KR102204452B1 - Method for producing rare saponins using saponins derived from platycodon grandiflorum - Google Patents

Method for producing rare saponins using saponins derived from platycodon grandiflorum Download PDF

Info

Publication number
KR102204452B1
KR102204452B1 KR1020200080728A KR20200080728A KR102204452B1 KR 102204452 B1 KR102204452 B1 KR 102204452B1 KR 1020200080728 A KR1020200080728 A KR 1020200080728A KR 20200080728 A KR20200080728 A KR 20200080728A KR 102204452 B1 KR102204452 B1 KR 102204452B1
Authority
KR
South Korea
Prior art keywords
platicoside
saponins
xylosylated
platicodin
polygalaxin
Prior art date
Application number
KR1020200080728A
Other languages
Korean (ko)
Inventor
김영수
김대욱
신경철
Original Assignee
한국수목원관리원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수목원관리원 filed Critical 한국수목원관리원
Priority to KR1020200080728A priority Critical patent/KR102204452B1/en
Application granted granted Critical
Publication of KR102204452B1 publication Critical patent/KR102204452B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for manufacturing rare saponin using saponin derived from Platycodon grandiflorus, which manufactures de-apiosyl-xylosylated platicoside by treating and reacting Cytolase PCL5 from platycoside. Therefore, Cytolase PCL5 completely converted a platicoside substrate to a final product without further hydrolysis, indicating that the enzyme is effective in production of de-apiosyl-xylosylated platicoside D and de-apios-xylosylated polygalaxin D.

Description

도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법 {Method for producing rare saponins using saponins derived from platycodon grandiflorum}Method for producing rare saponins using bellflower-derived saponins {Method for producing rare saponins using saponins derived from platycodon grandiflorum}

본 발명은 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법에 관한 것으로, 더욱 상세하게는 플라티코사이드의 효소적 전환을 조사하고, Cytolase PCL5가 플라티코사이드E와 폴리갈락신D3(polygalacin D3)을 탈아피오스-자일로실화 플라티코딘D와 탈아피오스-자일로실화 폴리갈락신D로 완전히 변환시키는 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법에 관한 것이다.The present invention relates to a method for producing rare saponins using bellflower-derived saponins, and more particularly, to investigate the enzymatic conversion of platicoside, and Cytolase PCL5 to platicoside E and polygalacin D3 (polygalacin D3) The present invention relates to a method for producing rare saponins using bellflower-derived saponins that completely convert deapiose-xylosylated platicodin D and deapiose-xylosylated polygalaxin D.

플라티코사이드(platycoside)는 도라지(Platycodon grandiflorum)의 뿌리에 존재하는 약학적 활성이 있는 사포닌이며, 동북 아시아에서 약용식물로 사용되었다[비특허문헌 1,2]. 이들의 약리학적 특성으로는 항산화제[비특허문헌 3,4], 항염증제[비특허문헌 5,6], 항종양[비특허문헌 7-9], 항알레르기[비특허문헌 10,11], 항비만[비특허문헌 12-14] 및 면역조절효과[비특허문헌 15-17]가 있는 것으로 알려져 있다.Platycoside (platycoside) is a saponin with pharmaceutical activity present in the root of bellflower ( Platycodon grandiflorum ), and has been used as a medicinal plant in Northeast Asia [Non-Patent Documents 1,2]. These pharmacological properties include antioxidants [Non-Patent Literature 3,4], anti-inflammatory agents [Non-Patent Literature 5,6], anti-tumor [Non-Patent Literature 7-9], anti-allergic [Non-Patent Literature 10,11], It is known to have anti-obesity [Non-Patent Document 12-14] and immunomodulatory effect [Non-Patent Document 15-17].

플라티코사이드는 트리터페노이드 아글리콘(triterpenoid aglycone) 및 C-3 및 C-28에 자리하는 2개의 당 사슬로 구성된다. 대부분의 아글리콘은 플라티코디제닌-타입(platycodigenin-type, C-24에서 CH2OH) 및 폴리갈락산-타입(polygalacic acid-type, C-24에서 CH3)으로, 각각 총 플라티코사이드의 약 50%와 30%를 차지한다[비특허문헌 18,19](도 1 참조).Platicosides consist of a triterpenoid aglycone and two sugar chains located at C-3 and C-28. Most aglycones are platycodigenin-type (C-24 to CH 2 OH) and polygalacic acid-type (C-24 to CH 3 ), respectively, with total platicosides. It accounts for about 50% and 30% of [Non-Patent Documents 18 and 19] (see Fig. 1).

사포닌의 탈글라이코실화(deglycosylation)는 작아진 크기로 인하여 생체이용가능성(bioavailability)과 세포 투과성(cell permeability)이 향상되므로 생물학적 활성이 증가한다[비특허문헌 20,21]. 가열[비특허문헌 22], 산(acid) 처리[비특허문헌 23], 발효[비특허문헌 24], 전 세포 반응[비특허문헌 25] 및 효소 전환[비특허문헌 26]과 같은 방법은 글라이코실화 사포닌에서 당 부분을 가수분해하는 것으로 알려져 있다. 이들 방법 중, 효소 변환(enzymatic conversion)은 가장 높은 수율(yield), 효율(efficiency) 및 특이성(specificity)을 나타냈다. 이러한 결과에 따라, 다양한 효소가 플라티코사이드를 탈글라이코실화하는데 사용되었다. Caldicellulosiruptor bescii 유래 β-글라이코시데이즈(β-glycosidase)[비특허문헌 27], Caldicellulosiruptor owensensis 유래 β-글라이코시데이즈[28], Aspergillus usamii 유래 β-글라이코시데이즈[비특허문헌 29], snailase 유래 β-글라이코시데이즈[비특허문헌 30], laminarinase 유래 β-글라이코시데이즈[비특허문헌 31] 및 cellulase 유래 β-글라이코시데이즈[비특허문헌 32]는 플라티코사이드E를 중간체로서 플라티코딘D3(platycodin D3)을 통해 플라티코딘D로 변환하였다. 반면, Dictyoglomus turgidum 유래 효소는 플라티코딘D3 및 플라티코딘D를 중간물로서 거치면서 플라티코사이드E에서 탈글라이코실화 플라티코딘D로 탈글라이코실화시켰다[비특허문헌 33]. 이들 효소의 대부분은 플라티코사이드의 C-3 위치의 포도당 분자를 가수분해하였다.Deglycosylation of saponin increases biological activity because bioavailability and cell permeability are improved due to the smaller size [Non-Patent Documents 20 and 21]. Methods such as heating [Non-Patent Literature 22], acid treatment [Non-Patent Literature 23], fermentation [Non-Patent Literature 24], whole cell reaction [Non-Patent Literature 25], and enzyme conversion [Non-Patent Literature 26] It is known to hydrolyze the sugar moiety in glycosylated saponins. Among these methods, enzymatic conversion showed the highest yield, efficiency, and specificity. According to these results, various enzymes have been used to deglycosylate platicosides. Β-glycosidase derived from Caldicellulosiruptor bescii [Non-Patent Document 27], β-glycosidase derived from Caldicellulosiruptor owensensis [28], β- Glycosidase derived from Aspergillus usamii [Non-Patent Document 29], β-glycosidase derived from snailase [Non-Patent Document 30], β-glycosidase derived from laminarinase [Non-Patent Document 31], and β-glycosidase derived from cellulase [Non-Patent Document 32] contain platicoside E. As an intermediate, it was converted to platicodin D through platicodin D3. On the other hand, Dictyoglomus turgidum- derived enzymes were deglycosylated from platicoside E to deglycosylated platicodin D while passing through platicodin D3 and platicodin D as intermediates [Non-Patent Document 33]. Most of these enzymes hydrolyze the glucose molecule at the C-3 position of platicoside.

그러나 Aspergillus niger의 미정제 효소는 플라티코딘D와 반응할 때 C-28에서 아피오스(apiose)와 자일로스(xylose) 부분을 제거하였다[비특허문헌 34]. 그럼에도 불구하고, 탈아피오스-자일로실화 플라티코딘D(deapiose-xylosylated platycodin D)는 정량적으로 생산된 적 없으며, 탈아피오실화(deapiosylation) 및 탈자일로실화(dexylosylation)를 보인 다른 타입의 플라티코사이드는 존재하지 않았다.However, the crude enzyme of Aspergillus niger removed apiose and xylose portions from C-28 when reacting with Platicidine D [Non-Patent Document 34]. Nevertheless, deapiose-xylosylated platycodin D (deapiose-xylosylated platycodin D) has never been produced quantitatively, and other types of platycodin exhibited deapiosylation and dexylosylation. Said didn't exist.

