨대, 스트렙토코커스 피요게네스 (Streptococcus pyogenes) 유래의 Cas 단백질, 예컨대, Cas9 단백질 (예컨대, SwissProt Accession number Q99ZW2(NP_269215.1)); Streptococcus sp. ( Streptococcus sp.), such as a Cas protein derived from Streptococcus pyogenes , such as a Cas9 protein (eg, SwissProt Accession number Q99ZW2 (NP_269215.1));

캄필로박터 속, 예컨대, 캄필로박터 제주니 (Campylobacter jejuni) 유래의 Cas 단백질, 예컨대, Cas9 단백질; Campylobacter genus, such as Campylobacter jejuni ( Campylobacter jejuni ) derived Cas protein, such as Cas9 protein;

스트렙토코커스 속, 예컨대, 스트렙토코커스 써모필러스 (Streptococcus thermophiles) 또는 스트렙토코커스 아우레우스 (Streptocuccus aureus) 유래의 Cas 단백질, 예컨대, Cas9 단백질;Streptococcus genus, for example, Streptococcus Thermo filler's (Streptococcus thermophiles) or Streptococcus aureus (Streptocuccus aureus ) derived Cas protein, such as the Cas9 protein;

네이세리아 메닝기디티스 (Neisseria meningitidis) 유래의 Cas 단백질, 예컨대, Cas9 단백질; Neisseria meningiditis meningitidis ) derived Cas proteins, such as Cas9 protein;

파스테우렐라 (Pasteurella) 속, 예컨대, 파스테우렐라 물토시다 (Pasteurella multocida) 유래의 Cas 단백질, 예컨대 Cas9 단백질;Cas proteins from the genus Pasteurella , such as Pasteurella multocida , such as the Cas9 protein;

프란시셀라 (Francisella) 속, 예컨대, 프란시셀라 노비시다 (Francisella novicida) 유래의 Cas 단백질, 예컨대 Cas9 단백질Cas protein, such as Cas9 protein from the genus Francisella , for example, Francisella novicida

등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.It may be one or more selected from the group consisting of, but is not limited thereto.

Cpf1 단백질은 상기 CRISPR/Cas 시스템과는 구별되는 새로운 CRISPR 시스템의 엔도뉴클레아제로서, Cas9에 비해 상대적으로 크기가 작고 tracrRNA가 필요 없으며, 단일 가이드 RNA에 의해 작용할 수 있다. 또한, 티민 (thymine)이 풍부한 PAM (protospacer-adjacent motif) 서열을 인식하고 DNA의 이중 사슬을 잘라 점착종단 (cohesive end; cohesive double-strand break)을 생성한다. Cpf1 protein is a novel CRISPR system endonuclease that is distinct from the CRISPR/Cas system, and is relatively small in size compared to Cas9 and does not require tracrRNA, and can act by a single guide RNA. In addition, it recognizes a thymine-rich PAM (protospacer-adjacent motif) sequence and cuts a double chain of DNA to create a cohesive end (cohesive double-strand break).

예컨대, 상기 Cpf1 단백질은 캔디다투스 (Candidatus) 속, 라치노스피라 (Lachnospira) 속, 뷰티리비브리오 (Butyrivibrio) 속, 페레그리니박테리아 (Peregrinibacteria), 액시도미노코쿠스 (Acidominococcus) 속, 포르파이로모나스 (Porphyromonas) 속, 프레보텔라 (Prevotella) 속, 프란시셀라 (Francisella) 속, 캔디다투스 메타노플라스마 (Candidatus Methanoplasma), 또는 유박테리움 (Eubacterium) 속 유래의 것일 수 있고, 예컨대, Parcubacteria bacterium (GWC2011_GWC2_44_17), Lachnospiraceae bacterium (MC2017), Butyrivibrio proteoclasiicus, Peregrinibacteria bacterium (GW2011_GWA_33_10), Acidaminococcus sp. (BV3L6), Porphyromonas macacae, Lachnospiraceae bacterium (ND2006), Porphyromonas crevioricanis, Prevotella disiens, Moraxella bovoculi (237), Smiihella sp. (SC_KO8D17), Leptospira inadai, Lachnospiraceae bacterium (MA2020), Francisella novicida (U112), Candidatus Methanoplasma termitum, Candidatus Paceibacter , Eubacterium eligens 등의 미생물 유래의 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the Cpf1 protein is Candidatus genus, Lachnospira genus, Butyrivibrio genus, Peregrinibacteria , Acidominococcus genus, Porphyromonas ( Porphyromonas ) genus, Prevotella genus, Francisella genus, Candidatus metanoplasma ( Candidatus) Methanoplasma ), or Eubacterium ( Eubacterium ) may be derived from the genus, for example, Parcubacteria bacterium (GWC2011_GWC2_44_17), Lachnospiraceae bacterium (MC2017), Butyrivibrio proteoclasiicus , Peregrinibacteria bacterium (GW2011_GWA_33_10), Acid aminococus . (BV3L6), Porphyromonas macacae , Lachnospiraceae bacterium (ND2006), Porphyromonas crevioricanis , Prevotella disiens , Moraxella bovoculi (237), Smiihella sp. (SC_KO8D17), Leptospira inadai , Lachnospiraceae bacterium (MA2020), Francisella novicida (U112), Candidatus Methanoplasma termitum , Candidatus Paceibacter , Eubacterium It may be derived from microorganisms such as eligens , but is not limited thereto.

상기 표적 특이적 뉴클레아제는 미생물에서 분리된 것 또는 재조합적 방법 또는 합성적 방법 등과 같이 인위적 또는 비자연적 생산된 것(non-naturally occurring)일 수 있다. 일 예에서, 상기 표적 특이적 뉴클레아제 (예컨대, Cas9, Cpf1, 등)은 재조합 DNA에 의하여 만들어진 재조합 단백질일 수 있다. 재조합 DAN(Recombinant DNA; rDNA)는 다양한 유기체로부터 얻어진 이종 또는 동종 유전 물질을 포함하기 위하여 분자 클로닝과 같은 유전자 재조합 방법에 의하여 인공적으로 만들어진 DNA 분자를 의미한다. 예컨대, 재조합 DNA를 적절한 유기체에서 발현시켜 표적 특이적 뉴클레아제를 생산 (in vivo 또는 in vitro)하는 경우, 재조합 DNA는 제조하고자 하는 단백질을 암호화 하는 코돈들 중에서 상기 유기체에 발현하기에 최적화된 코돈을 선택하여 재구성된 뉴클레오타이드 서열을 갖는 것일 수 있다.The target-specific nuclease may be isolated from a microorganism or artificially or non-naturally produced, such as a recombinant method or a synthetic method. In one example, the target-specific nuclease (eg, Cas9, Cpf1, etc.) may be a recombinant protein made by recombinant DNA. Recombinant DNA (rDNA) refers to a DNA molecule that has been artificially made by a gene recombination method such as molecular cloning to contain heterogeneous or allogeneic genetic material obtained from various organisms. For example, when the recombinant DNA is expressed in an appropriate organism to produce a target-specific nuclease ( in vivo or in vitro ), the recombinant DNA is a codon optimized for expression in the organism among the codons encoding the protein to be produced. It may be to have a nucleotide sequence reconstructed by selecting.

본 명세서에서 사용된 상기 표적특이적 뉴클레아제는 변이된(불활성화된) 형태의 변이 표적특이적 뉴클레아제일 수 있다. 상기 변이(불활성화) 표적특이적 뉴클레아제는 DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성을 상실하도록 변이된 것을 의미할 수 있으며, 예컨대, DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성을 상실하고 니카아제 활성을 갖도록 변이된 변이 표적특이적 뉴클레아제 및 DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성과 니카아제 활성을 모두 상실하도록 변이된 변이 표적특이적 뉴클레아제 중에서 선택된 1종 이상일 수 있다. 상기 변이 표적특이적 뉴클레아제가 니카아제 활성을 갖는 것인 경우, 상기 디아미나제에 의한 염기 변환(예컨대, 아데노신이 이노신으로 변환)과 동시 또는 순서와 무관하게 순차적으로, 상기 염기 변환이 일어난 가닥 또는 그 반대 가닥 (예컨대, 염기 변환이 일어난 가닥의 반대 가닥)에서 단일 가닥 절단(nick)을 도입시킬 수 있다 (예컨대, PAM이 위치하는 가닥의 반대가닥에서, PAM 서열의 5' 말단 방향으로 3번째 뉴클레오타이드와 4번째 뉴클레오타이드 사이에 해당하는 위치에 nick이 도입됨). 이와 같은 표적특이적 뉴클레아제의 변이 (예컨대, 아미노산 치환 등)는 적어도 뉴클레아제의 촉매 활성 도메인 (예컨대, Cas9의 경우 RuvC 촉매 도메인)에서 일어나는 것일 수 있다. 일 예에서, 상기 표적특이적 뉴클레아제가 스트렙토코커스 피요젠스 유래 Cas9 단백질 (SwissProt Accession number Q99ZW2(NP_269215.1))인 경우, 상기 변이는 촉매 활성을 갖는 아스파르트산 잔기 (catalytic aspartate residue; 10번째 위치의 아스파르트산 (D10) 등), 762번째 위치의 글루탐산 (E762), 840번째 위치의 히스티딘 (H840), 854번째 위치의 아스파라긴 (N854), 863번째 위치의 아스파라긴 (N863), 986번째 위치의 아스파르트산 (D986), 539번째 위치의 페닐알라닌(F539), 763번째 위치의 메티오닌 (M763), 890번째 위치의 라이신 (K890) 등으로 이루어진 군에서 선택된 하나 이상 임의의 다른 아미노산으로 치환된 돌연변이를 포함할 수 있다. 이 때, 치환되는 임의의 다른 아미노산은 알라닌 (alanine)일 수 있지만, 이에 제한되지 않는다. The target-specific nuclease used herein may be a mutated (inactivated) mutant target-specific nuclease. The mutant (inactivated) target-specific nuclease may mean that it has been mutated to lose the endonuclease activity that cuts all of the DNA double strands, for example, the endonuclease activity that cuts all the DNA double strands. 1 selected from mutated target-specific nucleases mutated to have nickase activity and mutated target-specific nucleases mutated to lose both endonuclease activity and nickase activity that cleaves both DNA double strands It can be more than a species. When the mutant target-specific nuclease has a nickase activity, the strand in which the base conversion occurs simultaneously or sequentially regardless of the sequence or at the same time as the base conversion by the deaminase (eg, adenosine to inosine conversion) Alternatively, a single-stranded nick can be introduced in the opposite strand (e.g., the opposite strand of the strand where base transformation has occurred) (e.g., in the opposite strand of the strand where the PAM is located, 3 in the direction of the 5'end of the PAM sequence). A nick is introduced at a position between the fourth nucleotide and the fourth nucleotide). Such target-specific nuclease mutation (eg, amino acid substitution) may occur at least in the catalytically active domain of the nuclease (eg, RuvC catalytic domain in the case of Cas9). In one example, when the target-specific nuclease is a Cas9 protein derived from Streptococcus pyogenes (SwissProt Accession number Q99ZW2 (NP_269215.1)), the mutation is a catalytic aspartate residue (10th position) Aspartic acid (D10), etc.), glutamic acid at position 762 (E762), histidine at position 840 (H840), asparagine at position 854 (N854), asparagine at position 863 (N863), aspartic acid at position 986 Acid (D986), phenylalanine at position 539 (F539), methionine at position 763 (M763), lysine at position 890 (K890), and the like. I can. In this case, any other amino acid to be substituted may be alanine, but is not limited thereto.

다른 예에서, 상기 변이된 표적특이적 뉴클레아제는 특이도(정확도)이 개선되도록 변이가 일어난 것일 수 있다. 일 예에서, 상기 변이된 표적특이적 뉴클레아제는 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질(예컨대, SwissProt Accession number Q99ZW2(NP_269215.1))의 F539, M763, 및 K890로 이루어진 군에서 선택된 하나 이상의 아미노산 잔기가 원래 아미노산과 상이한 아미노산으로 치환 또는 결실된 변이를 갖는 변이체 (보다 구체적으로, F539S, M763I, 및 K890N로 이루어진 군에서 선택된 하나 이상의 변이를 포함하는 변이체, 에컨대, F539S, M763I, 및 K890N 변이를 모두 갖는 변이체 (Sniper-Cas9))일 수 있다.In another example, the mutated target-specific nuclease may have been mutated to improve specificity (accuracy). In one example, the mutated target-specific nuclease is in the group consisting of F539, M763, and K890 of Cas9 protein (eg, SwissProt Accession number Q99ZW2 (NP_269215.1)) derived from Streptococcus pyogenes . A variant in which at least one selected amino acid residue is substituted or deleted with an amino acid different from the original amino acid (more specifically, a variant comprising at least one mutation selected from the group consisting of F539S, M763I, and K890N, e.g., F539S, M763I , And a variant having both the K890N mutation (Sniper-Cas9)).

다른 예에서, 상기 변이된 (불활성화된) 표적특이적 뉴클레아제는 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질(예컨대, SwissProt Accession number Q99ZW2(NP_269215.1))의 D10이 원래와 다른 아미노산 (예컨대, 알라닌(A))으로 치환 변이되어 니케이즈 활성을 갖고, 여기에 더하여, F539, M763, 및 K890로 이루어진 군에서 선택된 하나 이상의 아미노산 잔기가 원래와 상이한 아미노산으로 치환 변이(예컨대, F539S, M763I, K890N)되어 특이도 (정확도)가 개선된 것일 수 있다.In another example, the mutated (inactivated) target-specific nuclease has a different D10 from the original Cas9 protein (eg, SwissProt Accession number Q99ZW2 (NP_269215.1)) derived from Streptococcus pyogenes . It is substituted with an amino acid (e.g., alanine (A)) to have Nikase activity, and in addition, at least one amino acid residue selected from the group consisting of F539, M763, and K890 is substituted with an amino acid different from the original (e.g., F539S , M763I, K890N), and the specificity (accuracy) may be improved.

다른 예에서, 상기 변이 표적특이적 뉴클레아제는 야생형 Cas9 단백질과 상이한 PAM 서열을 인식하도록 변이된 것일 수 있다. 예컨대, 상기 변이 표적특이적 뉴클레아제는 스트렙토코커스 피요젠스 유래 Cas9 단백질의 1135번째 위치의 아스파르트산 (D1135), 1335번째 위치의 아르기닌 (R1335), 및 1337번째 위치의 트레오닌 (T1337) 중 하나 이상, 예컨대 3개 모두가 다른 아미노산으로 치환되어, 야생형 Cas9의 PAM 서열 (NGG)와 상이한 NGA (N은 A, T, G, 및 C 중에서 선택된 임의의 염기임)을 인식하도록 변이된 것일 수 있다. In another example, the mutant target-specific nuclease may be mutated to recognize a PAM sequence different from that of the wild-type Cas9 protein. For example, the mutant target-specific nuclease is at least one of aspartic acid at position 1135 (D1135), arginine at position 1335 (R1335), and threonine at position 1337 (T1337) of the Cas9 protein derived from Streptococcus pyogenes. , For example, all three are substituted with other amino acids, and may be mutated to recognize an NGA different from the PAM sequence (NGG) of wild-type Cas9 (N is any base selected from A, T, G, and C).

일 예에서, 상기 변이 표적특이적 뉴클레아제는 스트렙토코커스 피요젠스 유래 Cas9 단백질의 아미노산 서열 중, In one example, the mutant target-specific nuclease is from the amino acid sequence of the Cas9 protein derived from Streptococcus piyogens,

(1) D10, H840, 또는 이들의 조합 (D10 + H840); (1) D10, H840, or a combination thereof (D10 + H840);

(2) D10와, F539, M763, 및 K890로 이루어진 군에서 선택된 하나 이상의 조합 (예컨대, D10 + F539 + M763 + K890); (2) D10 and at least one combination selected from the group consisting of F539, M763, and K890 (eg, D10 + F539 + M763 + K890);

(3) D1135, R1335, T1337, 또는 이들의 조합 (예컨대, D1135 + R1335 + T1337); 또는(3) D1135, R1335, T1337, or a combination thereof (eg, D1135 + R1335 + T1337); or

(5) (1) 내지 (3) 중에서 선택된 둘 이상의 조합(5) Combination of two or more selected from (1) to (3)

에서 아미노산 치환이 일어난 것일 수 있다.The amino acid substitution may have occurred in

본 명세서에 사용된 바로서, 상기 '다른 아미노산'은, 알라닌, 이소류신, 류신, 메티오닌, 페닐알라닌, 프롤린, 트립토판, 발린, 아스파라긴산, 시스테인, 글루타민, 글리신, 세린, 트레오닌, 티로신, 아스파르트산, 글루탐산, 아르기닌, 히스티딘, 라이신, 상기 아미노산들의 공지된 모든 변형체 중에서, 야생형 단백질이 원래 변이 위치에 갖는 아미노산을 제외한 아미노산들 중에서 선택된 아미노산을 의미한다. 일 예에서, 상기 '다른 아미노산'은 알라닌, 발린, 글루타민, 또는 아르기닌일 수 있다.As used herein, the'other amino acids' are alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, valine, aspartic acid, cysteine, glutamine, glycine, serine, threonine, tyrosine, aspartic acid, glutamic acid, Arginine, histidine, lysine, among all known variants of the above amino acids, refers to an amino acid selected from amino acids except for amino acids in which the wild-type protein has an original mutation position. In one example, the'other amino acid' may be alanine, valine, glutamine, or arginine.

일 예에서, 상기 변이 표적특이적 뉴클레아제는 엔도뉴클레아제 활성을 상실(예컨대, 니카아제 활성을 갖거나, 엔도뉴클레아제 활성 및 니카아제 활성을 모두 상실)한 변형 Cas9 단백질, 또는 야생형 Cas9과 상이한 PAM 서열을 인식하는 것일 수 있다. 예컨대, 상기 변형 Cas9 단백질은, 스트렙토코커스 피요제네스 (Streptococcus pyogenes) 유래의 Cas9 단백질에 있어서,In one example, the mutant target-specific nuclease is a modified Cas9 protein that has lost endonuclease activity (e.g., has nickase activity, loses both endonuclease activity and nickase activity), or wild-type It may be to recognize a PAM sequence different from Cas9. For example, the modified Cas9 protein, in the Cas9 protein derived from Streptococcus pyogenes ,

(1) D10 또는 H840 위치에 돌연변이 (예컨대, 다른 아미노산으로의 치환)가 도입되어 이중 가닥 절단 엔도뉴클레아제 활성이 상실되고 니카아제 활성을 갖는 변형 Cas9, 또는 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질에 D10 및 H840 위치에 모두 돌연변이 (예컨대, 다른 아미노산으로의 치환)가 도입되어 이중 가닥 절단 엔도뉴클레아제 활성 및 니카아제 활성을 모두 상실한 변형 Cas9 단백질; (1) A mutation (eg, substitution with another amino acid) is introduced at the D10 or H840 position, resulting in loss of double-stranded endonuclease activity and a modified Cas9 having nickase activity, or Streptococcus pyogenes Modified Cas9 protein in which mutations (eg, substitutions with other amino acids) are introduced at both the D10 and H840 positions of the Cas9 protein, thereby losing both the double-stranded endonuclease activity and the nickase activity;

(2) D10 위치에 더하여 F539, M763, 및 K890로 이루어진 군에서 선택된 하나 이상의 위치에 돌연변이 (예컨대, 다른 아미노산으로의 치환)가 도입되어 이중 가닥 절단 엔도뉴클레아제 활성이 상실되고 니카아제 활성을 가지면서 특이도가 향상된 변형 Cas9 단백질;(2) In addition to the D10 position, a mutation (e.g., substitution with another amino acid) is introduced at one or more positions selected from the group consisting of F539, M763, and K890, resulting in loss of double-stranded endonuclease activity and nickase activity. Modified Cas9 protein having improved specificity while having;

(3) D1135, R1335 및 T1337 중에서 하나 이상 또는 이들 모두에 돌연변이(예컨대, 다른 아미노산으로의 치환)가 도입되어 야생형과 상이한 PAM 서열을 인식하는 변형 Cas9 단백질; 또는(3) a modified Cas9 protein that recognizes a PAM sequence different from the wild type by introducing a mutation (eg, substitution with another amino acid) in one or more of D1135, R1335 and T1337 or both; or

(3) (1) 내지 (3) 중 2 이상이 도입된 변형 Cas9 단백질(3) Modified Cas9 protein into which two or more of (1) to (3) are introduced

일 수 있다. Can be

예컨대, 상기 CAs9 단백질의 D10 위치에서의 돌연변이는 D10A 돌연변이 (Cas9 단백질의 아미노산 중 10번째 아미노산인 D가 A로 치환된 돌연변이를 의미함; 이하, Cas9에 도입된 돌연변이는 동일한 방법으로 표기됨)일 수 있고, 상기 H840 위치에서의 돌연변이는 H840A 돌연변이일 수 있으며, D1135, R1335, 및 T1337 위치에서의 돌연변이는 각각 D1135V, R1335Q, 및T1337R일 수 있고, F539S, M763I, 및 K890N 위치에서의 돌연변이는 각각 F539S, M763I, 및 K890N일 수 있다. For example, the mutation at the D10 position of the CAs9 protein is a D10A mutation (means a mutation in which D, which is the 10th amino acid of the Cas9 protein, is substituted with A; hereinafter, the mutation introduced into Cas9 is indicated in the same manner). And, the mutation at the H840 position may be a H840A mutation, and the mutations at the D1135, R1335, and T1337 positions may be D1135V, R1335Q, and T1337R, respectively, and the mutations at the F539S, M763I, and K890N positions are respectively It may be F539S, M763I, and K890N.

상기 뉴클레아제는 미생물에서 분리된 것 또는 재조합적 방법 또는 합성적 방법 등과 같이 인위적 또는 비자연적 생산된 것(non-naturally occurring)일 수 있다. 일 예에서, 상기 뉴클레아제는 재조합 DNA에 의하여 만들어진 재조합 단백질일 수 있다. 재조합 DAN(Recombinant DNA; rDNA)는 다양한 유기체로부터 얻어진 이종 또는 동종 유전 물질을 포함하기 위하여 분자 클로닝과 같은 유전자 재조합 방법에 의하여 인공적으로 만들어진 DNA 분자를 의미한다. 예컨대, 재조합 DNA를 적절한 유기체에서 발현시켜 단백질을 생산 (in vivo 또는 in vitro)하는 경우, 재조합 DNA는 제조하고자 하는 단백질을 암호화 하는 코돈들 중에서 상기 유기체에 발현하기에 최적화된 코돈을 선택하여 재구성된 뉴클레오타이드 서열을 갖는 것일 수 있다. The nuclease may be isolated from a microorganism or artificially or non-naturally produced, such as a recombinant method or a synthetic method. In one example, the nuclease may be a recombinant protein made by recombinant DNA. Recombinant DNA (rDNA) refers to a DNA molecule that has been artificially made by a gene recombination method such as molecular cloning to contain heterogeneous or allogeneic genetic material obtained from various organisms. For example, when recombinant DNA is expressed in an appropriate organism to produce a protein ( in vivo or in vitro ), the recombinant DNA is reconstructed by selecting a codon optimized for expression in the organism from among the codons encoding the protein to be produced. It may have a nucleotide sequence.

상기 뉴클레아제는 단백질, 이를 암호화하는 핵산 분자 (DNA 또는 mRNA), 가이드 RNA와 결합된 리보핵산 단백질, 상기 리보핵산 단백질을 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 재조합 벡터의 형태로 사용될 수 있다. The nuclease may be used in the form of a protein, a nucleic acid molecule encoding the same (DNA or mRNA), a ribonucleic acid protein bound to a guide RNA, a nucleic acid molecule encoding the ribonucleic acid protein, or a recombinant vector containing the nucleic acid molecule. I can.

상기 뉴클레아제 또는 이를 코딩하는 핵산 분자는 핵 내로 전달, 작용, 및/또는 발현될 수 있는 형태일 수 있다.The nuclease or the nucleic acid molecule encoding the nuclease may be in a form capable of being delivered, acting, and/or expressed into the nucleus.

상기 뉴클레아제는 세포 내로 도입되기에 용이한 형태일 수 있다. 일 예로, 상기 뉴클레아제는 세포 침투 펩타이드 및/또는 단백질 전달 도메인 (protein transduction domain)과 연결될 수 있다. 상기 단백질 전달 도메인은 폴리-아르기닌 또는 HIV 유래의 TAT 단백질일 수 있으나, 이에 제한되지 않는다. 세포 침투 펩타이드 또는 단백질 전달 도메인은 상기 기술된 예 외에도 다양한 종류가 당업계에 공지되어 있으므로, 당업자는 상기 예에 제한되지 않고 다양한 예를 적용할 수 있다.The nuclease may be in a form that is easy to be introduced into a cell. For example, the nuclease may be linked to a cell penetrating peptide and/or a protein transduction domain. The protein transduction domain may be poly-arginine or a TAT protein derived from HIV, but is not limited thereto. Since various types of cell penetrating peptides or protein transduction domains are known in the art in addition to the examples described above, those skilled in the art are not limited to the above examples and can apply various examples.

또한, 상기 뉴클레아제 또는 암호화하는 핵산 분자는 핵 위치 신호 (nuclear localization signal, NLS) 서열 또는 이를 암호화하는 서열을 추가로 포함할 수 있다. 따라서, 상기 뉴클레아제를 암호화하는 핵산 분자를 포함하는 발현 카세트는 상기 뉴클레아제를 발현시키기 위한 프로모터 서열 등의 조절 서열, 또는 여기에 더하여, NLS 서열 (예컨대, SV40 NLS 등)을 포함할 수 있다. 상기 NLS 서열은 당업계에 잘 알려져 있다.In addition, the nuclease or the encoding nucleic acid molecule may further include a nuclear localization signal (NLS) sequence or a sequence encoding the same. Therefore, the expression cassette containing the nucleic acid molecule encoding the nuclease may include a regulatory sequence such as a promoter sequence for expressing the nuclease, or in addition to it, an NLS sequence (eg, SV40 NLS, etc.). have. Such NLS sequences are well known in the art.

상기 뉴클레아제 또는 이를 암호화하는 핵산 분자는 분리 및/또는 정제를 위한 태그 또는 상기 태그를 암호화하는 핵산 서열과 연결될 수 있다. 일 예로, 상기 태그는 His 태그, Flag 태그, S 태그 등과 같은 작은 펩타이드 태그, GST (Glutathione S-transferase) 태그, MBP (Maltose binding protein) 태그 등으로 이루어진 군에서 적절하게 선택될 수 있으나, 이에 제한되지 않는다.The nuclease or a nucleic acid molecule encoding the nuclease may be linked to a tag for separation and/or purification or a nucleic acid sequence encoding the tag. As an example, the tag may be appropriately selected from the group consisting of small peptide tags such as His tag, Flag tag, S tag, GST (Glutathione S-transferase) tag, MBP (Maltose binding protein) tag, etc. It doesn't work.

본 발명에서, 용어 "가이드 RNA (guide RNA)"는 표적 DNA 특이적인 RNA (예컨대, DNA의 표적 부위와 혼성화 가능한 RNA)를 의미하며, Cas 단백질, Cpf1 등과 같은 뉴클레오타이드와 결합하여 표적 DNA로 인도하는 역할을 한다.In the present invention, the term "guide RNA" refers to a target DNA-specific RNA (eg, RNA capable of hybridizing with a target site of DNA), which binds to a nucleotide such as a Cas protein, Cpf1, etc. and leads to the target DNA. Plays a role.

상기 가이드 RNA는 복합체를 형성할 뉴클레아제의 종류 및/또는 그 유래 미생물에 따라서 적절히 선택될 수 있다. 예컨대, 상기 가이드 RNA는 The guide RNA may be appropriately selected according to the type of nuclease to form the complex and/or the microorganism derived therefrom. For example, the guide RNA is

DNA 표적 부위와 혼성화 가능한 부위를 포함하는 CRISPR RNA (crRNA); CRISPR RNA (crRNA) comprising a site capable of hybridizing with a DNA target site;

Cas 단백질, Cpf1 등과 같은 엔도뉴클레오타이드와 상호작용하는 부위를 포함하는 trans-activating crRNA (tracrRNA); 및 Trans- activating crRNA (tracrRNA) including a site that interacts with endonucleotides such as Cas protein, Cpf1, and the like; And

상기 crRNA 및 tracrRNA의 주요 부위 (예컨대, crRNA의 혼성화 부위 및 tracrRNA의 상호작용 부위)가 융합된 형태의 단일 가이드 RNA (single guide RNA; sgRNA)A single guide RNA (sgRNA) in the form of a fusion of the main regions of the crRNA and tracrRNA (eg, a hybridization site of crRNA and an interaction site of tracrRNA)

로 이루어진 군에서 선택된 1종 이상일 수 있으며, It may be one or more selected from the group consisting of,

구체적으로 CRISPR RNA (crRNA) 및 trans-activating crRNA (tracrRNA)를 포함하는 이중 RNA (dual RNA), 또는 crRNA 및 tracrRNA의 주요 부위를 포함하는 단일 가이드 RNA (sgRNA)일 수 있다. Specifically, it may be a dual RNA (dual RNA) including CRISPR RNA (crRNA) and a trans- activating crRNA (tracrRNA), or a single guide RNA (sgRNA) including a major site of crRNA and tracrRNA.

상기 sgRNA는 표적 DNA 내 서열과 상보적인 서열을 가지는 부분 (이를 Spacer region, Target DNA recognition sequence, base pairing region 등으로도 명명함) 및 Cas 단백질 결합을 위한 hairpin 구조를 포함할 수 있다. 보다 구체적으로, 표적 DNA 내 서열과 상보적인 서열을 가지는 부분, Cas 단백질 결합을 위한 hairpin 구조 및 Terminator 서열을 포함할 수 있다. 상기 기술된 구조는 5'에서 3' 순으로 순차적으로 존재하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 가이드 RNA가 crRNA 및 tracrRNA의 주요 부분 및 표적 DNA의 상보적인 부분을 포함하는 경우라면 어떠한 형태의 가이드 RNA도 본 발명에서 사용될 수 있다.The sgRNA may include a portion having a sequence complementary to a sequence in the target DNA (also referred to as a spacer region, a target DNA recognition sequence, a base pairing region, etc.) and a hairpin structure for binding a Cas protein. More specifically, a portion having a sequence complementary to a sequence in the target DNA, a hairpin structure for binding to a Cas protein, and a Terminator sequence may be included. The structure described above may be sequentially present in the order of 5'to 3', but is not limited thereto. Any type of guide RNA can be used in the present invention as long as the guide RNA includes a major portion of crRNA and tracrRNA and a complementary portion of the target DNA.

예컨대, Cas9 단백질을 타겟 유전자 교정을 위하여 두 개의 가이드 RNA, 즉, 표적 유전자의 표적 서열 부위와 혼성화 가능한 뉴클레오타이드 서열을 갖는 CRISPR RNA (crRNA)와 Cas9 단백질와 상호작용하는 trans-activating crRNA (tracrRNA; Cas9 단백질과 상호작용함)를 필요로 하며, 이들 crRNA와 tracrRNA는 서로 결합된 이중 가닥 crRNA:tracrRNA 복합체 형태, 또는 링커를 통하여 연결되어 단일 가이드 RNA (single guide RNA; sgRNA) 형태로 사용될 수 있다. 일 예에서, Streptococcus pyogenes 유래의 Cas9 단백질을 사용하는 경우, sgRNA는 상기 Cas9의 crRNA의 혼성화 가능한 뉴클레오타이드 서열을 적어도 포함하는 crRNA 일부 또는 전부와 상기 Cas9의 tracrRNA의 Cas9 단백질와 상호작용하는 부위를 적어도 포함하는 tracrRNA 일부 또는 전부가 뉴클레오타이드 링커를 통하여 헤어핀 구조 (stem-loop 구조)를 형성하는 것일 수 있다 (이 때 뉴클레오타이드 링커가 루프 구조에 해당할 수 있음). For example, the Cas9 protein is used as two guide RNAs for target gene correction, that is, CRISPR RNA (crRNA) having a nucleotide sequence hybridizable with the target sequence site of the target gene and trans- activating crRNA (tracrRNA; Cas9 protein) that interacts with the Cas9 protein. Interacts with), and these crRNA and tracrRNA can be used in the form of a double-stranded crRNA:tracrRNA complex bonded to each other, or a single guide RNA (sgRNA) form by being linked through a linker. In one example, when using the Cas9 protein derived from Streptococcus pyogenes , the sgRNA includes at least a part or all of the crRNA comprising at least a hybridizable nucleotide sequence of the crRNA of the Cas9 and a site that interacts with the Cas9 protein of the tracrRNA of Cas9. Some or all of the tracrRNA may form a hairpin structure (stem-loop structure) through a nucleotide linker (in this case, a nucleotide linker may correspond to a loop structure).

상기 가이드 RNA, 구체적으로 crRNA 또는 sgRNA는 표적 DNA 내 서열과 상보적인 서열을 포함하며, crRNA 또는 sgRNA의 업스트림 부위, 구체적으로 sgRNA 또는 dualRNA의 crRNA의 5' 말단에 하나 이상, 예컨대, 1-10개, 1-5개, 또는 1-3개의 추가의 뉴클레오티드를 포함할 수 있다. 상기 추가의 뉴클레오티드는 구아닌 (guanine, G)일 수 있으나, 이에 제한되는 것은 아니다. The guide RNA, specifically, crRNA or sgRNA, includes a sequence complementary to a sequence in the target DNA, and at least one at the 5'end of the crRNA or sgRNA upstream region, specifically the crRNA of sgRNA or dualRNA, such as 1-10 , 1-5, or 1-3 additional nucleotides. The additional nucleotide may be guanine (G), but is not limited thereto.

다른 예에서, 상기 뉴클레아제가 Cpf1인 경우, 상기 가이드 RNA는 crRNA을 포함하는 것일 수 있으며, 복합체를 형성할 Cpf1 단백질 종류 및/또는 그 유래 미생물에 따라서 적절히 선택될 수 있다. In another example, when the nuclease is Cpf1, the guide RNA may include crRNA, and may be appropriately selected according to the type of Cpf1 protein to form a complex and/or the microorganism derived therefrom.

상기 가이드 RNA의 구체적 서열은 뉴클레아제 (Cas9 단백질 또는 Cpf1) 의 종류 (즉, 유래 미생물)에 따라서 적절히 선택할 수 있으며, 이는 이 발명이 속하는 기술 분야의 통상의 지식을 가진 자가 용이하게 알 수 있는 사항이다.The specific sequence of the guide RNA can be appropriately selected according to the type of nuclease (Cas9 protein or Cpf1) (i.e., the derived microorganism), which can be easily known by those of ordinary skill in the art to which this invention belongs. It is a matter.

일 예에서, 표적특이적 뉴클레아제로서 Streptococcus pyogenes 유래의 Cas9 단백질을 사용하는 경우, crRNA는 다음의 일반식 1로 표현될 수 있다:In one example, when using the Cas9 protein derived from Streptococcus pyogenes as a target-specific nuclease, crRNA can be expressed by the following general formula 1:

5'-(Ncas9)l-(GUUUUAGAGCUA)-(Xcas9)m-3' (일반식 1)5'-(N cas9 ) l -(GUUUUAGAGCUA)-(X cas9 ) m -3' (general formula 1)

상기 일반식 1에서, In the general formula 1,

Ncas9는 표적화 서열, 즉 표적 유전자(target gene)의 표적 부위(target site)의 서열에 따라서 결정되는 부위 (즉, 표적 부위의 서열과 혼성화 가능한 서열임)이며, l은 상기 표적화 서열에 포함된 뉴클레오타이드 수를 나타내는 것으로 17 내지 23, 17 내지 22, 18 내지 23, 또는 18 내지 22의 정수, 예컨대 17, 18, 19, 20, 21, 또는 22일 수 있고;N cas9 is a targeting sequence, that is, a site determined according to the sequence of the target site of the target gene (that is, a sequence capable of hybridizing with the sequence of the target site), and l is included in the targeting sequence. It represents the number of nucleotides and may be an integer of 17 to 23, 17 to 22, 18 to 23, or 18 to 22, such as 17, 18, 19, 20, 21, or 22;

상기 표적 서열의 3' 방향으로 인접하여 위치하는 연속하는 12개의 뉴클레오타이드(GUUUUAGAGCUA)를 포함하는 부위는 crRNA의 필수적 부분이고, The region containing 12 consecutive nucleotides (GUUUUAGAGCUA) adjacent to each other in the 3'direction of the target sequence is an essential part of crRNA,

Xcas9는 crRNA의 3' 말단쪽에 위치하는 (즉, 상기 crRNA의 필수적 부분의 3' 방향으로 인접하여 위치하는) m개의 뉴클레오타이드를 포함하는 부위로, m은 8 내지 12의 정수, 예컨대 11일 수 있으며, 상기 m개의 뉴클레오타이드들은 서로 같거나 다를 수 있으며, 각각 독립적으로 A, U, C 및 G로 이루어진 군에서 선택될 수 있다. X cas9 is a site containing m nucleotides located at the 3'end of the crRNA (that is, adjacent to the 3'direction of the essential part of the crRNA), where m is an integer of 8 to 12, such as 11 days. And, the m nucleotides may be the same or different from each other, and each may be independently selected from the group consisting of A, U, C and G.

일 예에서, 상기 Xcas9는 UGCUGUUUUG를 포함할 수 있으나 이에 제한되지 않는다.In one example, the X cas9 may include UGCUGUUUUG, but is not limited thereto.

또한, 상기 tracrRNA는 다음의 일반식 2로 표현될 수 있다:In addition, the tracrRNA can be represented by the following general formula 2:

5'-(Ycas9)p-(UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3' (일반식 2)5'-(Y cas9 ) p -(UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3' (general formula 2)

상기 일반식 2에서, In the above general formula 2,

60개의 뉴클레오타이드 (UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)로 표시된 부위는 tracrRNA의 필수적 부분이고,The site marked with 60 nucleotides (UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC) is an essential part of tracrRNA,

Ycas9는 상기 tracrRNA의 필수적 부분의 5' 말단에 인접하여 위치하는 p개의 뉴클레오타이드를 포함하는 부위로, p는 6 내지 20의 정수, 예컨대 8 내지 19의 정수일 수 있으며, 상기 p개의 뉴클레오타이드들은 서로 같거나 다를 수 있고, A, U, C 및 G로 이루어진 군에서 각각 독립적으로 선택될 수 있다.Y cas9 is a site containing p nucleotides located adjacent to the 5'end of the essential part of the tracrRNA, p may be an integer of 6 to 20, such as an integer of 8 to 19, and the p nucleotides are the same. Or may be different, and each may be independently selected from the group consisting of A, U, C and G.

또한, sgRNA는 상기 crRNA의 표적화 서열과 필수적 부위를 포함하는 crRNA 부분과 상기 tracrRNA의 필수적 부분 (60개 뉴클레오타이드)를 포함하는 tracrRNA 부분이 올리고뉴클레오타이드 링커를 통하여 헤어핀 구조 (stem-loop 구조)를 형성하는 것일 수 있다 (이 때, 올리고뉴클레오타이드 링커가 루프 구조에 해당함). 보다 구체적으로, 상기 sgRNA는 crRNA의 표적화 서열과 필수적 부분을 포함하는 crRNA 부분과 tracrRNA의 필수적 부분을 포함하는 tracrRNA 부분이 서로 결합된 이중 가닥 RNA 분자에서, crRNA 부위의 3' 말단과 tracrRNA 부위의 5' 말단이 올리고뉴클레오타이드 링커를 통하여 연결된 헤어핀 구조를 갖는 것일 수 있다.In addition, the sgRNA is a crRNA portion including the targeting sequence and essential site of the crRNA and the tracrRNA portion including the essential portion (60 nucleotides) of the tracrRNA to form a hairpin structure (stem-loop structure) through an oligonucleotide linker. (In this case, the oligonucleotide linker corresponds to the loop structure). More specifically, the sgRNA is a double-stranded RNA molecule in which a crRNA portion including a targeting sequence of crRNA and an essential portion and a tracrRNA portion containing an essential portion of tracrRNA are bonded to each other, and the 3'end of the crRNA site and 5 of the tracrRNA site 'It may have a hairpin structure whose ends are linked through an oligonucleotide linker.

일 예에서, sgRNA는 다음의 일반식 3으로 표현될 수 있다:In one example, the sgRNA can be represented by the following general formula 3:

5'-(Ncas9)l-(GUUUUAGAGCUA)-(올리고뉴클레오타이드 링커)-(UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3' (일반식 3) 5'-(N cas9 ) l -(GUUUUAGAGCUA)-(oligonucleotide linker)-(UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3' (general formula 3)

상기 일반식 3에서, (Ncas9)l는 표적화 서열로서 앞서 일반식 1에서 설명한 바와 같다. In the general formula 3, (N cas9 ) l is the targeting sequence as described in the above general formula 1.

상기 sgRNA에 포함되는 올리고뉴클레오타이드 링커는 3 내지 5개, 예컨대 4개의 뉴클레오타이드를 포함하는 것일 수 있으며, 상기 뉴클레오타이드들은 서로 같거나 다를 수 있고, A, U, C 및 G로 이루어진 군에서 각각 독립적으로 선택될 수 있다. The oligonucleotide linker included in the sgRNA may include 3 to 5, such as 4 nucleotides, and the nucleotides may be the same or different from each other, and each independently selected from the group consisting of A, U, C and G Can be.

상기 crRNA 또는 sgRNA는 5' 말단 (즉, crRNA의 타겟팅 서열 부위의 5' 말단)에 1 내지 3개의 구아닌(G)을 추가로 포함할 수 있다.The crRNA or sgRNA may further include 1 to 3 guanine (G) at the 5'end (ie, the 5'end of the targeting sequence site of the crRNA).

상기 tracrRNA 또는 sgRNA는 tracrRNA의 필수적 부분(60nt)의 3' 말단에 5개 내지 7개의 우라실 (U)을 포함하는 종결부위를 추가로 포함할 수 있다.The tracrRNA or sgRNA may further include a terminating site including 5 to 7 uracils (U) at the 3'end of the essential portion (60 nt) of the tracrRNA.

상기 가이드 RNA의 표적 서열은 표적 DNA 상의 PAM (Protospacer Adjacent Motif 서열(S. pyogenes Cas9의 경우, 5'-NGG-3' (N은 A, T, G, 또는 C임))의 5'에 인접하여 위치하는 약 17개 내지 약 23개 또는 약 18개 내지 약22개, 예컨대 20개의 연속하는 핵산 서열일 수 있다. The target sequence of the guide RNA is adjacent to the 5'of the PAM (Protospacer Adjacent Motif sequence (5'-NGG-3' in the case of S. pyogenes Cas9 (N is A, T, G, or C)) on the target DNA. It may be from about 17 to about 23 or from about 18 to about 22, such as 20 contiguous nucleic acid sequences located therein.

상기 가이드 RNA의 표적 서열과 혼성화 가능한 가이드 RNA의 표적화 서열은 상기 표적 서열이 위치하는 DNA 가닥 (즉, PAM 서열(5'-NGG-3' (N은 A, T, G, 또는 C임)이 위치하는 DNA 가닥)의 상보적인 가닥의 뉴클레오타이드 서열과 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 99% 이상, 또는 100%의 서열 상보성을 갖는 뉴클레오타이드 서열을 의미하는 것으로, 상기 상보적 가닥의 뉴클레오타이드 서열과 상보적 결합이 가능하다.The targeting sequence of the guide RNA hybridizable with the target sequence of the guide RNA is the DNA strand where the target sequence is located (i.e., the PAM sequence (5'-NGG-3' (N is A, T, G, or C)) A nucleotide sequence of 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 99% or more, or 100% of the nucleotide sequence of the complementary strand of the located DNA strand) By means of a sequence, complementary binding to the nucleotide sequence of the complementary strand is possible.

본 명세서에서, 표적 부위의 핵산 서열은 표적 유전자의 해당 유전자 부위의 두 개의 DNA 가닥 중 PAM 서열이 위치하는 가닥의 핵산 서열로 표시된다. 이 때, 실제로 가이드 RNA가 결합하는 DNA 가닥은 PAM 서열이 위치하는 가닥의 상보적 가닥이므로, 상기 가이드 RNA에 포함된 표적화 서열은, RNA 특성상 T를 U로 변경하는 것을 제외하고, 표적 부위의 서열과 동일한 핵산 서열을 갖게 된다. 따라서, 본 명세서에서, 가이드 RNA의 표적화 서열과 표적 부위의 서열 (또는 절단 부위의 서열)은 T와 U가 상호 변경되는 것을 제외하고 동일한 핵산 서열로 표시된다.In the present specification, the nucleic acid sequence of the target site is represented by the nucleic acid sequence of the strand where the PAM sequence is located among two DNA strands of the corresponding gene site of the target gene. At this time, since the DNA strand to which the guide RNA is actually bound is the complementary strand of the strand where the PAM sequence is located, the targeting sequence included in the guide RNA is the sequence of the target site except for changing T to U due to the nature of RNA. It will have the same nucleic acid sequence as Accordingly, in the present specification, the targeting sequence of the guide RNA and the sequence of the target site (or the sequence of the cleavage site) are represented by the same nucleic acid sequence except that T and U are mutually altered.

상기 가이드 RNA는 RNA 형태로 사용 (또는 상기 조성물에 포함)되거나, 이를 암호화하는 DNA를 포함하는 플라스미드 형태로 사용 (또는 상기 조성물에 포함)될 수 있다.The guide RNA may be used in the form of RNA (or included in the composition), or may be used in the form of a plasmid including DNA encoding it (or included in the composition).

본 발명에서 용어 "표적 위치 (on-target site)" 란, 상기 표적 특이적 뉴클레아제를 이용하여 변이(절단, 삽입, 및/또는 결실)를 도입하고자 하는 위치를 의미하며, 그 목적에 따라 임의로 선택될 수 있는 것으로 특정 유전자의 코딩 서열 내부에 존재할 수 있을 뿐만 아니라, 단백질을 생성하지 않는 비-코딩 DNA 서열에 존재할 수도 있다.In the present invention, the term "on-target site" refers to a location at which mutation (cleavage, insertion, and/or deletion) is to be introduced using the target-specific nuclease, and according to the purpose It may be arbitrarily selected and may exist within the coding sequence of a specific gene, and may exist in a non-coding DNA sequence that does not produce a protein.

상기 표적 특이적 뉴클레아제는 서열 특이성 (specificity)을 가지므로 표적 위치에 작용하는 것이나, 표적 서열에 따라 비표적 위치 (off-target site)에 작용하는 부작용이 발생할 수도 있다. Since the target-specific nuclease has sequence specificity, it acts on the target site, but side effects may occur that act on off-target sites depending on the target sequence.

본 명세서에서, 비표적 위치 (off-target site)라 함은 표적 특이적 뉴클레아제의 표적 서열과 동일하지 않은 서열을 갖지만 상기 표적 특이적 뉴클레아제가 활성을 가지는 위치를 말한다. 즉, 표적 위치 이외의, 표적 특이적 뉴클레아제에 의해 절단되는 위치를 말한다. 일 예에서, 상기 비표적 위치는 특정 표적 특이적 뉴클레아제에 대한 실제 비표적 위치뿐만 아니라 비표적 위치가 될 가능성이 있는 위치까지 포함하는 개념으로 사용될 수 있다. 상기 비표적 위치는 이에 제한되는 것은 아니나, 시험관 내 (in vitro)에서 표적 특이적 뉴클레아제에 의해 절단되는 표적 위치 이외의 모든 위치일 수 있다. In the present specification, the term "off-target site" refers to a site having a sequence that is not identical to the target sequence of the target-specific nuclease, but the target-specific nuclease has activity. That is, it refers to a position other than the target position, which is cleaved by a target-specific nuclease. In one example, the non-target location may be used as a concept including not only an actual non-target location for a specific target-specific nuclease, but also a location likely to become a non-target location. The non-target position is not limited thereto, but may be any position other than the target position cleaved by a target-specific nuclease in vitro .

유전자 가위가 표적 위치 이외의 위치에서도 활성을 가지는 것은 다양한 원인에 의해 야기될 수 있다. 예컨대, 표적 위치에 대하여 설계된 표적 서열과 뉴클레오티드 불일치 (mismatch)를 가지는, 표적 위치와 서열 상동성이 높은 비표적 서열의 경우 유전자 가위가 작동할 가능성이 있다. 상기 비표적 위치는 이에 제한되는 것은 아니나, 표적 서열과 1 이상의 뉴클레오티드 불일치 (mismatch)를 가지는 위치일 수 있다. It can be caused by a variety of causes that the shear is active at positions other than the target position. For example, in the case of a non-target sequence having high sequence homology with the target position, which has a nucleotide mismatch with the target sequence designed for the target position, there is a possibility that the genetic scissors will work. The non-target position is not limited thereto, but may be a position having one or more nucleotide mismatches with the target sequence.

이는 유전체 내에서 원치 않는 유전자의 돌연변이를 야기할 수 있어 상기 표적 특이적 뉴클레아제를 사용하는데 심각한 문제가 될 수 있다. 이에, 표적 특이적 뉴클레아제의 표적 위치에서의 활성 못지 않게 비표적 위치를 정확히 검출하여 분석하는 과정 또한 매우 중요할 수 있으며, 이는 비표적 효과 없이 표적 위치에만 특이적으로 작동하는 표적 특이적 뉴클레아제를 개발하는데 유용하게 사용될 수 있을 것이다.This can lead to unwanted gene mutations in the genome, which can be a serious problem in using the target-specific nuclease. Accordingly, the process of accurately detecting and analyzing a non-target position as well as the activity of the target-specific nuclease at the target position can be very important, and this is a target-specific nuclease that works specifically only at the target position without a non-target effect. It could be usefully used to develop clease.

본 발명의 목적상 상기 뉴클레아제는 생체 내 (in vivo) 및 시험관 내 (in vitro)에서 뉴클레아제 활성을 가질 수 있으므로, 시험관 내에서 유전체 DNA의 비표적 위치를 검출하는데 사용될 수 있으며, 이를 생체 내에서 적용하였을 때 상기 검출된 비표적 위치와 동일한 위치에도 활성을 가질 것을 예상할 수 있다.For the purposes of the present invention, since the nuclease can have nuclease activity in vivo and in vitro , it can be used to detect non-target locations of genomic DNA in vitro, and When applied in vivo, it can be expected to have activity at the same location as the detected non-target location.

상기 (b) 단계는 상기 (a) 단계를 통하여 한 가닥이 절단된 DNA에 단일가닥 특이적 엔도뉴클레아제를 처리하여, 나머지 DNA 가닥을 절단하는 단계이다.The step (b) is a step of cutting the remaining DNA strands by treating the DNA whose one strand has been cut through the step (a) with a single-strand specific endonuclease.

상기 단일가닥 특이적 엔도뉴클레아제는 단일가닥 DNA를 특이적으로 절단하는 활성을 갖는 모든 엔도뉴클레아제를 총칭하는 것일 수 있다. 일 예에서, 상기 단일가닥 특이적 엔도뉴클레아제는 엔도뉴클레아제 V, 또는 엔도뉴클레아제 VIII와 알킬아데닌 DNA 글라이코실라아제 (Alkyladenine DNA Glycosylase; hAAG)와의 조합 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 엔도뉴클레아제 V는 원핵 세포 또는 진핵 세포, 예컨대, 균류, 진핵 동물 (예컨대, 어류, 양서류, 파충류, 조류, 포유류 등), 또는 진핵 식물 유래의 것일 수 있으며, 예컨대, 대장균 유래의 endonuclease V (NP_418426.2; E. coli ENDOV) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 단일가닥 특이적 엔도뉴클레아제 (예컨대, 엔도뉴클레아제 V)는 아데노신이 이노신으로 변환된 가닥을 절단하는 것일 수 있으며, 상기 아데노신이 이노신으로 변환된 변이 위치에서 5' 방향 및/또는 3' 방향으로 5nt 이내, 4nt 이내, 3 nt 이내, 2nt 이내, 또는 1nt 이내에 위치하는 뉴클레오타이드의 3' 말단을 절단하는 것이 수 있다. 상기 엔도뉴클레아제 VIII는 아데노신 디아미나아제에 의하여 아데닌이 이노신으로 변환된 뉴클레오타이드를 제거하는 역할을 하는 것으로, 이노신을 이중 가닥 DNA로부터 제거하는 N-glycosylase 활성과 상기 이노신 제거로 발생한 apurinic site (AP site)의 3' 및 5' 말단을 절단하는 AP-lyase 활성을 모두 갖는 모든 효소들 중에서 1종 이상 선택될 수 있다. 예컨대, 상기 엔도뉴클레아제 VIII는 E, coli 엔도뉴클레아제 VIII (예컨대, GenBank Accession No. NP_415242.1 등), 인간 엔도뉴클레아제 VIII (예컨대, GenBank Accession Nos. BAC06476.1, NP_001339449.1, NP_001243481.1, NP_078884.2, NP_001339448.1 등), 마우스 엔도뉴클레아제 VIII (예컨대, GenBank Accession Nos. BAC06477.1, NP_082623.1 등), Escherichia coli 엔도뉴클레아제 VIII (예컨대, GenBank Accession Nos. OBZ49008.1, OBZ43214.1, OBZ42025.1, ANJ41661.1, KYL40995.1, KMV55034.1, KMV53379.1, KMV50038.1, KMV40847.1, AQW72152.1 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 알킬아데닌 DNA 글라이코실라아제는 N-glycosidic bond의 가수분해를 촉매하여 alkylation-damaged 퓨린 염기를 제거하여 DNA를 repair하는 효소로, 특히 3-methyladenine, 7-methyladenine, 7-methylguanine, 1N-ethenoadenine and hypoxanthine 등을 제거한다. 사용 가능한 알킬아데닌 DNA 글라이코실라아제는 인간 알킬아데닌 DNA 글라이코실라아제 (hAAG; GenBank Accession no. NP_001015052.1 (코딩 핵산 서열 NM_001015052.2), NP_001015054.1 (코딩 핵산 서열 NM_001015054.2), NP_002425.2 (코딩 핵산서열 NM_002434.3) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나 이에 제한되는 것은 아니다.The single-stranded specific endonuclease may collectively refer to all endonucleases having an activity of specifically cleaving single-stranded DNA. In one example, the single-strand specific endonuclease is endonuclease V, or 1 selected from the group consisting of a combination of endonuclease VIII and alkyladenine DNA glycosylase (Alkyladenine DNA Glycosylase; hAAG), etc. It can be more than a species. The endonuclease V may be a prokaryotic cell or a eukaryotic cell, such as a fungus, a eukaryotic animal (eg, fish, amphibians, reptiles, birds, mammals, etc.), or derived from a eukaryotic plant, for example, endonuclease V derived from E. coli. (NP_418426.2; E. coli ENDOV) may be one or more selected from the group consisting of. The single-strand-specific endonuclease (eg, endonuclease V) may be to cleave a strand converted from adenosine to inosine, and the 5'direction and/or 3 at the mutant position where the adenosine is converted to inosine It is possible to cut the 3'end of the nucleotide located within 5nt, 4nt, 3nt, 2nt, or 1nt in the direction. The endonuclease VIII serves to remove nucleotides converted from adenine to inosine by adenosine deaminase, and N-glycosylase activity to remove inosine from double-stranded DNA and an apurinic site (AP site) can be selected from one or more of all enzymes having both AP-lyase activity that cleaves the 3'and 5'ends. For example, the endonuclease VIII is E, coli endonuclease VIII (eg, GenBank Accession No. NP_415242.1, etc.), human endonuclease VIII (eg, GenBank Accession Nos. BAC06476.1, NP_001339449.1, etc.) , NP_001243481.1, NP_078884.2, NP_001339448.1, etc.), mouse endonuclease VIII (eg, GenBank Accession Nos. BAC06477.1, NP_082623.1, etc.), Escherichia coli endonuclease VIII (eg, GenBank Accession Nos.OBZ49008.1, OBZ43214.1, OBZ42025.1, ANJ41661.1, KYL40995.1, KMV55034.1, KMV53379.1, KMV50038.1, KMV40847.1, AQW72152.1, etc.) It may be more than a species, but is not limited thereto. The alkyladenine DNA glycosylase is an enzyme that catalyzes the hydrolysis of the N-glycosidic bond to remove the alkylation-damaged purine base to repair DNA.In particular, 3-methyladenine, 7-methyladenine, 7-methylguanine, 1N-ethenoadenine and remove hypoxanthine. Alkyl adenine DNA glycosylase that can be used is human alkyl adenine DNA glycosylase (hAAG; GenBank Accession no. NP_001015052.1 (coding nucleic acid sequence NM_001015052.2), NP_001015054.1 (coding nucleic acid sequence NM_001015054.2), NP_002425 .2 (coding nucleic acid sequence NM_002434.3) may be one or more selected from the group consisting of, but is not limited thereto.

상기 (c) 단계는 상기 (b) 단계를 통해 절단된 DNA를 이용해 전체 유전체 시퀀싱 (whole genome sequencing, WGS)을 수행하는 단계로서, 표적 위치의 서열과 상동성을 가지는 서열을 찾아 비표적 위치일 것으로 예측하는 간접적인 방법과 달리 전체 유전체 수준에서 실질적으로 표적 특이적 뉴클레아제에 의해 절단되는 비표적 위치를 검출하기 위해 수행되는 것이다. Step (c) is a step of performing whole genome sequencing (WGS) using the DNA cut through step (b), and is a non-target position by searching for a sequence having homology with the sequence of the target position. Unlike the indirect method of predicting that it is carried out to detect non-target locations that are substantially cleaved by target-specific nucleases at the whole genome level.

본 발명에서 용어 "전체 유전체 시퀀싱 (whole genome sequencing; WGS)"은 차세대 시퀀싱 (next generation sequencing)에 의한 전장 유전체 시퀀싱을 10 X, 20 X, 40 X 형식으로 여러 배수로 유전체를 읽는 방법을 의미한다. "차세대 시퀀싱"은 칩 (Chip) 기반 및 PCR 기반 페어드엔드 (paired end) 형식으로 전장 유전체를 조각내고, 상기 조각을 화학적인 반응 (hybridization)에 기초하여 초고속으로 시퀀싱을 수행하는 기술을 의미한다.In the present invention, the term "whole genome sequencing (WGS)" refers to a method of reading genomes in multiple multiples in 10 X, 20 X, 40 X format by next generation sequencing. "Next-generation sequencing" refers to a technology that fragments the full-length genome in a chip-based and PCR-based paired end format, and performs sequencing of the fragment at high speed based on a chemical reaction (hybridization). .

상기 (d) 단계는 상기 전체 유전체 시퀀싱으로 수득한 염기서열 데이터 (sequence read)에서 DNA가 절단된 위치를 결정하는 단계로서, 시퀀싱 데이터를 분석하여 표적 특이적 뉴클레아제의 표적 위치 및 비표적 위치를 간편하게 검출할 수 있다. 상기 염기서열 데이터로부터 DNA가 절단된 특정 위치를 결정하는 것은 다양한 접근 방법으로 수행될 수 있으며, 본 발명에서는 상기 위치를 결정하기 위한 여러 가지의 합리적인 방법들을 제공한다. 그러나 이는 본 발명의 기술적 사상에 포함되는 예시에 불과하며, 본 발명의 범위가 이들 방법에 의해 제한되는 것은 아니다. The step (d) is a step of determining the position where the DNA is cut from the sequence read obtained by the whole genome sequencing, and the target position and the non-target position of the target-specific nuclease by analyzing the sequencing data. Can be easily detected. Determining a specific location where DNA is cut from the nucleotide sequence data can be performed by various approaches, and the present invention provides various rational methods for determining the location. However, this is only an example included in the technical idea of the present invention, and the scope of the present invention is not limited by these methods.

예컨대, 상기 절단된 위치를 결정하기 위한 일례로서, 전체 유전체 시퀀싱을 통해 수득한 염기서열 데이터를 분석 프로그램 (예를 들어, BWA/GATK 또는 ISAAC 등)을 이용하여 유전체 상의 위치에 따라 정렬하였을 경우, 5' 말단이 수직 정렬된 위치가 DNA가 절단된 위치를 의미할 수 있다. 본 명세서에 사용된 바로서, 상기 용어 "수직 정렬"이란, BWA/GATK 또는 ISAAC 등의 프로그램으로 전체 유전체 시퀀싱 결과를 분석할 때, 인접한 왓슨 가닥 (Watson strand)과 크릭 가닥 (Crick strand) 각각에 대해, 2 개 이상의 염기서열 데이터의 5' 말단이 유전체 상의 동일한 위치 (nucleotide position)에서 시작되는 배열을 말한다. 이로 인하여, 표적 특이적 뉴클레아제에 의해 잘려 동일한 5' 말단을 갖게 되는 DNA 단편들이 각각 시퀀싱되어 나타나게 된다.For example, as an example for determining the cut position, when the nucleotide sequence data obtained through whole genome sequencing is aligned according to the position on the genome using an analysis program (eg, BWA/GATK or ISAAC, etc.), The position where the 5'end is vertically aligned may mean the position where the DNA is cut. As used herein, the term "vertical alignment" means that when analyzing the whole genome sequencing result with a program such as BWA/GATK or ISAAC, adjacent Watson strand and Crick strand are each On the other hand, it refers to an arrangement in which the 5'end of two or more nucleotide sequence data starts at the same nucleotide position on the genome. Due to this, DNA fragments that are cut by a target-specific nuclease and have the same 5'end are each sequenced to appear.

즉, 표적 특이적 뉴클레아제가 표적 위치 및 비표적 위치에 뉴클레아제 활성을 나타내 상기 위치를 절단하는 경우, 염기서열 데이터를 정렬하게 되면 공통적으로 절단된 부위는 각각 그 위치가 5' 말단으로 시작되므로 수직 정렬되나, 절단되지 않은 부위에는 5' 말단이 존재하지 않으므로 정렬 시 스태거드 (staggered) 방식으로 배열될 수 있다. 따라서, 수직 정렬된 위치를 표적 특이적 뉴클레아제에 의해 절단된 부위로 볼 수 있으며, 이는 곧 표적 특이적 뉴클레아제의 표적 위치 또는 비표적 위치를 의미하는 것일 수 있다.That is, when a target-specific nuclease exhibits nuclease activity at a target position and a non-target position and cleaves the position, when the nucleotide sequence data is aligned, each of the commonly cut sites starts at the 5'end. Therefore, it is vertically aligned, but since the 5'end does not exist in the uncut area, it can be arranged in a staggered manner when aligned. Therefore, the vertically aligned position can be viewed as a site cut by a target-specific nuclease, which may mean a target position or a non-target position of the target-specific nuclease.

상기 "정렬"은 표준 염기서열 (reference genome)로 염기서열 데이터를 맵핑한 뒤, 유전체에서 동일 위치를 가지는 염기들을 각 위치에 맞게 배열하는 것을 의미한다. 따라서, 염기서열 데이터를 상기와 같은 방식으로 정렬할 수 있다면 어떠한 컴퓨터 프로그램도 이용될 수 있으며, 이는 당업계에 이미 알려진 공지의 프로그램이거나 또는 목적에 맞게 제작된 프로그램들 중에서 선택될 수 있다. 일 실시예에서는 ISAAC를 이용하여 정렬을 수행하였으나, 이에 제한되는 것은 아니다.The "alignment" refers to mapping base sequence data to a reference genome, and then arranging bases having the same position in the genome according to each position. Therefore, any computer program may be used if the nucleotide sequence data can be sorted in the same manner as described above, which may be a known program known in the art, or may be selected from programs prepared for the purpose. In one embodiment, alignment was performed using ISAAC, but is not limited thereto.

정렬 결과, 상기 설명한 바와 같은 5' 말단이 수직 정렬된 위치를 찾는 등의 방법을 통해 표적 특이적 뉴클레아제에 의해 DNA가 절단된 위치를 결정할 수 있고, 상기 절단된 위치가 표적 위치 (on-target site)가 아니라면, 비표적 위치 (off-target site)로 판단할 수 있다. 다시 말해, 표적 특이적 뉴클레아제의 표적 위치로 설계한 염기 서열과 동일한 서열은 표적 위치이고, 상기 염기 서열과 동일하지 않은 서열은 비표적 위치로 볼 수 있다. 이는 상기 기술한 비표적 위치의 정의상 자명한 것이다. 상기 비표적 위치는 특히, 표적 위치의 서열과 상동성을 가지는 서열로 구성된 것일 수 있고, 구체적으로 표적 서열과 1 개 이상의 뉴클레오티드 불일치 (mismatch)를 가지는 서열, 더욱 구체적으로 표적 위치와 1 내지 6 개, 1개 내지 5개, 1개 내지 4개, 1개 내지 3개, 1개 내지 2개, 또는 1개의 뉴클레오티드 불일치를 가지는 것일 수 있으나, 이에 특별히 제한되는 것은 아니고 표적 특이적 뉴클레아제가 절단할 수 있는 위치라면 본 발명의 범위에 포함될 수 있다. 이때, 상기 표적 위치는 가이드 RNA와 상보적인 15 내지 30 뉴클레오티드 서열일 수 있고, 추가적으로 표적 특이적 뉴클레아제가 인식하는 서열 (예컨대, Cas9의 경우 Cas9이 인식하는 PAM 서열)을 포함할 수 있다.As a result of alignment, it is possible to determine the position where the DNA was cut by the target-specific nuclease through a method such as finding the position where the 5'end is vertically aligned as described above, and the cut position is the target position (on- target site), it can be determined as an off-target site. In other words, a sequence identical to a nucleotide sequence designed as a target position of a target-specific nuclease is a target position, and a sequence not identical to the nucleotide sequence may be considered a non-target position. This is obvious from the definition of the non-target location described above. In particular, the non-target position may be composed of a sequence having homology to the sequence of the target position, specifically a sequence having one or more nucleotide mismatches with the target sequence, more specifically, 1 to 6 target positions. , 1 to 5, 1 to 4, 1 to 3, 1 to 2, or may have a nucleotide mismatch, but is not particularly limited thereto, and the target-specific nuclease can be cleaved Any position that can be included within the scope of the present invention. At this time, the target position may be a 15 to 30 nucleotide sequence complementary to the guide RNA, and may additionally include a sequence recognized by a target-specific nuclease (eg, a PAM sequence recognized by Cas9 in the case of Cas9).

다른 예에서, 5' 말단이 수직 정렬된 위치를 찾는 방법 이외에도, 5' 말단 플롯에서 이중 피크 패턴을 보이는 경우 그 위치가 표적 위치가 아니라면 비표적 위치로 판단할 수 있다. 유전체 DNA 내의 각 위치에 대하여 동일한 염기의 5' 말단을 구성하고 있는 뉴클레오티드 수를 세어 그래프를 그릴 경우, 특정 위치에서 이중 피크 패턴이 나타나게 되는데, 상기 이중 피크는 표적 특이적 뉴클레아제에 의해 절단된 이중 가닥의 각각의 가닥에 의해 나타나는 것이기 때문이다.In another example, in addition to the method of finding the position where the 5'end is vertically aligned, when a double peak pattern is shown in the 5'end plot, the position may be determined as a non-target position if the position is not a target position. When drawing a graph by counting the number of nucleotides constituting the 5'end of the same base for each position in genomic DNA, a double peak pattern appears at a specific position, the double peak being cleaved by a target-specific nuclease. This is because it is represented by each strand of a double strand.

일 실시예에서, 유전체 DNA를 표적 특이적 뉴클레아제(예컨대, RGEN)으로 절단한 뒤, 전체 유전체 분석 후 이를 ISAAC로 정렬하여 절단된 위치에서는 수직 정렬, 절단되지 않은 위치에서는 스태거드 방식으로 정렬되는 패턴을 확인하였으며, 이를 5' 말단 플롯으로 나타내었을 때 절단 위치에서 이중 피크의 독특한 패턴이 나타나는 것을 확인하였다. In one embodiment, genomic DNA is cut with a target-specific nuclease (e.g., RGEN), and then the whole genome is analyzed and then aligned with ISAAC, vertically aligned at the cut position, and staggered at the uncut position. It was confirmed that the pattern to be aligned was confirmed, and when this was represented by a 5'end plot, a unique pattern of double peaks appeared at the cut position.

나아가 이에 제한되는 것은 아니나, 구체적인 일례로 왓슨 가닥 (Watson strand)과 크릭 가닥 (Crick strand)에 해당하는 염기서열 데이터 (sequence read)가 각각 두 개 이상씩 수직으로 정렬되는 위치를 비표적 위치인 것으로 판단할 수 있고, 또한 20 % 이상의 염기서열 데이터가 수직으로 정렬되고, 각각의 왓슨 가닥 및 크릭 가닥에서 동일한 5' 말단을 가진 염기서열 데이터의 수가 10 이상인 위치가 비표적 위치, 즉 절단되는 위치인 것으로 판단할 수 있다.Further, although not limited thereto, as a specific example, a position in which two or more sequence reads corresponding to the Watson strand and the Crick strand are vertically aligned is regarded as a non-target position. It can be determined, and more than 20% of the nucleotide sequence data is vertically aligned, and the position where the number of nucleotide sequence data having the same 5'end in each Watson strand and the creek strand is 10 or more is a non-target position, that is, a position where it is cut. It can be judged as.

상기 비표적 위치 확인(검출)은 시험관 내 (in vitro)에서 표적 특이적 뉴클레아제를 유전체 DNA에 처리하여 수행될 수 있다. 이에 상기 방법을 통해 확인(검출)된 비표적 위치에 대하여 실질적으로 생체 내 (in vivo)에서도 비표적 효과가 나타나는지 확인해볼 수 있다. 다만 이는 추가적인 검증 과정에 불과하므로 본 발명의 범위에 필수적으로 수반되는 단계는 아니며, 필요에 따라 추가적으로 수행될 수 있는 단계에 불과하다. The non-target location identification (detection) can be performed by treating genomic DNA with a target-specific nuclease in vitro . This can be checked practically appear a non-target effects in vivo (in vivo) with respect to the non-target location (detected) by the method. However, since this is only an additional verification process, it is not necessarily a step accompanying the scope of the present invention, and is only a step that can be additionally performed if necessary.

본 명세서에 사용된 바로서, 용어 "비표적 효과 (off-target effect)"는 비표적 위치 (off-target site)와는 구별되는 개념일 수 있다. 즉, 상기 설명한 바와 같이 본 발명에서 비표적 위치라는 개념은 표적 특이적 뉴클레아제가 작동할 수 있는 위치 중 표적 위치가 아닌 위치를 의미하는 것으로, 상기 표적 특이적 뉴클레아제에 의해 절단되는 위치를 말하는 것이나, 비표적 효과는 세포 내 비표적 위치에서 표적 특이적 뉴클레아제에 의해 인델 (Insertion and/or deletion)이 나타나는 효과를 의미한다. As used herein, the term "off-target effect" may be a concept distinguished from an off-target site. That is, as described above, the concept of a non-target position in the present invention refers to a position other than a target position among positions at which a target-specific nuclease can operate, and the position to be cleaved by the target-specific nuclease That being said, non-target effect refers to the effect of indel (Insertion and/or deletion) by a target-specific nuclease at a non-target location in a cell.

상기 용어 "인델"은 DNA의 염기 배열에서 일부 염기가 중간에 삽입되거나 (insertion) 및/또는 결실된 (deletion) 변이를 총칭한다. 또한, 표적 특이적 뉴클레아제에 의해 상기 인델이 일어난 비표적 위치를 비표적 인델 위치라고 한다. 결론적으로, 본 명세서의 비표적 위치는 비표적 인델 위치를 포함하는 개념으로 볼 수 있으며, 표적 특이적 뉴클레아제가 활성을 가질 수 있는 가능성이 있는 위치로 족하며, 반드시 유전자 가위에 의한 인델이 확인되어야 하는 것은 아니다. 한편, 본 발명에서의 비표적 위치는 비표적 후보 위치 (candidate off-target site)로, 비표적 인델 위치는 검증된 비표적 위치 (validated off-target site)로도 명명될 수 있다. The term "indel" refers to mutations in which some bases are inserted and/or deleted in the nucleotide sequence of DNA. In addition, a non-target position in which the indel is generated by a target-specific nuclease is referred to as a non-target indel position. In conclusion, the non-target position in the present specification can be viewed as a concept including a non-target indel position, and it is sufficient as a position with the potential for the target-specific nuclease to have activity, and must be confirmed by indel by genetic scissors. It doesn't have to be. Meanwhile, in the present invention, a non-target location may be referred to as a candidate off-target site, and a non-target indel location may be referred to as a validated off-target site.

구체적으로 상기 검증 과정은, 이에 제한되는 것은 아니나, 상기 비표적 위치에 대한 표적 특이적 뉴클레아제가 발현된 세포로부터 유전체 DNA를 분리하고, 상기 DNA의 비표적 위치에서 인델을 확인하여 비표적 위치에서의 비표적 효과를 확인하는 것일 수 있다. 이는, T7E1 분석, Cel-I 효소를 이용한 돌연변이 검출 분석 또는 표적화 딥시퀀싱 (targeted deep sequencing) 등 당업계에 공지된 인델 확인 방법을 수행하여 비표적 효과를 확인하는 것일 수 있다. 상기 비표적 효과를 확인하는 단계는 비표적 위치에서 인델이 일어났는지를 직접적으로 확인하는 것일 수 있다. 다만, 이러한 생체 내 검증 과정에서 인델이 일어나지 않았다고 하더라도, 이는 검출할 수 있는 수준 이하의 빈도로 인델이 일어날 경우까지 확인한 것은 아니므로 어디까지나 보조적인 수단으로 보아야 한다. Specifically, the verification process is not limited thereto, but the genomic DNA is isolated from the cell expressing the target-specific nuclease for the non-target location, and the indel is identified at the non-target location of the DNA. It may be to confirm the non-targeting effect of. This may be to confirm a non-target effect by performing an indel identification method known in the art such as T7E1 analysis, mutation detection analysis using Cel-I enzyme, or targeted deep sequencing. The step of confirming the non-target effect may be to directly confirm whether indel has occurred at a non-target location. However, even if indels did not occur during the in-vivo verification process, it is not confirmed until indels occur at a frequency less than a detectable level, so it should be viewed as a supplementary means.

상기 기술한 것과 같이 수직 정렬된 위치를 확인하거나, 또는 5' 말단 플롯에서 이중 피크를 확인하는 것만으로도 비표적 위치를 충분히 검출할 수 있고 이는 고도의 재현성을 가지는 것이나, 불균일 절단 패턴 또는 낮은 시퀀싱 깊이 (depth)를 가지는 일부 위치가 누락될 수 있다는 문제가 있다. 이에 본 명세서에서는 염기서열 데이터의 정렬 패턴을 기반으로 하여, 각 뉴클레오티드의 위치 i (즉 유전체 DNA 상의 뉴클레오타이드 위치)에 DNA 절단 점수를 산출하는 수식을 다음과 같이 제공한다: Checking the vertically aligned positions as described above, or simply by checking the double peaks in the 5'end plot, can sufficiently detect non-target positions, which is highly reproducible, but is a non-uniform cut pattern or low sequencing. There is a problem that some positions with depth may be omitted. Accordingly, in this specification, based on the alignment pattern of the nucleotide sequence data, a formula for calculating the DNA cleavage score at the position i of each nucleotide (ie, the nucleotide position on the genomic DNA) is provided as follows:

Figure 112019009256095-pat00001
Figure 112019009256095-pat00001

상기 수식에서 염기서열 데이터의 수는 뉴클레오타이드 리드 수를 의미하고, 시퀀싱 깊이는 특정 위치에서의 시퀀싱 리드수를 의미한다. In the above formula, the number of nucleotide sequence data means the number of nucleotide reads, and the sequencing depth means the number of sequencing reads at a specific location.

또한, 상기 수식을 통해 기존의 Digenome-seq에서는 검출되지 않았던 다수의 추가적인 위치를 검출할 수 있으며, 이를 통해 거짓-양성 위치를 손쉽게 걸러낼 수 있다. 상기 수식에서 C 값은 당업자가 임의의 상수를 적용할 수 있는 것으로 본 발명의 실시예에 의해 제한되는 것은 아니다. 일 예에서, 상기 C는 1 내지 1000, 1 내지 500, 1 내지 100, 1 내지 50, 1 내지 10, 1 내지 5, 또는 1 내지 3일 수 있으나, 이에 제한되는 것은 아니다. 특히, 이에 제한되는 것은 아니나, 예컨대, 임의의 위치 (절단된 위치)의 염기서열에 있어서, C 값을 1으로 하여 상기 산출된 점수가 2.5점 이상이거나, 0.1 점 이상이며 On-target 서열과 homology를 갖는 경우 (예컨대, On-target 서열과 10개 이하의 미스매치를 가지고 PAM (5'-NGN-3' 또는 5'-NNG-3')을 포함하는 경우), 상기 임의의 위치(절단된 위치)를 비표적 위치로 판단할 수 있다. 다만, 상기 점수의 기준은 목적에 따라 당업자에 의해 적절히 조정, 변경될 수 있다. In addition, through the above equation, a number of additional positions that have not been detected in the existing Digenome-seq can be detected, and through this, false-positive positions can be easily filtered out. The C value in the above formula is not limited by the embodiments of the present invention as those skilled in the art can apply an arbitrary constant. In one example, C may be 1 to 1000, 1 to 500, 1 to 100, 1 to 50, 1 to 10, 1 to 5, or 1 to 3, but is not limited thereto. In particular, but not limited thereto, for example, for the nucleotide sequence of an arbitrary position (cut position), the score calculated by setting the C value as 1 is 2.5 or more or 0.1 or more, and homology with the on-target sequence In the case of having (e.g., in the case of including PAM (5'-NGN-3' or 5'-NNG-3') with 10 or less mismatches with the On-target sequence), the arbitrary position (cleaved Location) can be determined as a non-target location. However, the standard of the score may be appropriately adjusted or changed by a person skilled in the art according to the purpose.

일 예에서, 본 명세서에서 제공되는 Digenome-seq 방법은 복수의 표적 특이적 뉴클레아제 (예컨대, 표적 부위가 상이한 가이드 RNA를 다수 포함하는 표적 특이적 뉴클레아제)를 이용하여 수행될 수도 있으며, 본 명세서에서는 이를 "복합 Digenome-seq"로 명명한다. 이 경우, 상기 표적 특이적 뉴클레아제는 2 개 이상, 구체적으로 2 내지 100 개의 표적에 대한 표적 특이적 뉴클레아제를 혼합한 것일 수 있으나, 이에 제한되는 것은 아니다.In one example, the Digenome-seq method provided herein may be performed using a plurality of target-specific nucleases (eg, target-specific nucleases including a plurality of guide RNAs having different target sites), In this specification, this is referred to as "composite Digenome-seq". In this case, the target-specific nuclease may be a mixture of two or more, specifically, target-specific nucleases for 2 to 100 targets, but is not limited thereto.

상기 복합 Digenome-seq의 경우 각각의 표적 특이적 뉴클레아제에 의해 유전체 DNA가 절단되므로 절단 위치가 어느 유전자 가위에 의해 절단되었는지를 확인하는 것이 중요하다. 이는 표적 위치와의 편집 거리 (edit distance)에 따라 비표적 위치를 분류함으로써 달성될 수 있으며, 비표적 위치의 염기 서열이 표적 위치와 상동성을 가진다는 것을 전제로 한다. 이를 통해 각각의 유전자 가위에 대한 표적 및 비표적 위치가 명확하게 구분될 수 있다.In the case of the complex Digenome-seq, genomic DNA is cleaved by each target-specific nuclease, so it is important to determine which gene scissors the cleavage site was cut by. This can be achieved by classifying the non-target location according to the edit distance to the target location, and it is premised that the base sequence of the non-target location has homology with the target location. Through this, the target and non-target positions for each of the genetic scissors can be clearly distinguished.

본 발명의 구체적인 일 실시예에서는 특정 위치를 표적으로 하는 RGEN (RNA-guided engineered nuclease)에 대하여, 전체 유전체에서 Digenome-seq를 통해 검출된 비표적 위치 중 표적 위치와의 뉴클레오티드 불일치가 6 개 이하인 상동성 위치가 13,000 개 이하이고, 뉴클레오티드 불일치가 2 개 이하인 상동성 위치를 가지지 않는 경우, 상기 특정 위치를 RGEN의 표적 위치로 선별하는 것이 비표적 효과를 최소화할 수 있음을 확인하였다. 이는 본 발명의 Digenome-seq를 이용하여 표적 위치를 선별하는 바람직한 기준을 확립해가는 과정을 보여주는 일례로서, Digenome-seq를 통해 유전자 가위의 비표적 효과를 최소화 시킬 수 있을 것으로 기대된다.In a specific embodiment of the present invention, for RNA-guided engineered nuclease (RGEN) targeting a specific position, among non-target positions detected through Digenome-seq in the entire genome, the nucleotide mismatch with the target position is 6 or less. When homologous positions are 13,000 or less and nucleotide mismatches do not have homologous positions of 2 or less, it was confirmed that non-targeting effects can be minimized by selecting the specific position as a target position of RGEN. This is an example showing the process of establishing a preferred criterion for selecting a target location using the Digenome-seq of the present invention, and it is expected that the non-targeting effect of the gene scissors can be minimized through the Digenome-seq.

한편, 표적 위치의 서열과 상동성을 가지는 위치의 수는 뉴클레오티드 불일치 수준이 증가할 수록 Digenome-seq를 통해 적은 비율로 검출되는 것을 확인하였다. 이는 RGEN의 표적 위치를 선별함에 있어서, 표적 서열과 유전체 내에서 상동성을 가지는 뉴클레오티드 서열이 많을 수록, 특히 고도의 상동성을 가지는 뉴클레오티드 서열이 많을 수록 상대적으로 더욱 특이적이기 때문이다. 이를 통해 선별된 RGEN의 표적 위치는 비표적 효과가 최소화된 것일 수 있다. On the other hand, it was confirmed that the number of positions having homology with the sequence of the target position was detected at a small rate through Digenome-seq as the level of nucleotide mismatch increased. This is because, in selecting the target position of RGEN, the more nucleotide sequences having homology with the target sequence in the genome, especially the more nucleotide sequences having high homology, the more specific they are. The target position of the RGEN selected through this may be a non-target effect is minimized.

다른 예에서, 상기 off-target 확인 방법은 CIRCLE-seq (circularization for in vitro reporting of cleavage effects by sequencing; Nature Methods 14, 607-614 (2017) 참조) 및/또는 SITE-seq (Cameron, P. et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nature methods 14, 600-606 (2017) 참조)을 통하여도 수행 가능하다 (도 2a 및 2b 참조).In another example, the off-target identification method is CIRCLE-seq (circularization for in vitro reporting of cleavage effects by sequencing; see Nature Methods 14, 607-614 (2017)) and/or SITE-seq (Cameron, P.ett. al. Mapping the genomic landscape of CRISPR-Cas9 cleavage.Nature methods 14, 600-606 (2017) reference) can also be performed (see FIGS. 2A and 2B).

본 발명에서 제시되는 유전체 서열 분석 기술에 의하여, 고도의 재현성으로 유전체 수준에서 유전자 가위의 비표적 위치를 검출할 수 있어, 표적 특이성이 높은 유전자 가위의 제작 및 이를 위한 연구에 사용될 수 있다.By the genome sequencing technology presented in the present invention, it is possible to detect the non-target position of the gene scissors at the genome level with high reproducibility, and thus, it can be used for the production of gene scissors with high target specificity and research therefor.

도 1a는 아데노신 디아미나아제와 Cas9 니케이즈 (D10A) (ABE)와 엔도뉴클레아제 V를 사용하는 유전체 DNA 서열 분석 과정을 모식적으로 보여준다.
도 1b는 아데노신 디아미나아제와 Cas9 니케이즈 (D10A) (ABE)와 Alkyladenine DNA Glycosylase (AAG) 및 엔도뉴클레아제 VIII를 사용하는 유전체 DNA 서열 분석 과정을 모식적으로 보여준다.
도 2a는 ABE 및 엔도뉴클레아제 V를 처리한 후 real-time PCR을 통해 DSB(Double Strand Break)의 생성 여부를 확인한 결과를 보여준다.
도 2b는 ABE, Alkyladenine DNA Glycosylase (AAG), 및 엔도뉴클레아제 VIII를 처리한 후 real-time PCR을 통해 DSB의 생성 여부를 확인한 결과를 보여준다.
도 2c는 ABE 및 엔도뉴클레아제 V를 처리하거나 ABE, Alkyladenine DNA Glycosylase (AAG), 및 엔도뉴클레아제 VIII를 처리한 후의 염기 교정을 확인한 결과이다.
도 3a 및 3b는 ABE 및 엔도뉴클레아제 V를 처리하거나 ABE, Alkyladenine DNA Glycosylase (AAG), 및 엔도뉴클레아제 VIII를 처리한 후의, 전유전체 서열분석 (WGS) 결과를 보여준다.
도 4는 ABE 및 엔도뉴클레아제 V를 처리하거나 ABE, Alkyladenine DNA Glycosylase (AAG), 및 엔도뉴클레아제 VIII를 처리한 후의, 절단 위치를 확인한 결과이다.
도 5는 CIRCLE-seq 및 SITE-seq에 의한 유전체 DNA 서열 분석 과정을 모식적으로 보여준다.
도 6a 내지 6c는 on target site에 대하여 0 내지 4개의 mismatched 염기를 갖는 sgRNA를 사용하여 얻어진 염기교정 빈도 (%) 및 삽입/결실 빈도(%)를 보여주는 그래프로, 별표는 하나의 효소에 대한 relative activity ([mismatched sgRNA 결과값]/[matched sgRNA 결과값])가 나머지 두 개의 효소보다 3배 이상 높은 mismatched sgRNA를 나타내고, 3' 말단의 마지막 3개 뉴클레오타이드는 PAM 서열을, 소문자는 mismatched 뉴클레오타이드를 각각 나타낸다 (Means ± s.e.m. were from three independent experiments).
도 7a는 ABE7.10 및 Endo V를 사용하는 Digenome-seq 분석법의 overview로서, ABE7.10가 구아닌의 데옥시이노신(deoxyinosine)으로의 변환을 촉매하고, Endo V이 데옥시이노신을 인식하여 상기 데옥시이노신에 대하여 두 번째 phosphodiester bond 3'를 절단함을 보여주며, 삼각형 꼭지점 위치는 ABE7.10 nickase 및 Endo V에 의하여 절단되는 phosphodiester bond 위치를 보여준다.
도 7b는 ABE-매개 Digenome-seq workflow의 개략도이고,
도 7c는 ABE7.10 및 hAAG/Endo VIII를 사용하는 Digenome-seq 분석법의 개략도로서, ABE7.10가 하나의 가닥에서 adenine-to-inosine 변환을 매개하고 다른 가닥에서 nick을 생성시키며, hAAG이 이노신을 제거하여 AP site (apurinic/apyrimidinic site)을 생성하고, Endo VIII (DNA glycosylase and AP-lyase)가 상기 AP site을 절단함을 보여주며, 삼각형 꼭지점 위치는 ABE7.10 nickase 및 hAAG/Endo VIII에 의하여 절단되는 site을 보여준다.
도 7d는 ABE7.10 표적 서열을 포함하는 PCR 산물에 ABE7.10 및 Endo V를 처리한 결과를 보여주는 것으로, ABE7.10와 Endo V가 모두 처리된 경우에만 DNA에 double strand break가 형성됨을 보여준다.
도 7e는 ABE7.10 표적 서열을 포함하는 PCR 산물에 ABE7.10, hAAG, 및 Endo VIII를 처리한 결과를 보여주는 것으로, ABE7.10, hAAG, 및 Endo VIII가 모두 처리된 경우에만 DNA에 double strand break가 형성됨을 보여준다.도 7f는 Sanger sequencing 결과를 나타낸 것으로, ABE7.10에 의한 A-to-G conversion과 Endo V에 의한 DNA 절단을 보여준다.
도 7g는 qRT-PCR 결과를 나타낸 그래프로서, ABE7.10 nickase와 Endo V에 의한 DNA 절단을 보여준다.
도 7h는 Sanger sequencing 결과를 나타낸 것으로, 유전체 DNA를 ABE7.10로 처리한 경우의 A-to-G conversion, 및 유전체 DNA를 ABE7.10, hAAG, 및 Endo VIII로 처리한 경우의 G-to-A conversion을 보여준다.
도 7i는 qRT-PCR 결과를 나타낸 그래프로서, 유전체 DNA를 ABE7.10, hAAG, 및 Endo VIII로 분해한 결과를 보여준다.
도 7j는 WGS data를 사용하여 얻어진 HEK2 target site에서의 sequence reads 의 수직 정렬(straight alignment) 결과를 보여주는 IGV 이미지이다.
도 7k는 ABE7.10, hAAG, 및 Endo VIII 처리 후 관찰되는 sequencing reads의 수직 정렬(straight alignment) 결과를 보여주는 IGV 이미지이다.
도 8은 nickel affinity chromatography 및 heparin bead chromatography를 사용하여 정제된 ABE7.10의 SDS-PAGE 분석 결과를 보여준다 (M: marker, I(-): cell lysate before IPTG (isoproply-1-thio-β-D-galactopyranoside) induction, I(+): cell lysate after IPTG induction, S: soluble lysate fraction, IS: insoluble lysate fraction, FT: flow-through, W1, W2: waste after washing, Ni: Ni-NTA agarose beads after elution of bound protein, NE: protein fraction eluted from nickel beads, Hp: Heparin Sepharose 6 Fast Flow affinity resins after elution of bound protein, HE: protein fraction after purification using heparin beads. 박스로 표시된 부분은 ABE7.10 단백질 밴드를 나타냄).
도 9는 ABE의 Digenome-seq 분석을 위한 In vitro DNA 절단 점수 시스템을 개략적으로 보여준다.
도 10a 및 10b는 Digenome-seq에 의해 확인된 유전체 전역의 ABE7.10 off-target site를 보여주는 것으로, 10a는 온전한 유전체 DNA (회색; 중심원으로부터 첫 번째 영역) 및 ABE7.10 + Endo V 처리된 유전체 DNA (파란색; 중심원으로부터 두 번째 영역), 및 ABE7.10 + hAAG + Endo VIII 처리된 유전체 DNA (붉은색; 중심원으로부터 세 번째 영역)을 사용하여 WGS를 통하여 얻어진 DNA 절단 점수를 보여주는 Genome-wide Circos plots이고 (화살표는 on-target site을 나타냄), 10b는 ABE7.10 + Endo V 또는 ABE7.10 + hAAG + Endo VIII를 사용하여 확인된 인간 유전체에서의 in vitro 절단 부위의 개수를 보여주는 벤다이어그램이다.
도 10c는 Digenome-captured sites에서 DNA 서열을 비교하고 WebLogo를 사용하여 얻어진 Sequence logos이다.
도 11은 RNF2, TYRO3, WEE1, EphB4, HPRT-exon6, 및 HPRT-exon8 부위에서의 sequencing reads의 수직 정렬 결과를 보여주는 IGV 이미지이다.
도 12a 및 도 12b는 온전한 유전체 DNA (gray; 중심에서 첫 번째 영역) 및 genomic DNA treated with ABE7.10/Endo V (blue; 중심에서 두 번째 영역), BE3

Figure 112019009256095-pat00002
UGI/USER (red; 중심원으로부터 3번째 영역), 또는 Cas9 (Green; 중심원으로부터 4번째 영역)으로 처리된 유전체 DNA를 사용하여 HEK2 (12a) 및 RNF2 (12b) 부위에 대하여 얻어진 Genome-wide Circos plots을 보여주며, 화살표는 on-target 부위를 나타낸다.
도 12c 및 도 12d는 Digenome-captured sites에서의 DNA 서열을 비교하고 WebLogo를 사용하여 얻어진 Sequence logos이다.
도 12e는 targeted deep sequencing을 사용하여 측정된 ABE7.10 off-target sites에서의 염기 교정 효율을 나타낸 그래프로서, 3' 말단 끝의 3개 뉴클레오타이드는 PAM 서열을 나타내고, 소문자는 Mismatched base를 나타낸다(Means ± s.e.m. were from three independent experiments).
도 12f는 ABE7.10-매개 치환 빈도와 Cas9-매개 indel 빈도 간의 상관성 (위쪽) 및 ABE7.10-매개 치환 빈도와 BE3-매개 치환 빈도 간의 상관성 (이래쪽)을 보여주는 Scatterplots이다.
도 13a는 일반적으로 사용되는 형태 (GX19), 절단된 형태 (gX18 or gX17), 및 연장된 형태 (gX20 또는 ggX20)의 sgRNAs의 표적 DNA-상보적 RNA 서열을 예시적으로 보여준다.
도 13b는 HEK2, RNF2, TK_EphB4, TYRO3, WEE1, HPRT-exon6, 및 HPRT-exon8를 표적으로 하는 변형 sgRNA 사용시 targeted deep sequencing에 의하여 측정된 각 변형 sgRNA 별 ABE7.10의 염기 교정 빈도 평균을 나타낸 그래프이다.
도 13c 및 13d는 HEK293T 세포에서 targeted deep sequencing으로 측정된 HPRT-Exon 6 (13c) 및 TYRO3와 HPRT-exon8 (13d)의 on- 또는 off-target sites에서의 ABE7.10-매개 염기 교정 빈도(%)를 결과를 보여주는 그래프 및 히트맵으로서, 히트맵은 GX19 sgRNA를 사용한 경우와 비교한 변형 sgRNA의 상대적 특이도 (relative specificities)를 보여주며, 상대적 특이도 (Specificity ratio)는 측정 대상 sgRNA의 특이도(on-target frequency/off-target frequency)를 GX19 sgRNA의 특이도 (on-target frequency/off-target frequency)로 나누어 계산된 값이고, 3' 말단 끝의 3개 뉴클레오타이드는 PAM 서열을 나타내고, 소문자는 Mismatched base를 나타낸다 (Means ± s.e.m. were from three independent experiments).
도 13e 및 13f는 ABE7.10 및 Sniper ABE7.10을 사용한 경우의 HPRT-Exon 6 (13e) 및 HPRT-exon8, HEK2, EphB4 및 TYRO3 (이상, 13f)에 부위에서의 on- 및 off-target 활성 및 특이도 비율 (specificity ratio)을 보여주는 그래프 및 히트맵으로, 3' 말단 끝의 3개 뉴클레오타이드는 PAM 서열을 나타내고, 소문자는 Mismatched base를 나타내고, specificity ratio는 다음의 수식에 의하여 계산된다: Sniper ABE7.10의 specificity (on-target frequency/off-target frequency)/ABE7.10의 specificity (on-target frequency/off-target frequency) (Means ± s.e.m. were from three independent experiments).
도 13g 및 13h는 플라스미드를 통하여 세포내로 전달되는 경우와 RNP 형태로 세포내로 전달되는 경우의 HPRT-Exon 8 (13g) 및 HPRT-exon6, HEK2, EphB4 및 TYRO3 (이상, 13h)에 부위에서의 on- 및 off-target 활성 및 특이도 비율 (specificity ratio)을 보여주는 그래프 및 히트맵으로, 3' 말단 끝의 3개 뉴클레오타이드는 PAM 서열을 나타내고, 소문자는 Mismatched base를 나타내고, specificity ratio는 다음의 수식에 의하여 계산된다: RNP 전달시의 specificity (on-target frequency/off-target frequency)/플라스미드 전달시의 specificity (on-target frequency/off-target frequency) (Means ± s.e.m. were from three independent experiments).
도 13i 및 13j는 ABE7.10 또는 Sniper ABE7.10을 변형 sgRNA와 조합하여 사용한 경우의 HPRT-exon6 부위 (13i) 및 HPRT-exon8 부위 (13j)에서의 on- 및 off-target 활성 및 특이도 비율 (specificity ratio)을 보여주는 그래프 및 히트맵으로, 3' 말단 끝의 3개 뉴클레오타이드는 PAM 서열을 나타내고, 소문자는 Mismatched base를 나타내고, specificity ratio는 다음의 수식에 의하여 계산된다: Sniper ABE7.10와 변형 sgRNA의 조합의 specificity (on-target frequency/off-target frequency)/ABE7.10의 specificity (on-target frequency/off-target frequency) (Means ± s.e.m. were from three independent experiments).1A schematically shows a genomic DNA sequence analysis process using adenosine deaminase, Cas9 nikase (D10A) (ABE) and endonuclease V.
FIG. 1B schematically shows a genomic DNA sequence analysis process using adenosine deaminase, Cas9 nickase (D10A) (ABE), Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII.
Figure 2a shows the result of confirming the generation of DSB (Double Strand Break) through real-time PCR after treatment with ABE and endonuclease V.
Figure 2b shows the result of confirming the generation of DSB through real-time PCR after treatment with ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII.
2C is a result of confirming the base correction after treatment with ABE and endonuclease V or treatment with ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII.
3A and 3B show the results of whole genome sequencing (WGS) after treatment with ABE and endonuclease V or treatment with ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII.
4 is a result of confirming the cleavage position after treatment with ABE and endonuclease V or treatment with ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII.
5 schematically shows the process of sequencing genomic DNA by CIRCLE-seq and SITE-seq.
6A to 6C are graphs showing the nucleotide correction frequency (%) and insertion/deletion frequency (%) obtained using sgRNA having 0 to 4 mismatched bases with respect to the on target site, and an asterisk is relative to one enzyme. The activity ([mismatched sgRNA result]/[matched sgRNA result]) represents a mismatched sgRNA that is three times higher than the other two enzymes, and the last three nucleotides at the 3'end represent the PAM sequence, and the lowercase letters represent the mismatched nucleotides, respectively. Shown (Means ± sem were from three independent experiments).
7A is an overview of the Digenome-seq analysis method using ABE7.10 and Endo V, wherein ABE7.10 catalyzes the conversion of guanine to deoxyinosine, and Endo V recognizes deoxyinosine, and It shows that the second phosphodiester bond 3'is cleaved for oxyinosine, and the position of the triangular vertex shows the position of the phosphodiester bond cleaved by ABE7.10 nickase and Endo V.
7B is a schematic diagram of an ABE-mediated Digenome-seq workflow,
Figure 7c is a schematic diagram of a Digenome-seq assay using ABE7.10 and hAAG/Endo VIII, where ABE7.10 mediates adenine-to-inosine transformation in one strand and creates a nick in the other strand, and hAAG is inosine. Is removed to create an AP site (apurinic/apyrimidinic site), and Endo VIII (DNA glycosylase and AP-lyase) shows that the AP site is cleaved, and the triangular vertex position is ABE7.10 nickase and hAAG/Endo VIII. Shows the site cut by.
7D shows the results of treatment with ABE7.10 and Endo V on the PCR product containing the ABE7.10 target sequence, showing that a double strand break is formed in DNA only when both ABE7.10 and Endo V are treated.
Figure 7e shows the results of treatment of ABE7.10, hAAG, and Endo VIII on the PCR product containing the ABE7.10 target sequence. Double strand in DNA only when all of ABE7.10, hAAG, and Endo VIII were treated. Figure 7f shows the Sanger sequencing result, showing A-to-G conversion by ABE7.10 and DNA cleavage by Endo V.
Figure 7g is a graph showing the qRT-PCR result, showing the DNA cleavage by ABE7.10 nickase and Endo V.
7H shows the results of Sanger sequencing, A-to-G conversion when genomic DNA was treated with ABE7.10, and G-to- when genomic DNA was treated with ABE7.10, hAAG, and Endo VIII. Shows A conversion.
7i is a graph showing the qRT-PCR results, showing the results of digestion of genomic DNA with ABE7.10, hAAG, and Endo VIII.
7J is an IGV image showing a result of straight alignment of sequence reads at a HEK2 target site obtained using WGS data.
7K is an IGV image showing the results of straight alignment of sequencing reads observed after ABE7.10, hAAG, and Endo VIII treatment.
Figure 8 shows the results of SDS-PAGE analysis of ABE7.10 purified using nickel affinity chromatography and heparin bead chromatography (M: marker, I(-): cell lysate before IPTG (isoproply-1-thio-β-D) -galactopyranoside) induction, I(+): cell lysate after IPTG induction, S: soluble lysate fraction, IS: insoluble lysate fraction, FT: flow-through, W1, W2: waste after washing, Ni: Ni-NTA agarose beads after elution of bound protein, NE: protein fraction eluted from nickel beads, Hp: Heparin Sepharose 6 Fast Flow affinity resins after elution of bound protein, HE: protein fraction after purification using heparin beads.Boxed area shows ABE7.10 protein band. Indicates).
9 schematically shows an in vitro DNA cleavage scoring system for Digenome-seq analysis of ABE.
10A and 10B show the ABE7.10 off-target site across the genome identified by Digenome-seq, where 10a is intact genomic DNA (grey; first region from the center circle) and ABE7.10 + Endo V treated. Genome showing DNA cleavage scores obtained via WGS using genomic DNA (blue; second region from central circle), and ABE7.10 + hAAG + Endo VIII treated genomic DNA (red; third region from central circle). -wide Circos plots (arrows indicate on-target sites), 10b shows the number of in vitro cleavage sites in the human genome identified using ABE7.10 + Endo V or ABE7.10 + hAAG + Endo VIII. It's a Venn diagram.
10C is a sequence logos obtained by comparing DNA sequences in Digenome-captured sites and using WebLogo.
11 is an IGV image showing vertical alignment results of sequencing reads in RNF2, TYRO3, WEE1, EphB4, HPRT-exon6, and HPRT-exon8 sites.
12A and 12B show intact genomic DNA (gray; first region from center) and genomic DNA treated with ABE7.10/Endo V (blue; second region from center), BE3
Figure 112019009256095-pat00002
UGI / USER (red; 3-th region from the center circle), or Cas9; using a treatment with (Green 4 th region from the center circle) genome DNA HEK2 Genome-wide Circos plots obtained for the (12a) and RNF2 (12b) sites are shown, and arrows indicate on-target sites.
12C and 12D are sequence logos obtained by comparing DNA sequences in Digenome-captured sites and using WebLogo.
Figure 12e is a graph showing the base correction efficiency in ABE7.10 off-target sites measured using targeted deep sequencing, 3 nucleotides at the 3'end represent the PAM sequence, and lowercase letters represent the Mismatched base (Means ± sem were from three independent experiments).
12F is Scatterplots showing the correlation between ABE7.10-mediated substitution frequency and Cas9-mediated indel frequency (top) and correlation between ABE7.10-mediated substitution frequency and BE3-mediated substitution frequency (bottom).
Figure 13a exemplarily shows the target DNA-complementary RNA sequence of sgRNAs in commonly used forms (GX 19 ), truncated forms (gX 18 or gX 17 ), and extended forms (gX 20 or ggX 20 ). .
13B is a graph showing the average of the base correction frequency of ABE7.10 for each modified sgRNA measured by targeted deep sequencing when using modified sgRNA targeting HEK2, RNF2, TK_EphB4, TYRO3, WEE1, HPRT-exon6, and HPRT-exon8 to be.
13C and 13D show ABE7.10-mediated nucleotide correction frequency (%) in on- or off-target sites of HPRT-Exon 6 (13c) and TYRO3 and HPRT-exon8 (13d) measured by targeted deep sequencing in HEK293T cells. ) As a graph and heat map showing the results, the heat map shows the relative specificities of the modified sgRNA compared to the case using GX 19 sgRNA, and the relative specificity is the specificity of the sgRNA to be measured. It is a value calculated by dividing the degree (on-target frequency/off-target frequency) by the specificity (on-target frequency/off-target frequency) of GX 19 sgRNA, and the 3 nucleotides at the 3'end represent the PAM sequence. , Lowercase letters indicate mismatched bases (Means ± sem were from three independent experiments).
13E and 13F show on- and off-target activities at sites in HPRT-Exon 6 (13e) and HPRT-exon8, HEK2, EphB4 and TYRO3 (above, 13f) when ABE7.10 and Sniper ABE7.10 were used. And a graph and a heat map showing the specificity ratio, wherein the 3 nucleotides at the 3'end represent the PAM sequence, the lowercase letters represent the mismatched base, and the specificity ratio is calculated by the following formula: Sniper ABE7 .10 specificity (on-target frequency/off-target frequency)/ABE 7.10 specificity (on-target frequency/off-target frequency) (Means ± sem were from three independent experiments).
Figures 13g and 13h show HPRT-Exon 8 (13g) and HPRT-exon6, HEK2, EphB4 and TYRO3 (above, 13h) when delivered intracellularly through plasmids and intracellularly in RNP form. -And a graph and heat map showing off-target activity and specificity ratio, 3 nucleotides at the 3'end represent the PAM sequence, lowercase letters represent mismatched bases, and the specificity ratio is in the following formula. It is calculated by: specificity at the time of RNP delivery (on-target frequency/off-target frequency)/specificity at the time of plasmid delivery (on-target frequency/off-target frequency) (Means ± sem were from three independent experiments).
13i and 13j show on- and off-target activity and specificity ratios at the HPRT-exon6 site (13i) and HPRT-exon8 site (13j) when ABE7.10 or Sniper ABE7.10 is used in combination with a modified sgRNA. As a graph and heat map showing the (specificity ratio), the 3 nucleotides at the 3'end represent the PAM sequence, the lowercase letters represent the mismatched base, and the specificity ratio is calculated by the following formula: Sniper ABE7.10 and modification The specificity of the combination of sgRNA (on-target frequency/off-target frequency)/specificity of ABE7.10 (on-target frequency/off-target frequency) (Means ± sem were from three independent experiments).

이하에서는 실시예를 들어 본 발명을 더욱 구체적으로 설명하고자 하나, 이는 예시적인 것에 불과할 뿐 본 발명의 범위를 제한하고자 함이 아니다. 아래 기재된 실시예들은 발명의 본질적인 요지를 벗어나지 않는 범위에서 변형될 수 있음은 당 업자들에게 있어 자명하다. Hereinafter, the present invention will be described in more detail by way of examples, but these are only illustrative and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art that the embodiments described below may be modified within the scope of the essential gist of the invention.

실시예Example 1: 아데노신 1: adenosine 디아미나아제와With deaminase Cas9Cas9 니케이즈Nikkei ( ( D10AD10A ) 처리 후, ) After processing, 엔도뉴클레아제Endonuclease V를 처리한 경우의 유전체 DNA 서열 분석 Genomic DNA sequence analysis when treated with V

세포에서 추출한 DNA를 아데노신 디아미나아제-Cas9 니케이즈 (D10A, Cas9의 10번째 아미노산이 D에서 A로 변이된 것)와 guide RNA 복합체와 혼합하게 되면 DNA의 한쪽 가닥이 절단되고 반대쪽 가닥의 A가 I로 바뀌게 된다. 반응시킨 DNA에 엔도뉴클레아제 V (endonuclease 5)를 처리하게 되면 I를 인식하여 절단을 유도한다. 결국 디아미나아제-Cas9 니케이즈 (D10A)와 엔도뉴클레아제 V에 의해 DNA의 두 가닥 파손 (DSB; double strand break)이 유도된다 (도 1a 참조).When the DNA extracted from the cell is mixed with adenosine deaminase-Cas9 nickase (D10A, the 10th amino acid of Cas9 has been mutated from D to A) and guide RNA complex, one strand of DNA is cut and A of the other strand is Is changed to I. When the reacted DNA is treated with endonuclease V (endonuclease 5), I is recognized and cleavage is induced. Eventually, double strand break (DSB) of DNA is induced by deaminase-Cas9 nickase (D10A) and endonuclease V (see Fig. 1A).

이 후 DNA를 정제한 후, DNA의 두 가닥 파손(DSB)이 발생한 DNA를 end repair 과정을 거쳐 전유전체 시퀸싱을 진행한다. DNA의 두 가닥 파손(DSB)이 발생한 DNA의 경우 잘린 부분에서 시퀀싱에 의한 서열이 on-target 위치에서 직선나열 (straight alignment)이 됨을 알 수 있으며, 전 유전체에서 직선나열 (straight alignment)이 된 부분을 찾음으로써 아데노신 디아미나아제-Cas9 니케이즈의 off-target을 검출 할 수 있다 (도 1a).After the DNA is purified, the DNA in which the double-strand break (DSB) of DNA has occurred is subjected to end-repair process, followed by whole genome sequencing. In the case of DNA with double-strand break (DSB) of DNA, it can be seen that the sequence by sequencing at the cut part is straight alignment at the on-target position, and the part with straight alignment in the entire genome It is possible to detect the off-target of adenosine deaminase-Cas9 nickase by finding (Fig. 1a).

실시예Example 2: 아데노신 2: adenosine 디아미나아제와With deaminase Cas9Cas9 니케이즈Nikkei 처리 후, After processing, AlkyladenineAlkyladenine DNA DNA GlycosylaseGlycosylase ( ( AAGAAG )를 처리한 경우의 유전체 DNA 서열 분석), genomic DNA sequence analysis

또한, 아데노신 디아미나아제-Cas9 니케이즈가 처리된 DNA에 Alkyladenine DNA Glycosylase (AAG)를 처리하게 되면 I이 제거되면서 AP-site (apurinic/apyrimidinic site)가 만들어 지게 된다. 그 후 AP-site를 절단할 수 있는 엔도뉴클레아제 VIII (endonuclease 8)을 처리하면 I가 제거되면서 DNA의 두 가닥 파손 (DSB; double strand break)이 유도된다 (도 1b).In addition, when Alkyladenine DNA Glycosylase (AAG) is treated on DNA treated with adenosine deaminase-Cas9 nickase, I is removed and AP-site (apurinic/apyrimidinic site) is created. Thereafter, treatment with endonuclease VIII (endonuclease 8) capable of cleaving the AP-site causes I to be removed, resulting in a double strand break (DSB) of DNA (Fig. 1b).

이 후 DNA를 정제한 후, DNA의 두 가닥 파손(DSB)이 발생한 DNA를 end repair 과정을 거쳐 전유전체 시퀸싱을 진행한다. DNA의 두 가닥 파손(DSB)이 발생한 DNA의 경우 잘린 부분에서 시퀀싱에 의한 서열이 on-target 위치에서 직선나열 (straight alignment)이 됨을 알 수 있으며, 전 유전체에서 직선나열 (straight alignment)이 된 부분을 찾음으로써 아데노신 디아미나아제-Cas9 니케이즈의 off-target을 검출 할 수 있다 (도 1b).After the DNA is purified, the DNA in which the double-strand break (DSB) of DNA has occurred is subjected to end-repair process, followed by whole genome sequencing. In the case of DNA with double-strand break (DSB) of DNA, it can be seen that the sequence by sequencing at the cut part is straight alignment at the on-target position, and the part with straight alignment in the entire genome It is possible to detect the off-target of adenosine deaminase-Cas9 nickase by finding (Fig. 1b).

실시예Example 3: 아데노신 3: adenosine 디아미나아제와With deaminase Cas9Cas9 니케이즈Nikkei 처리 후, After processing, 엔도뉴클레아제Endonuclease V 또는 V or AAG를AAG 처리한 경우의 유전체 DNA 서열 분석 Genomic DNA sequence analysis when processed

ABE와 엔도뉴클레아제 V 또는 ABE, Alkyladenine DNA Glycosylase (AAG), 엔도뉴클레아제 VIII을 처리한 후 real-time PCR을 통해 DSB가 일어나는 지를 확인하여 그 결과를 도 2a 및 2b에 나타내었다. 도 2a 및 2b에 나타난 바와 같이, ABE만 처리하였을 경우에는 50% 정도 절단 되는 것을 알 수 있었지만, ABE와 엔도뉴클레아제 V 또는 ABE, Alkyladenine DNA Glycosylase (AAG), 엔도뉴클레아제 VIII을 처리한 후에는 90% 이상의 DNA target site가 절단 된 것을 알 수 있다. 이러한 현상을 다시 한번 검증하기 위해서 sanger sequencing을 진행하였다. ABE를 처리하였을 때는 A가 G로 바뀌는 것을 볼 수 있었으며, ABE와 엔도뉴클레아제 V 또는 ABE, Alkyladenine DNA Glycosylase (AAG), 엔도뉴클레아제 VIII을 처리한 후에는 G로 변했던 부분이 거의 전부 (ABE와 엔도뉴클레아제 V) 또는 일부(ABE, Alkyladenine DNA Glycosylase (AAG), 엔도뉴클레아제 VIII)가 A로 바뀌는 것을 확인할 수 있다. After treatment with ABE and endonuclease V or ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII, it was confirmed whether DSB occurs through real-time PCR, and the results are shown in FIGS. 2A and 2B. As shown in Figures 2a and 2b, when only ABE was treated, it was found that about 50% was cut, but ABE and endonuclease V or ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII were treated. Later, it can be seen that more than 90% of the DNA target sites were cut. To verify this phenomenon once again, sanger sequencing was performed. When ABE was treated, A was changed to G. After treatment with ABE and endonuclease V or ABE, Alkyladenine DNA Glycosylase (AAG), and endonuclease VIII, almost all of the parts changed to G It can be seen that (ABE and endonuclease V) or part (ABE, Alkyladenine DNA Glycosylase (AAG), endonuclease VIII) is changed to A.

실시예Example 4: Whole Genome Sequencing ( 4: Whole Genome Sequencing ( WGSWGS ) 수행) Perform

상기 실시예 3의 ABE와 엔도뉴클레아제 V 또는 ABE, Alkyladenine DNA Glycosylase (AAG), 엔도뉴클레아제 VIII을 처리한 DNA를 WGS을 진행하여 그 결과를 도 3a, 3b, 및 도 4에 나타내었다. 도 3a에서와 같이, 서열 분석 결과에서 straight alignment를 확인 할 수 있다. 도 3b 및 도 4에서와 같이, DNA cleavage scoring system을 이용하여 genome-wide off-target candidates를 찾을 수 있다.The ABE of Example 3, endonuclease V or ABE, Alkyladenine DNA Glycosylase (AAG), and DNA treated with endonuclease VIII were subjected to WGS, and the results are shown in FIGS. 3A, 3B, and 4 . As shown in Figure 3a, straight alignment can be confirmed from the sequence analysis result. 3B and 4, genome-wide off-target candidates can be found using a DNA cleavage scoring system.

아데노신 염기교정 유전자 가위의 전유전체에서의 off-target을 프로파일링 하는 방법은 CIRCLE-seq17과 SITE-seq18을 이용하여 응용이 가능하다 (도 5). A method of profiling off-targets in the whole genome of adenosine nucleotide-correcting gene scissors can be applied using CIRCLE-seq17 and SITE-seq18 (FIG. 5).

아데노신 염기교정 유전자 가위의 전유전체에서의 off-target을 프로파일링 하는 방법은 CIRCLE-seq(Tsai, S.Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nature methods 14, 607-614 (2017))과 SITE-seq (Cameron, P. et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nature methods 14, 600-606 (2017))을 이용하여 응용이 가능하다 (도 5 참조). CIRCLE-seq (Tsai, SQ et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets) is a method of profiling off-targets in the whole genome of adenosine scissor. Nature methods 14, 607-614 (2017)) and SITE-seq (Cameron, P. et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nature methods 14, 600-606 (2017)). It is possible (see Fig. 5).

참고예Reference example

1. 세포 배양 및 형질 감염1. Cell culture and transfection

HEK293T 세포 (ATCC CRL-11268)를 10%(v/v) FBS 및 1%(v/v) 페니실린/스트렙토 마이신 (Welgene) 보충된 DMEM 배지에서 배양하고, HEK293T 세포(1.5x105)를 24-웰 플레이트에 접종하고, Lipofectamine 2000 (Invitrogen; ABE 및 BE3의 경우 3㎖, SpCas9의 경우 2㎕ 사용)을 사용하여, ABE (Addgene plasmid #113128; 1.5㎍; DNA 중량), BE3 (Addgene plasmid #73021; rAPOBEC1-XTEN-Cas9n-UGI-NLS; 1.5㎍) 또는 SpCas9 (Addgene plasmid #43945 NP_269215.1; 0.5㎍)를 코딩하는 플라스미드를 sgRNA 코딩 플라스미드(0.5㎍)와 함께 70-80% confluency로 형질감염시켰다.HEK293T cells (ATCC CRL-11268) were cultured in DMEM medium supplemented with 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin (Welgene), and HEK293T cells ( 1.5 ×10 5 ) were cultured in 24- Inoculated into a well plate, using Lipofectamine 2000 (Invitrogen; 3 ml for ABE and BE3, 2 μl for SpCas9), ABE (Addgene plasmid #113128; 1.5µg; DNA weight), BE3 (Addgene plasmid #73021) ; Plasmid encoding rAPOBEC1-XTEN-Cas9n-UGI-NLS; 1.5 μg) or SpCas9 (Addgene plasmid #43945 NP_269215.1; 0.5 μg) was transfected with sgRNA encoding plasmid (0.5 μg) with 70-80% confluency Made it.

하기 실시예에서 상기 ABE 또는 ABE7.10는 서로 동일한 단백질을 지칭하기 위하여 사용되며, 구체적으로 아데노신 디아미나아제 (인위적 진화 (directed evolution) 된 E. coli TadA (NP_417054.2))와 SpCas9 니케이즈 (D10A)(SpCas9 (NP_269215.1)의 10번째 아미노산 잔기 D가 A로 치환된 변형 Cas9)가 연결된 융합 단백질을 의미한다 (참고예 2 참조). In the following examples, the ABE or ABE7.10 is used to refer to the same protein, specifically adenosine deaminase (directed evolution of E. coli TadA (NP_417054.2)) and SpCas9 nikase ( D10A) (Modified Cas9 in which the 10th amino acid residue D of SpCas9 (NP_269215.1) is substituted with A) refers to a fusion protein to which it is linked (see Reference Example 2).

ABE RNP-매개 유전체 교정의 경우, ABE7.10 단백질 (10㎍) 및 in vitro 전사된 sgRNA (6㎍), 또는 ABE7.10 단백질 (0.6㎍) 및 sgRNA (0.2㎍) 코딩 플라스미드를 NeonTM Transfection System(Thermo Fisher Scientific)을 통한 전기천공에 의하여 HEK293T 세포 (1x105)에 형질감염시켰다. 72 h post-transfection 시점에 DNeasy Blood & Tissue Kit (Qiagen)를 사용하여 유전체 DNA를 추출하였다.For ABE RNP-mediated genome editing, ABE7.10 protein (10 µg) and in vitro transcribed sgRNA (6 µg), or ABE7.10 protein (0.6 µg) and sgRNA (0.2 µg) coding plasmid were used in Neon TM Transfection System HEK293T cells (1×10 5 ) were transfected by electroporation through (Thermo Fisher Scientific). At 72 h post-transfection, genomic DNA was extracted using DNeasy Blood & Tissue Kit (Qiagen).

하기하는 실시예에 사용된 sgRNA는 표적 부위 (표 8 내지 18에서, 'sgRNA 표적 부위' 또는 'DNA seq at a cleavage sites'로 표시) 중에서 3' 말단의 PAM 서열 (5'-NGG-3' (N은 A, T, G, 또는 C임))을 제외한 서열에서 T를 U로 바꾼 서열을 아래의 일반식 3 중의 표적화 서열 '(Ncas9)l'로 하여 제작된 것을 사용하였다:The sgRNA used in the following examples is a PAM sequence (5'-NGG-3' at the 3'end of the target site (indicated as'sgRNA target site'or'DNA seq at a cleavage sites' in Tables 8 to 18). (N is A, T, G, or C)) in the sequence except for the sequence in which T was replaced with U, the targeting sequence in the following general formula 3'(N cas9 ) l' was used:

5'-(Ncas9)l-(GUUUUAGAGCUA)-(GAAA)-(UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3' (일반식 3; 올리고뉴클레오타이드 링커: GAAA).5'-(N cas9 ) l -(GUUUUAGAGCUA)-(GAAA)-(UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3' (general formula 3; oligonucleotide linker: GAAA).

2. 2. ABE7ABE7 .10 단백질의 발현 및 정제.10 protein expression and purification

ABE7.10을 다음과 같이 설계하였다 (N 말단에서 C 말단 방향):ABE7.10 was designed as follows (N-terminal to C-terminal direction):

MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRA R DEREVPVGAVLV L NNRVIGEGWNR A IG L HDPTAHAEIMALRQGGLVMQNYRLIDATLYVT F EPCVMCAGAMIHSRIGRVVFG V R N AKTGAAGSLMDVLH Y PGMNHRVEITEGILADECAALL CY FFRM P RQ VFN AQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDPKKKRKV (서열번호 535) MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD SGGSSGGSSGSETPGTSESATPESSGGSSGGS SEVEFSHEYWMRHALTLAKRA R DEREVPVGAVLV L NNRVIGEGWNR A IG F EPCVMCAGAMIHSRIGRVVFG HDPTAHAEIMALRQGGLVMQNYRLIDATLYVT L V R Y N AKTGAAGSLMDVLH PGMNHRVEITEGILADECAALL CY FFRM P RQ VFN AQKKAQSSTD SGGSSGGSSGSETPGTSESATPESSGGSSGGS DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD PKKKRKV (SEQ ID NO: 535)

(상기 아미노산 서열에서,(In the amino acid sequence,

(1) 볼드체로 표시된 폴리펩타이드 부분: 야생형 E. coli TadA (NP_417054.2) (서열번호 536);(1) Part of the polypeptide indicated in bold: wild type E. coli TadA (NP_417054.2) (SEQ ID NO: 536);

(2) 이탤릭체로 표시된 폴리펩타이드 부분: directed evodution된 E. coli TadA (NP_417054.2) (야생형(NP_417054.2)에서 변이된 아미노산 잔기를 이탤릭체+밑줄로 표시함) (서열번호 537);(2) Italicized polypeptide moiety: directed evodution E. coli TadA (NP_417054.2) (amino acid residues mutated in wild type (NP_417054.2) are indicated by italics + underline) (SEQ ID NO: 537);

(3) 밑줄로 표시된 폴리펩타이드 부분 (서열번호 538): SpCas9 nickase (D10A);(3) Underlined polypeptide moiety (SEQ ID NO: 538): SpCas9 nickase (D10A);

(4) 폴리펩타이드 (1)과 (2) 사이 및 폴리펩타이드 (2)와 (3) 사이의 올리고펩타이드 (SGGSSGGSSGSETPGTSESATPESSGGSSGGS): 펩타이드 링커 (서열번호 539); 및(4) Oligopeptides (SGGSSGGSSGSETPGTSESATPESSGGSSGGS) between polypeptides (1) and (2) and between polypeptides (2) and (3): peptide linker (SEQ ID NO: 539); And

(5) 폴리펩타이드 (3)의 C 말단에 연결된 올리고펩타이드 (PKKKRKV): SV40 NLS) (성려번호 540).(5) Oligopeptides (PKKKRKV) linked to the C-terminus of polypeptide (3): SV40 NLS) (Sungrye No. 540).

상기와 같이 설계된 ABE7.10(N-terminal His purification tag 포함)를 암호화하는 human codon-optimized 유전자가 pET28(Addgene)에 클로닝된 ABE7.10 발현용 플라스미드를 준비하고, 상기 플라스미드를 BL21 Star (DE3)-competent E. coli 세포 (NEB)에 형질전환시켰다. 형질전환 후, fresh single colony를 37℃에서 진탕하면서 카나마이신 50㎍/mL 함유 Luria-Bertani (LB) 배지 (Thermo Fisher Scientific) 에서 밤새 배양하였다. 1:50으로 희석시킨 pre-cultures 8 mL를 카나마이신 50 ㎍/mL이 보충된 LB 배지 400 mL가 들어있는 각각의 플라스크에 접종하한 후, OD600=0.65~0.70이 될 때까지 37℃에서 진탕 배양하고, 얻어진 배양물을 얼음에 보관하였다. IPTG (isopropyl-b-D-1-thiogalactopyranoside; GoldBio) 1mM를 사용하여 단백질 발현을 유도한 후, 배양물을 18 ℃에서 16 시간 동안 진탕 배양하였다.A plasmid for expression of ABE7.10 in which the human codon-optimized gene encoding ABE7.10 (including N-terminal His purification tag) designed as described above was cloned into pET28 (Addgene) was prepared, and the plasmid was BL21 Star (DE3) -competent E. coli cells (NEB) were transformed. After transformation, fresh single colonies were cultured overnight in Luria-Bertani (LB) medium (Thermo Fisher Scientific) containing 50 µg/mL kanamycin while shaking at 37°C. 8 mL of 1:50 diluted pre-cultures were inoculated into each flask containing 400 mL of LB medium supplemented with 50 ㎍/mL of kanamycin, and cultured with shaking at 37°C until OD 600 =0.65 to 0.70. Then, the obtained culture was stored on ice. After inducing protein expression using IPTG (isopropyl-bD-1-thiogalactopyranoside; GoldBio) 1 mM, the culture was incubated with shaking at 18° C. for 16 hours.

이어지는 단백질 정제 과정은 4℃에서 수행하였다. 상기 얻어진 세포 배양물을 6,000g로 10분 동안 원심분리하여 세포를 수확하고, 용해 완충액 (50 mM sodium phosphate (Sigma-Aldrich), 500 mM NaCl (Sigma-Aldrich), 10 mM imidazole (Sigma-Aldrich), 1% Triton x-100 (Sigma-Aldrich), 20% glycerol, 1 mM 1,4-dithiothreitol (DTT; GoldBio), 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich), concentration of 1 mg/mL lysozyme (Sigma-Aldrich), 10μM ZnCl2 (Sigma-Aldrich), pH 8.0)에 재현탁시켰다. 그 후 현탁액을 액체 질소와 수조 (37 ℃)에서 교대로 3 회 반복 배양하였다. 9분 (5초 (on), 10초 (off)) 동안 초음파 처리하여 세포를 용해시키고, 15,000g에서 20분 동안 원심분리하여 용해물을 분리(cleared)하였다. 상층액을 니켈 아가로오스 비드 (Ni-NTA, QIAGEN)와 함께 60분 동안 4℃에서 진탕 배양하였다. 용해물-수지 혼합물을 폴리프로필렌 컬럼에 로딩하고 3 컬럼 부피의 세척 완충액 (50 mM sodium phosphate (Sigma-Aldrich), 150 mM NaCl (Sigma-Aldrich), 35 mM imidazole (Sigma-Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl2 (Sigma-Aldrich), pH 8.0)으로 세척하고, 결합된 반백질을 용출 완충액 (50 mM sodium phosphate (Sigma-Aldrich), 150 mM NaCl (Sigma-Aldrich), 250 mM imidazole (Sigma-Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl2 (Sigma-Aldrich), pH 8.0)로 용출시켰다. 용출된 단백질 분획을 헤파린 아가로오스 비드 (Heparin Sepharose 6 Fast Flow, GE Healthcare)가 들어있는 폴리프로필렌 컬럼에 넣고 3 컬럼 부피의 세척 완충액 (50 mM sodium phosphate (Sigma-Aldrich), 150 mM NaCl (Sigma-Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl2 (Sigma-Aldrich), pH 8.0)으로 세척하였다. 결합된 단백질을 용출 완충액 (50 mM sodium phosphate (Sigma-Aldrich), 750 mM NaCl (Sigma-Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl2 (Sigma-Aldrich), pH 8.0)으로 용출시켰다. 생성된 단백질 분획물은 원심분리 컬럼 (Amicon Ultra-4 Contrifugal Filter Devices, Millipore)을 사용하여 6,000g에서 농축시켜, ABE7.10 단백질을 정제하였다.The subsequent protein purification process was performed at 4°C. The obtained cell culture was centrifuged at 6,000 g for 10 minutes to harvest cells, and lysis buffer (50 mM sodium phosphate (Sigma-Aldrich), 500 mM NaCl (Sigma-Aldrich), 10 mM imidazole (Sigma-Aldrich)) , 1% Triton x-100 (Sigma-Aldrich), 20% glycerol, 1 mM 1,4-dithiothreitol (DTT; GoldBio), 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich), concentration of 1 mg/mL lysozyme ( Sigma-Aldrich), 10 μM ZnCl 2 (Sigma-Aldrich), pH 8.0). Thereafter, the suspension was incubated three times alternately in a liquid nitrogen and a water bath (37° C.). Cells were lysed by sonication for 9 minutes (5 seconds (on), 10 seconds (off)), and the lysates were cleared by centrifugation at 15,000 g for 20 minutes. The supernatant was incubated with nickel agarose beads (Ni-NTA, QIAGEN) for 60 minutes at 4°C with shaking. The lysate-resin mixture was loaded onto a polypropylene column and 3 column volumes of washing buffer (50 mM sodium phosphate (Sigma-Aldrich), 150 mM NaCl (Sigma-Aldrich), 35 mM imidazole (Sigma-Aldrich), 20% glycerol) , 1 mM DTT (GoldBio), 10 μM ZnCl 2 (Sigma-Aldrich), pH 8.0), and the bound semi-white matter was washed with elution buffer (50 mM sodium phosphate (Sigma-Aldrich), 150 mM NaCl (Sigma-Aldrich)). ), 250 mM imidazole (Sigma-Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl 2 (Sigma-Aldrich), pH 8.0). The eluted protein fraction was placed in a polypropylene column containing heparin agarose beads (Heparin Sepharose 6 Fast Flow, GE Healthcare) and 3 column volumes of washing buffer (50 mM sodium phosphate (Sigma-Aldrich), 150 mM NaCl (Sigma)). -Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl 2 (Sigma-Aldrich), pH 8.0). The bound protein was dissolved in elution buffer (50 mM sodium phosphate (Sigma-Aldrich), 750 mM NaCl (Sigma-Aldrich), 20% glycerol, 1 mM DTT (GoldBio), 10 μM ZnCl 2 (Sigma-Aldrich), pH 8.0). Eluted with. The resulting protein fraction was concentrated at 6,000 g using a centrifugal column (Amicon Ultra-4 Contrifugal Filter Devices, Millipore) to purify ABE7.10 protein.

3. 3. PCRPCR amplicon의amplicon ABE7ABE7 .10-매개 .10-media 시험관내In vitro 분해 ( Decomposition ( in vitroin vitro digestion) digestion)

표적 유전자의 표적 부위를 포함하는 (표 1 내지 11 참조) PCR amplicon을 37℃에서 1시간 동안 100㎖의 반응 부피로 ABE7.10 단백질 및 시험관내 전사된 (in vitro transcribed) HEK2-표적 sgRNA와 함께 배양하였다. 상기 얻어진 디아미네이션(deamination)된 생성물을 PCR 정제 키트 (MGmed)를 사용하여 정제하였다. 디아미네이션된 생성물 2 ㎍을 엔도뉴클레아제 V (Endo V; NP_418426.2) (40 units) (New England BioLabs) 또는 인간 Alkyladenine DNA Glycosylase (hAAG; NP_001015052.1, New England BioLabs) (10 units) (New England BioLabs) 및 엔도뉴클레아제 VIII (Endo VIII; NP_415242.1) (20 units) (New England BioLabs)와 함께 200㎖의 반응 부피로 37 ℃에서 30 분간 배양한 후, DNA를 PCR 정제 키트 (MGmed)를 사용하여 다시 정제하고 Bioanalyzer (Agilent)로 분석하여, in vitro digestion 결과를 측정하였다.PCR amplicon containing the target site of the target gene (see Tables 1 to 11) was mixed with ABE7.10 protein and in vitro transcribed HEK2-target sgRNA in a reaction volume of 100 ml for 1 hour at 37°C. Cultured. The obtained deamination product was purified using a PCR purification kit (MGmed). 2 μg of the deaminated product was added to endonuclease V (Endo V; NP_418426.2) (40 units) (New England BioLabs) or human Alkyladenine DNA Glycosylase (hAAG; NP_001015052.1, New England BioLabs) (10 units) (New England BioLabs) and endonuclease VIII (Endo VIII; NP_415242.1) (20 units) (New England BioLabs) in a reaction volume of 200 ml after incubation for 30 minutes at 37 ℃, DNA PCR purification kit Purified again using (MGmed) and analyzed with a Bioanalyzer (Agilent), and the in vitro digestion result was measured.

4. 유전체 DNA (4. Genomic DNA ( genomicgenomic DNA) 의 DNA) of ABE7ABE7 .10-매개 .10-media 시험관내In vitro 분해 decomposition

제조자 설명서에 따라서 DNeasy Blood & Tissue Kit (Qiagen)을 사용하여 HEK293T 세포로부터 유전체 DNA를 분리하였다. 유전체 DNA 8㎍을 정제된 ABE7.10 단백질 (300nM) 및 sgRNA (900 nM)와 함께 400㎖의 반응부피로 37 ℃에서 8시간 동안 반응 완충액 (50 mM Tris-HCl (pH 8.0), 25 mM KCl, 2.5 mM MgSO4, 0.1 mM EDTA, 10% glycerol, 2 mM DTT, 10 μM ZnCl2)에서 배양하였다. RNase A (50㎍/mL)를 이용하여 sgRNA를 분리한 후, DNeasy Blood & Tissue Kit (Qiagen)를 사용하여 DNA를 정제하였다. 정제된 DNA 3㎍를 Endo V (40 units) 또는 hAAG (10 units) 및 Endo VIII (20 units)와 함께 200㎖의 반응부피로 37 ℃에서 2시간 동안 배양한 후, DNeasy Blood & Tissue Kit (Qiagen)를 사용하여 다시 정제하였다. 정제된 DNA를 KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems)와 함께 배양하고 analyzed by real-time quantitative PCR (qPCR)로 분석하여 ABE7.10- 및 Endo V- 또는 ABE7.10-, hAAG-, 및 Endo VIII-매개 DNA 이중가닥절단(DSB)을 확인하였다. 온전한 유전체 DNA 분획은 comparative CT 분석법으로 측정하였다.Genomic DNA was isolated from HEK293T cells using DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer's instructions. 8 μg of genomic DNA was mixed with purified ABE7.10 protein (300 nM) and sgRNA (900 nM) in a reaction volume of 400 ml for 8 hours at 37° C. in a reaction buffer (50 mM Tris-HCl (pH 8.0), 25 mM KCl). , 2.5 mM MgSO 4 , 0.1 mM EDTA, 10% glycerol, 2 mM DTT, 10 μM ZnCl 2 ). After sgRNA was isolated using RNase A (50 μg/mL), DNA was purified using DNeasy Blood & Tissue Kit (Qiagen). After incubating 3㎍ of purified DNA with Endo V (40 units) or hAAG (10 units) and Endo VIII (20 units) at a reaction volume of 200 ml for 2 hours at 37 ℃, DNeasy Blood & Tissue Kit (Qiagen ) And purified again. Purified DNA was incubated with KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems) and analyzed by real-time quantitative PCR (qPCR) to analyze ABE7.10- and Endo V- or ABE7.10-, hAAG-, and Endo. The VIII-mediated DNA double strand break (DSB) was confirmed. The intact genomic DNA fraction was determined by comparative C T analysis.

5. 전체 유전체 시퀀싱 (Whole genome sequencing; 5. Whole genome sequencing; WGSWGS ) 및 ) And digenomedigenome sequencing sequencing

상기 얻어진 시험관내 분해된 DNA 1㎍를 Covaris 시스템 (Thermo Fisher Scientific)을 사용하여 400 내지 500 bp 범위로 단편화하고, End Repair Mix (Illumina)와 함께 배양하여 무딘 말단(blunt end)을 만들었다. 단편화된 DNA를 어댑터(illumina)로 연결하여 라이브러리를 생성하고, ㈜마크로젠에 의뢰하여 HiSeq X Ten Sequencer (Illumina)를 사용하여 전체 유전체 시퀀싱 (WGS)을 수행하였다. WGS는 sequencing depth를 30-40x로 하여 수행하였다. 유전체 서열 맵핑에는 Isaac aligner를 사용하였다. DNA 절단 부위는 Digenome 1.0 및 Digenome 2.0 프로그램을 사용하여 확인하였다 (Kim, D., Kim, S., Kim, S., Park, J. & Kim, J.S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome research 26, 406-415 (2016)). 본 명세서에서 사용된 Digenome 2.0 버전의 소스 코드는 'https://github.com/chizksh/digenome-toolkit2'에서 확인할 수 있다.1 μg of the obtained in vitro digested DNA was fragmented in the range of 400 to 500 bp using a Covaris system (Thermo Fisher Scientific), and incubated with End Repair Mix (Illumina) to create a blunt end. The fragmented DNA was ligated with an adapter (illumina) to generate a library, and the entire genome sequencing (WGS) was performed using HiSeq X Ten Sequencer (Illumina) by requesting Macrogen. WGS was performed with a sequencing depth of 30-40x. Isaac aligner was used for genomic sequence mapping. DNA cleavage sites were identified using Digenome 1.0 and Digenome 2.0 programs (Kim, D., Kim, S., Kim, S., Park, J. & Kim, JS Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq.Genome research 26, 406-415 (2016)). The source code of the Digenome 2.0 version used in this specification can be found at'https://github.com/chizksh/digenome-toolkit2'.

6.6. 표적 심층 시퀀싱 (Targeted deep sequencing)Targeted deep sequencing

KAPA HiFi HotStart PCR polymerase (#KK2502; KAPA BIOSYSTEMS)를 사용하여 표적 부위 (on-target sites) 및 잠재적 비표적 (potential off-target sites) 부위를 증폭시켰다. TruSeq HT Dual index-containing primer를 사용하여 증폭된 앰플리콘을 다시 증폭하여, deep sequencing 라이브러리를 생성하였다. The on-target sites and potential off-target sites were amplified using KAPA HiFi HotStart PCR polymerase (#KK2502; KAPA BIOSYSTEMS). The amplified amplicon was amplified again using TruSeq HT Dual index-containing primer to create a deep sequencing library.

상기 표적 심층 시퀀싱에 사용된 프라이머를 하기의 표 1 내지 7에 정리하였다:The primers used for the target deep sequencing are summarized in Tables 1 to 7 below:

HEK2에 대한 프라이머Primer for HEK2 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R HEK2_001HEK2_001 CCTTTCTCCACAGGCAGAGGCCTTTCTCCACAGGCAGAGG CCATCACACCCAGCCTCATTCCATCACACCCAGCCTCATT TCAGGCGCTGTTGCTAGAAATCAGGCGCTGTTGCTAGAAA CAGAGGAGGAAAGCAAGCTCACAGAGGAGGAAAGCAAGCTCA HEK2_002HEK2_002 GTTCCCACTGGACAGTCGAGGTTCCCACTGGACAGTCGAG GCAGGCAAATGAGGCTTCTGGCAGGCAAATGAGGCTTCTG GTTCCCACTGGACAGTCGAGGTTCCCACTGGACAGTCGAG GGCTATTTGCTGGGGGAACTGGCTATTTGCTGGGGGAACT HEK2_003HEK2_003 ATGAACAGGGGGGCTTGATGATGAACAGGGGGGCTTGATG CTGAGCCACTCCTTTCCCTGCTGAGCCACTCCTTTCCCTG CCTCCATCTTCTCCGCAGACCCTCCATCTTCTCCGCAGAC TTCTTCGCCCTCTCAGCTTCTTCTTCGCCCTCTCAGCTTC HEK2_004HEK2_004 AGTCGTACTATGCAAGCCACAAGTCGTACTATGCAAGCCACA GGGCACATGTGTTTGCGTAAGGGCACATGTGTTTGCGTAA TGGGTTCAAAAACAAACAGAGAAGATGGGTTCAAAAACAAACAGAGAAGA TCTTGTGAAACAGAAATGTCAGTTTCTTGTGAAACAGAAATGTCAGTT HEK2_005HEK2_005 TGCTGTGGTCCTAGGTCTCATGCTGTGGTCCTAGGTCTCA CTCAAGCAATCCTCCTGCCACTCAAGCAATCCTCCTGCCA AGTGGAAATCAGTGGGCCTGAGTGGAAATCAGTGGGCCTG TGGAAAGAACCACCTTGTGAGTTGGAAAGAACCACCTTGTGAGT HEK2_006HEK2_006 AGGCTGGGTGCAATTTGTTTAGGCTGGGTGCAATTTGTTT CCACAATTACATTTGCAGCAACCCCACAATTACATTTGCAGCAACC TCCCATCACCATTTACTGAGCATCCCATCACCATTTACTGAGCA ACACTGCCTGATTTCAAGCTACACTGCCTGATTTCAAGCT HEK2_007HEK2_007 GAGGCCCATTAACGTTTGGCGAGGCCCATTAACGTTTGGC AGACTCAAAACCTGGCCCACAGACTCAAAACCTGGCCCAC ACCTGGCTGAGCTAACTGTGACCTGGCTGAGCTAACTGTG TCCAGCCCCATCTGTCAAACTCCAGCCCCATCTGTCAAAC HEK2_008HEK2_008 TCCACCTGTTCATCCTCCCTTCCACCTGTTCATCCTCCCT ATGCCACCTCTGAAGCTGAGATGCCACCTCTGAAGCTGAG TCTTTCATTGCATGGCTGTACCTCTTTCATTGCATGGCTGTACC TGAATTTGTGTTGGGCCACATGAATTTGTGTTGGGCCACA HEK2_009HEK2_009 TGGAACTGGGGAATTGGTGTTGGAACTGGGGAATTGGTGT AGGGGCAGGAACACAAGAAAAGGGGCAGGAACACAAGAAA CCTGATTTGATAGACATGACATTGTCCTGATTTGATAGACATGACATTGT CAAACAAACAAGCAAAGCCTGTCAAACAAACAAGCAAAGCCTGT HEK2_010HEK2_010 GAATATCAGGGGATGGCGCAGAATATCAGGGGATGGCGCA AGAGCTAGGAGGGCCTGAAAAGAGCTAGGAGGGCCTGAAA TGTCTTGAGTGGGCTGGTTCTGTCTTGAGTGGGCTGGTTC GGCCTGAAATTTGCCCTGACGGCCTGAAATTTGCCCTGAC HEK2_011HEK2_011 TCCTGGTGTCATCTTGTGCCTCCTGGTGTCATCTTGTGCC TCCACAGTTCCCTAGGGCATTCCACAGTTCCCTAGGGCAT AATTCTCAAGAACAGTGAAAGTTGTAATTCTCAAGAACAGTGAAAGTTGT TCCACAGTTCCCTAGGGCATTCCACAGTTCCCTAGGGCAT HEK2_012HEK2_012 TCACCCTCCTCCTCTCACTTTCACCCTCCTCCTCTCACTT ACAAGGACAGGCCAAGACTGACAAGGACAGGCCAAGACTG ACCCAACAGAACAAAGAAATAACCCACCCAACAGAACAAAGAAATAACCC AGTGGGACTATGCCAGAGATAGTGGGACTATGCCAGAGAT HEK2_013HEK2_013 CACTGGGGATGGCAATCTGTCACTGGGGATGGCAATCTGT AAAGGCGGAAAGAGACAGGGAAAGGCGGAAAGAGACAGGG ACCAGCAAAGAAAAGGGGGAACCAGCAAAGAAAAGGGGGA GGAAAGAGACAGGGTCCTGAGGGAAAGAGACAGGGTCCTGAG HEK2_014HEK2_014 ATGGATGGTAGTGTCGTGGCATGGATGGTAGTGTCGTGGC TGGAATAGACCTGGGCTCCATGGAATAGACCTGGGCTCCA CACACACACACACACACACACACACACACACACACACACA TGGAATAGACCTGGGCTCCATGGAATAGACCTGGGCTCCA HEK2_015HEK2_015 CACGCAGCCAAGTCAAACTCCACGCAGCCAAGTCAAACTC GCAGAAGAATGGCGTGAACCGCAGAAGAATGGCGTGAACC GCCACTGGCCATCCTAACAAGCCACTGGCCATCCTAACAA TTTCTGTGCCCTATGCTCCTTTTCTGTGCCCTATGCTCCT HEK2_016HEK2_016 CTGACAGGCATTAGGTGGGGCTGACAGGCATTAGGTGGGG ATTATCTGCCTGCCTCAGCCATTATCTGCCTGCCTCAGCC TCCCAGTCCAGCCTATGCTCCCAGTCCAGCCTATGC GCACCTGGCCCACTATATGTGCACCTGGCCCACTATATGT HEK2_017HEK2_017 CATGTCCCCCTTTCCTCCACCATGTCCCCCTTTCCTCCAC GTGGAAGAGCCTCTGGGAACGTGGAAGAGCCTCTGGGAAC CCTGCCCTTTCCTTCCTTGTCCTGCCCTTTCCTTCCTTGT GGGCAGTTGTGAATCATGGCGGGCAGTTGTGAATCATGGC HEK2_018HEK2_018 GGTTGGGGTTGGGATTAGGGGGTTGGGGTTGGGATTAGGG GGTGGAAGGACTCGCAGAAAGGTGGAAGGACTCGCAGAAA TGACAACCACGTTCATGGGATGACAACCACGTTCATGGGA CCCATCTTGTCTCTCTGGCCCCCATCTTGTCTCTCTGGCC HEK2_019HEK2_019 GATCAGCCCAGGTGCTCTTTGATCAGCCCAGGTGCTCTTT AGTTCAAGATCAGCCTGGCCAGTTCAAGATCAGCCTGGCC CTGCCTAGCCCAAAGACCTCCTGCCTAGCCCAAAGACCTC TGGTCCCAGCTACTCAGGAATGGTCCCAGCTACTCAGGAA HEK2_020HEK2_020 AAAGCAAGAGGGTGGGAGTGAAAGCAAGAGGGTGGGAGTG TGACGACCCCCTACTTCACTTGACGACCCCCTACTTCACT CGTTGGCTTAGACCAGGGTACGTTGGCTTAGACCAGGGTA TCCAGGATTTTGCCCCATCCTCCAGGATTTTGCCCCATCC HEK2_021HEK2_021 CAGCCTGGCCAACATAGTGACAGCCTGGCCAACATAGTGA AAACTGTGCTCCCTTAGGCCAAACTGTGCTCCCTTAGGCC ACCTCACTCTGTGTCCCCTTACCTCACTCTGTGTCCCCTT AAACTGTGCTCCCTTAGGCCAAACTGTGCTCCCTTAGGCC HEK2_022HEK2_022 TATCAGCAGTTCCCCATCGCTATCAGCAGTTCCCCATCGC GGCTCTTACCAGTTTCCCCCGGCTCTTACCAGTTTCCCCC ACATCTGCAGCCCAGTTTCTACATCTGCAGCCCAGTTTCT CACAGTGCTTTGCCCCATTGCACAGTGCTTTGCCCCATTG HEK2_023HEK2_023 CTGCCACTAAGCCACCTTCACTGCCACTAAGCCACCTTCA AGGCTGAGGCAGGAGAATTGAGGCTGAGGCAGGAGAATTG TCCCATGGATGAAAAGCCCATCCCATGGATGAAAAGCCCA GTGACAGAGTGAGACTCCGCGTGACAGAGTGAGACTCCGC HEK2_024HEK2_024 GTGGAGGGTGCATGTGTACAGTGGAGGGTGCATGTGTACA CTAGGACACGGCTAAGGCAGCTAGGACACGGCTAAGGCAG TTTTCTGTGGGGCCAGTGTTTTTTCTGTGGGGCCAGTGTT CCAAGAGGAAACCTACCCCACCAAGAGGAAACCTACCCCA HEK2_025HEK2_025 TTCGGCGTGTGAAGTTAGCTTTCGGCGTGTGAAGTTAGCT CGATCTTCCCACCTTGGCTTCGATCTTCCCACCTTGGCTT CTGCCGTGGGAGACAATTCACTGCCGTGGGAGACAATTCA ACTGGTTCTGTTTGTGGCCAACTGGTTCTGTTTGTGGCCA HEK2_026HEK2_026 AGCTTGCCAGATTGGTGGAAAGCTTGCCAGATTGGTGGAA GAACACCATGCACGTTCACCGAACACCATGCACGTTCACC AGAGAACAGAGAACCTGCAAGGAGAGAACAGAGAACCTGCAAGG CTGGCTTTGCTTCTCCCGTACTGGCTTTGCTTCTCCCGTA HEK2_027HEK2_027 ATGGGCTCAGCTACGTCATGATGGGCTCAGCTACGTCATG ACACAGAGTACACAGGCACGACACAGAGTACACAGGCACG GGGCCCAGGGTAAGACTCTAGGGCCCAGGGTAAGACTCTA CTTGCAGTGAGCCGAGATCACTTGCAGTGAGCCGAGATCA HEK2_028HEK2_028 CAGCCTATGCCCAGGAATCCCAGCCTATGCCCAGGAATCC CTAACCAAGAGCCCTGGTGTCTAACCAAGAGCCCTGGTGT CTGCTTAGGTCCAGCCAACACTGCTTAGGTCCAGCCAACA TCTTGAAACTCCATGGCTGAATCTTGAAACTCCATGGCTGAA HEK2_029HEK2_029 CACTCCAGCTCAGGTGACAGCACTCCAGCTCAGGTGACAG TTACAGACGTGAGCCACCACTTACAGACGTGAGCCACCAC CATGTGAGGATGCAATGGGCCATGTGAGGATGCAATGGGC GAGGCAGTTTGAGCTGAGCTGAGGCAGTTTGAGCTGAGCT HEK2_030HEK2_030 GACCCTGAGCTGCTACCATCGACCCTGAGCTGCTACCATC AGAAATGCTGCTCTGGCCATAGAAATGCTGCTCTGGCCAT ACGAGTAAATGTTAAGCTTCTCCCTACGAGTAAATGTTAAGCTTCTCCCT ATGCTGCTCTGGCCATAGACATGCTGCTCTGGCCATAGAC HEK2_031HEK2_031 ACAATGGTCAGGTACGGCAGACAATGGTCAGGTACGGCAG TCCAGTGCAACACAGTCTGGTCCAGTGCAACACAGTCTGG ACTGGTGTCCTGAAGTCAAGTCACTGGTGTCCTGAAGTCAAGTC GAGCAGAGCCTCACACTTGTGAGCAGAGCCTCACACTTGT HEK2_032HEK2_032 GAACTCACAGAGCGGTGGAAGAACTCACAGAGCGGTGGAA CACCCAGGAAGACATGGTCCCACCCAGGAAGACATGGTCC GTGTCTGGCGGAGAGAGAACGTGTCTGGCGGAGAGAGAAC ACAAATCCTGGCACCAGACCACAAATCCTGGCACCAGACC HEK2_033HEK2_033 ATGGGAGAGCAATCCAGTGCATGGGAGAGCAATCCAGTGC AAAACTCTATGCCCCCCTGCAAAACTCTATGCCCCCCTGC TGGCCCCAAGATCAAAAGCTTGGCCCCAAGATCAAAAGCT TGAGGGTAAGGACTGAGGCATGAGGGTAAGGACTGAGGCA HEK2_034HEK2_034 GGCTTGTAGGATGAGCTGCAGGCTTGTAGGATGAGCTGCA TTCTTCTGCTTGGTCCAGCCTTCTTCTGCTTGGTCCAGCC CTACCTCTCCAGCAATGGTCCCTACCTCTCCAGCAATGGTCC TGCTTGGTCCAGCCTATTGATGCTTGGTCCAGCCTATTGA HEK2_042HEK2_042 GAGACCTTATGCCCTTCACCAGAGACCTTATGCCCTTCACCA CGGTGAATTGGGTTATGGCCCGGTGAATTGGGTTATGGCC CCAAAGGCATGGTCCATGAACCAAAGGCATGGTCCATGAA TTGGTGAGGCACTGTTTGGATTGGTGAGGCACTGTTTGGA HEK2_044HEK2_044 GCACTTTGGATGTGGAAGGGGCACTTTGGATGTGGAAGGG ACAAGGTCATTGCCTTCACAACAAGGTCATTGCCTTCACA AGACCTACACTGACCTGAGGTAGACCTACACTGACCTGAGGT ACAAGGTCATTGCCTTCACAACAAGGTCATTGCCTTCACA HEK2_050HEK2_050 CCCAACACAATCCCCTCCAGCCCAACACAATCCCCTCCAG TCTGGATGTCTACCTCTCTAGCATCTGGATGTCTACCTCTCTAGCA CCCTACCCAACACAATCCCCCCCTACCCAACACAATCCCC TCTCTGGATTGCTTTACAGGTTTCTCTGGATTGCTTTACAGGTT HEK2_052HEK2_052 AGCGGTGTAGGGATGAAAGCAGCGGTGTAGGGATGAAAGC GGCCAACTCCTCCTCACTTCGGCCAACTCCTCCTCACTTC GCTTCACCTCTCTGAGCCTCGCTTCACCTCTCTGAGCCTC TGGGCTGAAAACAAGAGGCATGGGCTGAAAACAAGAGGCA HEK2_065HEK2_065 AGCATGTTGCCTAGGCTTGTAGCATGTTGCCTAGGCTTGT GCCCTGTATTCAGATCCGCTGCCCTGTATTCAGATCCGCT TCCTCTGCCCTGACCATGTATCCTCTGCCCTGACCATGTA GAGAGCCTCGGGTGATTCTGGAGAGCCTCGGGTGATTCTG HEK2_079HEK2_079 CATGTGTCAGTTCCAGCCCTCATGTGTCAGTTCCAGCCCT GGCAAGAAACTGGGTAGCCTGGCAAGAAACTGGGTAGCCT CGGTGCTTCAATGCTGTAAGGCGGTGCTTCAATGCTGTAAGG AGAGGATCCCCAACGACAGAAGAGGATCCCCAACGACAGA HEK2_082HEK2_082 TTCTCCAGCTGTGCAGAGTGTTCTCCAGCTGTGCAGAGTG GAGCAGCTGTCCTCAACCATGAGCAGCTGTCCTCAACCAT TTCTGTACCTGCTGGGCATCTTCTGTACCTGCTGGGCATC TCAAGGAAATCACCCTGCCCTCAAGGAAATCACCCTGCCC HEK2_092HEK2_092 TCGACCTTGGAAAAACCTCCTTCGACCTTGGAAAAACCTCCT TGGAAGCTCTCCCTTCAGGATGGAAGCTCTCCCTTCAGGA TGGAGCTGCTCTTTTTTTCCTCTGGAGCTGCTCTTTTTTTCCTC CACCTTGAAGGCACCTTTTCACACCTTGAAGGCACCTTTTCA HEK2_093HEK2_093 CCACCATTTCAGTGAAGGCCCCACCATTTCAGTGAAGGCC TGCTCTTACCTGGCTCATGCTGCTCTTACCTGGCTCATGC CCACCATTTCAGTGAAGGCCCCACCATTTCAGTGAAGGCC AAGGTCAGGGGCCATGTTTTAAGGTCAGGGGCCATGTTTT HEK2_099HEK2_099 GGAAGCTTTGCAAGTCAGGCGGAAGCTTTGCAAGTCAGGC ACATACACTGGGGCCTGTTGACATACACTGGGGCCTGTTG TGGGCACTGCTCAGTAAACATGGGCACTGCTCAGTAAACA GCACATCCTGTACACATACCCAGCACATCCTGTACACATACCCA HEK2_101HEK2_101 AAGTGCTGGGATTACAGGCCAAGTGCTGGGATTACAGGCC GCCAGCAGGAAAGAGGACATGCCAGCAGGAAAGAGGACAT CTGGCTCTCAACTTCCTCCGCTGGCTCTCAACTTCCTCCG CTAGCTGCAAGGAAGCCTGGCTAGCTGCAAGGAAGCCTGG HEK2_105HEK2_105 TGTGTGTCCTAAGCCGTGTCTGTGTGTCCTAAGCCGTGTC CTTCTGGGAAGATGCTGGGGCTTCTGGGAAGATGCTGGGG CCAGAAGTCTCCGTGGCTGCCAGAAGTCTCCGTGGCTG TTAATGCCGTATCCCCAGCCTTAATGCCGTATCCCCAGCC HEK2_106HEK2_106 TTCCATAGAGGGGAGGCGAATTCCATAGAGGGGAGGCGAA CAAGGGAGTTGCTAAGGGGGCAAGGGAGTTGCTAAGGGGG TGGGACTGACCGAGAGACAATGGGACTGACCGAGAGACAA CAAGGGAGTTGCTAAGGGGGCAAGGGAGTTGCTAAGGGGG HEK2_110HEK2_110 GGGAGACACATGGGCTTTCAGGGAGACACATGGGCTTTCA CGCCCGGCCAATTTTTTGTACGCCCGGCCAATTTTTTGTA TCCCAAAACTGGCTCTTGCATCCCAAAACTGGCTCTTGCA ACCTGGCCCCCTTTAGATCTACCTGGCCCCCTTTAGATCT HEK2_119HEK2_119 GCTGGATGGCAGCTCAAAACGCTGGATGGCAGCTCAAAAC TTGGTCACATCACTCAGCCCTTGGTCACATCACTCAGCCC GCTGGATGGCAGCTCAAAACGCTGGATGGCAGCTCAAAAC ACCTAGCACGCAATCAGTCAACCTAGCACGCAATCAGTCA HEK2_121HEK2_121 GCCACAACATCTGGTGGGTAGCCACAACATCTGGTGGGTA GAGGTGGAAGGTTGGCTTGAGAGGTGGAAGGTTGGCTTGA AGTTCTCCAGCAATGGTGTTAGTTCTCCAGCAATGGTGTT AGAGCCAGACCCTGTCTCAAAGAGCCAGACCCTGTCTCAA HEK2_139HEK2_139 AACCAGCATTATGGACCGGGAACCAGCATTATGGACCGGG TGGTGGCAATCTAGTGGAAGGTGGTGGCAATCTAGTGGAAGG AACCAGCATTATGGACCGGGAACCAGCATTATGGACCGGG ACGATGAACCATCTGCTGAGAACGATGAACCATCTGCTGAGA HEK2_145HEK2_145 GGCATTTCTTTGAGCAGGGCGGCATTTCTTTGAGCAGGGC AATCCCTTTTCCGTGGTGGGAATCCCTTTTCCGTGGTGGG GGCATTTCTTTGAGCAGGGCGGCATTTCTTTGAGCAGGGC CATTCCTGGCTCACAGTGGACATTCCTGGCTCACAGTGGA

RNF2에 대한 프라이머Primer for RNF2 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R RNF2-1RNF2-1 CTTTGCAGGTCACAAGGCACCTTTGCAGGTCACAAGGCAC TTTGGGTGGGTCTAAGTGGCTTTGGGTGGGTCTAAGTGGC CACAGCTCAGGGTGGCTAAACACAGCTCAGGGTGGCTAAA TGTGGCTTATGCTGCACTCATGTGGCTTATGCTGCACTCA RNF2-2RNF2-2 AGTGTCTGGTGAGGGCCTATAGTGTCTGGTGAGGGCCTAT ACCACTGTTCACCCAGTACCACCACTGTTCACCCAGTACC TCCAGCAATGTCTCAGGCTGTCCAGCAATGTCTCAGGCTG AGCCAACATACAGAAGTCAGGAAGCCAACATACAGAAGTCAGGA RNF2-3RNF2-3 AGAAGCAGAGGGTTGTTGCTAGAAGCAGAGGGTTGTTGCT GAGAGCTTGAGTGGGTCACCGAGAGCTTGAGTGGGTCACC CTCTGGCCATTGATGCCAAACTCTGGCCATTGATGCCAAA CAGCTCATCTGAAAGCTCTGTCAGCTCATCTGAAAGCTCTGT RNF2-4RNF2-4 TCTGGACCAAAAGAGCTTGCTTCTGGACCAAAAGAGCTTGCT TGGAGTTGTCCCGAAGAGAACTGGAGTTGTCCCGAAGAGAAC ACACCAGGTATCTGTCTTGACAACACCAGGTATCTGTCTTGACA TGCAGACCCTATCTTTACAGCATGCAGACCCTATCTTTACAGCA RNF2-5RNF2-5 GAGGGTCCCTCTCTGGAACTGAGGGTCCCTCTCTGGAACT CAGTGGCTGTGAGGATGTGTCAGTGGCTGTGAGGATGTGT CTTTGTAGCTGCAGGCCACACTTTGTAGCTGCAGGCCACA GGGAGTCAGGAGCTTGCAGGGGAGTCAGGAGCTTGCAG RNF2-6RNF2-6 GGGTAAACCGAGGCATGTGAGGGTAAACCGAGGCATGTGA CCCTGCTCATGCTCAAAGGACCCTGCTCATGCTCAAAGGA GGCTTGAGGTAGTTGGCCATGGCTTGAGGTAGTTGGCCAT CTTGACACAGGAGAGGCAGGCTTGACACAGGAGAGGCAGG RNF2-7RNF2-7 AGGGCCAGGCTACCAGATAAAGGGCCAGGCTACCAGATAA CCCCCAGCTGCTAAATGTCACCCCCAGCTGCTAAATGTCA TGGAGAGGGGGTAGAAGTGGTGGAGAGGGGGTAGAAGTGG ATGTCACCTGTTTGCCTGCTATGTCACCTGTTTGCCTGCT RNF2-8RNF2-8 AGGTCTTCTGACAACCTGCAAGGTCTTCTGACAACCTGCA AACTTAGTCAGGGGCCATGCAACTTAGTCAGGGGCCATGC AGCTGGTTCCAAACTTAGCCAAGCTGGTTCCAAACTTAGCCA GGAACAAGAACAGTGAGGCCGGAACAAGAACAGTGAGGCC RNF2-15RNF2-15 ACAAGCCTGAGTCACTGAGCACAAGCCTGAGTCACTGAGC ACCTTATGCACCTTGCCCTCACCTTATGCACCTTGCCCTC ACCCTCATTTCCTGGAGTTCCACCCTCATTTCCTGGAGTTCC TTTCATTGTCATTGTTACCATGACTTTTCATTGTCATTGTTACCATGACT RNF2-19RNF2-19 AGAAAGAGCTCCCAATGGCCAGAAAGAGCTCCCAATGGCC CCCAGTGTTTTTCCCAGGGTCCCAGTGTTTTTCCCAGGGT TGAAGGGTGTGGGGTAGGAATGAAGGGTGTGGGGTAGGAA CCCAGTGTTTTTCCCAGGGTCCCAGTGTTTTTCCCAGGGT RNF2-20RNF2-20 GGACTGAGTCCCAGCCTCTAGGACTGAGTCCCAGCCTCTA GAGAGGTCAGGCAAACGACAGAGAGGTCAGGCAAACGACA CACCTAGAACAATGCCAGGCCACCTAGAACAATGCCAGGC CCACGCCCATTTGCTTTCATCCACGCCCATTTGCTTTCAT RNF2-24RNF2-24 AGGTAACAGTCCAGGCTGGAAGGTAACAGTCCAGGCTGGA ACAACGCACCTAGGGAACTGACAACGCACCTAGGGAACTG TGACACCACCACAATTCTTGGTGACACCACCACAATTCTTGG AAAGCCACCGACCTTCAAGGAAAGCCACCGACCTTCAAGG RNF2-27RNF2-27 GCCACTGAGAGCAGAGACAGGCCACTGAGAGCAGAGACAG CTCTTTGAAGGTCTGGGGCACTCTTTGAAGGTCTGGGGCA GCCACTGAGAGCAGAGACAGGCCACTGAGAGCAGAGACAG CTCTTTGAAGGTCTGGGGCACTCTTTGAAGGTCTGGGGCA RNF2-41RNF2-41 TACCCATCACAGTGGTCCCATACCCATCACAGTGGTCCCA TGTTCCATAGTTCCTTTTTCCCTTGTTCCATAGTTCCTTTTTCCCT ACCACAATAGTACACAAGCCAACCACAATAGTACACAAGCCA ACTTTTTGTCCTTCTTTGGTTCAACTTTTTGTCCTTCTTTGGTTCA

TYRO3에 대한 프라이머Primer for TYRO3 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R TYRO3-1TYRO3-1 CCACTCCAAGATGAGGCCTGCCACTCCAAGATGAGGCCTG TCCCCCTGAACCTGTTACCATCCCCCTGAACCTGTTACCA ACCACAACAGCCAGGACTTCACCACAACAGCCAGGACTTC CCTGGCCTCTTCTCGCATAGCCTGGCCTCTTCTCGCATAG TYRO3-2TYRO3-2 AGTTACACAGGGCCTTCGTGAGTTACACAGGGCCTTCGTG CTGTCAACAAAGTGCTGGCCCTGTCAACAAAGTGCTGGCC CTTGACTCCCATGCCTCCTGCTTGACTCCCATGCCTCCTG CTGTCAACAAAGTGCTGGCCCTGTCAACAAAGTGCTGGCC TYRO3-3TYRO3-3 CAGACAAGCCTGCTTCTCCACAGACAAGCCTGCTTCTCCA TCAGCAGTGTGAGAACGGACTCAGCAGTGTGAGAACGGAC CAACCTTGTAACAGGGCCCTCAACCTTGTAACAGGGCCCT AGCTTACTTTCCTGGGGAACAAGCTTACTTTCCTGGGGAACA TYRO3-4TYRO3-4 GCCCTGTTAGACTGTTGCCTGCCCTGTTAGACTGTTGCCT TAGCTTAGTCTGGGCCACCTTAGCTTAGTCTGGGCCACCT GCTGCTATAGGCTGGGACTGGCTGCTATAGGCTGGGACTG GCCCTTACCAGGAGCCAAATGCCCTTACCAGGAGCCAAAT TYRO3-5TYRO3-5 CAGCTGCCTTACACACTGGACAGCTGCCTTACACACTGGA TGCCCCAATCATGTCTCCACTGCCCCAATCATGTCTCCAC TTCGGAGTCATAGCCACTGCTTCGGAGTCATAGCCACTGC GACCAGGTGTCACGACTGTTGACCAGGTGTCACGACTGTT TYRO3-6TYRO3-6 GCACCCATGATCTCCAACCAGCACCCATGATCTCCAACCA TAGACAGGCCAGGAGTTCGATAGACAGGCCAGGAGTTCGA GATGACTTCTATCCGGGGCCGATGACTTCTATCCGGGGCC AGCATGAAGAGCTGGTCAGGAGCATGAAGAGCTGGTCAGG TYRO3-7TYRO3-7 GTGAGTCAGTGGTCCAGGTGGTGAGTCAGTGGTCCAGGTG GAACAGGACTGTGGAGTGGGGAACAGGACTGTGGAGTGGG CGAGGTGTTCTGTCCAGGATCGAGGTGTTCTGTCCAGGAT GGATGCAGTGAACTTGTGGCGGATGCAGTGAACTTGTGGC TYRO3-8TYRO3-8 TTTGGGGCTTTGAGTGTGGTTTTGGGGCTTTGAGTGTGGT TACCATGTCCCCATGCCAACTACCATGTCCCCATGCCAAC GGACCACCGATCACAACACTGGACCACCGATCACAACACT TAGAAGCCAACACCCCACACTAGAAGCCAACACCCCACAC TYRO3-9TYRO3-9 GCCTCACTTCACCTGGGATCGCCTCACTTCACCTGGGATC TCATGTTGGTCAGGGTGGTCTCATGTTGGTCAGGGTGGTC AGACTCCTTTCTCACGCACTAGACTCCTTTCTCACGCACT TCCGTGGGGTCTATTAGGCCTCCGTGGGGTCTATTAGGCC TYRO3-10TYRO3-10 TTGACCCTCTCTGAGCCTCATTGACCCTCTCTGAGCCTCA TACACTCTGAGCCCTACCCCTACACTCTGAGCCCTACCCC TGGGAAGCACCTGGGATAGATGGGAAGCACCTGGGATAGA TACACTCTGAGCCCTACCCCTACACTCTGAGCCCTACCCC TYRO3-11TYRO3-11 AGGTGCTGGTGATGAGTGTGAGGTGCTGGTGATGAGTGTG TGACTAGAGAAGCGGGTCCATGACTAGAGAAGCGGGTCCA GCTGGTGATGAGTGTGTTGCGCTGGTGATGAGTGTGTTGC AGAGTTATGGTTACTGCTCAGTTAGAGTTATGGTTACTGCTCAGTT TYRO3-12TYRO3-12 CTTCCCAGAAGCCTCTGCAACTTCCCAGAAGCCTCTGCAA GCTCATTTCCACTCCTGCCTGCTCATTTCCACTCCTGCCT GGGCATCAGAAGTGGGACAAGGGCATCAGAAGTGGGACAA TACCCACCTGTGTCCGTTTGTACCCACCTGTGTCCGTTTG

WEE1에 대한 프라이머Primer for WEE1 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R WEE1-1WEE1-1 GAGCCATGTCTGCACCTCTTGAGCCATGTCTGCACCTCTT GGGAACAATGCCACCCAAACGGGAACAATGCCACCCAAAC TTCCCTGCCCCATTGCTATCTTCCCTGCCCCATTGCTATC ACACTCACAGGGCATGTCTGACACTCACAGGGCATGTCTG WEE1-2WEE1-2 TGGCATGCAAATATCTCCCATGGCATGCAAATATCTCCCA ATAAGCAGCACACCACCACAATAAGCAGCACACCACCACA AGCACAGATGGCAAAAGCTGAGCACAGATGGCAAAAGCTG GTCACAGTGTTCAGGGGGAGGTCACAGTGTTCAGGGGGAG WEE1-3WEE1-3 ATGCTGGCCAAGATACCCACATGCTGGCCAAGATACCCAC GCTACTTCCTACTGTCCCCCGCTACTTCCTACTGTCCCCC CACTGGACATCTGAGGAGGCCACTGGACATCTGAGGAGGC CAGGCTGGAGTTCACAGAGGCAGGCTGGAGTTCACAGAGG WEE1-4WEE1-4 TCATCAGAGGACCCCTGTGTTCATCAGAGGACCCCTGTGT ATCTGTTTTGGAGGCAAGGTATCTGTTTTGGAGGCAAGGT ACTCCAAGAAGATTACTTACTTCCAACTCCAAGAAGATTACTTACTTCCA ATCTGTTTTGGAGGCAAGGTATCTGTTTTGGAGGCAAGGT WEE1-5WEE1-5 CTGGCCCAGACTTCTTGAGGCTGGCCCAGACTTCTTGAGG ATGGAGTGCATGGAGTGGTGATGGAGTGCATGGAGTGGTG AGGTCCTGCTCCTCCTATGTAGGTCCTGCTCCTCCTATGT CTGTCCTTTGACCCAGTCCCCTGTCCTTTGACCCAGTCCC WEE1-6WEE1-6 ATGCTGTGTTCCAACCCAGTATGCTGTGTTCCAACCCAGT TGGCTCCACCATGTTGGAAATGGCTCCACCATGTTGGAAA AGGGTGACTTTGACAGAACCAAGGGTGACTTTGACAGAACCA CCTCTGGGCACTATGCTAGGCCTCTGGGCACTATGCTAGG WEE1-7WEE1-7 ATGTCTAGACCGTTGCTGGCATGTCTAGACCGTTGCTGGC CGTTTGCTTTCAGTGACCCAGCGTTTGCTTTCAGTGACCCAG ATGTCTAGACCGTTGCTGGCATGTCTAGACCGTTGCTGGC CGTTTGCTTTCAGTGACCCAGCGTTTGCTTTCAGTGACCCAG WEE1-8WEE1-8 GTGATTGGCTACCAACCCCAGTGATTGGCTACCAACCCCA CTTGAGGCCCAGGACACAATCTTGAGGCCCAGGACACAAT TGTGCCACTTAACATGGACTCTTGTGCCACTTAACATGGACTCT GACCTAAAGACGTGCCACCTGACCTAAAGACGTGCCACCT WEE1-9WEE1-9 ATGTCCACACGAACACCTGCATGTCCACACGAACACCTGC CCACCACATACAGCCTCTCCCCACCACATACAGCCTCTCC TGGAAGTTACCAAGATGCCCCTGGAAGTTACCAAGATGCCCC AGTTAGTTTTCCAGAATGCCGTAGTTAGTTTTCCAGAATGCCGT WEE1-10WEE1-10 TGGGTGTTTTGAAGTGGCCTTGGGTGTTTTGAAGTGGCCT CAGTGAGAGCCCTGAGGTTGCAGTGAGAGCCCTGAGGTTG CCTCTGCTGAAATCCGTGGTCCTCTGCTGAAATCCGTGGT TGGACCAGTACCAGTCCATGTGGACCAGTACCAGTCCATG WEE1-11WEE1-11 CGTGAGACATGGGGAGCTTTCGTGAGACATGGGGAGCTTT GGGTTCCTTTCCCTGAGTGGGGGTTCCTTTCCCTGAGTGG GTGGGTCTTTCTCTGGCCTCGTGGGTCTTTCTCTGGCCTC CCTGGTTAGGCCCCATGATCCCTGGTTAGGCCCCATGATC WEE1-12WEE1-12 TGGCCAACATGGTGAAACCTTGGCCAACATGGTGAAACCT TAGTGGTGTGACGAGGGCTATAGTGGTGTGACGAGGGCTA GCAGTGAACCAAGACCATGCGCAGTGAACCAAGACCATGC AAACTTGCTGTCCTTGCCCTAAACTTGCTGTCCTTGCCCT WEE1-13WEE1-13 AGCTGAAGTCTGGAAACGCAAGCTGAAGTCTGGAAACGCA GGTGACGAGTGAAACCGTCTGGTGACGAGTGAAACCGTCT TCCCACGACCCTAGTAGTCCTCCCACGACCCTAGTAGTCC TTGCAGTGAGCCAAGATCGTTTGCAGTGAGCCAAGATCGT WEE1-14WEE1-14 TGGTGTTGCTTACCTGATTTGCTGGTGTTGCTTACCTGATTTGC TGAAGAAAGGAGGTGTAGCTCTTGAAGAAAGGAGGTGTAGCTCT TGCACTCATACAATGTGGTCATGCACTCATACAATGTGGTCA CCATCTGACCTGGGGGAAACCCATCTGACCTGGGGGAAAC WEE1-15WEE1-15 GACTCCTGGGCTCAAGCAATGACTCCTGGGCTCAAGCAAT TGTGCCCTGCTGACATCATTTGTGCCCTGCTGACATCATT GACTCCTGGGCTCAAGCAATGACTCCTGGGCTCAAGCAAT TGCAGGCTATTGACTCCTTCATGCAGGCTATTGACTCCTTCA WEE1-16WEE1-16 TGAGCCCAGATTGTGCAACTTGAGCCCAGATTGTGCAACT GCCTGCTCCTGAGATCATGGGCCTGCTCCTGAGATCATGG CAACAAAGCGAGGCTCTGCCAACAAAGCGAGGCTCTGC CACACACACACACACACACACACACACACACACACACACA WEE1-17WEE1-17 TTTGGAAGCTCAGCCCTGTCTTTGGAAGCTCAGCCCTGTC AATGGGAGATTGGTGGGCAGAATGGGAGATTGGTGGGCAG AGTGCCAACAATTGTGAGTGTAGTGCCAACAATTGTGAGTGT GCTGTTGCTGGTCTTTTGGTGCTGTTGCTGGTCTTTTGGT WEE1-18WEE1-18 ACTCCTCACTCAAGCAAGCCACTCCTCACTCAAGCAAGCC GTCCCTCAGGCCTCTCAAACGTCCCTCAGGCCTCTCAAAC GCCTCATCTACCTGCAAGGGGCCTCATCTACCTGCAAGGG GTCCCTCAGGCCTCTCAAACGTCCCTCAGGCCTCTCAAAC WEE1-19WEE1-19 CTCAGCCTCCCAAAGTGCTGCTCAGCCTCCCAAAGTGCTG TAGGAGAAGGGGGAGAGCACTAGGAGAAGGGGGAGAGCAC AGCCTTGTCTTTGAGTTCTGAAGCCTTGTCTTTGAGTTCTGA ACTCCTTCCCTGTTTCACCTACTCCTTCCCTGTTTCACCT WEE1-20WEE1-20 GGGCCAGTCAAATGAAGGGAGGGCCAGTCAAATGAAGGGA TTTTGGGGGGCTGTCTCTTCTTTTGGGGGGCTGTCTCTTC GGTCACTGACTGCGTCTCAAGGTCACTGACTGCGTCTCAA TCAATCCTCCCTCATTGTGGTTCAATCCTCCCTCATTGTGGT WEE1-21WEE1-21 TGCAGGGCCATTTGCATAGTTGCAGGGCCATTTGCATAGT AGGATGGCAGATTTCTCATTGGAAGGATGGCAGATTTCTCATTGGA CGGGTGGTATTTTTGCTAACCCCGGGTGGTATTTTTGCTAACCC AGTTTGTAGAAAAGGTGCTGCCAGTTTGTAGAAAAGGTGCTGCC

EphB4에 대한 프라이머Primer for EphB4 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R EphB4-01EphB4-01 GCTGGTCTCGAACTCCTGACGCTGGTCTCGAACTCCTGAC GTTCATTGCTCAAAGCCGGGGTTCATTGCTCAAAGCCGGG ACCTCAAGTGATCTGCCCACACCTCAAGTGATCTGCCCAC TTCCTTTGGTGTGTGTGCCTTTCCTTTGGTGTGTGTGCCT EphB4-02EphB4-02 GTGCCAGTGGAAATGGAGGAGTGCCAGTGGAAATGGAGGA CCACAACTCCACCTCTGCAACCACAACTCCACCTCTGCAA TCCCAAAAGCCCATAAGAGGACTCCCAAAAGCCCATAAGAGGAC ACCGCTACCCATTTGGATCTCACCGCTACCCATTTGGATCTC EphB4-03EphB4-03 CCTTTCTTCCCCCTCCCCTACCTTTCTTCCCCCTCCCCTA GCTGCCCCTAAGGTCACAAAGCTGCCCCTAAGGTCACAAA TGCCCCATAGTTTTGCCCATTGCCCCATAGTTTTGCCCAT TCCTTCCCAAAAAGATGTTGGTTCCTTCCCAAAAAGATGTTGGT EphB4-04EphB4-04 GTGGAGGTTCTTTTGGGGCTGTGGAGGTTCTTTTGGGGCT ACCAGCCTAGACAACATGGCACCAGCCTAGACAACATGGC CCCCAACTCTGAGTCTGAGCCCCCAACTCTGAGTCTGAGC CCCCAATCTGCCCTAACTCCCCCCAATCTGCCCTAACTCC EphB4-05EphB4-05 AGGTTAGAAGCCAAGCCCTGAGGTTAGAAGCCAAGCCCTG AGCCCAGGAACAGTAGGCTAAGCCCAGGAACAGTAGGCTA CTGCTACCTGCTCTTATGGCACTGCTACCTGCTCTTATGGCA TCACACAACGATGAAATCCCCTTCACACAACGATGAAATCCCCT EphB4-06EphB4-06 GAGTAGCTGGGATTACGGGCGAGTAGCTGGGATTACGGGC TGGAGTGCAGTGGTGTGATCTGGAGTGCAGTGGTGTGATC GAGTAGCTGGGATTACGGGCGAGTAGCTGGGATTACGGGC AGCTCAGGAGTTCCAGACCAAGCTCAGGAGTTCCAGACCA EphB4-07EphB4-07 TGGTCAGGCTGGTCTTGAACTGGTCAGGCTGGTCTTGAAC AGGACAAGTCACTGCTGCTGAGGACAAGTCACTGCTGCTG CTGACCTCAGCCTCCCAAAGCTGACCTCAGCCTCCCAAAG TCATGTGCCATTATTGCCCACTCATGTGCCATTATTGCCCAC EphB4-08EphB4-08 CTCAGCCTCCCAAGTAGCTGCTCAGCCTCCCAAGTAGCTG AAATGGAGGCTGAGGGAACGAAATGGAGGCTGAGGGAACG ACCCAGCCTCCATCAGAGATACCCAGCCTCCATCAGAGAT AAATGGAGGCTGAGGGAACGAAATGGAGGCTGAGGGAACG EphB4-09EphB4-09 TCACAGGATTCTGGGCCTTGTCACAGGATTCTGGGCCTTG CAAGTCCGGCTCTTGCTTCTCAAGTCCGGCTCTTGCTTCT GCCTTGCTAACATGAGCCAGGCCTTGCTAACATGAGCCAG TGCGACCTCAAGTAAGTTGCTTGCGACCTCAAGTAAGTTGCT EphB4-10EphB4-10 AACTTGTGGCACTCTAGGCAAACTTGTGGCACTCTAGGCA TTTCACATGTGTCTCCCCGGTTTCACATGTGTCTCCCCGG ACACAATGCATTGATCGAGTTCTACACAATGCATTGATCGAGTTCT ACACTGTGCCCTGGTCAAATACACTGTGCCCTGGTCAAAT EphB4-11EphB4-11 AGTGGATCCTCTGGGTTGGTAGTGGATCCTCTGGGTTGGT TTAGCTGGATGTGGTGGCAGTTAGCTGGATGTGGTGGCAG GGTTGGTTTGTCAGCAGCAGGGTTGGTTTGTCAGCAGCAG GAGCTGGGTACTGGTTACACAGAGCTGGGTACTGGTTACACA EphB4-12EphB4-12 CACTTACACAGACGGGCAGTCACTTACACAGACGGGCAGT GGGTCACTTTCCCCTCTTCGGGGTCACTTTCCCCTCTTCG AACTGTACTGAAACTGAACTCTTTCAACTGTACTGAAACTGAACTCTTTC CAGCCCCTTCGGAGTCTTTTCAGCCCCTTCGGAGTCTTTT EphB4-13EphB4-13 TACCAGGCTTTGCTTGAGGGTACCAGGCTTTGCTTGAGGG ACCATGTGGAAATGTCAACCTACCATGTGGAAATGTCAACCT TACCAGGCTTTGCTTGAGGGTACCAGGCTTTGCTTGAGGG ACCATGTGGAAATGTCAACCTACCATGTGGAAATGTCAACCT EphB4-14EphB4-14 GCAGTGTTGGTGGCAGATTCGCAGTGTTGGTGGCAGATTC TTTGGCGGACAGGAAGGTACTTTGGCGGACAGGAAGGTAC ATTTGTTTGCCCTTACAGAGTTTATTTGTTTGCCCTTACAGAGTTT TGTCCAAAACTGAAAAACCTGGTTGTCCAAAACTGAAAAACCTGGT EphB4-15EphB4-15 CTCCTGACCTCGTGATCTGCCTCCTGACCTCGTGATCTGC CTGGGAGGGAGGCAGAAATGCTGGGAGGGAGGCAGAAATG GGTCTCAAACTCTGGGCCTCGGTCTCAAACTCTGGGCCTC TGGGGATTGTTTTGGGGATGATGGGGATTGTTTTGGGGATGA EphB4-16EphB4-16 TAGGCCCCTCCAACACTGTATAGGCCCCTCCAACACTGTA AGGAAAATGGGCATGGGCTTAGGAAAATGGGCATGGGCTT TGCATCTGTTCATTTATTTTTGGCTTGCATCTGTTCATTTATTTTTGGCT AGGAAAATGGGCATGGGCTTAGGAAAATGGGCATGGGCTT EphB4-17EphB4-17 CAGAATGCAGTGACCCCAGTCAGAATGCAGTGACCCCAGT ACCATGCAAACACTAGCCGAACCATGCAAACACTAGCCGA CACCCTTCTGTCCCCATCACCACCCTTCTGTCCCCATCAC AGAAAGAACTAGGTGGATCCCTAGAAAGAACTAGGTGGATCCCT EphB4-18EphB4-18 AAAGCATCACTCTCCAGCCCAAAGCATCACTCTCCAGCCC TCACCATGCCCGGCTAATTTTCACCATGCCCGGCTAATTT GTCCCTCAAACTGTCCCCTGGTCCCTCAAACTGTCCCCTG TCACCATGCCCGGCTAATTTTCACCATGCCCGGCTAATTT EphB4-19EphB4-19 GGAGGGAGGGGAAGACAGATGGAGGGAGGGGAAGACAGAT CCTGAGACAAGAGCCACTGGCCTGAGACAAGAGCCACTGG CTGAGGGGCATCAGGGAAAGCTGAGGGGCATCAGGGAAAG TCCCAGCATAGGACTCACCATCCCAGCATAGGACTCACCA EphB4-20EphB4-20 TACATGTGCCATGCTGGTGTTACATGTGCCATGCTGGTGT TGGAGTGCAGTGGTGTGATCTGGAGTGCAGTGGTGTGATC CCCAGAGTGTGATGTTCCCCCCCAGAGTGTGATGTTCCCC GGTCTTGAACTCCTGGCCTCGGTCTTGAACTCCTGGCCTC EphB4-21EphB4-21 AAGCATCTGTAACCCCAGCCAAGCATCTGTAACCCCAGCC ATTTTGGGAGGCTGAGGTGGATTTTGGGAGGCTGAGGTGG TGCGCAACAGAGTGAGACTCTGCGCAACAGAGTGAGACTC TGGGTGACAGAGCAAGACTCTGGGTGACAGAGCAAGACTC EphB4-22EphB4-22 GGAGGGTTGCTCCACATTCTGGAGGGTTGCTCCACATTCT TGAAGTGGTCGTGATCTTAAATGTTGAAGTGGTCGTGATCTTAAATGT TGGCTGATAAGGCTGAGTGTTGGCTGATAAGGCTGAGTGT ATGAAGAGGGAAGCTACAGCATGAAGAGGGAAGCTACAGC EphB4-23EphB4-23 GCAGCTAAAGGGGTCCAGAGGCAGCTAAAGGGGTCCAGAG TAACCATGCTCCTGCCACTGTAACCATGCTCCTGCCACTG AGGGGTGAGACTAAGAGCCCAGGGGTGAGACTAAGAGCCC CCACAGTGACTTCCTCAAAACCCCACAGTGACTTCCTCAAAACC EphB4-24EphB4-24 TGCCATTCAAATGCAAGGCATGCCATTCAAATGCAAGGCA CTCTCTACCCACCCAAGAAGGCTCTCTACCCACCCAAGAAGG TTGTTGCAGTATAAGGTGAGGTTTGTTGCAGTATAAGGTGAGGT TGTGACAGGCTTCAGTACACTTGTGACAGGCTTCAGTACACT EphB4-25EphB4-25 CCTCCTGGGTTCAAGCGATTCCTCCTGGGTTCAAGCGATT TTTCCTTGTTGTGCCCCCTTTTTCCTTGTTGTGCCCCCTT TGCAACTGTTCTCACCTGGTTGCAACTGTTCTCACCTGGT CAGTGACCTGCTTTCCGTCACAGTGACCTGCTTTCCGTCA EphB4-26EphB4-26 GCAAAGGCAAACTGAGGGACGCAAAGGCAAACTGAGGGAC GGATCCACTGATGATTTTTGCCTGGATCCACTGATGATTTTTGCCT ATGAATGGGGTCTGTGGGTTATGAATGGGGTCTGTGGGTT GCTTCCCCACTCTCTGAACCGCTTCCCCACTCTCTGAACC EphB4-27EphB4-27 GGGTTGAGGAAGGTTGAGCAGGGTTGAGGAAGGTTGAGCA CAGCTCACTGGAAAAAAGCCACAGCTCACTGGAAAAAAGCCA AGGTTGAGCAAGGTCAGTGAAGGTTGAGCAAGGTCAGTGA TGATGTTTGTGGCCATGAGCTGATGTTTGTGGCCATGAGC EphB4-28EphB4-28 TTCCTTGGCTTCTGGTTGCATTCCTTGGCTTCTGGTTGCA ATGCTGTGCTCACTCACGAAATGCTGTGCTCACTCACGAA CACCCCTTCAAGACCTGGACCACCCCTTCAAGACCTGGAC ATGCTGTGCTCACTCACGAAATGCTGTGCTCACTCACGAA EphB4-29EphB4-29 TTGGCCTCCTAAAGTGCTGGTTGGCCTCCTAAAGTGCTGG AGATGTGGCATCAAGGTGCAAGATGTGGCATCAAGGTGCA TGCCCCCTATATGACAAATGCATGCCCCCTATATGACAAATGCA TGTAAGCAGAGACCCCCAGTTGTAAGCAGAGACCCCCAGT EphB4-30EphB4-30 GTGGTAGACAGTAGCTACCAGCGTGGTAGACAGTAGCTACCAGC ATATGAGCACCCACCAGCACATATGAGCACCCACCAGCAC AGGTTTAGCTTCCTTTTAAGGCAAGGTTTAGCTTCCTTTTAAGGCA TGAGTTTCTTTGCTGTCCTCCATGAGTTTCTTTGCTGTCCTCCA EphB4-31EphB4-31 AGGGATATAGGGGGCACTTGAAGGGATATAGGGGGCACTTGA TGAGGAGTGCTCATCAGGTATGAGGAGTGCTCATCAGGTA AGACAAATCTCCCATGCACAAGACAAATCTCCCATGCACA TGGCCTTGATCAACTGGATGATGGCCTTGATCAACTGGATGA EphB4-32EphB4-32 TGGTGCCACTAGCCTGAATGTGGTGCCACTAGCCTGAATG CTTTCCACTGCCATCTGGGTCTTTCCACTGCCATCTGGGT GCCCTTTCTGCATATGGGGAGCCCTTTCTGCATATGGGGA CCATTTCAGGGCCCTTCCTTCCATTTCAGGGCCCTTCCTT EphB4-33EphB4-33 CCAAGAGGATTGAGTTGAGGCACCAAGAGGATTGAGTTGAGGCA AGCCCACCAGATTTTAGGAGAAGCCCACCAGATTTTAGGAGA TGGGTAACTGCTTGTCCCTGTGGGTAACTGCTTGTCCCTG AACCGATGGTGATAGGTTTGTAACCGATGGTGATAGGTTTGT EphB4-34EphB4-34 TGCCTCACGATTTGATCACGATGCCTCACGATTTGATCACGA CCCAGTGGCAGAAAATCAGTCCCAGTGGCAGAAAATCAGT TCAGCCCCGTAAAACACACATCAGCCCCGTAAAACACACA TCTGCCAAATTTTAATGTTTCCCCATCTGCCAAATTTTAATGTTTCCCCA EphB4-35EphB4-35 GCAAGCTCTGACTGGTGAGTGCAAGCTCTGACTGGTGAGT CAGGGACTCCAGGAAAGCAGCAGGGACTCCAGGAAAGCAG AGTGCTTTTTCCCCTGGTCCAGTGCTTTTTCCCCTGGTCC GAGGAATTTGCAGGACCCCAGAGGAATTTGCAGGACCCCA EphB4-36EphB4-36 GGGCAGACTGACACTTCACAGGGCAGACTGACACTTCACA CGTGCCATGGTTTTCAGCTCCGTGCCATGGTTTTCAGCTC GGCTGGGTACTCCTCTGAGAGGCTGGGTACTCCTCTGAGA GGGTTTTGGTGTGGATGTCCGGGTTTTGGTGTGGATGTCC EphB4-37EphB4-37 GCTCTTTGGGTAGCAGTGGTGCTCTTTGGGTAGCAGTGGT GGGAAAAGTGTAGGGGCACAGGGAAAAGTGTAGGGGCACA TTCAGGCTCATGTGCTTGGTTTCAGGCTCATGTGCTTGGT ACGCTTTTGGGAATGTTGGAACGCTTTTGGGAATGTTGGA EphB4-38EphB4-38 CAAGGCCCCAACTAGGTGTTCAAGGCCCCAACTAGGTGTT AGCTGGGCTGGAAGAAAGTCAGCTGGGCTGGAAGAAAGTC CATTGCTCTGTGTTGCAAGCTCATTGCTCTGTGTTGCAAGCT AGCTGGGCTGGAAGAAAGTCAGCTGGGCTGGAAGAAAGTC EphB4-39EphB4-39 ACCACTTACTACGCCAAGCCACCACTTACTACGCCAAGCC CCTGATTTGAGGGGATGGGTCCTGATTTGAGGGGATGGGT ACCACTTACTACGCCAAGCCACCACTTACTACGCCAAGCC AGGCTGACATGTTCTTAGACTCTAGGCTGACATGTTCTTAGACTCT

HPRT-Exon6에 대한 프라이머Primer for HPRT-Exon6 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R HPRT_E6-01HPRT_E6-01 TCTTACTGCTTGCTGAGGGCTCTTACTGCTTGCTGAGGGC CTCACCCGCTTTGGAATCCTCTCACCCGCTTTGGAATCCT GCAGTTATACATGGGGGTTTTGGGCAGTTATACATGGGGGTTTTGG AGCAATCACTTAATCCCCCTTCAAGCAATCACTTAATCCCCCTTCA HPRT_E6-02HPRT_E6-02 TGAGGCCTAGGCTGAGAAGTTGAGGCCTAGGCTGAGAAGT GTGCTTCAGGGGAGACTGTCGTGCTTCAGGGGAGACTGTC GGATGGAAGGAATCATGGAGCTGGATGGAAGGAATCATGGAGCT CCCCTGCCCATCCTGTTTTACCCCTGCCCATCCTGTTTTA HPRT_E6-03HPRT_E6-03 GAACGTTGTTTTCCCTGGGCGAACGTTGTTTTCCCTGGGC TGAGCCAAGATCGTGCCATTTGAGCCAAGATCGTGCCATT GCCCTCTTCAGTGAGCTTCAGCCCTCTTCAGTGAGCTTCA ATTGCACTCTAGCCTGGACGATTGCACTCTAGCCTGGACG HPRT_E6-04HPRT_E6-04 TGTGTGCCTCCAACTAGCTGTGTGTGCCTCCAACTAGCTG CCACTTTACCCTCCAGCCAGCCACTTTACCCTCCAGCCAG AGCTGTCTCCTTTGCCTTCCAGCTGTCTCCTTTGCCTTCC TTGGCAAAGTGAGCAACTGCTTGGCAAAGTGAGCAACTGC HPRT_E6-05HPRT_E6-05 GATTCTCCTGCCTCAGCCTCGATTCTCCTGCCTCAGCCTC TCTTATGTTGCCCAGGCTGGTCTTATGTTGCCCAGGCTGG AGGTGCCGATTATCATGCCAAGGTGCCGATTATCATGCCA GTGTTGTGCAACCATCACCAGTGTTGTGCAACCATCACCA HPRT_E6-06HPRT_E6-06 CCTGGACTTGAGGCAGTGAGCCTGGACTTGAGGCAGTGAG CGCCACCACACCCTCTAATTCGCCACCACACCCTCTAATT GAAGGTGACCTGGTAGGACAGAAGGTGACCTGGTAGGACA TGGATGGATGACTTTGTCTACTTTGGATGGATGACTTTGTCTACTT HPRT_E6-07HPRT_E6-07 TGGATTAGGGGCCCACCATATGGATTAGGGGCCCACCATA ACGCCCGACCTGTTTAACATACGCCCGACCTGTTTAACAT AGCCAGCAGGTCATGAAGTCAGCCAGCAGGTCATGAAGTC TTGAGCCCAGGAGTCTGAGATTGAGCCCAGGAGTCTGAGA HPRT_E6-08HPRT_E6-08 TGGTCCCACACGAAAGAAGGTGGTCCCACACGAAAGAAGG TCCATCCACCTAGCCATCCATCCATCCACCTAGCCATCCA TGTCAGGAACACAGGCACTTTGTCAGGAACACAGGCACTT ATGTGAAGCAAGGGACAGGCATGTGAAGCAAGGGACAGGC HPRT_E6-09HPRT_E6-09 CCCCACCCCCAAAAAATAGCCCCCACCCCCAAAAAATAGC ACACCCATGATGGAAGCCAAACACCCATGATGGAAGCCAA TGTTGCATGCCAAGTATTGTGATGTTGCATGCCAAGTATTGTGA GCCTGCTCAGAGTCAAGGAAGCCTGCTCAGAGTCAAGGAA HPRT_E6-10HPRT_E6-10 GAATGCATGAAACACCCCGGGAATGCATGAAACACCCCGG TCAAGGATGATTGCCATTGCTTCAAGGATGATTGCCATTGCT TCCCACAAATTAGGCCAGGACTCCCACAAATTAGGCCAGGAC TGATTGCCATTGCTTGTTGGATGATTGCCATTGCTTGTTGGA HPRT_E6-11HPRT_E6-11 CCAAGAGACCATGGGCAGTTCCAAGAGACCATGGGCAGTT TGAGCCGAGATTGTGCCATTTGAGCCGAGATTGTGCCATT AATAGCAGGCCCTCTTCAGCAATAGCAGGCCCTCTTCAGC ATTGCACTCTAGCCTGGACGATTGCACTCTAGCCTGGACG HPRT_E6-12HPRT_E6-12 CACACCCAGCCAAGATGGATCACACCCAGCCAAGATGGAT CCAACCTCCCAATCCCTGACCCAACCTCCCAATCCCTGAC AGCAGGCTATATTTTGTGGTTGCAGCAGGCTATATTTTGTGGTTGC ACCTGCAGAACTTAGTGAAACAACCTGCAGAACTTAGTGAAACA HPRT_E6-13HPRT_E6-13 ACACACACAGACGAAGGCATACACACACAGACGAAGGCAT CGACCTTCCTTTCCCGTTGACGACCTTCCTTTCCCGTTGA GCGGCTCCGTTTTGTTTGTTGCGGCTCCGTTTTGTTTGTT TGGACATGTCACCCAAGCTGTGGACATGTCACCCAAGCTG HPRT_E6-14HPRT_E6-14 TCCAGAGTGTAACCGGAAAGTTCCAGAGTGTAACCGGAAAGT TCAACTGAAGGTGGCAGGAATCAACTGAAGGTGGCAGGAA ATAGCCTATTGCCCCTCCCAATAGCCTATTGCCCCTCCCA GCCTCTAACTCTTTGTCTGGCTGCCTCTAACTCTTTGTCTGGCT HPRT_E6-15HPRT_E6-15 ATGTTGGCCAGGATGGTCTGATGTTGGCCAGGATGGTCTG ATGATGTTGTGCTGCGTTGGATGATGTTGTGCTGCGTTGG TCAGAAGCCTGCACTCTTCATCAGAAGCCTGCACTCTTCA TCAAAGGTCACAACACTTGCTTCAAAGGTCACAACACTTGCT HPRT_E6-16HPRT_E6-16 TTCAACCTCTGTCCTGCTGCTTCAACCTCTGTCCTGCTGC AGGCCTGGTGCTATGAGAGAAGGCCTGGTGCTATGAGAGA TTCACTGCTCCAATGTGTGTTTCACTGCTCCAATGTGTGT AGGTGAGTTAAAGGGGGGAGAAGGTGAGTTAAAGGGGGGAGA HPRT_E6-17HPRT_E6-17 TGAACGAGGGTCAGTTTGGCTGAACGAGGGTCAGTTTGGC CTGTGTCAGTGGCCATGTCTCTGTGTCAGTGGCCATGTCT GCCTTTGCCTTATATTCGGCGCCTTTGCCTTATATTCGGC GTCAAACAGGTTGTACATGATGCAGTCAAACAGGTTGTACATGATGCA HPRT_E6-18HPRT_E6-18 TCTTACCAACTGTGCCTTCCCTCTTACCAACTGTGCCTTCCC AACTGGGAGGGAAAAGTGCCAACTGGGAGGGAAAAGTGCC TGTCACGTGACCCTCTTCATTGTCACGTGACCCTCTTCAT TGAGTGACTACAGTGAACGTTGTTGAGTGACTACAGTGAACGTTGT HPRT_E6-19HPRT_E6-19 GGCAGGTGACTTAAGTCCCCGGCAGGTGACTTAAGTCCCC GCACATGATCCTGTGTGTGCGCACATGATCCTGTGTGTGC GGCAGGTGACTTAAGTCCCCGGCAGGTGACTTAAGTCCCC GCACATGATCCTGTGTGTGCGCACATGATCCTGTGTGTGC HPRT_E6-20HPRT_E6-20 TGGCAGAATGGATTGGTTGAGATGGCAGAATGGATTGGTTGAGA TGGAGACAGAGTCATTGCAAATGGAGACAGAGTCATTGCAAA TGGTCCCTACAGAGCTCTGATGGTCCCTACAGAGCTCTGA GAAGAGACAGAGACACAGAGCAGAAGAGACAGAGACACAGAGCA HPRT_E6-21HPRT_E6-21 CAAAGTTCCAACAAGGGCCCCAAAGTTCCAACAAGGGCCC CTTCATGCTGGAGGCTGTCACTTCATGCTGGAGGCTGTCA ACCAACTCCTTGCTGTTGGGACCAACTCCTTGCTGTTGGG AGTGAAAGAAGGGAGCCAGCAGTGAAAGAAGGGAGCCAGC HPRT_E6-22HPRT_E6-22 GAGACCAGGACACACAACGTGAGACCAGGACACACAACGT TCGGCTCTCTTCATCACTGTTCGGCTCTCTTCATCACTGT CAAAATCCATTGCCCAGGCGCAAAATCCATTGCCCAGGCG TCGGCTCTCTTCATCACTGTTCGGCTCTCTTCATCACTGT HPRT_E6-23HPRT_E6-23 AATCGCTTGAACCCAGGAGGAATCGCTTGAACCCAGGAGG CCAACCCTCCTCCTCTCAGACCAACCCTCCTCCTCTCAGA TGCTAACACATGCCTCCCTGTGCTAACACATGCCTCCCTG CCAACCCTCCTCCTCTCAGACCAACCCTCCTCCTCTCAGA HPRT_E6-24HPRT_E6-24 CTTCCCGGGTTGATCCTCACCTTCCCGGGTTGATCCTCAC ACCAAACGACTTGCCTGAGAACCAAACGACTTGCCTGAGA CCTGCAACAAGTTTGTCTGGACCTGCAACAAGTTTGTCTGGA TGGTGGCGATGATCCTTCAATGGTGGCGATGATCCTTCAA HPRT_E6-25HPRT_E6-25 TTTCATTGTCTGCTGCCAGATTTCATTGTCTGCTGCCAGA CGCTACTCTAACGGCCCAAACGCTACTCTAACGGCCCAAA AGGGAACACAGTCCTTATTTGGAAGGGAACACAGTCCTTATTTGGA TGGAAATCACATCAAACCAACTAATGGAAATCACATCAAACCAACTAA HPRT_E6-26HPRT_E6-26 TCTCTCCAATGGCAGCAGTGTCTCTCCAATGGCAGCAGTG AGGCTGACAGTAGTTGCTTCCAGGCTGACAGTAGTTGCTTCC TCTCTCCAATGGCAGCAGTGTCTCTCCAATGGCAGCAGTG CAGACAACAAAGTGTGGCCACAGACAACAAAGTGTGGCCA HPRT_E6-27HPRT_E6-27 ATGGTGGTCTTGGTCACAGCATGGTGGTCTTGGTCACAGC AAGATTCCCACACAGGAGCGAAGATTCCCACACAGGAGCG GGTCTCAAACTCCTGGCCTCGGTCTCAAACTCCTGGCCTC ATACTGACTGGCTGGCTCTGATACTGACTGGCTGGCTCTG HPRT_E6-28HPRT_E6-28 TCTGGCTTAATGTGGGGTGGTCTGGCTTAATGTGGGGTGG ATGCTCCCATGAGGCCAAATATGCTCCCATGAGGCCAAAT ATTGAGGGGGCTGGCTAAACATTGAGGGGGCTGGCTAAAC ACCCTTCATCATCACAGCTCTACCCTTCATCATCACAGCTCT HPRT_E6-29HPRT_E6-29 AACCCCACCAGTAGCAGGTAAACCCCACCAGTAGCAGGTA ACAGCCGCAGTCCTATGTTCACAGCCGCAGTCCTATGTTC AGCTTGTAGTGACCAGGTGAAGCTTGTAGTGACCAGGTGA ACACTATGGGCCAATGTGAACTACACTATGGGCCAATGTGAACT HPRT_E6-30HPRT_E6-30 TGGTTCCTGCTGGGTTCTTCTGGTTCCTGCTGGGTTCTTC ACCCCACACTATACCCCCTCACCCCACACTATACCCCCTC CCAGCGCCTGTTTCCAAAAGCCAGCGCCTGTTTCCAAAAG GCACACAAGATTCCAGCAGCGCACACAAGATTCCAGCAGC HPRT_E6-31HPRT_E6-31 CCCCACTGGTGACCTTACACCCCCACTGGTGACCTTACAC ATGAGGGAAGGGGAAGACCTATGAGGGAAGGGGAAGACCT CCACTGCAGGCTCAGGAATACCACTGCAGGCTCAGGAATA ACAAACTGGGGGTGCTTCTGACAAACTGGGGGTGCTTCTG HPRT_E6-32HPRT_E6-32 TGGTCGCCTCAGTCAGTTTCTGGTCGCCTCAGTCAGTTTC GGGAACAGCAAGTGCAAAGGGGGAACAGCAAGTGCAAAGG TTACAGGCGTGAGTCACCACTTACAGGCGTGAGTCACCAC AAGCCCAGGAATTTCGACGTAAGCCCAGGAATTTCGACGT HPRT_E6-33HPRT_E6-33 AGGGGTTTCTGCCTCTTTGAGAGGGGTTTCTGCCTCTTTGAG ACACCACCCAGTTCCACTTGACACCACCCAGTTCCACTTG AGTCTTATGGCGGGAATGTTTAGTCTTATGGCGGGAATGTTT GGCTATGTACACATATTGTCCCAGGCTATGTACACATATTGTCCCA HPRT_E6-34HPRT_E6-34 AGCCATAACCACAATCCCGTAGCCATAACCACAATCCCGT GGAGAGGAGAGAAAGCACCGGGAGAGGAGAGAAAGCACCG AGCCATAACCACAATCCCGTAGCCATAACCACAATCCCGT AATGTGACCCTTGTGAGGCCAATGTGACCCTTGTGAGGCC HPRT_E6-35HPRT_E6-35 TCCCTTGGAGCCCTACAGAATCCCTTGGAGCCCTACAGAA GCTTGGAGAGGCCCTTTGATGCTTGGAGAGGCCCTTTGAT TCCCTTGGAGCCCTACAGAATCCCTTGGAGCCCTACAGAA AGAACAGGCATGCCAGCTTTAGAACAGGCATGCCAGCTTT HPRT_E6-36HPRT_E6-36 GTTTCTCCTGACTCGGCCTCGTTTCTCCTGACTCGGCCTC CACCAAAAGCACAGGCAACACACCAAAAGCACAGGCAACA TGGCCTTCCAAAGTGCTGGTGGCCTTCCAAAGTGCTGG GGGGTGTGTAAAGGCAACCTGGGGTGTGTAAAGGCAACCT HPRT_E6-37HPRT_E6-37 GAGGCTGAGGCAGGAGAATCGAGGCTGAGGCAGGAGAATC AGGCCTGGAGATAGAGCAGGAGGCCTGGAGATAGAGCAGG GCAACAGAGTGAGACCCCATGCAACAGAGTGAGACCCCAT AAAGCCGCTGGACTATGCTTAAAGCCGCTGGACTATGCTT HPRT_E6-38HPRT_E6-38 CGCTAAATGAGGGCAAGGGACGCTAAATGAGGGCAAGGGA TGTCACGTCCTCCTAGGGTTTGTCACGTCCTCCTAGGGTT CGCTAAATGAGGGCAAGGGACGCTAAATGAGGGCAAGGGA GACACCTTCCATGTCTCTGCAGACACCTTCCATGTCTCTGCA HPRT_E6-39HPRT_E6-39 GAAGATGATGGAGACCGGCCGAAGATGATGGAGACCGGCC TGGGCAGTGGTCACAAATGTTGGGCAGTGGTCACAAATGT CATTGGCATGACAGGGGAGACATTGGCATGACAGGGGAGA ACCTTTCCCAAACACACTCCTACCTTTCCCAAACACACTCCT HPRT_E6-40HPRT_E6-40 TGGCTACCCTGTCTCTGTGTTGGCTACCCTGTCTCTGTGT ATTCCATGAGTCCCCGAGGAATTCCATGAGTCCCCGAGGA TGGTCCCTCAAGAGCTAGCTTGGTCCCTCAAGAGCTAGCT ATTCCATGAGTCCCCGAGGAATTCCATGAGTCCCCGAGGA HPRT_E6-41HPRT_E6-41 GCGGATCATGAGGTCAGGAGGCGGATCATGAGGTCAGGAG TCTGAGCCAGGGAGCTTTTGTCTGAGCCAGGGAGCTTTTG GACAGAGTGAGACCCCGTCTGACAGAGTGAGACCCCGTCT TGTTTTTAAACTGCAGCAAATGCTTGTTTTTAAACTGCAGCAAATGCT HPRT_E6-52HPRT_E6-52 ATCAGGCCTGGCATAGCATGATCAGGCCTGGCATAGCATG CCTCCTGAGTAGCTGGGACTCCTCCTGAGTAGCTGGGACT ATCAGGCCTGGCATAGCATGATCAGGCCTGGCATAGCATG CGGCTTTGACTCCACCTCTTCGGCTTTGACTCCACCTCTT HPRT_E6-81HPRT_E6-81 GACACCATCATGCAGGGTCAGACACCATCATGCAGGGTCA GGTCTTGAACTCCTGGCCTCGGTCTTGAACTCCTGGCCTC TGCATTAGGAGAAGCTGGTTTTGCATTAGGAGAAGCTGGTTT TGTTATGTGCATTTGGCCACATGTTATGTGCATTTGGCCACA

HPRT-Exon8에 대한 프라이머Primer for HPRT-Exon8 Site No.Site No. 1st PCR_F1st PCR_F 1st PCR_R1st PCR_R 2nd PCR_F2nd PCR_F 2nd PCR_R2nd PCR_R HPRT_E8-1HPRT_E8-1 GGTGAAAAGGACCCCACGAAGGTGAAAAGGACCCCACGAA GAAGTGTCACCCTAGCCTGGGAAGTGTCACCCTAGCCTGG AGAGAATATTTGTAGAGAGGCACAAGAGAATATTTGTAGAGAGGCACA TGCTGGAAGGAGAAAACAATTCTGCTGGAAGGAGAAAACAATTC HPRT_E8-2HPRT_E8-2 CCCTTGGTGTCAGTAATCCCACCCTTGGTGTCAGTAATCCCA TGGCTGACAATGTCCTGCATTGGCTGACAATGTCCTGCAT TGAGCTCTTATATGTGCAAGGCATGAGCTCTTATATGTGCAAGGCA CCCTGACCATTCTCACCACCCCCTGACCATTCTCACCACC HPRT_E8-3HPRT_E8-3 TCTCCACGACCATCCAGTCTTCTCCACGACCATCCAGTCT ATGTACCAAGCACTGTCCCGATGTACCAAGCACTGTCCCG TAGCCTTTCTGAAGCAGGGCTAGCCTTTCTGAAGCAGGGC GCCAGTCTGACTCTTGAGCTGCCAGTCTGACTCTTGAGCT HPRT_E8-4HPRT_E8-4 TTAGACCTCCACTGGGTCGTTTAGACCTCCACTGGGTCGT GCAGAGAGCAACAGTGGACTGCAGAGAGCAACAGTGGACT GTCGTGTTGCACCCCATTTAGTCGTGTTGCACCCCATTTA TCCATCTGAAGCAGACTAGCCTCCATCTGAAGCAGACTAGCC HPRT_E8-5HPRT_E8-5 TCTGGGTGCCTCCATTGAACTCTGGGTGCCTCCATTGAAC CTGCCTGATGTCCACTCTCCCTGCCTGATGTCCACTCTCC GGAGACAGACACATGCATGGAGGAGACAGACACATGCATGGA TGCTTTCCCACATCCTGCATTGCTTTCCCACATCCTGCAT HPRT_E8-6HPRT_E8-6 TGAGTTTAGGATGGCAGCAACTTGAGTTTAGGATGGCAGCAACT CAATGCAAACCTGGCCTTCCCAATGCAAACCTGGCCTTCC CCAGATGTTCCCAAACTCTGCCCAGATGTTCCCAAACTCTGC TGCCAGATGGATATGCACCATGCCAGATGGATATGCACCA HPRT_E8-7HPRT_E8-7 GAACCAGACCTCACCCCATGGAACCAGACCTCACCCCATG CCTGTGGCTCTGTCATGTGTCCTGTGGCTCTGTCATGTGT GTCATCCAGTTGGTGCCAGAGTCATCCAGTTGGTGCCAGA CCTGTGGCTCTGTCATGTGTCCTGTGGCTCTGTCATGTGT HPRT_E8-8HPRT_E8-8 CAGAGTGGATGGTGTGCTGTCAGAGTGGATGGTGTGCTGT TAAGGCAGTGTGAAGCAGCATAAGGCAGTGTGAAGCAGCA CAGAGTGGATGGTGTGCTGTCAGAGTGGATGGTGTGCTGT TTTGCCAGAGAGGGTCTCCTTTTGCCAGAGAGGGTCTCCT HPRT_E8-9HPRT_E8-9 TGCACGCCAGTCAAAGAGATTGCACGCCAGTCAAAGAGAT TGACCTGGCAATTCCACTCCTGACCTGGCAATTCCACTCC AGCATGTGTCTGTACTTCATTGTAGCATGTGTCTGTACTTCATTGT TGACCTGGCAATTCCACTCCTGACCTGGCAATTCCACTCC HPRT_E8-10HPRT_E8-10 CCAGTTTGCAGTTCTGTGCCCCAGTTTGCAGTTCTGTGCC CCTGAAGCATCCTGACTGCTCCTGAAGCATCCTGACTGCT TGTTGACAGTCAAAAGTGAGGATGTTGACAGTCAAAAGTGAGGA CCTGAAGCATCCTGACTGCTCCTGAAGCATCCTGACTGCT HPRT_E8-11HPRT_E8-11 ACTCTGGAGGCTCAGGTAGGACTCTGGAGGCTCAGGTAGG ATTACAGGCGTGACCCACTGATTACAGGCGTGACCCACTG CGTTATCACATCTTCAGCAAAAGCCGTTATCACATCTTCAGCAAAAGC ATTACAGGCGTGACCCACTGATTACAGGCGTGACCCACTG HPRT_E8-12HPRT_E8-12 CCCGACCTCCAGGAAAAAGACCCGACCTCCAGGAAAAAGA GGTGGTGGGTGTTCAGATGTGGTGGTGGGTGTTCAGATGT TGAGGGCCAAACCAGAAGAGTGAGGGCCAAACCAGAAGAG CTCATTTTGAACTAACCCCTCCCCTCATTTTGAACTAACCCCTCCC HPRT_E8-13HPRT_E8-13 GTCTCAAACTCGTGGGCTCAGTCTCAAACTCGTGGGCTCA ACATGTCTGGCCTGCACATTACATGTCTGGCCTGCACATT TCCATTCCTGCTAAGTGCCCTCCATTCCTGCTAAGTGCCC ACGACACTTGTGCACCTTTTACGACACTTGTGCACCTTTT HPRT_E8-14HPRT_E8-14 TGTACCTCCTACCTGCTCCCTGTACCTCCTACCTGCTCCC GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT CAAAGAAACAGAACCAATTGCATATCAAAGAAACAGAACCAATTGCATAT GCAGGTAGTTGTAACACAATGCTGCAGGTAGTTGTAACACAATGCT HPRT_E8-15HPRT_E8-15 TCTTCGGACTGAACAAGCATCTTCTTCGGACTGAACAAGCATCT TTTCAGATGAAGGCCGACCCTTTCAGATGAAGGCCGACCC CAGCCATGCCACTAAAGAGCCAGCCATGCCACTAAAGAGC GAGGTTTCTTTCAGCAGCCCGAGGTTTCTTTCAGCAGCCC HPRT_E8-16HPRT_E8-16 GCCCATGCAATTGCTTAGGGGCCCATGCAATTGCTTAGGG CACTCCAAGGACAGTCCACCCACTCCAAGGACAGTCCACC TCCCTTGGGATTTCAGGCTCTCCCTTGGGATTTCAGGCTC GCATGAGCCAACTGCATTGTGCATGAGCCAACTGCATTGT HPRT_E8-17HPRT_E8-17 CCCACAAGCTTCATTCATGGCCCCACAAGCTTCATTCATGGC GCCTCTCAGGTTCATGCCATGCCTCTCAGGTTCATGCCAT CCCACAAGCTTCATTCATGGCCCCACAAGCTTCATTCATGGC ACGGACTGAGTTGGTACAGCACGGACTGAGTTGGTACAGC HPRT_E8-18HPRT_E8-18 TTGGGGGTCTCATTTGCCTCTTGGGGGTCTCATTTGCCTC CCCTTACCCCTTCTCTCCCACCCTTACCCCTTCTCTCCCA TCCTTCTGCCTGAAAACAGACATCCTTCTGCCTGAAAACAGACA CCAAGGGCAATTTCCAGTGGCCAAGGGCAATTTCCAGTGG HPRT_E8-19HPRT_E8-19 CACCACTGCACTCTACCCTGCACCACTGCACTCTACCCTG CAAGACCAGCCTAGGCAACACAAGACCAGCCTAGGCAACA CACCACTGCACTCTACCCTGCACCACTGCACTCTACCCTG ACTTGTGGATTTTGCATATAGCCTACTTGTGGATTTTGCATATAGCCT HPRT_E8-20HPRT_E8-20 AGTAGAGCTCCAGGGAAGGGAGTAGAGCTCCAGGGAAGGG GCCAAGAGCTCTGGAACCTTGCCAAGAGCTCTGGAACCTT AGTAGAGCTCCAGGGAAGGGAGTAGAGCTCCAGGGAAGGG GCCCCTTCACTTGTTCCTCAGCCCCTTCACTTGTTCCTCA

paired-end sequencing system을 갖춘 Illumina MiniSeq을 사용하여, 상기 생성된 라이브러리를 시퀀싱하였다. 염기교정빈도 (Base editing frequencies)는 editing window (position 4-7) 내의 하나 이상의 edit로 교정된 변형 표적 부위의 빈도를 나타낸다. 치환 및 indel 빈도를 계산하기 위한 컴퓨터 프로그램 소스 코드는 'https://github.com/ibs-cge/maund'에서 확인할 수 있다.The resulting library was sequenced using Illumina MiniSeq equipped with a paired-end sequencing system. Base editing frequencies represent the frequency of modified target sites corrected by one or more edits within the editing window (positions 4-7). Computer program source code for calculating substitution and indel frequencies can be found at'https://github.com/ibs-cge/maund'.

실시예Example 5. 5. ABE7ABE7 .10, BE3, 및 .10, BE3, and Cas9의Cas9's mismatched mismatched sgRNAs에sgRNAs 대한 허용 오차 (Tolerance) Tolerance

내재 유전체 부위 (endogenous genomic loci)를 표적으로 하는 일련의 mismatched sgRNAs를 사용하여, ABE7.10, BE3 (cytosine base editor) 및 Cas9의 off-target 활성이 서로 다른지 여부를 조사하였다. 보다 구체적으로, 표적 부위 (on target site)에 대하여 1 내지 4 개의 불일치 염기를 포함하는 sgRNA를 코딩하는 플라스미드와 인간 코돈에 최적화된 ABE7.10, BE3 (Base Editor plasmid; Addgene plasmid #73021; rAPOBEC1-XTEN-Cas9n-UGI-NLS) 또는 SpCas9(NP_269215.1)를 코딩하는 플라스미드를 HEK293T 세포에 트랜스펙션하고 (참고예 1 참조), 참고예 6의 표적 심층 시퀀싱을 수행하여, 염기 교정 빈도 및 삽입/결실 (Indel) 빈도를 측정하였다. Using a series of mismatched sgRNAs targeting endogenous genomic loci, we investigated whether the off-target activities of ABE7.10, BE3 (cytosine base editor), and Cas9 are different from each other. More specifically, ABE7.10, BE3 (Base Editor plasmid; Addgene plasmid #73021; rAPOBEC1-) optimized for human codons and plasmids encoding sgRNAs containing 1 to 4 mismatched bases for the on target site XTEN-Cas9n-UGI-NLS) or SpCas9 (NP_269215.1)-encoding plasmid was transfected into HEK293T cells (refer to Reference Example 1), and the target in-depth sequencing of Reference Example 6 was performed, and base correction frequency and insertion /Deletion (Indel) frequency was measured.

상기 얻어진 염기교정 빈도 (%) 및 삽입/결실 빈도(%)를 도 6a 내지 6c, 및 표 8 내지 표 10에 나타내었다:The obtained base correction frequency (%) and insertion/deletion frequency (%) are shown in FIGS. 6A to 6C and Tables 8 to 10:

표적 유전자: HEK2(on target site: GAACACAAAGCATAGACTGCGGG (서열번호 31))Target gene: HEK2 (on target site: GAACACAAAGCATAGACTGCGGG (SEQ ID NO: 31)) sgRNA 표적 부위sgRNA target site 서열번호Sequence number (+) ABE7.10(+) ABE7.10 (+) Cas9(+) Cas9 (+) BE3(+) BE3 Base editing frequency (%)Base editing frequency (%) Relative activityRelative activity Indel frequency (%)Indel frequency (%) Relative activityRelative activity Base editing frequency (%)Base editing frequency (%) Relative activityRelative activity GggtgCAAAGCATAGACTGCGGGGggtgCAAAGCATAGACTGCGGG 1One 1.331.33 0.020.02 0.030.03 0.000.00 4.534.53 0.050.05 GAACgtggAGCATAGACTGCGGGGAACgtggAGCATAGACTGCGGG 22 12.7612.76 0.170.17 30.8330.83 0.480.48 15.0015.00 0.180.18 GAACACAAgatgTAGACTGCGGGGAACACAAgatgTAGACTGCGGG 33 6.486.48 0.090.09 0.300.30 0.000.00 1.181.18 0.010.01 GAACACAAAGCAcgagCTGCGGGGAACACAAAGCAcgagCTGCGGG 44 0.700.70 0.010.01 0.000.00 0.000.00 0.180.18 0.000.00 GAACACAAAGCATAGAtcatGGGGAACACAAAGCATAGAtcatGGG 55 0.860.86 0.010.01 0.030.03 0.000.00 0.190.19 0.000.00 GAgtgCAAAGCATAGACTGCGGGGAgtgCAAAGCATAGACTGCGGG 66 2.402.40 0.030.03 2.602.60 0.040.04 13.6813.68 0.160.16 GAACAtggAGCATAGACTGCGGGGAACAtggAGCATAGACTGCGGG 77 75.7175.71 1.021.02 76.3776.37 1.181.18 74.3074.30 0.880.88 GAACACAAgatATAGACTGCGGGGAACACAAgatATAGACTGCGGG 88 22.4522.45 0.300.30 0.640.64 0.010.01 7.767.76 0.090.09 GAACACAAAGCgcgGACTGCGGGGAACACAAAGCgcgGACTGCGGG 99 1.331.33 0.020.02 0.000.00 0.000.00 0.750.75 0.010.01 GAACACAAAGCATAagtTGCGGGGAACACAAAGCATAagtTGCGGG 1010 1.161.16 0.020.02 0.050.05 0.000.00 0.190.19 0.000.00 GAACACAAAGCATAGACcatGGGGAACACAAAGCATAGACcatGGG 1111 5.125.12 0.070.07 0.020.02 0.000.00 0.520.52 0.010.01 GAgtACAAAGCATAGACTGCGGGGAgtACAAAGCATAGACTGCGGG 1212 61.7161.71 0.830.83 63.0763.07 0.970.97 69.1869.18 0.820.82 GAACgtAAAGCATAGACTGCGGGGAACgtAAAGCATAGACTGCGGG 1313 57.2357.23 0.770.77 73.2773.27 1.131.13 75.3575.35 0.890.89 GAACACggAGCATAGACTGCGGGGAACACggAGCATAGACTGCGGG 1414 76.7676.76 1.041.04 82.6982.69 1.281.28 80.9580.95 0.960.96 GAACACAAgaCATAGACTGCGGGGAACACAAgaCATAGACTGCGGG 1515 68.1968.19 0.920.92 69.7069.70 1.081.08 71.3371.33 0.850.85 GAACACAAAGtgTAGACTGCGGGGAACACAAAGtgTAGACTGCGGG 1616 77.9377.93 1.051.05 45.7845.78 0.710.71 76.0576.05 0.900.90 GAACACAAAGCAcgGACTGCGGGGAACACAAAGCAcgGACTGCGGG 1717 3.013.01 0.040.04 0.030.03 0.000.00 1.101.10 0.010.01 GAACACAAAGCATAagCTGCGGGGAACACAAAGCATAagCTGCGGG 1818 49.4149.41 0.670.67 1.681.68 0.030.03 23.8623.86 0.280.28 GAACACAAAGCATAGAtcGCGGGGAACACAAAGCATAGAtcGCGGG 1919 53.1253.12 0.720.72 0.960.96 0.010.01 14.1814.18 0.170.17 GAACACAAAGCATAGACTatGGGGAACACAAAGCATAGACTatGGG 2020 33.8533.85 0.460.46 0.540.54 0.010.01 4.274.27 0.050.05 GgACACAAAGCATAGACTGCGGGGgACACAAAGCATAGACTGCGGG 2121 77.9977.99 1.051.05 56.2656.26 0.870.87 80.9980.99 0.960.96 GAAtACAAAGCATAGACTGCGGGGAAtACAAAGCATAGACTGCGGG 2222 77.4777.47 1.041.04 56.2856.28 0.870.87 81.5181.51 0.970.97 GAACAtAAAGCATAGACTGCGGGGAACAtAAAGCATAGACTGCGGG 2323 75.9075.90 1.021.02 60.4460.44 0.930.93 77.9877.98 0.930.93 GAACACAgAGCATAGACTGCGGGGAACACAgAGCATAGACTGCGGG 2424 78.6178.61 1.061.06 52.1752.17 0.810.81 80.9480.94 0.960.96 GAACACAAAaCATAGACTGCGGGGAACACAAAaCATAGACTGCGGG 2525 77.4277.42 1.041.04 43.3043.30 0.670.67 77.5177.51 0.920.92 GAACACAAAGCgTAGACTGCGGGGAACACAAAGCgTAGACTGCGGG 2626 75.6275.62 1.021.02 53.5153.51 0.830.83 81.2381.23 0.960.96 GAACACAAAGCATgGACTGCGGGGAACACAAAGCATgGACTGCGGG 2727 67.8867.88 0.920.92 11.1411.14 0.170.17 66.2566.25 0.790.79 GAACACAAAGCATAGgCTGCGGGGAACACAAAGCATAGgCTGCGGG 2828 78.2278.22 1.051.05 28.6528.65 0.440.44 74.3374.33 0.880.88 GAACACAAAGCATAGACcGCGGGGAACACAAAGCATAGACcGCGGG 2929 79.1179.11 1.071.07 47.3647.36 0.730.73 81.1881.18 0.960.96 GAACACAAAGCATAGACTGtGGGGAACACAAAGCATAGACTGtGGG 3030 79.8679.86 1.081.08 25.8125.81 0.400.40 73.0173.01 0.870.87 GAACACAAAGCATAGACTGCGGGGAACACAAAGCATAGACTGCGGG 3131 74.1474.14 1.001.00 64.7064.70 1.001.00 84.2084.20 1.001.00 no sgRNAno sgRNA 0.630.63 0.010.01 0.000.00 0.000.00 0.070.07 0.000.00

(상기 표에서,말단의 'NGG' 부분은 PAM 서열이고;(In the above table, the'NGG' portion at the end is a PAM sequence;

sgRNA 서열은 표적 부위 서열 중 PAM 서열을 제외한 서열에서 T를 U로 변환한 서열이고;The sgRNA sequence is a sequence obtained by converting T to U in a sequence excluding a PAM sequence among target site sequences;

on-target sequence에 대한 mismatched base는 소문자로 표시함;mismatched bases for on-target sequences are shown in lowercase;

Relative activity = (mismatched sgRNA 결과값/matched sgRNA 결과값);Relative activity = (mismatched sgRNA result/matched sgRNA result);

하기 모든 표에서 동일하게 적용됨)The same applies to all tables below)

표적 유전자: HEK3 (on target site: GGCCCAGACTGAGCACGTGATGG (서열번호 62))Target gene: HEK3 (on target site: GGCCCAGACTGAGCACGTGATGG (SEQ ID NO: 62)) sgRNA 표적 부위sgRNA target site 서열번호Sequence number (+) ABE7.10(+) ABE7.10 (+) Cas9(+) Cas9 (+) BE3(+) BE3 Base editing frequency (%)Base editing frequency (%) Relative activityRelative activity Indel frequency (%)Indel frequency (%) Relative activityRelative activity Base editing frequency (%)Base editing frequency (%) Relative activityRelative activity GatttAGACTGAGCACGTGATGGGatttAGACTGAGCACGTGATGG 3232 0.320.32 0.010.01 0.000.00 0.000.00 0.170.17 0.000.00 GGCCtgagCTGAGCACGTGATGGGGCCtgagCTGAGCACGTGATGG 3333 0.410.41 0.010.01 0.030.03 0.000.00 0.130.13 0.000.00 GGCCCAGAtcagGCACGTGATGGGGCCCAGAtcagGCACGTGATGG 3434 0.480.48 0.010.01 0.050.05 0.000.00 0.200.20 0.000.00 GGCCCAGACTGAatgtGTGATGGGGCCCAGACTGAatgtGTGATGG 3535 0.310.31 0.010.01 0.090.09 0.000.00 0.120.12 0.000.00 GGCCCAGACTGAGCACacagTGGGGCCCAGACTGAGCACacagTGG 3636 0.390.39 0.010.01 0.020.02 0.000.00 0.250.25 0.000.00 GGtttAGACTGAGCACGTGATGGGGtttAGACTGAGCACGTGATGG 3737 0.330.33 0.010.01 0.020.02 0.000.00 0.150.15 0.000.00 GGCCCgagCTGAGCACGTGATGGGGCCCgagCTGAGCACGTGATGG 3838 5.235.23 0.130.13 1.151.15 0.020.02 16.8616.86 0.220.22 GGCCCAGAtcaAGCACGTGATGGGGCCCAGAtcaAGCACGTGATGG 3939 2.182.18 0.050.05 0.000.00 0.000.00 0.210.21 0.000.00 GGCCCAGACTGgatACGTGATGGGGCCCAGACTGgatACGTGATGG 4040 0.560.56 0.010.01 0.010.01 0.000.00 0.270.27 0.000.00 GGCCCAGACTGAGCgtaTGATGGGGCCCAGACTGAGCgtaTGATGG 4141 0.790.79 0.020.02 0.010.01 0.000.00 0.180.18 0.000.00 GGCCCAGACTGAGCACGcagTGGGGCCCAGACTGAGCACGcagTGG 4242 1.541.54 0.040.04 0.180.18 0.000.00 0.220.22 0.000.00 GGttCAGACTGAGCACGTGATGGGGttCAGACTGAGCACGTGATGG 4343 6.026.02 0.150.15 49.8749.87 0.660.66 2.112.11 0.030.03 GGCCtgGACTGAGCACGTGATGGGGCCtgGACTGAGCACGTGATGG 4444 40.3940.39 1.011.01 61.6361.63 0.820.82 49.3749.37 0.650.65 GGCCCAagCTGAGCACGTGATGGGGCCCAagCTGAGCACGTGATGG 4545 12.8112.81 0.320.32 58.2358.23 0.770.77 6.686.68 0.090.09 GGCCCAGAtcGAGCACGTGATGGGGCCCAGAtcGAGCACGTGATGG 4646 15.8815.88 0.400.40 46.5746.57 0.620.62 12.2812.28 0.160.16 GGCCCAGACTagGCACGTGATGGGGCCCAGACTagGCACGTGATGG 4747 17.8017.80 0.450.45 19.6519.65 0.260.26 3.983.98 0.050.05 GGCCCAGACTGAatACGTGATGGGGCCCAGACTGAatACGTGATGG 4848 0.460.46 0.010.01 0.040.04 0.000.00 0.190.19 0.000.00 GGCCCAGACTGAGCgtGTGATGGGGCCCAGACTGAGCgtGTGATGG 4949 3.633.63 0.090.09 1.661.66 0.020.02 0.640.64 0.010.01 GGCCCAGACTGAGCACacGATGGGGCCCAGACTGAGCACacGATGG 5050 9.289.28 0.230.23 0.510.51 0.010.01 1.531.53 0.020.02 GGCCCAGACTGAGCACGTagTGGGGCCCAGACTGAGCACGTagTGG 5151 14.3114.31 0.360.36 21.0521.05 0.280.28 10.6110.61 0.140.14 GaCCCAGACTGAGCACGTGATGGGaCCCAGACTGAGCACGTGATGG 5252 50.3250.32 1.261.26 62.8462.84 0.830.83 67.8567.85 0.890.89 GGCtCAGACTGAGCACGTGATGGGGCtCAGACTGAGCACGTGATGG 5353 37.3237.32 0.940.94 66.5466.54 0.880.88 50.8050.80 0.670.67 GGCCCgGACTGAGCACGTGATGGGGCCCgGACTGAGCACGTGATGG 5454 39.2139.21 0.980.98 76.5676.56 1.021.02 74.9274.92 0.980.98 GGCCCAGgCTGAGCACGTGATGGGGCCCAGgCTGAGCACGTGATGG 5555 41.0941.09 1.031.03 63.2163.21 0.840.84 71.7771.77 0.940.94 GGCCCAGACcGAGCACGTGATGGGGCCCAGACcGAGCACGTGATGG 5656 38.9938.99 0.980.98 53.9953.99 0.720.72 60.4160.41 0.790.79 GGCCCAGACTGgGCACGTGATGGGGCCCAGACTGgGCACGTGATGG 5757 64.0564.05 1.611.61 57.7257.72 0.770.77 72.0072.00 0.940.94 GGCCCAGACTGAGtACGTGATGGGGCCCAGACTGAGtACGTGATGG 5858 25.0225.02 0.630.63 41.8641.86 0.560.56 23.3923.39 0.310.31 GGCCCAGACTGAGCAtGTGATGGGGCCCAGACTGAGCAtGTGATGG 5959 30.0430.04 0.750.75 47.2947.29 0.630.63 43.9443.94 0.580.58 GGCCCAGACTGAGCACGcGATGGGGCCCAGACTGAGCACGcGATGG 6060 48.0848.08 1.211.21 61.4561.45 0.810.81 66.1166.11 0.870.87 GGCCCAGACTGAGCACGTGgTGGGGCCCAGACTGAGCACGTGgTGG 6161 43.8843.88 1.101.10 60.8760.87 0.810.81 72.7572.75 0.950.95 GGCCCAGACTGAGCACGTGATGGGGCCCAGACTGAGCACGTGATGG 6262 39.8739.87 1.001.00 75.4175.41 1.001.00 76.3376.33 1.001.00 no sgRNAno sgRNA 0.210.21 0.010.01 0.000.00 0.000.00 0.160.16 0.000.00

표적 유전자: RNF2 (on target site: GTCATCTTAGTCATTACCTGAGG (서열번호 93))Target gene: RNF2 (on target site: GTCATCTTAGTCATTACCTGAGG (SEQ ID NO: 93)) sgRNA 표적 부위sgRNA target site 서열번호Sequence number (+) ABE7.10(+) ABE7.10 (+) Cas9(+) Cas9 (+) BE3(+) BE3 Base editing frequency (%)Base editing frequency (%) Relative activityRelative activity Indel frequency (%)Indel frequency (%) Relative activityRelative activity Base editing frequency (%)Base editing frequency (%) Relative activityRelative activity GctgcCTTAGTCATTACCTGAGGGctgcCTTAGTCATTACCTGAGG 6363 0.130.13 0.000.00 0.010.01 0.000.00 0.270.27 0.000.00 GTCActccAGTCATTACCTGAGGGTCActccAGTCATTACCTGAGG 6464 0.120.12 0.000.00 0.040.04 0.000.00 0.600.60 0.010.01 GTCATCTTgactATTACCTGAGGGTCATCTTgactATTACCTGAGG 6565 0.120.12 0.000.00 0.010.01 0.000.00 0.110.11 0.000.00 GTCATCTTAGTCgccgCCTGAGGGTCATCTTAGTCgccgCCTGAGG 6666 0.100.10 0.000.00 0.020.02 0.000.00 0.200.20 0.000.00 GTCATCTTAGTCATTAttcaAGGGTCATCTTAGTCATTAttcaAGG 6767 0.140.14 0.000.00 0.010.01 0.000.00 0.160.16 0.000.00 GTtgcCTTAGTCATTACCTGAGGGTtgcCTTAGTCATTACCTGAGG 6868 0.150.15 0.000.00 0.010.01 0.000.00 1.131.13 0.020.02 GTCATtccAGTCATTACCTGAGGGTCATtccAGTCATTACCTGAGG 6969 0.100.10 0.000.00 0.030.03 0.000.00 0.650.65 0.010.01 GTCATCTTgacCATTACCTGAGGGTCATCTTgacCATTACCTGAGG 7070 0.120.12 0.000.00 0.000.00 0.000.00 0.230.23 0.000.00 GTCATCTTAGTtgcTACCTGAGGGTCATCTTAGTtgcTACCTGAGG 7171 0.120.12 0.000.00 0.060.06 0.000.00 0.270.27 0.000.00 GTCATCTTAGTCATcgtCTGAGGGTCATCTTAGTCATcgtCTGAGG 7272 0.140.14 0.000.00 0.010.01 0.000.00 0.160.16 0.000.00 GTCATCTTAGTCATTACtcaAGGGTCATCTTAGTCATTACtcaAGG 7373 0.100.10 0.000.00 0.010.01 0.000.00 0.200.20 0.000.00 GTtgTCTTAGTCATTACCTGAGGGTtgTCTTAGTCATTACCTGAGG 7474 1.221.22 0.030.03 12.7712.77 0.230.23 47.4847.48 0.660.66 GTCActTTAGTCATTACCTGAGGGTCActTTAGTCATTACCTGAGG 7575 0.220.22 0.010.01 0.230.23 0.000.00 15.3315.33 0.210.21 GTCATCccAGTCATTACCTGAGGGTCATCccAGTCATTACCTGAGG 7676 1.441.44 0.030.03 7.767.76 0.140.14 34.0534.05 0.470.47 GTCATCTTgaTCATTACCTGAGGGTCATCTTgaTCATTACCTGAGG 7777 0.200.20 0.000.00 0.100.10 0.000.00 5.975.97 0.080.08 GTCATCTTAGctATTACCTGAGGGTCATCTTAGctATTACCTGAGG 7878 0.380.38 0.010.01 5.165.16 0.090.09 2.192.19 0.030.03 GTCATCTTAGTCgcTACCTGAGGGTCATCTTAGTCgcTACCTGAGG 7979 0.210.21 0.000.00 2.742.74 0.050.05 1.671.67 0.020.02 GTCATCTTAGTCATcgCCTGAGGGTCATCTTAGTCATcgCCTGAGG 8080 0.170.17 0.000.00 0.020.02 0.000.00 0.330.33 0.000.00 GTCATCTTAGTCATTAttTGAGGGTCATCTTAGTCATTAttTGAGG 8181 0.140.14 0.000.00 0.020.02 0.000.00 0.130.13 0.000.00 GTCATCTTAGTCATTACCcaAGGGTCATCTTAGTCATTACCcaAGG 8282 0.120.12 0.000.00 0.080.08 0.000.00 0.370.37 0.010.01 GcCATCTTAGTCATTACCTGAGGGcCATCTTAGTCATTACCTGAGG 8383 18.0618.06 0.410.41 46.5146.51 0.850.85 65.5565.55 0.910.91 GTCgTCTTAGTCATTACCTGAGGGTCgTCTTAGTCATTACCTGAGG 8484 14.0114.01 0.320.32 49.3149.31 0.900.90 70.6770.67 0.980.98 GTCATtTTAGTCATTACCTGAGGGTCATtTTAGTCATTACCTGAGG 8585 3.533.53 0.080.08 51.5451.54 0.940.94 56.9556.95 0.790.79 GTCATCTcAGTCATTACCTGAGGGTCATCTcAGTCATTACCTGAGG 8686 9.989.98 0.230.23 41.8941.89 0.760.76 62.1262.12 0.860.86 GTCATCTTAaTCATTACCTGAGGGTCATCTTAaTCATTACCTGAGG 8787 1.371.37 0.030.03 33.0933.09 0.600.60 16.4116.41 0.230.23 GTCATCTTAGTtATTACCTGAGGGTCATCTTAGTtATTACCTGAGG 8888 23.3123.31 0.530.53 43.9443.94 0.800.80 60.0860.08 0.830.83 GTCATCTTAGTCAcTACCTGAGGGTCATCTTAGTCAcTACCTGAGG 8989 4.994.99 0.110.11 29.1129.11 0.530.53 25.2025.20 0.350.35 GTCATCTTAGTCATTgCCTGAGGGTCATCTTAGTCATTgCCTGAGG 9090 11.4511.45 0.260.26 35.7535.75 0.650.65 36.7736.77 0.510.51 GTCATCTTAGTCATTACtTGAGGGTCATCTTAGTCATTACtTGAGG 9191 13.8513.85 0.310.31 23.5123.51 0.430.43 19.4219.42 0.270.27 GTCATCTTAGTCATTACCTaAGGGTCATCTTAGTCATTACCTaAGG 9292 8.988.98 0.200.20 27.3227.32 0.500.50 31.0831.08 0.430.43 GTCATCTTAGTCATTACCTGAGGGTCATCTTAGTCATTACCTGAGG 9393 44.0044.00 1.001.00 54.8354.83 1.001.00 72.1772.17 1.001.00 no sgRNAno sgRNA 0.130.13 0.000.00 0.030.03 0.000.00 0.120.12 0.000.00

도 6a 내지 6c 및 표 8 내지 10에 나타난 바와 같이, Base editor 및 및 Cas9 뉴클레아제가 on target site에 대하여 1개 또는 2개 염기의 mismatch를 갖는 sgRNA와 함께 사용되는 경우 대부분 활성을 유지하지만 (1개 또는 2개 염기의 mismatched sgRNA에 대하여 관용(tolerance)을 가짐), 3개 또는 4개의 불일치를 갖는 sgRNA와 결합한 경우에는 대부분 활성이 현저하게 감소하였다. 특히, Cas9, ABE7.10 및 BE3의 mismatched sgRNA에 대한 관용은 서로 상이하게 나타났다. 도 6a 및 표 8에 나타난 바와 같이, HEK2 유전자의 표적 부위의 경우, 2 내지 4 개 염기의 mismatch를 갖는 sgRNA 사용시, ABE7.10는 비교적 높은 관용을 갖지만 (활성 유지), Cas9 및 BE3는 활성이 낮거나 불활성이다. 도 6b 및 표 9에 나타난 바와 같이, HEK3 유전자의 표적 부위의 경우, Cas9는 3-4 위치 (5'에서 3'방향으로의 1에서 23까지의 numbering에 따름)에서 tandem mismatch를 갖는 sgRNA와 함께 (복합체 형성) 사용시 높은 활성을 나타내었다 (fully-matched sgRNA를 사용하는 경우와 비교하여 66%의 활성을 나타냄). 반면, ABE7.10의 경우에는 상기와 동일한 sgRNA와 복합체를 형성하는 경우, fully-matched sgRNA를 사용하는 경우와 비교하여 15%의 비교적 낮은 상대적 활성을 나타내었다. 이러한 결과는 ABE7.10, BE3 및 Cas9가 인간 유전체에서 개별 세트의 비표적 부위를 인식함을 제안하고, unbiased 방식으로 유전체 전반의 ABE 특이성을 결정할 수 있는 방법이 요구됨을 시사한다. As shown in FIGS. 6A to 6C and Tables 8 to 10, when the Base editor and Cas9 nuclease are used with sgRNA having a mismatch of 1 or 2 bases with respect to the on target site, most of them retain their activity (1 Tolerance to dog or 2 base mismatched sgRNA), when combined with 3 or 4 mismatched sgRNA, the activity was significantly decreased. In particular, the tolerance of Cas9, ABE7.10 and BE3 to mismatched sgRNAs was different from each other. 6A and 8, in the case of the target site of the HEK2 gene, when using sgRNA having a mismatch of 2 to 4 bases, ABE7.10 has relatively high tolerance (maintaining activity), but Cas9 and BE3 are active. Low or inert. As shown in Figure 6b and Table 9, in the case of the target site of the HEK3 gene, Cas9 together with sgRNA having tandem mismatch at the 3-4 position (according to the numbering from 1 to 23 in the 5'to 3'direction). (Complex formation) showed high activity when used (66% of activity compared to the case of using fully-matched sgRNA). On the other hand, in the case of ABE7.10, when forming a complex with the same sgRNA as described above, compared with the case of using a fully-matched sgRNA, a relatively low relative activity of 15% was shown. These results suggest that ABE7.10, BE3, and Cas9 recognize individual sets of non-target sites in the human genome, and suggest that a method that can determine the overall ABE specificity of the genome in an unbiased manner is required.

실시예Example 6. genome-wide off-target site 확인 ( 6. Genome-wide off-target site identification ( HEK2HEK2 gene) gene)

시험관내(in vitro) 생성된 DNA 이중가닥절단 (DSB)에 의존하는 Digenome-seq을 통해 ABE7.10의 유전체 전역의 표적 부위를 확인하기 위하여, 아데닌-디아미네이션(adenine deamination)에 의하여 생성된 이노신(inosine)을 포함하는 부위에서 DSB를 생성시켰다. E. coli Uracil DNA glycosylase (UDG)와 DNA glycosylase-lyase Endonuclease VIII (Endo VIII)의 혼합물인 Uracil-Specific Excision Reagent (USER) (New England Biolabs; https://www.neb.com/products/m5505-user-enzyme; Uracil DNA glycosylase (UDG) 및 DNA glycosylase-lyase Endonuclease VIII 혼합물과 50 mM KCl, 5 mM NaCl, 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM DTT, 175 mg/ml BSA 및 50%(w/v) glycerol 포함) 및 재조합 BE3 delta UGI 단백질 (His6-rAPOBEC1-nCas9 단백질; UGI 도메인을 결여한 BE3 변이형; pET28b-BE1(Addgene plasmid #73018)에서 site directed mutagenesis를 이용하여 dCas9의 A840을 H840로 치환하여 제조)를 사용하여, 사이토신의 디아미네이션 결과물인 우라실을 포함하는 부위에서 DSB를 생성시켜 (in vitro), genome-wide BE3 off-target site을 확인하였다 (in an unbiased manner). 이와 유사하게, E. coli 엔도뉴클레아제 V (Endo V) 또는 인간 알킬아데닌 DNA 글라이코실라아제 (human Alkyladenine DNA Glycosylase; hAAG)와 Endo VIII의 조합이 이노신 포함 부위에서 포스포다이에스테르 결합을 절단하는데 사용될 수 있음을 추론하였다 (도 7a 내지 7c 참조). Endo V는 DNA에서 이노신을 인식하고 이노신에 대하여 두 번째 phosphodiester bond 3'를 절단하는 반면, hAAG는 이노신을 소거하여 AP 부위 (apurinic/apyrimidinic site)를 생성하고 이 부위는 Endo VIII에 의해 인식 및 프로세싱되어 단일가닥 절단 (single-strand break)을 유도한다.In order to identify target sites across the genome of ABE7.10 through Digenome-seq that depends on DNA double-strand break (DSB) generated in vitro , adenine-deamination produced DSB was generated at the site containing inosine. Uracil-Specific Excision Reagent (USER), a mixture of E. coli Uracil DNA glycosylase (UDG) and DNA glycosylase-lyase Endonuclease VIII (Endo VIII) (New England Biolabs; https://www.neb.com/products/m5505- user-enzyme; Uracil DNA glycosylase (UDG) and DNA glycosylase-lyase Endonuclease VIII mixture with 50 mM KCl, 5 mM NaCl, 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM DTT, 175 mg/ml BSA And 50% (w/v) glycerol) and recombinant BE3 delta UGI protein (His6-rAPOBEC1-nCas9 protein; BE3 variant lacking UGI domain; pET28b-BE1 (Addgene plasmid #73018) using site directed mutagenesis Using dCas9 A840 substituted with H840), DSB was generated at a site containing uracil, which is a result of cytosine deamination ( in vitro ), and a genome-wide BE3 off-target site was identified (in an unbiased manner). Similarly, the combination of E. coli endonuclease V (Endo V) or human Alkyladenine DNA Glycosylase (hAAG) and Endo VIII cleaves the phosphodiester bond at the inosine-containing site. Can be used to infer (see Figs. 7A-7C). Endo V recognizes inosine in DNA and cleaves the second phosphodiester bond 3'to inosine, while hAAG scavenging inosine to create an AP site (apurinic/apyrimidinic site), which is recognized and processed by Endo VIII. This leads to a single-strand break.

상기와 같은 추론을 시험하기 위하여, 표적 DNA 서열 (HEK2 (서열번호 31)을 포함하는 PCR amplicon을 E. coli에서 발현 및 정제된 재조합 ABE7.10 단백질 (정제 결과는 도 8 참조) 및 이들의 sgRNA로 처리하여 하나의 DNA 가닥에서 아데닌 디아미네이션을 촉매하고 다른 DNA 가닥에서는 nick을 생성하고(도 7a), 그 후, Endo V (도 7a 참조) 또는 hAAG/Endo VIII (도 7c 참조)로 처리하여, composite DSB를 생성시켰다. 상기 결과를 도 7d 및 도 7e에 나타내었다. 예상과 같이, PCR 증폭물은 ABE7.10 + Endo V (도 7d) 또는 ABE7.10 + hAAG/Endo VIII (도 7e)에 의해 절단됨을 확인할 수 있다.To test such inference, the target DNA sequence (HEK2 PCR amplicon containing (SEQ ID NO: 31)E. coliRecombinant ABE7.10 protein expressed and purified in (see Fig. 8 for purification results) and their sgRNA to catalyze adenine deamination in one DNA strand and generate nick in the other DNA strand (Fig. 7a), Then, it was treated with Endo V (see Fig. 7a) or hAAG/Endo VIII (see Fig. 7c) to generate a composite DSB. The results are shown in FIGS. 7D and 7E. As expected, it can be seen that the PCR amplification product was cleaved by ABE7.10 + Endo V (Fig. 7D) or ABE7.10 + hAAG/Endo VIII (Fig. 7e).

inosine-specific DNA repair enzyme을 사용하여, 이노신을 포함하는 ABE-표적 부위에서 DSB가 생성될 수 있음을 확인한 후, HEK293T 세포로부터 분리된 인간 유전체 DNA를 ABE7.10 + Endo V 또는 ABE7.10 + hAAG/Endo VIII로 in vitro 처리하고 Digenome-seq 분석하여 유전체 전역의 ABE off-target site를 확인할 수 있는지 여부를 조사하였다. EK293T 세포로부터 분리된 인간 유전체 DNA를 ABE7.10 ribonucleoprotein (RNP) (300 nM ABE7.10 and 900 nM sgRNA; targeted to an endogenous chromosomal site (known as HEK2 (서열번호 31)))와 함께 8 시간 동안 배양한 후, repair enzyme (Endo V 또는 hAAG/Endo VIII)과 함께 2시간 더 배양하였다. Sanger 시퀀싱을 이용하여 표적 부위 (nick을 갖는 반대 가닥은 시퀀싱 불가함)에서의 ABE-매개 adenine-to-inosine conversion (PCR 증폭동안 이노신은 구아닌으로 변경됨) 및 이노신-포함 부위 (nicked DNA 가닥은 증폭 불가함)에서의 Endo V-촉매 DNA 절단을 확인하였다 (도 7f). 유전체 DNA를 ABE7.10과 Endo V로 처리하면 이노신을 포함하는 DNA 가닥이 엔도 V에 의해 절단된다. Endo V가 절단한 DNA 가닥은 PCR로 증폭될 수 없지만 이노신을 갖지 않는 DNA 가닥은 증폭된다. 그 결과, Sanger sequencing에 의해 관찰된 교정 부위에서는 아데닌만 관찰되고 구아닌은 관찰되지 않는다 (도 7f).After confirming that DSB can be generated at the ABE-target site containing inosine using the inosine-specific DNA repair enzyme, the human genomic DNA isolated from HEK293T cells was ABE7.10 + Endo V or ABE7.10 + hAAG. In vitro treatment with /Endo VIII and Digenome-seq analysis was performed to investigate whether ABE off-target sites across the genome could be identified. Human genomic DNA isolated from EK293T cells was converted to ABE7.10 ribonucleoprotein (RNP) (300 nM ABE7.10 and 900 nM sgRNA; targeted to an endogenous chromosomal site (known as HEK2). (SEQ ID NO: 31))) and then incubated for 8 hours, and then incubated for 2 hours with repair enzyme (Endo V or hAAG/Endo VIII). ABE-mediated adenine-to-inosine conversion (inosine is changed to guanine during PCR amplification) and inosine-containing sites (nicked DNA strands are amplified) at the target site (opposite strands with nicks cannot be sequenced) using Sanger sequencing. Impossible) was confirmed in Endo V-catalyzed DNA cleavage (Fig. 7f). When genomic DNA is treated with ABE7.10 and Endo V, DNA strands containing inosine are cleaved by Endo V. The DNA strand cut by Endo V cannot be amplified by PCR, but the DNA strand that does not contain inosine is amplified. As a result, only adenine was observed and no guanine was observed in the correction site observed by Sanger sequencing (FIG. 7F).

또한 ABE7.10 + Endo V를 사용한 표적 DNA 절단을 검증하기 위해 정량적 실시간 PCR을 수행하여, 그 결과를 도 7g에 나타내었다. Endo V 대신 hAAG 및 Endo VIII를 사용한 경우에도 유사한 결과가 얻어졌다 (도 7h 및 도 7i). 얻어진 유전체 DNA 분해 샘플에 대하여 전체 유전체 시퀀싱 (WGS)을 수행하였다. human reference genome (hg19)에 대하여 sequencing reads를 맵핑한 후, Integrative Genomics Viewer (IGV)를 사용하여 표적 부위 (on-target site)에서의 sequence reads의 정렬을 모니터링하고, sequence reads가 무작위 정렬보다는 DSB의 특성인 일정한(uniform) 정렬을 나타냄을 확인하였다 (도 7j 및 도 7k). 이러한 정렬은 ABE7.10 단독 유전체 DNA 또는 미처리 유전체 DNA에서는 관찰되지 않았다 (도 7j 및 도 7k). 이러한 결과는 Digenome-seq이 유전체 범위의 ABE 표적 (on-target) 부위 및 비표적 (off-target) 부위를 포괄적으로 매핑하는데 사용될 수 있음을 보여준다.In addition, quantitative real-time PCR was performed to verify target DNA cleavage using ABE7.10 + Endo V, and the results are shown in FIG. 7G. Similar results were obtained when hAAG and Endo VIII were used instead of Endo V (FIGS. 7H and 7I ). Whole genome sequencing (WGS) was performed on the obtained genomic DNA digestion samples. After mapping sequencing reads to the human reference genome (hg19), use the Integrative Genomics Viewer (IGV) to monitor the alignment of sequence reads at the on-target site. It was confirmed that it exhibits a characteristic uniform alignment (FIGS. 7J and 7K ). This alignment was not observed with ABE7.10 alone genomic DNA or untreated genomic DNA (FIGS. 7J and 7K ). These results show that Digenome-seq can be used to comprehensively map ABE target (on-target) and off-target sites across the genome.

인간 유전체에서 ABE7.10 off-target sites를 결정하기 위하여, WGS 데이터를 사용하여 유전체 전역에 걸쳐서 각각의 염기쌍 위치에 대한 DNA 절단 점수 (DNA cleavage score)를 할당하고 (도 9 참조), in vitro cleavage sites에 해당하는, 높은 점수를 갖는 부위를 나열하였다 (초기 컷오프 점수는 2.5로 설정됨(Digenome 1.0에 따름; Kim, D., Kim, S., Kim, S., Park, J. & Kim, J.S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome research 26, 406-415 (2016); Digenome 1.0 프로그램은 서열 상동성을 고려하지 않음)). Endo V를 사용하여 17개의 in vitro cleavage sites을, hAAG/Endo VIII를 사용하여 18 개의 in vitro cleavage sites을 얻었다. 표적 부위를 포함한 16 개의 부위가 서로 다른 두 가지 시험 (Endo V 사용 vs. hAAG/Endo VIII를 사용)에서 공통적으로 확인되었으며(도 10 a 및 도 10b), 이는 Digenome-seq 분석이 높은 재현성과 신뢰성을 가짐을 보여준다. 이들 부위의 DNA 서열을 비교하여 얻은 Sequence logos는 거의 모든 뉴클레오타이드 위치가 ABE7.10 디아미나제의 특이성에 기여함을 보여준다 (도 10c 참조).In order to determine the ABE7.10 off-target sites in the human genome, a DNA cleavage score for each base pair location was assigned across the genome using WGS data (see FIG. 9), and in vitro cleavage The sites with high scores, corresponding to the sites, were listed (the initial cutoff score was set to 2.5 (according to Digenome 1.0; Kim, D., Kim, S., Kim, S., Park, J. & Kim, JS Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq.Genome research 26, 406-415 (2016); Digenome 1.0 program does not consider sequence homology)). Use Endo V to 17 in vitro cleavage sites to use the hAAG / Endo VIII to give a 18 in vitro cleavage sites. 16 sites including the target site were identified in common in two different tests (using Endo V vs. using hAAG/Endo VIII) (FIGS. 10A and 10B), which means that Digenome-seq analysis is highly reproducible and reliable. Show that you have Sequence logos obtained by comparing the DNA sequences of these sites show that almost all nucleotide positions contribute to the specificity of ABE7.10 deaminase (see Fig. 10c).

실시예Example 7. 다양한 유전자 7. Various genes 표적시의Target time genome-wide off-target site 확인 Genome-wide off-target site identification

실시예 6에서 사용된 HEK2 유전자 표적 ABE7.10 RNP에 더하여, 추가의 6 개 ABE7.10 RNP를 각각 사용하여, 유전체 DNA에 대하여 Digenome-seq (Digenome-seq 1.0: DNA cleavage score가 2.5 이상인 site를 비표적 위치 후보군으로 결정함; (DNA cleavage score가 0.1 이상이며 10개 이하의 미스매치를 가지고 PAM (5'-NGN-3' 또는 5'-NNG-3')을 가지고 있는 site를 비표적 위치로 결정함)을 수행하여, 그 결과를 표 11 내지 표 18 및 도 11에 나타내었다.In addition to the HEK2 gene target ABE7.10 RNP used in Example 6, each of the six additional ABE7.10 RNPs was used, for genomic DNA, Digenome-seq (Digenome-seq 1.0: DNA cleavage score of 2.5 or higher) Determined as a non-target location candidate; (A site with a DNA cleavage score of 0.1 or more and less than 10 mismatches and a PAM (5'-NGN-3' or 5'-NNG-3') is a non-target location Determined), and the results are shown in Tables 11 to 18 and FIG.

The number of ABE on-target and off-target sites identified by Digenome-seqThe number of ABE on-target and off-target sites identified by Digenome-seq 표적 유전자Target gene On-target DNA sequenceOn-target DNA sequence 서열번호Sequence number Number of in vitro cleavage sitesNumber of in vitro cleavage sites Digenome 1.0Digenome 1.0 Digenome 2.0Digenome 2.0 HEK2HEK2 GAACACAAAGCATAGACTGCGGGGAACACAAAGCATAGACTGCGGG 3131 1717 152152 RNF2RNF2 GTCATCTTAGTCATTACCTGAGGGTCATCTTAGTCATTACCTGAGG 9393 55 5050 TYRO3TYRO3 GGCCACACTAGCGTTGCTGCTGGGGCCACACTAGCGTTGCTGCTGG 9494 22 1212 WEE1WEE1 GTCGAGATGTTCTATTACTCTGGGTCGAGATGTTCTATTACTCTGG 9595 1One 2121 EphB4EphB4 GCAGAATATTCGGACAAACACGGGCAGAATATTCGGACAAACACGG 9696 33 3939 HPRTHPRT -- Exon6Exon6 GTATAATCCAAAGATGGTCAAGGGTATAATCCAAAGATGGTCAAGG 9797 2828 148148 HPRTHPRT -- Exon8Exon8 GAAGTATTCATTATAGTCAAGGGGAAGTATTCATTATAGTCAAGGG 9898 1One 2020 Average±S.E.MAverage±S.E.M 8 ± 48 ± 4 60 ± 2060 ± 20

Digenome-captured sites (HEK2)Digenome-captured sites (HEK2) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number HEK2_001HEK2_001 chr19chr19 3550548535505485 20.120.1 GAACAC-AAGCAcAGACTGaAGGGAACAC-AAGCAcAGACTGaAGG 9999 HEK2_002HEK2_002 chr15chr15 9355767993557679 15.115.1 GAACACA-tGCATAGACTGCTAGGAACACA-tGCATAGACTGCTAG 100100 HEK2_003HEK2_003 chr4chr4 5353620953536209 14.714.7 GAAtACtAAGCATAGACTcCAGGGAAtACtAAGCATAGACTcCAGG 101101 HEK2_004HEK2_004 chr4chr4 9052218390522183 14.314.3 GAACACAAtGCATAGAtTGCCGGGAACACAAtGCATAGAtTGCCGG 102102 HEK2_005HEK2_005 chr1chr1 167742859167742859 13.413.4 aAACACAgAGCAcAGACTGCTGAaAACACAgAGCAcAGACTGCTGA 103103 HEK2_006HEK2_006 chr10chr10 4315934043159340 13.413.4 aAACACAAAGaCATAGACcaCTGGaAACACAAAGaCATAGACcaCTGG 104104 HEK2_007HEK2_007 chr5chr5 8724061387240613 8.98.9 GAACACAAAGCATAGACTGCGGGGAACACAAAGCATAGACTGCGGG 105105 HEK2_008HEK2_008 chr9chr9 290167290167 6.66.6 aAACAtAAAGaATAGACTGCAAGaAACAtAAAGaATAGACTGCAAG 106106 HEK2_009HEK2_009 chr3chr3 2856056628560566 5.85.8 GAACACAAAGtATAGAaTGCTAGGAACACAAAGtATAGAaTGCTAG 107107 HEK2_010HEK2_010 chr1chr1 175310138175310138 5.15.1 GgACACAAAGCtTAGACTcCAGGGgACACAAAGCtTAGACTcCAGG 108108 HEK2_011HEK2_011 chr13chr13 8761635187616351 4.94.9 GAAgAtAAAGCATAGACTctAGGGAAgAtAAAGCATAGACTctAGG 109109 HEK2_012HEK2_012 chr10chr10 8712536587125365 4.64.6 aAACAtAAAGCATAGACTGCaAAGaAACAtAAAGCATAGACTGCaAAG 110110 HEK2_013HEK2_013 chr18chr18 3227978232279782 3.93.9 aAAtACAAAGCATAGACTaatATGaAAtACAAAGCATAGACTaatATG 111111 HEK2_014HEK2_014 chr2chr2 192248363192248363 3.53.5 GAACACAtA-CATAGACaGCTGGGAACACAtA-CATAGACaGCTGG 112112 HEK2_015HEK2_015 chr5chr5 160202385160202385 3.03.0 GAAaACAAAGCAaAGAaaGCAGGGAAaACAAAGCAaAGAaaGCAGG 113113 HEK2_016HEK2_016 chr15chr15 6323661263236612 2.92.9 aAcacaAtAGCATAGACTGgaCTGaAcacaAtAGCATAGACTGgaCTG 114114 HEK2_017HEK2_017 chr20chr20 2310137723101377 2.72.7 atACACAgAGCAaAGACTGCAGGatACACAgAGCAaAGACTGCAGG 115115 HEK2_018HEK2_018 chrXchrX 4831737548317375 2.52.5 aAACAtAAAGCcTAGACTGaCGGaAACAtAAAGCcTAGACTGaCGG 116116 HEK2_019HEK2_019 chr19chr19 4997251549972515 2.22.2 aAAaACAAAGCgTAGACTGtGGGaAAaACAAAGCgTAGACTGtGGG 117117 HEK2_020HEK2_020 chr12chr12 8178599781785997 2.12.1 GgACAaAAAGCATAGACTcaAGGGgACAaAAAGCATAGACTcaAGG 118118 HEK2_021HEK2_021 chr1chr1 4046142440461424 2.12.1 atACACACAAGCAcAGACTGCAGGatACACACAAGCAcAGACTGCAGG 119119 HEK2_022HEK2_022 chr15chr15 9296860492968604 2.12.1 GAACACAgcaCATAaACTGCAGGGAACACAgcaCATAaACTGCAGG 120120 HEK2_023HEK2_023 chr5chr5 142142325142142325 2.02.0 aAACACtAA-CATAGACTGCAGGaAACACtAA-CATAGACTGCAGG 121121 HEK2_024HEK2_024 chr5chr5 131174461131174461 1.71.7 aAAtACAAtGCATAGACTGCTAGaAAtACAAtGCATAGACTGCTAG 122122 HEK2_025HEK2_025 chr1chr1 3609707236097072 1.41.4 GtAaACAAAGCATAGACTGaGGGGtAaACAAAGCATAGACTGaGGG 123123 HEK2_026HEK2_026 chrXchrX 132724931132724931 1.31.3 GAACA-tAAtCAcAGACTGCTGGGAACA-tAAtCAcAGACTGCTGG 124124 HEK2_027HEK2_027 chr6chr6 139353017139353017 1.31.3 ccAaACAAAaCATAGACTGCTGGccAaACAAAaCATAGACTGCTGG 125125 HEK2_028HEK2_028 chrXchrX 3694981636949816 1.31.3 GAAaACAAAaCATAGAgTGCTGGGAAaACAAAaCATAGAgTGCTGG 126126 HEK2_029HEK2_029 chr17chr17 26701102670110 1.21.2 aAtCAaAtAGCATAGACTGCATGaAtCAaAtAGCATAGACTGCATG 127127 HEK2_030HEK2_030 chr13chr13 9125487791254877 1.21.2 GAACACAAAcatagtACTGaAGGGAACACAAAcatagtACTGaAGG 128128 HEK2_031HEK2_031 chrXchrX 138877515138877515 1.21.2 aAACAgAAAGCATgGACTGCGGAaAACAgAAAGCATgGACTGCGGA 129129 HEK2_032HEK2_032 chr13chr13 113428466113428466 1.11.1 cAAtACAAAGgATAGACTGCAGGcAAtACAAAGgATAGACTGCAGG 130130 HEK2_033HEK2_033 chr15chr15 4179608941796089 1.11.1 agACACAcAGCAcAGACTGCAGGagACACAcAGCAcAGACTGCAGG 131131 HEK2_034HEK2_034 chr11chr11 128508576128508576 1.01.0 GAAttCAAAGCATAGAtTGCAGGGAAttCAAAGCATAGAtTGCAGG 132132 HEK2_035HEK2_035 chr11chr11 131870604131870604 0.90.9 acACACAAAGCATAGACTatGTGacACACAAAGCATAGACTatGTG 133133 HEK2_036HEK2_036 chr4chr4 9184423891844238 0.90.9 GgAaACAAAGCATAGACattTGGGgAaACAAAGCATAGACattTGG 134134 HEK2_037HEK2_037 chr3chr3 105801924105801924 0.80.8 tAAtACAAAGCATAGAtaGtTGGtAAtACAAAGCATAGAtaGtTGG 135135 HEK2_038HEK2_038 chr8chr8 6628064366280643 0.80.8 GAAtttAAAGCATAGACTGCAAGGAAtttAAAGCATAGACTGCAAG 136136 HEK2_039HEK2_039 chr3chr3 168165117168165117 0.80.8 ctgaACAcAGCAaAGACTGCTGGctgaACAcAGCAaAGACTGCTGG 137137 HEK2_040HEK2_040 chr15chr15 6537701965377019 0.80.8 GAgCgatAAGCAcAGACTGCTGGGAgCgatAAGCAcAGACTGCTGG 138138 HEK2_041HEK2_041 chr9chr9 9733260897332608 0.70.7 GtAattAAAGCAcAGACTGCTGGGtAattAAAGCAcAGACTGCTGG 139139 HEK2_042HEK2_042 chr3chr3 3374466933744669 0.70.7 GAAaACAAAcCAcAGACTGgGGGGAAaACAAAcCAcAGACTGgGGG 140140 HEK2_043HEK2_043 chr2chr2 1947436219474362 0.70.7 ctAttgcAAGCAcAGACTGCTGGctAttgcAAGCAcAGACTGCTGG 141141 HEK2_044HEK2_044 chr16chr16 6419827764198277 0.70.7 GAAtACAtAaCATAGACTGgGGGGAAtACAtAaCATAGACTGgGGG 142142 HEK2_045HEK2_045 chr1chr1 199217096199217096 0.70.7 atACcatAAGCATAGACTGtTGGatACcatAAGCATAGACTGtTGG 143143 HEK2_046HEK2_046 chr22chr22 2889571728895717 0.70.7 attaAgAtAGCATAGACTGCAGGattaAgAtAGCATAGACTGCAGG 144144 HEK2_047HEK2_047 chr13chr13 9482743194827431 0.60.6 aAtgACtAAtaATAGACTGCTGGaAtgACtAAtaATAGACTGCTGG 145145 HEK2_048HEK2_048 chr20chr20 895768895768 0.60.6 atttcaAcAGCATAGACTGtAGGatttcaAcAGCATAGACTGtAGG 146146 HEK2_049HEK2_049 chr1chr1 108869934108869934 0.50.5 agtatagcAGCATAGACTGCAGGagtatagcAGCATAGACTGCAGG 147147 HEK2_050HEK2_050 chr20chr20 9764097640 0.50.5 GAAttCAAAGCATAGAtTGCAGGGAAttCAAAGCATAGAtTGCAGG 148148 HEK2_051HEK2_051 chrXchrX 5825641458256414 0.50.5 GcAttCtAAtaATAGACTGCTGGGcAttCtAAtaATAGACTGCTGG 149149 HEK2_052HEK2_052 chr3chr3 1083588510835885 0.50.5 aAACACAtAGCAcAGcCTGCAGGaAACACAtAGCAcAGcCTGCAGG 150150 HEK2_053HEK2_053 chr8chr8 9731760697317606 0.50.5 GAACACAgtaCATAGACTGgCAGGAACACAgtaCATAGACTGgCAG 151151 HEK2_054HEK2_054 chr7chr7 19732151973215 0.50.5 GgctgCctAGCAcAGACTGCCGGGgctgCctAGCAcAGACTGCCGG 152152 HEK2_055HEK2_055 chr5chr5 145405225145405225 0.50.5 tctCctAccGCATAGACTGCTGGtctCctAccGCATAGACTGCTGG 153153 HEK2_056HEK2_056 chr14chr14 106066714106066714 0.40.4 GtcgcaAAcGCATAGACTtCCGGGtcgcaAAcGCATAGACTtCCGG 154154 HEK2_057HEK2_057 chr2chr2 3440383134403831 0.40.4 cttattAAAGCAcAGACTGCTGGcttattAAAGCAcAGACTGCTGG 155155 HEK2_058HEK2_058 chr7chr7 8376432683764326 0.40.4 actatatAAGCATAGACTGtTGGactatatAAGCATAGACTGtTGG 156156 HEK2_059HEK2_059 chr14chr14 106188442106188442 0.40.4 GtcgcaAAcGCATAGACTtCCGGGtcgcaAAcGCATAGACTtCCGG 157157 HEK2_060HEK2_060 chr9chr9 111564240111564240 0.40.4 cgAtttcAAGCATAGACTGCTGGcgAtttcAAGCATAGACTGCTGG 158158 HEK2_061HEK2_061 chr4chr4 9139391091393910 0.40.4 tAAtcatAAGCATAGAaTGCTGGtAAtcatAAGCATAGAaTGCTGG 159159 HEK2_062HEK2_062 chr9chr9 117268271117268271 0.40.4 GAAtAC-AAGCATAGACTGCTGTGAAtAC-AAGCATAGACTGCTGT 160160 HEK2_063HEK2_063 chr1chr1 208174511208174511 0.40.4 tcACAaAtAaGCATAGACTGgCGGtcACAaAtAaGCATAGACTGgCGG 161161 HEK2_064HEK2_064 chr6chr6 164073518164073518 0.40.4 cttgctAAAGCAcAGACTGCTGGcttgctAAAGCAcAGACTGCTGG 162162 HEK2_065HEK2_065 chr18chr18 5630700256307002 0.40.4 aAgaACAAAaCATAGACTGCAGGaAgaACAAAaCATAGACTGCAGG 163163 HEK2_066HEK2_066 chrXchrX 119188148119188148 0.40.4 aAttAaAcAGaATAGACTGCTGGaAttAaAcAGaATAGACTGCTGG 164164 HEK2_067HEK2_067 chr10chr10 1147231211472312 0.40.4 GAACACAgAaCcATAGACTGgGGGGAACACAgAaCcATAGACTGgGGG 165165 HEK2_068HEK2_068 chrXchrX 9393835793938357 0.40.4 aAACAaAAAGCATAGACcaCAAGaAACAaAAAGCATAGACcaCAAG 166166 HEK2_069HEK2_069 chr3chr3 3395884533958845 0.40.4 GAACACA-gGCATAGACTatGGAGAACACA-gGCATAGACTatGGA 167167 HEK2_070HEK2_070 chr9chr9 9025791990257919 0.40.4 ctcagagAAGCAcAGACTGCAGGctcagagAAGCAcAGACTGCAGG 168168 HEK2_071HEK2_071 chr2chr2 144687377144687377 0.40.4 atcatatAtGCATAaACTGCAGGatcatatAtGCATAaACTGCAGG 169169 HEK2_072HEK2_072 chr1chr1 191029339191029339 0.40.4 cAACAaAAtatATAGACTGCTGGcAACAaAAtatATAGACTGCTGG 170170 HEK2_073HEK2_073 chr3chr3 124241469124241469 0.30.3 attgttAAAGCAcAGACTGCAGGattgttAAAGCAcAGACTGCAGG 171171 HEK2_074HEK2_074 chr11chr11 8054077080540770 0.30.3 agAtcttAAGCATAGACTGtGGGagAtcttAAGCATAGACTGtGGG 172172 HEK2_075HEK2_075 chr4chr4 146455378146455378 0.30.3 tAACACAAtacCATAGACTGgCGGtAACACAAtacCATAGACTGgCGG 173173 HEK2_076HEK2_076 chr6chr6 7080698570806985 0.30.3 GAAtACAAAtaATAGACTatTGGGAAtACAAAtaATAGACTatTGG 174174 HEK2_077HEK2_077 chr3chr3 1053938410539384 0.30.3 GAAtttAAAGCATAGACTctGGGGAAtttAAAGCATAGACTctGGG 175175 HEK2_078HEK2_078 chr13chr13 8061939080619390 0.30.3 aAACAaAtAaaATAGACTGCAGGaAACAaAtAaaATAGACTGCAGG 176176 HEK2_079HEK2_079 chr5chr5 126385455126385455 0.30.3 ccACACcAAGCATAGACTtCTGGccACACcAAGCATAGACTtCTGG 177177 HEK2_080HEK2_080 chr9chr9 9268311592683115 0.30.3 aAcaAaAcAGCATAGACTGCATGaAcaAaAcAGCATAGACTGCATG 178178 HEK2_081HEK2_081 chr17chr17 28102422810242 0.30.3 tAAttgcAAGCATAGACgGCAGGtAAttgcAAGCATAGACgGCAGG 179179 HEK2_082HEK2_082 chr12chr12 131431445131431445 0.30.3 GgAgAgAgAGCATAGACTGCTGGGgAgAgAgAGCATAGACTGCTGG 180180 HEK2_083HEK2_083 chr11chr11 105148271105148271 0.30.3 agAaAtAAtatATAGACTGCAGGagAaAtAAtatATAGACTGCAGG 181181 HEK2_084HEK2_084 chr1chr1 7504374775043747 0.30.3 tggttactAGCATAGACTtCAGGtggttactAGCATAGACTtCAGG 182182 HEK2_085HEK2_085 chr20chr20 3194658131946581 0.30.3 aAACACttAaCAcAGACTGCAGGaAACACttAaCAcAGACTGCAGG 183183 HEK2_086HEK2_086 chr8chr8 5817269058172690 0.30.3 ccACcagcAGCATAGACTcCAGGccACcagcAGCATAGACTcCAGG 184184 HEK2_087HEK2_087 chr7chr7 3987715839877158 0.20.2 aAgacattttCATAGACTGtCGGaAgacattttCATAGACTGtCGG 185185 HEK2_088HEK2_088 chr3chr3 6550802665508026 0.20.2 tAAgcacAAGCATAGgCTGCTGGtAAgcacAAGCATAGgCTGCTGG 186186 HEK2_089HEK2_089 chr6chr6 4092500940925009 0.20.2 aAcaAgtAtGCATAGACTGCTGGaAcaAgtAtGCATAGACTGCTGG 187187 HEK2_090HEK2_090 chr15chr15 8126597781265977 0.20.2 aAAtACcAAcCAcAGACTGCAGGaAAtACcAAcCAcAGACTGCAGG 188188 HEK2_091HEK2_091 chr8chr8 102768749102768749 0.20.2 aAAtgCAtAGCATAGACTGCTGAaAAtgCAtAGCATAGACTGCTGA 189189 HEK2_092HEK2_092 chr1chr1 237916998237916998 0.20.2 tAACACAAAGacTAaACTGCAGGtAACACAAAGacTAaACTGCAGG 190190 HEK2_093HEK2_093 chr1chr1 215323272215323272 0.20.2 tAcCACgAAGCATAGACTGtAGGtAcCACgAAGCATAGACTGtAGG 191191 HEK2_094HEK2_094 chr14chr14 6024963460249634 0.20.2 GAtCACtcAaCATAGACTGCATGGAtCACtcAaCATAGACTGCATG 192192 HEK2_095HEK2_095 chr3chr3 2941651029416510 0.20.2 GAACAg-AAaCATAGACcaaTGGGAACAg-AAaCATAGACcaaTGG 193193 HEK2_096HEK2_096 chr11chr11 7957418879574188 0.20.2 tAcaAaAtAagATAGACTGCTGGtAcaAaAtAagATAGACTGCTGG 194194 HEK2_097HEK2_097 chr10chr10 9606438896064388 0.20.2 acAgttAAAGaATAGACTGCAGGacAgttAAAGaATAGACTGCAGG 195195 HEK2_098HEK2_098 chr7chr7 7844352478443524 0.20.2 aAACACAAAgGCATAaACTcCAGGaAACACAAAgGCATAaACTcCAGG 196196 HEK2_099HEK2_099 chr13chr13 5109335351093353 0.20.2 GAACACAcA-CAcAGACTGaGGGGAACACAcA-CAcAGACTGaGGG 197197 HEK2_100HEK2_100 chr13chr13 4526635345266353 0.20.2 GgACAtAAAtCATAaACTGCTGGGgACAtAAAtCATAaACTGCTGG 198198 HEK2_101HEK2_101 chr1chr1 2001112520011125 0.20.2 aAAgctAcAGCATAGACTGCAAGaAAgctAcAGCATAGACTGCAAG 199199 HEK2_102HEK2_102 chr1chr1 7719060777190607 0.20.2 tcACACAAAcCATAGACTGaGGGtcACACAAAcCATAGACTGaGGG 200200 HEK2_103HEK2_103 chr11chr11 6863997568639975 0.20.2 GAtCtacctatATAGACTGCAGGGAtCtacctatATAGACTGCAGG 201201 HEK2_104HEK2_104 chr9chr9 3165214431652144 0.20.2 tAtagaggAGCATAGACTGCTGGtAtagaggAGCATAGACTGCTGG 202202 HEK2_105HEK2_105 chr19chr19 50688075068807 0.20.2 tAtCAgAAAGCAcAGACTGCGGGtAtCAgAAAGCAcAGACTGCGGG 203203 HEK2_106HEK2_106 chr12chr12 5440507354405073 0.20.2 GAACAacAAGgATAaACTGCCGGGAACAacAAGgATAaACTGCCGG 204204 HEK2_107HEK2_107 chr12chr12 3338954833389548 0.20.2 tAcaAacAcGCATAGAaTGCCGGtAcaAacAcGCATAGAaTGCCGG 205205 HEK2_108HEK2_108 chr1chr1 1551930115519301 0.20.2 tAAgAaAtgGaATAGACTGCAGGtAAgAaAtgGaATAGACTGCAGG 206206 HEK2_109HEK2_109 chr20chr20 2106411121064111 0.20.2 aAAtAttAAGCATAGACTaCGGGaAAtAttAAGCATAGACTaCGGG 207207 HEK2_110HEK2_110 chr20chr20 1780162317801623 0.20.2 GAAtgCcAAGCATAaACTGCAGGGAAtgCcAAGCATAaACTGCAGG 208208 HEK2_111HEK2_111 chr2chr2 1984495619844956 0.20.2 aActcCAAAGCATAtACTGCTGGaActcCAAAGCATAtACTGCTGG 209209 HEK2_112HEK2_112 chr2chr2 116312126116312126 0.20.2 GtgaACAcAGCATAGACTGgGGCGtgaACAcAGCATAGACTGgGGC 210210 HEK2_113HEK2_113 chr15chr15 3504897935048979 0.20.2 atcCtaAgAaCATAGACTGCAGGatcCtaAgAaCATAGACTGCAGG 211211 HEK2_114HEK2_114 chr11chr11 1934964819349648 0.20.2 tttgttAAAaCATAGACTGCTGGtttgttAAAaCATAGACTGCTGG 212212 HEK2_115HEK2_115 chr4chr4 170242082170242082 0.20.2 tAACAaAAtGCATAGACTGCTAGtAACAaAAtGCATAGACTGCTAG 213213 HEK2_116HEK2_116 chr1chr1 6645410866454108 0.20.2 tgtataAcAGCATAcACTGCTGGtgtataAcAGCATAcACTGCTGG 214214 HEK2_117HEK2_117 chr9chr9 2022124620221246 0.20.2 aAACACtAAtaATAGACTGtGGGaAACACtAAtaATAGACTGtGGG 215215 HEK2_118HEK2_118 chr12chr12 26171562617156 0.20.2 aAgCAatcAGCAcAGACTGCGGGaAgCAatcAGCAcAGACTGCGGG 216216 HEK2_119HEK2_119 chr19chr19 3222592432225924 0.20.2 GgACACAgAGtATAGACTGaGGGGgACACAgAGtATAGACTGaGGG 217217 HEK2_120HEK2_120 chr6chr6 123554091123554091 0.10.1 cAcaAatcAaaATAGACTGCTGGcAcaAatcAaaATAGACTGCTGG 218218 HEK2_121HEK2_121 chr13chr13 5844067158440671 0.10.1 GAAttCAAAGCATgGACTGCAGGGAAttCAAAGCATgGACTGCAGG 219219 HEK2_122HEK2_122 chr19chr19 1837052518370525 0.10.1 ttcCAaAAAaCATAGACTGCTGGttcCAaAAAaCATAGACTGCTGG 220220 HEK2_123HEK2_123 chr8chr8 7498081474980814 0.10.1 GtAgAgtAAGCATAcACTGCTGGGtAgAgtAAGCATAcACTGCTGG 221221 HEK2_124HEK2_124 chrXchrX 101465228101465228 0.10.1 GgcCtttAgGCAcAGACTGCAGGGgcCtttAgGCAcAGACTGCAGG 222222 HEK2_125HEK2_125 chr21chr21 1605703716057037 0.10.1 aAgactttAGCATAGACTGCAAGaAgactttAGCATAGACTGCAAG 223223 HEK2_126HEK2_126 chr5chr5 7665564076655640 0.10.1 GAAaAgtAAG-ATAGACTGCCGGGAAaAgtAAG-ATAGACTGCCGG 224224 HEK2_127HEK2_127 chrXchrX 3727556637275566 0.10.1 aActcatcAGCATAGACTGtAGGaActcatcAGCATAGACTGtAGG 225225 HEK2_128HEK2_128 chrXchrX 3981370539813705 0.10.1 aAAtACAgAGCtTAGACTaCTGGaAAtACAgAGCtTAGACTaCTGG 226226 HEK2_129HEK2_129 chr3chr3 9964976299649762 0.10.1 aAACAtgAAGCATAGACaGCAAGaAACAtgAAGCATAGACaGCAAG 227227 HEK2_130HEK2_130 chr3chr3 8601629086016290 0.10.1 acAtAgAtAttATAGACTGCTGGacAtAgAtAttATAGACTGCTGG 228228 HEK2_131HEK2_131 chr2chr2 4208073642080736 0.10.1 cAcattAAAGCAcAGACTGCTGGcAcattAAAGCAcAGACTGCTGG 229229 HEK2_132HEK2_132 chr7chr7 154994106154994106 0.10.1 GAgCctAgAGCAcAGACTGCAGGGAgCctAgAGCAcAGACTGCAGG 230230 HEK2_133HEK2_133 chr10chr10 8556669385566693 0.10.1 aAgacttAAGCAaAGACTGCTGGaAgacttAAGCAaAGACTGCTGG 231231 HEK2_134HEK2_134 chr1chr1 176037520176037520 0.10.1 ttACACAtAGCAcAGACTaCAGGttACACAtAGCAcAGACTaCAGG 232232 HEK2_135HEK2_135 chr7chr7 5661628656616286 0.10.1 agAagttAAGCATAGACTGgTGGagAagttAAGCATAGACTGgTGG 233233 HEK2_136HEK2_136 chrXchrX 6948164969481649 0.10.1 ctAtAttgAGaATAGACTGCAGGctAtAttgAGaATAGACTGCAGG 234234 HEK2_137HEK2_137 chr17chr17 7954610679546106 0.10.1 GtgCACAcAGCATAGACTGCATGGtgCACAcAGCATAGACTGCATG 235235 HEK2_138HEK2_138 chr9chr9 7409975374099753 0.10.1 ctAgcaAAAaCATAGACTGCTGGctAgcaAAAaCATAGACTGCTGG 236236 HEK2_139HEK2_139 chr7chr7 113235709113235709 0.10.1 tAAaACAAAGaAcAGACTGCTGGtAAaACAAAGaAcAGACTGCTGG 237237 HEK2_140HEK2_140 chr5chr5 165353994165353994 0.10.1 tAcagatAgtaATAGACTGCAGGtAcagatAgtaATAGACTGCAGG 238238 HEK2_141HEK2_141 chr5chr5 134255399134255399 0.10.1 aAttAatAAcaATAGACTGCTGGaAttAatAAcaATAGACTGCTGG 239239 HEK2_142HEK2_142 chr6chr6 3911505139115051 0.10.1 aAgattgcAGCATAaACTGCTGGaAgattgcAGCATAaACTGCTGG 240240 HEK2_143HEK2_143 chr10chr10 732884732884 0.10.1 aAgCACAtAaCATAGACTGaAGGaAgCACAtAaCATAGACTGaAGG 241241 HEK2_144HEK2_144 chr14chr14 8856621188566211 0.10.1 GtAgAaAAAGtATAGACTGCAGGGtAgAaAAAGtATAGACTGCAGG 242242 HEK2_145HEK2_145 chr14chr14 8944698689446986 0.10.1 tActAtggtGCATAGACTGCTGGtActAtggtGCATAGACTGCTGG 243243 HEK2_146HEK2_146 chr11chr11 133057022133057022 0.10.1 ctctACtgAGaATAGACTGCAGGctctACtgAGaATAGACTGCAGG 244244 HEK2_147HEK2_147 chr13chr13 4727756447277564 0.10.1 tgAaAtAAtaCATAaACTGCCGGtgAaAtAAtaCATAaACTGCCGG 245245 HEK2_148HEK2_148 chr6chr6 4265582842655828 0.10.1 aAtaAacttGCATAGACTGtAGGaAtaAacttGCATAGACTGtAGG 246246 HEK2_149HEK2_149 chr10chr10 7292282772922827 0.10.1 agACcCtAAGCATAGACTGCAGAagACcCtAAGCATAGACTGCAGA 247247 HEK2_150HEK2_150 chr16chr16 5545687855456878 0.10.1 tAcCcaAAtGCAcAGACTGCTGGtAcCcaAAtGCAcAGACTGCTGG 248248 HEK2_151HEK2_151 chr2chr2 194416373194416373 0.10.1 aAgatagAtttATAGACTGCTGGaAgatagAtttATAGACTGCTGG 249249 HEK2_152HEK2_152 chr4chr4 177589824177589824 0.10.1 aAACACAAAaCATAaAtTaCTGGaAACACAAAaCATAaAtTaCTGG 250250

Digenome-captured sites (RNF2)Digenome-captured sites (RNF2) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number RNF2-01RNF2-01 chr1chr1 210858376210858376 7.37.3 tcaccaTTAGTCATTACCTGCTGtcaccaTTAGTCATTACCTGCTG 251251 RNF2-02RNF2-02 chr1chr1 185056773185056773 4.44.4 GTCATCTTAGTCATTACCTGAGGGTCATCTTAGTCATTACCTGAGG 9393 RNF2-03RNF2-03 chr17chr17 5392859853928598 4.34.3 GTCATCTTAGTCATTAC-TGAGGGTCATCTTAGTCATTAC-TGAGG 252252 RNF2-04RNF2-04 chr6chr6 143212078143212078 4.14.1 GTaATaTTAGTCATTACCgGTGGGTaATaTTAGTCATTACCgGTGG 253253 RNF2-05RNF2-05 chr17chr17 1707207517072075 3.63.6 GTCATCcTAGTCATTtaCTGGGGGTCATCcTAGTCATTtaCTGGGG 254254 RNF2-06RNF2-06 chr12chr12 131619804131619804 2.22.2 aTCAcCTTAGcCATTACCaGGGGaTCAcCTTAGcCATTACCaGGGG 255255 RNF2-07RNF2-07 chr9chr9 102127746102127746 1.41.4 GTCA-CTTAGTCATTgCCTGTGGGTCA-CTTAGTCATTgCCTGTGG 256256 RNF2-08RNF2-08 chr15chr15 9231558092315580 1.01.0 GTCAcaTTAGcCATTACCTGTGAGTCAcaTTAGcCATTACCTGTGA 257257 RNF2-09RNF2-09 chr2chr2 5755970957559709 1.01.0 tgtATCTTAGaCATTACaTGTGGtgtATCTTAGaCATTACaTGTGG 258258 RNF2-10RNF2-10 chr5chr5 2967380229673802 0.80.8 aTttTCTTAGTgATTAtCTGGGGaTttTCTTAGTgATTAtCTGGGG 259259 RNF2-11RNF2-11 chr15chr15 2513546725135467 0.80.8 catcTaaTAGTaATTACCTGGGGcatcTaaTAGTaATTACCTGGGG 260260 RNF2-12RNF2-12 chr3chr3 6033999660339996 0.60.6 aTagTaTTAGTCATTACCTGTGAaTagTaTTAGTCATTACCTGTGA 261261 RNF2-13RNF2-13 chr12chr12 1259562212595622 0.40.4 acCATCTTAGTCATTAtCTaATGacCATCTTAGTCATTAtCTaATG 262262 RNF2-14RNF2-14 chrXchrX 131090978131090978 0.40.4 aTttTCTTAGTCATTACCTaGAGaTttTCTTAGTCATTACCTaGAG 263263 RNF2-15RNF2-15 chr2chr2 5189420451894204 0.40.4 aTCATCTTcaTCATTACaTGAGGaTCATCTTcaTCATTACaTGAGG 264264 RNF2-16RNF2-16 chr2chr2 134638146134638146 0.40.4 cctATaTataTCATTACCTtTGGcctATaTataTCATTACCTtTGG 265265 RNF2-17RNF2-17 chr16chr16 6253120662531206 0.40.4 GTCATtTTAGTCATTAtCTtGAGGTCATtTTAGTCATTAtCTtGAG 266266 RNF2-18RNF2-18 chr22chr22 4413798244137982 0.40.4 aTCAcCTgAGTCATTACCcaTGGaTCAcCTgAGTCATTACCcaTGG 267267 RNF2-19RNF2-19 chr4chr4 125521739125521739 0.40.4 tTaATCTTAGTCATTACtTtTGGtTaATCTTAGTCATTACtTtTGG 268268 RNF2-20RNF2-20 chr2chr2 102668931102668931 0.30.3 aTCATCaTcGTCATTAtCTGGGGaTCATCaTcGTCATTAtCTGGGG 269269 RNF2-21RNF2-21 chr14chr14 8833613288336132 0.30.3 aTCA--TTAGTCATTgCCTGAGGaTCA--TTAGTCATTgCCTGAGG 270270 RNF2-22RNF2-22 chr7chr7 4396726643967266 0.30.3 cTtAT-TTAGTCATTACCTGTAGcTtAT-TTAGTCATTACCTGTAG 271271 RNF2-23RNF2-23 chr2chr2 4152017841520178 0.30.3 GTCATaTTAaTCATTACaTaGAGGTCATaTTAaTCATTACaTaGAG 272272 RNF2-24RNF2-24 chr1chr1 111785389111785389 0.30.3 tcCATCTcAcTCATTACCTGAGGtcCATCTcAcTCATTACCTGAGG 273273 RNF2-25RNF2-25 chr8chr8 5184678051846780 0.30.3 GTtATCTTAGTCtTTACCTGAGAGTtATCTTAGTCtTTACCTGAGA 274274 RNF2-26RNF2-26 chr2chr2 2474904624749046 0.30.3 caCATCTTAccCATTACaTGAGGcaCATCTTAccCATTACaTGAGG 275275 RNF2-27RNF2-27 chr6chr6 58692395869239 0.30.3 GcCAcCTcAGTCATTAgCTGGGGGcCAcCTcAGTCATTAgCTGGGG 276276 RNF2-28RNF2-28 chrXchrX 133138307133138307 0.30.3 acatTagTAaaCATTACCTaGGGacatTagTAaaCATTACCTaGGG 277277 RNF2-29RNF2-29 chr1chr1 5922720959227209 0.30.3 taCcTacctGTCATTACCTaTGGtaCcTacctGTCATTACCTaTGG 278278 RNF2-30RNF2-30 chr2chr2 177556597177556597 0.30.3 GatATCTTAGcCATTACCTaGGAGatATCTTAGcCATTACCTaGGA 279279 RNF2-31RNF2-31 chr3chr3 113984053113984053 0.30.3 tatcTacTAcTCATTACCTGAGGtatcTacTAcTCATTACCTGAGG 280280 RNF2-32RNF2-32 chr2chr2 6635325366353253 0.20.2 agCATCTctGTCATTACCcaGGGagCATCTctGTCATTACCcaGGG 281281 RNF2-33RNF2-33 chr8chr8 9945174599451745 0.20.2 cgtgcaTTAGTCATTACCTGAGGcgtgcaTTAGTCATTACCTGAGG 282282 RNF2-34RNF2-34 chr5chr5 109304296109304296 0.20.2 GTCtgtaTAGTCATTACCTtTGGGTCtgtaTAGTCATTACCTtTGG 283283 RNF2-35RNF2-35 chr6chr6 155177402155177402 0.20.2 taCATCTatGTtATTACCTaTGGtaCATCTatGTtATTACCTaTGG 284284 RNF2-36RNF2-36 chr17chr17 5839014258390142 0.20.2 tTCATCTTtGTCATTACCTaAAGtTCATCTTtGTCATTACCTaAAG 285285 RNF2-37RNF2-37 chr11chr11 84984888498488 0.20.2 tatActaTAtaCATTACCTGGGGtatActaTAtaCATTACCTGGGG 286286 RNF2-38RNF2-38 chr6chr6 37265623726562 0.20.2 GctcatTcAcTCATTACCTaTGGGctcatTcAcTCATTACCTaTGG 287287 RNF2-39RNF2-39 chr16chr16 59774205977420 0.20.2 GTgATCTaaAGTCATTACCTtAGGGTgATCTaaAGTCATTACCTtAGG 288288 RNF2-40RNF2-40 chrXchrX 7694671776946717 0.20.2 tTCAataTAaTCATTACCTGTGGtTCAataTAaTCATTACCTGTGG 289289 RNF2-41RNF2-41 chr18chr18 6206122662061226 0.20.2 aTtATtTTAGTCATTACCTtTGGaTtATtTTAGTCATTACCTtTGG 290290 RNF2-42RNF2-42 chr19chr19 1486704914867049 0.20.2 ccCATCTcAGcCATTACCTGGGTccCATCTcAGcCATTACCTGGGT 291291 RNF2-43RNF2-43 chr13chr13 7039962070399620 0.10.1 agaATaTTAGTCcTTACCTGGGGagaATaTTAGTCcTTACCTGGGG 292292 RNF2-44RNF2-44 chr12chr12 8621964786219647 0.10.1 GatcctTTAaTCATTACCTtTGGGatcctTTAaTCATTACCTtTGG 293293 RNF2-45RNF2-45 chr13chr13 103624473103624473 0.10.1 acCATCTTAGTCAcTACCTGGGCacCATCTTAGTCAcTACCTGGGC 294294 RNF2-46RNF2-46 chr1chr1 174478567174478567 0.10.1 GTatTaTTgtaCATTACCTGAGGGTatTaTTgtaCATTACCTGAGG 295295 RNF2-47RNF2-47 chr2chr2 209871803209871803 0.10.1 agCATCTTAGcCATTACCTcTAGagCATCTTAGcCATTACCTcTAG 296296 RNF2-48RNF2-48 chr5chr5 9114427891144278 0.10.1 agCATCTTAaTCcTTACCTcAGGagCATCTTAaTCcTTACCTcAGG 297297 RNF2-49RNF2-49 chr4chr4 160106364160106364 0.10.1 GaatcCTcAtaCATTACCTGTGGGaatcCTcAtaCATTACCTGTGG 298298 RNF2-50RNF2-50 chr4chr4 3755293237552932 0.10.1 aTCATCTTttTaATTACCTaTGGaTCATCTTttTaATTACCTaTGG 299299

Digenome-captured sites (TYRO3)Digenome-captured sites (TYRO3) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number TYRO3-01TYRO3-01 chr15chr15 7655333276553332 4.34.3 GGCCACACTAGtGTTGCcGCTGGGGCCACACTAGtGTTGCcGCTGG 300300 TYRO3-02TYRO3-02 chr15chr15 4185727241857272 3.43.4 GGCCACACTAGCGTTGCTGCTGGGGCCACACTAGCGTTGCTGCTGG 9494 TYRO3-03TYRO3-03 chr20chr20 4531275745312757 2.02.0 GGCCACACcAGCcTTGCTGtCGGGGCCACACcAGCcTTGCTGtCGG 301301 TYRO3-04TYRO3-04 chr5chr5 173133468173133468 0.80.8 GGCCAC--TAGCGTTGCTcCAGGGGCCAC--TAGCGTTGCTcCAGG 302302 TYRO3-05TYRO3-05 chr22chr22 5068665850686658 0.60.6 GGCCACACTgaCcTTGCTGCTGGGGCCACACTgaCcTTGCTGCTGG 303303 TYRO3-06TYRO3-06 chr9chr9 140109027140109027 0.40.4 ttCCACAC-AGCtTTGCTGCTGGttCCACAC-AGCtTTGCTGCTGG 304304 TYRO3-07TYRO3-07 chr17chr17 1720789917207899 0.30.3 GGCCAC-CTAGgGTTGCTGCTGGGGCCAC-CTAGgGTTGCTGCTGG 305305 TYRO3-08TYRO3-08 chr11chr11 9966669999666699 0.20.2 ccaCcCtCTAGCaTTGCTGCTGGccaCcCtCTAGCaTTGCTGCTGG 306306 TYRO3-09TYRO3-09 chr11chr11 2749518327495183 0.20.2 cctaACACcAaCGTTGCTGCTGGcctaACACcAaCGTTGCTGCTGG 307307 TYRO3-10TYRO3-10 chr1chr1 3868466438684664 0.20.2 ctgagCtCTAGCaTTGCTGCTGGctgagCtCTAGCaTTGCTGCTGG 308308 TYRO3-11TYRO3-11 chr3chr3 2293671022936710 0.10.1 GGCatataTAGCaTTGCTGCTGGGGCatataTAGCaTTGCTGCTGG 309309 TYRO3-12TYRO3-12 chr6chr6 150629124150629124 0.10.1 GaaCACACTAaCaTTGCTGtGGGGaaCACACTAaCaTTGCTGtGGG 310310

Digenome-captured sites (WEE1)Digenome-captured sites (WEE1) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number WEE1-01WEE1-01 chr1chr1 234241713234241713 11.111.1 tTaGAGATGTTCTATTAtTCCGGtTaGAGATGTTCTATTAtTCCGG 311311 WEE1-02WEE1-02 chr11chr11 96100869610086 2.02.0 GTCGAGATGTTCTATTACTCTGGGTCGAGATGTTCTATTACTCTGG 9595 WEE1-03WEE1-03 chr4chr4 1885555818855558 1.91.9 GagGAGATGcTCTATTACTCCGGGagGAGATGcTCTATTACTCCGG 312312 WEE1-04WEE1-04 chrXchrX 4275678542756785 0.70.7 aTCaAGATGaaCTATTACTCTGGaTCaAGATGaaCTATTACTCTGG 313313 WEE1-05WEE1-05 chr1chr1 215805743215805743 0.40.4 GTgGAGATGTTaTgTTACTCTGGGTgGAGATGTTaTgTTACTCTGG 314314 WEE1-06WEE1-06 chr5chr5 5786335057863350 0.40.4 GaCataATGTTCTATTACTCAAGGaCataATGTTCTATTACTCAAG 315315 WEE1-07WEE1-07 chr4chr4 119010382119010382 0.30.3 taatAGATGTTCTATTACTaAGGtaatAGATGTTCTATTACTaAGG 316316 WEE1-08WEE1-08 chr15chr15 8084538780845387 0.30.3 aTtaAGATGTTCTATTAaTaGGGaTtaAGATGTTCTATTAaTaGGG 317317 WEE1-09WEE1-09 chr13chr13 8786716587867165 0.20.2 cagctaATGTaaTATTACTCAGGcagctaATGTaaTATTACTCAGG 318318 WEE1-10WEE1-10 chr4chr4 107037600107037600 0.20.2 aTCaAGATaTTCTATTACTgGGGaTCaAGATaTTCTATTACTgGGG 319319 WEE1-11WEE1-11 chrXchrX 136297269136297269 0.20.2 tcttAtATtTTCTATTACTCAGGtcttAtATtTTCTATTACTCAGG 320320 WEE1-12WEE1-12 chr1chr1 85009868500986 0.20.2 aTaGAGcaGTTaTATTACTCTGGaTaGAGcaGTTaTATTACTCTGG 321321 WEE1-13WEE1-13 chr11chr11 7180668471806684 0.20.2 GTaGAGATGTTCTcTaACTCAGGGTaGAGATGTTCTcTaACTCAGG 322322 WEE1-14WEE1-14 chr12chr12 8359916783599167 0.20.2 cTCttttatTTCTATTACTCTGGcTCttttatTTCTATTACTCTGG 323323 WEE1-15WEE1-15 chr8chr8 7139469771394697 0.10.1 aatataATaTTCTATTACTCAGGaatataATaTTCTATTACTCAGG 324324 WEE1-16WEE1-16 chr8chr8 8694231986942319 0.10.1 caactataaTTCTATTACTCTGGcaactataaTTCTATTACTCTGG 325325 WEE1-17WEE1-17 chr1chr1 6116556361165563 0.10.1 GgCtActgtcTCTATTACTCAGGGgCtActgtcTCTATTACTCAGG 326326 WEE1-18WEE1-18 chr20chr20 4573019245730192 0.10.1 aTttAGATaTTCTATTACTCTGAaTttAGATaTTCTATTACTCTGA 327327 WEE1-19WEE1-19 chr8chr8 134795474134795474 0.10.1 cTttAagataTCTATTACTCTGGcTttAagataTCTATTACTCTGG 328328 WEE1-20WEE1-20 chr2chr2 128238175128238175 0.10.1 caaGAGAcGcTCTATcACTCAGGcaaGAGAcGcTCTATcACTCAGG 329329 WEE1-21WEE1-21 chr7chr7 3167797531677975 0.10.1 aaacAGcTGTTCTATTACTCAGGaaacAGcTGTTCTATTACTCAGG 330330

Digenome-captured sites (EphB4)Digenome-captured sites (EphB4) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number EphB4-01EphB4-01 chr7chr7 100411300100411300 10.310.3 GCAGAATATTCGGACAAACACGGGCAGAATATTCGGACAAACACGG 9696 EphB4-02EphB4-02 chr5chr5 8102142181021421 8.08.0 GCAGAATATTaCaGACAAACtAGGGCAGAATATTaCaGACAAACtAGG 331331 EphB4-03EphB4-03 chr15chr15 4771279147712791 4.14.1 GCAGAATATcaGGACAAACAATGGCAGAATATcaGGACAAACAATG 332332 EphB4-04EphB4-04 chr11chr11 123329727123329727 2.42.4 aCAGAATATTCaGACAAtCACAGaCAGAATATTCaGACAAtCACAG 333333 EphB4-05EphB4-05 chr1chr1 9304751493047514 2.22.2 GCAGtA-AaTaaGACAAACAAGGGCAGtA-AaTaaGACAAACAAGG 334334 EphB4-06EphB4-06 chr15chr15 5119815151198151 1.91.9 aCAaAATATTCGGACAggCACGGaCAaAATATTCGGACAggCACGG 335335 EphB4-07EphB4-07 chr18chr18 2971289529712895 1.81.8 GCAGAATtTaaGGACAAgCAAGGGCAGAATtTaaGGACAAgCAAGG 336336 EphB4-08EphB4-08 chr3chr3 5567029555670295 1.81.8 GCAGAATA--aGGACAAACATGGGCAGAATA--aGGACAAACATGG 337337 EphB4-09EphB4-09 chr13chr13 2591926425919264 1.41.4 cagtAATATTCaGACtAAACATGGcagtAATATTCaGACtAAACATGG 338338 EphB4-10EphB4-10 chr3chr3 122057177122057177 0.90.9 ttAatATATaaGGACAAACATGGttAatATATaaGGACAAACATGG 339339 EphB4-11EphB4-11 chr1chr1 2689181226891812 0.80.8 aCAtAATATTCaaACAAACAGGGaCAtAATATTCaaACAAACAGGG 340340 EphB4-12EphB4-12 chr10chr10 131074805131074805 0.60.6 aatGAATAaagGGACAAACAGGGaatGAATAaagGGACAAACAGGG 341341 EphB4-13EphB4-13 chr4chr4 123425007123425007 0.50.5 tCAG-ATATaaGGACAAACATGGtCAG-ATATaaGGACAAACATGG 342342 EphB4-14EphB4-14 chr5chr5 6069286260692862 0.40.4 GCtGAATATTgGGACAAtCATGGGCtGAATATTgGGACAAtCATGG 343343 EphB4-15EphB4-15 chr9chr9 930844930844 0.40.4 GCAGttATAaaaaGACAAACAGGGGCAGttATAaaaaGACAAACAGGG 344344 EphB4-16EphB4-16 chr9chr9 2934438629344386 0.40.4 aCAGAATATaaGaACAAAtATGGaCAGAATATaaGaACAAAtATGG 345345 EphB4-17EphB4-17 chr4chr4 160752620160752620 0.40.4 atAGAATAaTCaGACAAAaAAGGatAGAATAaTCaGACAAAaAAGG 346346 EphB4-18EphB4-18 chr16chr16 2370677023706770 0.40.4 GCAG-ATAaagGGACAAACATGGGCAG-ATAaagGGACAAACATGG 347347 EphB4-19EphB4-19 chr11chr11 117354211117354211 0.30.3 GacagtgAaTaGGACAAACATGGGacagtgAaTaGGACAAACATGG 348348 EphB4-20EphB4-20 chr14chr14 9049770390497703 0.30.3 tgAGAATATgCGGACAAACACAGtgAGAATATgCGGACAAACACAG 349349 EphB4-21EphB4-21 chr2chr2 6845970668459706 0.30.3 atAGAATATTaGGACAAAtAGAGatAGAATATTaGGACAAAtAGAG 350350 EphB4-22EphB4-22 chr13chr13 5195135551951355 0.20.2 caAtAATAaaaGGACAAACATGGcaAtAATAaaaGGACAAACATGG 351351 EphB4-23EphB4-23 chr17chr17 77770567777056 0.20.2 aCAGgATAaaaGGACAAAtATGGaCAGgATAaaaGGACAAAtATGG 352352 EphB4-24EphB4-24 chr3chr3 188431448188431448 0.20.2 aCAGAtATAcgtaGACAAACAGAGaCAGAtATAcgtaGACAAACAGAG 353353 EphB4-25EphB4-25 chr12chr12 1170582411705824 0.20.2 atAGAATAagaaGACAAACATGGatAGAATAagaaGACAAACATGG 354354 EphB4-26EphB4-26 chr10chr10 9569750695697506 0.20.2 ttAGAATATTCctACAAACAAGGttAGAATATTCctACAAACAAGG 355355 EphB4-27EphB4-27 chrXchrX 123665071123665071 0.20.2 cCAtgtTATTCaGACAAACATGGcCAtgtTATTCaGACAAACATGG 356356 EphB4-28EphB4-28 chr16chr16 7586984775869847 0.20.2 GCAGAA-AaTaGGACAAtCACGGGCAGAA-AaTaGGACAAtCACGG 357357 EphB4-29EphB4-29 chr6chr6 128784409128784409 0.20.2 agAGAATATa-GGACAAACtTGGagAGAATATa-GGACAAACtTGG 358358 EphB4-30EphB4-30 chr5chr5 144297821144297821 0.20.2 GCAGAAataTttGACAAACAAGGGCAGAAataTttGACAAACAAGG 359359 EphB4-31EphB4-31 chr14chr14 2976052429760524 0.10.1 aaAGAATATa-GaACAAACAGGGaaAGAATATa-GaACAAACAGGG 360360 EphB4-32EphB4-32 chr1chr1 3691433636914336 0.10.1 aCAGAA-ATaCGaACAAACATGGaCAGAA-ATaCGaACAAACATGG 361361 EphB4-33EphB4-33 chr21chr21 2622785326227853 0.10.1 aacaAATgcaaGGACAAACATGGaacaAATgcaaGGACAAACATGG 362362 EphB4-34EphB4-34 chr13chr13 6352839363528393 0.10.1 aCActAT-TTaaGACAAACAGGGaCActAT-TTaaGACAAACAGGG 363363 EphB4-35EphB4-35 chr10chr10 7251674772516747 0.10.1 aCAGAActacgaGACAAACACGGaCAGAActacgaGACAAACACGG 364364 EphB4-36EphB4-36 chr7chr7 2010829220108292 0.10.1 GCAGA-TAccCaGACAAACAGGGGCAGA-TAccCaGACAAACAGGG 365365 EphB4-37EphB4-37 chr1chr1 8989685689896856 0.10.1 taAGAATAT-aGGACAAACAGGAtaAGAATAT-aGGACAAACAGGA 366366 EphB4-38EphB4-38 chr4chr4 145533104145533104 0.10.1 cCAGAATATTa-GACAAACATGGcCAGAATATTa-GACAAACATGG 367367 EphB4-39EphB4-39 chr20chr20 97840969784096 0.10.1 agAGAATATagGGACAAAtAAGGagAGAATATagGGACAAAtAAGG 368368

Digenome-captured sites (HPRT-Exon6)Digenome-captured sites (HPRT-Exon6) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number HPRT_E6-001HPRT_E6-001 chrXchrX 133627607133627607 29.029.0 GTATAATCCAAAGATGGTCAAGGGTATAATCCAAAGATGGTCAAGG 9797 HPRT_E6-002HPRT_E6-002 chr12chr12 74689157468915 21.321.3 GTATAcatCcAAGATGGcCAGGGGTATAcatCcAAGATGGcCAGGG 369369 HPRT_E6-003HPRT_E6-003 chr3chr3 1005762110057621 17.017.0 GTATtA-CCAAAGATGGTCtGGGGTATtA-CCAAAGATGGTCtGGG 370370 HPRT_E6-004HPRT_E6-004 chr22chr22 3958606239586062 12.712.7 GTATAATC-AAAGATGGcCcTGGGTATAATC-AAAGATGGcCcTGG 371371 HPRT_E6-005HPRT_E6-005 chr7chr7 1392879213928792 10.510.5 GTATtAT-CAAAaATGGTCAAGGGTATtAT-CAAAaATGGTCAAGG 372372 HPRT_E6-006HPRT_E6-006 chr1chr1 225831201225831201 10.210.2 aTATAA-CCAAAGATGtTCACAGaTATAA-CCAAAGATGtTCACAG 373373 HPRT_E6-007HPRT_E6-007 chr17chr17 5357592553575925 9.39.3 aTATAATCttAAGATGGTCAAGGaTATAATCttAAGATGGTCAAGG 374374 HPRT_E6-008HPRT_E6-008 chr12chr12 1340697313406973 9.09.0 aTATAATCCtAAGATGtTCATGGaTATAATCCtAAGATGtTCATGG 375375 HPRT_E6-009HPRT_E6-009 chr14chr14 2725507727255077 6.16.1 GTATtATCCAAAGATGacCAGAGGTATtATCCAAAGATGacCAGAG 376376 HPRT_E6-010HPRT_E6-010 chr7chr7 8591458185914581 5.65.6 aTAcAATCCAAAGtTGGTCtGGGaTAcAATCCAAAGtTGGTCtGGG 377377 HPRT_E6-011HPRT_E6-011 chr3chr3 99066339906633 4.74.7 aTATAttaCCAAAGATGGTCtGGGaTATAttaCCAAAGATGGTCtGGG 378378 HPRT_E6-012HPRT_E6-012 chr8chr8 125496169125496169 4.54.5 GTAgAATCCAtAGATGGaCAGGGGTAgAATCCAtAGATGGaCAGGG 379379 HPRT_E6-013HPRT_E6-013 chr17chr17 1006448210064482 4.34.3 GTATtA-CCAAAGATGGTCATGGGTATtA-CCAAAGATGGTCATGG 380380 HPRT_E6-014HPRT_E6-014 chr2chr2 5337435253374352 4.34.3 GTAcAATCaAAAGATGaaCAAGGGTAcAATCaAAAGATGaaCAAGG 381381 HPRT_E6-015HPRT_E6-015 chr4chr4 102026801102026801 4.14.1 aTATtATCCAAAGATGGagtTGGaTATtATCCAAAGATGGagtTGG 382382 HPRT_E6-016HPRT_E6-016 chr6chr6 1907006719070067 3.83.8 aTgTAtTCCAAAGATGGTCAGGGaTgTAtTCCAAAGATGGTCAGGG 383383 HPRT_E6-017HPRT_E6-017 chr6chr6 77613877761387 3.73.7 aagTAATCCAAAGATaGTCtTGGaagTAATCCAAAGATaGTCtTGG 384384 HPRT_E6-018HPRT_E6-018 chr12chr12 5961320359613203 3.63.6 GTATAAcCCAAAGAaaGTaATGGGTATAAcCCAAAGAaaGTaATGG 385385 HPRT_E6-019HPRT_E6-019 chr16chr16 2033681120336811 3.63.6 aTATAtATtCcAAGATGGTtcTGGaTATAtATtCcAAGATGGTtcTGG 386386 HPRT_E6-020HPRT_E6-020 chr4chr4 136809212136809212 3.53.5 tTATAATCCAAAGAaGGcCAAGGtTATAATCCAAAGAaGGcCAAGG 387387 HPRT_E6-021HPRT_E6-021 chr12chr12 117915656117915656 3.53.5 GTATctAcCCAAAGATGtTCATGGGTATctAcCCAAAGATGtTCATGG 388388 HPRT_E6-022HPRT_E6-022 chr14chr14 4500586145005861 3.43.4 GTATAAT--AAAGATGGTCAAGGGTATAAT--AAAGATGGTCAAGG 389389 HPRT_E6-023HPRT_E6-023 chr14chr14 104033102104033102 3.33.3 aTAgAtTCCAAAGATGGaCATGGaTAgAtTCCAAAGATGGaCATGG 390390 HPRT_E6-024HPRT_E6-024 chr11chr11 9373192493731924 3.13.1 cTATAATCtAAAaATGGTCAAGGcTATAATCtAAAaATGGTCAAGG 391391 HPRT_E6-025HPRT_E6-025 chr13chr13 7525716575257165 2.92.9 GTATAtTagAAAGATGGTCATGAGTATAtTagAAAGATGGTCATGA 392392 HPRT_E6-026HPRT_E6-026 chr15chr15 5491162054911620 2.82.8 GgATAATCaAAAGATGGaCtTGGGgATAATCaAAAGATGGaCtTGG 393393 HPRT_E6-027HPRT_E6-027 chrXchrX 68495116849511 2.62.6 aTATAATgCAAAGcTGGTCACGGaTATAATgCAAAGcTGGTCACGG 394394 HPRT_E6-028HPRT_E6-028 chr11chr11 8752637187526371 2.52.5 aTAcAATCCAAAGATatTCtAGGaTAcAATCCAAAGATatTCtAGG 395395 HPRT_E6-029HPRT_E6-029 chr3chr3 1965258319652583 2.42.4 GTATAATCCAAAGgTGGcCtAGGGTATAATCCAAAGgTGGcCtAGG 396396 HPRT_E6-030HPRT_E6-030 chr17chr17 4500912845009128 2.42.4 aTATAATCCAtAGAaGGTCAAGAaTATAATCCAtAGAaGGTCAAGA 397397 HPRT_E6-031HPRT_E6-031 chr8chr8 90906639090663 2.32.3 GatatAatacAAGATGGaCAAGGGatatAatacAAGATGGaCAAGG 398398 HPRT_E6-032HPRT_E6-032 chr12chr12 68105016810501 2.22.2 GgATAATCCAAAGATGGTgcAAGGgATAATCCAAAGATGGTgcAAG 399399 HPRT_E6-033HPRT_E6-033 chr6chr6 118233456118233456 1.51.5 aTATAAaCCAAAGATcGTtAAGGaTATAAaCCAAAGATcGTtAAGG 400400 HPRT_E6-034HPRT_E6-034 chr14chr14 8566772985667729 1.41.4 tctcccTCCAAAGAaGGTCACGGtctcccTCCAAAGAaGGTCACGG 401401 HPRT_E6-035HPRT_E6-035 chrXchrX 110551547110551547 1.41.4 tTATAgTCCAAAGgaaGTCAGGGtTATAgTCCAAAGgaaGTCAGGG 402402 HPRT_E6-036HPRT_E6-036 chr8chr8 1863033918630339 1.21.2 tatTtATCCAAAGATGGTCtAGAtatTtATCCAAAGATGGTCtAGA 403403 HPRT_E6-037HPRT_E6-037 chr12chr12 4533833445338334 1.11.1 aTATAtaCCAAAGgTaGTCATGGaTATAtaCCAAAGgTaGTCATGG 404404 HPRT_E6-038HPRT_E6-038 chr7chr7 135056752135056752 1.11.1 aggagATCCAAAGATGGTCAAGGaggagATCCAAAGATGGTCAAGG 405405 HPRT_E6-039HPRT_E6-039 chr9chr9 8209037582090375 1.11.1 acATAgTCCAAAtATGGaCAGGGacATAgTCCAAAtATGGaCAGGG 406406 HPRT_E6-040HPRT_E6-040 chr12chr12 103187212103187212 1.01.0 GTATAtAattcAAGATGGTCAGGAGTATAtAattcAAGATGGTCAGGA 407407 HPRT_E6-041HPRT_E6-041 chr12chr12 5899660658996606 1.01.0 GaATAAgCCAAAGATGGTCAGTGGaATAAgCCAAAGATGGTCAGTG 408408 HPRT_E6-042HPRT_E6-042 chr12chr12 4965746849657468 1.01.0 GTATctcCCAgAGATGGTCAAGGGTATctcCCAgAGATGGTCAAGG 409409 HPRT_E6-043HPRT_E6-043 chr7chr7 120024149120024149 0.90.9 aTgTAATCtAAAGATGaTtATGGaTgTAATCtAAAGATGaTtATGG 410410 HPRT_E6-044HPRT_E6-044 chr15chr15 101375955101375955 0.90.9 GTATAA-CCAAtGATGGTCAGGAGTATAA-CCAAtGATGGTCAGGA 411411 HPRT_E6-045HPRT_E6-045 chr10chr10 1387322213873222 0.90.9 aTgTcATCCAAAGAaGGTCAGAGaTgTcATCCAAAGAaGGTCAGAG 412412 HPRT_E6-046HPRT_E6-046 chr21chr21 4142816641428166 0.90.9 agATAtTCCAAAGATGGTgAGGGagATAtTCCAAAGATGGTgAGGG 413413 HPRT_E6-047HPRT_E6-047 chr1chr1 73144837314483 0.80.8 tTtccAcCCAAAGATGGTCcAGGtTtccAcCCAAAGATGGTCcAGG 414414 HPRT_E6-048HPRT_E6-048 chr8chr8 133182863133182863 0.80.8 tTATAgctCcAAGATGGTCAAGGtTATAgctCcAAGATGGTCAAGG 415415 HPRT_E6-049HPRT_E6-049 chr6chr6 12539971253997 0.80.8 tcAgAATCCtAAGATGGTCAGGAtcAgAATCCtAAGATGGTCAGGA 416416 HPRT_E6-050HPRT_E6-050 chr12chr12 1578342415783424 0.80.8 GgATAATCCAAAGtTGGTCATAGGgATAATCCAAAGtTGGTCATAG 417417 HPRT_E6-051HPRT_E6-051 chr9chr9 1516011115160111 0.70.7 GTATAATCC-tAGATGGTgAGGGGTATAATCC-tAGATGGTgAGGG 418418 HPRT_E6-052HPRT_E6-052 chr12chr12 2915337229153372 0.70.7 GTATttTCCAAcGATGGTCATGGGTATttTCCAAcGATGGTCATGG 419419 HPRT_E6-053HPRT_E6-053 chr3chr3 11232041123204 0.70.7 GaATAATtCAAAGATaaTCAAGGGaATAATtCAAAGATaaTCAAGG 420420 HPRT_E6-054HPRT_E6-054 chr2chr2 5099954350999543 0.70.7 aaATAATa-AAAGATGGTCATGGaaATAATa-AAAGATGGTCATGG 421421 HPRT_E6-055HPRT_E6-055 chr2chr2 3676851336768513 0.70.7 cTcatATCCAAAGATGGTaAAGGcTcatATCCAAAGATGGTaAAGG 422422 HPRT_E6-056HPRT_E6-056 chr6chr6 42105654210565 0.70.7 tTATAA-CCAAAGATGGTaATGGtTATAA-CCAAAGATGGTaATGG 423423 HPRT_E6-057HPRT_E6-057 chr14chr14 4826058148260581 0.70.7 GccTAATCCAAAGATGagCAGGGGccTAATCCAAAGATGagCAGGG 424424 HPRT_E6-058HPRT_E6-058 chr8chr8 117575569117575569 0.70.7 cTATAATgCCAAAGATGGTCATGGcTATAATgCCAAAGATGGTCATGG 425425 HPRT_E6-059HPRT_E6-059 chr5chr5 160988739160988739 0.70.7 GTATAgatCAAAGATGccCACGGGTATAgatCAAAGATGccCACGG 426426 HPRT_E6-060HPRT_E6-060 chr14chr14 9436421694364216 0.60.6 tctcctTCCAAAGATGGTCtGGGtctcctTCCAAAGATGGTCtGGG 427427 HPRT_E6-061HPRT_E6-061 chr9chr9 125328946125328946 0.60.6 aTAatcTCCAAAGATGtTCAGGGaTAatcTCCAAAGATGtTCAGGG 428428 HPRT_E6-062HPRT_E6-062 chr9chr9 134083092134083092 0.60.6 aTATttTCCAAAGATGaTCACAGaTATttTCCAAAGATGaTCACAG 429429 HPRT_E6-063HPRT_E6-063 chr16chr16 61592716159271 0.60.6 tatTgATCCAAAGATGaTCAAGAtatTgATCCAAAGATGaTCAAGA 430430 HPRT_E6-064HPRT_E6-064 chr22chr22 2782298727822987 0.60.6 aTATAtTtCcAAGATGGgCAGGGaTATAtTtCcAAGATGGgCAGGG 431431 HPRT_E6-065HPRT_E6-065 chr19chr19 4864016748640167 0.60.6 tTcTcATCCAAgGATGGTCAGGGtTcTcATCCAAgGATGGTCAGGG 432432 HPRT_E6-066HPRT_E6-066 chr11chr11 107913428107913428 0.60.6 aTATAAaCaAAAGATGGTttAGGaTATAAaCaAAAGATGGTttAGG 433433 HPRT_E6-067HPRT_E6-067 chr22chr22 2551989725519897 0.60.6 aaATAgTCCAAgGATGGcCAGGGaaATAgTCCAAgGATGGcCAGGG 434434 HPRT_E6-068HPRT_E6-068 chr2chr2 222954701222954701 0.50.5 GTATttTCtAAAGATGGTCATGAGTATttTCtAAAGATGGTCATGA 435435 HPRT_E6-069HPRT_E6-069 chr1chr1 2173697321736973 0.50.5 GgATAAatCcAAGtTGGTCATGGGgATAAatCcAAGtTGGTCATGG 436436 HPRT_E6-070HPRT_E6-070 chr20chr20 4121852741218527 0.50.5 aTATttTCCAAAGATGGTCATGAaTATttTCCAAAGATGGTCATGA 437437 HPRT_E6-071HPRT_E6-071 chr16chr16 5585532355855323 0.50.5 tgActcTCCAAAGATGGTCACAGtgActcTCCAAAGATGGTCACAG 438438 HPRT_E6-072HPRT_E6-072 chr3chr3 3972548339725483 0.50.5 caATAtTCCAAAGATGGTtATGGcaATAtTCCAAAGATGGTtATGG 439439 HPRT_E6-073HPRT_E6-073 chrXchrX 141390834141390834 0.50.5 GcAgcATCCAAAGATGGgCAGGGGcAgcATCCAAAGATGGgCAGGG 440440 HPRT_E6-074HPRT_E6-074 chr4chr4 2307041823070418 0.50.5 cTATAATtCAAAGATGtTCtTGGcTATAATtCAAAGATGtTCtTGG 441441 HPRT_E6-075HPRT_E6-075 chr8chr8 96538629653862 0.50.5 cacatATatAAAGATGGTCATGGcacatATatAAAGATGGTCATGG 442442 HPRT_E6-076HPRT_E6-076 chr22chr22 3208505232085052 0.50.5 GTATctTCCAAAGATGGcCAATGGTATctTCCAAAGATGGcCAATG 443443 HPRT_E6-077HPRT_E6-077 chr16chr16 80111438011143 0.50.5 aatattaCCtAAGATGGTCATGGaatattaCCtAAGATGGTCATGG 444444 HPRT_E6-078HPRT_E6-078 chr13chr13 2157459321574593 0.50.5 GTATAAaCCAAAaATatTCAGGGGTATAAaCCAAAaATatTCAGGG 445445 HPRT_E6-079HPRT_E6-079 chr12chr12 5899558158995581 0.40.4 GaATAAgCCAAAGATGGTCAGTGGaATAAgCCAAAGATGGTCAGTG 446446 HPRT_E6-080HPRT_E6-080 chr10chr10 107263858107263858 0.40.4 aTATAATgCAAAGAaaGTCAAAGaTATAATgCAAAGAaaGTCAAAG 447447 HPRT_E6-081HPRT_E6-081 chr11chr11 4402476444024764 0.40.4 GTATAAgCCAAAGcaGGTCACGGGTATAAgCCAAAGcaGGTCACGG 448448 HPRT_E6-082HPRT_E6-082 chr6chr6 138575959138575959 0.40.4 aTATAAaCCAAAGAcGGcCcTGGaTATAAaCCAAAGAcGGcCcTGG 449449 HPRT_E6-083HPRT_E6-083 chr3chr3 9896037398960373 0.40.4 agATAATCCAAgGATGGTagAGGagATAATCCAAgGATGGTagAGG 450450 HPRT_E6-084HPRT_E6-084 chr8chr8 4318179143181791 0.40.4 aTATAATCCAgAaATGtTCACGGaTATAATCCAgAaATGtTCACGG 451451 HPRT_E6-085HPRT_E6-085 chr5chr5 118103678118103678 0.40.4 actcttTtCcAAGATGGTCAGGGactcttTtCcAAGATGGTCAGGG 452452 HPRT_E6-086HPRT_E6-086 chr7chr7 129222414129222414 0.40.4 cTgatgTCCAAAGATGGTCtCGGcTgatgTCCAAAGATGGTCtCGG 453453 HPRT_E6-087HPRT_E6-087 chr3chr3 160736673160736673 0.40.4 GTgaAtTCCAAAGAaGGTCATGGGTgaAtTCCAAAGAaGGTCATGG 454454 HPRT_E6-088HPRT_E6-088 chrXchrX 125678217125678217 0.30.3 catTAATCCAAAGATGaTaAAGGcatTAATCCAAAGATGaTaAAGG 455455 HPRT_E6-089HPRT_E6-089 chr6chr6 152915585152915585 0.30.3 GctctATCCAAAGATGGaCAGGGGctctATCCAAAGATGGaCAGGG 456456 HPRT_E6-090HPRT_E6-090 chr9chr9 128839841128839841 0.30.3 cTgTAATCCAgAaATaGTCAGGGcTgTAATCCAgAaATaGTCAGGG 457457 HPRT_E6-091HPRT_E6-091 chr14chr14 9698043496980434 0.30.3 GTATAtgTCCAAAGATGaTCATGCGTATAtgTCCAAAGATGaTCATGC 458458 HPRT_E6-092HPRT_E6-092 chr13chr13 8016848080168480 0.30.3 cTATAATCCAAgGAaGGcCAAGGcTATAATCCAAgGAaGGcCAAGG 459459 HPRT_E6-093HPRT_E6-093 chr8chr8 7417969674179696 0.30.3 GTATccTCCAAAGATGagtAAGGGTATccTCCAAAGATGagtAAGG 460460 HPRT_E6-094HPRT_E6-094 chr4chr4 112559644112559644 0.30.3 aaATAATaCAAAGATGGTtgGGGaaATAATaCAAAGATGGTtgGGG 461461 HPRT_E6-095HPRT_E6-095 chr13chr13 7450557674505576 0.30.3 caATAATCCAAAGAaGaTtAAGGcaATAATCCAAAGAaGaTtAAGG 462462 HPRT_E6-096HPRT_E6-096 chr19chr19 3226742132267421 0.30.3 aTATAATCaCAAAGATGGcaATGGaTATAATCaCAAAGATGGcaATGG 463463 HPRT_E6-097HPRT_E6-097 chr14chr14 9587707595877075 0.30.3 GTtTAAgCCAAAGtTGGTCgGGGGTtTAAgCCAAAGtTGGTCgGGG 464464 HPRT_E6-098HPRT_E6-098 chr8chr8 3626330736263307 0.30.3 GTAgcATCCAAAGATGGTggAGGGTAgcATCCAAAGATGGTggAGG 465465 HPRT_E6-099HPRT_E6-099 chr5chr5 2828791128287911 0.30.3 GTAgAATatcAAGATGGTCAAGGGTAgAATatcAAGATGGTCAAGG 466466 HPRT_E6-100HPRT_E6-100 chr5chr5 9831011498310114 0.30.3 agAatgcCCtAAGATGGTCtGGGagAatgcCCtAAGATGGTCtGGG 467467 HPRT_E6-101HPRT_E6-101 chr6chr6 7619945176199451 0.30.3 aTATAAcCagAAGATGtTCATGGaTATAAcCagAAGATGtTCATGG 468468 HPRT_E6-102HPRT_E6-102 chr10chr10 8396602183966021 0.30.3 GTATtATCtAAAGgaGGTCATGGGTATtATCtAAAGgaGGTCATGG 469469 HPRT_E6-103HPRT_E6-103 chr1chr1 5505133755051337 0.20.2 agATAtaCagAAGATGGTCgGGGagATAtaCagAAGATGGTCgGGG 470470 HPRT_E6-104HPRT_E6-104 chr8chr8 9147518891475188 0.20.2 aaATAATCCAAAaATaGTCATGGaaATAATCCAAAaATaGTCATGG 471471 HPRT_E6-105HPRT_E6-105 chr9chr9 2022575320225753 0.20.2 cTtTAtTCCAAAGATaGTCATGGcTtTAtTCCAAAGATaGTCATGG 472472 HPRT_E6-106HPRT_E6-106 chr6chr6 8130356481303564 0.20.2 GcATAttTCCAAAcATGGTCAAGGGcATAttTCCAAAcATGGTCAAGG 473473 HPRT_E6-107HPRT_E6-107 chr1chr1 241707903241707903 0.20.2 GTATttTtCAAAGATGGTCATGAGTATttTtCAAAGATGGTCATGA 474474 HPRT_E6-108HPRT_E6-108 chr9chr9 2819416728194167 0.20.2 GTATttTCCAAAGATGGcCACGAGTATttTCCAAAGATGGcCACGA 475475 HPRT_E6-109HPRT_E6-109 chr3chr3 1700048417000484 0.20.2 tataAATCCAAgGATGGTCtGAGtataAATCCAAgGATGGTCtGAG 476476 HPRT_E6-110HPRT_E6-110 chr16chr16 7385383473853834 0.20.2 tTATttTCCAAAGATGGTCACGAtTATttTCCAAAGATGGTCACGA 477477 HPRT_E6-111HPRT_E6-111 chr15chr15 2999966029999660 0.20.2 tgcacATCCAcAGATGGTCAGGGtgcacATCCAcAGATGGTCAGGG 478478 HPRT_E6-112HPRT_E6-112 chr5chr5 157715478157715478 0.20.2 GTgTAATCCAgAGATGaTCACAGGTgTAATCCAgAGATGaTCACAG 479479 HPRT_E6-113HPRT_E6-113 chr10chr10 27116442711644 0.20.2 tctTAATCCAtAGAaGGTCAAGGtctTAATCCAtAGAaGGTCAAGG 480480 HPRT_E6-114HPRT_E6-114 chr17chr17 6168990361689903 0.20.2 tTcaAAT--AAAGATGGTCACGGtTcaAAT--AAAGATGGTCACGG 481481 HPRT_E6-115HPRT_E6-115 chrXchrX 125134402125134402 0.20.2 tcATAATCCAAAaGATGGaCAGGGtcATAATCCAAAaGATGGaCAGGG 482482 HPRT_E6-116HPRT_E6-116 chr1chr1 9425124894251248 0.20.2 aTATAATaCAAAataGGTCAGGGaTATAATaCAAAataGGTCAGGG 483483 HPRT_E6-117HPRT_E6-117 chr22chr22 3510048835100488 0.20.2 cTAgAtaCCAAAGATGGTCAGAGcTAgAtaCCAAAGATGGTCAGAG 484484 HPRT_E6-118HPRT_E6-118 chr2chr2 3840788938407889 0.20.2 aTtTAgTCCAAAGAgGGTCAGAGaTtTAgTCCAAAGAgGGTCAGAG 485485 HPRT_E6-119HPRT_E6-119 chr7chr7 112015061112015061 0.20.2 aTATAcAaCCAAAGATGtTCtAGGaTATAcAaCCAAAGATGtTCtAGG 486486 HPRT_E6-120HPRT_E6-120 chr20chr20 21631272163127 0.20.2 GTATAtAcatAAAGAaGGTCATGGGTATAtAcatAAAGAaGGTCATGG 487487 HPRT_E6-121HPRT_E6-121 chr8chr8 100230333100230333 0.20.2 aTtatATCCAAAtATGGTCAGAGaTtatATCCAAAtATGGTCAGAG 488488 HPRT_E6-122HPRT_E6-122 chr2chr2 206041685206041685 0.20.2 tTATAATCCAtAAaATGGTCATAGtTATAATCCAtAAaATGGTCATAG 489489 HPRT_E6-123HPRT_E6-123 chr1chr1 153531237153531237 0.20.2 tTAgtcTCCAAAGATGGTCACTGtTAgtcTCCAAAGATGGTCACTG 490490 HPRT_E6-124HPRT_E6-124 chrXchrX 118562021118562021 0.20.2 tatcttTCCAAAGATGGTCtATGtatcttTCCAAAGATGGTCtATG 491491 HPRT_E6-125HPRT_E6-125 chr10chr10 2671885326718853 0.20.2 GTATttTCCAAAGcTaGTCATGGGTATttTCCAAAGcTaGTCATGG 492492 HPRT_E6-126HPRT_E6-126 chr17chr17 6118042561180425 0.20.2 GcATAATCCAAgGAaGGTCcTGGGcATAATCCAAgGAaGGTCcTGG 493493 HPRT_E6-127HPRT_E6-127 chr2chr2 125810813125810813 0.20.2 aTATttTCCAAAaATGGTCACAGaTATttTCCAAAaATGGTCACAG 494494 HPRT_E6-128HPRT_E6-128 chr7chr7 2829985428299854 0.20.2 aTATAATCCAAAagaaGgaAAAGaTATAATCCAAAagaaGgaAAAG 495495 HPRT_E6-129HPRT_E6-129 chr11chr11 2399559623995596 0.10.1 aTATAtcCaAAAGATGGTCtGGAaTATAtcCaAAAGATGGTCtGGA 496496 HPRT_E6-130HPRT_E6-130 chr1chr1 3430770934307709 0.10.1 GatattaaCAAAGATGGTCtGGGGatattaaCAAAGATGGTCtGGG 497497 HPRT_E6-131HPRT_E6-131 chr5chr5 173751304173751304 0.10.1 GaAgAATCCAAcGATGGcCACGGGaAgAATCCAAcGATGGcCACGG 498498 HPRT_E6-132HPRT_E6-132 chrXchrX 1444270514442705 0.10.1 acATAATCaCAAAtATGGTCACGGacATAATCaCAAAtATGGTCACGG 499499 HPRT_E6-133HPRT_E6-133 chr20chr20 1586718615867186 0.10.1 GTATttTCCAAAGATGGcCACAGGTATttTCCAAAGATGGcCACAG 500500 HPRT_E6-134HPRT_E6-134 chr5chr5 157484648157484648 0.10.1 tctaAtgaatAAGATGGTCgAGGtctaAtgaatAAGATGGTCgAGG 501501 HPRT_E6-135HPRT_E6-135 chr1chr1 203269364203269364 0.10.1 agATAATgCAAAGAcGGTtAGGGagATAATgCAAAGAcGGTtAGGG 502502 HPRT_E6-136HPRT_E6-136 chr12chr12 2898030328980303 0.10.1 GTATAtaCCAAAaATGGTgAAGGGTATAtaCCAAAaATGGTgAAGG 503503 HPRT_E6-137HPRT_E6-137 chr18chr18 5281848152818481 0.10.1 aTATAc-CCAAAGATGGTCcAAGaTATAc-CCAAAGATGGTCcAAG 504504 HPRT_E6-138HPRT_E6-138 chr10chr10 131217430131217430 0.10.1 tctgAcTCCcAAGATGGTCtTGGtctgAcTCCcAAGATGGTCtTGG 505505 HPRT_E6-139HPRT_E6-139 chr3chr3 109018997109018997 0.10.1 GgAgAtaCCAAAGATGGTCAGGAGgAgAtaCCAAAGATGGTCAGGA 506506 HPRT_E6-140HPRT_E6-140 chr21chr21 2093340420933404 0.10.1 GTATAtTtCAAAtATGGTCATAGGTATAtTtCAAAtATGGTCATAG 507507 HPRT_E6-141HPRT_E6-141 chr2chr2 220647283220647283 0.10.1 aTATAA-CCAAAGATtGTCAGAGaTATAA-CCAAAGATtGTCAGAG 508508 HPRT_E6-142HPRT_E6-142 chr22chr22 2319916523199165 0.10.1 cTggAgTCCAgAGATGGTCATGGcTggAgTCCAgAGATGGTCATGG 509509 HPRT_E6-143HPRT_E6-143 chr6chr6 1723768417237684 0.10.1 GTAgAAaCCAgAGATGGaCAAGGGTAgAAaCCAgAGATGGaCAAGG 510510 HPRT_E6-144HPRT_E6-144 chr10chr10 8224302882243028 0.10.1 tTATAATaCAAAGgTGGTaATGGtTATAATaCAAAGgTGGTaATGG 511511 HPRT_E6-145HPRT_E6-145 chr15chr15 4300416743004167 0.10.1 cTATAATCaAAAGtaGGTCATAGcTATAATCaAAAGtaGGTCATAG 512512 HPRT_E6-146HPRT_E6-146 chr7chr7 2548572725485727 0.10.1 aTATttTCCAAAaATGGTCATAGaTATttTCCAAAaATGGTCATAG 513513 HPRT_E6-147HPRT_E6-147 chr2chr2 7142966871429668 0.10.1 GTAaAATCCAAAGAgGacCAGGGGTAaAATCCAAAGAgGacCAGGG 514514 HPRT_E6-148HPRT_E6-148 chr3chr3 141311087141311087 0.10.1 cctaAATCtAAAGATGGTCgGGGcctaAATCtAAAGATGGTCgGGG 515515

Digenome-captured sites (HPRT-Exon8)Digenome-captured sites (HPRT-Exon8) Site No.Site No. ChrChr PositionPosition DNA Cleavage ScoreDNA Cleavage Score DNA seq at a cleavage sitesDNA seq at a cleavage sites 서열번호Sequence number HPRT_E8-01HPRT_E8-01 chrXchrX 133632686133632686 2.62.6 GAAGTATTCATTATAGTCAAGGGGAAGTATTCATTATAGTCAAGGG 9898 HPRT_E8-02HPRT_E8-02 chr11chr11 9338267493382674 1.31.3 GAAGcATTCATTATAGTCAAAGGGAAGcATTCATTATAGTCAAAGG 516516 HPRT_E8-03HPRT_E8-03 chr21chr21 3411153634111536 0.60.6 GAAGaATTCATTATAGaCAATGGGAAGaATTCATTATAGaCAATGG 517517 HPRT_E8-04HPRT_E8-04 chr11chr11 100880874100880874 0.60.6 aAgcTATTCATTATAGcaAATGGaAgcTATTCATTATAGcaAATGG 518518 HPRT_E8-05HPRT_E8-05 chr22chr22 2928565429285654 0.60.6 GAAGTtaATTCATTATAGaCAATGGGAAGTtaATTCATTATAGaCAATGG 519519 HPRT_E8-06HPRT_E8-06 chr4chr4 1586663015866630 0.50.5 aAAGTATTaATTATAGTCAAGGAaAAGTATTaATTATAGTCAAGGA 520520 HPRT_E8-07HPRT_E8-07 chr2chr2 5354361553543615 0.50.5 GAAGTAT-CcTTATAGTCAgAAGGAAGTAT-CcTTATAGTCAgAAG 521521 HPRT_E8-08HPRT_E8-08 chr3chr3 149876617149876617 0.40.4 GAAGTAT-CATTATAGTCttGGGGAAGTAT-CATTATAGTCttGGG 522522 HPRT_E8-09HPRT_E8-09 chr8chr8 7142923371429233 0.40.4 GcAGTATTCATaATAGTCAAAAGGcAGTATTCATaATAGTCAAAAG 523523 HPRT_E8-10HPRT_E8-10 chrXchrX 146032194146032194 0.40.4 aAAGTATTtcaTATAGcCAAAGGaAAGTATTtcaTATAGcCAAAGG 524524 HPRT_E8-11HPRT_E8-11 chr5chr5 132311070132311070 0.40.4 GAAtTATTCATcATAGcCAAAGGGAAtTATTCATcATAGcCAAAGG 525525 HPRT_E8-12HPRT_E8-12 chr3chr3 3634974036349740 0.30.3 tAAGTAaTCATTATAGTCAgATGtAAGTAaTCATTATAGTCAgATG 526526 HPRT_E8-13HPRT_E8-13 chr3chr3 181655989181655989 0.30.3 atAGTATTCATTATAGTaAcAGGatAGTATTCATTATAGTaAcAGG 527527 HPRT_E8-14HPRT_E8-14 chr11chr11 116029576116029576 0.30.3 aAAaTATcCATTATAGTCttACGaAAaTATcCATTATAGTCttACG 528528 HPRT_E8-15HPRT_E8-15 chr10chr10 131905650131905650 0.30.3 GAAcTATTCATTATtaTCAACGGGAAcTATTCATTATtaTCAACGG 529529 HPRT_E8-16HPRT_E8-16 chr9chr9 8931230889312308 0.20.2 GttGTATTCATTATAGTCAAGAGGttGTATTCATTATAGTCAAGAG 530530 HPRT_E8-17HPRT_E8-17 chr4chr4 178543184178543184 0.20.2 atAGTATTCATTATAGTaAcAGGatAGTATTCATTATAGTaAcAGG 531531 HPRT_E8-18HPRT_E8-18 chr12chr12 7273353572733535 0.20.2 agAGTATcCAccATAGTCAAGGGagAGTATcCAccATAGTCAAGGG 532532 HPRT_E8-19HPRT_E8-19 chr1chr1 4591629145916291 0.10.1 GAAGTAcatcTTATAaTCAATGGGAAGTAcatcTTATAaTCAATGG 533533 HPRT_E8-20HPRT_E8-20 chr4chr4 153599265153599265 0.10.1 aAtGTATTCATTATAGgCAAGAGaAtGTATTCATTATAGgCAAGAG 534534

도 11 및 표 11 내지 18에서와 같이, Digenome 1.0 (DNA Cleavage Score cutoff: 2.5)으로 분석시, ABE7.10 + Endo V와 복합체를 이루는 총 7 개의 sgRNA는 표적 부위를 포함하여 1 내지 28 개 (sgRNA 당 8±4 개) 부위에서 인간 유전체 DNA를 절단하였다. 이러한 결과는 Cas9 뉴클레아제와 BE3ΔUGI 디아미나아제 (+ USER)가 각각 인간 유전체에서 70±30개 부위 (Kim, D., Kim, S., Kim, S., Park, J. & Kim, J.S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome research 26, 406-415 (2016)) 및 8±3 부위에서 유전체 DNA를 절단한 결과와 비교될 수 있다. 11 and Tables 11 to 18, when analyzed by Digenome 1.0 (DNA Cleavage Score cutoff: 2.5), a total of 7 sgRNAs forming a complex with ABE7.10 + Endo V were 1 to 28 including the target site ( Human genomic DNA was cut at 8±4 per sgRNA) site. These results show that Cas9 nuclease and BE3ΔUGI deaminase (+ USER) are 70±30 sites in the human genome, respectively (Kim, D., Kim, S., Kim, S., Park, J. & Kim, JS) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq.Genome research 26, 406-415 (2016)) and the results of cutting genomic DNA at 8±3 sites.

본 실시예에서 분석된 7 개의 sgRNA 중 두 개 (HEK2 및 RNF2)의 sgRNA를 각각 BE3ΔUGI 또는 Cas9와 함께 사용하여, Digenome 분석을 수행하고, 그 결과를 ABE7.10와 함께 사용하여 얻어진 결과와 비교하여, 도 12a 및 도 12b에 나타내었다. HEK2 sgRNA를 ABE7.10, BE3ΔUGI, 및 Cas9와 각각 결합하여 사용한 경우, 각각 17개, 2개, 및 24개의 in vitro 절단 부위를 생성하였다 (도 12c 참조). RNF2 sgRNA는 ABE7.10, BE3ΔUGI, 및 Cas9와 각각 결합하여 사용된 경우, 각각 5개, 1개, 및 13개의 절단 부위를 생성하였다 (도 12d 참조). 2 개의 BE3 디아미나아제를 사용하여 확인 된 3 개의 in vitro 절단 부위는 모두 각각의 ABE7.10 디아미나아제에 의해서도 확인되었다. 대조적으로, ABE7.10와 Cas9를 사용하여 얻은 in vitro 절단 부위는 크게 상이하였다. HEK2 ABE7.10으로 얻은 17개 중 10개 부위 (59%)는 Cas9를 사용한 경우에는 동정되지 않았다. RNF2 ABE7.10으로 얻은 5 개 중 2개 부위 (40%)는 Cas9를 Cas9를 사용한 경우에는 동정되지 않았다. 이러한 결과는 ABE가 일반적으로 Cas9보다 더 특이적이면서도 Cas9와 상이한 off-target site 세트를 인식할 수 있음을 시사한다.Two of the seven sgRNAs analyzed in this example (HEK2 and RNF2) were used together with BE3ΔUGI or Cas9, respectively, to perform Digenome analysis, and the results were compared with the results obtained using ABE7.10. , Shown in Figures 12a and 12b. When HEK2 sgRNA was used in combination with ABE7.10, BE3ΔUGI, and Cas9, respectively, 17, 2, and 24 in vitro cleavage sites were generated, respectively (see FIG. 12C). When RNF2 sgRNA was used in combination with ABE7.10, BE3ΔUGI, and Cas9, respectively, 5, 1, and 13 cleavage sites were generated, respectively (see FIG. 12D). All three in vitro cleavage sites identified using two BE3 deaminases were also identified by their respective ABE7.10 deaminases. In contrast, the in vitro cleavage sites obtained using ABE7.10 and Cas9 were significantly different. Ten of the 17 sites (59%) obtained with HEK2 ABE7.10 were not identified when Cas9 was used. Two of the 5 sites (40%) obtained with RNF2 ABE7.10 were not identified when Cas9 and Cas9 were used. These results suggest that ABE is generally more specific than Cas9, yet able to recognize a set of off-target sites different from Cas9.

상기한 7개 sgRNA를 사용하여 targeted amplicon sequencing를 통하여 확인된 57개 in vitro cleavage sites에서의 ABE off-target base editing을 검증하였다. 또한, Digenome 2.0 프로그램을 사용하여, PAM과 유사한 서열 (5'-NGN-3 '또는 5'-NNG-3')을 포함하고 cutoff score가 >0.1이며, 각각의 on-target sequences와 비교하여 10개 이하의 mismatche를 포함하는 후보 off-target sites을 추가로 확인하였다.Using the above seven sgRNAs, ABE off-target base editing was verified in 57 in vitro cleavage sites identified through targeted amplicon sequencing. In addition, using the Digenome 2.0 program, it contains a sequence similar to PAM (5'-NGN-3'or 5'-NNG-3') and has a cutoff score of >0.1, compared to each of the on-target sequences. Candidate off-target sites including less than four mismatches were further identified.

ABE7.10과 복합체를 형성한 7 개의 sgRNA를 이용하여 12 내지 152개 사이트 (60±20, on average)를 얻었으며, 이는 Digenome 1.0으로 얻은 7개 on-target 부위와 57개 in vitro 절단 부위 (표 12 내지 18)를 모두 포함하였다. deep sequencing을 통하여 얻어진 절단 점수가 1 이상이거나 서열 상동성이 높은 부위를 포함하여 총 193개 부위에서 7 개의 ABE7.10 디아미나아제의 염기 교정 또는 유전자 교정 빈도를 측정하여, 그 결과를 표 19 내지 표 25 및 도 12e에 나타내었다. Using 7 sgRNAs complexed with ABE7.10, 12 to 152 sites (60±20, on average) were obtained, which were 7 on-target sites obtained with Digenome 1.0 and 57 in vitro cleavage sites ( Tables 12 to 18) were all included. The frequency of base correction or gene correction of 7 ABE7.10 deaminases was measured at a total of 193 sites, including sites with a cleavage score of 1 or more obtained through deep sequencing or with high sequence homology, and the results are shown in Table 19 to It is shown in Table 25 and Figure 12e.

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (HEK2; 'DNA sequence at a cleavage sites'은 표 12 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (HEK2; see Table 12 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 HEK2_001HEK2_001 20.120.1 0.120.12 0.110.11 0.060.06 0.040.04 0.010.01 0.010.01 HEK2_002HEK2_002 15.115.1 0.000.00 0.000.00 0.040.04 0.040.04 0.020.02 0.010.01 HEK2_003HEK2_003 14.714.7 0.060.06 0.090.09 0.030.03 0.040.04 0.000.00 0.010.01 HEK2_004HEK2_004 14.314.3 0.100.10 0.310.31 0.070.07 0.180.18 0.020.02 3.093.09 HEK2_005HEK2_005 13.413.4 0.150.15 0.130.13 0.000.00 0.000.00 0.000.00 0.010.01 HEK2_006HEK2_006 13.413.4 0.000.00 0.000.00 0.000.00 0.000.00 0.060.06 0.110.11 HEK2_007HEK2_007 8.98.9 0.060.06 63.1963.19 0.060.06 74.0374.03 0.000.00 87.5787.57 HEK2_008HEK2_008 6.66.6 0.060.06 0.120.12 0.030.03 0.030.03 0.020.02 0.010.01 HEK2_009HEK2_009 5.85.8 0.100.10 0.090.09 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_010HEK2_010 5.15.1 0.000.00 0.000.00 0.030.03 0.030.03 0.000.00 0.010.01 HEK2_011HEK2_011 4.94.9 0.090.09 0.080.08 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_012HEK2_012 4.64.6 0.050.05 0.060.06 0.000.00 0.000.00 0.020.02 0.000.00 HEK2_013HEK2_013 3.93.9 0.000.00 0.000.00 0.000.00 0.000.00 0.010.01 0.000.00 HEK2_014HEK2_014 3.53.5 0.080.08 0.080.08 0.180.18 0.110.11 0.000.00 0.000.00 HEK2_015HEK2_015 3.03.0 0.110.11 0.130.13 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_016HEK2_016 2.92.9 No PCRNo PCR HEK2_017HEK2_017 2.72.7 0.130.13 0.070.07 0.000.00 0.000.00 0.010.01 0.000.00 HEK2_018HEK2_018 2.52.5 0.180.18 0.200.20 0.080.08 0.060.06 0.000.00 0.000.00 HEK2_019HEK2_019 2.22.2 0.120.12 0.120.12 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_020HEK2_020 2.12.1 0.120.12 0.200.20 0.020.02 0.030.03 0.090.09 0.080.08 HEK2_021HEK2_021 2.12.1 0.170.17 0.190.19 0.230.23 0.230.23 0.010.01 0.080.08 HEK2_022HEK2_022 2.12.1 0.130.13 0.110.11 0.080.08 0.080.08 0.000.00 0.010.01 HEK2_023HEK2_023 2.02.0 0.090.09 0.090.09 0.000.00 0.000.00 0.090.09 0.060.06 HEK2_024HEK2_024 1.71.7 0.000.00 0.000.00 0.080.08 0.060.06 0.000.00 0.000.00 HEK2_025HEK2_025 1.41.4 0.130.13 0.140.14 0.030.03 0.050.05 0.010.01 0.010.01 HEK2_026HEK2_026 1.31.3 0.130.13 0.160.16 0.080.08 0.080.08 0.000.00 0.000.00 HEK2_027HEK2_027 1.31.3 0.150.15 0.160.16 0.060.06 0.030.03 0.000.00 0.000.00 HEK2_028HEK2_028 1.31.3 0.000.00 0.000.00 0.030.03 0.020.02 0.010.01 0.020.02 HEK2_029HEK2_029 1.21.2 0.230.23 0.150.15 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_030HEK2_030 1.21.2 0.090.09 0.110.11 0.000.00 0.000.00 0.010.01 0.020.02 HEK2_031HEK2_031 1.21.2 0.090.09 0.120.12 0.020.02 0.030.03 0.010.01 0.000.00 HEK2_032HEK2_032 1.11.1 0.050.05 0.090.09 0.040.04 0.060.06 0.000.00 0.000.00 HEK2_033HEK2_033 1.11.1 0.110.11 0.220.22 0.070.07 0.040.04 0.000.00 0.000.00 HEK2_034HEK2_034 1.01.0 0.050.05 0.050.05 0.070.07 0.130.13 2.422.42 4.104.10 HEK2_042HEK2_042 0.70.7 0.030.03 0.040.04 0.070.07 0.110.11 0.030.03 0.070.07 HEK2_044HEK2_044 0.70.7 0.000.00 0.000.00 0.080.08 0.030.03 0.000.00 0.000.00 HEK2_050HEK2_050 0.50.5 0.220.22 0.190.19 0.000.00 0.000.00 0.220.22 0.230.23 HEK2_052HEK2_052 0.50.5 0.130.13 0.110.11 0.030.03 0.020.02 0.130.13 0.110.11 HEK2_065HEK2_065 0.40.4 0.110.11 0.150.15 0.150.15 0.080.08 0.110.11 0.070.07 HEK2_079HEK2_079 0.30.3 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_082HEK2_082 0.30.3 0.000.00 0.000.00 0.340.34 0.240.24 0.000.00 0.000.00 HEK2_092HEK2_092 0.20.2 0.110.11 0.080.08 0.120.12 0.110.11 0.110.11 0.090.09 HEK2_093HEK2_093 0.20.2 0.020.02 0.030.03 0.140.14 0.130.13 0.020.02 0.050.05 HEK2_099HEK2_099 0.20.2 0.060.06 0.080.08 0.000.00 0.000.00 0.130.13 0.080.08 HEK2_101HEK2_101 0.20.2 0.000.00 0.000.00 0.070.07 0.060.06 0.000.00 0.000.00 HEK2_105HEK2_105 0.20.2 0.000.00 0.000.00 0.080.08 0.070.07 0.000.00 0.000.00 HEK2_106HEK2_106 0.20.2 0.210.21 0.210.21 0.060.06 0.030.03 0.210.21 0.150.15 HEK2_110HEK2_110 0.20.2 0.000.00 0.000.00 0.040.04 0.020.02 0.000.00 0.000.00 HEK2_119HEK2_119 0.20.2 0.000.00 0.000.00 0.050.05 0.050.05 0.000.00 0.000.00 HEK2_121HEK2_121 0.10.1 0.000.00 0.020.02 0.050.05 0.100.10 0.060.06 0.070.07 HEK2_139HEK2_139 0.10.1 0.110.11 0.090.09 0.020.02 0.030.03 0.110.11 0.110.11 HEK2_145HEK2_145 0.10.1 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (RNF2; 'DNA sequence at a cleavage sites'은 표 13 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (RNF2; see Table 13 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 RNF2-1RNF2-1 7.37.3 0.030.03 0.020.02 0.140.14 0.090.09 0.000.00 0.010.01 RNF2-2RNF2-2 4.44.4 0.020.02 26.2626.26 0.050.05 78.8278.82 0.010.01 88.2988.29 RNF2-3RNF2-3 4.34.3 0.050.05 0.070.07 0.290.29 0.250.25 0.000.00 0.010.01 RNF2-4RNF2-4 4.14.1 0.050.05 0.050.05 0.000.00 0.000.00 0.010.01 0.010.01 RNF2-5RNF2-5 3.63.6 0.060.06 0.070.07 0.100.10 0.120.12 0.000.00 0.010.01 RNF2-6RNF2-6 2.22.2 0.060.06 0.090.09 0.090.09 0.100.10 0.020.02 0.020.02 RNF2-7RNF2-7 1.41.4 0.130.13 0.080.08 0.050.05 0.070.07 0.010.01 0.010.01 RNF2-8RNF2-8 1.01.0 0.080.08 0.100.10 0.040.04 0.050.05 0.010.01 0.000.00 RNF2-15RNF2-15 0.40.4 0.020.02 0.010.01 0.110.11 0.090.09 0.010.01 0.020.02 RNF2-19RNF2-19 0.40.4 0.000.00 0.020.02 0.060.06 0.060.06 0.070.07 0.090.09 RNF2-20RNF2-20 0.30.3 0.080.08 0.120.12 0.060.06 0.050.05 0.040.04 0.040.04 RNF2-24RNF2-24 0.30.3 0.030.03 0.030.03 0.020.02 0.050.05 0.290.29 0.350.35 RNF2-27RNF2-27 0.30.3 0.020.02 0.030.03 0.060.06 0.060.06 0.010.01 0.000.00 RNF2-41RNF2-41 0.20.2 0.030.03 0.010.01 0.000.00 0.000.00 0.030.03 0.030.03

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (TYRO3; 'DNA sequence at a cleavage sites'은 표 14 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (TYRO3; see Table 14 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 TYRO3-1TYRO3-1 4.34.3 0.300.30 7.777.77 0.080.08 3.843.84 0.060.06 12.9412.94 TYRO3-2TYRO3-2 3.43.4 0.480.48 71.6071.60 0.070.07 39.7839.78 0.050.05 49.2849.28 TYRO3-3TYRO3-3 2.02.0 3.383.38 3.513.51 0.180.18 0.270.27 0.000.00 0.140.14 TYRO3-4TYRO3-4 0.80.8 0.260.26 0.210.21 0.150.15 0.160.16 0.000.00 0.000.00 TYRO3-5TYRO3-5 0.60.6 0.500.50 0.380.38 0.090.09 0.100.10 0.000.00 0.020.02 TYRO3-6TYRO3-6 0.40.4 0.250.25 0.240.24 0.080.08 0.060.06 0.010.01 0.000.00 TYRO3-7TYRO3-7 0.30.3 0.270.27 0.270.27 0.510.51 0.380.38 0.010.01 0.010.01 TYRO3-8TYRO3-8 0.20.2 0.000.00 0.000.00 0.260.26 0.190.19 0.000.00 0.000.00 TYRO3-9TYRO3-9 0.20.2 0.260.26 0.230.23 0.060.06 0.100.10 0.000.00 0.000.00 TYRO3-10TYRO3-10 0.20.2 0.080.08 0.100.10 0.050.05 0.020.02 0.000.00 0.010.01 TYRO3-11TYRO3-11 0.10.1 0.070.07 0.110.11 0.000.00 0.000.00 0.000.00 0.000.00 TYRO3-12TYRO3-12 0.10.1 0.330.33 0.350.35 0.190.19 0.160.16 0.000.00 0.000.00

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (WEE1; 'DNA sequence at a cleavage sites'은 표 15 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (WEE1; see Table 15 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 WEE1-1WEE1-1 11.111.1 0.260.26 0.260.26 0.000.00 0.000.00 0.000.00 0.060.06 WEE1-2WEE1-2 2.02.0 0.050.05 62.5962.59 0.110.11 9.959.95 0.000.00 56.2456.24 WEE1-3WEE1-3 1.91.9 0.380.38 0.420.42 0.000.00 0.000.00 0.000.00 4.134.13 WEE1-4WEE1-4 0.70.7 0.130.13 0.110.11 0.060.06 0.030.03 0.000.00 0.010.01 WEE1-5WEE1-5 0.40.4 0.080.08 0.110.11 0.000.00 0.000.00 0.000.00 0.010.01 WEE1-6WEE1-6 0.40.4 0.100.10 0.100.10 0.060.06 0.050.05 0.000.00 0.010.01 WEE1-7WEE1-7 0.30.3 0.040.04 0.060.06 0.000.00 0.000.00 0.000.00 0.020.02 WEE1-8WEE1-8 0.30.3 0.250.25 0.240.24 0.000.00 0.000.00 0.010.01 0.000.00 WEE1-9WEE1-9 0.20.2 0.050.05 0.040.04 0.120.12 0.170.17 0.010.01 0.010.01 WEE1-10WEE1-10 0.20.2 0.110.11 0.070.07 0.170.17 0.150.15 0.040.04 0.050.05 WEE1-11WEE1-11 0.20.2 0.240.24 0.290.29 0.000.00 0.000.00 0.460.46 0.430.43 WEE1-12WEE1-12 0.20.2 No PCRNo PCR WEE1-13WEE1-13 0.20.2 0.670.67 0.690.69 0.000.00 0.000.00 0.400.40 0.290.29 WEE1-14WEE1-14 0.20.2 0.000.00 0.000.00 0.130.13 0.130.13 0.000.00 0.010.01 WEE1-15WEE1-15 0.10.1 0.140.14 0.110.11 0.000.00 0.000.00 0.010.01 0.010.01 WEE1-16WEE1-16 0.10.1 0.000.00 0.030.03 1.371.37 1.291.29 0.000.00 0.000.00 WEE1-17WEE1-17 0.10.1 0.140.14 0.080.08 0.130.13 0.200.20 0.020.02 0.000.00 WEE1-18WEE1-18 0.10.1 0.090.09 0.110.11 0.000.00 0.000.00 0.000.00 0.010.01 WEE1-19WEE1-19 0.10.1 0.110.11 0.120.12 0.000.00 0.000.00 0.010.01 0.000.00 WEE1-20WEE1-20 0.10.1 0.260.26 0.250.25 0.000.00 0.000.00 0.000.00 0.000.00 WEE1-21WEE1-21 0.10.1 0.090.09 0.120.12 0.270.27 0.190.19 0.020.02 0.000.00

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (EphB4; 'DNA sequence at a cleavage sites'은 표 16 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (EphB4; see Table 16 for'DNA sequence at a cleavage sites') DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 EphB4-01EphB4-01 10.310.3 0.120.12 57.6257.62 0.140.14 0.170.17 0.010.01 74.7374.73 EphB4-02EphB4-02 8.08.0 0.150.15 0.230.23 0.000.00 0.000.00 0.000.00 1.021.02 EphB4-03EphB4-03 4.14.1 0.090.09 0.110.11 0.260.26 0.300.30 0.010.01 0.140.14 EphB4-04EphB4-04 2.42.4 0.090.09 0.100.10 0.050.05 0.060.06 0.010.01 0.010.01 EphB4-05EphB4-05 2.22.2 0.140.14 0.130.13 0.080.08 0.090.09 0.010.01 0.000.00 EphB4-06EphB4-06 1.91.9 No PCRNo PCR EphB4-07EphB4-07 1.81.8 0.330.33 0.300.30 0.090.09 0.100.10 0.000.00 0.010.01 EphB4-08EphB4-08 1.81.8 0.120.12 0.150.15 0.070.07 0.140.14 0.000.00 0.000.00 EphB4-09EphB4-09 1.41.4 0.500.50 0.420.42 0.000.00 0.000.00 0.010.01 0.010.01 EphB4-10EphB4-10 0.90.9 0.070.07 0.080.08 0.000.00 0.000.00 0.010.01 0.000.00 EphB4-11EphB4-11 0.80.8 0.070.07 0.080.08 0.160.16 0.160.16 0.010.01 0.020.02 EphB4-12EphB4-12 0.60.6 0.520.52 0.540.54 0.000.00 0.000.00 0.010.01 0.010.01 EphB4-13EphB4-13 0.50.5 0.150.15 0.140.14 0.110.11 0.090.09 0.010.01 0.010.01 EphB4-14EphB4-14 0.40.4 0.150.15 0.140.14 0.100.10 0.130.13 0.010.01 0.000.00 EphB4-15EphB4-15 0.40.4 0.120.12 0.100.10 0.000.00 0.000.00 0.010.01 0.010.01 EphB4-16EphB4-16 0.40.4 0.060.06 0.080.08 0.130.13 0.110.11 0.010.01 0.000.00 EphB4-17EphB4-17 0.40.4 0.200.20 0.200.20 0.000.00 0.000.00 0.320.32 0.330.33 EphB4-18EphB4-18 0.40.4 0.600.60 0.690.69 0.350.35 0.300.30 0.000.00 0.010.01 EphB4-19EphB4-19 0.30.3 0.110.11 0.090.09 0.100.10 0.100.10 0.000.00 0.000.00 EphB4-20EphB4-20 0.30.3 0.230.23 0.200.20 0.000.00 0.000.00 0.980.98 1.101.10 EphB4-21EphB4-21 0.30.3 No PCRNo PCR EphB4-22EphB4-22 0.20.2 0.040.04 0.040.04 0.000.00 0.000.00 0.000.00 0.000.00 EphB4-23EphB4-23 0.20.2 0.050.05 0.060.06 0.050.05 0.050.05 0.120.12 0.110.11 EphB4-24EphB4-24 0.20.2 0.270.27 0.310.31 99.9899.98 99.9899.98 0.000.00 0.010.01 EphB4-25EphB4-25 0.20.2 0.060.06 0.060.06 0.000.00 0.000.00 0.000.00 0.000.00 EphB4-26EphB4-26 0.20.2 0.130.13 0.100.10 0.000.00 0.000.00 0.000.00 0.000.00 EphB4-27EphB4-27 0.20.2 No PCRNo PCR EphB4-28EphB4-28 0.20.2 0.290.29 0.270.27 0.120.12 0.130.13 0.000.00 0.000.00 EphB4-29EphB4-29 0.20.2 0.550.55 0.480.48 0.000.00 0.000.00 0.000.00 0.010.01 EphB4-30EphB4-30 0.20.2 0.100.10 0.080.08 0.030.03 0.040.04 0.000.00 0.000.00 EphB4-31EphB4-31 0.10.1 0.150.15 0.180.18 0.000.00 0.000.00 0.240.24 0.210.21 EphB4-32EphB4-32 0.10.1 0.540.54 0.450.45 0.030.03 0.010.01 0.000.00 0.000.00 EphB4-33EphB4-33 0.10.1 0.230.23 0.150.15 0.150.15 0.110.11 0.030.03 0.010.01 EphB4-34EphB4-34 0.10.1 0.150.15 0.130.13 0.210.21 0.270.27 0.010.01 0.000.00 EphB4-35EphB4-35 0.10.1 6.146.14 6.026.02 0.200.20 0.310.31 0.000.00 0.000.00 EphB4-36EphB4-36 0.10.1 No PCRNo PCR EphB4-37EphB4-37 0.10.1 0.220.22 0.190.19 0.000.00 0.000.00 0.000.00 0.000.00 EphB4-38EphB4-38 0.10.1 0.120.12 0.120.12 0.430.43 0.400.40 0.110.11 0.130.13 EphB4-39EphB4-39 0.10.1 0.110.11 0.110.11 0.000.00 0.000.00 0.010.01 0.000.00

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon6; 'DNA sequence at a cleavage sites'은 표 17 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon6; see Table 17 for'DNA sequence at a cleavage sites') Site No.Site No.
DNA Cleavage Score

DNA Cleavage Score
Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%)
UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 HPRT_E6-01HPRT_E6-01 29.029.0 0.110.11 62.0762.07 0.050.05 29.2529.25 0.000.00 71.6971.69 HPRT_E6-02HPRT_E6-02 21.321.3 0.220.22 0.210.21 0.010.01 0.010.01 0.000.00 0.000.00 HPRT_E6-03HPRT_E6-03 17.017.0 0.080.08 0.180.18 0.030.03 0.010.01 0.000.00 0.000.00 HPRT_E6-04HPRT_E6-04 12.712.7 0.380.38 0.400.40 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-05HPRT_E6-05 10.510.5 0.150.15 0.140.14 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-06HPRT_E6-06 10.210.2 0.300.30 0.310.31 0.590.59 0.440.44 0.000.00 0.000.00 HPRT_E6-07HPRT_E6-07 9.39.3 0.020.02 1.591.59 0.280.28 0.280.28 0.810.81 17.5617.56 HPRT_E6-08HPRT_E6-08 9.09.0 0.120.12 0.120.12 0.040.04 0.030.03 0.000.00 0.170.17 HPRT_E6-09HPRT_E6-09 6.16.1 0.070.07 0.050.05 0.040.04 0.060.06 0.000.00 0.000.00 HPRT_E6-10HPRT_E6-10 5.65.6 0.240.24 0.140.14 0.130.13 0.120.12 0.000.00 0.010.01 HPRT_E6-11HPRT_E6-11 4.74.7 0.150.15 0.170.17 0.010.01 0.020.02 0.000.00 0.010.01 HPRT_E6-12HPRT_E6-12 4.54.5 0.260.26 0.310.31 0.070.07 0.060.06 0.000.00 0.270.27 HPRT_E6-13HPRT_E6-13 4.34.3 0.350.35 1.891.89 0.050.05 0.290.29 0.000.00 0.000.00 HPRT_E6-14HPRT_E6-14 4.34.3 0.100.10 0.110.11 0.150.15 0.170.17 0.000.00 0.000.00 HPRT_E6-15HPRT_E6-15 4.14.1 0.070.07 0.060.06 0.110.11 0.070.07 0.000.00 0.000.00 HPRT_E6-16HPRT_E6-16 3.83.8 0.100.10 0.340.34 0.410.41 1.741.74 0.010.01 0.000.00 HPRT_E6-17HPRT_E6-17 3.73.7 0.080.08 0.090.09 0.100.10 0.080.08 0.000.00 0.000.00 HPRT_E6-18HPRT_E6-18 3.63.6 0.260.26 0.310.31 0.360.36 0.390.39 0.000.00 0.000.00 HPRT_E6-19HPRT_E6-19 3.63.6 0.060.06 0.050.05 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-20HPRT_E6-20 3.53.5 0.000.00 0.000.00 0.050.05 0.080.08 0.000.00 0.150.15 HPRT_E6-21HPRT_E6-21 3.53.5 0.070.07 0.080.08 0.300.30 0.320.32 0.030.03 0.030.03 HPRT_E6-22HPRT_E6-22 3.43.4 0.160.16 0.210.21 0.000.00 0.000.00 0.000.00 0.010.01 HPRT_E6-23HPRT_E6-23 3.33.3 0.330.33 0.220.22 0.070.07 0.080.08 0.000.00 0.010.01 HPRT_E6-24HPRT_E6-24 3.13.1 0.090.09 0.060.06 0.060.06 0.050.05 0.000.00 0.010.01 HPRT_E6-25HPRT_E6-25 2.92.9 0.130.13 0.100.10 0.000.00 0.000.00 0.010.01 0.000.00 HPRT_E6-26HPRT_E6-26 2.82.8 0.110.11 0.070.07 0.040.04 0.070.07 0.000.00 0.000.00 HPRT_E6-27HPRT_E6-27 2.62.6 0.220.22 0.270.27 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-28HPRT_E6-28 2.52.5 0.330.33 0.290.29 0.270.27 0.200.20 0.000.00 0.010.01 HPRT_E6-29HPRT_E6-29 2.42.4 0.230.23 0.240.24 0.040.04 0.030.03 0.070.07 0.090.09 HPRT_E6-30HPRT_E6-30 2.42.4 0.500.50 0.490.49 0.030.03 0.040.04 0.000.00 0.000.00 HPRT_E6-31HPRT_E6-31 2.32.3 0.210.21 0.240.24 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-32HPRT_E6-32 2.22.2 0.240.24 0.290.29 0.050.05 0.070.07 0.010.01 0.000.00 HPRT_E6-33HPRT_E6-33 1.51.5 0.220.22 0.230.23 0.080.08 0.070.07 0.010.01 0.010.01 HPRT_E6-34HPRT_E6-34 1.41.4 0.000.00 0.000.00 0.630.63 0.540.54 0.000.00 0.000.00 HPRT_E6-35HPRT_E6-35 1.41.4 0.200.20 0.220.22 0.020.02 0.050.05 0.000.00 0.000.00 HPRT_E6-36HPRT_E6-36 1.21.2 0.050.05 0.070.07 0.050.05 0.030.03 0.150.15 0.100.10 HPRT_E6-37HPRT_E6-37 1.11.1 0.020.02 0.010.01 0.070.07 0.070.07 0.000.00 0.000.00 HPRT_E6-38HPRT_E6-38 1.11.1 0.160.16 0.250.25 0.060.06 0.890.89 0.010.01 0.000.00 HPRT_E6-39HPRT_E6-39 1.11.1 0.040.04 0.040.04 0.110.11 0.120.12 0.000.00 0.000.00 HPRT_E6-40HPRT_E6-40 1.01.0 0.120.12 0.090.09 0.000.00 0.000.00 0.000.00 0.010.01 HPRT_E6-41HPRT_E6-41 1.01.0 0.250.25 0.300.30 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-52HPRT_E6-52 0.70.7 0.000.00 0.000.00 0.010.01 0.060.06 0.010.01 0.000.00 HPRT_E6-81HPRT_E6-81 0.40.4 0.210.21 0.230.23 0.080.08 0.080.08 0.000.00 0.000.00

Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon8; 'DNA sequence at a cleavage sites'은 표 18 참조)Mutation frequencies of ABE7.10, BE3, and Cas9 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon8; see Table 18 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) Indel frequency (%)Indel frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 UntreatedUntreated (+) BE3(+) BE3 UntreatedUntreated (+) Cas9(+) Cas9 HPRT_E8-1HPRT_E8-1 2.42.4 0.020.02 70.0470.04 0.050.05 27.3127.31 0.070.07 64.7164.71 HPRT_E8-2HPRT_E8-2 1.31.3 0.200.20 5.775.77 0.090.09 0.580.58 0.070.07 50.4050.40 HPRT_E8-3HPRT_E8-3 0.60.6 0.160.16 0.160.16 0.050.05 0.020.02 0.010.01 0.040.04 HPRT_E8-4HPRT_E8-4 0.60.6 0.040.04 0.060.06 63.1563.15 63.0063.00 0.010.01 0.010.01 HPRT_E8-5HPRT_E8-5 0.60.6 0.100.10 0.080.08 0.100.10 0.110.11 0.000.00 0.020.02 HPRT_E8-6HPRT_E8-6 0.50.5 0.030.03 0.070.07 N/AN/A N/AN/A 0.010.01 0.190.19 HPRT_E8-7HPRT_E8-7 0.50.5 0.160.16 0.150.15 0.070.07 0.110.11 0.000.00 0.000.00 HPRT_E8-8HPRT_E8-8 0.40.4 0.070.07 0.070.07 0.080.08 0.050.05 0.030.03 0.040.04 HPRT_E8-9HPRT_E8-9 0.40.4 0.020.02 0.030.03 0.060.06 0.090.09 0.020.02 0.040.04 HPRT_E8-10HPRT_E8-10 0.40.4 0.010.01 0.010.01 N/AN/A N/AN/A 0.010.01 0.030.03 HPRT_E8-11HPRT_E8-11 0.40.4 0.080.08 0.070.07 0.090.09 0.090.09 0.040.04 0.030.03 HPRT_E8-12HPRT_E8-12 0.30.3 0.100.10 0.090.09 0.050.05 0.050.05 0.000.00 0.010.01 HPRT_E8-13HPRT_E8-13 0.30.3 0.070.07 0.030.03 0.060.06 0.050.05 0.000.00 0.030.03 HPRT_E8-14HPRT_E8-14 0.30.3 0.080.08 0.140.14 0.670.67 0.480.48 0.020.02 0.000.00 HPRT_E8-15HPRT_E8-15 0.30.3 0.100.10 0.070.07 0.090.09 0.070.07 0.000.00 0.010.01 HPRT_E8-16HPRT_E8-16 0.20.2 0.020.02 0.020.02 0.080.08 0.090.09 0.020.02 0.050.05 HPRT_E8-17HPRT_E8-17 0.20.2 0.100.10 0.110.11 0.050.05 0.050.05 0.000.00 0.020.02 HPRT_E8-18HPRT_E8-18 0.20.2 0.050.05 0.080.08 0.140.14 0.100.10 0.010.01 0.200.20 HPRT_E8-19HPRT_E8-19 0.10.1 0.050.05 0.060.06 0.060.06 0.030.03 0.030.03 0.010.01 HPRT_E8-20HPRT_E8-20 0.10.1 0.150.15 0.170.17 0.040.04 0.040.04 0.010.01 0.000.00

상기 표 19 내지 25에 나타난 바와 같이, 173개 부위에서, 단일 뉴클레오타이드 치환은 시퀀싱 오류로 인해 발생하는 노이즈 수준 (일반적으로 0.1~1% 범위) 이상의 빈도로 검출되지 않았다. 다른 20개 validated sites 중에서 7개 on-target 부위는 29% 내지 72% 사이의 염기 교정 빈도를 나타내었다. 다른 13개의 validated off-target site은 0.1% 내지 7.8% 범위의 염기교정 빈도를 나타내서, 매우 낮은 교정 효율을 보였다. 이러한 결과는 Digenome-seq 분석법은 검출 한계 근처의 매우 낮은 교정 빈도를 갖는 ABE off-target site까지도 검출 가능할 정도로 충분히 민감한 분석법임을 보여준다.As shown in Tables 19 to 25, at 173 sites, a single nucleotide substitution was not detected at a frequency above the noise level (generally in the range of 0.1 to 1%) caused by sequencing errors. Among the other 20 validated sites, 7 on-target sites exhibited base correction frequencies between 29% and 72%. The other 13 validated off-target sites showed a base calibration frequency in the range of 0.1% to 7.8%, showing very low calibration efficiency. These results show that the Digenome-seq method is sensitive enough to detect even ABE off-target sites with very low calibration frequency near the detection limit.

상기 시험과 병행하여, 193 부위에서 Cas9-유도 indel 빈도와 BE3-유도 치환 빈도를 측정하여 ABE7.10와 비교하여 그 결과를 도 12f에 나타내었다. 도 12f에 나타난 바와 같이, ABE7.10 활성은, BE3 활성(R2=0.39)보다, Cas9 활성(R2=0.77)과 보다 강하게 연관성을 갖는 것으로 확인되었다. 도 12f의 위쪽 그래프에 있어서, ABE7.10에 의해서는 염기 교정 빈도가 비교적 높지만 BE3에 의해서는 염기교정빈도가 매우 낮은 (0.001% 이하) 6개 부위 (속이 빈 점으로 표시) 중에서, 2 개 부위는 BE3 editing window 내에 시토신을 포함하지 않는다. 도 12f의 아래쪽 그래프에 있어서, 6 개의 부위(속이 빈 점으로 표시)에서 ABE7.10에 의한 염기 교정 빈도가 높지만 Cas9에 의한 indel 빈도는 매우 낮게 (indel 빈도 0.001% 이하) 나타났으며, 이 중 3 개 부위(50%=3/6)는 각각의 on-target 부위와 비교하여 하나의 삽입 또는 결실된 뉴클레오타이드를 가지며, sgRNA와 혼성화 시 DNA 또는 RNA bulge를 형성할 수 있다. 이러한 bulge-형성 부위는 BE3의 off-target site의 공통적인 특징이지만 Cas9 off-target site에서는 거의 관찰되지 않는다. Digenome-seq을 통해 ABE7.10을 사용하여 확인된 193 개의 부위 중 3 개 또는 2 개의 부위는 각각 Cas9 또는 BE3에 의하여 세포 내에서 높은 빈도로 염기 또는 유전자 교정이 일어났지만, ABE7.10에 의해서는 매우 낮은 염기 교정 빈도 (치환 빈도 0.001% 이하)를 나타냈다 (도 12f에서 회색 점으로 표시). 이러한 결과는 ABE7.10, BE3, 및 Cas9가 인간 유전체에서 상이한 세트의 off-target site을 인식할 수 있음을 재차 확인시켜 준다.In parallel with the above test, the Cas9-induced indel frequency and BE3-induced substitution frequency were measured at 193 site and compared with ABE7.10, and the results are shown in FIG. 12F. As shown in Fig. 12f, ABE7.10 activity was found to have a stronger association with Cas9 activity (R 2 =0.77) than BE3 activity (R 2 =0.39). In the upper graph of FIG. 12F, the base correction frequency is relatively high by ABE7.10, but the base correction frequency is very low (0.001% or less) by BE3. Among 6 sites (indicated by a hollow point), two sites Does not contain cytosine in the BE3 editing window. In the lower graph of FIG. 12F, the frequency of base correction by ABE7.10 was high in six sites (indicated by hollow dots), but the indel frequency by Cas9 was very low (indel frequency of 0.001% or less), of which Three sites (50%=3/6) have one inserted or deleted nucleotide compared to each of the on-target sites, and can form DNA or RNA bulges when hybridized with sgRNA. These bulge-forming sites are a common feature of BE3 off-target sites, but are rarely observed at Cas9 off-target sites. Three or two of the 193 sites identified using ABE7.10 through Digenome-seq were subjected to base or gene correction at high frequency in cells by Cas9 or BE3, respectively, but by ABE7.10, It exhibited a very low base correction frequency (substitution frequency 0.001% or less) (indicated by gray dots in Fig. 12f). These results again confirm that ABE7.10, BE3, and Cas9 are able to recognize different sets of off-target sites in the human genome.

실시예Example 8. ABE off-target 효과 시험 8. ABE off-target effect test

ABE의 off-target 효과를 최소화하거나 제거하기 위하여, 다음의 세 가지 방법으로 시험하였다: sgRNA 변형, 플라스미드 대신 RNP 세포내 전달, 및 Sniper-Cas9 (E. coli 에서 directed evolution를 통하여 얻어진 engineered Cas9 변이체; 야생형 SpCas9 아미노산 서열(NP_269215.1)에 대하여 E539S, M761I, 및 K890N 변이를 가지며, D10A 변이를 추가로 가짐) 사용.To minimize or eliminate the off-target effect of ABE, three methods were tested: sgRNA modification, RNP intracellular delivery instead of plasmid, and Sniper-Cas9 (engineered Cas9 variant obtained through directed evolution in E. coli ; It has E539S, M761I, and K890N mutations for the wild-type SpCas9 amino acid sequence (NP_269215.1), and further has a D10A mutation).

첫째로 (sgRNA 변형), sgRNA의 표적화 서열이 20개 뉴클레오타이드로 이루어진 표준 GX19 sgRNA (X19: 19개의 임의의 뉴클레오타이드 (각각 독립적으로 A, U(T), C, 및 G 중에서 선택됨)를 의미함; X 뒤의 숫자는 임의의 뉴클레오타이드 개수를 의미함, 이하 동일함)의 'X'의 5' 말단 부위로부터 1 또는 2개 뉴클레오타이드를 제거한 절단 sgRNA (gX18 또는 gX17로 표시) (g는 표적 부위의 대응 서열과 불일치하는 구아닌을, G는 표적 부위의 대응 서열과 일치하는 구아닌을 나타냄) 또는 5' 말단에 1 또는 2 개의 여분의 구아닌을 추가로 포함하는 연장된 sgRNA(gX20 또는 ggX20이라고 함)를 사용하여 HEK293T 세포에서의 염기 교정 빈도를 측정하였다. 상기 사용된 변형 sgRNA를 HPRT exon 6 target sequence를 대표로 예시하면 도 13a와 같다. 다른 유전자에 대한 변형 sgRNA는 표 11에 기재된 각 유전자의 On-target DNA sequence을 기초로 도 13a를 참조하여 제작하였다.First (sgRNA modification), the targeting sequence of the sgRNA is a standard GX 19 sgRNA consisting of 20 nucleotides (X 19 : 19 arbitrary nucleotides (each independently selected from A, U(T), C, and G) means The number after X means any number of nucleotides, the same hereinafter), a truncated sgRNA (indicated by gX 18 or gX 17 ) from which 1 or 2 nucleotides have been removed from the 5'end of'X' (g is An extended sgRNA (gX 20 or ggX) further comprising guanine inconsistent with the corresponding sequence of the target site, G denotes guanine that matches the corresponding sequence of the target site) or 1 or 2 extra guanines at the 5'end. 20 ) was used to measure the frequency of base correction in HEK293T cells. The modified sgRNA used as a representative example of the HPRT exon 6 target sequence is shown in FIG. 13A. Modified sgRNAs for other genes were prepared with reference to FIG. 13A based on the On-target DNA sequence of each gene shown in Table 11.

ABE7.10 및 상기 변형 sgRNA를 사용하여 얻어진 HEK293T 세포에서의 염기 교정 빈도 결과(targeted deep sequencing으로 측정됨)를 도 13b 내지 도 13d 및 표 26 내지 표 32에 나타내었다:The results of base correction frequency (measured by targeted deep sequencing) in HEK293T cells obtained using ABE7.10 and the modified sgRNA are shown in FIGS. 13B to 13D and Tables 26 to 32:

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (HEK2; 'DNA sequence at a cleavage sites'은 표 12 참조)ABE7.10 off-target effect analysis when modified sgRNAs were used (HEK2; see Table 12 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 HEK2_001HEK2_001 20.120.1 0.120.12 0.220.22 0.150.15 0.110.11 0.120.12 0.130.13 HEK2_002HEK2_002 15.115.1 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_003HEK2_003 14.714.7 0.060.06 0.070.07 0.040.04 0.090.09 0.080.08 0.070.07 HEK2_004HEK2_004 14.314.3 0.100.10 0.100.10 0.110.11 0.310.31 0.210.21 0.110.11 HEK2_005HEK2_005 13.413.4 0.150.15 0.140.14 0.160.16 0.130.13 0.130.13 0.120.12 HEK2_006HEK2_006 13.413.4 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_007HEK2_007 8.98.9 0.060.06 9.809.80 47.7147.71 63.1963.19 61.7761.77 55.4055.40 HEK2_008HEK2_008 6.66.6 0.060.06 0.070.07 0.050.05 0.120.12 0.120.12 0.080.08 HEK2_009HEK2_009 5.85.8 0.100.10 0.080.08 0.080.08 0.090.09 0.110.11 0.120.12 HEK2_010HEK2_010 5.15.1 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_011HEK2_011 4.94.9 0.090.09 0.100.10 0.070.07 0.080.08 0.090.09 0.090.09 HEK2_012HEK2_012 4.64.6 0.050.05 0.050.05 0.030.03 0.060.06 0.040.04 0.040.04 HEK2_013HEK2_013 3.93.9 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_014HEK2_014 3.53.5 0.080.08 0.090.09 0.130.13 0.080.08 0.050.05 0.070.07 HEK2_015HEK2_015 3.03.0 0.110.11 0.090.09 0.140.14 0.130.13 0.130.13 0.140.14 HEK2_016HEK2_016 2.92.9 No PCRNo PCR HEK2_017HEK2_017 2.72.7 0.130.13 0.070.07 0.150.15 0.070.07 0.120.12 0.100.10 HEK2_018HEK2_018 2.52.5 0.180.18 0.250.25 0.210.21 0.200.20 0.230.23 0.230.23 HEK2_019HEK2_019 2.22.2 0.120.12 0.130.13 0.130.13 0.120.12 0.110.11 0.120.12 HEK2_020HEK2_020 2.12.1 0.120.12 0.200.20 0.110.11 0.200.20 0.140.14 0.140.14 HEK2_021HEK2_021 2.12.1 0.170.17 0.180.18 0.180.18 0.190.19 0.210.21 0.200.20 HEK2_022HEK2_022 2.12.1 0.130.13 0.100.10 0.090.09 0.110.11 0.140.14 0.130.13 HEK2_023HEK2_023 2.02.0 0.090.09 0.130.13 0.050.05 0.090.09 0.120.12 0.080.08 HEK2_024HEK2_024 1.71.7 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_025HEK2_025 1.41.4 0.130.13 0.140.14 0.130.13 0.140.14 0.110.11 0.130.13 HEK2_026HEK2_026 1.31.3 0.130.13 0.120.12 0.150.15 0.160.16 0.110.11 0.160.16 HEK2_027HEK2_027 1.31.3 0.150.15 0.190.19 0.210.21 0.160.16 0.180.18 0.180.18 HEK2_028HEK2_028 1.31.3 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_029HEK2_029 1.21.2 0.230.23 0.200.20 0.160.16 0.150.15 0.180.18 0.140.14 HEK2_030HEK2_030 1.21.2 0.090.09 0.110.11 0.100.10 0.110.11 0.080.08 0.090.09 HEK2_031HEK2_031 1.21.2 0.090.09 0.120.12 0.100.10 0.120.12 0.080.08 0.090.09 HEK2_032HEK2_032 1.11.1 0.050.05 0.070.07 0.120.12 0.090.09 0.100.10 0.060.06 HEK2_033HEK2_033 1.11.1 0.110.11 0.110.11 0.140.14 0.220.22 0.140.14 0.160.16 HEK2_034HEK2_034 1.01.0 0.050.05 0.050.05 0.060.06 0.050.05 0.050.05 0.050.05 HEK2_042HEK2_042 0.70.7 0.030.03 0.070.07 0.040.04 0.040.04 0.050.05 0.040.04 HEK2_044HEK2_044 0.70.7 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_050HEK2_050 0.50.5 0.220.22 0.230.23 0.130.13 0.190.19 0.160.16 0.190.19 HEK2_052HEK2_052 0.50.5 0.130.13 0.100.10 0.090.09 0.110.11 0.070.07 0.110.11 HEK2_065HEK2_065 0.40.4 0.110.11 0.120.12 0.070.07 0.150.15 0.140.14 0.120.12 HEK2_079HEK2_079 0.30.3 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_082HEK2_082 0.30.3 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_092HEK2_092 0.20.2 0.110.11 0.080.08 0.110.11 0.080.08 0.060.06 0.100.10 HEK2_093HEK2_093 0.20.2 0.020.02 0.000.00 0.020.02 0.030.03 0.030.03 0.040.04 HEK2_099HEK2_099 0.20.2 0.060.06 0.150.15 0.130.13 0.080.08 0.100.10 0.130.13 HEK2_101HEK2_101 0.20.2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_105HEK2_105 0.20.2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_106HEK2_106 0.20.2 0.210.21 0.230.23 0.260.26 0.210.21 0.270.27 0.190.19 HEK2_110HEK2_110 0.20.2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_119HEK2_119 0.20.2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HEK2_121HEK2_121 0.10.1 0.000.00 0.020.02 0.040.04 0.020.02 0.070.07 0.020.02 HEK2_139HEK2_139 0.10.1 0.110.11 0.120.12 0.090.09 0.090.09 0.170.17 0.140.14 HEK2_145HEK2_145 0.10.1 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (RNF2; 'DNA sequence at a cleavage sites'은 표 13 참조)ABE7.10 off-target effect analysis when modified sgRNAs are used (RNF2; see Table 13 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 RNF2-1RNF2-1 7.37.3 0.030.03 0.010.01 0.020.02 0.020.02 0.010.01 0.030.03 RNF2-2RNF2-2 4.44.4 0.020.02 0.070.07 0.630.63 26.2626.26 29.4329.43 16.1916.19 RNF2-3RNF2-3 4.34.3 0.050.05 0.070.07 0.070.07 0.070.07 0.050.05 0.060.06 RNF2-4RNF2-4 4.14.1 0.050.05 0.050.05 0.050.05 0.050.05 0.040.04 0.050.05 RNF2-5RNF2-5 3.63.6 0.060.06 0.060.06 0.080.08 0.070.07 0.070.07 0.080.08 RNF2-6RNF2-6 2.22.2 0.060.06 0.080.08 0.040.04 0.090.09 0.060.06 0.050.05 RNF2-7RNF2-7 1.41.4 0.130.13 0.150.15 0.090.09 0.080.08 0.170.17 0.160.16 RNF2-8RNF2-8 1.01.0 0.080.08 0.110.11 0.100.10 0.100.10 0.080.08 0.070.07 RNF2-15RNF2-15 0.40.4 0.020.02 0.020.02 0.030.03 0.010.01 0.050.05 0.020.02 RNF2-19RNF2-19 0.40.4 0.000.00 0.020.02 0.020.02 0.020.02 0.000.00 0.010.01 RNF2-20RNF2-20 0.30.3 0.080.08 0.100.10 0.100.10 0.120.12 0.100.10 0.100.10 RNF2-24RNF2-24 0.30.3 0.030.03 0.010.01 0.020.02 0.030.03 0.030.03 0.030.03 RNF2-27RNF2-27 0.30.3 0.020.02 0.030.03 0.050.05 0.030.03 0.030.03 0.010.01 RNF2-41RNF2-41 0.20.2 0.030.03 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (TYRO3; 'DNA sequence at a cleavage sites'은 표 14 참조)ABE7.10 off-target effect analysis when modified sgRNAs are used (TYRO3; see Table 14 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 TYRO3-1TYRO3-1 4.34.3 0.300.30 0.260.26 5.325.32 7.777.77 9.269.26 8.328.32 TYRO3-2TYRO3-2 3.43.4 0.480.48 0.580.58 36.5336.53 71.6071.60 67.7867.78 54.9954.99 TYRO3-3TYRO3-3 2.02.0 3.383.38 3.443.44 3.403.40 3.513.51 3.343.34 3.533.53 TYRO3-4TYRO3-4 0.80.8 0.260.26 0.200.20 0.210.21 0.210.21 0.240.24 0.240.24 TYRO3-5TYRO3-5 0.60.6 0.500.50 0.410.41 0.500.50 0.380.38 0.510.51 0.420.42 TYRO3-6TYRO3-6 0.40.4 0.250.25 0.250.25 0.240.24 0.240.24 0.260.26 0.250.25 TYRO3-7TYRO3-7 0.30.3 0.270.27 0.310.31 0.250.25 0.270.27 0.310.31 0.270.27 TYRO3-8TYRO3-8 0.20.2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 TYRO3-9TYRO3-9 0.20.2 0.260.26 0.210.21 0.240.24 0.230.23 0.210.21 0.210.21 TYRO3-10TYRO3-10 0.20.2 0.080.08 0.060.06 0.070.07 0.100.10 0.050.05 0.080.08 TYRO3-11TYRO3-11 0.10.1 0.070.07 0.100.10 0.100.10 0.110.11 0.090.09 0.080.08 TYRO3-12TYRO3-12 0.10.1 0.330.33 0.300.30 0.370.37 0.350.35 0.320.32 0.300.30

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (WEE1; 'DNA sequence at a cleavage sites'은 표 15 참조)Analysis of ABE7.10 off-target effects when modified sgRNAs are used (WEE1; see Table 15 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 WEE1-1WEE1-1 11.111.1 0.260.26 0.260.26 0.240.24 0.260.26 0.260.26 0.230.23 WEE1-2WEE1-2 2.02.0 0.050.05 0.250.25 0.950.95 62.5962.59 37.8037.80 26.3026.30 WEE1-3WEE1-3 1.91.9 0.380.38 1.801.80 0.400.40 0.420.42 0.420.42 0.390.39 WEE1-4WEE1-4 0.70.7 0.130.13 0.080.08 0.090.09 0.110.11 0.110.11 0.110.11 WEE1-5WEE1-5 0.40.4 0.080.08 0.100.10 0.120.12 0.110.11 0.100.10 0.070.07 WEE1-6WEE1-6 0.40.4 0.100.10 0.120.12 0.120.12 0.100.10 0.070.07 0.100.10 WEE1-7WEE1-7 0.30.3 0.040.04 0.030.03 0.040.04 0.060.06 0.050.05 0.060.06 WEE1-8WEE1-8 0.30.3 0.250.25 0.230.23 0.220.22 0.240.24 0.200.20 0.290.29 WEE1-9WEE1-9 0.20.2 0.050.05 0.030.03 0.040.04 0.040.04 0.030.03 0.060.06 WEE1-10WEE1-10 0.20.2 0.110.11 0.100.10 0.140.14 0.070.07 0.110.11 0.100.10 WEE1-11WEE1-11 0.20.2 0.240.24 0.220.22 0.260.26 0.290.29 0.220.22 0.180.18 WEE1-12WEE1-12 0.20.2 No PCRNo PCR WEE1-13WEE1-13 0.20.2 0.670.67 0.710.71 0.660.66 0.690.69 0.690.69 0.700.70 WEE1-14WEE1-14 0.20.2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 WEE1-15WEE1-15 0.10.1 0.140.14 0.130.13 0.120.12 0.110.11 0.150.15 0.130.13 WEE1-16WEE1-16 0.10.1 0.000.00 0.010.01 0.030.03 0.030.03 0.010.01 0.020.02 WEE1-17WEE1-17 0.10.1 0.140.14 0.100.10 0.110.11 0.080.08 0.120.12 0.110.11 WEE1-18WEE1-18 0.10.1 0.090.09 0.090.09 0.060.06 0.110.11 0.110.11 0.080.08 WEE1-19WEE1-19 0.10.1 0.110.11 0.080.08 0.100.10 0.120.12 0.090.09 0.080.08 WEE1-20WEE1-20 0.10.1 0.260.26 0.260.26 0.240.24 0.250.25 0.270.27 0.240.24 WEE1-21WEE1-21 0.10.1 0.090.09 0.090.09 0.150.15 0.120.12 0.120.12 0.130.13

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (EPHB4; 'DNA sequence at a cleavage sites'은 표 16 참조)Analysis of ABE7.10 off-target effects when modified sgRNAs are used (EPHB4; see Table 16 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 EphB4-01EphB4-01 10.310.3 0.120.12 0.260.26 0.950.95 57.6257.62 33.5433.54 22.9522.95 EphB4-02EphB4-02 8.08.0 0.150.15 0.160.16 0.130.13 0.230.23 0.140.14 0.130.13 EphB4-03EphB4-03 4.14.1 0.090.09 0.110.11 0.090.09 0.110.11 0.100.10 0.110.11 EphB4-04EphB4-04 2.42.4 0.090.09 0.060.06 0.110.11 0.100.10 0.100.10 0.100.10 EphB4-05EphB4-05 2.22.2 0.140.14 0.120.12 0.120.12 0.130.13 0.110.11 0.130.13 EphB4-06EphB4-06 1.91.9 No PCRNo PCR EphB4-07EphB4-07 1.81.8 0.330.33 0.290.29 0.290.29 0.300.30 0.350.35 0.290.29 EphB4-08EphB4-08 1.81.8 0.120.12 0.120.12 0.090.09 0.150.15 0.190.19 5.825.82 EphB4-09EphB4-09 1.41.4 0.500.50 0.490.49 0.490.49 0.420.42 0.440.44 0.400.40 EphB4-10EphB4-10 0.90.9 0.070.07 0.070.07 0.090.09 0.080.08 0.090.09 0.070.07 EphB4-11EphB4-11 0.80.8 0.070.07 0.070.07 0.070.07 0.080.08 0.070.07 0.050.05 EphB4-12EphB4-12 0.60.6 0.520.52 0.570.57 0.570.57 0.540.54 0.530.53 0.580.58 EphB4-13EphB4-13 0.50.5 0.150.15 0.160.16 0.160.16 0.140.14 0.140.14 0.150.15 EphB4-14EphB4-14 0.40.4 0.150.15 0.140.14 0.120.12 0.140.14 0.130.13 0.140.14 EphB4-15EphB4-15 0.40.4 0.120.12 0.110.11 0.100.10 0.100.10 0.110.11 0.100.10 EphB4-16EphB4-16 0.40.4 0.060.06 0.060.06 0.060.06 0.080.08 0.050.05 0.060.06 EphB4-17EphB4-17 0.40.4 0.200.20 0.160.16 0.180.18 0.200.20 0.170.17 0.180.18 EphB4-18EphB4-18 0.40.4 0.600.60 0.640.64 0.600.60 0.690.69 0.740.74 0.640.64 EphB4-19EphB4-19 0.30.3 0.110.11 0.100.10 0.090.09 0.090.09 0.070.07 0.100.10 EphB4-20EphB4-20 0.30.3 0.230.23 0.110.11 0.190.19 0.200.20 0.190.19 0.180.18 EphB4-21EphB4-21 0.30.3 No PCRNo PCR EphB4-22EphB4-22 0.20.2 0.040.04 0.040.04 0.060.06 0.040.04 0.050.05 0.030.03 EphB4-23EphB4-23 0.20.2 0.050.05 0.050.05 0.060.06 0.060.06 0.080.08 0.080.08 EphB4-24EphB4-24 0.20.2 0.270.27 0.220.22 0.300.30 0.310.31 0.350.35 0.320.32 EphB4-25EphB4-25 0.20.2 0.060.06 0.050.05 0.090.09 0.060.06 0.050.05 0.060.06 EphB4-26EphB4-26 0.20.2 0.130.13 0.100.10 0.100.10 0.100.10 0.100.10 0.110.11 EphB4-27EphB4-27 0.20.2 No PCRNo PCR EphB4-28EphB4-28 0.20.2 0.290.29 0.260.26 0.330.33 0.270.27 0.310.31 0.310.31 EphB4-29EphB4-29 0.20.2 0.550.55 0.400.40 0.370.37 0.480.48 0.370.37 0.400.40 EphB4-30EphB4-30 0.20.2 0.100.10 0.050.05 0.050.05 0.080.08 0.070.07 0.070.07 EphB4-31EphB4-31 0.10.1 0.150.15 0.130.13 0.150.15 0.180.18 0.190.19 0.150.15 EphB4-32EphB4-32 0.10.1 0.540.54 0.440.44 0.360.36 0.450.45 0.460.46 0.480.48 EphB4-33EphB4-33 0.10.1 0.230.23 0.210.21 0.150.15 0.150.15 0.150.15 0.230.23 EphB4-34EphB4-34 0.10.1 0.150.15 0.140.14 0.140.14 0.130.13 0.140.14 0.140.14 EphB4-35EphB4-35 0.10.1 6.146.14 5.825.82 6.086.08 6.026.02 6.276.27 5.685.68 EphB4-36EphB4-36 0.10.1 No PCRNo PCR EphB4-37EphB4-37 0.10.1 0.220.22 0.160.16 0.210.21 0.190.19 0.170.17 0.170.17 EphB4-38EphB4-38 0.10.1 0.120.12 0.160.16 0.140.14 0.120.12 0.140.14 0.130.13 EphB4-39EphB4-39 0.10.1 0.110.11 0.080.08 0.090.09 0.110.11 0.090.09 0.110.11

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (HPRT-Exon6; 'DNA sequence at a cleavage sites'은 표 17 참조)ABE7.10 off-target effect analysis when modified sgRNAs are used (HPRT-Exon6; see Table 17 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 HPRT_E6-01HPRT_E6-01 29.029.0 0.110.11 16.9416.94 29.2329.23 62.0762.07 60.3960.39 58.4658.46 HPRT_E6-02HPRT_E6-02 21.321.3 0.220.22 0.150.15 0.170.17 0.210.21 0.180.18 0.170.17 HPRT_E6-03HPRT_E6-03 17.017.0 0.080.08 0.110.11 0.100.10 0.180.18 0.100.10 0.070.07 HPRT_E6-04HPRT_E6-04 12.712.7 0.380.38 0.450.45 0.420.42 0.400.40 0.430.43 0.390.39 HPRT_E6-05HPRT_E6-05 10.510.5 0.150.15 0.220.22 0.140.14 0.140.14 0.150.15 0.150.15 HPRT_E6-06HPRT_E6-06 10.210.2 0.300.30 0.230.23 0.350.35 0.310.31 0.360.36 0.280.28 HPRT_E6-07HPRT_E6-07 9.39.3 0.020.02 0.030.03 0.050.05 1.591.59 0.060.06 0.060.06 HPRT_E6-08HPRT_E6-08 9.09.0 0.120.12 0.100.10 0.080.08 0.120.12 0.110.11 0.100.10 HPRT_E6-09HPRT_E6-09 6.16.1 0.070.07 0.030.03 0.060.06 0.050.05 0.040.04 0.060.06 HPRT_E6-10HPRT_E6-10 5.65.6 0.240.24 0.190.19 0.150.15 0.140.14 0.180.18 0.120.12 HPRT_E6-11HPRT_E6-11 4.74.7 0.150.15 0.220.22 0.250.25 0.170.17 0.150.15 0.160.16 HPRT_E6-12HPRT_E6-12 4.54.5 0.260.26 0.220.22 0.260.26 0.310.31 0.260.26 0.260.26 HPRT_E6-13HPRT_E6-13 4.34.3 0.350.35 0.550.55 0.450.45 1.891.89 1.261.26 0.590.59 HPRT_E6-14HPRT_E6-14 4.34.3 0.100.10 0.110.11 0.130.13 0.110.11 0.080.08 0.090.09 HPRT_E6-15HPRT_E6-15 4.14.1 0.070.07 0.050.05 0.090.09 0.060.06 0.040.04 0.080.08 HPRT_E6-16HPRT_E6-16 3.83.8 0.100.10 6.376.37 0.260.26 0.340.34 0.080.08 0.080.08 HPRT_E6-17HPRT_E6-17 3.73.7 0.080.08 0.170.17 0.100.10 0.090.09 0.100.10 0.120.12 HPRT_E6-18HPRT_E6-18 3.63.6 0.260.26 0.310.31 0.370.37 0.310.31 0.370.37 0.390.39 HPRT_E6-19HPRT_E6-19 3.63.6 0.060.06 0.060.06 0.090.09 0.050.05 0.040.04 0.050.05 HPRT_E6-20HPRT_E6-20 3.53.5 0.000.00 0.090.09 0.080.08 0.000.00 0.090.09 0.000.00 HPRT_E6-21HPRT_E6-21 3.53.5 0.070.07 0.060.06 0.110.11 0.080.08 0.090.09 0.080.08 HPRT_E6-22HPRT_E6-22 3.43.4 0.160.16 0.150.15 0.190.19 0.210.21 0.170.17 0.140.14 HPRT_E6-23HPRT_E6-23 3.33.3 0.330.33 0.260.26 0.270.27 0.220.22 0.250.25 0.280.28 HPRT_E6-24HPRT_E6-24 3.13.1 0.090.09 0.070.07 0.070.07 0.060.06 0.090.09 0.110.11 HPRT_E6-25HPRT_E6-25 2.92.9 0.130.13 0.110.11 0.110.11 0.100.10 0.160.16 0.120.12 HPRT_E6-26HPRT_E6-26 2.82.8 0.110.11 0.080.08 0.050.05 0.070.07 0.120.12 0.090.09 HPRT_E6-27HPRT_E6-27 2.62.6 0.220.22 0.280.28 0.270.27 0.270.27 0.270.27 0.220.22 HPRT_E6-28HPRT_E6-28 2.52.5 0.330.33 0.390.39 0.320.32 0.290.29 0.350.35 0.290.29 HPRT_E6-29HPRT_E6-29 2.42.4 0.230.23 0.210.21 0.160.16 0.240.24 0.200.20 0.190.19 HPRT_E6-30HPRT_E6-30 2.42.4 0.500.50 0.460.46 0.500.50 0.490.49 0.510.51 0.450.45 HPRT_E6-31HPRT_E6-31 2.32.3 0.210.21 0.250.25 0.230.23 0.240.24 0.240.24 0.170.17 HPRT_E6-32HPRT_E6-32 2.22.2 0.240.24 0.270.27 2.202.20 0.290.29 0.250.25 0.280.28 HPRT_E6-33HPRT_E6-33 1.51.5 0.220.22 0.240.24 0.170.17 0.230.23 0.220.22 0.170.17 HPRT_E6-34HPRT_E6-34 1.41.4 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-35HPRT_E6-35 1.41.4 0.200.20 0.160.16 0.240.24 0.220.22 0.230.23 0.230.23 HPRT_E6-36HPRT_E6-36 1.21.2 0.050.05 0.040.04 0.030.03 0.070.07 0.050.05 0.050.05 HPRT_E6-37HPRT_E6-37 1.11.1 0.020.02 0.080.08 0.030.03 0.010.01 0.030.03 0.080.08 HPRT_E6-38HPRT_E6-38 1.11.1 0.160.16 0.330.33 0.220.22 0.250.25 0.220.22 0.190.19 HPRT_E6-39HPRT_E6-39 1.11.1 0.040.04 0.060.06 0.040.04 0.040.04 0.040.04 0.040.04 HPRT_E6-40HPRT_E6-40 1.01.0 0.120.12 0.130.13 0.120.12 0.090.09 0.100.10 0.120.12 HPRT_E6-41HPRT_E6-41 1.01.0 0.250.25 0.190.19 0.110.11 0.300.30 0.400.40 0.100.10 HPRT_E6-52HPRT_E6-52 0.70.7 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 HPRT_E6-81HPRT_E6-81 0.40.4 0.210.21 0.200.20 0.190.19 0.230.23 0.220.22 0.230.23

변형 sgRNAs를 사용한 경우의 ABE7.10 off-target 효과 분석 (HPRT-Exon8; 'DNA sequence at a cleavage sites'은 표 18 참조)ABE7.10 off-target effect analysis when modified sgRNAs are used (HPRT-Exon8; see Table 18 for'DNA sequence at a cleavage sites') Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score Base editing frequency (%)Base editing frequency (%) UntreatedUntreated (+) ABE7.10(+) ABE7.10 gX17gX17 gX18gX18 GX19GX19 gX20gX20 ggX20ggX20 HPRT_E8-1HPRT_E8-1 2.42.4 0.020.02 37.9037.90 62.8162.81 70.0470.04 63.6663.66 56.0456.04 HPRT_E8-2HPRT_E8-2 1.31.3 0.200.20 0.200.20 0.250.25 5.775.77 0.560.56 0.290.29 HPRT_E8-3HPRT_E8-3 0.60.6 0.160.16 0.130.13 0.190.19 0.160.16 0.150.15 0.120.12 HPRT_E8-4HPRT_E8-4 0.60.6 0.040.04 0.050.05 0.050.05 0.060.06 0.040.04 0.060.06 HPRT_E8-5HPRT_E8-5 0.60.6 0.100.10 0.120.12 0.120.12 0.080.08 0.110.11 0.130.13 HPRT_E8-6HPRT_E8-6 0.50.5 0.030.03 0.030.03 0.040.04 0.070.07 0.020.02 0.060.06 HPRT_E8-7HPRT_E8-7 0.50.5 0.160.16 0.110.11 0.120.12 0.150.15 0.160.16 0.150.15 HPRT_E8-8HPRT_E8-8 0.40.4 0.070.07 0.070.07 0.090.09 0.070.07 0.090.09 0.090.09 HPRT_E8-9HPRT_E8-9 0.40.4 0.020.02 0.020.02 0.020.02 0.030.03 0.040.04 0.010.01 HPRT_E8-10HPRT_E8-10 0.40.4 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 0.020.02 HPRT_E8-11HPRT_E8-11 0.40.4 0.080.08 0.050.05 0.080.08 0.070.07 0.050.05 0.090.09 HPRT_E8-12HPRT_E8-12 0.30.3 0.100.10 0.060.06 0.100.10 0.090.09 0.080.08 0.090.09 HPRT_E8-13HPRT_E8-13 0.30.3 0.070.07 0.040.04 0.030.03 0.030.03 0.040.04 0.030.03 HPRT_E8-14HPRT_E8-14 0.30.3 0.080.08 0.110.11 0.100.10 0.140.14 0.110.11 0.100.10 HPRT_E8-15HPRT_E8-15 0.30.3 0.100.10 0.100.10 0.070.07 0.070.07 0.100.10 0.100.10 HPRT_E8-16HPRT_E8-16 0.20.2 0.020.02 0.050.05 0.050.05 0.020.02 0.020.02 0.020.02 HPRT_E8-17HPRT_E8-17 0.20.2 0.100.10 0.090.09 0.110.11 0.110.11 0.100.10 0.100.10 HPRT_E8-18HPRT_E8-18 0.20.2 0.050.05 0.040.04 0.450.45 0.080.08 0.040.04 0.040.04 HPRT_E8-19HPRT_E8-19 0.10.1 0.050.05 0.050.05 0.030.03 0.060.06 0.030.03 0.060.06 HPRT_E8-20HPRT_E8-20 0.10.1 0.150.15 0.140.14 0.180.18 0.170.17 0.170.17 0.170.17

도 13b는 HEK2, RNF2, TK_EphB4, TYRO3, WEE1, HPRT-exon6, 및 HPRT-exon8를 표적으로 하는 변형 sgRNA 사용시 targeted deep sequencing에 의하여 측정된 각 변형 sgRNA 별 ABE7.10의 염기 교정 빈도 평균을 나타낸 그래프이다. Figure 13b is a graph showing the average of the base correction frequency of ABE7.10 for each modified sgRNA measured by targeted deep sequencing when using modified sgRNA targeting HEK2, RNF2, TK_EphB4, TYRO3, WEE1, HPRT-exon6, and HPRT-exon8 to be.

도 13c 및 13d에 나타난 바와 같이, 변형 sgRNA는 표적화 활성은 유지하면서 거의 모든 부위에서 ABE7.10의 off-target 활성을 감소시켰다 (도 13d에서, y축의 그래프는 위에서부터 순서대로 ggX20, gX20, GX19, gX18, gX17, 및 untreated의 결과를 보여준다). 예컨대, 도 13c에서와 같이, HPRT Exon 6을 표적으로 하는 GX19 sgRNA를 사용하여 확인된 4 개의 검증된 off-target site에 대하여 gX20 또는 ggX20 sgRNA는 기존 GX19 sgRNA와 비교하여 specificity ratio가 2 내지 26배 향상시켰다. 도 13c 및 13d에 나타난 바와 같이, 절단 sgRNAs는 대부분의 부위에서 ABE7.10의 on target 및 off-target 활성을 감소시키고, 5' 말단 근처 또는 그 부근의 불일치가 있는 부위에서 off-target 효과를 악화시키는 것으로 나타났다.13C and 13D, the modified sgRNA reduced the off-target activity of ABE7.10 in almost all sites while maintaining the targeting activity (in FIG. 13D, the y-axis graph is ggX20, gX20, GX19 in order from the top). , gX18, gX17, and untreated results are shown). For example, as shown in Figure 13c, gX 20 or ggX 20 sgRNA with respect to four verified off-target sites identified using GX 19 sgRNA targeting HPRT Exon 6 has a specificity ratio compared to existing GX 19 sgRNA. It improved 2 to 26 times. 13C and 13D, truncated sgRNAs reduce the on target and off-target activity of ABE7.10 at most sites, and worsen the off-target effect at the site of mismatch near or near the 5'end. Appeared to be letting.

또한, 야생형 SpCas9 대신에 Sniper-Cas9가 아데노신 디아미나아제 모이어티와 융합된 Sniper ABE7.10를 사용하여 상기와 동일한 시험을 수행하여, Digenome-seq로 측정된 결과를 도 13e 및 13f (도 13f에서, y축의 그래프는 위에서부터 순서대로 (+) SpCas9 ABE7.10, (+)ABE7.10, 및 untreated의 결과를 보여준다) 및 표 33 내지 표 39에 나타내었다:In addition, the same test as above was performed using Sniper ABE7.10 in which Sniper-Cas9 was fused with an adenosine deaminase moiety instead of wild-type SpCas9, and the results measured by Digenome-seq were shown in FIGS. 13E and 13F (FIG. , The y-axis graph shows the results of (+) SpCas9 ABE7.10, (+)ABE7.10, and untreated in order from above) and Tables 33 to 39:

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (HEK2; 'DNA sequence at a cleavage sites'은 표 12 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (HEK2; see Table 12 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 HEK2_001HEK2_001 20.120.1 0.170.17 0.170.17 0.160.16 HEK2_002HEK2_002 15.115.1 0.550.55 0.550.55 0.590.59 HEK2_003HEK2_003 14.714.7 0.020.02 0.050.05 0.070.07 HEK2_004HEK2_004 14.314.3 0.160.16 0.330.33 0.130.13 HEK2_005HEK2_005 13.413.4 0.160.16 0.220.22 0.220.22 HEK2_006HEK2_006 13.413.4 0.220.22 0.180.18 0.170.17 HEK2_007HEK2_007 8.98.9 0.310.31 72.7672.76 75.9275.92 HEK2_008HEK2_008 6.66.6 0.090.09 0.100.10 0.110.11 HEK2_009HEK2_009 5.85.8 0.110.11 0.100.10 0.090.09 HEK2_010HEK2_010 5.15.1 0.390.39 0.420.42 0.340.34 HEK2_011HEK2_011 4.94.9 0.120.12 0.130.13 0.110.11 HEK2_012HEK2_012 4.64.6 0.240.24 0.230.23 0.220.22 HEK2_013HEK2_013 3.93.9 0.200.20 0.240.24 0.200.20 HEK2_014HEK2_014 3.53.5 0.020.02 0.030.03 0.000.00 HEK2_015HEK2_015 3.03.0 0.170.17 0.210.21 0.220.22 HEK2_016HEK2_016 2.92.9 No PCRNo PCR HEK2_017HEK2_017 2.72.7 0.200.20 0.220.22 0.180.18 HEK2_018HEK2_018 2.52.5 0.320.32 0.300.30 0.310.31 HEK2_019HEK2_019 2.22.2 0.370.37 0.360.36 0.430.43 HEK2_020HEK2_020 2.12.1 0.150.15 0.130.13 0.120.12 HEK2_021HEK2_021 2.12.1 0.500.50 0.420.42 0.470.47 HEK2_022HEK2_022 2.12.1 0.190.19 0.200.20 0.240.24 HEK2_023HEK2_023 2.02.0 6.766.76 6.746.74 7.277.27 HEK2_024HEK2_024 1.71.7 0.100.10 0.110.11 0.110.11 HEK2_025HEK2_025 1.41.4 0.220.22 0.240.24 0.230.23 HEK2_026HEK2_026 1.31.3 0.230.23 0.190.19 0.220.22 HEK2_027HEK2_027 1.31.3 0.400.40 0.390.39 0.410.41 HEK2_028HEK2_028 1.31.3 0.140.14 0.160.16 0.150.15 HEK2_029HEK2_029 1.21.2 0.220.22 0.200.20 0.230.23 HEK2_030HEK2_030 1.21.2 0.180.18 0.200.20 0.160.16 HEK2_031HEK2_031 1.21.2 0.100.10 0.160.16 0.130.13 HEK2_032HEK2_032 1.11.1 0.080.08 0.120.12 0.100.10 HEK2_033HEK2_033 1.11.1 0.180.18 0.210.21 0.200.20 HEK2_034HEK2_034 1.01.0 0.130.13 0.110.11 0.100.10 HEK2_042HEK2_042 0.70.7 0.200.20 0.210.21 0.240.24 HEK2_044HEK2_044 0.70.7 0.000.00 0.000.00 0.000.00 HEK2_050HEK2_050 0.50.5 0.120.12 0.130.13 0.130.13 HEK2_052HEK2_052 0.50.5 0.130.13 0.150.15 0.160.16 HEK2_065HEK2_065 0.40.4 0.230.23 0.260.26 0.220.22 HEK2_079HEK2_079 0.30.3 0.120.12 0.090.09 0.130.13 HEK2_082HEK2_082 0.30.3 0.210.21 0.220.22 0.210.21 HEK2_092HEK2_092 0.20.2 0.100.10 0.100.10 0.110.11 HEK2_093HEK2_093 0.20.2 0.120.12 0.100.10 0.090.09 HEK2_099HEK2_099 0.20.2 0.120.12 0.140.14 0.100.10 HEK2_101HEK2_101 0.20.2 0.190.19 0.180.18 0.170.17 HEK2_105HEK2_105 0.20.2 0.160.16 0.140.14 0.140.14 HEK2_106HEK2_106 0.20.2 0.270.27 0.290.29 0.300.30 HEK2_110HEK2_110 0.20.2 0.000.00 0.000.00 0.000.00 HEK2_119HEK2_119 0.20.2 0.100.10 0.120.12 0.130.13 HEK2_121HEK2_121 0.10.1 0.090.09 0.110.11 0.100.10 HEK2_139HEK2_139 0.10.1 0.250.25 0.310.31 0.280.28 HEK2_145HEK2_145 0.10.1 0.150.15 0.140.14 0.150.15

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (RNF2; 'DNA sequence at a cleavage sites'은 표 13 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (RNF2; see Table 13 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 RNF2-1RNF2-1 7.37.3 0.030.03 0.050.05 0.050.05 RNF2-2RNF2-2 4.44.4 0.220.22 32.7932.79 16.2416.24 RNF2-3RNF2-3 4.34.3 0.440.44 0.450.45 0.510.51 RNF2-4RNF2-4 4.14.1 0.180.18 0.170.17 0.190.19 RNF2-5RNF2-5 3.63.6 0.980.98 0.940.94 0.890.89 RNF2-6RNF2-6 2.22.2 0.350.35 0.330.33 0.420.42 RNF2-7RNF2-7 1.41.4 0.360.36 0.370.37 0.330.33 RNF2-8RNF2-8 1.01.0 0.320.32 0.350.35 0.270.27 RNF2-15RNF2-15 0.40.4 0.290.29 0.270.27 0.260.26 RNF2-19RNF2-19 0.40.4 0.220.22 0.230.23 0.240.24 RNF2-20RNF2-20 0.30.3 1.391.39 1.231.23 1.221.22 RNF2-24RNF2-24 0.30.3 0.110.11 0.180.18 0.180.18 RNF2-27RNF2-27 0.30.3 0.400.40 0.480.48 0.460.46 RNF2-41RNF2-41 0.20.2 0.020.02 0.020.02 0.040.04

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (TYRO3; 'DNA sequence at a cleavage sites'은 표 14 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (TYRO3; see Table 14 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 TYRO3-1TYRO3-1 4.34.3 0.640.64 3.043.04 3.123.12 TYRO3-2TYRO3-2 3.43.4 1.171.17 72.6672.66 68.9568.95 TYRO3-3TYRO3-3 2.02.0 11.2411.24 11.5411.54 11.4811.48 TYRO3-4TYRO3-4 0.80.8 0.360.36 0.360.36 0.320.32 TYRO3-5TYRO3-5 0.60.6 1.021.02 1.071.07 1.021.02 TYRO3-6TYRO3-6 0.40.4 0.680.68 0.630.63 0.610.61 TYRO3-7TYRO3-7 0.30.3 0.540.54 0.440.44 0.760.76 TYRO3-8TYRO3-8 0.20.2 0.000.00 0.000.00 0.000.00 TYRO3-9TYRO3-9 0.20.2 0.980.98 0.850.85 0.950.95 TYRO3-10TYRO3-10 0.20.2 0.160.16 0.180.18 0.070.07 TYRO3-11TYRO3-11 0.10.1 0.320.32 0.220.22 0.280.28 TYRO3-12TYRO3-12 0.10.1 0.700.70 0.880.88 0.820.82

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (WEE1; 'DNA sequence at a cleavage sites'은 표 15 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (WEE1; see Table 15 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 WEE1-1WEE1-1 11.111.1 0.800.80 0.730.73 0.760.76 WEE1-2WEE1-2 2.02.0 0.350.35 58.5958.59 53.3853.38 WEE1-3WEE1-3 1.91.9 2.382.38 2.322.32 2.082.08 WEE1-4WEE1-4 0.70.7 0.210.21 0.240.24 0.220.22 WEE1-5WEE1-5 0.40.4 0.180.18 0.170.17 0.170.17 WEE1-6WEE1-6 0.40.4 0.760.76 0.960.96 0.880.88 WEE1-7WEE1-7 0.30.3 0.120.12 0.120.12 0.110.11 WEE1-8WEE1-8 0.30.3 1.051.05 0.920.92 1.021.02 WEE1-9WEE1-9 0.20.2 0.590.59 0.610.61 0.580.58 WEE1-10WEE1-10 0.20.2 0.240.24 0.280.28 0.230.23 WEE1-11WEE1-11 0.20.2 0.230.23 0.210.21 0.130.13 WEE1-12WEE1-12 0.20.2 No PCRNo PCR WEE1-13WEE1-13 0.20.2 1.451.45 1.501.50 1.651.65 WEE1-14WEE1-14 0.20.2 0.000.00 0.000.00 0.000.00 WEE1-15WEE1-15 0.10.1 0.460.46 0.410.41 0.560.56 WEE1-16WEE1-16 0.10.1 0.000.00 0.000.00 0.000.00 WEE1-17WEE1-17 0.10.1 0.180.18 0.170.17 0.130.13 WEE1-18WEE1-18 0.10.1 0.230.23 0.280.28 0.240.24 WEE1-19WEE1-19 0.10.1 0.320.32 0.450.45 0.320.32 WEE1-20WEE1-20 0.10.1 0.810.81 0.970.97 1.131.13 WEE1-21WEE1-21 0.10.1 0.210.21 0.240.24 0.250.25

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (EphB4; 'DNA sequence at a cleavage sites'은 표 16 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (EphB4; see Table 16 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 EphB4-01EphB4-01 10.310.3 0.130.13 52.4252.42 54.6654.66 EphB4-02EphB4-02 8.08.0 0.150.15 0.190.19 0.130.13 EphB4-03EphB4-03 4.14.1 0.160.16 0.160.16 0.160.16 EphB4-04EphB4-04 2.42.4 0.260.26 0.270.27 0.210.21 EphB4-05EphB4-05 2.22.2 0.120.12 0.140.14 0.120.12 EphB4-06EphB4-06 1.91.9 No PCRNo PCR EphB4-07EphB4-07 1.81.8 0.130.13 0.140.14 0.140.14 EphB4-08EphB4-08 1.81.8 No PCRNo PCR EphB4-09EphB4-09 1.41.4 0.270.27 0.240.24 0.260.26 EphB4-10EphB4-10 0.90.9 0.070.07 0.080.08 0.070.07 EphB4-11EphB4-11 0.80.8 0.140.14 0.130.13 0.140.14 EphB4-12EphB4-12 0.60.6 0.180.18 0.190.19 0.220.22 EphB4-13EphB4-13 0.50.5 0.180.18 0.190.19 0.170.17 EphB4-14EphB4-14 0.40.4 0.120.12 0.100.10 0.130.13 EphB4-15EphB4-15 0.40.4 0.020.02 0.020.02 0.030.03 EphB4-16EphB4-16 0.40.4 0.050.05 0.070.07 0.080.08 EphB4-17EphB4-17 0.40.4 0.090.09 0.080.08 0.080.08 EphB4-18EphB4-18 0.40.4 0.390.39 0.370.37 0.350.35 EphB4-19EphB4-19 0.30.3 0.060.06 0.070.07 0.100.10 EphB4-20EphB4-20 0.30.3 0.110.11 0.130.13 0.120.12 EphB4-21EphB4-21 0.30.3 0.000.00 0.160.16 0.150.15 EphB4-22EphB4-22 0.20.2 0.080.08 0.110.11 0.080.08 EphB4-23EphB4-23 0.20.2 0.060.06 0.100.10 0.070.07 EphB4-24EphB4-24 0.20.2 0.120.12 0.140.14 0.140.14 EphB4-25EphB4-25 0.20.2 0.300.30 0.380.38 0.350.35 EphB4-26EphB4-26 0.20.2 0.070.07 0.090.09 0.080.08 EphB4-27EphB4-27 0.20.2 No PCRNo PCR EphB4-28EphB4-28 0.20.2 0.170.17 0.140.14 0.140.14 EphB4-29EphB4-29 0.20.2 0.220.22 0.220.22 0.210.21 EphB4-30EphB4-30 0.20.2 0.130.13 0.130.13 0.090.09 EphB4-31EphB4-31 0.10.1 0.240.24 0.200.20 0.220.22 EphB4-32EphB4-32 0.10.1 0.210.21 0.160.16 0.230.23 EphB4-33EphB4-33 0.10.1 0.170.17 0.180.18 0.120.12 EphB4-34EphB4-34 0.10.1 0.170.17 0.150.15 0.130.13 EphB4-35EphB4-35 0.10.1 2.322.32 2.362.36 2.332.33 EphB4-36EphB4-36 0.10.1 No PCRNo PCR EphB4-37EphB4-37 0.10.1 0.130.13 0.120.12 0.120.12 EphB4-38EphB4-38 0.10.1 0.220.22 0.250.25 0.240.24 EphB4-39EphB4-39 0.10.1 0.190.19 0.220.22 0.220.22

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon6; 'DNA sequence at a cleavage sites'은 표 17 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon6; see Table 17 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 HPRT_E6-01HPRT_E6-01 29.029.0 0.730.73 58.6358.63 63.3363.33 HPRT_E6-02HPRT_E6-02 21.321.3 0.140.14 0.170.17 0.150.15 HPRT_E6-03HPRT_E6-03 17.017.0 0.220.22 0.340.34 0.280.28 HPRT_E6-04HPRT_E6-04 12.712.7 0.340.34 0.360.36 0.350.35 HPRT_E6-05HPRT_E6-05 10.510.5 0.120.12 0.120.12 0.120.12 HPRT_E6-06HPRT_E6-06 10.210.2 0.260.26 0.290.29 0.230.23 HPRT_E6-07HPRT_E6-07 9.39.3 0.120.12 1.451.45 0.190.19 HPRT_E6-08HPRT_E6-08 9.09.0 0.120.12 0.110.11 0.100.10 HPRT_E6-09HPRT_E6-09 6.16.1 0.120.12 0.120.12 0.150.15 HPRT_E6-10HPRT_E6-10 5.65.6 0.090.09 0.110.11 0.110.11 HPRT_E6-11HPRT_E6-11 4.74.7 0.260.26 0.320.32 0.240.24 HPRT_E6-12HPRT_E6-12 4.54.5 0.180.18 0.180.18 0.160.16 HPRT_E6-13HPRT_E6-13 4.34.3 0.120.12 1.191.19 0.230.23 HPRT_E6-14HPRT_E6-14 4.34.3 0.140.14 0.120.12 0.160.16 HPRT_E6-15HPRT_E6-15 4.14.1 0.040.04 0.030.03 0.040.04 HPRT_E6-16HPRT_E6-16 3.83.8 0.070.07 0.190.19 0.070.07 HPRT_E6-17HPRT_E6-17 3.73.7 0.120.12 0.120.12 0.120.12 HPRT_E6-18HPRT_E6-18 3.63.6 0.250.25 0.260.26 0.200.20 HPRT_E6-19HPRT_E6-19 3.63.6 0.070.07 0.070.07 0.080.08 HPRT_E6-20HPRT_E6-20 3.53.5 0.140.14 0.100.10 0.130.13 HPRT_E6-21HPRT_E6-21 3.53.5 0.070.07 0.080.08 0.070.07 HPRT_E6-22HPRT_E6-22 3.43.4 0.120.12 0.150.15 0.120.12 HPRT_E6-23HPRT_E6-23 3.33.3 0.080.08 0.080.08 0.070.07 HPRT_E6-24HPRT_E6-24 3.13.1 0.110.11 0.120.12 0.120.12 HPRT_E6-25HPRT_E6-25 2.92.9 0.090.09 0.080.08 0.090.09 HPRT_E6-26HPRT_E6-26 2.82.8 0.090.09 0.070.07 0.070.07 HPRT_E6-27HPRT_E6-27 2.62.6 0.460.46 0.450.45 0.450.45 HPRT_E6-28HPRT_E6-28 2.52.5 0.130.13 0.130.13 0.140.14 HPRT_E6-29HPRT_E6-29 2.42.4 0.280.28 0.270.27 0.290.29 HPRT_E6-30HPRT_E6-30 2.42.4 0.270.27 0.300.30 0.300.30 HPRT_E6-31HPRT_E6-31 2.32.3 0.150.15 0.180.18 0.120.12 HPRT_E6-32HPRT_E6-32 2.22.2 0.230.23 0.240.24 0.200.20 HPRT_E6-33HPRT_E6-33 1.51.5 0.220.22 0.240.24 0.270.27 HPRT_E6-34HPRT_E6-34 1.41.4 0.000.00 0.000.00 0.000.00 HPRT_E6-35HPRT_E6-35 1.41.4 0.100.10 0.090.09 0.090.09 HPRT_E6-36HPRT_E6-36 1.21.2 0.090.09 0.110.11 0.080.08 HPRT_E6-37HPRT_E6-37 1.11.1 0.020.02 0.060.06 0.090.09 HPRT_E6-38HPRT_E6-38 1.11.1 0.210.21 0.220.22 0.210.21 HPRT_E6-39HPRT_E6-39 1.11.1 0.040.04 0.040.04 0.020.02 HPRT_E6-40HPRT_E6-40 1.01.0 0.230.23 0.230.23 0.280.28 HPRT_E6-41HPRT_E6-41 1.01.0 0.060.06 0.130.13 0.160.16 HPRT_E6-52HPRT_E6-52 0.70.7 0.000.00 0.000.00 0.000.00 HPRT_E6-81HPRT_E6-81 0.40.4 0.130.13 0.180.18 0.150.15

Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon8; 'DNA sequence at a cleavage sites'은 표 18 참조)Mutation frequencies of ABE7.10 and Sniper ABE7.10 at on-target and off-target sites captured by Digenome-seq (HPRT-Exon8; see Table 18 for'DNA sequence at a cleavage sites') Base editing frequency (%)Base editing frequency (%) Site No.Site No. DNA Cleavage ScoreDNA Cleavage Score UntreatedUntreated (+) ABE7.10(+) ABE7.10 (+) Sniper ABE7.10(+) Sniper ABE7.10 HPRT_E8-1HPRT_E8-1 2.42.4 0.030.03 70.0970.09 71.1571.15 HPRT_E8-2HPRT_E8-2 1.31.3 0.110.11 10.3310.33 3.533.53 HPRT_E8-3HPRT_E8-3 0.60.6 0.170.17 0.170.17 0.190.19 HPRT_E8-4HPRT_E8-4 0.60.6 0.050.05 0.030.03 0.060.06 HPRT_E8-5HPRT_E8-5 0.60.6 0.080.08 0.080.08 0.100.10 HPRT_E8-6HPRT_E8-6 0.50.5 0.040.04 0.100.10 0.090.09 HPRT_E8-7HPRT_E8-7 0.50.5 0.160.16 0.160.16 0.140.14 HPRT_E8-8HPRT_E8-8 0.40.4 No PCRNo PCR HPRT_E8-9HPRT_E8-9 0.40.4 0.070.07 0.060.06 0.040.04 HPRT_E8-10HPRT_E8-10 0.40.4 0.110.11 0.110.11 0.120.12 HPRT_E8-11HPRT_E8-11 0.40.4 0.050.05 0.070.07 0.050.05 HPRT_E8-12HPRT_E8-12 0.30.3 0.140.14 0.150.15 0.130.13 HPRT_E8-13HPRT_E8-13 0.30.3 0.050.05 0.050.05 0.030.03 HPRT_E8-14HPRT_E8-14 0.30.3 0.260.26 0.250.25 0.250.25 HPRT_E8-15HPRT_E8-15 0.30.3 0.040.04 0.050.05 0.060.06 HPRT_E8-16HPRT_E8-16 0.20.2 0.110.11 0.110.11 0.100.10 HPRT_E8-17HPRT_E8-17 0.20.2 0.090.09 0.090.09 0.080.08 HPRT_E8-18HPRT_E8-18 0.20.2 0.040.04 0.150.15 0.050.05 HPRT_E8-19HPRT_E8-19 0.10.1 0.050.05 0.040.04 0.070.07 HPRT_E8-20HPRT_E8-20 0.10.1 0.080.08 0.050.05 0.050.05

또한, ABE7.10와 sgRNA가 결합된 ABE7.10 RNP 형태로 세포에 도입(참고예 1 참조)된 경우의 염기 교정 빈도를 측정하여, ABE7.10와 sgRNA가 플라스미드를 통하여 세포에 도입(참조예 1 참조)된 경우와 비교하여, 도 13g 및 13h (도 13h에서, y축의 그래프는 위에서부터 순서대로 (+)ABE7.10_RNP, (+)ABE7.10_플라스미드, 및 untreated의 결과를 보여준다) 에 나타내었다.In addition, the frequency of base correction was measured when ABE7.10 and sgRNA were introduced into the cell in the form of ABE7.10 RNP conjugated (see Reference Example 1), and ABE7.10 and sgRNA were introduced into the cell through a plasmid (reference example) 1) compared to the case of Fig. 13g and 13h (in Fig. 13h, the y-axis graph shows the results of (+)ABE7.10_RNP, (+)ABE7.10_plasmid, and untreated in order from the top) Indicated.

도 13e 내지 13h 및 표 26 내지 32에 나타난 바와 같이, Sniper ABE7.10의 사용하는 경우 및 ABE7.10 RNP를 사용하는 경우, 각각 ABE7.10의 사용하는 경우 및 ABE7.10 플라스미드를 사용하는 경우와 비교하여 염기 교정 특이성을 약 7 배까지 향상시킬 수 있다.13E to 13H and Tables 26 to 32, when Sniper ABE7.10 is used and ABE7.10 RNP is used, when ABE7.10 is used, and ABE7.10 plasmid is used, and In comparison, the specificity of the base calibration can be improved by about 7 times.

또한, Sniper ABE7.10를 변형 sgRNAs와 조합하여 사용함으로써, ABE7.10의 off-target 효과를 보다 감소시킬 수 있음을 확인하였다 (도 13i 및 13j 참조; 도 13i 및 13j에서, y축의 그래프는 위에서부터 순서대로 ggX20-Sniper ABE7.10, gX20-Sniper ABE7.10, GX19-Sniper ABE7.10, gX18-Sniper ABE7.10, gX17-Sniper ABE7.10, GX19-ABE7.10, 및 untreated의 결과를 보여준다).In addition, it was confirmed that the off-target effect of ABE7.10 can be further reduced by using Sniper ABE7.10 in combination with modified sgRNAs (see Figs. 13i and 13j; in Figs. 13i and 13j, the y-axis graph is from above. From ggX20-Sniper ABE7.10, gX20-Sniper ABE7.10, GX19-Sniper ABE7.10, gX18-Sniper ABE7.10, gX17-Sniper ABE7.10, GX19-ABE7.10, and untreated results are shown. ).

본 실시예를 통하여, mismatched sgRNAs, Digenome-seq, 및 targeted amplicon sequencing을 사용하여, ABE7.10, BE3, 및 Cas9가 인간 유전체에서 서로 다른 세트의 off-target sites을 인식할 수 있고, 각각 독립적으로 평가 수단을 필요로 함을 확인하였다. 상기 시험된 7 개 유전자를 표적으로 하는 ABE7.10 디아미나아제는 인간 유전체의 제한된 수의 부위에서 매우 특이적으로 in vitro A-to-G conversion을 촉매함을 확인하였다. 또한, 변형 sgRNAs, ABE7.10 RNPs, 및/또는 Sniper ABE7.10를 사용함으로써, ABE7.10의 off-target 활성을 감소시키거나 제거할 수 있음을 확인하였다.Through this example, using mismatched sgRNAs, Digenome-seq, and targeted amplicon sequencing, ABE7.10, BE3, and Cas9 can recognize different sets of off-target sites in the human genome, and each independently It was confirmed that an evaluation means was required. It was confirmed that the ABE7.10 deaminase targeting the seven genes tested above catalyzes the in vitro A-to-G conversion very specifically in a limited number of sites in the human genome. In addition, it was confirmed that the off-target activity of ABE7.10 can be reduced or eliminated by using modified sgRNAs, ABE7.10 RNPs, and/or Sniper ABE7.10.

<110> TOOLGEN INCORPORATED Seoul National University R&DB Foundation <120> Method of identifying base editing using adenosine deaminase <130> DPP20190026KR <150> 10-2018-0009508 <151> 2018-01-25 <160> 540 <170> KopatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 1 gggtgcaaag catagactgc ggg 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 2 gaacgtggag catagactgc ggg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 3 gaacacaaga tgtagactgc ggg 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 4 gaacacaaag cacgagctgc ggg 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 5 gaacacaaag catagatcat ggg 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 6 gagtgcaaag catagactgc ggg 23 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 7 gaacatggag catagactgc ggg 23 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 8 gaacacaaga tatagactgc ggg 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 9 gaacacaaag cgcggactgc ggg 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 10 gaacacaaag cataagttgc ggg 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 11 gaacacaaag catagaccat ggg 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 12 gagtacaaag catagactgc ggg 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 13 gaacgtaaag catagactgc ggg 23 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 14 gaacacggag catagactgc ggg 23 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 15 gaacacaaga catagactgc ggg 23 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 16 gaacacaaag tgtagactgc ggg 23 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 17 gaacacaaag cacggactgc ggg 23 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 18 gaacacaaag cataagctgc ggg 23 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 19 gaacacaaag catagatcgc ggg 23 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 20 gaacacaaag catagactat ggg 23 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 21 ggacacaaag catagactgc ggg 23 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 22 gaatacaaag catagactgc ggg 23 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 23 gaacataaag catagactgc ggg 23 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 24 gaacacagag catagactgc ggg 23 <210> 25 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 25 gaacacaaaa catagactgc ggg 23 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 26 gaacacaaag cgtagactgc ggg 23 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 27 gaacacaaag catggactgc ggg 23 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 28 gaacacaaag cataggctgc ggg 23 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 29 gaacacaaag catagaccgc ggg 23 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 30 gaacacaaag catagactgt ggg 23 <210> 31 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for HEK2) <400> 31 gaacacaaag catagactgc ggg 23 <210> 32 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 32 gatttagact gagcacgtga tgg 23 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 33 ggcctgagct gagcacgtga tgg 23 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 34 ggcccagatc aggcacgtga tgg 23 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 35 ggcccagact gaatgtgtga tgg 23 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 36 ggcccagact gagcacacag tgg 23 <210> 37 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 37 ggtttagact gagcacgtga tgg 23 <210> 38 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 38 ggcccgagct gagcacgtga tgg 23 <210> 39 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 39 ggcccagatc aagcacgtga tgg 23 <210> 40 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 40 ggcccagact ggatacgtga tgg 23 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 41 ggcccagact gagcgtatga tgg 23 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 42 ggcccagact gagcacgcag tgg 23 <210> 43 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 43 ggttcagact gagcacgtga tgg 23 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 44 ggcctggact gagcacgtga tgg 23 <210> 45 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 45 ggcccaagct gagcacgtga tgg 23 <210> 46 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 46 ggcccagatc gagcacgtga tgg 23 <210> 47 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 47 ggcccagact aggcacgtga tgg 23 <210> 48 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 48 ggcccagact gaatacgtga tgg 23 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 49 ggcccagact gagcgtgtga tgg 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 50 ggcccagact gagcacacga tgg 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 51 ggcccagact gagcacgtag tgg 23 <210> 52 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 52 gacccagact gagcacgtga tgg 23 <210> 53 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 53 ggctcagact gagcacgtga tgg 23 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 54 ggcccggact gagcacgtga tgg 23 <210> 55 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 55 ggcccaggct gagcacgtga tgg 23 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 56 ggcccagacc gagcacgtga tgg 23 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 57 ggcccagact gggcacgtga tgg 23 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 58 ggcccagact gagtacgtga tgg 23 <210> 59 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 59 ggcccagact gagcatgtga tgg 23 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 60 ggcccagact gagcacgcga tgg 23 <210> 61 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 61 ggcccagact gagcacgtgg tgg 23 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for HEK3) <400> 62 ggcccagact gagcacgtga tgg 23 <210> 63 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 63 gctgccttag tcattacctg agg 23 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 64 gtcactccag tcattacctg agg 23 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 65 gtcatcttga ctattacctg agg 23 <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 66 gtcatcttag tcgccgcctg agg 23 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 67 gtcatcttag tcattattca agg 23 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 68 gttgccttag tcattacctg agg 23 <210> 69 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 69 gtcattccag tcattacctg agg 23 <210> 70 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 70 gtcatcttga ccattacctg agg 23 <210> 71 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 71 gtcatcttag ttgctacctg agg 23 <210> 72 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 72 gtcatcttag tcatcgtctg agg 23 <210> 73 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 73 gtcatcttag tcattactca agg 23 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 74 gttgtcttag tcattacctg agg 23 <210> 75 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 75 gtcactttag tcattacctg agg 23 <210> 76 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 76 gtcatcccag tcattacctg agg 23 <210> 77 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 77 gtcatcttga tcattacctg agg 23 <210> 78 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 78 gtcatcttag ctattacctg agg 23 <210> 79 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 79 gtcatcttag tcgctacctg agg 23 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 80 gtcatcttag tcatcgcctg agg 23 <210> 81 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 81 gtcatcttag tcattatttg agg 23 <210> 82 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 82 gtcatcttag tcattaccca agg 23 <210> 83 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 83 gccatcttag tcattacctg agg 23 <210> 84 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 84 gtcgtcttag tcattacctg agg 23 <210> 85 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 85 gtcattttag tcattacctg agg 23 <210> 86 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 86 gtcatctcag tcattacctg agg 23 <210> 87 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 87 gtcatcttaa tcattacctg agg 23 <210> 88 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 88 gtcatcttag ttattacctg agg 23 <210> 89 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 89 gtcatcttag tcactacctg agg 23 <210> 90 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 90 gtcatcttag tcattgcctg agg 23 <210> 91 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 91 gtcatcttag tcattacttg agg 23 <210> 92 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 92 gtcatcttag tcattaccta agg 23 <210> 93 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for RNF2) <400> 93 gtcatcttag tcattacctg agg 23 <210> 94 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for TYRO3) <400> 94 ggccacacta gcgttgctgc tgg 23 <210> 95 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for WEE1) <400> 95 gtcgagatgt tctattactc tgg 23 <210> 96 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for EphB4) <400> 96 gcagaatatt cggacaaaca cgg 23 <210> 97 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for HPRTExon6) <400> 97 gtataatcca aagatggtca agg 23 <210> 98 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA ontarget site for HPRTExon8) <400> 98 gaagtattca ttatagtcaa ggg 23 <210> 99 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 99 gaacacaagc acagactgaa gg 22 <210> 100 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 100 gaacacatgc atagactgct ag 22 <210> 101 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 101 gaatactaag catagactcc agg 23 <210> 102 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 102 gaacacaatg catagattgc cgg 23 <210> 103 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 103 aaacacagag cacagactgc tga 23 <210> 104 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 104 aaacacaaag acatagacca ctgg 24 <210> 105 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 105 gaacacaaag catagactgc ggg 23 <210> 106 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 106 aaacataaag aatagactgc aag 23 <210> 107 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 107 gaacacaaag tatagaatgc tag 23 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 108 ggacacaaag cttagactcc agg 23 <210> 109 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 109 gaagataaag catagactct agg 23 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 110 aaacataaag catagactgc aaag 24 <210> 111 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 111 aaatacaaag catagactaa tatg 24 <210> 112 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 112 gaacacatac atagacagct gg 22 <210> 113 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 113 gaaaacaaag caaagaaagc agg 23 <210> 114 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 114 aacacaatag catagactgg actg 24 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 115 atacacagag caaagactgc agg 23 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 116 aaacataaag cctagactga cgg 23 <210> 117 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 117 aaaaacaaag cgtagactgt ggg 23 <210> 118 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 118 ggacaaaaag catagactca agg 23 <210> 119 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 119 atacacacaa gcacagactg cagg 24 <210> 120 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 120 gaacacagca cataaactgc agg 23 <210> 121 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 121 aaacactaac atagactgca gg 22 <210> 122 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 122 aaatacaatg catagactgc tag 23 <210> 123 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 123 gtaaacaaag catagactga ggg 23 <210> 124 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 124 gaacataatc acagactgct gg 22 <210> 125 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 125 ccaaacaaaa catagactgc tgg 23 <210> 126 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 126 gaaaacaaaa catagagtgc tgg 23 <210> 127 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 127 aatcaaatag catagactgc atg 23 <210> 128 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 128 gaacacaaac atagtactga agg 23 <210> 129 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 129 aaacagaaag catggactgc gga 23 <210> 130 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 130 caatacaaag gatagactgc agg 23 <210> 131 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 131 agacacacag cacagactgc agg 23 <210> 132 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 132 gaattcaaag catagattgc agg 23 <210> 133 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 133 acacacaaag catagactat gtg 23 <210> 134 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 134 ggaaacaaag catagacatt tgg 23 <210> 135 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 135 taatacaaag catagatagt tgg 23 <210> 136 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 136 gaatttaaag catagactgc aag 23 <210> 137 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 137 ctgaacacag caaagactgc tgg 23 <210> 138 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 138 gagcgataag cacagactgc tgg 23 <210> 139 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 139 gtaattaaag cacagactgc tgg 23 <210> 140 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 140 gaaaacaaac cacagactgg ggg 23 <210> 141 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 141 ctattgcaag cacagactgc tgg 23 <210> 142 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 142 gaatacataa catagactgg ggg 23 <210> 143 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 143 ataccataag catagactgt tgg 23 <210> 144 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 144 attaagatag catagactgc agg 23 <210> 145 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 145 aatgactaat aatagactgc tgg 23 <210> 146 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 146 atttcaacag catagactgt agg 23 <210> 147 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 147 agtatagcag catagactgc agg 23 <210> 148 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 148 gaattcaaag catagattgc agg 23 <210> 149 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 149 gcattctaat aatagactgc tgg 23 <210> 150 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 150 aaacacatag cacagcctgc agg 23 <210> 151 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 151 gaacacagta catagactgg cag 23 <210> 152 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 152 ggctgcctag cacagactgc cgg 23 <210> 153 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 153 tctcctaccg catagactgc tgg 23 <210> 154 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 154 gtcgcaaacg catagacttc cgg 23 <210> 155 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 155 cttattaaag cacagactgc tgg 23 <210> 156 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 156 actatataag catagactgt tgg 23 <210> 157 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 157 gtcgcaaacg catagacttc cgg 23 <210> 158 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 158 cgatttcaag catagactgc tgg 23 <210> 159 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 159 taatcataag catagaatgc tgg 23 <210> 160 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 160 gaatacaagc atagactgct gt 22 <210> 161 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 161 tcacaaataa gcatagactg gcgg 24 <210> 162 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 162 cttgctaaag cacagactgc tgg 23 <210> 163 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 163 aagaacaaaa catagactgc agg 23 <210> 164 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 164 aattaaacag aatagactgc tgg 23 <210> 165 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 165 gaacacagaa ccatagactg gggg 24 <210> 166 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 166 aaacaaaaag catagaccac aag 23 <210> 167 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 167 gaacacaggc atagactatg ga 22 <210> 168 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 168 ctcagagaag cacagactgc agg 23 <210> 169 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 169 atcatatatg cataaactgc agg 23 <210> 170 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 170 caacaaaata tatagactgc tgg 23 <210> 171 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 171 attgttaaag cacagactgc agg 23 <210> 172 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 172 agatcttaag catagactgt ggg 23 <210> 173 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 173 taacacaata ccatagactg gcgg 24 <210> 174 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 174 gaatacaaat aatagactat tgg 23 <210> 175 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 175 gaatttaaag catagactct ggg 23 <210> 176 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 176 aaacaaataa aatagactgc agg 23 <210> 177 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 177 ccacaccaag catagacttc tgg 23 <210> 178 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 178 aacaaaacag catagactgc atg 23 <210> 179 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 179 taattgcaag catagacggc agg 23 <210> 180 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 180 ggagagagag catagactgc tgg 23 <210> 181 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 181 agaaataata tatagactgc agg 23 <210> 182 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 182 tggttactag catagacttc agg 23 <210> 183 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 183 aaacacttaa cacagactgc agg 23 <210> 184 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 184 ccaccagcag catagactcc agg 23 <210> 185 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 185 aagacatttt catagactgt cgg 23 <210> 186 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 186 taagcacaag cataggctgc tgg 23 <210> 187 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 187 aacaagtatg catagactgc tgg 23 <210> 188 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 188 aaataccaac cacagactgc agg 23 <210> 189 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 189 aaatgcatag catagactgc tga 23 <210> 190 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 190 taacacaaag actaaactgc agg 23 <210> 191 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 191 taccacgaag catagactgt agg 23 <210> 192 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 192 gatcactcaa catagactgc atg 23 <210> 193 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 193 gaacagaaac atagaccaat gg 22 <210> 194 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 194 tacaaaataa gatagactgc tgg 23 <210> 195 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 195 acagttaaag aatagactgc agg 23 <210> 196 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 196 aaacacaaag gcataaactc cagg 24 <210> 197 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 197 gaacacacac acagactgag gg 22 <210> 198 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 198 ggacataaat cataaactgc tgg 23 <210> 199 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 199 aaagctacag catagactgc aag 23 <210> 200 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 200 tcacacaaac catagactga ggg 23 <210> 201 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 201 gatctaccta tatagactgc agg 23 <210> 202 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 202 tatagaggag catagactgc tgg 23 <210> 203 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 203 tatcagaaag cacagactgc ggg 23 <210> 204 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 204 gaacaacaag gataaactgc cgg 23 <210> 205 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 205 tacaaacacg catagaatgc cgg 23 <210> 206 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 206 taagaaatgg aatagactgc agg 23 <210> 207 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 207 aaatattaag catagactac ggg 23 <210> 208 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 208 gaatgccaag cataaactgc agg 23 <210> 209 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 209 aactccaaag catatactgc tgg 23 <210> 210 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 210 gtgaacacag catagactgg ggc 23 <210> 211 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 211 atcctaagaa catagactgc agg 23 <210> 212 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 212 tttgttaaaa catagactgc tgg 23 <210> 213 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 213 taacaaaatg catagactgc tag 23 <210> 214 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 214 tgtataacag catacactgc tgg 23 <210> 215 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 215 aaacactaat aatagactgt ggg 23 <210> 216 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 216 aagcaatcag cacagactgc ggg 23 <210> 217 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 217 ggacacagag tatagactga ggg 23 <210> 218 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 218 cacaaatcaa aatagactgc tgg 23 <210> 219 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 219 gaattcaaag catggactgc agg 23 <210> 220 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 220 ttccaaaaaa catagactgc tgg 23 <210> 221 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 221 gtagagtaag catacactgc tgg 23 <210> 222 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 222 ggcctttagg cacagactgc agg 23 <210> 223 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 223 aagactttag catagactgc aag 23 <210> 224 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 224 gaaaagtaag atagactgcc gg 22 <210> 225 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 225 aactcatcag catagactgt agg 23 <210> 226 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 226 aaatacagag cttagactac tgg 23 <210> 227 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 227 aaacatgaag catagacagc aag 23 <210> 228 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 228 acatagatat tatagactgc tgg 23 <210> 229 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 229 cacattaaag cacagactgc tgg 23 <210> 230 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 230 gagcctagag cacagactgc agg 23 <210> 231 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 231 aagacttaag caaagactgc tgg 23 <210> 232 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 232 ttacacatag cacagactac agg 23 <210> 233 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 233 agaagttaag catagactgg tgg 23 <210> 234 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 234 ctatattgag aatagactgc agg 23 <210> 235 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 235 gtgcacacag catagactgc atg 23 <210> 236 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 236 ctagcaaaaa catagactgc tgg 23 <210> 237 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 237 taaaacaaag aacagactgc tgg 23 <210> 238 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 238 tacagatagt aatagactgc agg 23 <210> 239 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 239 aattaataac aatagactgc tgg 23 <210> 240 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 240 aagattgcag cataaactgc tgg 23 <210> 241 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 241 aagcacataa catagactga agg 23 <210> 242 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 242 gtagaaaaag tatagactgc agg 23 <210> 243 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 243 tactatggtg catagactgc tgg 23 <210> 244 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 244 ctctactgag aatagactgc agg 23 <210> 245 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 245 tgaaataata cataaactgc cgg 23 <210> 246 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 246 aataaacttg catagactgt agg 23 <210> 247 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 247 agaccctaag catagactgc aga 23 <210> 248 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 248 tacccaaatg cacagactgc tgg 23 <210> 249 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 249 aagatagatt tatagactgc tgg 23 <210> 250 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 250 aaacacaaaa cataaattac tgg 23 <210> 251 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 251 tcaccattag tcattacctg ctg 23 <210> 252 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 252 gtcatcttag tcattactga gg 22 <210> 253 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 253 gtaatattag tcattaccgg tgg 23 <210> 254 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 254 gtcatcctag tcatttactg ggg 23 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 255 atcaccttag ccattaccag ggg 23 <210> 256 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 256 gtcacttagt cattgcctgt gg 22 <210> 257 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 257 gtcacattag ccattacctg tga 23 <210> 258 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 258 tgtatcttag acattacatg tgg 23 <210> 259 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 259 attttcttag tgattatctg ggg 23 <210> 260 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 260 catctaatag taattacctg ggg 23 <210> 261 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 261 atagtattag tcattacctg tga 23 <210> 262 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 262 accatcttag tcattatcta atg 23 <210> 263 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 263 attttcttag tcattaccta gag 23 <210> 264 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 264 atcatcttca tcattacatg agg 23 <210> 265 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 265 cctatatata tcattacctt tgg 23 <210> 266 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 266 gtcattttag tcattatctt gag 23 <210> 267 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 267 atcacctgag tcattaccca tgg 23 <210> 268 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 268 ttaatcttag tcattacttt tgg 23 <210> 269 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 269 atcatcatcg tcattatctg ggg 23 <210> 270 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 270 atcattagtc attgcctgag g 21 <210> 271 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 271 cttatttagt cattacctgt ag 22 <210> 272 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 272 gtcatattaa tcattacata gag 23 <210> 273 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 273 tccatctcac tcattacctg agg 23 <210> 274 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 274 gttatcttag tctttacctg aga 23 <210> 275 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 275 cacatcttac ccattacatg agg 23 <210> 276 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 276 gccacctcag tcattagctg ggg 23 <210> 277 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 277 acattagtaa acattaccta ggg 23 <210> 278 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 278 tacctacctg tcattaccta tgg 23 <210> 279 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 279 gatatcttag ccattaccta gga 23 <210> 280 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 280 tatctactac tcattacctg agg 23 <210> 281 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 281 agcatctctg tcattaccca ggg 23 <210> 282 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 282 cgtgcattag tcattacctg agg 23 <210> 283 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 283 gtctgtatag tcattacctt tgg 23 <210> 284 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 284 tacatctatg ttattaccta tgg 23 <210> 285 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 285 ttcatctttg tcattaccta aag 23 <210> 286 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 286 tatactatat acattacctg ggg 23 <210> 287 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 287 gctcattcac tcattaccta tgg 23 <210> 288 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 288 gtgatctaaa gtcattacct tagg 24 <210> 289 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 289 ttcaatataa tcattacctg tgg 23 <210> 290 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 290 attattttag tcattacctt tgg 23 <210> 291 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 291 cccatctcag ccattacctg ggt 23 <210> 292 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 292 agaatattag tccttacctg ggg 23 <210> 293 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 293 gatcctttaa tcattacctt tgg 23 <210> 294 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 294 accatcttag tcactacctg ggc 23 <210> 295 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 295 gtattattgt acattacctg agg 23 <210> 296 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 296 agcatcttag ccattacctc tag 23 <210> 297 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 297 agcatcttaa tccttacctc agg 23 <210> 298 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 298 gaatcctcat acattacctg tgg 23 <210> 299 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 299 atcatctttt taattaccta tgg 23 <210> 300 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 300 ggccacacta gtgttgccgc tgg 23 <210> 301 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 301 ggccacacca gccttgctgt cgg 23 <210> 302 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 302 ggccactagc gttgctccag g 21 <210> 303 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 303 ggccacactg accttgctgc tgg 23 <210> 304 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 304 ttccacacag ctttgctgct gg 22 <210> 305 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 305 ggccacctag ggttgctgct gg 22 <210> 306 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 306 ccaccctcta gcattgctgc tgg 23 <210> 307 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 307 cctaacacca acgttgctgc tgg 23 <210> 308 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 308 ctgagctcta gcattgctgc tgg 23 <210> 309 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 309 ggcatatata gcattgctgc tgg 23 <210> 310 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 310 gaacacacta acattgctgt ggg 23 <210> 311 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 311 ttagagatgt tctattattc cgg 23 <210> 312 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 312 gaggagatgc tctattactc cgg 23 <210> 313 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 313 atcaagatga actattactc tgg 23 <210> 314 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 314 gtggagatgt tatgttactc tgg 23 <210> 315 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 315 gacataatgt tctattactc aag 23 <210> 316 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 316 taatagatgt tctattacta agg 23 <210> 317 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 317 attaagatgt tctattaata ggg 23 <210> 318 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 318 cagctaatgt aatattactc agg 23 <210> 319 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 319 atcaagatat tctattactg ggg 23 <210> 320 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 320 tcttatattt tctattactc agg 23 <210> 321 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 321 atagagcagt tatattactc tgg 23 <210> 322 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 322 gtagagatgt tctctaactc agg 23 <210> 323 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 323 ctcttttatt tctattactc tgg 23 <210> 324 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 324 aatataatat tctattactc agg 23 <210> 325 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 325 caactataat tctattactc tgg 23 <210> 326 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 326 ggctactgtc tctattactc agg 23 <210> 327 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 327 atttagatat tctattactc tga 23 <210> 328 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 328 ctttaagata tctattactc tgg 23 <210> 329 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 329 caagagacgc tctatcactc agg 23 <210> 330 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 330 aaacagctgt tctattactc agg 23 <210> 331 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 331 gcagaatatt acagacaaac tagg 24 <210> 332 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 332 gcagaatatc aggacaaaca atg 23 <210> 333 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 333 acagaatatt cagacaatca cag 23 <210> 334 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 334 gcagtaaata agacaaacaa gg 22 <210> 335 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 335 acaaaatatt cggacaggca cgg 23 <210> 336 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 336 gcagaattta aggacaagca agg 23 <210> 337 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 337 gcagaataag gacaaacatg g 21 <210> 338 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 338 cagtaatatt cagactaaac atgg 24 <210> 339 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 339 ttaatatata aggacaaaca tgg 23 <210> 340 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 340 acataatatt caaacaaaca ggg 23 <210> 341 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 341 aatgaataaa gggacaaaca ggg 23 <210> 342 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 342 tcagatataa ggacaaacat gg 22 <210> 343 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 343 gctgaatatt gggacaatca tgg 23 <210> 344 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 344 gcagttataa aaagacaaac aggg 24 <210> 345 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 345 acagaatata agaacaaata tgg 23 <210> 346 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 346 atagaataat cagacaaaaa agg 23 <210> 347 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 347 gcagataaag ggacaaacat gg 22 <210> 348 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 348 gacagtgaat aggacaaaca tgg 23 <210> 349 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 349 tgagaatatg cggacaaaca cag 23 <210> 350 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 350 atagaatatt aggacaaata gag 23 <210> 351 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 351 caataataaa aggacaaaca tgg 23 <210> 352 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 352 acaggataaa aggacaaata tgg 23 <210> 353 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 353 acagatatac gtagacaaac agag 24 <210> 354 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 354 atagaataag aagacaaaca tgg 23 <210> 355 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 355 ttagaatatt cctacaaaca agg 23 <210> 356 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 356 ccatgttatt cagacaaaca tgg 23 <210> 357 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 357 gcagaaaata ggacaatcac gg 22 <210> 358 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 358 agagaatata ggacaaactt gg 22 <210> 359 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 359 gcagaaatat ttgacaaaca agg 23 <210> 360 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 360 aaagaatata gaacaaacag gg 22 <210> 361 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 361 acagaaatac gaacaaacat gg 22 <210> 362 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 362 aacaaatgca aggacaaaca tgg 23 <210> 363 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 363 acactattta agacaaacag gg 22 <210> 364 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 364 acagaactac gagacaaaca cgg 23 <210> 365 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 365 gcagataccc agacaaacag gg 22 <210> 366 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 366 taagaatata ggacaaacag ga 22 <210> 367 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 367 ccagaatatt agacaaacat gg 22 <210> 368 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 368 agagaatata gggacaaata agg 23 <210> 369 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 369 gtatacatcc aagatggcca ggg 23 <210> 370 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 370 gtattaccaa agatggtctg gg 22 <210> 371 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 371 gtataatcaa agatggccct gg 22 <210> 372 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 372 gtattatcaa aaatggtcaa gg 22 <210> 373 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 373 atataaccaa agatgttcac ag 22 <210> 374 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 374 atataatctt aagatggtca agg 23 <210> 375 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 375 atataatcct aagatgttca tgg 23 <210> 376 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 376 gtattatcca aagatgacca gag 23 <210> 377 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 377 atacaatcca aagttggtct ggg 23 <210> 378 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 378 atatattacc aaagatggtc tggg 24 <210> 379 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 379 gtagaatcca tagatggaca ggg 23 <210> 380 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 380 gtattaccaa agatggtcat gg 22 <210> 381 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 381 gtacaatcaa aagatgaaca agg 23 <210> 382 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 382 atattatcca aagatggagt tgg 23 <210> 383 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 383 atgtattcca aagatggtca ggg 23 <210> 384 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 384 aagtaatcca aagatagtct tgg 23 <210> 385 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 385 gtataaccca aagaaagtaa tgg 23 <210> 386 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 386 atatatattc caagatggtt ctgg 24 <210> 387 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 387 ttataatcca aagaaggcca agg 23 <210> 388 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 388 gtatctaccc aaagatgttc atgg 24 <210> 389 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 389 gtataataaa gatggtcaag g 21 <210> 390 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 390 atagattcca aagatggaca tgg 23 <210> 391 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 391 ctataatcta aaaatggtca agg 23 <210> 392 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 392 gtatattaga aagatggtca tga 23 <210> 393 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 393 ggataatcaa aagatggact tgg 23 <210> 394 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 394 atataatgca aagctggtca cgg 23 <210> 395 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 395 atacaatcca aagatattct agg 23 <210> 396 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 396 gtataatcca aaggtggcct agg 23 <210> 397 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 397 atataatcca tagaaggtca aga 23 <210> 398 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 398 gatataatac aagatggaca agg 23 <210> 399 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 399 ggataatcca aagatggtgc aag 23 <210> 400 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 400 atataaacca aagatcgtta agg 23 <210> 401 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 401 tctccctcca aagaaggtca cgg 23 <210> 402 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 402 ttatagtcca aaggaagtca ggg 23 <210> 403 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 403 tatttatcca aagatggtct aga 23 <210> 404 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 404 atatatacca aaggtagtca tgg 23 <210> 405 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 405 aggagatcca aagatggtca agg 23 <210> 406 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 406 acatagtcca aatatggaca ggg 23 <210> 407 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 407 gtatataatt caagatggtc agga 24 <210> 408 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 408 gaataagcca aagatggtca gtg 23 <210> 409 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 409 gtatctccca gagatggtca agg 23 <210> 410 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 410 atgtaatcta aagatgatta tgg 23 <210> 411 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 411 gtataaccaa tgatggtcag ga 22 <210> 412 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 412 atgtcatcca aagaaggtca gag 23 <210> 413 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 413 agatattcca aagatggtga ggg 23 <210> 414 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 414 tttccaccca aagatggtcc agg 23 <210> 415 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 415 ttatagctcc aagatggtca agg 23 <210> 416 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 416 tcagaatcct aagatggtca gga 23 <210> 417 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 417 ggataatcca aagttggtca tag 23 <210> 418 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 418 gtataatcct agatggtgag gg 22 <210> 419 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 419 gtattttcca acgatggtca tgg 23 <210> 420 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 420 gaataattca aagataatca agg 23 <210> 421 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 421 aaataataaa agatggtcat gg 22 <210> 422 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 422 ctcatatcca aagatggtaa agg 23 <210> 423 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 423 ttataaccaa agatggtaat gg 22 <210> 424 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 424 gcctaatcca aagatgagca ggg 23 <210> 425 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 425 ctataatgcc aaagatggtc atgg 24 <210> 426 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 426 gtatagatca aagatgccca cgg 23 <210> 427 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 427 tctccttcca aagatggtct ggg 23 <210> 428 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 428 ataatctcca aagatgttca ggg 23 <210> 429 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 429 atattttcca aagatgatca cag 23 <210> 430 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 430 tattgatcca aagatgatca aga 23 <210> 431 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 431 atatatttcc aagatgggca ggg 23 <210> 432 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 432 ttctcatcca aggatggtca ggg 23 <210> 433 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 433 atataaacaa aagatggttt agg 23 <210> 434 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 434 aaatagtcca aggatggcca ggg 23 <210> 435 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 435 gtattttcta aagatggtca tga 23 <210> 436 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 436 ggataaatcc aagttggtca tgg 23 <210> 437 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 437 atattttcca aagatggtca tga 23 <210> 438 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 438 tgactctcca aagatggtca cag 23 <210> 439 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 439 caatattcca aagatggtta tgg 23 <210> 440 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 440 gcagcatcca aagatgggca ggg 23 <210> 441 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 441 ctataattca aagatgttct tgg 23 <210> 442 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 442 cacatatata aagatggtca tgg 23 <210> 443 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 443 gtatcttcca aagatggcca atg 23 <210> 444 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 444 aatattacct aagatggtca tgg 23 <210> 445 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 445 gtataaacca aaaatattca ggg 23 <210> 446 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 446 gaataagcca aagatggtca gtg 23 <210> 447 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 447 atataatgca aagaaagtca aag 23 <210> 448 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 448 gtataagcca aagcaggtca cgg 23 <210> 449 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 449 atataaacca aagacggccc tgg 23 <210> 450 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 450 agataatcca aggatggtag agg 23 <210> 451 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 451 atataatcca gaaatgttca cgg 23 <210> 452 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 452 actcttttcc aagatggtca ggg 23 <210> 453 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 453 ctgatgtcca aagatggtct cgg 23 <210> 454 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 454 gtgaattcca aagaaggtca tgg 23 <210> 455 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 455 cattaatcca aagatgataa agg 23 <210> 456 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 456 gctctatcca aagatggaca ggg 23 <210> 457 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 457 ctgtaatcca gaaatagtca ggg 23 <210> 458 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 458 gtatatgtcc aaagatgatc atgc 24 <210> 459 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 459 ctataatcca aggaaggcca agg 23 <210> 460 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 460 gtatcctcca aagatgagta agg 23 <210> 461 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 461 aaataataca aagatggttg ggg 23 <210> 462 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 462 caataatcca aagaagatta agg 23 <210> 463 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 463 atataatcac aaagatggca atgg 24 <210> 464 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 464 gtttaagcca aagttggtcg ggg 23 <210> 465 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 465 gtagcatcca aagatggtgg agg 23 <210> 466 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 466 gtagaatatc aagatggtca agg 23 <210> 467 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 467 agaatgccct aagatggtct ggg 23 <210> 468 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 468 atataaccag aagatgttca tgg 23 <210> 469 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 469 gtattatcta aaggaggtca tgg 23 <210> 470 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 470 agatatacag aagatggtcg ggg 23 <210> 471 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 471 aaataatcca aaaatagtca tgg 23 <210> 472 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 472 ctttattcca aagatagtca tgg 23 <210> 473 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 473 gcatatttcc aaacatggtc aagg 24 <210> 474 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 474 gtatttttca aagatggtca tga 23 <210> 475 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 475 gtattttcca aagatggcca cga 23 <210> 476 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 476 tataaatcca aggatggtct gag 23 <210> 477 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 477 ttattttcca aagatggtca cga 23 <210> 478 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 478 tgcacatcca cagatggtca ggg 23 <210> 479 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 479 gtgtaatcca gagatgatca cag 23 <210> 480 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 480 tcttaatcca tagaaggtca agg 23 <210> 481 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 481 ttcaaataaa gatggtcacg g 21 <210> 482 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 482 tcataatcca aaagatggac aggg 24 <210> 483 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 483 atataataca aaataggtca ggg 23 <210> 484 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 484 ctagatacca aagatggtca gag 23 <210> 485 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 485 atttagtcca aagagggtca gag 23 <210> 486 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 486 atatacaacc aaagatgttc tagg 24 <210> 487 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 487 gtatatacat aaagaaggtc atgg 24 <210> 488 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 488 attatatcca aatatggtca gag 23 <210> 489 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 489 ttataatcca taaaatggtc atag 24 <210> 490 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 490 ttagtctcca aagatggtca ctg 23 <210> 491 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 491 tatctttcca aagatggtct atg 23 <210> 492 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 492 gtattttcca aagctagtca tgg 23 <210> 493 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 493 gcataatcca aggaaggtcc tgg 23 <210> 494 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 494 atattttcca aaaatggtca cag 23 <210> 495 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 495 atataatcca aaagaaggaa aag 23 <210> 496 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 496 atatatccaa aagatggtct gga 23 <210> 497 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 497 gatattaaca aagatggtct ggg 23 <210> 498 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 498 gaagaatcca acgatggcca cgg 23 <210> 499 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 499 acataatcac aaatatggtc acgg 24 <210> 500 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 500 gtattttcca aagatggcca cag 23 <210> 501 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 501 tctaatgaat aagatggtcg agg 23 <210> 502 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 502 agataatgca aagacggtta ggg 23 <210> 503 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 503 gtatatacca aaaatggtga agg 23 <210> 504 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 504 atatacccaa agatggtcca ag 22 <210> 505 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 505 tctgactccc aagatggtct tgg 23 <210> 506 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 506 ggagatacca aagatggtca gga 23 <210> 507 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 507 gtatatttca aatatggtca tag 23 <210> 508 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 508 atataaccaa agattgtcag ag 22 <210> 509 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 509 ctggagtcca gagatggtca tgg 23 <210> 510 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 510 gtagaaacca gagatggaca agg 23 <210> 511 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 511 ttataataca aaggtggtaa tgg 23 <210> 512 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 512 ctataatcaa aagtaggtca tag 23 <210> 513 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 513 atattttcca aaaatggtca tag 23 <210> 514 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 514 gtaaaatcca aagaggacca ggg 23 <210> 515 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 515 cctaaatcta aagatggtcg ggg 23 <210> 516 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 516 gaagcattca ttatagtcaa agg 23 <210> 517 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 517 gaagaattca ttatagacaa tgg 23 <210> 518 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 518 aagctattca ttatagcaaa tgg 23 <210> 519 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 519 gaagttaatt cattatagac aatgg 25 <210> 520 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 520 aaagtattaa ttatagtcaa gga 23 <210> 521 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 521 gaagtatcct tatagtcaga ag 22 <210> 522 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 522 gaagtatcat tatagtcttg gg 22 <210> 523 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 523 gcagtattca taatagtcaa aag 23 <210> 524 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 524 aaagtatttc atatagccaa agg 23 <210> 525 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 525 gaattattca tcatagccaa agg 23 <210> 526 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 526 taagtaatca ttatagtcag atg 23 <210> 527 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 527 atagtattca ttatagtaac agg 23 <210> 528 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 528 aaaatatcca ttatagtctt acg 23 <210> 529 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 529 gaactattca ttattatcaa cgg 23 <210> 530 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 530 gttgtattca ttatagtcaa gag 23 <210> 531 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 531 atagtattca ttatagtaac agg 23 <210> 532 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 532 agagtatcca ccatagtcaa ggg 23 <210> 533 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 533 gaagtacatc ttataatcaa tgg 23 <210> 534 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 534 aatgtattca ttataggcaa gag 23 <210> 535 <211> 1771 <212> PRT <213> Artificial Sequence <220> <223> Synthetic (ABE7.10) <400> 535 Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu 1 5 10 15 Thr Leu Ala Lys Arg Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala 20 25 30 Val Leu Val His Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro 35 40 45 Ile Gly Arg His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg 50 55 60 Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu 65 70 75 80 Tyr Val Thr Leu Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His 85 90 95 Ser Arg Ile Gly Arg Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly 100 105 110 Ala Ala Gly Ser Leu Met Asp Val Leu His His Pro Gly Met Asn His 115 120 125 Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu 130 135 140 Leu Ser Asp Phe Phe Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys 145 150 155 160 Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser Ser 165 170 175 Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser 180 185 190 Gly Gly Ser Ser Gly Gly Ser Ser Glu Val Glu Phe Ser His Glu Tyr 195 200 205 Trp Met Arg His Ala Leu Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg 210 215 220 Glu Val Pro Val Gly Ala Val Leu Val Leu Asn Asn Arg Val Ile Gly 225 230 235 240 Glu Gly Trp Asn Arg Ala Ile Gly Leu His Asp Pro Thr Ala His Ala 245 250 255 Glu Ile Met Ala Leu Arg Gln Gly Gly Leu Val Met Gln Asn Tyr Arg 260 265 270 Leu Ile Asp Ala Thr Leu Tyr Val Thr Phe Glu Pro Cys Val Met Cys 275 280 285 Ala Gly Ala Met Ile His Ser Arg Ile Gly Arg Val Val Phe Gly Val 290 295 300 Arg Asn Ala Lys Thr Gly Ala Ala Gly Ser Leu Met Asp Val Leu His 305 310 315 320 Tyr Pro Gly Met Asn His Arg Val Glu Ile Thr Glu Gly Ile Leu Ala 325 330 335 Asp Glu Cys Ala Ala Leu Leu Cys Tyr Phe Phe Arg Met Pro Arg Gln 340 345 350 Val Phe Asn Ala Gln Lys Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly 355 360 365 Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser 370 375 380 Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly Gly Ser Asp Lys Lys 385 390 395 400 Tyr Ser Ile Gly Leu Ala Ile Gly Thr Asn Ser Val Gly Trp Ala Val 405 410 415 Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe Lys Val Leu Gly 420 425 430 Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile Gly Ala Leu Leu 435 440 445 Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu Lys Arg Thr Ala 450 455 460 Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys Tyr Leu Gln Glu 465 470 475 480 Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser Phe Phe His Arg 485 490 495 Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys His Glu Arg His 500 505 510 Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr His Glu Lys Tyr 515 520 525 Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp Ser Thr Asp Lys 530 535 540 Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His Met Ile Lys Phe 545 550 555 560 Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro Asp Asn Ser Asp 565 570 575 Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr Asn Gln Leu Phe 580 585 590 Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala Lys Ala Ile Leu 595 600 605 Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn Leu Ile Ala Gln 610 615 620 Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn Leu Ile Ala Leu 625 630 635 640 Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe Asp Leu Ala Glu 645 650 655 Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp Asp Asp Leu Asp 660 665 670 Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp Leu Phe Leu Ala 675 680 685 Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp Ile Leu Arg Val 690 695 700 Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser Met Ile Lys Arg 705 710 715 720 Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys Ala Leu Val Arg 725 730 735 Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe Asp Gln Ser Lys 740 745 750 Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser Gln Glu Glu Phe 755 760 765 Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp Gly Thr Glu Glu 770 775 780 Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg Lys Gln Arg Thr 785 790 795 800 Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu Gly Glu Leu His 805 810 815 Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe Leu Lys Asp Asn 820 825 830 Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile Pro Tyr Tyr Val 835 840 845 Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp Met Thr Arg Lys 850 855 860 Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu Val Val Asp Lys 865 870 875 880 Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr Asn Phe Asp Lys 885 890 895 Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser Leu Leu Tyr Glu 900 905 910 Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys Tyr Val Thr Glu 915 920 925 Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln Lys Lys Ala Ile 930 935 940 Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr Val Lys Gln Leu 945 950 955 960 Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp Ser Val Glu Ile 965 970 975 Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly Thr Tyr His Asp 980 985 990 Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp Asn Glu Glu Asn 995 1000 1005 Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr Leu Phe Glu Asp 1010 1015 1020 Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala His Leu Phe Asp 1025 1030 1035 1040 Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr Thr Gly Trp Gly 1045 1050 1055 Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp Lys Gln Ser Gly 1060 1065 1070 Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe Ala Asn Arg Asn 1075 1080 1085 Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe Lys Glu Asp Ile 1090 1095 1100 Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu His Glu His Ile 1105 1110 1115 1120 Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly Ile Leu Gln Thr 1125 1130 1135 Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly Arg His Lys Pro 1140 1145 1150 Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln Thr Thr Gln Lys 1155 1160 1165 Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile Glu Glu Gly Ile 1170 1175 1180 Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro Val Glu Asn Thr 1185 1190 1195 1200 Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln Asn Gly Arg 1205 1210 1215 Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg Leu Ser Asp Tyr 1220 1225 1230 Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys Asp Asp Ser Ile 1235 1240 1245 Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg Gly Lys Ser Asp 1250 1255 1260 Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys Asn Tyr Trp Arg 1265 1270 1275 1280 Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys Phe Asp Asn Leu 1285 1290 1295 Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp Lys Ala Gly Phe 1300 1305 1310 Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr Lys His Val Ala 1315 1320 1325 Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp Glu Asn Asp Lys 1330 1335 1340 Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser Lys Leu Val Ser 1345 1350 1355 1360 Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg Glu Ile Asn Asn 1365 1370 1375 Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val Val Gly Thr Ala 1380 1385 1390 Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe Val Tyr Gly Asp 1395 1400 1405 Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys Ser Glu Gln Glu 1410 1415 1420 Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser Asn Ile Met Asn 1425 1430 1435 1440 Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu Ile Arg Lys Arg 1445 1450 1455 Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile Val Trp Asp Lys 1460 1465 1470 Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser Met Pro Gln Val 1475 1480 1485 Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly Phe Ser Lys Glu 1490 1495 1500 Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile Ala Arg Lys Lys 1505 1510 1515 1520 Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr Val Ala 1525 1530 1535 Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys Lys 1540 1545 1550 Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile Met Glu Arg Ser 1555 1560 1565 Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys 1570 1575 1580 Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys Tyr Ser Leu Phe 1585 1590 1595 1600 Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala Gly Glu Leu 1605 1610 1615 Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val Asn Phe Leu 1620 1625 1630 Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser Pro Glu Asp Asn 1635 1640 1645 Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His Tyr Leu Asp Glu 1650 1655 1660 Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val Ile Leu Ala Asp 1665 1670 1675 1680 Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys His Arg Asp Lys 1685 1690 1695 Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu Phe Thr Leu Thr 1700 1705 1710 Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp Thr Thr Ile Asp 1715 1720 1725 Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp Ala Thr Leu Ile 1730 1735 1740 His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile Asp Leu Ser Gln 1745 1750 1755 1760 Leu Gly Gly Asp Pro Lys Lys Lys Arg Lys Val 1765 1770 <210> 536 <211> 167 <212> PRT <213> Artificial Sequence <220> <223> wild type E. coli TadA (NP_417054.2) <400> 536 Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu 1 5 10 15 Thr Leu Ala Lys Arg Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala 20 25 30 Val Leu Val His Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro 35 40 45 Ile Gly Arg His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg 50 55 60 Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu 65 70 75 80 Tyr Val Thr Leu Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His 85 90 95 Ser Arg Ile Gly Arg Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly 100 105 110 Ala Ala Gly Ser Leu Met Asp Val Leu His His Pro Gly Met Asn His 115 120 125 Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu 130 135 140 Leu Ser Asp Phe Phe Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys 145 150 155 160 Lys Ala Gln Ser Ser Thr Asp 165 <210> 537 <211> 166 <212> PRT <213> Artificial Sequence <220> <223> modified E. coli TadA (NP_417054.2) <400> 537 Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu Thr 1 5 10 15 Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly Ala Val 20 25 30 Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Ala Ile 35 40 45 Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg Gln 50 55 60 Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu Tyr 65 70 75 80 Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His Ser 85 90 95 Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala Lys Thr Gly Ala 100 105 110 Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro Gly Met Asn His Arg 115 120 125 Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu 130 135 140 Cys Tyr Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln Lys Lys 145 150 155 160 Ala Gln Ser Ser Thr Asp 165 <210> 538 <211> 1367 <212> PRT <213> Artificial Sequence <220> <223> SpCas9 nickase (D10A) <400> 538 Asp Lys Lys Tyr Ser Ile Gly Leu Ala Ile Gly Thr Asn Ser Val Gly 1 5 10 15 Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe Lys 20 25 30 Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile Gly 35 40 45 Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu Lys 50 55 60 Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys Tyr 65 70 75 80 Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser Phe 85 90 95 Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys His 100 105 110 Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr His 115 120 125 Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp Ser 130 135 140 Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His Met 145 150 155 160 Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro Asp 165 170 175 Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr Asn 180 185 190 Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala Lys 195 200 205 Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn Leu 210 215 220 Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn Leu 225 230 235 240 Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe Asp 245 250 255 Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp Asp 260 265 270 Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp Leu 275 280 285 Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp Ile 290 295 300 Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser Met 305 310 315 320 Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys Ala 325 330 335 Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe Asp 340 345 350 Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser Gln 355 360 365 Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp Gly 370 375 380 Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg Lys 385 390 395 400 Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu Gly 405 410 415 Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe Leu 420 425 430 Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile Pro 435 440 445 Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp Met 450 455 460 Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu Val 465 470 475 480 Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr Asn 485 490 495 Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser Leu 500 505 510 Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys Tyr 515 520 525 Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln Lys 530 535 540 Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr Val 545 550 555 560 Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp Ser 565 570 575 Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly Thr 580 585 590 Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp Asn 595 600 605 Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr Leu 610 615 620 Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala His 625 630 635 640 Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr Thr 645 650 655 Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp Lys 660 665 670 Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe Ala 675 680 685 Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe Lys 690 695 700 Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu His 705 710 715 720 Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly Ile 725 730 735 Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly Arg 740 745 750 His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln Thr 755 760 765 Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile Glu 770 775 780 Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro Val 785 790 795 800 Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln 805 810 815 Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg Leu 820 825 830 Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys Asp 835 840 845 Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg Gly 850 855 860 Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys Asn 865 870 875 880 Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys Phe 885 890 895 Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp Lys 900 905 910 Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr Lys 915 920 925 His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp Glu 930 935 940 Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser Lys 945 950 955 960 Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg Glu 965 970 975 Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val Val 980 985 990 Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe Val 995 1000 1005 Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys Ser 1010 1015 1020 Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser Asn 1025 1030 1035 1040 Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu Ile 1045 1050 1055 Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile Val 1060 1065 1070 Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser Met 1075 1080 1085 Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly Phe 1090 1095 1100 Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile Ala 1105 1110 1115 1120 Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser Pro 1125 1130 1135 Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly Lys 1140 1145 1150 Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile Met 1155 1160 1165 Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys 1170 1175 1180 Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys Tyr 1185 1190 1195 1200 Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala 1205 1210 1215 Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val 1220 1225 1230 Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser Pro 1235 1240 1245 Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His Tyr 1250 1255 1260 Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val Ile 1265 1270 1275 1280 Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys His 1285 1290 1295 Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu Phe 1300 1305 1310 Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp Thr 1315 1320 1325 Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp Ala 1330 1335 1340 Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile Asp 1345 1350 1355 1360 Leu Ser Gln Leu Gly Gly Asp 1365 <210> 539 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> peptide linker <400> 539 Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro Gly Thr 1 5 10 15 Ser Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly Gly Ser 20 25 30 <210> 540 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> SV40 NLS <400> 540 Pro Lys Lys Lys Arg Lys Val 1 5 <110> TOOLGEN INCORPORATED Seoul National University R&DB Foundation <120> Method of identifying base editing using adenosine deaminase <130> DPP20190026KR <150> 10-2018-0009508 <151> 2018-01-25 <160> 540 <170> KopatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 1 gggtgcaaag catagactgc ggg 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 2 gaacgtggag catagactgc ggg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 3 gaacacaaga tgtagactgc ggg 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 4 gaacacaaag cacgagctgc ggg 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 5 gaacacaaag catagatcat ggg 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 6 gagtgcaaag catagactgc ggg 23 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 7 gaacatggag catagactgc ggg 23 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 8 gaacacaaga tatagactgc ggg 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 9 gaacacaaag cgcggactgc ggg 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 10 gaacacaaag cataagttgc ggg 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 11 gaacacaaag catagaccat ggg 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 12 gagtacaaag catagactgc ggg 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 13 gaacgtaaag catagactgc ggg 23 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 14 gaacacggag catagactgc ggg 23 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 15 gaacacaaga catagactgc ggg 23 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 16 gaacacaaag tgtagactgc ggg 23 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 17 gaacacaaag cacggactgc ggg 23 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 18 gaacacaaag cataagctgc ggg 23 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 19 gaacacaaag catagatcgc ggg 23 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 20 gaacacaaag catagactat ggg 23 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 21 ggacacaaag catagactgc ggg 23 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 22 gaatacaaag catagactgc ggg 23 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 23 gaacataaag catagactgc ggg 23 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 24 gaacacagag catagactgc ggg 23 <210> 25 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 25 gaacacaaaa catagactgc ggg 23 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 26 gaacacaaag cgtagactgc ggg 23 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 27 gaacacaaag catggactgc ggg 23 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 28 gaacacaaag cataggctgc ggg 23 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 29 gaacacaaag catagaccgc ggg 23 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK2) <400> 30 gaacacaaag catagactgt ggg 23 <210> 31 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for HEK2) <400> 31 gaacacaaag catagactgc ggg 23 <210> 32 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 32 gatttagact gagcacgtga tgg 23 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 33 ggcctgagct gagcacgtga tgg 23 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 34 ggcccagatc aggcacgtga tgg 23 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 35 ggcccagact gaatgtgtga tgg 23 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 36 ggcccagact gagcacacag tgg 23 <210> 37 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 37 ggtttagact gagcacgtga tgg 23 <210> 38 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 38 ggcccgagct gagcacgtga tgg 23 <210> 39 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 39 ggcccagatc aagcacgtga tgg 23 <210> 40 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 40 ggcccagact ggatacgtga tgg 23 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 41 ggcccagact gagcgtatga tgg 23 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 42 ggcccagact gagcacgcag tgg 23 <210> 43 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 43 ggttcagact gagcacgtga tgg 23 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 44 ggcctggact gagcacgtga tgg 23 <210> 45 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 45 ggcccaagct gagcacgtga tgg 23 <210> 46 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 46 ggcccagatc gagcacgtga tgg 23 <210> 47 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 47 ggcccagact aggcacgtga tgg 23 <210> 48 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 48 ggcccagact gaatacgtga tgg 23 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 49 ggcccagact gagcgtgtga tgg 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 50 ggcccagact gagcacacga tgg 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 51 ggcccagact gagcacgtag tgg 23 <210> 52 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 52 gacccagact gagcacgtga tgg 23 <210> 53 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 53 ggctcagact gagcacgtga tgg 23 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 54 ggcccggact gagcacgtga tgg 23 <210> 55 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 55 ggcccaggct gagcacgtga tgg 23 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 56 ggcccagacc gagcacgtga tgg 23 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 57 ggcccagact gggcacgtga tgg 23 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 58 ggcccagact gagtacgtga tgg 23 <210> 59 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 59 ggcccagact gagcatgtga tgg 23 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 60 ggcccagact gagcacgcga tgg 23 <210> 61 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for HEK3) <400> 61 ggcccagact gagcacgtgg tgg 23 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for HEK3) <400> 62 ggcccagact gagcacgtga tgg 23 <210> 63 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 63 gctgccttag tcattacctg agg 23 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 64 gtcactccag tcattacctg agg 23 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 65 gtcatcttga ctattacctg agg 23 <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 66 gtcatcttag tcgccgcctg agg 23 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 67 gtcatcttag tcattattca agg 23 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 68 gttgccttag tcattacctg agg 23 <210> 69 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 69 gtcattccag tcattacctg agg 23 <210> 70 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 70 gtcatcttga ccattacctg agg 23 <210> 71 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 71 gtcatcttag ttgctacctg agg 23 <210> 72 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 72 gtcatcttag tcatcgtctg agg 23 <210> 73 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 73 gtcatcttag tcattactca agg 23 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 74 gttgtcttag tcattacctg agg 23 <210> 75 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 75 gtcactttag tcattacctg agg 23 <210> 76 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 76 gtcatcccag tcattacctg agg 23 <210> 77 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 77 gtcatcttga tcattacctg agg 23 <210> 78 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 78 gtcatcttag ctattacctg agg 23 <210> 79 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 79 gtcatcttag tcgctacctg agg 23 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 80 gtcatcttag tcatcgcctg agg 23 <210> 81 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 81 gtcatcttag tcattatttg agg 23 <210> 82 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 82 gtcatcttag tcattaccca agg 23 <210> 83 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 83 gccatcttag tcattacctg agg 23 <210> 84 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 84 gtcgtcttag tcattacctg agg 23 <210> 85 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 85 gtcattttag tcattacctg agg 23 <210> 86 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 86 gtcatctcag tcattacctg agg 23 <210> 87 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 87 gtcatcttaa tcattacctg agg 23 <210> 88 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 88 gtcatcttag ttattacctg agg 23 <210> 89 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 89 gtcatcttag tcactacctg agg 23 <210> 90 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 90 gtcatcttag tcattgcctg agg 23 <210> 91 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 91 gtcatcttag tcattacttg agg 23 <210> 92 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA target site for RNF2) <400> 92 gtcatcttag tcattaccta agg 23 <210> 93 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for RNF2) <400> 93 gtcatcttag tcattacctg agg 23 <210> 94 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for TYRO3) <400> 94 ggccacacta gcgttgctgc tgg 23 <210> 95 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for WEE1) <400> 95 gtcgagatgt tctattactc tgg 23 <210> 96 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for EphB4) <400> 96 gcagaatatt cggacaaaca cgg 23 <210> 97 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for HPRTExon6) <400> 97 gtataatcca aagatggtca agg 23 <210> 98 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (sgRNA on target site for HPRTExon8) <400> 98 gaagtattca ttatagtcaa ggg 23 <210> 99 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 99 gaacacaagc acagactgaa gg 22 <210> 100 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 100 gaacacatgc atagactgct ag 22 <210> 101 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 101 gaatactaag catagactcc agg 23 <210> 102 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 102 gaacacaatg catagattgc cgg 23 <210> 103 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 103 aaacacagag cacagactgc tga 23 <210> 104 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 104 aaacacaaag acatagacca ctgg 24 <210> 105 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 105 gaacacaaag catagactgc ggg 23 <210> 106 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 106 aaacataaag aatagactgc aag 23 <210> 107 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 107 gaacacaaag tatagaatgc tag 23 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 108 ggacacaaag cttagactcc agg 23 <210> 109 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 109 gaagataaag catagactct agg 23 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 110 aaacataaag catagactgc aaag 24 <210> 111 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 111 aaatacaaag catagactaa tatg 24 <210> 112 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 112 gaacacatac atagacagct gg 22 <210> 113 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 113 gaaaacaaag caaagaaagc agg 23 <210> 114 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 114 aacacaatag catagactgg actg 24 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 115 atacacagag caaagactgc agg 23 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 116 aaacataaag cctagactga cgg 23 <210> 117 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 117 aaaaacaaag cgtagactgt ggg 23 <210> 118 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 118 ggacaaaaag catagactca agg 23 <210> 119 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 119 atacacacaa gcacagactg cagg 24 <210> 120 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 120 gaacacagca cataaactgc agg 23 <210> 121 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 121 aaacactaac atagactgca gg 22 <210> 122 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 122 aaatacaatg catagactgc tag 23 <210> 123 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 123 gtaaacaaag catagactga ggg 23 <210> 124 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 124 gaacataatc acagactgct gg 22 <210> 125 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 125 ccaaacaaaa catagactgc tgg 23 <210> 126 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 126 gaaaacaaaa catagagtgc tgg 23 <210> 127 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 127 aatcaaatag catagactgc atg 23 <210> 128 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 128 gaacacaaac atagtactga agg 23 <210> 129 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 129 aaacagaaag catggactgc gga 23 <210> 130 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 130 caatacaaag gatagactgc agg 23 <210> 131 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 131 agacacacag cacagactgc agg 23 <210> 132 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 132 gaattcaaag catagattgc agg 23 <210> 133 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 133 acacacaaag catagactat gtg 23 <210> 134 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 134 ggaaacaaag catagacatt tgg 23 <210> 135 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 135 taatacaaag catagatagt tgg 23 <210> 136 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 136 gaatttaaag catagactgc aag 23 <210> 137 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 137 ctgaacacag caaagactgc tgg 23 <210> 138 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 138 gagcgataag cacagactgc tgg 23 <210> 139 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 139 gtaattaaag cacagactgc tgg 23 <210> 140 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 140 gaaaacaaac cacagactgg ggg 23 <210> 141 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 141 ctattgcaag cacagactgc tgg 23 <210> 142 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 142 gaatacataa catagactgg ggg 23 <210> 143 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 143 ataccataag catagactgt tgg 23 <210> 144 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 144 attaagatag catagactgc agg 23 <210> 145 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 145 aatgactaat aatagactgc tgg 23 <210> 146 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 146 atttcaacag catagactgt agg 23 <210> 147 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 147 agtatagcag catagactgc agg 23 <210> 148 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 148 gaattcaaag catagattgc agg 23 <210> 149 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 149 gcattctaat aatagactgc tgg 23 <210> 150 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 150 aaacacatag cacagcctgc agg 23 <210> 151 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 151 gaacacagta catagactgg cag 23 <210> 152 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 152 ggctgcctag cacagactgc cgg 23 <210> 153 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 153 tctcctaccg catagactgc tgg 23 <210> 154 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 154 gtcgcaaacg catagacttc cgg 23 <210> 155 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 155 cttattaaag cacagactgc tgg 23 <210> 156 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 156 actatataag catagactgt tgg 23 <210> 157 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 157 gtcgcaaacg catagacttc cgg 23 <210> 158 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 158 cgatttcaag catagactgc tgg 23 <210> 159 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 159 taatcataag catagaatgc tgg 23 <210> 160 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 160 gaatacaagc atagactgct gt 22 <210> 161 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 161 tcacaaataa gcatagactg gcgg 24 <210> 162 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 162 cttgctaaag cacagactgc tgg 23 <210> 163 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 163 aagaacaaaa catagactgc agg 23 <210> 164 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 164 aattaaacag aatagactgc tgg 23 <210> 165 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 165 gaacacagaa ccatagactg gggg 24 <210> 166 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 166 aaacaaaaag catagaccac aag 23 <210> 167 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 167 gaacacaggc atagactatg ga 22 <210> 168 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 168 ctcagagaag cacagactgc agg 23 <210> 169 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 169 atcatatatg cataaactgc agg 23 <210> 170 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 170 caacaaaata tatagactgc tgg 23 <210> 171 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 171 attgttaaag cacagactgc agg 23 <210> 172 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 172 agatcttaag catagactgt ggg 23 <210> 173 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 173 taacacaata ccatagactg gcgg 24 <210> 174 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 174 gaatacaaat aatagactat tgg 23 <210> 175 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 175 gaatttaaag catagactct ggg 23 <210> 176 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 176 aaacaaataa aatagactgc agg 23 <210> 177 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 177 ccacaccaag catagacttc tgg 23 <210> 178 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 178 aacaaaacag catagactgc atg 23 <210> 179 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 179 taattgcaag catagacggc agg 23 <210> 180 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 180 ggagagagag catagactgc tgg 23 <210> 181 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 181 agaaataata tatagactgc agg 23 <210> 182 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 182 tggttactag catagacttc agg 23 <210> 183 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 183 aaacacttaa cacagactgc agg 23 <210> 184 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 184 ccaccagcag catagactcc agg 23 <210> 185 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 185 aagacatttt catagactgt cgg 23 <210> 186 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 186 taagcacaag cataggctgc tgg 23 <210> 187 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 187 aacaagtatg catagactgc tgg 23 <210> 188 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 188 aaataccaac cacagactgc agg 23 <210> 189 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 189 aaatgcatag catagactgc tga 23 <210> 190 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 190 taacacaaag actaaactgc agg 23 <210> 191 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 191 taccacgaag catagactgt agg 23 <210> 192 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 192 gatcactcaa catagactgc atg 23 <210> 193 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 193 gaacagaaac atagaccaat gg 22 <210> 194 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 194 tacaaaataa gatagactgc tgg 23 <210> 195 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 195 acagttaaag aatagactgc agg 23 <210> 196 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 196 aaacacaaag gcataaactc cagg 24 <210> 197 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 197 gaacacacac acagactgag gg 22 <210> 198 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 198 ggacataaat cataaactgc tgg 23 <210> 199 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 199 aaagctacag catagactgc aag 23 <210> 200 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 200 tcacacaaac catagactga ggg 23 <210> 201 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 201 gatctaccta tatagactgc agg 23 <210> 202 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 202 tatagaggag catagactgc tgg 23 <210> 203 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 203 tatcagaaag cacagactgc ggg 23 <210> 204 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 204 gaacaacaag gataaactgc cgg 23 <210> 205 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 205 tacaaacacg catagaatgc cgg 23 <210> 206 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 206 taagaaatgg aatagactgc agg 23 <210> 207 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 207 aaatattaag catagactac ggg 23 <210> 208 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 208 gaatgccaag cataaactgc agg 23 <210> 209 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 209 aactccaaag catatactgc tgg 23 <210> 210 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 210 gtgaacacag catagactgg ggc 23 <210> 211 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 211 atcctaagaa catagactgc agg 23 <210> 212 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 212 tttgttaaaa catagactgc tgg 23 <210> 213 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 213 taacaaaatg catagactgc tag 23 <210> 214 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 214 tgtataacag catacactgc tgg 23 <210> 215 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 215 aaacactaat aatagactgt ggg 23 <210> 216 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 216 aagcaatcag cacagactgc ggg 23 <210> 217 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 217 ggacacagag tatagactga ggg 23 <210> 218 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 218 cacaaatcaa aatagactgc tgg 23 <210> 219 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 219 gaattcaaag catggactgc agg 23 <210> 220 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 220 ttccaaaaaa catagactgc tgg 23 <210> 221 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 221 gtagagtaag catacactgc tgg 23 <210> 222 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 222 ggcctttagg cacagactgc agg 23 <210> 223 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 223 aagactttag catagactgc aag 23 <210> 224 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 224 gaaaagtaag atagactgcc gg 22 <210> 225 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 225 aactcatcag catagactgt agg 23 <210> 226 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 226 aaatacagag cttagactac tgg 23 <210> 227 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 227 aaacatgaag catagacagc aag 23 <210> 228 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 228 acatagatat tatagactgc tgg 23 <210> 229 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 229 cacattaaag cacagactgc tgg 23 <210> 230 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 230 gagcctagag cacagactgc agg 23 <210> 231 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 231 aagacttaag caaagactgc tgg 23 <210> 232 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 232 ttacacatag cacagactac agg 23 <210> 233 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 233 agaagttaag catagactgg tgg 23 <210> 234 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 234 ctatattgag aatagactgc agg 23 <210> 235 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 235 gtgcacacag catagactgc atg 23 <210> 236 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 236 ctagcaaaaa catagactgc tgg 23 <210> 237 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 237 taaaacaaag aacagactgc tgg 23 <210> 238 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 238 tacagatagt aatagactgc agg 23 <210> 239 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 239 aattaataac aatagactgc tgg 23 <210> 240 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 240 aagattgcag cataaactgc tgg 23 <210> 241 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 241 aagcacataa catagactga agg 23 <210> 242 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 242 gtagaaaaag tatagactgc agg 23 <210> 243 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 243 tactatggtg catagactgc tgg 23 <210> 244 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 244 ctctactgag aatagactgc agg 23 <210> 245 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 245 tgaaataata cataaactgc cgg 23 <210> 246 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 246 aataaacttg catagactgt agg 23 <210> 247 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 247 agaccctaag catagactgc aga 23 <210> 248 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 248 tacccaaatg cacagactgc tgg 23 <210> 249 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 249 aagatagatt tatagactgc tgg 23 <210> 250 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HEK2) <400> 250 aaacacaaaa cataaattac tgg 23 <210> 251 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 251 tcaccattag tcattacctg ctg 23 <210> 252 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 252 gtcatcttag tcattactga gg 22 <210> 253 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 253 gtaatattag tcattaccgg tgg 23 <210> 254 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 254 gtcatcctag tcatttactg ggg 23 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 255 atcaccttag ccattaccag ggg 23 <210> 256 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 256 gtcacttagt cattgcctgt gg 22 <210> 257 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 257 gtcacattag ccattacctg tga 23 <210> 258 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 258 tgtatcttag acattacatg tgg 23 <210> 259 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 259 attttcttag tgattatctg ggg 23 <210> 260 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 260 catctaatag taattacctg ggg 23 <210> 261 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 261 atagtattag tcattacctg tga 23 <210> 262 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 262 accatcttag tcattatcta atg 23 <210> 263 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 263 attttcttag tcattaccta gag 23 <210> 264 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 264 atcatcttca tcattacatg agg 23 <210> 265 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 265 cctatatata tcattacctt tgg 23 <210> 266 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 266 gtcattttag tcattatctt gag 23 <210> 267 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 267 atcacctgag tcattaccca tgg 23 <210> 268 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 268 ttaatcttag tcattacttt tgg 23 <210> 269 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 269 atcatcatcg tcattatctg ggg 23 <210> 270 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 270 atcattagtc attgcctgag g 21 <210> 271 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 271 cttatttagt cattacctgt ag 22 <210> 272 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 272 gtcatattaa tcattacata gag 23 <210> 273 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 273 tccatctcac tcattacctg agg 23 <210> 274 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 274 gttatcttag tctttacctg aga 23 <210> 275 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 275 cacatcttac ccattacatg agg 23 <210> 276 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 276 gccacctcag tcattagctg ggg 23 <210> 277 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 277 acattagtaa acattaccta ggg 23 <210> 278 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 278 tacctacctg tcattaccta tgg 23 <210> 279 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 279 gatatcttag ccattaccta gga 23 <210> 280 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 280 tatctactac tcattacctg agg 23 <210> 281 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 281 agcatctctg tcattaccca ggg 23 <210> 282 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 282 cgtgcattag tcattacctg agg 23 <210> 283 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 283 gtctgtatag tcattacctt tgg 23 <210> 284 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 284 tacatctatg ttattaccta tgg 23 <210> 285 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 285 ttcatctttg tcattaccta aag 23 <210> 286 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 286 tatactatat acattacctg ggg 23 <210> 287 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 287 gctcattcac tcattaccta tgg 23 <210> 288 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 288 gtgatctaaa gtcattacct tagg 24 <210> 289 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 289 ttcaatataa tcattacctg tgg 23 <210> 290 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 290 attattttag tcattacctt tgg 23 <210> 291 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 291 cccatctcag ccattacctg ggt 23 <210> 292 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 292 agaatattag tccttacctg ggg 23 <210> 293 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 293 gatcctttaa tcattacctt tgg 23 <210> 294 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 294 accatcttag tcactacctg ggc 23 <210> 295 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 295 gtattattgt acattacctg agg 23 <210> 296 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 296 agcatcttag ccattacctc tag 23 <210> 297 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 297 agcatcttaa tccttacctc agg 23 <210> 298 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 298 gaatcctcat acattacctg tgg 23 <210> 299 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for RNF2) <400> 299 atcatctttt taattaccta tgg 23 <210> 300 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 300 ggccacacta gtgttgccgc tgg 23 <210> 301 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 301 ggccacacca gccttgctgt cgg 23 <210> 302 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 302 ggccactagc gttgctccag g 21 <210> 303 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 303 ggccacactg accttgctgc tgg 23 <210> 304 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 304 ttccacacag ctttgctgct gg 22 <210> 305 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 305 ggccacctag ggttgctgct gg 22 <210> 306 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 306 ccaccctcta gcattgctgc tgg 23 <210> 307 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 307 cctaacacca acgttgctgc tgg 23 <210> 308 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 308 ctgagctcta gcattgctgc tgg 23 <210> 309 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 309 ggcatatata gcattgctgc tgg 23 <210> 310 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for TYRO3) <400> 310 gaacacacta acattgctgt ggg 23 <210> 311 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 311 ttagagatgt tctattattc cgg 23 <210> 312 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 312 gaggagatgc tctattactc cgg 23 <210> 313 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 313 atcaagatga actattactc tgg 23 <210> 314 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 314 gtggagatgt tatgttactc tgg 23 <210> 315 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 315 gacataatgt tctattactc aag 23 <210> 316 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 316 taatagatgt tctattacta agg 23 <210> 317 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 317 attaagatgt tctattaata ggg 23 <210> 318 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 318 cagctaatgt aatattactc agg 23 <210> 319 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 319 atcaagatat tctattactg ggg 23 <210> 320 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 320 tcttatattt tctattactc agg 23 <210> 321 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 321 atagagcagt tatattactc tgg 23 <210> 322 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 322 gtagagatgt tctctaactc agg 23 <210> 323 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 323 ctcttttatt tctattactc tgg 23 <210> 324 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 324 aatataatat tctattactc agg 23 <210> 325 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 325 caactataat tctattactc tgg 23 <210> 326 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 326 ggctactgtc tctattactc agg 23 <210> 327 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 327 atttagatat tctattactc tga 23 <210> 328 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 328 ctttaagata tctattactc tgg 23 <210> 329 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 329 caagagacgc tctatcactc agg 23 <210> 330 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for WEE1) <400> 330 aaacagctgt tctattactc agg 23 <210> 331 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 331 gcagaatatt acagacaaac tagg 24 <210> 332 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 332 gcagaatatc aggacaaaca atg 23 <210> 333 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 333 acagaatatt cagacaatca cag 23 <210> 334 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 334 gcagtaaata agacaaacaa gg 22 <210> 335 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 335 acaaaatatt cggacaggca cgg 23 <210> 336 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 336 gcagaattta aggacaagca agg 23 <210> 337 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 337 gcagaataag gacaaacatg g 21 <210> 338 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 338 cagtaatatt cagactaaac atgg 24 <210> 339 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 339 ttaatatata aggacaaaca tgg 23 <210> 340 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 340 acataatatt caaacaaaca ggg 23 <210> 341 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 341 aatgaataaa gggacaaaca ggg 23 <210> 342 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 342 tcagatataa ggacaaacat gg 22 <210> 343 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 343 gctgaatatt gggacaatca tgg 23 <210> 344 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 344 gcagttataa aaagacaaac aggg 24 <210> 345 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 345 acagaatata agaacaaata tgg 23 <210> 346 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 346 atagaataat cagacaaaaa agg 23 <210> 347 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 347 gcagataaag ggacaaacat gg 22 <210> 348 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 348 gacagtgaat aggacaaaca tgg 23 <210> 349 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 349 tgagaatatg cggacaaaca cag 23 <210> 350 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 350 atagaatatt aggacaaata gag 23 <210> 351 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 351 caataataaa aggacaaaca tgg 23 <210> 352 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 352 acaggataaa aggacaaata tgg 23 <210> 353 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 353 acagatatac gtagacaaac agag 24 <210> 354 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 354 atagaataag aagacaaaca tgg 23 <210> 355 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 355 ttagaatatt cctacaaaca agg 23 <210> 356 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 356 ccatgttatt cagacaaaca tgg 23 <210> 357 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 357 gcagaaaata ggacaatcac gg 22 <210> 358 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 358 agagaatata ggacaaactt gg 22 <210> 359 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 359 gcagaaatat ttgacaaaca agg 23 <210> 360 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 360 aaagaatata gaacaaacag gg 22 <210> 361 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 361 acagaaatac gaacaaacat gg 22 <210> 362 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 362 aacaaatgca aggacaaaca tgg 23 <210> 363 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 363 acactattta agacaaacag gg 22 <210> 364 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 364 acagaactac gagacaaaca cgg 23 <210> 365 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 365 gcagataccc agacaaacag gg 22 <210> 366 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 366 taagaatata ggacaaacag ga 22 <210> 367 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 367 ccagaatatt agacaaacat gg 22 <210> 368 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for EphB4) <400> 368 agagaatata gggacaaata agg 23 <210> 369 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 369 gtatacatcc aagatggcca ggg 23 <210> 370 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 370 gtattaccaa agatggtctg gg 22 <210> 371 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 371 gtataatcaa agatggccct gg 22 <210> 372 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 372 gtattatcaa aaatggtcaa gg 22 <210> 373 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 373 atataaccaa agatgttcac ag 22 <210> 374 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 374 atataatctt aagatggtca agg 23 <210> 375 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 375 atataatcct aagatgttca tgg 23 <210> 376 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 376 gtattatcca aagatgacca gag 23 <210> 377 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 377 atacaatcca aagttggtct ggg 23 <210> 378 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 378 atatattacc aaagatggtc tggg 24 <210> 379 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 379 gtagaatcca tagatggaca ggg 23 <210> 380 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 380 gtattaccaa agatggtcat gg 22 <210> 381 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 381 gtacaatcaa aagatgaaca agg 23 <210> 382 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 382 atattatcca aagatggagt tgg 23 <210> 383 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 383 atgtattcca aagatggtca ggg 23 <210> 384 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 384 aagtaatcca aagatagtct tgg 23 <210> 385 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 385 gtataaccca aagaaagtaa tgg 23 <210> 386 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 386 atatatattc caagatggtt ctgg 24 <210> 387 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 387 ttataatcca aagaaggcca agg 23 <210> 388 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 388 gtatctaccc aaagatgttc atgg 24 <210> 389 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 389 gtataataaa gatggtcaag g 21 <210> 390 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 390 atagattcca aagatggaca tgg 23 <210> 391 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 391 ctataatcta aaaatggtca agg 23 <210> 392 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 392 gtatattaga aagatggtca tga 23 <210> 393 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 393 ggataatcaa aagatggact tgg 23 <210> 394 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 394 atataatgca aagctggtca cgg 23 <210> 395 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 395 atacaatcca aagatattct agg 23 <210> 396 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 396 gtataatcca aaggtggcct agg 23 <210> 397 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 397 atataatcca tagaaggtca aga 23 <210> 398 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 398 gatataatac aagatggaca agg 23 <210> 399 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 399 ggataatcca aagatggtgc aag 23 <210> 400 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 400 atataaacca aagatcgtta agg 23 <210> 401 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 401 tctccctcca aagaaggtca cgg 23 <210> 402 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 402 ttatagtcca aaggaagtca ggg 23 <210> 403 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 403 tatttatcca aagatggtct aga 23 <210> 404 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 404 atatatacca aaggtagtca tgg 23 <210> 405 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 405 aggagatcca aagatggtca agg 23 <210> 406 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 406 acatagtcca aatatggaca ggg 23 <210> 407 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 407 gtatataatt caagatggtc agga 24 <210> 408 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 408 gaataagcca aagatggtca gtg 23 <210> 409 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 409 gtatctccca gagatggtca agg 23 <210> 410 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 410 atgtaatcta aagatgatta tgg 23 <210> 411 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 411 gtataaccaa tgatggtcag ga 22 <210> 412 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 412 atgtcatcca aagaaggtca gag 23 <210> 413 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 413 agatattcca aagatggtga ggg 23 <210> 414 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 414 tttccaccca aagatggtcc agg 23 <210> 415 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 415 ttatagctcc aagatggtca agg 23 <210> 416 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 416 tcagaatcct aagatggtca gga 23 <210> 417 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 417 ggataatcca aagttggtca tag 23 <210> 418 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 418 gtataatcct agatggtgag gg 22 <210> 419 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 419 gtattttcca acgatggtca tgg 23 <210> 420 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 420 gaataattca aagataatca agg 23 <210> 421 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 421 aaataataaa agatggtcat gg 22 <210> 422 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 422 ctcatatcca aagatggtaa agg 23 <210> 423 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 423 ttataaccaa agatggtaat gg 22 <210> 424 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 424 gcctaatcca aagatgagca ggg 23 <210> 425 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 425 ctataatgcc aaagatggtc atgg 24 <210> 426 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 426 gtatagatca aagatgccca cgg 23 <210> 427 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 427 tctccttcca aagatggtct ggg 23 <210> 428 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 428 ataatctcca aagatgttca ggg 23 <210> 429 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 429 atattttcca aagatgatca cag 23 <210> 430 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 430 tattgatcca aagatgatca aga 23 <210> 431 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 431 atatatttcc aagatgggca ggg 23 <210> 432 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 432 ttctcatcca aggatggtca ggg 23 <210> 433 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 433 atataaacaa aagatggttt agg 23 <210> 434 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 434 aaatagtcca aggatggcca ggg 23 <210> 435 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 435 gtattttcta aagatggtca tga 23 <210> 436 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 436 ggataaatcc aagttggtca tgg 23 <210> 437 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 437 atattttcca aagatggtca tga 23 <210> 438 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 438 tgactctcca aagatggtca cag 23 <210> 439 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 439 caatattcca aagatggtta tgg 23 <210> 440 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 440 gcagcatcca aagatgggca ggg 23 <210> 441 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 441 ctataattca aagatgttct tgg 23 <210> 442 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 442 cacatatata aagatggtca tgg 23 <210> 443 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 443 gtatcttcca aagatggcca atg 23 <210> 444 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 444 aatattacct aagatggtca tgg 23 <210> 445 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 445 gtataaacca aaaatattca ggg 23 <210> 446 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 446 gaataagcca aagatggtca gtg 23 <210> 447 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 447 atataatgca aagaaagtca aag 23 <210> 448 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 448 gtataagcca aagcaggtca cgg 23 <210> 449 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 449 atataaacca aagacggccc tgg 23 <210> 450 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 450 agataatcca aggatggtag agg 23 <210> 451 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 451 atataatcca gaaatgttca cgg 23 <210> 452 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 452 actcttttcc aagatggtca ggg 23 <210> 453 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 453 ctgatgtcca aagatggtct cgg 23 <210> 454 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 454 gtgaattcca aagaaggtca tgg 23 <210> 455 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 455 cattaatcca aagatgataa agg 23 <210> 456 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 456 gctctatcca aagatggaca ggg 23 <210> 457 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 457 ctgtaatcca gaaatagtca ggg 23 <210> 458 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 458 gtatatgtcc aaagatgatc atgc 24 <210> 459 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 459 ctataatcca aggaaggcca agg 23 <210> 460 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 460 gtatcctcca aagatgagta agg 23 <210> 461 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 461 aaataataca aagatggttg ggg 23 <210> 462 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 462 caataatcca aagaagatta agg 23 <210> 463 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 463 atataatcac aaagatggca atgg 24 <210> 464 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 464 gtttaagcca aagttggtcg ggg 23 <210> 465 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 465 gtagcatcca aagatggtgg agg 23 <210> 466 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 466 gtagaatatc aagatggtca agg 23 <210> 467 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 467 agaatgccct aagatggtct ggg 23 <210> 468 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 468 atataaccag aagatgttca tgg 23 <210> 469 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 469 gtattatcta aaggaggtca tgg 23 <210> 470 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 470 agatatacag aagatggtcg ggg 23 <210> 471 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 471 aaataatcca aaaatagtca tgg 23 <210> 472 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 472 ctttattcca aagatagtca tgg 23 <210> 473 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 473 gcatatttcc aaacatggtc aagg 24 <210> 474 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 474 gtatttttca aagatggtca tga 23 <210> 475 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 475 gtattttcca aagatggcca cga 23 <210> 476 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 476 tataaatcca aggatggtct gag 23 <210> 477 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 477 ttattttcca aagatggtca cga 23 <210> 478 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 478 tgcacatcca cagatggtca ggg 23 <210> 479 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 479 gtgtaatcca gagatgatca cag 23 <210> 480 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 480 tcttaatcca tagaaggtca agg 23 <210> 481 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 481 ttcaaataaa gatggtcacg g 21 <210> 482 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 482 tcataatcca aaagatggac aggg 24 <210> 483 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 483 atataataca aaataggtca ggg 23 <210> 484 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 484 ctagatacca aagatggtca gag 23 <210> 485 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 485 atttagtcca aagagggtca gag 23 <210> 486 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 486 atatacaacc aaagatgttc tagg 24 <210> 487 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 487 gtatatacat aaagaaggtc atgg 24 <210> 488 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 488 attatatcca aatatggtca gag 23 <210> 489 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 489 ttataatcca taaaatggtc atag 24 <210> 490 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 490 ttagtctcca aagatggtca ctg 23 <210> 491 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 491 tatctttcca aagatggtct atg 23 <210> 492 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 492 gtattttcca aagctagtca tgg 23 <210> 493 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 493 gcataatcca aggaaggtcc tgg 23 <210> 494 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 494 atattttcca aaaatggtca cag 23 <210> 495 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 495 atataatcca aaagaaggaa aag 23 <210> 496 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 496 atatatccaa aagatggtct gga 23 <210> 497 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 497 gatattaaca aagatggtct ggg 23 <210> 498 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 498 gaagaatcca acgatggcca cgg 23 <210> 499 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 499 acataatcac aaatatggtc acgg 24 <210> 500 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 500 gtattttcca aagatggcca cag 23 <210> 501 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 501 tctaatgaat aagatggtcg agg 23 <210> 502 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 502 agataatgca aagacggtta ggg 23 <210> 503 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 503 gtatatacca aaaatggtga agg 23 <210> 504 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 504 atatacccaa agatggtcca ag 22 <210> 505 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 505 tctgactccc aagatggtct tgg 23 <210> 506 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 506 ggagatacca aagatggtca gga 23 <210> 507 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 507 gtatatttca aatatggtca tag 23 <210> 508 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 508 atataaccaa agattgtcag ag 22 <210> 509 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 509 ctggagtcca gagatggtca tgg 23 <210> 510 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 510 gtagaaacca gagatggaca agg 23 <210> 511 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 511 ttataataca aaggtggtaa tgg 23 <210> 512 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 512 ctataatcaa aagtaggtca tag 23 <210> 513 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 513 atattttcca aaaatggtca tag 23 <210> 514 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 514 gtaaaatcca aagaggacca ggg 23 <210> 515 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon6) <400> 515 cctaaatcta aagatggtcg ggg 23 <210> 516 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 516 gaagcattca ttatagtcaa agg 23 <210> 517 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 517 gaagaattca ttatagacaa tgg 23 <210> 518 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 518 aagctattca ttatagcaaa tgg 23 <210> 519 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 519 gaagttaatt cattatagac aatgg 25 <210> 520 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 520 aaagtattaa ttatagtcaa gga 23 <210> 521 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 521 gaagtatcct tatagtcaga ag 22 <210> 522 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 522 gaagtatcat tatagtcttg gg 22 <210> 523 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 523 gcagtattca taatagtcaa aag 23 <210> 524 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 524 aaagtatttc atatagccaa agg 23 <210> 525 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 525 gaattattca tcatagccaa agg 23 <210> 526 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 526 taagtaatca ttatagtcag atg 23 <210> 527 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 527 atagtattca ttatagtaac agg 23 <210> 528 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 528 aaaatatcca ttatagtctt acg 23 <210> 529 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 529 gaactattca ttattatcaa cgg 23 <210> 530 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 530 gttgtattca ttatagtcaa gag 23 <210> 531 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 531 atagtattca ttatagtaac agg 23 <210> 532 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 532 agagtatcca ccatagtcaa ggg 23 <210> 533 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 533 gaagtacatc ttataatcaa tgg 23 <210> 534 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic (DNA seq at a cleavage site for HPRTExon8) <400> 534 aatgtattca ttataggcaa gag 23 <210> 535 <211> 1771 <212> PRT <213> Artificial Sequence <220> <223> Synthetic (ABE7.10) <400> 535 Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu 1 5 10 15 Thr Leu Ala Lys Arg Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala 20 25 30 Val Leu Val His Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro 35 40 45 Ile Gly Arg His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg 50 55 60 Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu 65 70 75 80 Tyr Val Thr Leu Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His 85 90 95 Ser Arg Ile Gly Arg Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly 100 105 110 Ala Ala Gly Ser Leu Met Asp Val Leu His His Pro Gly Met Asn His 115 120 125 Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu 130 135 140 Leu Ser Asp Phe Phe Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys 145 150 155 160 Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser Ser 165 170 175 Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser 180 185 190 Gly Gly Ser Ser Gly Gly Ser Ser Glu Val Glu Phe Ser His Glu Tyr 195 200 205 Trp Met Arg His Ala Leu Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg 210 215 220 Glu Val Pro Val Gly Ala Val Leu Val Leu Asn Asn Arg Val Ile Gly 225 230 235 240 Glu Gly Trp Asn Arg Ala Ile Gly Leu His Asp Pro Thr Ala His Ala 245 250 255 Glu Ile Met Ala Leu Arg Gln Gly Gly Leu Val Met Gln Asn Tyr Arg 260 265 270 Leu Ile Asp Ala Thr Leu Tyr Val Thr Phe Glu Pro Cys Val Met Cys 275 280 285 Ala Gly Ala Met Ile His Ser Arg Ile Gly Arg Val Val Phe Gly Val 290 295 300 Arg Asn Ala Lys Thr Gly Ala Ala Gly Ser Leu Met Asp Val Leu His 305 310 315 320 Tyr Pro Gly Met Asn His Arg Val Glu Ile Thr Glu Gly Ile Leu Ala 325 330 335 Asp Glu Cys Ala Ala Leu Leu Cys Tyr Phe Phe Arg Met Pro Arg Gln 340 345 350 Val Phe Asn Ala Gln Lys Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly 355 360 365 Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser 370 375 380 Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly Gly Ser Asp Lys Lys 385 390 395 400 Tyr Ser Ile Gly Leu Ala Ile Gly Thr Asn Ser Val Gly Trp Ala Val 405 410 415 Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe Lys Val Leu Gly 420 425 430 Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile Gly Ala Leu Leu 435 440 445 Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu Lys Arg Thr Ala 450 455 460 Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys Tyr Leu Gln Glu 465 470 475 480 Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser Phe Phe His Arg 485 490 495 Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys His Glu Arg His 500 505 510 Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr His Glu Lys Tyr 515 520 525 Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp Ser Thr Asp Lys 530 535 540 Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His Met Ile Lys Phe 545 550 555 560 Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro Asp Asn Ser Asp 565 570 575 Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr Asn Gln Leu Phe 580 585 590 Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala Lys Ala Ile Leu 595 600 605 Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn Leu Ile Ala Gln 610 615 620 Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn Leu Ile Ala Leu 625 630 635 640 Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe Asp Leu Ala Glu 645 650 655 Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp Asp Asp Leu Asp 660 665 670 Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp Leu Phe Leu Ala 675 680 685 Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp Ile Leu Arg Val 690 695 700 Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser Met Ile Lys Arg 705 710 715 720 Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys Ala Leu Val Arg 725 730 735 Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe Asp Gln Ser Lys 740 745 750 Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser Gln Glu Glu Phe 755 760 765 Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp Gly Thr Glu Glu 770 775 780 Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg Lys Gln Arg Thr 785 790 795 800 Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu Gly Glu Leu His 805 810 815 Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe Leu Lys Asp Asn 820 825 830 Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile Pro Tyr Tyr Val 835 840 845 Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp Met Thr Arg Lys 850 855 860 Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu Val Val Asp Lys 865 870 875 880 Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr Asn Phe Asp Lys 885 890 895 Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser Leu Leu Tyr Glu 900 905 910 Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys Tyr Val Thr Glu 915 920 925 Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln Lys Lys Ala Ile 930 935 940 Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr Val Lys Gln Leu 945 950 955 960 Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp Ser Val Glu Ile 965 970 975 Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly Thr Tyr His Asp 980 985 990 Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp Asn Glu Glu Asn 995 1000 1005 Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr Leu Phe Glu Asp 1010 1015 1020 Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala His Leu Phe Asp 1025 1030 1035 1040 Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr Thr Gly Trp Gly 1045 1050 1055 Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp Lys Gln Ser Gly 1060 1065 1070 Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe Ala Asn Arg Asn 1075 1080 1085 Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe Lys Glu Asp Ile 1090 1095 1100 Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu His Glu His Ile 1105 1110 1115 1120 Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly Ile Leu Gln Thr 1125 1130 1135 Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly Arg His Lys Pro 1140 1145 1150 Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln Thr Thr Gln Lys 1155 1160 1165 Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile Glu Glu Glu Gly Ile 1170 1175 1180 Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro Val Glu Asn Thr 1185 1190 1195 1200 Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln Asn Gly Arg 1205 1210 1215 Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg Leu Ser Asp Tyr 1220 1225 1230 Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys Asp Asp Ser Ile 1235 1240 1245 Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg Gly Lys Ser Asp 1250 1255 1260 Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys Asn Tyr Trp Arg 1265 1270 1275 1280 Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys Phe Asp Asn Leu 1285 1290 1295 Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp Lys Ala Gly Phe 1300 1305 1310 Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr Lys His Val Ala 1315 1320 1325 Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp Glu Asn Asp Lys 1330 1335 1340 Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser Lys Leu Val Ser 1345 1350 1355 1360 Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg Glu Ile Asn Asn 1365 1370 1375 Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val Val Gly Thr Ala 1380 1385 1390 Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe Val Tyr Gly Asp 1395 1400 1405 Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys Ser Glu Gln Glu 1410 1415 1420 Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser Asn Ile Met Asn 1425 1430 1435 1440 Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu Ile Arg Lys Arg 1445 1450 1455 Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile Val Trp Asp Lys 1460 1465 1470 Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser Met Pro Gln Val 1475 1480 1485 Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly Phe Ser Lys Glu 1490 1495 1500 Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile Ala Arg Lys Lys 1505 1510 1515 1520 Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr Val Ala 1525 1530 1535 Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys Lys 1540 1545 1550 Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile Met Glu Arg Ser 1555 1560 1565 Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys 1570 1575 1580 Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys Tyr Ser Leu Phe 1585 1590 1595 1600 Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala Gly Glu Leu 1605 1610 1615 Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val Asn Phe Leu 1620 1625 1630 Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser Pro Glu Asp Asn 1635 1640 1645 Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His Tyr Leu Asp Glu 1650 1655 1660 Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val Ile Leu Ala Asp 1665 1670 1675 1680 Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys His Arg Asp Lys 1685 1690 1695 Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu Phe Thr Leu Thr 1700 1705 1710 Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp Thr Thr Ile Asp 1715 1720 1725 Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp Ala Thr Leu Ile 1730 1735 1740 His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile Asp Leu Ser Gln 1745 1750 1755 1760 Leu Gly Gly Asp Pro Lys Lys Lys Arg Lys Val 1765 1770 <210> 536 <211> 167 <212> PRT <213> Artificial Sequence <220> <223> wild type E. coli TadA (NP_417054.2) <400> 536 Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu 1 5 10 15 Thr Leu Ala Lys Arg Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala 20 25 30 Val Leu Val His Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro 35 40 45 Ile Gly Arg His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg 50 55 60 Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu 65 70 75 80 Tyr Val Thr Leu Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His 85 90 95 Ser Arg Ile Gly Arg Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly 100 105 110 Ala Ala Gly Ser Leu Met Asp Val Leu His His Pro Gly Met Asn His 115 120 125 Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu 130 135 140 Leu Ser Asp Phe Phe Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys 145 150 155 160 Lys Ala Gln Ser Ser Thr Asp 165 <210> 537 <211> 166 <212> PRT <213> Artificial Sequence <220> <223> modified E. coli TadA (NP_417054.2) <400> 537 Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu Thr 1 5 10 15 Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly Ala Val 20 25 30 Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Ala Ile 35 40 45 Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg Gln 50 55 60 Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu Tyr 65 70 75 80 Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His Ser 85 90 95 Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala Lys Thr Gly Ala 100 105 110 Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro Gly Met Asn His Arg 115 120 125 Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu 130 135 140 Cys Tyr Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln Lys Lys 145 150 155 160 Ala Gln Ser Ser Thr Asp 165 <210> 538 <211> 1367 <212> PRT <213> Artificial Sequence <220> <223> SpCas9 nickase (D10A) <400> 538 Asp Lys Lys Tyr Ser Ile Gly Leu Ala Ile Gly Thr Asn Ser Val Gly 1 5 10 15 Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe Lys 20 25 30 Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile Gly 35 40 45 Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu Lys 50 55 60 Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys Tyr 65 70 75 80 Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser Phe 85 90 95 Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys His 100 105 110 Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr His 115 120 125 Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp Ser 130 135 140 Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His Met 145 150 155 160 Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro Asp 165 170 175 Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr Asn 180 185 190 Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala Lys 195 200 205 Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn Leu 210 215 220 Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn Leu 225 230 235 240 Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe Asp 245 250 255 Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp Asp 260 265 270 Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp Leu 275 280 285 Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp Ile 290 295 300 Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser Met 305 310 315 320 Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys Ala 325 330 335 Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe Asp 340 345 350 Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser Gln 355 360 365 Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp Gly 370 375 380 Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg Lys 385 390 395 400 Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu Gly 405 410 415 Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe Leu 420 425 430 Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile Pro 435 440 445 Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp Met 450 455 460 Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu Val 465 470 475 480 Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr Asn 485 490 495 Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser Leu 500 505 510 Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys Tyr 515 520 525 Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln Lys 530 535 540 Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr Val 545 550 555 560 Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp Ser 565 570 575 Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly Thr 580 585 590 Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp Asn 595 600 605 Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr Leu 610 615 620 Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala His 625 630 635 640 Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr Thr 645 650 655 Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp Lys 660 665 670 Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe Ala 675 680 685 Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe Lys 690 695 700 Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu His 705 710 715 720 Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly Ile 725 730 735 Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly Arg 740 745 750 His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln Thr 755 760 765 Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile Glu 770 775 780 Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro Val 785 790 795 800 Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln 805 810 815 Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg Leu 820 825 830 Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys Asp 835 840 845 Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg Gly 850 855 860 Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys Asn 865 870 875 880 Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys Phe 885 890 895 Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp Lys 900 905 910 Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr Lys 915 920 925 His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp Glu 930 935 940 Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser Lys 945 950 955 960 Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg Glu 965 970 975 Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val Val 980 985 990 Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe Val 995 1000 1005 Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys Ser 1010 1015 1020 Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser Asn 1025 1030 1035 1040 Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu Ile 1045 1050 1055 Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile Val 1060 1065 1070 Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser Met 1075 1080 1085 Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly Phe 1090 1095 1100 Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile Ala 1105 1110 1115 1120 Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser Pro 1125 1130 1135 Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly Lys 1140 1145 1150 Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile Met 1155 1160 1165 Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys 1170 1175 1180 Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys Tyr 1185 1190 1195 1200 Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala 1205 1210 1215 Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val 1220 1225 1230 Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser Pro 1235 1240 1245 Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His Tyr 1250 1255 1260 Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val Ile 1265 1270 1275 1280 Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys His 1285 1290 1295 Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu Phe 1300 1305 1310 Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp Thr 1315 1320 1325 Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp Ala 1330 1335 1340 Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile Asp 1345 1350 1355 1360 Leu Ser Gln Leu Gly Gly Asp 1365 <210> 539 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> peptide linker <400> 539 Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro Gly Thr 1 5 10 15 Ser Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly Gly Ser 20 25 30 <210> 540 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> SV40 NLS <400> 540 Pro Lys Lys Lys Arg Lys Val 1 5

Claims (22)

(1) 아데노신 디아미나아제, 이를 암호화 하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드,
(2) 불활성화된 표적 특이적 뉴클레아제, 이를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드,
(3) 가이드 RNA, 및
(4) Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합 또는 엔도뉴클레아제 V (endonuclease V)
을 포함하고,
상기 불활성화된 표적 특이적 뉴클레아제는 DNA 이중 가닥을 모두 절단하는 엔도뉴클라아제 활성을 상실한 것인,
아데노신 디아미나아제를 사용하는 DNA 이중 가닥 절단용 조성물.
(1) adenosine deaminase, a nucleic acid molecule encoding the same, or a plasmid containing the nucleic acid molecule,
(2) an inactivated target-specific nuclease, a nucleic acid molecule encoding the same, or a plasmid containing the nucleic acid molecule,
(3) guide RNA, and
(4) Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII (endonuclease VIII) combination or endonuclease V (endonuclease V)
Including,
The inactivated target-specific nuclease has lost endonuclease activity that cuts all DNA double strands,
A composition for cutting DNA double strands using adenosine deaminase.
제1항에 있어서, 상기 불활성화된 표적특이적 뉴클레아제는 DNA 이중 가닥을 절단하는 엔도뉴클레아제 활성을 상실한 Cas9 단백질 또는 Cpf1 단백질인, 아데노신 디아미나아제를 사용하는 DNA 이중 가닥 절단용 조성물.The composition of claim 1, wherein the inactivated target-specific nuclease is a Cas9 protein or Cpf1 protein that has lost endonuclease activity that cleaves DNA double strands, adenosine deaminase. . 제2항에 있어서, 상기 불활성화된 표적특이적 뉴클레아제는 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질에 아미노산 잔기 D10, H840, F539, M763, 및 K890로 이루어진 군에서 선택된 하나 이상이 원래와 다른 아미노산으로 치환된 돌연변이가 도입된 것이고,
상기 다른 아미노산은 알라닌, 이소류신, 류신, 메티오닌, 페닐알라닌, 프롤린, 트립토판, 발린, 아스파라긴산, 시스테인, 글루타민, 글리신, 세린, 트레오닌, 티로신, 아스파르트산, 글루탐산, 아르기닌, 히스티딘, 및 라이신으로 이루어진 군에서 선택되고 원래 아미노산과 다른 아미노산인,
아데노신 디아미나아제를 사용하는 DNA 이중 가닥 절단용 조성물.
The method of claim 2, wherein the inactivated target-specific nuclease is at least one selected from the group consisting of amino acid residues D10, H840, F539, M763, and K890 in Cas9 protein derived from Streptococcus pyogenes . A mutation substituted with an amino acid different from the original was introduced,
The other amino acids are selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, valine, aspartic acid, cysteine, glutamine, glycine, serine, threonine, tyrosine, aspartic acid, glutamic acid, arginine, histidine, and lysine. Which is an amino acid different from the original amino acid,
A composition for cutting DNA double strands using adenosine deaminase.
제1항에 있어서,
상기 아데노신 디아미나아제, 불활성화된 표적특이적 뉴클레아제, 및 가이드 RNA는
(i) 아데노신 디아미나아제, 표적 특이적 뉴클레아제, 및 가이드 RNA의 혼합물, (ii) 아데노신 디아미나아제 암호화 핵산 서열 또는 이를 포함하는 플라스미드, 표적 특이적 뉴클레아제 암호화 핵산 서열 또는 이를 포함하는 플라스미드, 및 가이드 RNA 또는 이의 암호화 핵산 분자를 포함하는 플라스미드의 혼합물, (iii) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 및 가이드 RNA의 혼합물, (iv) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 암호화 핵산 분자 또는 상기 핵산 분자를 포함하는 플라스미드, 및 가이드 RNA 또는 이의 암호화 핵산 분자를 포함하는 플라스미드의 혼합물, 및 (v) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 및 가이드 RNA의 복합체 또는 혼합물
로 이루어진 군에서 선택된 하나 이상의 형태인, 아데노신 디아미나아제를 사용하는 DNA 이중 가닥 절단용 조성물.
The method of claim 1,
The adenosine deaminase, inactivated target-specific nuclease, and guide RNA are
(i) a mixture of adenosine deaminase, target-specific nuclease, and guide RNA, (ii) adenosine deaminase-encoding nucleic acid sequence or a plasmid comprising the same, a target-specific nuclease-encoding nucleic acid sequence, or comprising the same A mixture of a plasmid and a plasmid comprising a guide RNA or a nucleic acid molecule encoding it, (iii) a mixture of a fusion protein and guide RNA to which adenosine deaminase and target-specific nuclease are linked, (iv) adenosine deaminase and target specific A mixture of a fusion protein-encoding nucleic acid molecule to which an enemy nuclease is linked or a plasmid containing the nucleic acid molecule, and a plasmid containing a guide RNA or a nucleic acid molecule encoding the same, and (v) adenosine deaminase and a target-specific nuclease are linked Complex or mixture of fusion protein and guide RNA
A composition for cutting DNA double strands using one or more forms selected from the group consisting of, adenosine deaminase.
제1항에 있어서,
상기 불활성화된 표적특이적 뉴클레아제는, 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질에,
아미노산 잔기 D10가 원래 아미노산과 다른 아미노산으로 치환된 돌연변이가 도입되거나,
아미노산 잔기 D10 및 H840이 모두 원래 아미노산과 다른 아미노산으로 치환된 돌연변이가 도입되거나
아미노산 잔기 F539, M763, 및 K890이 모두 원래 아미노산과 다른 아미노산으로 치환된 돌연변이가 도입된 것이고,
상기 다른 아미노산은 알라닌, 이소류신, 류신, 메티오닌, 페닐알라닌, 프롤린, 트립토판, 발린, 아스파라긴산, 시스테인, 글루타민, 글리신, 세린, 트레오닌, 티로신, 아스파르트산, 글루탐산, 아르기닌, 히스티딘, 및 라이신으로 이루어진 군에서 선택되고 원래 아미노산과 다른 아미노산인,
아데노신 디아미나아제를 사용하는 DNA 이중 가닥 절단용 조성물.
The method of claim 1,
The inactivated target-specific nuclease is in the Cas9 protein derived from Streptococcus pyogenes ,
A mutation in which amino acid residue D10 is substituted with an amino acid different from the original amino acid is introduced, or
A mutation in which both amino acid residues D10 and H840 are substituted with amino acids different from the original amino acid is introduced, or
Amino acid residues F539, M763, and K890 are all substituted with amino acids different from the original amino acid mutation is introduced,
The other amino acids are selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, valine, aspartic acid, cysteine, glutamine, glycine, serine, threonine, tyrosine, aspartic acid, glutamic acid, arginine, histidine, and lysine. Which is an amino acid different from the original amino acid,
A composition for cutting DNA double strands using adenosine deaminase.
제1항 내지 제5항 중 어느 한 항에 있어서, 상기 가이드 RNA는 crRNA와 tracrRNA가 서로 결합된 이중 가닥 crRNA:tracrRNA 복합체, 또는 단일 가닥 가이드 RNA (sgRNA)인, 아데노신 디아미나아제를 사용하는 DNA 이중 가닥 절단용 조성물.The DNA using adenosine deaminase according to any one of claims 1 to 5, wherein the guide RNA is a double-stranded crRNA:tracrRNA complex in which crRNA and tracrRNA are bound to each other, or a single-stranded guide RNA (sgRNA). Composition for cutting double strands. (a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) ⅰ) 불활성화된 표적 특이적 뉴클레아제, 불활성화된 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드 및 ⅱ) 가이드 RNA, 가이드 RNA를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계; 및
(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합, 또는 엔도뉴클레아제 V (endonuclease V)을 처리하여, 나머지 DNA 가닥을 절단하는 단계를 포함하며,
상기 불활성화된 표적 특이적 뉴클레아제는 DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성을 상실한 것인,
아데노신 디아미나아제를 사용하여 DNA에 이중 가닥 절단 (double strand break)를 생성하는 방법.
(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid comprising the nucleic acid molecule, and (2) i) an inactivated target-specific nuclease, an inactivated target A nucleic acid molecule encoding a specific nuclease, or a plasmid containing the nucleic acid molecule and ii) a guide RNA, a nucleic acid molecule encoding the guide RNA, or a plasmid containing the nucleic acid molecule are introduced into an isolated cell, or Processing the separated DNA to cut one of the DNA double strands; And
(b) a combination of Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII, or endonuclease V, to the DNA from which one of the DNA double strands is cut, and the remaining DNA strands It comprises the step of cutting the,
The inactivated target-specific nuclease has lost endonuclease activity that cuts all DNA double strands,
A method of generating a double strand break in DNA using adenosine deaminase.
(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) ⅰ) 불활성화된 표적 특이적 뉴클레아제, 불활성화된 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드 및 ⅱ) 가이드 RNA, 가이드 RNA를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;
(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합, 또는 엔도뉴클레아제 V (endonuclease V)을 처리하여, 나머지 DNA 가닥을 절단하는 단계; 및
(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계를 포함하며,
상기 불활성화된 표적 특이적 뉴클레아제는 DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성을 상실한 것인,
아데노신 디아미나아제에 의하여 염기 교정(base editing)이 도입된 DNA의 핵산 서열 분석 방법.
(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid comprising the nucleic acid molecule, and (2) i) an inactivated target-specific nuclease, an inactivated target A nucleic acid molecule encoding a specific nuclease, or a plasmid containing the nucleic acid molecule and ii) a guide RNA, a nucleic acid molecule encoding the guide RNA, or a plasmid containing the nucleic acid molecule are introduced into an isolated cell, or Processing the separated DNA to cut one of the DNA double strands;
(b) a combination of Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII, or endonuclease V, to the DNA from which one of the DNA double strands is cut, and the remaining DNA strands Cutting it; And
(c) comprising the step of performing whole genome sequencing on the double-stranded DNA,
The inactivated target-specific nuclease has lost endonuclease activity that cuts all DNA double strands,
A method for analyzing nucleic acid sequence of DNA into which base editing has been introduced by adenosine deaminase.
(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) ⅰ) 불활성화된 표적 특이적 뉴클레아제, 불활성화된 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드 및 ⅱ) 가이드 RNA, 가이드 RNA를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;
(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합, 또는 엔도뉴클레아제 V (endonuclease V)을 처리하여, 나머지 DNA 가닥을 절단하는 단계;
(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계; 및
(d) 상기 시퀀싱으로 수득한 염기서열 데이터 (sequence read)에서 상기 절단된 위치를 확인하는 단계를 포함하며,
상기 불활성화된 표적 특이적 뉴클레아제는 DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성을 상실한 것인,
아데노신 디아미나아제의 염기 교정 위치 확인 방법.
(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid comprising the nucleic acid molecule, and (2) i) an inactivated target-specific nuclease, an inactivated target A nucleic acid molecule encoding a specific nuclease, or a plasmid containing the nucleic acid molecule and ii) a guide RNA, a nucleic acid molecule encoding the guide RNA, or a plasmid containing the nucleic acid molecule are introduced into an isolated cell, or Processing the separated DNA to cut one of the DNA double strands;
(b) a combination of Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII, or endonuclease V, to the DNA from which one of the DNA double strands is cut, and the remaining DNA strands Cutting it;
(c) performing whole genome sequencing on the double-stranded DNA; And
(d) confirming the cut position in the sequence read obtained by the sequencing,
The inactivated target-specific nuclease has lost endonuclease activity that cuts all DNA double strands,
Adenosine Deaminase Base Correction Location Identification Method.
(a) (1) 아데노신 디아미나아제, 아데노신 디아미나아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드, 및 (2) ⅰ) 불활성화된 표적 특이적 뉴클레아제, 불활성화된 표적 특이적 뉴클레아제를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드 및 ⅱ) 가이드 RNA, 가이드 RNA를 암호화하는 핵산 분자, 또는 상기 핵산 분자를 포함하는 플라스미드를 분리된 세포에 도입시키거나 또는 분리된 DNA에 처리하여, DNA 이중가닥 중 하나를 절단하는 단계;
(b) 상기 DNA 이중가닥 중 하나가 절단된 DNA에 Alkyladenine DNA Glycosylase (AAG)와 엔도뉴클레아제 VIII (endonuclease VIII)의 조합, 또는 엔도뉴클레아제 V (endonuclease V)을 처리하여, 나머지 DNA 가닥을 절단하는 단계;
(c) 상기 이중가닥 절단된 DNA에 대하여 전체 유전체 시퀀싱 (whole genome sequencing)을 수행하는 단계; 및
(d) 상기 시퀀싱으로 수득한 염기서열 데이터 (sequence read)에서 상기 절단된 위치를 확인하는 단계를 포함하며,
상기 불활성화된 표적 특이적 뉴클레아제는 DNA 이중 가닥을 모두 절단하는 엔도뉴클레아제 활성을 상실한 것인,
아데노신 디아미나아제의 비표적 위치 (off-target site) 확인 방법.
(a) (1) adenosine deaminase, a nucleic acid molecule encoding adenosine deaminase, or a plasmid comprising the nucleic acid molecule, and (2) i) an inactivated target-specific nuclease, an inactivated target A nucleic acid molecule encoding a specific nuclease, or a plasmid containing the nucleic acid molecule and ii) a guide RNA, a nucleic acid molecule encoding the guide RNA, or a plasmid containing the nucleic acid molecule are introduced into an isolated cell, or Processing the separated DNA to cut one of the DNA double strands;
(b) a combination of Alkyladenine DNA Glycosylase (AAG) and endonuclease VIII, or endonuclease V, to the DNA from which one of the DNA double strands is cut, and the remaining DNA strands Cutting it;
(c) performing whole genome sequencing on the double-stranded DNA; And
(d) confirming the cut position in the sequence read obtained by the sequencing,
The inactivated target-specific nuclease has lost endonuclease activity that cuts all DNA double strands,
Method for identifying the off-target site of adenosine deaminase.
제9항에 있어서, 상기 불활성화된 표적특이적 뉴클레아제는 DNA 이중 가닥을 절단하는 엔도뉴클레아제 활성을 상실한 Cas9 단백질 또는 Cpf1 단백질인, 방법.The method of claim 9, wherein the inactivated target-specific nuclease is a Cas9 protein or a Cpf1 protein that has lost its endonuclease activity for cleaving DNA double strands. 제9항에 있어서, 상기 불활성화된 표적특이적 뉴클레아제는 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질에 아미노산 잔기 D10, H840, F539, M763, 및 K890로 이루어진 군에서 선택된 하나 이상이 원래와 다른 아미노산으로 치환된 돌연변이가 도입된 것이고,
상기 다른 아미노산은 알라닌, 이소류신, 류신, 메티오닌, 페닐알라닌, 프롤린, 트립토판, 발린, 아스파라긴산, 시스테인, 글루타민, 글리신, 세린, 트레오닌, 티로신, 아스파르트산, 글루탐산, 아르기닌, 히스티딘, 및 라이신으로 이루어진 군에서 선택되고 원래 아미노산과 다른 아미노산인,
방법.
The method of claim 9, wherein the inactivated target-specific nuclease is at least one selected from the group consisting of amino acid residues D10, H840, F539, M763, and K890 in Cas9 protein derived from Streptococcus pyogenes . A mutation substituted with an amino acid different from the original was introduced,
The other amino acids are selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, valine, aspartic acid, cysteine, glutamine, glycine, serine, threonine, tyrosine, aspartic acid, glutamic acid, arginine, histidine, and lysine. Which is an amino acid different from the original amino acid,
Way.
제9항에 있어서,
상기 아데노신 디아미나아제, 불활성화된 표적특이적 뉴클레아제, 및 가이드 RNA는
(i) 아데노신 디아미나아제, 표적 특이적 뉴클레아제, 및 가이드 RNA의 혼합물, (ii) 아데노신 디아미나아제 암호화 핵산 서열 또는 이를 포함하는 플라스미드, 표적 특이적 뉴클레아제 암호화 핵산 서열 또는 이를 포함하는 플라스미드, 및 가이드 RNA 또는 이의 암호화 핵산 분자를 포함하는 플라스미드의 혼합물, (iii) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 및 가이드 RNA의 혼합물, (iv) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 암호화 핵산 분자 또는 상기 핵산 분자를 포함하는 플라스미드, 및 가이드 RNA 또는 이의 암호화 핵산 분자를 포함하는 플라스미드의 혼합물, 및 (v) 아데노신 디아미나아제 및 표적 특이적 뉴클레아제가 연결된 융합 단백질 및 가이드 RNA의 복합체 또는 혼합물
로 이루어진 군에서 선택된 하나 이상의 형태로 사용되는 것인, 방법.
The method of claim 9,
The adenosine deaminase, inactivated target-specific nuclease, and guide RNA are
(i) a mixture of adenosine deaminase, target-specific nuclease, and guide RNA, (ii) adenosine deaminase-encoding nucleic acid sequence or a plasmid comprising the same, a target-specific nuclease-encoding nucleic acid sequence, or comprising the same A mixture of a plasmid and a plasmid comprising a guide RNA or a nucleic acid molecule encoding it, (iii) a mixture of a fusion protein and guide RNA to which adenosine deaminase and target-specific nuclease are linked, (iv) adenosine deaminase and target specific A mixture of a fusion protein-encoding nucleic acid molecule to which an enemy nuclease is linked or a plasmid containing the nucleic acid molecule, and a plasmid containing a guide RNA or a nucleic acid molecule encoding the same, and (v) adenosine deaminase and a target-specific nuclease are linked Complex or mixture of fusion protein and guide RNA
The method is used in one or more forms selected from the group consisting of.
제9항에 있어서,
상기 불활성화된 표적특이적 뉴클레아제는, 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질에,
아미노산 잔기 D10가 원래 아미노산과 다른 아미노산으로 치환된 돌연변이가 도입되거나,
아미노산 잔기 D10 및 H840이 모두 원래 아미노산과 다른 아미노산으로 치환된 돌연변이가 도입되거나
아미노산 잔기 F539, M763, 및 K890이 모두 원래 아미노산과 다른 아미노산으로 치환된 돌연변이가 도입된 것이고,
상기 다른 아미노산은 알라닌, 이소류신, 류신, 메티오닌, 페닐알라닌, 프롤린, 트립토판, 발린, 아스파라긴산, 시스테인, 글루타민, 글리신, 세린, 트레오닌, 티로신, 아스파르트산, 글루탐산, 아르기닌, 히스티딘, 및 라이신으로 이루어진 군에서 선택되고 원래 아미노산과 다른 아미노산인,
방법.
The method of claim 9,
The inactivated target-specific nuclease is in the Cas9 protein derived from Streptococcus pyogenes ,
A mutation in which amino acid residue D10 is substituted with an amino acid different from the original amino acid is introduced, or
A mutation in which both amino acid residues D10 and H840 are substituted with amino acids different from the original amino acid is introduced, or
Amino acid residues F539, M763, and K890 are all substituted with amino acids different from the original amino acid mutation is introduced,
The other amino acids are selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, valine, aspartic acid, cysteine, glutamine, glycine, serine, threonine, tyrosine, aspartic acid, glutamic acid, arginine, histidine, and lysine. Which is an amino acid different from the original amino acid,
Way.
제9항에 있어서, 상기 가이드 RNA는 crRNA와 tracrRNA가 서로 결합된 이중 가닥 crRNA:tracrRNA 복합체, 또는 단일 가닥 가이드 RNA (sgRNA)인, 방법.The method of claim 9, wherein the guide RNA is a double-stranded crRNA:tracrRNA complex in which crRNA and tracrRNA are bound to each other, or a single-stranded guide RNA (sgRNA). 제9항에 있어서, 시험관 내 (in vitro)에서 수행되는 것인, 방법.The method according to claim 9, which is carried out in vitro. 제9항에 있어서, 상기 단계 (a)의 분리된 DNA는 유전체 DNA인, 방법.The method of claim 9, wherein the DNA isolated in step (a) is genomic DNA. 제10항에 있어서, 상기 단계 (d) 이후에,
상기 절단 위치가 표적 위치 (on-target site)가 아닌 경우, 비표적 위치 (off-target site)로 판단하는 단계를 추가로 포함하는, 방법.
The method of claim 10, wherein after step (d),
The method further comprising the step of determining an off-target site when the cut position is not an on-target site.
제10항에 있어서,
상기 단계 (d)에서 확인된 절단 위치는 수득한 염기서열 데이터를 정렬하여 5' 말단이 수직 정렬된 위치, 또는 5' 말단 플롯에서 이중 피크 패턴을 보이는 위치인 것인, 방법.
The method of claim 10,
The cleavage position identified in step (d) is a position in which the 5'end is vertically aligned by aligning the obtained nucleotide sequence data, or a position showing a double peak pattern in the 5'end plot.
제19항에 있어서, 상기 정렬은 표준 염기서열 (reference genome)로 염기서열 데이터를 맵핑한 뒤, BWA/GATK 또는 ISAAC을 이용하여 수행되는 것인, 방법. The method of claim 19, wherein the alignment is performed using BWA/GATK or ISAAC after mapping the nucleotide sequence data to a reference genome. 제19항에 있어서, 왓슨 가닥 (Watson strand)과 크릭 가닥 (Crick strand)에 해당하는 염기서열 데이터 (sequence read)가 각각 두 개 이상씩 수직으로 정렬되는 위치를 비표적 위치인 것으로 판단하는 단계를 추가로 포함하는, 방법.The method of claim 19, wherein the step of determining that a position in which two or more sequence reads corresponding to a Watson strand and a Crick strand are vertically aligned is a non-target position. The method further comprising. 제19항에 있어서, 20 % 이상의 염기서열 데이터가 수직으로 정렬되고, 각각의 왓슨 가닥 및 크릭 가닥에서 동일한 5' 말단을 가진 염기서열 데이터의 수가 10 이상인 위치가 비표적 위치인 것으로 판단하는 단계를 추가로 포함하는, 방법.
The method of claim 19, wherein the step of determining that a position in which at least 20% of the nucleotide sequence data are vertically aligned and the number of nucleotide sequence data having the same 5'end in each Watson strand and a Creek strand is 10 or more is a non-target position. The method further comprising.
KR1020190009908A 2018-01-25 2019-01-25 Method of identifying base editing using adenosine deaminase KR102210700B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180009508 2018-01-25
KR20180009508 2018-01-25

Publications (2)

Publication Number Publication Date
KR20190090724A KR20190090724A (en) 2019-08-02
KR102210700B1 true KR102210700B1 (en) 2021-02-02

Family

ID=67396080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190009908A KR102210700B1 (en) 2018-01-25 2019-01-25 Method of identifying base editing using adenosine deaminase

Country Status (2)

Country Link
KR (1) KR102210700B1 (en)
WO (1) WO2019147073A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102258713B1 (en) * 2019-07-31 2021-05-31 한양대학교 산학협력단 composition for the cytosine base editing and use thereof
CN110964742B (en) * 2019-12-20 2022-03-01 北京市农林科学院 Preparation method of herbicide-resistant rice
WO2022059928A1 (en) * 2020-09-21 2022-03-24 고려대학교 산학협력단 Novel enhanced base editing or revising fusion protein and use thereof
CN114317596B (en) * 2020-09-30 2024-01-16 北京市农林科学院 Method for mutating A in plant genome target sequence into G
CN115725650A (en) * 2021-08-26 2023-03-03 华东师范大学 Base editing system for realizing A to C and/or A to T base mutation and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015089406A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Cas variants for gene editing
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
WO2017214463A1 (en) 2016-06-09 2017-12-14 The Regents Of The University Of California Compositions and methods for treating cancer and biomarkers to detect cancer stem cell reprogramming and progression
WO2018027078A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harard College Adenosine nucleobase editors and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015089406A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Cas variants for gene editing
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
WO2017214463A1 (en) 2016-06-09 2017-12-14 The Regents Of The University Of California Compositions and methods for treating cancer and biomarkers to detect cancer stem cell reprogramming and progression
WO2018027078A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harard College Adenosine nucleobase editors and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nature, 2017, 551(7681):464-471 (2017.11.23.)
Nature, Vol. 533, No. 7603, pp. 420-424 (2016.04.20.)

Also Published As

Publication number Publication date
WO2019147073A1 (en) 2019-08-01
KR20190090724A (en) 2019-08-02

Similar Documents

Publication Publication Date Title
KR102210700B1 (en) Method of identifying base editing using adenosine deaminase
KR102084186B1 (en) Method of identifying genome-wide off-target sites of base editors by detecting single strand breaks in genomic DNA
JP6942848B2 (en) Genetically engineered CRISPR-Cas9 nuclease
US10633642B2 (en) Engineered CRISPR-Cas9 nucleases
KR102026421B1 (en) Method of identifying base editing by cytosine deaminase in DNA
US11060078B2 (en) Engineered CRISPR-Cas9 nucleases
US10519454B2 (en) Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN
KR102647766B1 (en) Class II, type V CRISPR systems
EP3850088A2 (en) Compositions and methods for improving base editing
KR20180069898A (en) Nucleobase editing agents and uses thereof
JP2018503386A (en) CRISPR hybrid DNA / RNA polynucleotides and methods of use
KR20160036061A (en) Nuclease profiling system
Wei et al. Closely related type II-C Cas9 orthologs recognize diverse PAMs
JP2024501892A (en) Novel nucleic acid-guided nuclease

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant