KR102206030B1 - Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same - Google Patents

Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same Download PDF

Info

Publication number
KR102206030B1
KR102206030B1 KR1020180167773A KR20180167773A KR102206030B1 KR 102206030 B1 KR102206030 B1 KR 102206030B1 KR 1020180167773 A KR1020180167773 A KR 1020180167773A KR 20180167773 A KR20180167773 A KR 20180167773A KR 102206030 B1 KR102206030 B1 KR 102206030B1
Authority
KR
South Korea
Prior art keywords
polymer
composite particles
emulsion
particles
cellulose nanofibers
Prior art date
Application number
KR1020180167773A
Other languages
Korean (ko)
Other versions
KR20200078149A (en
Inventor
이민우
류재호
최시영
김동우
신희웅
Original Assignee
한솔제지 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한솔제지 주식회사, 한국과학기술원 filed Critical 한솔제지 주식회사
Priority to KR1020180167773A priority Critical patent/KR102206030B1/en
Priority to PCT/KR2019/018158 priority patent/WO2020130701A2/en
Publication of KR20200078149A publication Critical patent/KR20200078149A/en
Application granted granted Critical
Publication of KR102206030B1 publication Critical patent/KR102206030B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 고분자 코어 입자 표면에 셀룰로오스 나노섬유가 불연속적으로 코팅되어 있는 복합입자에 대해 기술하며, 상기 복합입자는 친환경적 에멀젼 고분자 중합반응을 통해 제조될 수 있고, 결과적으로 투명하면서도 기계적 특성이 향상된 복합소재를 제공할 수 있다. The present invention describes a composite particle in which cellulose nanofibers are discontinuously coated on the surface of a polymer core particle, and the composite particle can be prepared through an eco-friendly emulsion polymer polymerization reaction, and as a result, a composite particle having improved mechanical properties while being transparent Material can be provided.

Description

셀룰로오스 나노섬유 및 고분자의 복합입자 및 그 제조 방법{Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same}Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same}

본 발명은 고강도 투명 소재를 제조할 수 있는 복합입자 및 그 제조 방법에 관한 것이다. The present invention relates to a composite particle capable of producing a high-strength transparent material and a method for producing the same.

유리대체물질로 주로 쓰이는 폴리메틸메타크릴레이트(PMMA)와 폴리스티렌(PS)은 기계적 특성이 우수할 뿐 아니라 가시광선 투과율 92%의 높은 가시성으로 인해 자동차의 윈도우 및 썬루프, 아쿠아리움 수조, 아이스하키 링크의 관람석 보호판, 안경 렌즈 등 매우 다양한 산업 분야에 사용되고 있다. 이러한 유리대체물질의 사용은, 소재 경량화를 통한 자동차 연비 및 원료물질 사용 절감, 산업근로자의 작업 환경성 개선, 플렉서블 필름소재 이용가능 등의 장점을 실현시킬 수 있다. Polymethyl methacrylate (PMMA) and polystyrene (PS), which are mainly used as glass substitutes, not only have excellent mechanical properties, but also have a high visibility of 92% visible light transmittance, which is why windows and sunroofs of automobiles, aquarium tanks, ice hockey rinks It is used in a wide variety of industries, such as guards for grandstands and eyeglass lenses. The use of such a glass substitute material can realize advantages such as reduction of fuel economy and the use of raw materials through weight reduction of materials, improvement of working environment for industrial workers, and availability of flexible film materials.

최근 들어 세계적으로 환경문제가 대두되면서 친환경 복합소재에 대한 관심이 높아지고 있다. 이 때문에 유리대체물질의 활용도가 점차 광범위해지고 있고, 보다 높은 기계적 물성이 요구되고 있어서, 가시성을 방해하지 않는 범위 내에서 나노필러를 활용한 복합화 연구가 활발히 이루어지고 있다. Recently, as environmental issues emerge around the world, interest in eco-friendly composite materials is increasing. For this reason, the utilization of glass substitutes is gradually becoming wider, and higher mechanical properties are required, and thus, complex studies using nano fillers are being actively conducted within a range that does not interfere with visibility.

종래의 복합소재 제조 방법은 친수성 나노필러와 소수성 고분자를 효과적으로 분산시키기 위해 유기용매를 사용하거나 나노필러 표면에 전처리 등을 실시해왔는데, 이러한 방식은 매우 높은 에너지가 소요되고, 복잡한 공정으로 인해 생산 비용 증가와 유기용매사용에 따른 환경문제 부하 등 많은 문제가 있다.Conventional methods of manufacturing composite materials have used organic solvents or pre-treatment on the nano-filler surface to effectively disperse hydrophilic nano-fillers and hydrophobic polymers.These methods require very high energy and increase production costs due to complex processes. There are many problems such as environmental problems and loads caused by the use of organic solvents.

다양한 복합소재의 일례로서, 한국특허출원 10-2015-0106317호는 피커링 에멀젼을 이용하여 분산성 및 안정성이 우수한 에멀젼을 제조하는 방법을 개시하고 있다. 구체적으로, 이온성 수용성 고분자와 10nm~100μm의 평균입경을 가진 실리카 입자, 구리 입자 또는 폴리스티렌 입자 등을 사용하여 고분산상 에멀젼을 제조하는 방법을 개시하고 있다. 하지만 투명한 복합소재를 제조할 수 있는 방법에 대해서는 개시하고 있지 못하다. As an example of various composite materials, Korean Patent Application No. 10-2015-0106317 discloses a method of preparing an emulsion having excellent dispersibility and stability by using a Pickering emulsion. Specifically, a method of preparing a highly dispersed emulsion using an ionic water-soluble polymer and silica particles, copper particles or polystyrene particles having an average particle diameter of 10 nm to 100 μm is disclosed. However, it does not disclose a method for manufacturing a transparent composite material.

또한 한국특허출원 10-2017-7019015호는 친수성 코어입자에 복수의 소수성 입자를 피복하여 안정한 에멀젼을 제조하는 방법을 개시하고 있다. 친수성 코어입자는 다당류를 포함하며, 구체적으로 다공성 셀룰로오스 입자이며, 소수성 입자는 다양한 아크릴레이트 고분자를 사용하고 있다. 하지만 에멀젼의 용도가 케라틴에 적용되는 화장료 조성물에 국한되어 있고 유리를 대체할 수 있는 투명 복합소재에 대해서는 개시하고 있지 못하다. In addition, Korean Patent Application No. 10-2017-7019015 discloses a method of preparing a stable emulsion by coating a plurality of hydrophobic particles on a hydrophilic core particle. The hydrophilic core particles contain polysaccharides, specifically porous cellulose particles, and the hydrophobic particles use various acrylate polymers. However, the use of the emulsion is limited to cosmetic compositions applied to keratin, and a transparent composite material that can replace glass is not disclosed.

따라서 친환경적이면서 보다 간단한 공정으로 투명한 복합소재를 제조할 수 있는 방법이 필요한 실정이다. Therefore, there is a need for a method capable of manufacturing a transparent composite material with an eco-friendly and simpler process.

이에 본 발명은 유리대체물질로서 사용될 수 있는 고강도 및 고투명 복합소재 및 이를 제조할 수 있는 에멀젼을 제공하고자 한다. Accordingly, the present invention is to provide a high-strength and high-transparent composite material that can be used as a glass substitute, and an emulsion capable of manufacturing the same.

또한 본 발명은 상기 에멀젼을 제조할 수 있는 방법을 제공하고자 한다. In addition, the present invention is to provide a method for preparing the emulsion.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned will be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. I will be able to.

상기 기술적 과제를 달성하기 위하여 본 발명은, 고분자 코어 입자 표면에 셀룰로오스 나노섬유가 불연속적으로 코팅되어 있는 복합입자를 제공한다. In order to achieve the above technical problem, the present invention provides composite particles in which cellulose nanofibers are discontinuously coated on the surface of a polymer core particle.

일 실시예에 따르면, 상기 고분자가 소수성 고분자일 수 있다. According to an embodiment, the polymer may be a hydrophobic polymer.

바람직한 실시예에 따르면, 상기 고분자가 메타크릴레이트계일 수 있다. According to a preferred embodiment, the polymer may be a methacrylate-based.

바람직한 실시예에 따르면, 상기 셀룰로오스 나노섬유는 길이 및 직경 중 하나 이상이 100nm 이하이고, 종횡비가 5 ~ 1250 일 수 있다. According to a preferred embodiment, the cellulose nanofibers may have at least one of a length and a diameter of 100 nm or less, and an aspect ratio of 5 to 1250.

바람직한 실시예에 따르면, 상기 셀룰로오스 나노섬유는 직경 4 ~ 100nm, 길이 0.5 ~ 5 um 인 것이다.According to a preferred embodiment, the cellulose nanofibers have a diameter of 4 to 100 nm and a length of 0.5 to 5 um.

바람직한 실시예에 따르면, 고분자 코어입자와 셀룰로오스 나노섬유의 질량비가 100:1~20인 것이다. According to a preferred embodiment, the mass ratio of the polymer core particles and the cellulose nanofibers is 100:1 to 20.

상기 복합입자는 평균 크기가 50~200nm 일 수 있다. The composite particles may have an average size of 50 to 200 nm.

또한 상기 복합입자는 유리전이온도가 120℃ 이상일 수 있다. In addition, the composite particles may have a glass transition temperature of 120°C or higher.

본 발명의 다른 양태에 따르면, 상기 복합입자가 물에 분산되어 있는 에멀젼이 제공된다.According to another aspect of the present invention, there is provided an emulsion in which the composite particles are dispersed in water.

상기 에멀젼은 제타 포텐셜이 -100 mV 이상 -30mV 이하일 수 있다. The emulsion may have a zeta potential of -100 mV or more and -30mV or less.

본 발명의 또 다른 양태에 따르면, According to another aspect of the present invention,

a) 수상에 중합성 관능기를 보유한 단량체, 중합개시제 및 셀룰로오스 나노섬유를 분산하여 분산액을 제조하는 단계;a) preparing a dispersion by dispersing a monomer having a polymerizable functional group, a polymerization initiator, and cellulose nanofibers in an aqueous phase;

b) 상기 분산액을 교반하여 유화시키면서 중합반응을 진행하여, 상기 중합성 관능기를 보유한 단량체가 고분자 코어 입자를 형성하고, 고분자 코어 입자의 표면에 셀룰로오스 나노섬유가 불연속적으로 코팅되도록 하여 고분자 복합입자의 에멀젼 형성 단계를 포함하는 고분자 복합입자 제조 방법이 제공된다. b) The dispersion is stirred and emulsified while a polymerization reaction is carried out, so that the monomer having the polymerizable functional group forms the polymer core particles, and the cellulose nanofibers are discontinuously coated on the surface of the polymer core particles, There is provided a method for producing a polymer composite particle comprising the step of forming an emulsion.

일 실시예에 따르면, 상기 b) 단계의 고분자 복합입자의 에멀젼을 동결건조시켜 고분자 복합입자를 얻는 단계를 더 포함할 수 있다. According to an embodiment, the step of obtaining the polymer composite particles by freeze-drying the emulsion of the polymer composite particles of step b) may be further included.

본 발명에 따른 복합소재는 계면활성제 및 안정제와 같은 첨가제를 포함하지 않으며 물을 용제로 하는 피커링 에멀젼 형성을 통해 제조되기 때문에 친환경적이며 제작 공정이 단순하다. 또한 비강도가 우수한 셀룰로오스 나노섬유가 보강재 역할을 하기 때문에 가시광선에 대한 투과성도 우수하면서 기계적 물성 또한 우수하다. 따라서 광학적 특성과 기계적 물성을 요구하는 분야에 사용되는 유리 또는 고분자 수지를 대체하여 다양한 분야에 활용될 수 있다. Since the composite material according to the present invention does not contain additives such as surfactants and stabilizers, and is manufactured through the formation of a pickering emulsion using water as a solvent, it is eco-friendly and the manufacturing process is simple. In addition, since cellulose nanofibers having excellent specific strength serve as a reinforcing material, they have excellent transmittance to visible light and excellent mechanical properties. Therefore, it can be used in various fields by replacing glass or polymer resin used in fields requiring optical properties and mechanical properties.

도 1은 셀룰로오스의 구조를 도시한다.
도 2는 셀룰로오스 나노섬유 및 셀룰로오스 나노결정을 설명하는 개략적인 도면이다.
도 3은 일 실시예에 따라 PMMA/CNF 복합입자 제조과정을 개략적으로 도시한다.
도 4는 실시예 1에서 제조된 에멀젼의 Zeta potential 측정 결과이다.
도 5는 실시예 1에서 제조된 PMMA/CNF 복합입자의 전자현미경 사진이다.
도 6은 실시예 1(PMMA/CNF 복합입자) 및 비교예 1(순수한 PMMA 입자)에 따른 입자의 시차주사열량 분석결과이다.
도 7은 실시예 2(PEMA/CNF 복합입자)에서 제조된 에멀젼의 전자현미경 사진이다.
도 8은 실시예 3에서 CNF 함량을 변화시켜 제조한 복합입자들의 전자현미경 사진이다.
1 shows the structure of cellulose.
2 is a schematic diagram illustrating cellulose nanofibers and cellulose nanocrystals.
3 schematically shows a process of manufacturing PMMA/CNF composite particles according to an embodiment.
4 is a measurement result of Zeta potential of the emulsion prepared in Example 1.
5 is an electron micrograph of the PMMA/CNF composite particles prepared in Example 1. FIG.
6 is a differential scanning calorie analysis result of particles according to Example 1 (PMMA/CNF composite particles) and Comparative Example 1 (pure PMMA particles).
7 is an electron micrograph of the emulsion prepared in Example 2 (PEMA/CNF composite particles).
8 is an electron micrograph of composite particles prepared by varying the CNF content in Example 3. FIG.

이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The drawings are provided as examples in order to sufficiently convey the spirit of the present invention to those skilled in the art. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention.

또한, 여기에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.In addition, unless there are other definitions in the technical terms and scientific terms used herein, they have the meanings commonly understood by those of ordinary skill in the art to which this invention belongs, and in the following description and accompanying drawings, Descriptions of known functions and configurations that may unnecessarily obscure the subject matter will be omitted.

본 발명은, 고분자 코어 입자 표면에 셀룰로오스 나노섬유가 불연속적으로 코팅되어 있는 복합입자에 관한 것이다. The present invention relates to composite particles in which cellulose nanofibers are discontinuously coated on the surface of a polymer core particle.

셀룰로오스는 식물의 세포벽 주성분으로서, 자연계에서 석탄에 이어 다량으로 존재하는 유기화합물이다. 도 1에 도시된 바와 같이, 셀룰로오스는 β-D-글루코스가 β-글루코시드결합(1-4 글루코시드결합)을 통해 중합체를 이룬 다당류로 화학식은 (C6H10O5)n이다. 반복단위는 셀로비오스이다. β-D-글루코스의 1번 탄소와 4번 탄소가 결합된 1-4 글루코시드결합을 통해 선형구조를 이룬 것으로 글루코스 단위체가 번갈아 가며 뒤집힌 모습을 띤다. 이러한 구조로 인해 평행한 셀룰로오스 분자들이 근접한 3번, 6번 탄소의 수산기 사이에 수소결합이 형성되어 선형 사슬로 존재하게 된다. Cellulose is a major component of the cell wall of plants, and is an organic compound present in a large amount after coal in nature. As shown in FIG. 1, cellulose is a polysaccharide in which β-D-glucose forms a polymer through β-glucoside bonds (1-4 glucosidic bonds), and the chemical formula is (C 6 H 10 O 5 ) n . The repeating unit is cellobiose. It has a linear structure through 1-4 glucoside bonds in which carbon 1 and carbon 4 of β-D-glucose are bonded, and the glucose units are inverted alternately. Due to this structure, a hydrogen bond is formed between the hydroxyl groups of adjacent carbons 3 and 6 of parallel cellulose molecules to exist as a linear chain.

도 2에서 볼 수 있는 바와 같이, 이러한 셀룰로오스 분자의 선형 사슬이 약 80개가 모여 생물체 내 기능적 단위체인 셀룰로오스 미세섬유(cellulose microfibril)를 형성한다. 셀룰로오스 분자 다수가 모여 섬유를 이루는데 그 최소 단위는 미셀이라 하여 지름 약 0.05nm, 길이 약 0.6nm 이상이다. 미셀은 결정구조를 이루고 있고 미셀과 미셀의 연결 부위는 비결정 영역으로 되어 있다. As can be seen in FIG. 2, about 80 linear chains of these cellulose molecules are collected to form cellulose microfibrils, which are functional units in living organisms. Many cellulose molecules gather to form a fiber, and the minimum unit is called a micelle, which is about 0.05 nm in diameter and about 0.6 nm in length. The micelles have a crystalline structure, and the connection site between the micelles and micelles is an amorphous region.

셀룰로오스는 수많은 수소 결합을 보유하고 있어서 결정성이 형성되며 뛰어난 기계적 강도를 유발한다. 강력한 수소 결합으로 인해 셀룰로오스는 유리전이온도나 녹는점이 없어 3차원 성형가공이 거의 불가능하다. 또한 단위 구조(셀로비오스) 당 6개의 수산화기가 있어 강한 친수성을 보이지만 이들에 의한 수소결합으로 인해 물에는 용해되지 않는다. 따라서 셀룰로오스의 기계적 특성을 유지하면서 크기를 최소화 및 분산하여 복합화할 수 있는 나노화 기술이 필요한 것이다. Cellulose has a number of hydrogen bonds, resulting in crystallinity and excellent mechanical strength. Due to strong hydrogen bonding, cellulose has no glass transition temperature or melting point, making 3D molding process almost impossible. In addition, since there are 6 hydroxyl groups per unit structure (cellobiose), it shows strong hydrophilicity, but it does not dissolve in water due to hydrogen bonding by them. Therefore, there is a need for a nanotechnology capable of minimizing and dispersing the size while maintaining the mechanical properties of cellulose.

셀룰로오스를 나노화하여 얻을 수 있는 나노셀룰로오스에는 셀룰로오스 나노결정(CNC)과 셀룰로오스 나노섬유(CNF)가 있다. There are cellulose nanocrystals (CNC) and cellulose nanofibers (CNF) as nano cellulose obtained by nano-izing cellulose.

CNF는 종횡비가 높은 나노 크기의 셀룰로오스 피브릴로 이루어져 있으며, 피브릴 폭은 5~20nm이며, 길이는 일반적으로 수 마이크로미터이다. 틱소트로피 (thixotropy)를 나타내며, 이는 정상 조건에서는 점성이 있는 젤이나 액체의 특성이지만 흔들리거나 흔들면 점성이 떨어진다. 피브릴은 고압, 고온 및 고속 충격 균질, 그라인딩 또는 미세유체화를 통해 셀룰로오스 함유 원료로부터 분리된다. CNF consists of nano-sized cellulose fibrils with a high aspect ratio, fibrils width of 5 to 20 nm, and length of generally several micrometers. Represents thixotropy, which is characteristic of a viscous gel or liquid under normal conditions, but becomes less viscous when shaken or shaken. Fibrils are separated from cellulose-containing raw materials through high pressure, high temperature and high speed impact homogenization, grinding or microfluidization.

나노셀룰로오스는 또한 산 가수 분해에 의해 천연 섬유로부터 얻어질 수 있으며, 균질화, 마이크로 유체화 또는 그라인딩 경로를 통해 얻어진 CNF 보다 길이가 짧고(100~1000nm) 고도의 결정질 및 경질 나노 입자를 생성하며 이를 셀룰로오스 나노결정(CNC)이라 부른다. 도 2에서 보는 바와 같이, 결정영역을 이루는 미셀이 CNC의 주성분이다. Nanocellulose can also be obtained from natural fibers by acid hydrolysis, which is shorter in length (100-1000 nm) than CNF obtained through homogenization, microfluidization or grinding pathways, and produces highly crystalline and hard nanoparticles. It is called nanocrystal (CNC). As shown in Fig. 2, the micelles forming the crystal region are the main components of the CNC.

바람직한 실시예에 따르면, 상기 셀룰로오스 나노섬유는 길이 및 직경 중 하나 이상이 100nm 이하인 것이다. According to a preferred embodiment, the cellulose nanofibers have at least one of a length and a diameter of 100 nm or less.

바람직한 실시예에 따르면, 상기 셀룰로오스 나노섬유는 직경 4 ~ 100nm, 길이 0.5 ~ 5 um 인 것이다. 바람직하게는 직경 4~50nm, 길이 0.5 ~ 3um, 또는 직경 5~20nm, 길이 0.5~2um 일 수 있다. According to a preferred embodiment, the cellulose nanofibers have a diameter of 4 to 100 nm and a length of 0.5 to 5 um. Preferably, it may be 4 to 50 nm in diameter, 0.5 to 3 um in length, or 5 to 20 nm in diameter, and 0.5 to 2 um in length.

셀룰로오스 나노섬유는 표면처리를 통한 양친매성 표면특성을 지녔을 때, 계면 안정화에 더욱 효과적이다. 소수성 표면 및 셀룰로오스 사슬의 친수성 말단의 양친매성 표면 특성을 가질 수 있으며, 양친매성 특성으로 인해 오일/물 계면을 효율적으로 안정화시킬 수 있다. 따라서 양친매성 표면 입자의 특성은 에멀젼 안정화제로서 큰 가능성을 지닌다. 계면 활성제 분자와 달리 입자는 높은 흡착에너지를 가지기 때문에 액체-액체 계면에서 비가역적으로 흡착되어 더욱 안정한 에멀젼 시스템을 형성하여 재료가공에 큰 다양성을 제공할 수 있다 Cellulose nanofibers are more effective in stabilizing the interface when they have amphiphilic surface properties through surface treatment. It may have a hydrophobic surface and an amphiphilic surface characteristic of the hydrophilic end of the cellulose chain, and the oil/water interface can be efficiently stabilized due to the amphiphilic characteristic. Therefore, the properties of the amphiphilic surface particles have great potential as an emulsion stabilizer. Unlike surfactant molecules, particles have a high adsorption energy, so they are irreversibly adsorbed at the liquid-liquid interface to form a more stable emulsion system, providing great diversity in material processing.

본 발명은 최종제품의 가시성에 영향을 주지 않도록 나노미터 수준의 셀룰로오스 나노섬유(CNF)를 사용하였으며, 피커링 에멀젼 방식을 통해 셀룰로오스 나노섬유(CNF)와 투명한 고분자 소재(예를 들면, 메타아크릴레이트 계)를 중합 유화 단계에서 입자 크기의 조절 및 안정성, 분산성을 유지하였다. 셀룰로오스 나노섬유(CNF)와 투명한 고분자 소재를 복합화 함에 있어 CNF 표면을 개질하거나 별다른 용매 사용 없이 순수한 물만을 사용함으로써 공정이 매우 간단하고 친환경적일 뿐만 아니라 높은 분산성을 나타낼 수 있다. In the present invention, cellulose nanofibers (CNF) at the nanometer level were used so as not to affect the visibility of the final product, and cellulose nanofibers (CNF) and a transparent polymer material (for example, methacrylate-based ) In the polymerization and emulsification step, control of the particle size, stability, and dispersibility were maintained. In complexing cellulose nanofibers (CNF) and transparent polymer materials, the process is very simple and eco-friendly, and high dispersibility can be exhibited by modifying the CNF surface or using only pure water without the use of any solvent.

에멀젼(emulsion)은 기름방울들이 물속에 분산되거나, 물방울들이 기름 속에 분산되어 있는 시스템으로, 특히, 고 분산상 에멀젼(High Internal Phase Emulsion; HIPE)은 분산된 방울들의 부피가 전체 에멀젼 중 74 부피% 이상인 에멀젼 시스템을 일컫는다. 이러한 고 분산상 에멀젼은 보통의 에멀젼에 비해 매우 높은 부피 대비 비표면적을 가지고 있어 유용하게 활용될 수 있으며, 고 분산상 에멀젼을 템플레이트(template)로 이용하여 다양한 다공성 물질의 제작이 가능하여, 필터, 센서, 흡착제, 촉매 서포트 등 산업의 전반적인 분야에서 활용될 수 있다.Emulsion is a system in which oil droplets are dispersed in water or water droplets are dispersed in oil.In particular, High Internal Phase Emulsion (HIPE) is a system in which the volume of dispersed droplets is more than 74% by volume of the total emulsion. Refers to an emulsion system. These highly dispersed emulsions have a very high volume-to-volume specific surface area compared to ordinary emulsions, so they can be usefully utilized, and various porous materials can be produced by using a highly dispersed emulsion as a template. It can be used in overall fields of industry such as adsorbents and catalyst supports.

일 실시예에 따른 에멀젼은 유상(oil phase)이 분산상(dispersed phase)이며, 수상(water phase)이 연속상(continuous phase)인 수중유형의 피커링 에멀젼(Oil-in-water type pickering emulsion)일 수 있다. 이와 같이, 유상을 분산상으로 가짐으로써 장시간 경과 후에도 상 분리가 쉽게 일어나지 않는, 매우 안정적인 에멀젼을 수득할 수 있다. 이는 오일층과 물층을 혼합하여 분산상인 유상과, 연속상인 수상을 형성할 시, 수상에 분산된 고분자 단량체가 디플리션 압력(Depletion pressure)을 야기하여 유적의 표면(계면)에 CNF가 잘 흡착되도록 하여 계면장력을 낮추어줌으로써, 계면장력에 의한 상 분리를 억제할 수 있기 때문이다.The emulsion according to an embodiment may be an oil-in-water type pickering emulsion in which an oil phase is a dispersed phase and a water phase is a continuous phase. have. Thus, by having the oil phase as a dispersed phase, it is possible to obtain a very stable emulsion in which phase separation does not easily occur even after a long period of time. When the oil layer and the water layer are mixed to form an oil phase as a dispersed phase and an aqueous phase as a continuous phase, the polymer monomers dispersed in the water phase cause depletion pressure so that CNF is well adsorbed on the surface (interface) of the oil droplets. This is because, by lowering the interfacial tension, phase separation due to the interfacial tension can be suppressed.

피커링 에멀젼 형성 방식은 형성된 에멀젼의 크기가 열역학적 평형 상태의 특정 크기를 갖기 때문에 100 nm 수준의 작고 균일한 에멀젼 형성이 가능하다. 또한 본 발명에 따르면 CNF를 고분자 매트릭스에 분산시킬 때 유기 용매를 사용하지 않고 오로지 물만을 연속상으로 사용하여 수용액과 소수성 단량체를 CNF로 안정화함으로써 에멀젼을 만드는 것이므로 그 방법이 간단하고 친환경적이다. In the Pickering emulsion formation method, since the size of the formed emulsion has a specific size in a thermodynamic equilibrium state, it is possible to form a small and uniform emulsion at the level of 100 nm. In addition, according to the present invention, when CNF is dispersed in a polymer matrix, the method is simple and eco-friendly because an aqueous solution and a hydrophobic monomer are stabilized with CNF by using only water in a continuous phase without using an organic solvent.

구체적으로 본 발명은 Specifically, the present invention

a) 수상에 중합성 관능기를 보유한 단량체, 중합개시제 및 셀룰로오스 나노섬유를 분산하여 분산액을 제조하는 단계;a) preparing a dispersion by dispersing a monomer having a polymerizable functional group, a polymerization initiator, and cellulose nanofibers in an aqueous phase;

b) 상기 분산액을 교반하여 유화시키면서 중합반응을 진행하여, 상기 중합성 관능기를 보유한 단량체가 고분자 코어 입자를 형성하고, 고분자 코어 입자의 표면에 셀룰로오스 나노섬유가 불연속적으로 코팅되도록 하여 고분자 복합입자의 에멀젼 형성 단계를 포함하는 고분자 복합입자 제조 방법을 제공한다. b) The dispersion is stirred and emulsified while a polymerization reaction is carried out, so that the monomer having the polymerizable functional group forms the polymer core particles, and the cellulose nanofibers are discontinuously coated on the surface of the polymer core particles, It provides a method for producing a polymer composite particle comprising the step of forming an emulsion.

일 실시예에 따르면, 상기 b) 단계의 고분자 복합입자의 에멀젼을 동결건조시켜 고분자 복합입자를 얻는 단계를 더 포함할 수 있다. According to an embodiment, the step of obtaining the polymer composite particles by freeze-drying the emulsion of the polymer composite particles of step b) may be further included.

일 실시예에 따르면, 상기 중합 반응은 50~100℃의 온도에서 5~20시간 동안 진행될 수 있다. According to an embodiment, the polymerization reaction may be performed for 5 to 20 hours at a temperature of 50 to 100 °C.

본 발명에 따른 복합입자 제조방법의 장점은 크게 세가지로 볼 수 있다.The advantages of the method for manufacturing composite particles according to the present invention can be largely seen in three ways.

첫 번째, 본 발명에 따른 에멀젼 형성 방법은 계면활성제를 사용하지 않는다. 계면활성제를 이용하여 에멀젼 수지 입자를 합성하는 경우 입자에 잔류하고 있는 계면활성제에 의해 물성의 저하가 야기된다. 합성된 에멀젼의 안정성을 위해 계면활성제를 사용하는 일반적인 방법과는 달리, 본 발명에 따라 피커링 에멀젼을 통해 합성된 고분자 입자는 에멀젼 안정성이 우수하고 계면활성제가 존재하지 않아 보다 강한 기계적 강도를 지닌 CNF/고분자 복합재 제작이 가능하다. First, the emulsion formation method according to the present invention does not use a surfactant. When the emulsion resin particles are synthesized using a surfactant, physical properties are deteriorated by the surfactant remaining in the particles. Unlike the general method of using a surfactant for the stability of the synthesized emulsion, the polymer particles synthesized through the Pickering emulsion according to the present invention have excellent emulsion stability and have stronger mechanical strength due to the absence of surfactants. It is possible to manufacture polymer composites.

두 번째, 본 발명에 따른 에멀젼 형성 방법은 용제(solvent)로 물을 사용한다. 일반적으로 나노필러와 고분자를 분산시키고 복합체를 형성시키기 위한 방식으로 유기 용매를 사용하는 solution casting 방식을 이용하는데, 유기용매를 사용할 경우 공정상 환경적 부하가 있을 뿐 아니라 복합체에 용매가 잔류할 경우 독성을 지니므로 인체에 지속적으로 악영향을 끼칠 가능성이 있다.Second, the emulsion formation method according to the present invention uses water as a solvent. In general, a solution casting method using an organic solvent is used as a method to disperse nano fillers and polymers and form a complex. When using an organic solvent, there is an environmental load in the process and toxicity when the solvent remains in the complex. It has the potential to continuously adversely affect the human body.

세 번째, 에멀젼 형성 공정이 매우 간단하다. 에멀젼을 안정화시키는 유화과정과 에멀젼 입자의 분자량을 적절하게 조절하는 중합반응을 동시에 함께 진행하기 때문에, 각각의 공정이 분리되지 않고 In-situ로 이루어진다. 따라서 기존의 방법에 비해 매우 간단하다. Third, the emulsion formation process is very simple. Since the emulsification process to stabilize the emulsion and the polymerization reaction to properly control the molecular weight of the emulsion particles are simultaneously carried out, each process is not separated and is performed in-situ. Therefore, it is very simple compared to the existing method.

본 발명에 따른 방법으로 제조되는 에멀젼은 제타 포텐셜이 -100 mV 이상 -30mV 이하일 수 있다. 제타 포텐셜이 약 -30 mV 이하일 때, 용액의 시스템이 안정하여 aggregation을 형성하지 않는다. 제타 포텐셜의 절대값이 30mV 미만이면 입자들간의 정전기적 반발력이 떨어져 형성된 입자가 재응집할 수 있다. The emulsion prepared by the method according to the present invention may have a zeta potential of -100 mV or more and -30 mV or less. When the zeta potential is less than about -30 mV, the solution system is stable and no aggregation is formed. If the absolute value of the zeta potential is less than 30mV, the electrostatic repulsion between the particles decreases, and the formed particles may re-aggregate.

본 발명에 있어서, CNF와 상호작용(interaction)을 통해 피커링 에멀젼을 형성할 수 있는 고분자는 소수성 고분자의 단량체인 것이 바람직하며, 예를 들면 메타크릴레이트계 일 수 있다. 메타크릴레이트계 고분자를 형성할 수 있는 단량체는 메틸메타크릴레이트, 에틸메타크릴레이트, 페닐메타크릴레이트, 2-하이드로프로필 메타크릴레이트 등일 수 있으나 이에 한정되는 것은 아니다. In the present invention, a polymer capable of forming a Pickering emulsion through an interaction with CNF is preferably a monomer of a hydrophobic polymer, and may be, for example, a methacrylate-based polymer. A monomer capable of forming a methacrylate-based polymer may be methyl methacrylate, ethyl methacrylate, phenyl methacrylate, 2-hydropropyl methacrylate, or the like, but is not limited thereto.

일 실시예에 따르면, 고분자 코어입자와 셀룰로오스 나노섬유의 질량비가 100 : 1~20 일 수 있으며, 바람직하게는 100 : 5~15 일 수 있다. 셀룰로오스 나노섬유의 질량비가 지나치게 높으면 분산액 자체의 점도의 증가로 전반적인 교반이 원할하게 이루어지지 않게 되어 CNF 입자가 고분자 코어입자에 흡착되기 어려우며, 또한 CNF 입자들 사이의 오버랩에 의해 광학 특성이 떨어진다. 반면 지나치게 낮으면 기계적 물성 향상 효과가 미미할 수 있다. 따라서 광학 특성이 유지되는 범위 내에서 최대의 기계적 물성 향상 효과를 얻기 위해서는 CNF의 종횡비를 조절하여 투입량을 증량시키는 것이 중요할 수 있다. CNF의 종횡비는 5 ~ 1250의 범위에서 조절할 수 있고, 바람직하게는 25 ~ 400 일 수 있다. According to an embodiment, the mass ratio of the polymer core particles and the cellulose nanofibers may be 100: 1 to 20, and preferably 100: 5 to 15. If the mass ratio of the cellulose nanofibers is too high, the overall agitation is not performed smoothly due to an increase in the viscosity of the dispersion itself, so that the CNF particles are difficult to be adsorbed on the polymer core particles, and the optical properties are deteriorated due to the overlap between the CNF particles. On the other hand, if it is too low, the effect of improving mechanical properties may be insignificant. Therefore, it may be important to increase the amount of input by adjusting the aspect ratio of CNF in order to obtain the greatest mechanical property improvement effect within the range in which the optical properties are maintained. The aspect ratio of CNF may be adjusted in the range of 5 to 1250, and preferably may be 25 to 400.

본 발명에 따른 방법으로 제조되는 복합입자는 평균 크기가 50~200nm 일 수 있으며, 바람직하게는 80nm 이상 또는 90nm 이상일 수 있고, 150nm 이하 또는 120nm 이하 일 수 있다. The composite particles prepared by the method according to the present invention may have an average size of 50 to 200 nm, preferably 80 nm or more or 90 nm or more, and 150 nm or less or 120 nm or less.

또한 상기 복합입자는 유리전이온도가 120℃ 이상 또는 125℃ 이상일 수 있고, 180℃ 이하 또는 150℃ 이하일 수 있다. 복합입자의 유리전이온도는 기계적 물성을 나타내는 척도라 할 수 있으며, 유리전이온도가 높을수록 기계적 물성은 좋아지나 성형성에 문제가 있을 수 있으며, 지나치게 낮은 경우 물성이 저조할 수 있다.In addition, the composite particle may have a glass transition temperature of 120°C or higher or 125°C or higher, and 180°C or lower or 150°C or lower. The glass transition temperature of the composite particle can be said to be a measure of mechanical properties, and the higher the glass transition temperature, the better the mechanical properties, but there may be a problem in the formability. If it is too low, the physical properties may be poor.

본 발명에 따른 복합입자는 순수한 PMMA 입자와 비교하였을 때, 보다 우수한 물리적 특성을 지니기 때문에 가시광 투과도와 기계적 강도가 요구되는 다양한 분야에 활용 가능할 것으로 기대된다. The composite particles according to the present invention are expected to be applicable to various fields requiring visible light transmittance and mechanical strength because they have superior physical properties when compared to pure PMMA particles.

이하 실시예를 통해 본 발명에 따른 제조 방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.Hereinafter, the manufacturing method according to the present invention will be described in more detail through examples. However, the following examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms. In addition, the unit of the additive not specifically described in the specification may be a weight %.

<실시예 1><Example 1>

methyl methacrylate 100 중량부에 0.3 중량부의 라디칼 개시제 AIBN을 녹였다. 물 45ml에 개시제가 녹아있는 methyl methacrylate 4ml와 셀룰로오스 나노섬유(직경 약 10 nm, 길이 약 1㎛)를 질량비율 10:1로 섞은 뒤, 1500 rpm으로 교반하였다. 교반 하에 70℃에서 8시간 동안 유화과정과 중합반응을 함께 진행하여 폴리메틸메타크릴레이트 코어 입자에 CNF가 불연속적으로 코팅되어 있는 복합입자의 에멀젼을 제조하였다. 0.3 parts by weight of the radical initiator AIBN was dissolved in 100 parts by weight of methyl methacrylate. 4 ml of methyl methacrylate in which an initiator is dissolved in 45 ml of water and cellulose nanofibers (about 10 nm in diameter and about 1 μm in length) were mixed at a mass ratio of 10:1, and then stirred at 1500 rpm. Under stirring, the emulsification process and the polymerization reaction were carried out at 70° C. for 8 hours together to prepare an emulsion of composite particles in which CNF was discontinuously coated on the polymethyl methacrylate core particles.

실시예 1에서 얻어진 에멀젼에 대해 동적 광 산란 측정법을 통해 Zeta potential을 측정한 결과를 도 4에 나타내었다. Zeta potential이 -78.6 mV로 측정되었다. 따라서 도 4의 결과로부터 친수성 셀룰로오스 나노섬유와 소수성 고분자의 단량체가 잘 분산되어 있는 피커링 에멀젼이 형성되었음을 확인할 수 있다. Figure 4 shows the results of measuring the Zeta potential through the dynamic light scattering method for the emulsion obtained in Example 1. Zeta potential was measured to be -78.6 mV. Therefore, it can be seen from the results of FIG. 4 that a pickering emulsion in which a hydrophilic cellulose nanofiber and a hydrophobic polymer monomer are well dispersed was formed.

도 5는 실시예 1에서 제조된 PMMA/CNF 복합입자의 전자현미경 사진이다. 도 5로부터 나노 스케일의 PMMA 입자를 CNF가 둘러싸고 있는 형태로 관찰할 수 있다. PMMA 분자의 크기는 약 100~300 nm 로 나노 사이즈의 입자를 형성할 수 있다. 5 is an electron micrograph of the PMMA/CNF composite particles prepared in Example 1. FIG. From FIG. 5, nano-scale PMMA particles can be observed in a form surrounded by CNF. The PMMA molecule has a size of about 100 to 300 nm, and can form nano-sized particles.

도 6은 실시예 1에서 제조된 PMMA/CNF 조성물의 시차주사열량분석 결과이다. 열 분석을 통해 유리 전이 온도를 측정할 수 있었다. 변곡점이 생기는 부분에서 PMMA/CNF 조성물의 Tg가 약 129℃로 순수한 PMMA의 Tg 119℃ 보다 10℃ 높은 수치를 보였다. 증가된 Tg를 통해 기계적인 물성이 향상되었음을 알 수 있다. 6 is a result of differential scanning calorimetry analysis of the PMMA/CNF composition prepared in Example 1. The glass transition temperature could be measured through thermal analysis. At the inflection point, the Tg of the PMMA/CNF composition was about 129°C, which was 10°C higher than that of pure PMMA at 119°C. It can be seen that mechanical properties are improved through the increased Tg.

<실시예 2><Example 2>

Methyl methacrylate 대신 ethyl methacrylate 를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합입자의 에멀젼을 제조하였다. 도 7은 제조된 에멀젼의 전자 현미경 사진이다. An emulsion of composite particles was prepared in the same manner as in Example 1, except that ethyl methacrylate was used instead of methyl methacrylate. 7 is an electron micrograph of the prepared emulsion.

<실시예 3><Example 3>

MMA 100 중량부 대비 CNF의 질량을 2, 4, 6, 8 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 복합입자의 에멀젼을 제조하였다. 도 8은 이렇게 제조한 에멀젼의 전자현미경 사진이다. An emulsion of composite particles was prepared in the same manner as in Example 1, except that the mass of CNF was changed to 2, 4, 6, and 8 parts by weight relative to 100 parts by weight of MMA. 8 is This is an electron micrograph of the emulsion prepared in this way.

CNF의 비율이 6wt% 까지는 일정한 크기(150nm)의 PMMA 입자가 형성되었다. 하지만 4wt% 이하로 떨어지면서 PMMA 입자를 둘러싸는 CNF의 양이 확연히 줄어들면서 입자의 크기가 큰 PMMA 입자가 형성되었다. 이는 유적 표면을 둘러싸는 CNF 양이 줄어들면서 계면이 상대적으로 불안정하여 크기가 큰 PMMA 입자가 형성되었기 때문이다.PMMA particles having a certain size (150 nm) were formed up to the CNF ratio of 6 wt%. However, as it fell below 4wt%, the amount of CNF surrounding the PMMA particles was significantly reduced, and PMMA particles having a large particle size were formed. This is because the amount of CNF surrounding the oil droplet surface decreased, and the interface was relatively unstable, resulting in the formation of large PMMA particles.

<비교예 1><Comparative Example 1>

상업적으로 구입한 PMMA(Sigma Aldrich, 제품명-445746, 분자량(Mw) 350,000 g/mol)를 사용하였다. Commercially purchased PMMA ( Sigma Aldrich , product name-445746, molecular weight (Mw) 350,000 g/mol) was used.

<비교예 2><Comparative Example 2>

PMMA(Sigma Aldrich, 제품명-445746, 분자량(Mw) 350,000 g/mol) 20 g을 100 ml 아세톤에 녹이고 PMMA 100 중량부 대비 셀룰로오스 나노섬유를 10 중량부(질량비율 10:1)로 혼합한 뒤 50℃에서 1시간 가량 ultra-sonication을 통해 분산시킨 용액을 제조하였다. 그 후 용액 캐스팅 방법을 통해 50℃ glass Petri Dish 에서 천천히 증발시켜 복합 조성물을 얻었다. PMMA ( Sigma Aldrich , product name-445746, molecular weight (Mw) 350,000 g/mol) 20 g is dissolved in 100 ml acetone, and cellulose nanofibers are mixed at 10 parts by weight (mass ratio 10:1) to 100 parts by weight of PMMA. A solution dispersed through ultra-sonication at °C for about 1 hour was prepared. Then, through a solution casting method, it was slowly evaporated in a glass Petri dish at 50°C to obtain a composite composition.

이 방법은 500 wt% 가량의 상당히 많은 양의 용매를 사용한다는 것과 별도의 증발 공정을 필요로 하기 때문에 추가적인 공정과 시간이 요구된다는 단점이 있다(KIZILTAS, Esra Erbas, et al. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydrate polymers, 2015, 127: 381-389). This method has a disadvantage in that it uses a fairly large amount of solvent (about 500 wt%) and requires an additional process and time because it requires a separate evaporation process (KIZILTAS, Esra Erbas, et al. Preparation and characterization of transparent. PMMA-cellulose-based nanocomposites.   Carbohydrate polymers, 2015, 127: 381-389).

<비교예 3><Comparative Example 3>

CNF 대신 산화 그래핀을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 에멀젼을 제조하였다. 최종적으로 만들어진 film의 경우 graphene 입자의 탄소원자에서 비롯된 검정색의 광학특성으로 투명한 film을 만들기 어려웠다. (GUDARZI, Mohsen Moazzami; SHARIF, Farhad. Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites. Soft Matter, 2011, 7.7: 3432-3440).An emulsion was prepared in the same manner as in Example 1, except that graphene oxide was used instead of CNF. In the case of the finally made film, it was difficult to make a transparent film due to the black optical properties that originate from the carbon atoms of the graphene particles. (GUDARZI, Mohsen Moazzami; SHARIF, Farhad.Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites.Soft Matter, 2011, 7.7: 3432-3440).

이상으로부터, 본 발명에 따라 제조된 복합입자는 투명성과 기계적 물성이 확보되어야 사용할 수 있는 제품, 즉 유리창, 썬루프, 아쿠아리움 파티션, 아이스하키 링크 관람석 보호판, 렌즈 등 유리를 대체품 또는 기존의 투명 플라스틱 소재, 예를 들면, 투명전극, 필름, 코팅재, 접착제, 헤드램프, 전자부품소재 등에 활용될 수 있을 것으로 기대된다.From the above, the composite particles prepared according to the present invention can be used only when transparency and mechanical properties are secured, that is, glass windows, sunroofs, aquarium partitions, ice hockey rink guards, lenses, etc. , For example, it is expected to be used for transparent electrodes, films, coatings, adhesives, headlamps, and electronic component materials.

Claims (12)

고분자 코어 입자 표면에, 표면처리 되지 않은 셀룰로오스 나노섬유가 단독으로 불연속적으로 코팅되어 있는 복합입자. Composite particles in which non-surface-treated cellulose nanofibers are individually and discontinuously coated on the surface of a polymer core particle. 제1항에 있어서,
상기 고분자가 소수성 고분자인 것인 복합입자.
The method of claim 1,
The composite particle of the polymer is a hydrophobic polymer.
제1항에 있어서,
상기 고분자가 메타크릴레이트계인 것인 복합입자.
The method of claim 1,
The polymer is a methacrylate-based composite particles.
제1항에 있어서,
상기 셀룰로오스 나노섬유는 길이 및 직경 중 하나 이상이 100nm 이하이며, 종횡비가 5~1250인 것인 복합입자.
The method of claim 1,
The cellulose nanofibers are composite particles having at least one of a length and a diameter of 100 nm or less, and an aspect ratio of 5 to 1250.
제1항에 있어서,
상기 셀룰로오스 나노섬유는 직경 4 ~ 100nm, 길이 0.5 ~ 5 um 인 것인 복합입자.
The method of claim 1,
The cellulose nanofibers are composite particles of 4 to 100 nm in diameter and 0.5 to 5 um in length.
제1항에 있어서,
고분자 코어입자와 셀룰로오스 나노섬유의 질량비가 100: 1~20인 것인 복합입자.
The method of claim 1,
A composite particle having a mass ratio of the polymer core particle and the cellulose nanofibers of 100: 1 to 20.
제1항에 있어서,
평균 크기가 50~200nm인 복합입자.
The method of claim 1,
Composite particles with an average size of 50 to 200 nm.
제1항에 있어서,
유리전이온도가 120℃ 이상인 복합입자.
The method of claim 1,
Composite particles with a glass transition temperature of 120℃ or higher.
제1항 내지 제8항 중 어느 한 항의 복합입자가 물에 분산되어 있는 에멀젼.An emulsion in which the composite particles of any one of claims 1 to 8 are dispersed in water. 제9항에 있어서,
제타 포텐셜이 -100 mV 이상 -30mV 이하인 에멀젼.
The method of claim 9,
An emulsion with a zeta potential of -100 mV or more and -30mV or less.
a) 수상에 중합성 관능기를 보유한 단량체, 중합개시제 및 표면처리되지 않은 셀룰로오스 나노섬유를 분산하여 분산액을 제조하는 단계;
b) 상기 분산액을 교반하여 유화시키면서 중합반응을 진행하여, 상기 중합성 관능기를 보유한 단량체가 고분자 코어 입자를 형성하고, 고분자 코어 입자의 표면에 셀룰로오스 나노섬유가 불연속적으로 코팅되도록 하여 고분자 복합입자의 에멀젼을 형성하는 단계를 포함하는 제1항 내지 제8항 중 어느 한 항의 고분자 복합입자 제조 방법.
a) preparing a dispersion by dispersing a monomer having a polymerizable functional group in an aqueous phase, a polymerization initiator, and cellulose nanofibers without surface treatment;
b) The dispersion is stirred and emulsified while a polymerization reaction is carried out, so that the monomer having the polymerizable functional group forms the polymer core particles, and the cellulose nanofibers are discontinuously coated on the surface of the polymer core particles, A method for producing a polymer composite particle according to any one of claims 1 to 8, comprising the step of forming an emulsion.
제11항에 있어서,
상기 b) 단계의 고분자 복합입자의 에멀젼을 동결건조시켜 고분자 복합입자를 얻는 단계를 더 포함하는 고분자 복합입자의 제조방법.
The method of claim 11,
The method for producing polymer composite particles further comprising the step of obtaining polymer composite particles by lyophilizing the emulsion of the polymer composite particles in step b).
KR1020180167773A 2018-12-21 2018-12-21 Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same KR102206030B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180167773A KR102206030B1 (en) 2018-12-21 2018-12-21 Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same
PCT/KR2019/018158 WO2020130701A2 (en) 2018-12-21 2019-12-20 Composite particles of cellulose nanofibers and polymer, and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180167773A KR102206030B1 (en) 2018-12-21 2018-12-21 Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same

Publications (2)

Publication Number Publication Date
KR20200078149A KR20200078149A (en) 2020-07-01
KR102206030B1 true KR102206030B1 (en) 2021-01-21

Family

ID=71100728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180167773A KR102206030B1 (en) 2018-12-21 2018-12-21 Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same

Country Status (2)

Country Link
KR (1) KR102206030B1 (en)
WO (1) WO2020130701A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102565814B1 (en) * 2020-11-27 2023-08-10 한솔제지 주식회사 Process for Preparing Composite Particles of Cellulose Nanofiber and Polymer
KR102614260B1 (en) 2021-02-16 2023-12-14 한국화학연구원 Redispersible nanocellulose, manufacturing method thereof, and paint composition using same
CN113201150B (en) * 2021-04-29 2022-12-27 陕西科技大学 Preparation method of photoresponse Pickering emulsion
CN113105588B (en) * 2021-04-29 2022-12-13 陕西科技大学 Method for preparing fluorine-containing polyacrylate emulsion by utilizing photoresponsive nanocellulose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116477A (en) 2008-11-13 2010-05-27 Sumitomo Bakelite Co Ltd Composite composition
WO2017144009A1 (en) 2016-02-24 2017-08-31 Ecoinno (H.K.) Limited Cellulose materials and methods of making and using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962662B1 (en) * 2010-07-19 2012-08-24 Agronomique Inst Nat Rech EMULSION-FORMING COMPOSITION COMPRISING A DISPERSE HYDROPHOBIC PHASE IN AQUEOUS PHASE
US11020338B2 (en) * 2014-12-17 2021-06-01 L'oreal Composite particle and preparation thereof
KR102107801B1 (en) * 2017-04-14 2020-05-07 세종대학교산학협력단 Nano cellulose composite and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116477A (en) 2008-11-13 2010-05-27 Sumitomo Bakelite Co Ltd Composite composition
WO2017144009A1 (en) 2016-02-24 2017-08-31 Ecoinno (H.K.) Limited Cellulose materials and methods of making and using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Polymers 2018, 10, 517*

Also Published As

Publication number Publication date
WO2020130701A2 (en) 2020-06-25
KR20200078149A (en) 2020-07-01
WO2020130701A3 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
KR102206030B1 (en) Composite Particles of Cellulose Nanofiber and Polymer, and A Process for Preparing Same
Klockars et al. Effect of anisotropy of cellulose nanocrystal suspensions on stratification, domain structure formation, and structural colors
Sun et al. Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties
Reid et al. Benchmarking cellulose nanocrystals: from the laboratory to industrial production
Li et al. Cellulose nanoparticles: structure–morphology–rheology relationships
Liu et al. The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals
Sèbe et al. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate
Lin et al. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review
Fan et al. Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers
Morelli et al. Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals
Liu et al. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites
Iwamoto et al. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy
Araki et al. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals
Younas et al. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling
Thomas et al. Design and applications of nanostructured polymer blends and nanocomposite systems
Ranjbar et al. Effect of ionic surfactants on the viscoelastic properties of chiral nematic cellulose nanocrystal suspensions
Holt et al. Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives
Azzam et al. Adjustment of the chiral nematic phase properties of cellulose nanocrystals by polymer grafting
Bao et al. Extraction of cellulose nanocrystals from microcrystalline cellulose for the stabilization of cetyltrimethylammonium bromide-enhanced Pickering emulsions
Ling et al. Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response
Khalil et al. Nanocellulose‐Based Polymer Nanocomposite: Isolation, Characterization and Applications
Kim et al. Anisotropic optical film embedded with cellulose nanowhisker
Carvalho et al. Polystyrene/cellulose nanofibril composites: fiber dispersion driven by nanoemulsion flocculation
Jiang et al. Regenerated cellulose-dispersed polystyrene composites enabled via Pickering emulsion polymerization
Ma et al. Cellulosic nanocomposite membranes from hydroxypropyl cellulose reinforced by cellulose nanocrystals

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right