비특허문헌 1. Nyakudya, E.; Jeong, J.H.; Lee, N.K.; Jeong, Y.S. Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits. Prev. Nutr. Food Sci. 2014, 19, 59-68.Non-Patent Document 1. Nyakudya, E.; Jeong, J.H.; Lee, N.K.; Jeong, Y.S. Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits. Prev. Nutr. Food Sci. 2014, 19, 59-68. 비특허문헌 2. Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon Grandiflorus-an Ethnopharmacological, Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2015, 164, 147-161.Non-Patent Document 2. Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon Grandiflorus-an Ethnopharmacological, Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2015, 164, 147-161. 비특허문헌 3. Ryu, C.S.; Kim, C.H.; Lee, S.Y.; Lee, K.S.; Choung, K.J.; Song, G.Y.; Kim, B.H.; Ryu, S.Y.; Lee, H.S.; Kim, S.K. Evaluation of the Total Oxidant Scavenging Capacity of Saponins Isolated from Platycodon grandiflorum. Food Chem. 2012, 132, 333-337.Non-Patent Document 3. Ryu, C.S.; Kim, C.H.; Lee, S.Y.; Lee, K.S.; Choung, K.J.; Song, G.Y.; Kim, B.H.; Ryu, S. Y.; Lee, H.S.; Kim, S.K. Evaluation of the Total Oxidant Scavenging Capacity of Saponins Isolated from Platycodon grandiflorum. Food Chem. 2012, 132, 333-337. 비특허문헌 4. Luo, H.; Lin, S.; Ren, F.; Wu, L.; Chen, L.; Sun, Y. Antioxidant and Antimicrobial Capacity of Chinese Medicinal Herb Extracts in Raw Sheep Meat. J. Food Prot. 2007, 70, 1440-1445.Non-Patent Document 4. Luo, H.; Lin, S.; Ren, F.; Wu, L.; Chen, L.; Sun, Y. Antioxidant and Antimicrobial Capacity of Chinese Medicinal Herb Extracts in Raw Sheep Meat. J. Food Prot. 2007, 70, 1440-1445. 비특허문헌 5. Kim, J.Y.; Hwang, Y.P.; Kim, D.H.; HAN, E.H.; Chung, Y.C.; Roh, S.H.; Jeong, H.G. Inhibitory Effect of the Saponins Derived from Roots of Platycodon grandiflorum on Carrageenan-Induced Inflammation. Biosci. Biotechnol. Biochem. 2006, 70, 858-864.Non-Patent Document 5. Kim, J.Y.; Hwang, Y.P.; Kim, D.H.; HAN, E.H.; Chung, Y.C.; Roh, S.H.; Jeong, H.G. Inhibitory Effect of the Saponins Derived from Roots of Platycodon grandiflorum on Carrageenan-Induced Inflammation. Biosci. Biotechnol. Biochem. 2006, 70, 858-864. 비특허문헌 . Kim, M.; Hwang, I.G.; Kim, S.B.; Choi, A.J. Chemical Characterization of Balloon Flower (Platycodon grandiflorum) Sprout Extracts and Their Regulation of Inflammatory Activity in Lipopolysaccharide-Stimulated Raw 264.7 Murine Macrophage Cells. Food Sci. Nutr. 2020, 8, 246-256.Non-patent literature. Kim, M.; Hwang, I.G.; Kim, S.B.; Choi, A.J. Chemical Characterization of Balloon Flower (Platycodon grandiflorum) Sprout Extracts and Their Regulation of Inflammatory Activity in Lipopolysaccharide-Stimulated Raw 264.7 Murine Macrophage Cells. Food Sci. Nutr. 2020, 8, 246-256. 비특허문헌 7. Yim, N.H.; Hwang, Y.H.; Liang, C.; Ma, J.Y. A Platycoside-Rich Fraction from the Root of Platycodon grandiflorum Enhances Cell Death in A549 Human Lung Carcinoma Cells Via Mainly Ampk/Mtor/Akt Signal-Mediated Autophagy Induction. J. Ethnopharmacol. 2016, 194, 1060-1068.Non-Patent Document 7. Yim, N.H.; Hwang, Y. H.; Liang, C.; Ma, J.Y. A Platycoside-Rich Fraction from the Root of Platycodon grandiflorum Enhances Cell Death in A549 Human Lung Carcinoma Cells Via Mainly Ampk/Mtor/Akt Signal-Mediated Autophagy Induction. J. Ethnopharmacol. 2016, 194, 1060-1068. 비특허문헌 8. Kim, Y.S.; Kim, J.S.; Choi, S.U.; Kim, J.S.; Lee, H.S.; Roh, S.H.; Jeong, Y.C.; Kim, Y.K.; Ryu, S.Y. Isolation of a New Saponin and Cytotoxic Effect of Saponins from the Root of Platycodon grandiflorum on Human Tumor Cell Lines. Planta. Med. 2005, 71, 566-568.Non-Patent Document 8. Kim, Y.S.; Kim, J.S.; Choi, S.U.; Kim, J.S.; Lee, H.S.; Roh, S.H.; Jeong, Y.C.; Kim, Y.K.; Ryu, S.Y. Isolation of a New Saponin and Cytotoxic Effect of Saponins from the Root of Platycodon grandiflorum on Human Tumor Cell Lines. Planta. Med. 2005, 71, 566-568. 비특허문헌 9. Khan, M.; Maryam, A.; Zhang, H.; Mehmood, T.; Ma, T. Killing Cancer with Platycodin D through Multiple Mechanisms. J. Cell Mol. Med. 2016, 20, 389-402.Non-Patent Document 9. Khan, M.; Maryam, A.; Zhang, H.; Mehmood, T.; Ma, T. Killing Cancer with Platycodin D through Multiple Mechanisms. J. Cell Mol. Med. 2016, 20, 389-402. 비특허문헌 10. Halliwell, B. Oxidative Stress and Neurodegeneration: Where Are We Now? J. Neurochem. 2006, 97, 1634-1658.Non-Patent Document 10. Halliwell, B. Oxidative Stress and Neurodegeneration: Where Are We Now? J. Neurochem. 2006, 97, 1634-1658. 비특허문헌 11. Oh, Y.C.; Kang, O.H.; Choi, J.G.; Lee, Y.S.; Brice, O.O.; Jung, H.J.; Hong, S.H.; Lee, Y.M.; Shin, D.W.; Kim, Y.S.; et al. Anti-Allergic Activity of a Platycodon Root Ethanol Extract. Int. J. Mol. Sci 2010, 11, 2746-2758.Non-Patent Document 11. Oh, Y.C.; Kang, O.H.; Choi, J.G.; Lee, Y.S.; Brice, O.O.; Jung, H.J.; Hong, S.H.; Lee, Y.M.; Shin, D.W.; Kim, Y.S.; et al. Anti-Allergic Activity of a Platycodon Root Ethanol Extract. Int. J. Mol. Sci 2010, 11, 2746-2758. 비특허문헌 12. Han, L.K.; Zheng, Y.N.; Xu, B.J.; Okuda, H.; Kimura, Y. Saponins from Platycodi Radix Ameliorate High Fat Diet-Induced Obesity in Mice. J. Nutr. 2002, 132, 2241-2245.Non-Patent Document 12. Han, L.K.; Zheng, Y. N.; Xu, B.J.; Okuda, H.; Kimura, Y. Saponins from Platycodi Radix Ameliorate High Fat Diet-Induced Obesity in Mice. J. Nutr. 2002, 132, 2241-2245. 비특허문헌 13. Zhao, H.L.; Harding, S.V.; Marinangeli, C.P.F.; Kim, Y.S.; Jones, P.J.H. Hypocholesterolemic and Anti-Obesity Effects of Saponins from Platycodon grandiflorum in Hamsters Fed Atherogenic Diets. J. Food Sci. 2008, 73, H195-H200.Non-Patent Document 13. Zhao, H.L.; Harding, S. V.; Marinangeli, C. P. F.; Kim, Y.S.; Jones, P.J.H. Hypocholesterolemic and Anti-Obesity Effects of Saponins from Platycodon grandiflorum in Hamsters Fed Atherogenic Diets. J. Food Sci. 2008, 73, H195-H200. 비특허문헌 14. Hwang, K.A.; Hwang, Y.J.; Im, P.R.; Hwang, H.J.; Song, J.; Kim, Y.J. Platycodon grandiflorum Extract Reduces High-Fat Diet-Induced Obesity through Regulation of Adipogenesis and Lipogenesis Pathways in Mice. J. Med. Food 2019, 22, 993-999.Non-Patent Document 14. Hwang, K.A.; Hwang, Y.J.; Im, P.R.; Hwang, H.J.; Song, J.; Kim, Y.J. Platycodon grandiflorum Extract Reduces High-Fat Diet-Induced Obesity through Regulation of Adipogenesis and Lipogenesis Pathways in Mice. J. Med. Food 2019, 22, 993-999. 비특허문헌 15. Xie, Y.; Ye, Y.P.; Sun, H.X.; Li, D. Contribution of the Glycidic Moieties to the Haemolytic and Adjuvant Activity of Platycodigenin-Type Saponins from the Root of Platycodon grandiflorum. Vaccine 2008, 26, 3452-3460.Non-Patent Document 15. Xie, Y.; Ye, Y.P.; Sun, H.X.; Li, D. Contribution of the Glycidic Moieties to the Haemolytic and Adjuvant Activity of Platycodigenin-Type Saponins from the Root of Platycodon grandiflorum. Vaccine 2008, 26, 3452-3460. 비특허문헌 16. Noh, E.M.; Kim, J.M.; Lee, H.Y.; Song, H.K.; Joung, S.O.; Yang, H.J.; Kim, M.J.; Kim, K.S.; Lee, Y.R. Immuno-Enhancement Effects of Platycodon grandiflorum Extracts in Splenocytes and a Cyclophosphamide-Induced Immunosuppressed Rat Model. BMC Complement. Altern. Med. 2019, 19, 322.Non-Patent Document 16. Noh, E.M.; Kim, J.M.; Lee, H.Y.; Song, H.K.; Joung, S.O.; Yang, H.J.; Kim, M.J.; Kim, K.S.; Lee, Y.R. Immuno-Enhancement Effects of Platycodon grandiflorum Extracts in Splenocytes and a Cyclophosphamide-Induced Immunosuppressed Rat Model. BMC Complement. Altern. Med. 2019, 19, 322. 비특허문헌 17. Zhao, X.; Wang, Y.; Yan, P.; Cheng, G.; Wang, C.; Geng, N.; Wang, X.; Liu, J. Effects of Polysaccharides from Platycodon grandiflorum on Immunity-Enhancing Activity in Vitro. Molecules 2017, 22, 1918.Non-Patent Document 17. Zhao, X.; Wang, Y.; Yan, P.; Cheng, G.; Wang, C.; Geng, N.; Wang, X.; Liu, J. Effects of Polysaccharides from Platycodon grandiflorum on Immunity-Enhancing Activity in Vitro. Molecules 2017, 22, 1918. 비특허문헌 18. Ha, Y.W.; Na, Y.C.; Seo, J.J.; Kim, S.N.; Linhardt, R.J.; Kim, Y.S. Qualitative and Quantitative Determination of Ten Major Saponins in Platycodi Radix by High Performance Liquid Chromatography with Evaporative Light Scattering Detection and Mass Spectrometry. J. Chromatogr. A 2006, 1135, 27-35.Non-Patent Document 18. Ha, Y.W.; Na, Y.C.; Seo, J.J.; Kim, S.N.; Linhardt, R.J.; Kim, Y.S. Qualitative and Quantitative Determination of Ten Major Saponins in Platycodi Radix by High Performance Liquid Chromatography with Evaporative Light Scattering Detection and Mass Spectrometry. J. Chromatogr. A 2006, 1135, 27-35. 비특허문헌 19. Yoo, D.S.; Choi, Y.H.; Cha, M.R.; Lee, B.H.; Kim, S.J.; Yon, G.H.; Hong, K.S.; Jang, Y.S.; Lee, H.S.; Kim, Y.S.; et al. Hplc-Elsd Analysis of 18 Platycosides from Balloon Flower Roots (Platycodi Radix) Sourced from Various Regions in Korea and Geographical Clustering of the Cultivation Areas. Food Chem. 2011, 129, 645-651.Non-Patent Document 19. Yoo, D.S.; Choi, Y.H.; Cha, M.R.; Lee, B.H.; Kim, S.J.; Yon, G.H.; Hong, K.S.; Jang, Y.S.; Lee, H.S.; Kim, Y.S.; et al. Hplc-Elsd Analysis of 18 Platycosides from Balloon Flower Roots (Platycodi Radix) Sourced from Various Regions in Korea and Geographical Clustering of the Cultivation Areas. Food Chem. 2011, 129, 645-651. 비특허문헌 20. Park, C.S.; Yoo, M.H.; Noh, K.H.; Oh, D.K. Biotransformation of Ginsenosides by Hydrolyzing the Sugar Moieties of Ginsenosides Using Microbial Glycosidases. Appl. Microbiol. Biotechnol. 2010, 87, 9-19.Non-Patent Document 20. Park, C.S.; Yoo, M.H.; Noh, K.H.; Oh, D.K. Biotransformation of Ginsenosides by Hydrolyzing the Sugar Moieties of Ginsenosides Using Microbial Glycosidases. Appl. Microbiol. Biotechnol. 2010, 87, 9-19. 비특허문헌 21. Shin, K.C.; Oh, D.K. Classification of Glycosidases That Hydrolyze the Specific Positions and Types of Sugar Moieties in Ginsenosides. Crit. Rev. Biotechnol. 2016, 36, 1036-1049.Non-Patent Document 21. Shin, K.C.; Oh, D.K. Classification of Glycosidases That Hydrolyze the Specific Positions and Types of Sugar Moieties in Ginsenosides. Crit. Rev. Biotechnol. 2016, 36, 1036-1049. 비특허문헌 22. Kim, W.Y.; Kim, J.M.; Han, S.B.; Lee, S.K.; Kim, N.D.; Park, M.K.; Kim, C.K.; Park, J.H. Steaming of Ginseng at High Temperature Enhances Biological Activity. J. Nat. Prod. 2000, 63, 1702-1704.Non-Patent Document 22. Kim, W.Y.; Kim, J.M.; Han, S.B.; Lee, S.K.; Kim, N.D.; Park, M.K.; Kim, C.K.; Park, J.H. Steaming of Ginseng at High Temperature Enhances Biological Activity. J. Nat. Prod. 2000, 63, 1702-1704. 비특허문헌 23. Bae, E.A.; Han, M.J.; Kim, E.J.; Kim, D.H. Transformation of Ginseng Saponins to Ginsenoside Rh2 by Acids and Human Intestinal Bacteria and Biological Activities of Their Transformants. Arch. Pharm. Res. 2004, 27, 61-67.Non-Patent Document 23. Bae, E.A.; Han, M.J.; Kim, E.J.; Kim, D.H. Transformation of Ginseng Saponins to Ginsenoside Rh2 by Acids and Human Intestinal Bacteria and Biological Activities of Their Transformants. Arch. Pharm. Res. 2004, 27, 61-67. 비특허문헌 24. Zhou, W.; Yan, Q.; Li, J.Y.; Zhang, X.C.; Zhou, P. Biotransformation of Panax Notoginseng Saponins into Ginsenoside Compound K Production by Paecilomyces bainier Sp. 229. J. Appl. Microbiol. 2008, 104, 699-706.Non-Patent Document 24. Zhou, W.; Yan, Q.; Li, J. Y.; Zhang, X.C.; Zhou, P. Biotransformation of Panax Notoginseng Saponins into Ginsenoside Compound K Production by Paecilomyces bainier Sp. 229. J. Appl. Microbiol. 2008, 104, 699-706. 비특허문헌 25. Cui, C.H.; Choi, T.E.; Yu, H.; Jin, F.; Lee, S.T.; Kim, S.C.; Im, W.T. Mucilaginibacter composti Sp. Nov., with Ginsenoside Converting Activity, Isolated from Compost. J. Microbiol. 2011, 49, 393-398.Non-Patent Document 25. Cui, C.H.; Choi, T.E.; Yu, H.; Jin, F.; Lee, S.T.; Kim, S.C.; Im, W.T. Mucilaginibacter composti Sp. Nov., with Ginsenoside Converting Activity, Isolated from Compost. J. Microbiol. 2011, 49, 393-398. 비특허문헌 26. Shin, K.C.; Lee, H.J.; Oh, D.K. Substrate Specificity of Beta-Glucosidase from Gordonia Terrae for Ginsenosides and Its Application in the Production of Ginsenosides Rg(3), Rg(2), and Rh(1) from Ginseng Root Extract. J. Biosci. Bioeng. 2015, 119, 497-504.Non-Patent Document 26. Shin, K.C.; Lee, H.J.; Oh, D.K. Substrate Specificity of Beta-Glucosidase from Gordonia Terrae for Ginsenosides and Its Application in the Production of Ginsenosides Rg(3), Rg(2), and Rh(1) from Ginseng Root Extract. J. Biosci. Bioeng. 2015, 119, 497-504. 비특허문헌 27. Kil, T.G.; Kang, S.H.; Kim, T.H.; Shin, K.C.; Oh, D.K. Enzymatic Biotransformation of Balloon Flower Root Saponins into Bioactive Platycodin D by Deglucosylation with Caldicellulosiruptor Bescii Beta-Glucosidase. Int. J. Mol. Sci. 2019, 20, 3854.Non-Patent Document 27. Kil, T.G.; Kang, S.H.; Kim, T.H.; Shin, K.C.; Oh, D.K. Enzymatic Biotransformation of Balloon Flower Root Saponins into Bioactive Platycodin D by Deglucosylation with Caldicellulosiruptor Bescii Beta-Glucosidase. Int. J. Mol. Sci. 2019, 20, 3854. 비특허문헌 28. Shin, K.C.; Seo, M.J.; Kim, D.W.; Yeom, S.J.; Kim, Y.S. Characterization of Β-Glycosidase from Caldicellulosiruptor Owensensis and Its Application in the Production of Platycodin D from Balloon Flower Leaf. Catalysts 2019, 9, 1025.Non-Patent Document 28. Shin, K.C.; Seo, M.J.; Kim, D.W.; Yeom, S.J.; Kim, Y.S. Characterization of Β-Glycosidase from Caldicellulosiruptor Owensensis and Its Application in the Production of Platycodin D from Balloon Flower Leaf. Catalysts 2019, 9, 1025. 비특허문헌 29. Ahn, H.J.; You, H.J.; Park, M.S.; Johnston, T.V.; Ku, S.; Ji, G.E. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular Beta-Glucosidase Responsible for Rapid Platycodin D Production. Int. J. Mol. Sci. 2018, 19, 2671.Non-Patent Document 29. Ahn, H.J.; You, H.J.; Park, M.S.; Johnston, T.V.; Ku, S.; Ji, G.E. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular Beta-Glucosidase Responsible for Rapid Platycodin D Production. Int. J. Mol. Sci. 2018, 19, 2671. 비특허문헌 30. Li, W.; Zhao, L.C.; Wang, Z.; Zheng, Y.N.; Liang, J.; Wang, H. Response Surface Methodology to Optimize Enzymatic Preparation of Deapio-Platycodin D and Platycodin D from Radix Platycodi. Int. J. Mol. Sci. 2012, 13, 4089-4100.Non-Patent Document 30. Li, W.; Zhao, L.C.; Wang, Z.; Zheng, Y. N.; Liang, J.; Wang, H. Response Surface Methodology to Optimize Enzymatic Preparation of Deapio-Platycodin D and Platycodin D from Radix Platycodi. Int. J. Mol. Sci. 2012, 13, 4089-4100. 비특허문헌 31. Jeong, E.K.; Ha, I.J.; Kim, Y.S.; Na, Y.C. Glycosylated Platycosides: Identification by Enzymatic Hydrolysis and Structural Determination by Lc-Ms/Ms. J. Sep. Sci. 2014, 37, 61-68.Non-Patent Document 31. Jeong, E.K.; Ha, I.J.; Kim, Y.S.; Na, Y.C. Glycosylated Platycosides: Identification by Enzymatic Hydrolysis and Structural Determination by Lc-Ms/Ms. J. Sep. Sci. 2014, 37, 61-68. 비특허문헌 32. Ha, I.J.; Ha, Y.W.; Kang, M.; Lee, J.; Park, D.; Kim, Y.S. Enzymatic Transformation of Platycosides and One-Step Separation of Platycodin D by High-Speed Countercurrent Chromatography. J. Sep. Sci. 2010, 33, 1916-1922.Non-Patent Document 32. Ha, I.J.; Ha, Y.W.; Kang, M.; Lee, J.; Park, D.; Kim, Y.S. Enzymatic Transformation of Platycosides and One-Step Separation of Platycodin D by High-Speed Countercurrent Chromatography. J. Sep. Sci. 2010, 33, 1916-1922. 비특허문헌 33. Kang, S.H.; Kim, T.H.; Shin, K.C.; Ko, Y.J.; Oh, D.K. Biotransformation of Food-Derived Saponins, Platycosides, into Deglucosylated Saponins Including Deglucosylated Platycodin D and Their Anti-Inflammatory Activities. J. Agric. Food. Chem. 2019, 67, 1470-1477.Non-Patent Document 33. Kang, S.H.; Kim, T.H.; Shin, K.C.; Ko, Y.J.; Oh, D.K. Biotransformation of Food-Derived Saponins, Platycosides, into Deglucosylated Saponins Including Deglucosylated Platycodin D and Their Anti-Inflammatory Activities. J. Agric. Food. Chem. 2019, 67, 1470-1477. 비특허문헌 34. Wie, H.J.; Zhao, H.L.; Chang, J.H.; Kim, Y.S.; Hwang, I.K.; Ji, G.E. Enzymatic Modification of Saponins from Platycodon grandiflorum with Aspergillus Niger. J. Agric. Food Chem. 2007, 55, 8908-8913.Non-Patent Document 34. Wie, H.J.; Zhao, H.L.; Chang, J.H.; Kim, Y.S.; Hwang, I.K.; Ji, G.E. Enzymatic Modification of Saponins from Platycodon grandiflorum with Aspergillus Niger. J. Agric. Food Chem. 2007, 55, 8908-8913. 비특허문헌 35. Lim, H.; Yeo, E.; Song, E.; Chang, Y.H.; Han, B.K.; Choi, H.J.; Hwang, J. Bioconversion of Citrus Unshiu Peel Extracts with Cytolase Suppresses Adipogenic Activity in 3t3-L1 Cells. Nutr. Res. Pract. 2015, 9, 599-605.Non-Patent Document 35. Lim, H.; Yeo, E.; Song, E.; Chang, Y.H.; Han, B.K.; Choi, H.J.; Hwang, J. Bioconversion of Citrus Unshiu Peel Extracts with Cytolase Suppresses Adipogenic Activity in 3t3-L1 Cells. Nutr. Res. Pract. 2015, 9, 599-605. 비특허문헌 36. Kim, E.H.; Lim, S.; Kim, S.O.; Ahn, S.H.; Choi, Y.J. Optimization of Enzymatic Treatment for Compound K Production from White Ginseng Extract by Response Surface Methodology. Biosci. Biotechnol. Biochem. 2013, 77, 1138-1140.Non-Patent Document 36. Kim, E.H.; Lim, S.; Kim, S.O.; Ahn, S.H.; Choi, Y.J. Optimization of Enzymatic Treatment for Compound K Production from White Ginseng Extract by Response Surface Methodology. Biosci. Biotechnol. Biochem. 2013, 77, 1138-1140. 비특허문헌 37. Choi, H.S.; Kim, S.Y.; Park, Y.; Jung, E.Y.; Suh, H.J. Enzymatic Transformation of Ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) Extract Prepared by Spezyme and Optidex. J. Ginseng Res. 2014, 38, 264-269.Non-Patent Document 37. Choi, H.S.; Kim, S.Y.; Park, Y.; Jung, E.Y.; Suh, H.J. Enzymatic Transformation of Ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) Extract Prepared by Spezyme and Optidex. J. Ginseng Res. 2014, 38, 264-269. 비특허문헌 38. Kim, H.W.; Han, S.H.; Lee, S.W.; Choi, H.S.; Suh, H.J.; Hong, K.B. Enzymatic Hydrolysis Increases Ginsenoside Content in Korean Red Ginseng (Panax ginseng Ca Meyer) and Its Biotransformation under Hydrostatic Pressure. J. Sci. Food Agric. 2019, 99, 6806-6813.Non-Patent Document 38. Kim, H.W.; Han, S.H.; Lee, S.W.; Choi, H.S.; Suh, H.J.; Hong, K.B. Enzymatic Hydrolysis Increases Ginsenoside Content in Korean Red Ginseng (Panax ginseng Ca Meyer) and Its Biotransformation under Hydrostatic Pressure. J. Sci. Food Agric. 2019, 99, 6806-6813. 비특허문헌 39. Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. Non-Patent Document 39. Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. 비특허문헌 40. Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 2019, 67, 11553-11567.Non-Patent Document 40. Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 2019, 67, 11553-11567. 비특허문헌 41. Basso, A.;Serban, S. Overview of Immobilized Enzymes'Applications in Pharmaceutical, Chemical, and Food Industry. Methods Mol. Biol. 2020, 2100, 27-63.Non-Patent Document 41. Basso, A.; Serban, S. Overview of Immobilized Enzymes' Applications in Pharmaceutical, Chemical, and Food Industry. Methods Mol. Biol. 2020, 2100, 27-63. 비특허문헌 42. Ricardi, N.C.; de Menezes, E.W. Valmir Benvenutti, E. da Natividade Schoffer, J.; Hackenhaar, C.R.; Hertz, P.F.; Costa, T.M.H. Highly Stable Novel Silica/Chitosan Support for Beta-Galactosidase Immobilization for Application in Dairy Technology. Food Chem. 2018, 246, 343-350.Non-Patent Document 42. Ricardi, N.C.; de Menezes, E.W. Valmir Benvenutti, E. da Natividade Schoffer, J.; Hackenhaar, C. R.; Hertz, P.F.; Costa, T.M.H. Highly Stable Novel Silica/Chitosan Support for Beta-Galactosidase Immobilization for Application in Dairy Technology. Food Chem. 2018, 246, 343-350.

본 발명은 위와 같은 상황을 고려하여 안출된 것으로, 본 발명에서 해결하고자 하는 과제는 탈아피오실화 또는 탈자일로실화 등을 통해 새로운 타입의 플라티코사이드를 제공하는 것이다.The present invention has been devised in consideration of the above situation, and the problem to be solved in the present invention is to provide a new type of platicoside through deapiosylation or dexylosylation.

또한, 본 발명에서 해결하고자 하는 과제는 플라티코딘의 탈글라이코실화에 기여할 수 있는 새로운 효소를 제공하는 것이다. In addition, the problem to be solved in the present invention is to provide a new enzyme that can contribute to the deglycosylation of platicodin.

위와 같은 과제를 해결하기 위한 본 발명에 따른 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법은 플라티코사이드(platycoside)로부터 Cytolase PCL5를 처리하여 반응시킴으로써 탈아피오실-자일로실화 플라티코사이드(deapiose-xylosylated platycoside)를 제조하는 것을 기술적 특징으로 한다.The method for producing rare saponins using bellflower-derived saponins according to the present invention for solving the above problems is deapiosyl-xylosylated platicoside by treating and reacting Cytolase PCL5 from platicoside. It is characterized by a technical feature to prepare xylosylated platycoside).

위와 같은 과제를 해결하기 위한 본 발명의 상기 플라티코사이드는, 플라티코사이드E(platycoside E) 또는 폴리갈락신D3(polygalacin D3)이고, 상기 탈아피오실-자일로실화 플라티코사이드는, 탈아피오스-자일로실화 플라티코딘D(deapiose-xylosylated platycodin D) 또는 탈아피오스-자일로실화 폴리갈락신D(deapiose-xylosylated polygalacin D)인 것을 기술적 특징으로 한다.The platicoside of the present invention for solving the above problems is platicoside E or polygalacin D3, and the deapiosyl-xylosylated platicoside is It is technically characterized in that it is deapiose-xylosylated platycodin D (deapiose-xylosylated platycodin D) or deapiose-xylosylated polygalacin D (deapiose-xylosylated polygalacin D).

위와 같은 과제를 해결하기 위한 본 발명의 상기 탈아피오스-자일로실화 플라티코딘D는 다음 경로를 통해 제조되는 것을 기술적 특징으로 한다; 플라티코사이드E → 플라티코딘D3 → 플라티코딘D → 탈아피오실화 플라티코딘D → 탈아피오스-자일로실화 플라티코딘D.The deapiose-xylosylated platicodin D of the present invention for solving the above problems is a technical feature that is prepared through the following route; Platicoside E → Platicodin D3 → Platicodin D → Deapiosylated Platicodin D → Deapios-xylated Platicodin D.

위와 같은 과제를 해결하기 위한 본 발명의 상기 탈아피오스-자일로실화 폴리갈락신D는 다음 경로를 통해 제조되는 것을 기술적 특징으로 한다; 폴리갈락신D3 → 폴리갈락신D → 탈아피오실화 폴리갈락신D → 탈아피오스-자일로실화 폴리갈락신D.The deapiose-xylosylated polygalaxin D of the present invention for solving the above problems is characterized in that it is produced through the following route; Polygalaxine D3 → Polygalaxine D → Deapiosylated polygalaxine D → Deapiose-xylosylated polygalaxine D.

위와 같은 과제를 해결하기 위한 본 발명의 상기 반응조건은 pH 4.5 내지 5.5 및 온도 45 내지 55℃인 것을 기술적 특징으로 한다.The reaction conditions of the present invention for solving the above problems are characterized by a pH of 4.5 to 5.5 and a temperature of 45 to 55 ℃.

위와 같은 과제를 해결하기 위한 본 발명의 상기 플라티코사이드는 도라지(Platycodon grandiflorum)의 뿌리로부터 추출되는 것을 기술적 특징으로 한다.The platicoside of the present invention for solving the above problems is a technical feature that is extracted from the root of bellflower ( Platycodon grandiflorum ).

본 발명에 따른 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법은 탈글라이코실화(deglycosylated) 사포닌이 글라이코실화(glycosylated) 사포닌보다 더 높은 생물학적 활성을 나타냄을 확인하였다. In the method for preparing rare saponins using bellflower-derived saponins according to the present invention, it was confirmed that deglycosylated saponins exhibit higher biological activity than glycosylated saponins.

또한, 본 발명에 따른 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법은 Cytolase PCL5가 추가 가수분해 없이 플라티코사이드 기질을 최종 생성기질로 완전히 전환시켰으며, 이는 상기 효소가 탈아피오스-자일로실화 플라티코딘D 및 탈아피오스-자일로실화 폴리갈락신D 생성에 효과적임을 의미한다.In addition, in the method for producing rare saponins using bellflower-derived saponins according to the present invention, Cytolase PCL5 completely converted the platicoside substrate into the final product substrate without further hydrolysis, and this enzyme is deapiose-xylosylated. It means that it is effective in the production of platicodin D and deapiose-xylosylated polygalaxin D.

도 1은 Platycodon grandiflorum의 뿌리에서 발견되는 플라티코디제닌®-타입(platycodigenin®-type) 플라티코사이드 및 폴리갈락산-타입(polygalacic acid-type) 플라티코사이드의 화학 구조. 플라티코사이드는 C-3 및 C-28 위치에 글라이코사이드를 포함한다. C-3의 글라이코사이드는 Glc, Glc-Glc 및 Glc-Glc-Glc이다. C-28의 글라이코사이드는 Arap-Rha-Xyl 및 Arap-Rha-Xyl-Api이다. Glc, β-D-글루코파이라노실(glucopyranosyl)-; Arap, α-L-아라비노파이라노실(arabinopyranosyl)-; Rha, α-L-람노파이라노실(rhamnopyranosyl)-; Xyl, β-D-자일로파이라노실(xylopyranosyl)-; 및 Api, β-D-아피오퓨라노실(apiofuranosyl)-
도 2는 Cytolase PCL5에 의한 (a) 플라티코사이드E 및 (b) 폴리갈락신D3의 촉매 후 수득된 미지의 생성물을 보여주는 HPLC 프로파일. 분석에 사용된 표준으로는 플라티코사이드E, 플라티코딘D3, 플라티코딘D, 탈아피오실화 플라티코딘D, 폴리갈락신D3 및 폴리갈락신D(1, 2, 3, 4, 5 및 6으로 표시)가 포함되었다. 빨간색 1', 2' 및 3'은 각각 플라티코사이드E와 폴리갈락신D3에서 알려지지 않은 생성물을 나타낸다.
도 3은 플라티코사이드E에 대한 Cytolase PCL5의 활성에 대한 온도 및 pH의 영향. (a) pH의 영향. 반응은 50mM citrate/phosphate 버퍼(pH 4.0-7.0)에서 0.4mM 플라티코사이드E로 10분 동안 수행되었다. (b) 온도의 영향. 반응은 40-65℃에서 50mM citrate/phosphate 버퍼(pH 5.0)에서 0.4mM 플라티코사이드E로 10분 동안 수행되었다. 데이터는 3회 실험의 평균으로 표시되며 오차 막대는 표준 편차를 나타낸다.
도 4는 플라티코딘D3, 플라티코딘D 및 탈아피오실화 플라티코딘D를 통한 플라티코사이드E의 탈아피오스-자일로실화 플라티코딘D로의 생체변환(bioconversion)
도 5는 Cytolase PCL5에 의한 플라티코제닌-타입 및 폴리갈락산-타입 플라티코사이드의 생체변환(biotransformation). (a) 플라티코사이드E(닫힌 원)를 플라티코딘D3(닫힌 삼각형), 플라티코딘D(닫힌 사각형) 및 탈아피오실화 플라티코딘D(열린 삼각형)를 통해 탈아피오스-자일로실화 플라티코딘D (개방형 다이아몬드)로 생체변환. (b) 폴리갈락신D(폐쇄된 다이아몬드) 및 탈아피오실화 폴리갈락신D(개방형 삼각형)를 통해 폴리갈락신D3(폐쇄 된 삼각형)을 탈아피오스-자일로실화 폴리갈락신D(개방형 사각형)로 생체변환. 데이터는 3회 실험의 평균으로 표시되며 오차 막대는 표준 편차를 나타낸다.
도 6은 Deapi-dexyl-platycodin D (1′)의 LCMS/HRMS 분석
도 7은 deapi-patycodin D (2′) 의 LCMS/HRMS 분석
도 8은 Deapi-dexyl-platycodin D (3′) 의 LCMS/HRMS 분석
1 is ® platinum coordination Janine found in the roots of Platycodon grandiflorum - type (platycodigenin ® -type) Atlantico Playa side and go to Leshan poly-type (polygalacic acid-type) of the chemical structure Plata Tico side. Platicosides contain glycosides at positions C-3 and C-28. The glycosides of C-3 are Glc, Glc-Glc and Glc-Glc-Glc. The glycosides of C-28 are Arap-Rha-Xyl and Arap-Rha-Xyl-Api. Glc, β-D-glucopyranosyl-; Arap, α-L-arabinopyranosyl-; Rha, α-L-rhamnopyranosyl-; Xyl, β-D-xylopyranosyl-; And Api, β-D-apiofuranosyl-
Figure 2 is an HPLC profile showing an unknown product obtained after the catalyst of (a) Platicoside E and (b) polygalaxin D3 by Cytolase PCL5. Standards used in the assay include Platicoside E, Platicodin D3, Platicodin D, Deapiosylated Platicodin D, Polygalaxin D3 and Polygalaxin D (1, 2, 3, 4, 5 and 6) was included. Red 1', 2', and 3'represent unknown products in Platicoside E and Polygalaxin D3, respectively.
Figure 3 is the effect of temperature and pH on the activity of Cytolase PCL5 on Platicoside E. (a) Effect of pH. The reaction was carried out for 10 minutes with 0.4mM Platicoside E in 50mM citrate/phosphate buffer (pH 4.0-7.0). (b) The effect of temperature. The reaction was carried out at 40-65° C. in 50 mM citrate/phosphate buffer (pH 5.0) with 0.4 mM Platicoside E for 10 minutes. Data are expressed as the mean of 3 experiments and error bars represent standard deviation.
FIG. 4 is a bioconversion of platicoside E to deapios-xylated platicodin D via platicodin D3, platicodin D and deapiosylated platicodin D. FIG.
Figure 5 is a biotransformation of platicogenin-type and polygalaxane-type platicoside by Cytolase PCL5. (a) Platicoside E (closed circle) is deapiosylated via platicodin D3 (closed triangle), platicodine D (closed square) and deapiosylated platicodine D (open triangle). Biotransformation to Platicodin D (open diamond). (b) Polygalaxin D3 (closed triangle) through polygalaxin D (closed diamond) and deapiosylated polygalaxin D (open triangle), deapios-xyloxylated polygalaxin D (open square) ) To biotransformation. Data are presented as the mean of 3 experiments and error bars represent standard deviation.
6 is an LCMS/HRMS analysis of Deapi-dexyl-platycodin D (1′)
7 is an LCMS/HRMS analysis of deapi-patycodin D (2′)
8 is an LCMS/HRMS analysis of Deapi-dexyl-platycodin D (3′)

본 명세서 및 청구범위에 사용된 용어나 단어는 "발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙"에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야지, 통상적이거나 사전적인 의미로 한정해서 해석되서는 안 된다.Terms and words used in the specification and claims conform to the technical idea of the present invention based on the principle that "the inventor can appropriately define the concept of terms in order to describe his or her own invention in the best way." It should be construed as a meaning and concept, but not limited to a conventional or dictionary meaning.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해해야 한다.Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all the technical ideas of the present invention, and thus various equivalents that can replace them at the time of application It should be understood that there may be water and variations.

이하에서 진행되는 실험들은 아래의 각 실험방법에 따라 수행하였다.The experiments to be carried out below were performed according to each of the following experimental methods.

실험방법 1. 재료 준비Experimental method 1. Material preparation

Cytolase PCL5는 DSM Food Specialties(Heerlen, Netherlands)에서 구입했다. 플라티코사이드 표준 물질(플라티코사이드E, 플라티코딘D3, 플라티코딘D, 탈아피오실화 플라티코딘D, 및 폴리갈락신D3(폴리갈락신 D3))은 Ambo Laboratories(Daejeon, Republic of Korea)에서 구입하였다. 폴리갈락신D는 한국 음성의 국립원예특작과학원(National Institute of Horticultural and Herbal Science) 이대영 박사로부터 제공받았다. Cytolase PCL5에 의해 촉매 작용을 수행한 반응물로부터 탈아피오스-자일로실화 플라티코딘D, 탈아피오실화 폴리갈락신D, 및 탈아피오스-자일로실화 폴리갈락신D를 정제하였다. 플라티코사이드는 Hydrosphere C18 prep 컬럼 (10 × 250 mm, 5μm particle size; YMC, Kyoto, Japan)을 사용하여 분취용 고성능액체크로마토그래피(Prep-HPLC) (Agilent 1260; Agilent, Santa Clara, USA, CA)에 의해 준비되었다. 컬럼을 30℃에서 유속 4.7mL/min의 물로 용리시키고, 203nm에서 흡광도를 측정함으로써 생성물을 검출하였다. 이렇게 준비된 플라티코사이드를 정량 및 정성 분석을 위한 표준으로 사용하였다.Cytolase PCL5 was purchased from DSM Food Specialties (Heerlen, Netherlands). Platicoside standard substances (platicoside E, platicodin D3, platicodin D, deapiosylated platicodin D, and polygalaxin D3 (polygalaxin D3)) are from Ambo Laboratories (Daejeon, Republic of Korea). ). Polygalaxin D was provided by Dr. Dae-Young Lee of the National Institute of Horticultural and Herbal Science in Eumseong, Korea. From the reaction product catalyzed by Cytolase PCL5, deapios-xylosylated platicodin D, deapiosylated polygalaxin D, and deapios-xylosylated polygalaxin D were purified. Platicoside was prepared by using a Hydrosphere C18 prep column (10 × 250 mm, 5 μm particle size; YMC, Kyoto, Japan) for preparative high performance liquid chromatography (Prep-HPLC) (Agilent 1260; Agilent, Santa Clara, USA, CA). Prepared by). The product was detected by eluting the column with water at a flow rate of 4.7 mL/min at 30° C. and measuring the absorbance at 203 nm. The thus prepared platicoside was used as a standard for quantitative and qualitative analysis.

실험방법 2. 가수 분해 활성 분석Experimental method 2. Analysis of hydrolysis activity

달리 언급되지 않는 한, 반응은 0.05 mg/mL Cytolase PCL5 및 0.2 mg/mL 플라티코사이드를 함유하는 50mM citrate/phosphate 버퍼(pH 5.0)에서 50℃에서 10분 동안 수행되었다. 플라티코사이드E, 플라티코딘D3, 플라티코딘D, 탈아피오실화 플라티코딘D, 탈아피오스-자일로실화 플라티코딘D, 폴리갈락신D3, 폴리갈락신D, 탈아피오실화 폴리갈락신D 및 탈아피오스-자일로실화 폴리갈락신D에 대한 Cytolase PCL5의 특이적 활성은 다양한 효소의 농도(0.005-0.5 mg/mL) 및 0.4 mg/mL의 각 플라티코사이드에서 50℃ 및 pH 5.0의 조건에서 10분 동안 평가되었다. Cytolase PCL5의 활성에 대한 pH와 온도의 영향은 각각 50℃에서 pH를 4.0 내지 7.5로 변화시키고, pH 5.0에서 온도를 40 내지 65℃로 변화시키면서 확인하였다.Unless otherwise stated, reactions were carried out at 50° C. for 10 minutes in 50 mM citrate/phosphate buffer (pH 5.0) containing 0.05 mg/mL Cytolase PCL5 and 0.2 mg/mL platicoside. Platicoside E, Platicodin D3, Platicodin D, Deapiosylated Platicodin D, Deapios-xylated Platicodin D, Polygalaxin D3, Polygalaxin D, Deapiosylated Polygal The specific activity of Cytolase PCL5 against Laxin D and deapios-xylosylated polygalaxin D was at 50° C. and pH at various concentrations of enzymes (0.005-0.5 mg/mL) and 0.4 mg/mL of each platicoside. It was evaluated for 10 minutes under the condition of 5.0. The effect of pH and temperature on the activity of Cytolase PCL5 was confirmed by changing the pH to 4.0 to 7.5 at 50°C and changing the temperature to 40 to 65°C at pH 5.0, respectively.

실험방법 3 생체변환(biotransformation)Experimental method 3 biotransformation

플라티코사이드E에서 탈아피오스-자일로실화 플라티코딘D로의 생체변환 및 폴리갈락신D3에서 탈아피오스-자일로실화 폴리갈락신D로의 생체변환은 0.5 mg/mL Cytolase PCL5와 1 mg/mL의 플라티코사이드E 및 폴리갈락신D3를 각각 포함하는 50 mM citrate/phosphate 버퍼(pH 5.0), 50℃ 조건에서 15 및 18시간 동안 수행되었다.The biotransformation from platicoside E to deapiose-xylosylated platicodin D and polygalaxin D3 to deapiose-xylosylated polygalaxin D was 0.5 mg/mL Cytolase PCL5 and 1 mg/ mL of a 50 mM citrate/phosphate buffer (pH 5.0) containing Platicoside E and Polygalaxine D3, respectively, was carried out at 50° C. for 15 and 18 hours.

실험방법 4. HPLC 분석Experimental method 4. HPLC analysis

동일한 양의 n-부탄올을 반응 혼합물에 첨가하여 반응을 중지시키고 플라티코사이드를 추출하였다. 이는 반응물을 수용성 및 n-부탄올 가용성 분획으로 분리시켰다. 추출물의 n-부탄올 가용성 분획을 건조시켜 부탄올을 완전히 증발시켰다. 이어서, 플라티코사이드를 함유하는 건조된 잔류물을 메탄올에 용해시키고, hydrosphere C18 컬럼(4.6×150 mm, 5μm particle size; YMC, Kyoto, Japan)과 함께 203nm의 파장에서 HPLC 시스템 (Agilent 1100)을 사용하여 분석하였다. 상기 컬럼은 30℃의 온도에서 용매 A(아세토니트릴(acetonitrile)) 및 용매B(물)에 의하여 용출되었고, 비율 및 용출 시간은 10:90 내지 40:60의 비율로 30분, 40:60 내지 90:10의 비율로 15분, 90:10 내지 10:90의 비율로 5분, 그리고 10:90의 일정한 비율로 10 min분이며, 유속은 1 mL/min이었다. 피크 영역의 로그값(logarithmic value)과 플라티코사이드의 농도에 대한 선형검정곡선은 표준 플라티코사이드 용액(0.2 내지 1.0 mM)을 사용하여 구축되었으며, 상기 곡선은 플라티코사이드의 농도를 결정하기 위해 사용되었다.The same amount of n-butanol was added to the reaction mixture to stop the reaction and the platicoside was extracted. This separated the reaction into an aqueous and n-butanol soluble fraction. The n-butanol soluble fraction of the extract was dried to completely evaporate butanol. Subsequently, the dried residue containing platicoside was dissolved in methanol, and an HPLC system (Agilent 1100) was performed at a wavelength of 203 nm with a hydrosphere C18 column (4.6×150 mm, 5 μm particle size; YMC, Kyoto, Japan). Analyzed using. The column was eluted with solvent A (acetonitrile) and solvent B (water) at a temperature of 30° C., and the ratio and elution time were 10:90 to 40:60 for 30 minutes, 40:60 to 15 minutes at a ratio of 90:10, 5 minutes at a ratio of 90:10 to 10:90, and 10 min at a constant ratio of 10:90, and the flow rate was 1 mL/min. A linear calibration curve for the logarithmic value of the peak area and the concentration of platicoside was constructed using a standard platicoside solution (0.2 to 1.0 mM), and the curve was used to determine the concentration of platicoside. Was used.

실험방법 5. 플라티코사이드의 액체 크로마토그래피-질량분석Experimental Method 5. Platicoside liquid chromatography-mass spectrometry

플라티코사이드는 Waters SYNAPT G2-Si HDMS 기기(Waters Co. Taunton, MD, USA)를 사용하여 추가로 분석되었다. 상기 시스템은 사중극자의 질량분석기(quadrupole time-of-flight mass spectrometer)에 연결된 Waters Acquity UPLC 시스템으로 구성된다. 40℃로 설정된 Waters Acquity BEH C18 컬럼(100 mm × 2.1 mm, 1.7 mm)을 사용하여 샘플을 용리시켰다. 사용된 모든 용매는 LC-MS 등급이었으며 초순도 18.2 MΩ의 물이 각 단계에서 사용되었다. 이동상 A는 물+0.1% 포름산(formic acid)으로 구성되는 반면 이동상 B는 아세토니트릴+0.1 % 포름산이었다. 구배 용리는 100% A(0.00 분), 95% A + 5% B(0.00-1.00 분), 5% A + 95% B(1.00-9.00 분), 100% B(9.00-10.50 분), 100% A(10.50-11.00 분), 100% A(11.00-12.50 분)이었고, 유속은 0.4ml/min이며, 주입 부피는 양성 모드의 경우 3μL이고 음극 모드의 경우 2μL이었다.Platicoside was further analyzed using Waters SYNAPT G2-Si HDMS instrument (Waters Co. Taunton, MD, USA). The system consists of a Waters Acquity UPLC system connected to a quadrupole time-of-flight mass spectrometer. Samples were eluted using a Waters Acquity BEH C18 column (100 mm×2.1 mm, 1.7 mm) set at 40°C. All solvents used were of LC-MS grade and ultrapure 18.2 MΩ water was used in each step. Mobile phase A consisted of water+0.1% formic acid, whereas mobile phase B was acetonitrile+0.1% formic acid. Gradient elution is 100% A (0.00 min), 95% A + 5% B (0.00-1.00 min), 5% A + 95% B (1.00-9.00 min), 100% B (9.00-10.50 min), 100 % A (10.50-11.00 min), 100% A (11.00-12.50 min), the flow rate was 0.4 ml/min, and the injection volume was 3 μL for positive mode and 2 μL for cathode mode.

MSE(Mass Spectrometry Elevated Energy) 중심 실험을 이용하는 전자분무이온화(electrospray ionization)를 통해 질량분석을 수행하였고, 상기 MSE는 양성 및 음성 모드에서 모두 수행되었으며, 분석기를 FWHM(Full With at Half Maximum)에서 분해능 모드로 설정한 상태에서 50-1500 Da의 m/z 스캔범위를 스크리닝했다. 0.5 초마다 스캐닝을 수행 하였다. 충돌 에너지는 두 가지 기능으로 설정되었다: 충돌 에너지가 적용되지 않은 저에너지 기능 하나, 전압 2.00 kV, 샘플링 콘(sampling cone) 10 V, 소스 온도(source temperature) 100℃, 탈용매 온도 400(desolvation temperature)℃ 및 탈용매 가스 유속(desolvation gas) 700 L/h가 적용되는 고에너지 기능 둘. 요오드화나트륨 교정 용액(sodium iodide calibrant solution)의 직접 주입에 의한 샘플 분석에 앞서 정확한 질량을 초기에 교정하였다. 또한, leucine encephalin lock mass solution(2 ng/μL)을 이동상의 유속과 평행하게 5μl/min으로 주입하고, 정확한 질량을 확인하기 위해 스캔하고 자동으로 수정하였으며, 이에 제출된 시퀀스 과정에서의 스캔범위를 통해 전체 질량 정확도(<5 ppm)를 보장한다. Masslynx v.41 소프트웨어를 사용하여 기기를 제어하고 데이터 분석을 수행하였다.Mass spectrometry was performed through electrospray ionization using MSE (Mass Spectrometry Elevated Energy) centered experiments, and the MSE was performed in both positive and negative modes, and the analyzer was performed at full with at half maximum (FWHM) resolution. The m/z scan range of 50-1500 Da was screened with the mode set. Scanning was performed every 0.5 sec. The collision energy was set with two functions: one low energy function with no collision energy applied, voltage 2.00 kV, sampling cone 10 V, source temperature 100°C, desolvation temperature 400. Both high-energy functions with ℃ and 700 L/h of desolvation gas applied. Prior to sample analysis by direct injection of sodium iodide calibrant solution, the correct mass was initially calibrated. In addition, leucine encephalin lock mass solution (2 ng/μL) was injected at 5 μl/min parallel to the flow rate of the mobile phase, and scanned and automatically corrected to check the exact mass, and the scan range in the submitted sequence This ensures full mass accuracy (<5 ppm). The instrument was controlled and data analysis was performed using Masslynx v.41 software.

상기의 실험방법들을 토대로 이하의 각 실험예를 수행하였고, 그 결과를 설명한다.Each of the following experimental examples was performed based on the above experimental methods, and the results will be described.

실험예 1. 플라티코사이드E와 폴리갈락신D3에 대한 Cytolase PCL5의 작용에 의해 얻어진 생성물의 확인Experimental Example 1. Identification of the product obtained by the action of Cytolase PCL5 on Platicoside E and Polygalaxin D3

Figure 112020068178297-pat00001
Figure 112020068178297-pat00001

Cytolase PCL5는 플라티코사이드E와 폴리갈락신D3의 생물 전환을 촉진하기 위해 본 발명에서 사용되었다. reversed-phase hydrosphere C18 column 및 플라티코사이드E, 플라티코딘D3, 플라티코딘D, 탈아피오실화 플라티코딘D, 폴리갈락신D3, 및 폴리갈락신D와 같은 레퍼런스 표준을 이용하는 HPLC로 생성물을 분석하였다(도 2 참조). 본 발명의 결과는 그 효소가 플라티코사이드E를 탈아피오실화 플라티코딘(26.3 분)과 동일한 체류 시간을 갖는 생성물로 전환시키는 반면, 다른 생성물의 체류 시간은 25.7 분인 것으로 나타났다. 폴리갈락신D3는 표준과 일치하지 않는 체류 시간(2', 27.0분 및 3', 26.7분)을 갖는 2개의 알려지지 않은 생성물로 촉매화되었다.Cytolase PCL5 was used in the present invention to promote biotransformation of platicoside E and polygalaxin D3. The product was prepared by HPLC using a reversed-phase hydrosphere C18 column and reference standards such as Platicoside E, Platicodin D3, Platicodin D, Deapiosylated Platicodin D, Polygalaxin D3, and Polygalaxin D. It was analyzed (see Fig. 2). The results of the present invention show that the enzyme converts Platicoside E to a product having the same retention time as the deapiosylated platicodine (26.3 min), while the retention time of the other product is 25.7 min. Polygalaxine D3 was catalyzed with two unknown products with retention times (2', 27.0 min and 3', 26.7 min) that did not match the standard.

세 가지 미지의 생성물은 LC/TOF-MS를 양성 및 음성 모드로 사용하여 특성화되었다. 이의 이론적 질량, 분자식 및 관찰된 질량이 표 1에 요약되어 있다. 세 가지 알려지지 않은 생성물의 총 이온 크로마토그램(The total ion chromatogram, TIC)이 그림 S1-S3에 나와 있다. ESI+의 화합물 1'에 대해, [M+H]+ pseudomolecular ions는 m/z 961.4966에 제시되었으며, 이는 C47H76O20의 분자식에 해당한다. ESI-에서, [M+HCOO]- 부가물은 화합물 2 '및 3'에서 검출되었다. 고분해능으로 인해 화합물 식별은 각 분자의 정확한 질량을 기준으로 하였다. 이론적인 값으로 실험 질량 데이터의 질량 정확도는 5 ppm 미만이었다. HRMS(High-Resolution Mass Spectrometry) 데이터에 따르면, 세 개의 알려지지 않은 생성물은 각각 탈아피오실화 플라티코딘D(1'), 탈아피오실화 폴리갈락신(3') 및 탈아피오실화 플라티코딘D(2')인 것으로 결정되었다.Three unknown products were characterized using LC/TOF-MS in positive and negative modes. Its theoretical mass, molecular formula and observed mass are summarized in Table 1. The total ion chromatogram (TIC) of the three unknown products is shown in Figures S1-S3. For compound 1'of ESI+, [M+H] + pseudomolecular ions are presented in m/z 961.4966, which corresponds to the molecular formula of C 47 H 76 O 20 . In ESI-, [M + HCOO] - adduct was detected in the compounds 2 'and 3'. Due to the high resolution, compound identification was based on the exact mass of each molecule. As a theoretical value, the mass accuracy of the experimental mass data was less than 5 ppm. According to HRMS (High-Resolution Mass Spectrometry) data, the three unknown products were deapiosylated platicodine D (1'), deapiosylated polygalaxine (3') and deapiosylated platicodine D ( 2').

실험예 2. Cytolase PCL5의 가수 분해 활성에 대한 pH 및 온도의 영향Experimental Example 2. Effect of pH and temperature on the hydrolytic activity of Cytolase PCL5

Cytolase PCL5 활성에 대한 최적 조건은 광범위한 pH (2.5-5.0) 및 온도 (10-55℃)에서 보고되었다[비특허문헌 37]. 본 발명에서 플라티코사이드E를 기질로 사용하여 pH 4.0-7.0에 걸쳐 40-65℃에서 Cytolase PCL5의 가수 분해 활성을 분석했다. pH 5.0에서 최대 활성을 관찰했다(도 3a). pH 4.0에서의 효소 활성은 최대 활성의 25% 미만이었고, 이는 플라티코사이드E가 기질로서 사용될 때 pH 변화에 민감함을 나타낸다. 다음으로, 효소 활성에 대한 온도의 영향을 조사한 결과, 50℃에서 최대 활성이 나타났다(도 3b 참조).Optimal conditions for Cytolase PCL5 activity have been reported in a wide range of pH (2.5-5.0) and temperature (10-55°C) [Non-Patent Document 37]. In the present invention, using Platicoside E as a substrate, the hydrolytic activity of Cytolase PCL5 was analyzed at 40-65°C over pH 4.0-7.0. Maximum activity was observed at pH 5.0 (Fig. 3A). The enzyme activity at pH 4.0 was less than 25% of the maximum activity, indicating that Platicoside E was sensitive to pH changes when used as a substrate. Next, as a result of examining the effect of temperature on the enzyme activity, the maximum activity was observed at 50°C (see FIG. 3B).

또한 플라바논 루티노사이드(flavanone rutinoside)[비특허문헌 35](pH 4.0 및 60℃), 백삼 추출물[비특허문헌 36](pH 4.3 및 55℃) 및 홍삼 분말[비특허문헌 38] (pH 5.0 및 45℃)에 대한 Cytolase PCL5의 최적 pH 및 온도)는 글라이코사이드(glycosides)와 상관없이 기질과 유사하였다.In addition, flavanone rutinoside [Non-Patent Document 35] (pH 4.0 and 60°C), white ginseng extract [Non-Patent Document 36] (pH 4.3 and 55°C) and red ginseng powder [Non-Patent Document 38] (pH 5.0 and 45[deg.] C.), the optimum pH and temperature of Cytolase PCL5) was similar to the substrate regardless of glycosides.

실시예 3. 플라티코사이드에 대한 Cytolase PCL5의 기질 특이성Example 3. Substrate specificity of Cytolase PCL5 for platicoside

Figure 112020068178297-pat00002
Figure 112020068178297-pat00002

Cytolase PCL5의 기질 특이성은 기질로서 플라티코디제닌(platycodigenin)-타입 및 폴리갈락산-타입 플라티코사이드를 사용하여 조사하였다(표 2 참조). 효소의 특이적 활성은 다음 순서로 관찰되었다: 플라티코사이드E > 플라티코딘D3 > 플라티코딘D > 탈아피오실화 플라티코딘D, 및 폴리갈락신D3 > 폴리갈락신D > 탈아피오실화 폴리갈락신D. 이들 결과는 Cytolase PCL5가 C-28에서의 글라이코사이드보다 외부 글루코오스 부분(C-3)에서 효율적으로 작용하고, C-28에서의 자일로스보다 C-28에서의 아피오스에서 효율적으로 작용하는 것을 나타낸다. C-3의 포도당 및 C-28의 아피오스의 가수 분해는 플라티코디제닌-타입 플라티코사이드보다 폴리갈락산-타입에서 3.1-1.3배 더 높았다. 이와 대조적으로, C-28의 자일로스의 가수 분해는 폴리갈락산-타입 보다 플라티코디제닌-타입에서 1.2 배 더 높았다.The substrate specificity of Cytolase PCL5 was investigated using platycodigenin-type and polygalaxane-type platicoside as substrates (see Table 2). The specific activity of the enzyme was observed in the following order: Platicoside E> Platicodin D3> Platicodin D> Deapiosylated Platicodin D, and Polygalaxin D3> Polygalaxin D> Deapiosylated Poly Galaxin D. These results show that Cytolase PCL5 acts more efficiently in the external glucose moiety (C-3) than glycosides in C-28, and acts more efficiently in apiose in C-28 than in xylose in C-28. Show. The hydrolysis of glucose of C-3 and apiose of C-28 was 3.1-1.3 times higher in polygalaxane-type than platicodigenin-type platicoside. In contrast, the hydrolysis of xylose of C-28 was 1.2 times higher in the platicodigenin-type than in the polygalaxane-type.

기질 특이성 결과에 기초하여, Cytolase PCL5에 의한 플라티코사이드E의 생체변환경로는 다음과 같이 결정되었다: 플라티코사이드E → 플라티코딘D3 → 플라티코딘D → 탈아피오실화 플라티코딘D → 탈아피오스-자일로실화 플라티코딘D(도 4 참조). 폴리갈락신D3의 생체변환경로는 다음과 같이 플라티코딘 D3의 형질전환 순서와 유사하였다: 폴리갈락신D3 → 폴리갈락신D → 탈아피오실화 폴리갈락신D → 탈아피오스-자일로실화 폴리갈락신D. 플라티코사이드E에서 탈아피오스-자일로실화 플라티코딘D로의 경로와, 폴리갈락신D3에서 탈아피오스-자일로실화 폴리갈락신D로의 경로는 아직까지 보고된 바 없으며, 본 발명은 탈아피오실화 폴리갈락신D 및 탈아피오스-자일로실화 폴리갈락신에 대한 첫 번째 보고이다.Based on the substrate specificity results, the biotransformation pathway of Platicoside E by Cytolase PCL5 was determined as follows: Platicoside E → Platicodin D3 → Platicodin D → Deapiosylated Platicodin D → De Apiose-xylosylated Platicodin D (see Figure 4). The biotransformation pathway of polygalaxin D3 was similar to the transformation sequence of platicodin D3 as follows: polygalaxin D3 → polygalaxin D → deapiosylated polygalaxin D → deapios-xylated poly Galaxin D. The pathway from platicoside E to deapiose-xylosylated platicodin D and from polygalaxin D3 to deapiose-xylosylated polygalaxin D have not yet been reported. This is the first report on piosylated polygalaxin D and deapios-xylosylated polygalaxin.

실험예 4. Cytolase PCL5에 의한 탈아피오스-자일로실화 플라티코사이드로의 플라티코사이드E와 폴리갈락신D3의 생체변환Experimental Example 4. Biotransformation of Platicoside E and Polygalaxin D3 to Deapios-Xylosylated Platicoside by Cytolase PCL5

플라티코사이드E 및 폴리갈락신D3의 탈아피오스-자일로실화 플라티코딘D 및 탈아피오스-자일로실화 폴리갈락신D로의 각각 생체변환(biotransformation)은 0.5mg/mL의 효소 및 기질로서 1mg/mL의 플라티코사이드와 함께 수행하였다. 효소는 플라티코사이드E 및 폴리갈락신D3을 각각 12시간 및 15시간 내에 탈아피오스-자일로실화 플라티코딘D 및 탈아피오스-자일로실화 폴리갈락신D로 전환시켰는데, 이때 농도는 각각 0.62 및 0.69 g/L였고, 생산성은 각각 51.70 및 45.95 mg/L/h였다(도 5 참조). 기질의 당 부분이 기질로부터 제거되었기 때문에 탈아피오스-자일로실화 플라티코사이드의 농도는 기질의 농도보다 낮았다. 플라티코사이드E, 플라티코딘D3 및 폴리갈락신D3과 같은 플라티코사이드는 빠른 전환으로 인하여 5분 후에는 검출되지 않았다. 소량의 플라티코사이드 생산에 식품-등급의 상용 효소를 사용하는 것은 높은 효소 활성 및 안정성으로 인해 경제적으로 유리하다. 또한, 효소는 안정성과 생체 촉매 기능성의 향상을 통한 고정화(immobilization)와 같은 추가 공정을 통해 산업용 생체 촉매로 사용될 수 있다[비특허문헌 39-42].Biotransformation of platicoside E and polygalaxin D3 into deapiose-xylosylated platicodin D and deapiose-xylosylated polygalaxin D was performed as 0.5 mg/mL of enzyme and substrate. It was carried out with 1 mg/mL of platicoside. The enzymes converted platicoside E and polygalaxin D3 into deapiose-xylosylated platicodin D and deapiose-xylosylated polygalaxin D within 12 and 15 hours, respectively, wherein the concentration was They were 0.62 and 0.69 g/L, respectively, and productivity was 51.70 and 45.95 mg/L/h, respectively (see FIG. 5). Because the sugar portion of the substrate was removed from the substrate, the concentration of deapiose-xylosylated platicoside was lower than that of the substrate. Platicosides such as Platicoside E, Platicodin D3 and Polygalaxin D3 were not detected after 5 minutes due to rapid conversion. The use of commercially available food-grade enzymes for the production of small amounts of platicoside is economically advantageous due to high enzyme activity and stability. In addition, the enzyme can be used as an industrial biocatalyst through an additional process such as immobilization through improvement of stability and biocatalytic functionality [Non-Patent Document 39-42].

길경(Platycodon grandiflorum의 뿌리)에 풍부하게 함유된 사포닌인 플라티코사이드는 다양한 약리학적 활성을 가지며 식품 보조제로 사용되고 있다. 탈글라이코실화(deglycosylated) 사포닌은 글라이코실화(glycosylated) 사포닌보다 더 높은 생물학적 활성을 나타내기 때문에 효소를 이용하여 글라이코실화 플라티코사이드를 탈글라이코실화 플라티코사이드로 전환시키려는 노력이 진행되고 있다; 그러나, 이들 효소의 다양성 및 특이성의 결여는 탈글라이코실화될 수 있는 플라티코사이드의 종류를 제한하였다. 본 발명에서는 플라티코사이드의 효소적 전환을 조사하고, Cytolase PCL5가 플라티코사이드E와 폴리갈락신D3(polygalacin D3)을 탈아피오스-자일로실화 플라티코딘D와 탈아피오스-자일로실화 폴리갈락신D로 완전히 변환시켰으며, 이는 LC-MS 분석에 의해 확인되었다. 플라티코사이드 기질은 다음과 같은 신규한 가수분해경로를 통해 가수분해되었다 : 플라티코사이드E → 플라티코딘D3 → 플라티코딘D → 탈아피오실화 플라티코딘D → 탈아피오스-자일로실화 플라티코딘D; 및 폴리갈락신D3 → 폴리갈락신D → 탈아피오실화 폴리갈락신D → 탈아피오스?자일로실화 폴리갈락신D. Platycoside, a saponin abundantly contained in Gilkyung (the root of Platycodon grandiflorum ), has various pharmacological activities and is used as a food supplement. Since deglycosylated saponins exhibit higher biological activity than glycosylated saponins, efforts are being made to convert glycosylated platicosides to deglycosylated platicosides using enzymes; However, the lack of diversity and specificity of these enzymes limited the types of platicosides that could be deglycosylated. In the present invention, the enzymatic conversion of platicoside was investigated, and Cytolase PCL5 converts platicoside E and polygalacin D3 to deapios-xylosylated platicodin D and deapios-xylosylation. Complete conversion to polygalaxin D, which was confirmed by LC-MS analysis. The platicoside substrate was hydrolyzed through the following novel hydrolysis pathway: Platicoside E → Platicodin D3 → Platicodin D → Deapiosylated Platicodin D → Deapios-xylated plaque. Thycodin D; And polygalaxine D3 → polygalaxine D → deapiosylated polygalaxine D → deapios-xylosylated polygalaxine D.

본 발명에서 Cytolase PCL5가 각각 플라티코사이드E 또는 폴리갈락신D3의 C-3에서 외부 포도당 부분뿐만 아니라, C-28에서 자일로스와 아피오스를 가수 분해함으로써 새로운 기질 특이성을 나타냈다는 것을 보여 주었다. Cyotolase PCL5는 개별 효소가 아닌 효소 블렌드이므로 다양한 당(sugar)에 특이적일 수 있다. 플라티코사이드의 촉매작용에 의해 수득된 미지의 생성물의 화학 구조는 LC-MS에 의해 확인되었고, 탈아피오스-자일로실화 플라티코딘D 및 탈아피오스-자일로실화 폴리갈락신D가 최종 생성물로 확인되었다.In the present invention, it was shown that Cytolase PCL5 exhibited new substrate specificity by hydrolyzing xylose and apiose at C-28 as well as the external glucose moiety at C-3 of Platicoside E or Polygalaxin D3, respectively. Cyotolase PCL5 is an enzyme blend rather than an individual enzyme, so it can be specific to a variety of sugars. The chemical structure of the unknown product obtained by the catalysis of platicoside was confirmed by LC-MS, and the deapiose-xylosylated platicodin D and the deapiose-xylosylated polygalaxin D were final It was identified as a product.

Cytolase PCL5는 추가 가수분해 없이 플라티코사이드 기질을 최종 생성기질로 완전히 전환시켰으며, 이는 상기 효소가 탈아피오스-자일로실화 플라티코딘D 및 탈아피오스-자일로실화 폴리갈락신D 생성에 효과적임을 나타냈다. 식품 등급의 상용 효소는 추가적인 고정화 기술을 통해 경제적으로 산업 응용에 적합하다. 본 발명은 탈아피오스-자일로실화 플라티코딘D와 탈아피오스-자일로실화 폴리갈락신D의 양적 생산을 보고한 최초의 발명이다.Cytolase PCL5 completely converted the platicoside substrate into the final product without further hydrolysis, and this enzyme is responsible for the production of deapios-xylosylated platicodin D and deapios-xylosylated polygalaxin D. Showed effective. Food grade commercial enzymes are economically suitable for industrial applications through additional immobilization techniques. The present invention is the first invention to report the quantitative production of deapiose-xylosylated platicodine D and deapiose-xylosylated polygalaxin D.

본 발명의 결과는 Cytolase PCL5가 다양한 약리학적 활성에 사용될 수 있는 생물학적으로 활성화된 플라티코사이드의 개발에 잠재적인 역할을 할 수 있음을 보여준다.The results of the present invention show that Cytolase PCL5 can play a potential role in the development of biologically activated platicosides that can be used for various pharmacological activities.

Claims (6)

플라티코사이드(platycoside)로부터 Cytolase PCL5를 처리하여 반응시킴으로써 탈아피오실-자일로실화 플라티코사이드(deapiose-xylosylated platycoside)를 제조하되,
상기 플라티코사이드는, 플라티코사이드E(platycoside E) 또는 폴리갈락신D3(polygalacin D3)이고,
상기 탈아피오실-자일로실화 플라티코사이드는, 탈아피오스-자일로실화 플라티코딘D(deapiose-xylosylated platycodin D) 또는 탈아피오스-자일로실화 폴리갈락신D(deapiose-xylosylated polygalacin D)인 것을 특징으로 하는,
도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법.
Deapiose-xylosylated platycoside was prepared by treating and reacting Cytolase PCL5 from platycoside,
The platicoside is platicoside E or polygalacin D3,
The deapiosyl-xylosylated platicoside is deapiose-xylosylated platycodin D (deapiose-xylosylated platycodin D) or deapiose-xylosylated polygalacin D (deapiose-xylosylated polygalacin D). Characterized in that,
Bellflower-derived method for producing rare saponins using saponins.
삭제delete 청구항 1에 있어서,
상기 탈아피오스-자일로실화 플라티코딘D는 다음 경로를 통해 제조되는 것을 특징으로 하는 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법;
플라티코사이드E → 플라티코딘D3 → 플라티코딘D → 탈아피오실화 플라티코딘D → 탈아피오스-자일로실화 플라티코딘D.
The method according to claim 1,
The method of producing rare saponins using bellflower-derived saponins, characterized in that the deapios-xylated platicodin D is prepared through the following route;
Platicoside E → Platicodin D3 → Platicodin D → Deapiosylated Platicodin D → Deapios-xylated Platicodin D.
청구항 1에 있어서,
상기 탈아피오스-자일로실화 폴리갈락신D는 다음 경로를 통해 제조되는 것을 특징으로 하는 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법.
폴리갈락신D3 → 폴리갈락신D → 탈아피오실화 폴리갈락신D → 탈아피오스-자일로실화 폴리갈락신D.
The method according to claim 1,
The method for producing rare saponins using bellflower-derived saponins, characterized in that the deapios-xylosylated polygalaxin D is prepared through the following route.
Polygalaxine D3 → Polygalaxine D → Deapiosylated polygalaxine D → Deapiose-xylosylated polygalaxine D.
청구항 1, 3 및 4 중 어느 한 항에 있어서,
상기 반응은 pH 4.5 내지 5.5 및 온도 45 내지 55℃의 조건에서 이루어지는 것을 특징으로 하는 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법.
The method according to any one of claims 1, 3 and 4,
The reaction is a method for producing rare saponins using bellflower-derived saponins, characterized in that the reaction is carried out under conditions of pH 4.5 to 5.5 and a temperature of 45 to 55°C.
청구항 1, 3 및 4 중 어느 한 항에 있어서,
상기 플라티코사이드는 도라지(Platycodon grandiflorum)의 뿌리로부터 추출되는 것을 특징으로 하는 도라지-유래 사포닌을 이용한 희소 사포닌의 제조방법.
The method according to any one of claims 1, 3 and 4,
The method for producing rare saponins using bellflower-derived saponins, wherein the platicoside is extracted from the roots of bellflower ( Platycodon grandiflorum ).
KR1020200080728A 2020-07-01 2020-07-01 Method for producing rare saponins using saponins derived from platycodon grandiflorum KR102204452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200080728A KR102204452B1 (en) 2020-07-01 2020-07-01 Method for producing rare saponins using saponins derived from platycodon grandiflorum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200080728A KR102204452B1 (en) 2020-07-01 2020-07-01 Method for producing rare saponins using saponins derived from platycodon grandiflorum

Publications (1)

Publication Number Publication Date
KR102204452B1 true KR102204452B1 (en) 2021-01-15

Family

ID=74127007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200080728A KR102204452B1 (en) 2020-07-01 2020-07-01 Method for producing rare saponins using saponins derived from platycodon grandiflorum

Country Status (1)

Country Link
KR (1) KR102204452B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116912A (en) * 2021-06-07 2021-07-16 长春中医药大学 Application of apiose-removed platycodin D in preparation of medicine for preventing and/or treating liver cancer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120614A (en) * 2009-05-06 2010-11-16 서울대학교산학협력단 Composition comprising the platycoside saponins isolated from the root of platycodon grandiflorum and its platycodin d enriched-saponin fraction obtained by enzymatic conversion, intervening the lipid metabolic disorders
KR20130070396A (en) * 2011-12-19 2013-06-27 한국식품연구원 Polysaccharide fraction isolated from citrus peel with immune-enhancing activity and method for producing the same
KR20130142707A (en) * 2012-06-20 2013-12-30 주식회사한국야쿠르트 A method of preparation for fermented red ginseng using conversion by enzyme mixture and fermentation by lactic acid bacterium and the products containing fermented red ginseng manufactured thereof as effective factor
KR20190117041A (en) * 2018-04-06 2019-10-16 제너럴바이오(주) A Composition for Anti-inflammation Comprising Fermented Red Ginseng Powder Enriched with Ginsenoside Rg2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120614A (en) * 2009-05-06 2010-11-16 서울대학교산학협력단 Composition comprising the platycoside saponins isolated from the root of platycodon grandiflorum and its platycodin d enriched-saponin fraction obtained by enzymatic conversion, intervening the lipid metabolic disorders
KR20130070396A (en) * 2011-12-19 2013-06-27 한국식품연구원 Polysaccharide fraction isolated from citrus peel with immune-enhancing activity and method for producing the same
KR20130142707A (en) * 2012-06-20 2013-12-30 주식회사한국야쿠르트 A method of preparation for fermented red ginseng using conversion by enzyme mixture and fermentation by lactic acid bacterium and the products containing fermented red ginseng manufactured thereof as effective factor
KR20190117041A (en) * 2018-04-06 2019-10-16 제너럴바이오(주) A Composition for Anti-inflammation Comprising Fermented Red Ginseng Powder Enriched with Ginsenoside Rg2

Non-Patent Citations (43)

* Cited by examiner, † Cited by third party
Title
Int. J. Mol. Sci., Vol. 21, pp. 1207 (1-10) (2020.02.11.)* *
비특허문헌 . Kim, M.; Hwang, I.G.; Kim, S.B.; Choi, A.J. Chemical Characterization of Balloon Flower (Platycodon grandiflorum) Sprout Extracts and Their Regulation of Inflammatory Activity in Lipopolysaccharide-Stimulated Raw 264.7 Murine Macrophage Cells. Food Sci. Nutr. 2020, 8, 246-256.
비특허문헌 1. Nyakudya, E.; Jeong, J.H.; Lee, N.K.; Jeong, Y.S. Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits. Prev. Nutr. Food Sci. 2014, 19, 59-68.
비특허문헌 10. Halliwell, B. Oxidative Stress and Neurodegeneration: Where Are We Now? J. Neurochem. 2006, 97, 1634-1658.
비특허문헌 11. Oh, Y.C.; Kang, O.H.; Choi, J.G.; Lee, Y.S.; Brice, O.O.; Jung, H.J.; Hong, S.H.; Lee, Y.M.; Shin, D.W.; Kim, Y.S.; et al. Anti-Allergic Activity of a Platycodon Root Ethanol Extract. Int. J. Mol. Sci 2010, 11, 2746-2758.
비특허문헌 12. Han, L.K.; Zheng, Y.N.; Xu, B.J.; Okuda, H.; Kimura, Y. Saponins from Platycodi Radix Ameliorate High Fat Diet-Induced Obesity in Mice. J. Nutr. 2002, 132, 2241-2245.
비특허문헌 13. Zhao, H.L.; Harding, S.V.; Marinangeli, C.P.F.; Kim, Y.S.; Jones, P.J.H. Hypocholesterolemic and Anti-Obesity Effects of Saponins from Platycodon grandiflorum in Hamsters Fed Atherogenic Diets. J. Food Sci. 2008, 73, H195-H200.
비특허문헌 14. Hwang, K.A.; Hwang, Y.J.; Im, P.R.; Hwang, H.J.; Song, J.; Kim, Y.J. Platycodon grandiflorum Extract Reduces High-Fat Diet-Induced Obesity through Regulation of Adipogenesis and Lipogenesis Pathways in Mice. J. Med. Food 2019, 22, 993-999.
비특허문헌 15. Xie, Y.; Ye, Y.P.; Sun, H.X.; Li, D. Contribution of the Glycidic Moieties to the Haemolytic and Adjuvant Activity of Platycodigenin-Type Saponins from the Root of Platycodon grandiflorum. Vaccine 2008, 26, 3452-3460.
비특허문헌 16. Noh, E.M.; Kim, J.M.; Lee, H.Y.; Song, H.K.; Joung, S.O.; Yang, H.J.; Kim, M.J.; Kim, K.S.; Lee, Y.R. Immuno-Enhancement Effects of Platycodon grandiflorum Extracts in Splenocytes and a Cyclophosphamide-Induced Immunosuppressed Rat Model. BMC Complement. Altern. Med. 2019, 19, 322.
비특허문헌 17. Zhao, X.; Wang, Y.; Yan, P.; Cheng, G.; Wang, C.; Geng, N.; Wang, X.; Liu, J. Effects of Polysaccharides from Platycodon grandiflorum on Immunity-Enhancing Activity in Vitro. Molecules 2017, 22, 1918.
비특허문헌 18. Ha, Y.W.; Na, Y.C.; Seo, J.J.; Kim, S.N.; Linhardt, R.J.; Kim, Y.S. Qualitative and Quantitative Determination of Ten Major Saponins in Platycodi Radix by High Performance Liquid Chromatography with Evaporative Light Scattering Detection and Mass Spectrometry. J. Chromatogr. A 2006, 1135, 27-35.
비특허문헌 19. Yoo, D.S.; Choi, Y.H.; Cha, M.R.; Lee, B.H.; Kim, S.J.; Yon, G.H.; Hong, K.S.; Jang, Y.S.; Lee, H.S.; Kim, Y.S.; et al. Hplc-Elsd Analysis of 18 Platycosides from Balloon Flower Roots (Platycodi Radix) Sourced from Various Regions in Korea and Geographical Clustering of the Cultivation Areas. Food Chem. 2011, 129, 645-651.
비특허문헌 2. Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon Grandiflorus-an Ethnopharmacological, Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2015, 164, 147-161.
비특허문헌 20. Park, C.S.; Yoo, M.H.; Noh, K.H.; Oh, D.K. Biotransformation of Ginsenosides by Hydrolyzing the Sugar Moieties of Ginsenosides Using Microbial Glycosidases. Appl. Microbiol. Biotechnol. 2010, 87, 9-19.
비특허문헌 21. Shin, K.C.; Oh, D.K. Classification of Glycosidases That Hydrolyze the Specific Positions and Types of Sugar Moieties in Ginsenosides. Crit. Rev. Biotechnol. 2016, 36, 1036-1049.
비특허문헌 22. Kim, W.Y.; Kim, J.M.; Han, S.B.; Lee, S.K.; Kim, N.D.; Park, M.K.; Kim, C.K.; Park, J.H. Steaming of Ginseng at High Temperature Enhances Biological Activity. J. Nat. Prod. 2000, 63, 1702-1704.
비특허문헌 23. Bae, E.A.; Han, M.J.; Kim, E.J.; Kim, D.H. Transformation of Ginseng Saponins to Ginsenoside Rh2 by Acids and Human Intestinal Bacteria and Biological Activities of Their Transformants. Arch. Pharm. Res. 2004, 27, 61-67.
비특허문헌 24. Zhou, W.; Yan, Q.; Li, J.Y.; Zhang, X.C.; Zhou, P. Biotransformation of Panax Notoginseng Saponins into Ginsenoside Compound K Production by Paecilomyces bainier Sp. 229. J. Appl. Microbiol. 2008, 104, 699-706.
비특허문헌 25. Cui, C.H.; Choi, T.E.; Yu, H.; Jin, F.; Lee, S.T.; Kim, S.C.; Im, W.T. Mucilaginibacter composti Sp. Nov., with Ginsenoside Converting Activity, Isolated from Compost. J. Microbiol. 2011, 49, 393-398.
비특허문헌 26. Shin, K.C.; Lee, H.J.; Oh, D.K. Substrate Specificity of Beta-Glucosidase from Gordonia Terrae for Ginsenosides and Its Application in the Production of Ginsenosides Rg(3), Rg(2), and Rh(1) from Ginseng Root Extract. J. Biosci. Bioeng. 2015, 119, 497-504.
비특허문헌 27. Kil, T.G.; Kang, S.H.; Kim, T.H.; Shin, K.C.; Oh, D.K. Enzymatic Biotransformation of Balloon Flower Root Saponins into Bioactive Platycodin D by Deglucosylation with Caldicellulosiruptor Bescii Beta-Glucosidase. Int. J. Mol. Sci. 2019, 20, 3854.
비특허문헌 28. Shin, K.C.; Seo, M.J.; Kim, D.W.; Yeom, S.J.; Kim, Y.S. Characterization of Β-Glycosidase from Caldicellulosiruptor Owensensis and Its Application in the Production of Platycodin D from Balloon Flower Leaf. Catalysts 2019, 9, 1025.
비특허문헌 29. Ahn, H.J.; You, H.J.; Park, M.S.; Johnston, T.V.; Ku, S.; Ji, G.E. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular Beta-Glucosidase Responsible for Rapid Platycodin D Production. Int. J. Mol. Sci. 2018, 19, 2671.
비특허문헌 3. Ryu, C.S.; Kim, C.H.; Lee, S.Y.; Lee, K.S.; Choung, K.J.; Song, G.Y.; Kim, B.H.; Ryu, S.Y.; Lee, H.S.; Kim, S.K. Evaluation of the Total Oxidant Scavenging Capacity of Saponins Isolated from Platycodon grandiflorum. Food Chem. 2012, 132, 333-337.
비특허문헌 30. Li, W.; Zhao, L.C.; Wang, Z.; Zheng, Y.N.; Liang, J.; Wang, H. Response Surface Methodology to Optimize Enzymatic Preparation of Deapio-Platycodin D and Platycodin D from Radix Platycodi. Int. J. Mol. Sci. 2012, 13, 4089-4100.
비특허문헌 31. Jeong, E.K.; Ha, I.J.; Kim, Y.S.; Na, Y.C. Glycosylated Platycosides: Identification by Enzymatic Hydrolysis and Structural Determination by Lc-Ms/Ms. J. Sep. Sci. 2014, 37, 61-68.
비특허문헌 32. Ha, I.J.; Ha, Y.W.; Kang, M.; Lee, J.; Park, D.; Kim, Y.S. Enzymatic Transformation of Platycosides and One-Step Separation of Platycodin D by High-Speed Countercurrent Chromatography. J. Sep. Sci. 2010, 33, 1916-1922.
비특허문헌 33. Kang, S.H.; Kim, T.H.; Shin, K.C.; Ko, Y.J.; Oh, D.K. Biotransformation of Food-Derived Saponins, Platycosides, into Deglucosylated Saponins Including Deglucosylated Platycodin D and Their Anti-Inflammatory Activities. J. Agric. Food. Chem. 2019, 67, 1470-1477.
비특허문헌 34. Wie, H.J.; Zhao, H.L.; Chang, J.H.; Kim, Y.S.; Hwang, I.K.; Ji, G.E. Enzymatic Modification of Saponins from Platycodon grandiflorum with Aspergillus Niger. J. Agric. Food Chem. 2007, 55, 8908-8913.
비특허문헌 35. Lim, H.; Yeo, E.; Song, E.; Chang, Y.H.; Han, B.K.; Choi, H.J.; Hwang, J. Bioconversion of Citrus Unshiu Peel Extracts with Cytolase Suppresses Adipogenic Activity in 3t3-L1 Cells. Nutr. Res. Pract. 2015, 9, 599-605.
비특허문헌 36. Kim, E.H.; Lim, S.; Kim, S.O.; Ahn, S.H.; Choi, Y.J. Optimization of Enzymatic Treatment for Compound K Production from White Ginseng Extract by Response Surface Methodology. Biosci. Biotechnol. Biochem. 2013, 77, 1138-1140.
비특허문헌 37. Choi, H.S.; Kim, S.Y.; Park, Y.; Jung, E.Y.; Suh, H.J. Enzymatic Transformation of Ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) Extract Prepared by Spezyme and Optidex. J. Ginseng Res. 2014, 38, 264-269.
비특허문헌 38. Kim, H.W.; Han, S.H.; Lee, S.W.; Choi, H.S.; Suh, H.J.; Hong, K.B. Enzymatic Hydrolysis Increases Ginsenoside Content in Korean Red Ginseng (Panax ginseng Ca Meyer) and Its Biotransformation under Hydrostatic Pressure. J. Sci. Food Agric. 2019, 99, 6806-6813.
비특허문헌 39. Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238.
비특허문헌 4. Luo, H.; Lin, S.; Ren, F.; Wu, L.; Chen, L.; Sun, Y. Antioxidant and Antimicrobial Capacity of Chinese Medicinal Herb Extracts in Raw Sheep Meat. J. Food Prot. 2007, 70, 1440-1445.
비특허문헌 40. Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 2019, 67, 11553-11567.
비특허문헌 41. Basso, A.;Serban, S. Overview of Immobilized Enzymes'Applications in Pharmaceutical, Chemical, and Food Industry. Methods Mol. Biol. 2020, 2100, 27-63.
비특허문헌 42. Ricardi, N.C.; de Menezes, E.W. Valmir Benvenutti, E. da Natividade Schoffer, J.; Hackenhaar, C.R.; Hertz, P.F.; Costa, T.M.H. Highly Stable Novel Silica/Chitosan Support for Beta-Galactosidase Immobilization for Application in Dairy Technology. Food Chem. 2018, 246, 343-350.
비특허문헌 5. Kim, J.Y.; Hwang, Y.P.; Kim, D.H.; HAN, E.H.; Chung, Y.C.; Roh, S.H.; Jeong, H.G. Inhibitory Effect of the Saponins Derived from Roots of Platycodon grandiflorum on Carrageenan-Induced Inflammation. Biosci. Biotechnol. Biochem. 2006, 70, 858-864.
비특허문헌 7. Yim, N.H.; Hwang, Y.H.; Liang, C.; Ma, J.Y. A Platycoside-Rich Fraction from the Root of Platycodon grandiflorum Enhances Cell Death in A549 Human Lung Carcinoma Cells Via Mainly Ampk/Mtor/Akt Signal-Mediated Autophagy Induction. J. Ethnopharmacol. 2016, 194, 1060-1068.
비특허문헌 8. Kim, Y.S.; Kim, J.S.; Choi, S.U.; Kim, J.S.; Lee, H.S.; Roh, S.H.; Jeong, Y.C.; Kim, Y.K.; Ryu, S.Y. Isolation of a New Saponin and Cytotoxic Effect of Saponins from the Root of Platycodon grandiflorum on Human Tumor Cell Lines. Planta. Med. 2005, 71, 566-568.
비특허문헌 9. Khan, M.; Maryam, A.; Zhang, H.; Mehmood, T.; Ma, T. Killing Cancer with Platycodin D through Multiple Mechanisms. J. Cell Mol. Med. 2016, 20, 389-402.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116912A (en) * 2021-06-07 2021-07-16 长春中医药大学 Application of apiose-removed platycodin D in preparation of medicine for preventing and/or treating liver cancer

Similar Documents

Publication Publication Date Title
Upadhyaya et al. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea
Tanaka Steviol-glycosides: new natural sweeteners
Li et al. Characterization of a polysaccharide with antioxidant and anti-cervical cancer potentials from the corn silk cultivated in Jilin province
Dubois et al. Cussonosides A and B, two triterpene-saponins from Cussonia barteri
Liu et al. Enzymatic preparation of 20 (S, R)-protopanaxadiol by transformation of 20 (S, R)-Rg3 from black ginseng
KR100377546B1 (en) Manufacturing Method for Ginsenoside Compound K by Enzymatic Reaction
Feng et al. Rapid determination of flavonoids in plumules of sacred lotus cultivars and assessment of their antioxidant activities
Sun et al. A new steroidal saponin from the dried stems of Asparagus officinalis L
Gong et al. Chemical components of Ganoderma
KR101438543B1 (en) Preparation method of oxyresveratrol, t-resveratrol, and moracin having anti-inflammatory and anti-aging function from Mulberry twig extract
KR102204452B1 (en) Method for producing rare saponins using saponins derived from platycodon grandiflorum
Duan et al. Functional characterization of a cycloartenol synthase and four glycosyltransferases in the biosynthesis of cycloastragenol-type astragalosides from Astragalus membranaceus
Yang et al. Production of minor ginsenosides by combining Stereum hirsutum and cellulase
Xiao et al. Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I
An et al. Gram-scale production of ginsenoside F1 using a recombinant bacterial β-glucosidase
Milentyeva et al. Biologically active compounds in Scutellaria baicalensis L. callus extract: Phytochemical analysis and isolation
Liu et al. Preparation of minor ginsenosides C-Mx and CK from notoginseng leaf ginsenosides by a special ginsenosidase type-I
KR20080028266A (en) Method for production of compound k, and compound y, ginsenoside f1 from ginseng using hydrolytic enzymes, pectinex and viscozyme
Peng et al. Preparation of sesaminol from sesaminol triglucoside by β-glucosidase and cellulase hydrolysis
Shin et al. Production of bioactive deapiosylated platycosides from glycosylated platycosides in balloon flower root using the crude enzyme from the food-available fungus Rhizopus oryzae
Ju et al. Biotransformation of glycosylated saponins in balloon flower root extract into 3-O-β-D-Glucopyranosyl platycosides by deglycosylation of pectinase from Aspergillus aculeatus
Song et al. Characterization of a malabaricane-type triterpene synthase from Astragalus membranaceus and enzymatic synthesis of astramalabaricosides
KR100902669B1 (en) A method for isolation and purification of calycosin from Astragali Radix
Fawzi et al. Isolation of Astragalin from Cressa cretica cultivated in Iraq
Jing-Yuan et al. Selective hydrolysis of flavonoid glycosides by Curvularia lunata

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant