KR102200243B1 - Offshore structural steel weldment for high heat input welding - Google Patents

Offshore structural steel weldment for high heat input welding Download PDF

Info

Publication number
KR102200243B1
KR102200243B1 KR1020180164149A KR20180164149A KR102200243B1 KR 102200243 B1 KR102200243 B1 KR 102200243B1 KR 1020180164149 A KR1020180164149 A KR 1020180164149A KR 20180164149 A KR20180164149 A KR 20180164149A KR 102200243 B1 KR102200243 B1 KR 102200243B1
Authority
KR
South Korea
Prior art keywords
less
heat input
phase
affected zone
heat
Prior art date
Application number
KR1020180164149A
Other languages
Korean (ko)
Other versions
KR20200075455A (en
Inventor
한규태
김우겸
정홍철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020180164149A priority Critical patent/KR102200243B1/en
Publication of KR20200075455A publication Critical patent/KR20200075455A/en
Application granted granted Critical
Publication of KR102200243B1 publication Critical patent/KR102200243B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

저온인성이 우수한 대입열 해양구조용강 용접이음부가 제공된다.
본 발명의 대입열 해양구조용강 용접이음부는, 중량%로, 탄소(C): 0.07~0.15%, 규소(Si): 0.10~0.25%, 망간(Mn): 1.5~1.65%, 인(P): 0.008% 이하, S: 0.002% 이하, 알루미늄(Al): 0.015~0.025%, 구리(Cu): 0.2~0.3%, 니켈(Ni): 0.5~1.0%, 니오븀(Nb): 0.017% 이하(0%는 제외), 티타늄(Ti): 0.010~0.025%, 질소(N):0.002~0.005%, 잔부 Fe 및 불가피한 불순물을 포함하고, 용접입열량 5kJ/mm ~ 8.75kJ/mm 범위에서, 조대열영향부(CGHAZ)의 초석페라이트와 베이나이트의 상 분율이 1: 4.8~33.5이고; 상기 조대열영향부(CGHAZ)는 크기가 0.7㎛ 이하이고 전체조직에 대한 상 분율이 0.04 면적% 이하인 M/A(Martensite-Austenite)상을 포함하며; 그리고 이상역 열영향부(ICHAZ)는 크기가 0.9㎛ 이하이고 전체조직에 대한 상 분율이 0.3 면적% 이하인 M/A상을 포함하는 것을 특징으로 한다.
High heat input marine structural steel welded joints with excellent low-temperature toughness are provided.
The high heat input of the offshore structural steel welded joint of the present invention, by weight, carbon (C): 0.07 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.5 to 1.65%, phosphorus (P) ): 0.008% or less, S: 0.002% or less, Aluminum (Al): 0.015 to 0.025%, Copper (Cu): 0.2 to 0.3%, Nickel (Ni): 0.5 to 1.0%, Niobium (Nb): 0.017% or less (Excluding 0%), Titanium (Ti): 0.010 to 0.025%, Nitrogen (N): 0.002 to 0.005%, including the balance Fe and inevitable impurities, in the range of welding heat input 5 kJ/mm to 8.75 kJ/mm, The phase fraction of cornerstone ferrite and bainite in the coarse heat affected zone (CGHAZ) is 1: 4.8-33.5; The coarse heat affected zone (CGHAZ) includes a M/A (Martensite-Austenite) phase having a size of 0.7 μm or less and a phase fraction of 0.04 area% or less for the entire tissue; In addition, the ideal zone heat affected zone (ICHAZ) is characterized by including an M/A phase having a size of 0.9 μm or less and a phase fraction of 0.3 area% or less for the entire tissue.

Description

저온인성이 우수한 대입열 해양구조용강 용접이음부 {Offshore structural steel weldment for high heat input welding}Offshore structural steel weldment for high heat input welding with excellent low-temperature toughness

본 발명은 저온 인성이 우수한 해양구조용강 용접이음부에 관한 것으로, 보다 상세하게는, 5kJ/mm 이상의 대입열 용접 적용 시 저온 충격인성 및 CTOD 특성이 우수한 해양구조용강 용접이음부에 대한 것이다The present invention relates to an offshore structural steel welded joint having excellent low-temperature toughness, and more particularly, to an offshore structural steel welded joint having excellent low-temperature impact toughness and CTOD characteristics when applying high heat input welding of 5kJ/mm or more.

해양구조물은 원유, 가스 등을 시추, 정제, 저장, 생산하는 대형 구조물로서 파도, 폭풍 등의 물리적 환경 및 저온에서 장시간 안정성을 유지하여야 한다. 따라서 이러한 해양구조물에 적용되는 강재는 강도 및 저온인성이 우수하여야 하며, 아울러, 열영향부를 포함한 용접부의 물성이 모재 대비 동등한 수준으로 보장되어야 한다.Offshore structures are large structures that drill, refine, store, and produce crude oil and gas, and must maintain stability for a long time in physical environments such as waves and storms and at low temperatures. Therefore, the steel material applied to such offshore structures must have excellent strength and low-temperature toughness, and, in addition, the properties of the weld including the heat-affected area must be guaranteed to be equal to that of the base material.

이러한 해양구조용 강재 제조기술의 일예로서 특허문헌 1에 기재된 발명을 들 수 있다. 상기 특허문헌 1에서는, 중량%로 C: 0.02~0.07%, Si: 0.2% 이하, Mn: 1.2~1.7%, P: 0.012% 이하, S: 0.003% 이하, Al: 0.005~0.02%,Cu: 0.1~0.5%, Ni: 0.1~1.0%, Ti: 0.007~0.013% 및 N: 0.002~0.006% 의 합금성분으로 적절한 압연 및 냉각 프로세스를 통해 항복강도 380MPa급의 후판을 제조하였다. 그러나 상기 특허문헌 1에서 개발한 합급성분으로는 -40℃ 충격인성 합격기준(평균 최소 36J, 개별 최소 26J)과 -10℃ CTOD(Crack tip opening displacement) 시험 합격기준(0.25mm 이상)을 만족하는 용접입열량 범위가 최대 5.0kJ/mm로 제한되는 문제점이 있다.As an example of such an offshore structural steel manufacturing technology, the invention described in Patent Document 1 is mentioned. In the patent document 1, C: 0.02 to 0.07% by weight, Si: 0.2% or less, Mn: 1.2 to 1.7%, P: 0.012% or less, S: 0.003% or less, Al: 0.005 to 0.02%, Cu: Alloy components of 0.1 to 0.5%, Ni: 0.1 to 1.0%, Ti: 0.007 to 0.013%, and N: 0.002 to 0.006% were used to produce a thick plate having a yield strength of 380 MPa through an appropriate rolling and cooling process. However, the alloy components developed in Patent Document 1 satisfy the -40℃ impact toughness pass criteria (average minimum 36J, individual minimum 26J) and -10℃ CTOD (Crack tip opening displacement) test pass criteria (0.25mm or more). There is a problem that the range of heat input for welding is limited to a maximum of 5.0kJ/mm.

최근 해양경기의 침체로 선박 및 플랜트 제조사에서는 극한의 원가 절감 노력을 통해 생산성을 향상시키려고 노력하고 있으며, 그 중 용접생산성 상향의 중요성이 부각되고 있다. Due to the recent downturn in the offshore economy, ship and plant manufacturers are striving to improve productivity through extreme cost reduction efforts, and among them, the importance of improving welding productivity is emerging.

대한민국 특허공개 KR2010-0067509호Korean Patent Publication No. KR2010-0067509

따라서 본 발명은 상기 같은 문제점을 해결하기 위한 것으로, 용접이음부의 합금성분 제어를 통해서 최대 8.75kJ/mm의 입열량에서 저온인성 합격기준(EN10225), 즉, -40℃ 충격인성 (평균 최소 46J, 개별 최소 32J)과 -10℃ CTOD (0.25mm 이상)을 만족하는 용접이음부를 얻을 수 있는 저온인성이 우수한 항복강도 420MPa급의 대입열 해양구조용강 용접이음부를 제공함을 목적으로 한다.Therefore, the present invention is to solve the above problems, through the control of the alloy component of the weld joint, the low-temperature toughness pass criterion (EN10225) at a maximum heat input of 8.75kJ/mm, that is, -40℃ impact toughness (average minimum 46J , Individual minimum 32J) and -10℃ CTOD (0.25mm or more) to obtain a welded joint with excellent yield strength of 420MPa class high heat input marine structural steel welded joints.

상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,

중량%로, 탄소(C): 0.07~0.15%, 규소(Si): 0.10~0.25%, 망간(Mn): 1.5~1.65%, 인(P): 0.008% 이하, S: 0.002% 이하, 알루미늄(Al): 0.015~0.025%, 구리(Cu): 0.2~0.3%, 니켈(Ni): 0.5~1.0%, 니오븀(Nb): 0.017% 이하(0%는 제외), 티타늄(Ti): 0.010~0.025%, 질소(N):0.002~0.005%, 잔부 Fe 및 불가피한 불순물을 포함하고, In wt%, carbon (C): 0.07 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.5 to 1.65%, phosphorus (P): 0.008% or less, S: 0.002% or less, aluminum (Al): 0.015 to 0.025%, Copper (Cu): 0.2 to 0.3%, Nickel (Ni): 0.5 to 1.0%, Niobium (Nb): 0.017% or less (excluding 0%), Titanium (Ti): 0.010 ~0.025%, nitrogen (N): 0.002 ~ 0.005%, the balance contains Fe and inevitable impurities,

용접입열량 5kJ/mm ~ 8.75kJ/mm 범위에서,In the range of welding heat input 5kJ/mm ~ 8.75kJ/mm,

조대열영향부(CGHAZ)의 초석페라이트와 베이나이트의 상 분율이 1: 4.8~33.5이고;The phase fraction of cornerstone ferrite and bainite in the coarse heat affected zone (CGHAZ) is 1: 4.8 to 33.5;

상기 조대열영향부(CGHAZ)는 크기가 0.7㎛ 이하이고 전체조직에 대한 상 분율이 0.04 면적% 이하인 M/A(Martensite-Austenite)상을 포함하며; 그리고 The coarse heat affected zone (CGHAZ) includes a M/A (Martensite-Austenite) phase having a size of 0.7 μm or less and a phase fraction of 0.04 area% or less for the entire tissue; And

이상역 열영향부(ICHAZ)는 크기가 0.9㎛ 이하이고 전체조직에 대한 상 분율이 0.3 면적% 이하인 M/A상을 포함하는 것을 특징으로 하는 저온인성이 우수한 대입열 해양구조용강 용접이음부에 관한 것이다. The ideal heat-affected zone (ICHAZ) is a welded joint of high heat input for offshore structural steel with excellent low-temperature toughness, characterized in that it includes an M/A phase with a size of 0.9㎛ or less and a phase fraction of 0.3 area% or less for the entire structure. About.

상술한 구성의 본 발명에 의하면 해양구조용강 강재 내 탄소, 규소, 망간, 구리, 니켈을 적정량 첨가하여 용접부의 강도를 보증하고, 니오븀 함량 제한과 함께, Ti와 N의 함량을 증가시켜 니켈 함량을 증가시킴으로써 기존 한계 입열량, 5.0kJ/mm 대비 75% 높은 8.75kJ/mm의 입열량으로 용접시에도 항복강도 420MPa 이상, 저온 충격인성 및 CTOD 값을 만족하는 용접금속부를 얻을 수 있다.According to the present invention having the above-described configuration, the strength of the weld is guaranteed by adding an appropriate amount of carbon, silicon, manganese, copper, and nickel in the offshore structural steel, and the nickel content is increased by increasing the content of Ti and N together with limiting the niobium content. By increasing it, it is possible to obtain a welded metal part that satisfies the yield strength of 420 MPa or higher, low temperature impact toughness and CTOD value even when welding with a heat input of 8.75 kJ/mm, which is 75% higher than the existing limit heat input and 5.0 kJ/mm.

도 1은 본 발명의 실시예에서 5kJ/mm, 8.75kJ/mm, 10kJ/mm 및 15kJ/mm 입열량별 800~500℃ 온도범위에서 7℃/sec, 4℃/sec, 3.5℃/sec 및 2.3℃/sec(실 용접 중, 시편에 열전대를 이용하여 측정한 값)의 냉각 속도로 냉각 시, 냉각 중의 상변태 온도 및 상분율을 Dilatometer 시험기를 이용하여 측정한 결과를 나타낸 그림이다.
도 2는 본 발명의 실시예에서 CG, ICHAZ에서의 입열량 별 M/A상 크기 변화를 보이는 그래프이다.
도 3은 본 발명의 실시예에서 CG, ICHAZ에서의 입열량 별 M/A상 분율 변화를 보이는 그래프이다.
1 is a 5kJ/mm, 8.75kJ/mm, 10kJ/mm, and 15kJ/mm heat input in an embodiment of the present invention in a temperature range of 800 to 500°C, 7°C/sec, 4°C/sec, 3.5°C/sec, and The figure shows the result of measuring the phase transformation temperature and phase fraction during cooling using a dilatometer tester when cooling at a cooling rate of 2.3℃/sec (during actual welding, the value measured using a thermocouple on the specimen).
2 is a graph showing the size change of the M/A phase according to the amount of heat input in CG and ICHAZ in an embodiment of the present invention.
3 is a graph showing the change in the M/A phase fraction according to the amount of heat input in CG and ICHAZ in an embodiment of the present invention.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명의 대입열 해양구조용강 용접이음부는, 중량%로, 탄소(C): 0.07~0.15%, 규소(Si): 0.10~0.25%, 망간(Mn): 1.5~1.65%, 인(P): 0.008% 이하, S: 0.002% 이하, 알루미늄(Al): 0.015~0.025%, 구리(Cu): 0.2~0.3%, 니켈(Ni): 0.5~1.0%, 니오븀(Nb): 0.017% 이하(0%는 제외), 티타늄(Ti): 0.010~0.025%, 질소(N):0.002~0.005%, 잔부 Fe 및 불가피한 불순물을 포함한다. 이하, 각 합금원소 및 그 함량 제한사유를 설명하며, 여기에서 "%"는 달리 규정한 바가 없다면 "중량%"임을 밝혀 둔다.The high heat input of the offshore structural steel welded joint of the present invention, by weight, carbon (C): 0.07 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.5 to 1.65%, phosphorus (P) ): 0.008% or less, S: 0.002% or less, Aluminum (Al): 0.015 to 0.025%, Copper (Cu): 0.2 to 0.3%, Nickel (Ni): 0.5 to 1.0%, Niobium (Nb): 0.017% or less (Excluding 0%), titanium (Ti): 0.010 ~ 0.025%, nitrogen (N): 0.002 ~ 0.005%, the balance contains Fe and inevitable impurities. Hereinafter, each alloying element and the reason for its content limitation will be described. Herein, "%" is disclosed as "% by weight" unless otherwise specified.

·탄소(C): 0.07~0.15%,Carbon (C): 0.07~0.15%,

C는 강의 강도 확보에 매우 유용한 원소이나, 열영향부를 구성하는 미세조직의 경도를 높이고 M/A 조직을 조장하며 대입열 용접 시 조대한 침상의 비드만스타튼 페라이트를 입계에 생성시켜 열영향부 인성을 크게 저하시킨다. 상기의 이유로 본 발명에서는 0.15% 이하로 탄소함량을 제한한다.C is an element that is very useful for securing the strength of steel, but it increases the hardness of the microstructure constituting the heat-affected zone, promotes the M/A structure, and generates coarse needle-shaped Beadmanstaton ferrite at the grain boundary during high heat input welding. It greatly reduces toughness. For the above reasons, in the present invention, the carbon content is limited to 0.15% or less.

·실리콘(Si): 0.10~0.25%Silicon (Si): 0.10~0.25%

Si는 강의 경화능 확보에 기여하며 제강 중 탈산에도 일정 역할을 담당하므로 0.05% 이상 첨가하여야 하나, 일정량 이상 첨가시 비금속 개재물 또는 M/A 조직의 생성이 현저해지므로 그 상한을 0.25%으로 한다.Si contributes to securing the hardenability of steel and plays a role in deoxidation during steel making, so it should be added at least 0.05%, but when added in a certain amount, the formation of non-metallic inclusions or M/A structure becomes remarkable, so the upper limit is set to 0.25%.

·망간(Mn): 1.5~1.65%Manganese (Mn): 1.5-1.65%

Mn은 Cu, Ni과 함께 모재의 강도를 높이면서도 열영향부 인성의 열화에 비교적 영향을 덜 미치는 원소로서 본 발명에서 중요한 원소이다. Mn 함량이 높으면 강도 확보가 쉽고 M/A 조직의 생성을 지연시키므로 1.5% 이상 첨가하여야 하나, 그 양이 1.65%를 초과하면 열영향부 조직의 경도가 지나치게 증가하고, 특히 IC 열영향부 인성이 크게 저하되므로 그 상한을 1.65%로 한정한다.Mn, together with Cu and Ni, increases the strength of the base metal and is an element that has relatively little influence on the deterioration of the toughness of the heat-affected zone and is an important element in the present invention. If the Mn content is high, it is easy to secure the strength and delay the formation of the M/A structure, so it should be added at least 1.5%, but if the amount exceeds 1.65%, the hardness of the heat-affected zone increases too much, especially the toughness of the IC heat-affected zone. Since it is greatly reduced, the upper limit is limited to 1.65%.

·고용 알루미늄(Sol. Al): 0.015~0.025%Employed aluminum (Sol. Al): 0.015~0.025%

Al은 강탈산제로서, AlN을 석출하여 결정립미세화 효과를 나타낸다. 그러나 과잉첨가되면 수지상의 탄화물을 형성하여 강을 취약하게 만들고, 연주 슬라브의 표면크랙을 발생시키며 충격인성을 저해하므로, 0.025% 이하로 첨가하는 것이 바람직하다.Al is a strong deoxidizing agent and exhibits a grain refinement effect by depositing AlN. However, when excessively added, it is preferable to add less than 0.025% because it forms dendritic carbides to make the steel fragile, generates surface cracks of the playing slab, and impairs impact toughness.

·구리(Cu) : 0.2~0.3%Copper (Cu): 0.2~0.3%

구리(Cu)는 0.20% 이상 첨가되면, 고용강화효과를 나타내어 강의 강도, 경도 및 내식성을 증가시킨다. 그러나 과잉첨가되면 열간가공시 Fe보다 산화속도가 낮아 표면에 산재후 내부로 침투하여 적열취성을 일으키므로, 그 함량의 상한을 0.3%로 제어하는 것이 바람직하다.When copper (Cu) is added by 0.20% or more, it exhibits a solid solution strengthening effect, thereby increasing the strength, hardness and corrosion resistance of the steel. However, if excessively added, the oxidation rate is lower than that of Fe during hot processing, so it penetrates into the interior after scattering on the surface and causes red heat embrittlement, so it is preferable to control the upper limit of the content to 0.3%.

·니켈(Ni): 0.5~1.0%Nickel (Ni): 0.5~1.0%

Ni은 Cu와 유사하게 강의 강도를 높이면서도 열영향부 인성의 저하가 적은 원소로서 유용하다. 특히, Cu 첨가시 발생할 수 있는 표면 크랙을 억제하기 하기 위해 반드시 첨가해야 한다. 강의 강도와 열영향부 인성을 확보하기 위해 0.5% 이상 첨가되어야 하나, 일정량 이상에서 그 효과가 포화되고 고가원소로서 제조비용이 크게 증가하므로 1.0%를 그 상한으로 한다.Ni, similar to Cu, is useful as an element that increases the strength of steel and has little decrease in toughness in the heat-affected zone. In particular, it must be added to suppress surface cracks that may occur when Cu is added. 0.5% or more should be added to secure the strength and toughness of the heat-affected zone of the steel, but 1.0% is the upper limit because the effect is saturated and the manufacturing cost is greatly increased as an expensive element above a certain amount.

·티타늄(Ti): 0.010~0.025%Titanium (Ti): 0.010 to 0.025%

티타늄은 질소와 결합하여 고온에서 높은 열적 안정성을 나타내는 TiN을 형성하여 CG 열영향부에서 오스테나이트가 조대화되는 것을 감소하기 때문에 0.010% 이상 첨가되어야 한다. 그러나 0.025%를 초과하여 첨가되면 TiN이 조대화되어 오스테나이트 결정립 조대화 억제 효과가 감소하므로 그 첨가량을 0.025% 이하로 제한한다.Titanium combines with nitrogen to form TiN, which exhibits high thermal stability at high temperatures, reducing coarsening of austenite in the CG heat-affected zone, so it should be added at least 0.010%. However, if it is added in excess of 0.025%, TiN is coarsened and the suppressing effect of coarsening of austenite grains decreases, so the addition amount is limited to 0.025% or less.

·니오븀(Nb): 0.017%이하(0%는 제외)Niobium (Nb): 0.017% or less (excluding 0%)

Nb는 N과 결합하여 NbN 석출물을 형성시켜 일반적인 입열량의 용접열영향부에서 페라이트 변태를 촉진시키는 원소로, 미세 NbN 석출 측면에서 0.005% 이상의 함유량을 요구하였으나, (Ti, Nb)(C,N)의 복합 석출물에서 석출물의 고온 안정도를 떨어뜨리기 때문에 대입열 용접 시 조대 열영향부 인성 향상을 위해서는 그 함량을 0.017% 이하로 제한하는 것이 바람직하다.Nb is an element that combines with N to form NbN precipitates and promotes ferrite transformation in the heat-affected zone of the general heat input.In terms of precipitation of fine NbN, a content of 0.005% or more was required, but (Ti, Nb)(C,N ), it is desirable to limit the content to 0.017% or less in order to improve the toughness of the coarse heat-affected zone during high heat input welding because the high temperature stability of the precipitate is lowered.

·질소(N): 0.002~0.005%Nitrogen (N): 0.002~0.005%

N은 Ti와 결합하여 TiN을 형성함으로써 CG 열영향부 인성 향상에 기여하므로 0.002% 이상 첨가되어야 한다, 그러나 너무 많이 첨가되면 연속주조 시 슬래브에 표면 크랙을 유발할 수 있기 때문에 그 상한을 0.005%로 한정한다.Since N is combined with Ti to form TiN, it contributes to the improvement of the toughness of the CG heat-affected zone, so it should be added at least 0.002%.However, if too much is added, it may cause surface cracks on the slab during continuous casting, so the upper limit is limited to 0.005%. do.

·인(P): 0.008%이하Phosphorus (P): 0.008% or less

P는 불가피하게 강 중에 혼입되는 불순물으로서 입계 취화등을 일으켜 모재와 열영향부 인성을 저하시키므로 0.02%이하로 한정한다.P is an impurity that is inevitably mixed into the steel and causes grain boundary embrittlement, which lowers the toughness of the base metal and the heat-affected zone, so it is limited to 0.02% or less.

·황(S): 0.002%이하Sulfur (S): 0.002% or less

황은 불가피하게 강 중에 혼입되는 불순물로서 강판의 두께중심부 인성을 저하시키므로 0.002%를 그 상한으로 한다.Sulfur is an impurity that is inevitably mixed into the steel, and since it lowers the toughness of the thickness center of the steel sheet, 0.002% is the upper limit.

상술한 조성을 갖는 본 발명의 대입열용접을 위한 해양구조용강 용접이음부는 탄소와 고용 알루미늄이 제한되어 조대열영향부(Coarsened grained heat affected zone:CGHAZ)와 이상역 열영향부 (Intercritical heat affected zone:ICHAZ)에서의 M/A(Martensite-Austenite)상을 최소화시킬 수 있다. The offshore structural steel welded joint for high heat input welding of the present invention having the above composition is limited in carbon and solid solution aluminum, so that the coarsened grained heat affected zone (CGHAZ) and the intercritical heat affected zone :ICHAZ) can minimize the M/A (Martensite-Austenite) phase.

또한 낮은 탄소함량으로 인하여 입열량 증가에 따라 증가하는 초정 입계 페라이트 생성 시, 침상의 비드만 스타튼 페라이트의 생성이 억제되기 때문에 같은 탄소 당량의 고 탄소 강재 대비 저온 인성이 상승된다. In addition, when the super grain boundary ferrite, which increases with the increase in heat input due to the low carbon content, is suppressed, the formation of needle-shaped bead-only staton ferrite is suppressed, so that the low-temperature toughness is increased compared to the high carbon steel material of the same carbon equivalent.

그리고 니오븀 함량을 제한하고 Ti 및 N함량을 높여(Ti,Nb)(C,N)의 고온안정도를 높임으로써 구오스테나이트결정립 성장을 제한하여 조대열영향부에서의 취성상 생성 및 인성 저하를 억제할 수 있다. In addition, by limiting the niobium content and increasing the content of Ti and N to increase the high-temperature stability of (Ti,Nb)(C,N), the growth of old austenite grains is limited, thereby suppressing the formation of a brittle phase in the coarse heat-affected zone and decrease in toughness. can do.

즉, 본 발명에서는, 용접입열량 5kJ/mm~8.75kJ/mm 범위에서, 조대열영향부(CGHAZ)의 초석페라이트와 베이나이트의 상 분율이 1: 4.8~33.5로 제어된 용접이음부를 제공할 수 있다. 5kJ/mm에서 8.75kJ/mm로 용접 입열량이 증가할수록 초석 페라이트의 함량이 2.9%에서 21%로 증가하는 동시에 베이나이트의 분율은 감소하는데, 이에 따라 평균 경도도 222Hv에서 204Hv로 감소한다. 그러나 용접입열량이 8.75kJ/mm를 초과하게 되면(10.0kJ/mm, 15.0kJ/mm), 페라이트와 베이나이트의 상 분율이 1: 4.7이하가 되는 동시에 과도한 침상형 비드만스태튼 페라이트 형성으로 인해 용접부 인성을 보증할 수 없게 될 수 있다. That is, in the present invention, in the range of 5kJ/mm to 8.75kJ/mm of heat input for welding, the phase fraction of the cornerstone ferrite and bainite of the coarse heat-affected zone (CGHAZ) is provided with a controlled weld joint of 1: 4.8 to 33.5. can do. As the welding heat input from 5 kJ/mm to 8.75 kJ/mm increases, the content of cornerstone ferrite increases from 2.9% to 21%, while the fraction of bainite decreases, and accordingly, the average hardness decreases from 222Hv to 204Hv. However, when the welding heat input exceeds 8.75kJ/mm (10.0kJ/mm, 15.0kJ/mm), the phase fraction of ferrite and bainite becomes 1: 4.7 or less, and at the same time, excessive needle-shaped Beadmans Staten ferrite formation. Due to this, the toughness of the weld may not be guaranteed.

또한 본 발명에서 상기 조대열영향부(CGHAZ)는 크기가 0.7㎛ 이하이고 전체조직에 대한 상 분율이 0.04 면적% 이하인 M/A(Martensite-Austenite)상을 포함할 수 있다. 그리고 상기 이상역 열영향부(ICHAZ)는 크기가 0.9㎛ 이하이고 전체조직에 대한 상 분율이 0.3 면적% 이하인 M/A상을 포함할 수 있다. 이러한 조건을 만족할 경우, 대입열 용접에서 -40℃ 충격인성 (평균 최소 46J, 개별 최소 32J)과 -10℃ CTOD (0.25mm 이상)을 만족하는 항복강도 420MPa급의 대입열 해양구조용강 용접이음부를 얻을 수 있다. In addition, in the present invention, the coarse heat-affected zone (CGHAZ) may include a Martensite-Austenite (M/A) phase having a size of 0.7 μm or less and a phase fraction of 0.04 area% or less for the entire tissue. In addition, the ideal zone heat affected zone (ICHAZ) may include an M/A phase having a size of 0.9 μm or less and a phase fraction of 0.3 area% or less for the entire tissue. When these conditions are satisfied, high heat input offshore structural steel welded joints with high heat input of 420 MPa class satisfying -40℃ impact toughness (average minimum 46J, individual minimum 32J) and -10℃ CTOD (0.25mm or more) in high heat input welding Can be obtained.

한편 본 발명에서 입열량 상승에 따라 상변태에 직접적인 영향을 주는 냉각속도가 느려지는데, M/A상의 생성 측면에서 용접열영향부 중 가장 취약하다고 알려진 조대열영향부가 이상역으로 재가열되는 ICCGHAZ에서 피크온도가 같을 경우 입열량 증가에 따라(냉각속도가 느려짐에 따라) M/A상 대신에 페라이트와 세멘타이트 생성이 우세해지므로, 입열량 상승이 인성에 미치는 영향은 긍정적이라 할 수 있다.On the other hand, in the present invention, the cooling rate that directly affects the phase transformation is slowed as the heat input increases.In terms of the generation of the M/A phase, the peak temperature in ICCGHAZ, where the coarse heat-affected zone, known to be the most vulnerable among the welding heat-affected zones, is reheated to the ideal zone In the case of the same, as the heat input increases (as the cooling rate decreases), the generation of ferrite and cementite instead of the M/A phase becomes dominant, so the effect of the increase in the heat input amount on the toughness can be said to be positive.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

강 조성성분(중량%)Steel composition (% by weight) CC SiSi MnMn PP SS Sol.AlSol.Al CuCu NiNi NbNb TiTi N(ppm)N(ppm) 발명예Invention example 0.0740.074 0.220.22 1.61.6 0.0080.008 0.0020.002 0.0230.023 0.230.23 0.610.61 0.0120.012 0.0150.015 4040

상기 표 1과 같은 강조성 성분을 갖는 강재를 이용하여, 5kJ/mm, 8.75kJ/mm, 10kJ/mm, 15kJ/mm로 입열량을 변화시키면서 실 용접을 실시하였다. Using a steel material having an emphasizing component as shown in Table 1, thread welding was performed while varying the amount of heat input to 5kJ/mm, 8.75kJ/mm, 10kJ/mm, and 15kJ/mm.

도 1은 5kJ/mm, 8.75kJ/mm, 10kJ/mm 및 15kJ/mm 입열량별 800~500℃ 온도범위에서 7℃/sec, 4℃/sec, 3.5℃/sec 및 2.3℃/sec의 냉각 속도로 냉각 시, 냉각 중의 상변태 온도 및 상분율을 측정한 결과를 나타내는 그림이다. Figure 1 is 5kJ/mm, 8.75kJ/mm, 10kJ/mm and 15kJ/mm cooling of 7℃/sec, 4℃/sec, 3.5℃/sec and 2.3℃/sec in the temperature range of 800~500℃ for each heat input This figure shows the result of measuring the phase transformation temperature and phase fraction during cooling when cooling at speed.

도 1에 나타난 바와 같이, 입열량 증가에 따라 Ts온도(초정 페라이트가 생성되는 온도)가 증가하였고, 베이나이트 시작온도(Bs)와, 변태 종료온도(Tf)는 도 1에 나타난 바와 같다. 최종 상분율(초석 페라이트:베이나이트)은 5, 8.75, 10, 15.0kJ/mm의 용접속도에서 각각 2.9 : 97.1, 13.2 : 66.8, 17.5 : 82.5, 21 : 79 임을 확인하였다. 즉, 용접 입열량이 증가할수록 초석 페라이트의 함량이 증가함을 확인하였으며, 그에 따라 평균 경도도 222Hv에서 195Hv로 감소함을 확인하였다. 그리고 관찰된 페라이트의 형상은 대부분 입계 페라이트로 관찰되었으며, 입열량 증가에 따라 그 폭이 커짐을 확인하였다. 그리고 800~500℃ 온도범위에서 냉각속도, 3.5℃/sec인 10.0kJ/mm의 입열량 조건에서는 조대한 침상형 비드만스태튼 페라이트가 대폭 증가함을 확인하였다. As shown in FIG. 1, the Ts temperature (the temperature at which the primary ferrite is generated) increased as the amount of heat input increased, and the bainite start temperature (Bs) and the transformation end temperature (Tf) are as shown in FIG. The final phase fraction (cornerstone ferrite: bainite) was confirmed to be 2.9: 97.1, 13.2: 66.8, 17.5: 82.5, 21: 79 at welding speeds of 5, 8.75, 10, and 15.0 kJ/mm, respectively. That is, it was confirmed that the content of cornerstone ferrite increased as the amount of heat input for welding increased, and accordingly, it was confirmed that the average hardness also decreased from 222Hv to 195Hv. And it was confirmed that most of the observed ferrite shapes were grain boundary ferrites, and the width increased as the amount of heat input increased. And it was confirmed that the coarse needle-shaped Beadman Staten ferrite significantly increased under the condition of cooling rate in the temperature range of 800~500℃ and heat input of 10.0kJ/mm (3.5℃/sec).

도 2는 CG, ICHAZ에서의 입열량 별 M/A상 크기 변화를 보이는 그래프이며, 도3은 CG, ICHAZ에서의 입열량 별 M/A상 분율 변화를 보이는 그래프이다. 2 is a graph showing the change in the size of the M/A phase according to the amount of heat input in CG and ICHAZ, and FIG. 3 is a graph showing the change in the fraction of the M/A phase according to the amount of heat input in CG and ICHAZ.

도 2-3에 나타난 바와 같이, CG, ICHAZ 공통으로 5.0에서 8.75kJ/mm로 입열량이 증가할수록 저온인성을 악화시키는 M/A상의 크기와 분율이 작아짐을 확인할 수 있다.As shown in Fig. 2-3, it can be seen that the size and fraction of the M/A phase deteriorating the low-temperature toughness decreases as the amount of heat input increases from 5.0 to 8.75 kJ/mm in common for CG and ICHAZ.

하기 표 2는 용접부를 포함한 입열량 별 전두께에 대한 인장시험 결과이다. EN S460 강재의 요구사항인 최소 항복강도 400MPa 및 인장강도 500이상 660MPa이하의 기준을 모두 만족함을 확인할 수 있다.Table 2 below shows the results of a tensile test for the total thickness of each heat input including the weld. It can be seen that the requirements of EN S460 steel meet all the criteria of a minimum yield strength of 400 MPa and a tensile strength of 500 to 660 MPa.

입열량Heat input YS(MPa)YS(MPa) TS(MPa)TS(MPa) EL(%) EL(%) 5.0kJ/mm5.0kJ/mm 444.62444.62 575.52575.52 27.4227.42 8.75kJ/mm8.75kJ/mm 432.67432.67 567.26567.26 23.2823.28

하기 표 3은 강재 두께 (Face, Center, Root) 및 노치위치(용접부(WM), 조대열영향부(CGHAZ), 단상 열영향부(SCHAZ))에서의 입열량에 따른 -40℃ 충격인성 시험 결과이며, 모든 조건에서 ENS460 강재의 요구사항인 최소 46J 이상의 기준을 모두 만족함을 확인할 수 있다.Table 3 shows the -40°C impact toughness test according to the heat input in the steel thickness (Face, Center, Root) and notch location (welded part (WM), coarse heat affected part (CGHAZ), single-phase heat affected part (SCHAZ)) It is a result, and it can be confirmed that all the criteria of at least 46J, which is the requirement of ENS460 steel, are satisfied under all conditions.

5.0kJ/mm,
충격흡수에너지(J)
5.0kJ/mm,
Impact absorption energy (J)
8.75kJ/mm,
충격흡수에너지(J)
8.75kJ/mm,
Impact absorption energy (J)
FACE(표면)FACE (surface) WMWM 114.6114.6 109.83109.83 CGCG 132.4132.4 105.96105.96 SCSC 222.3222.3 244.8244.8 CENTER(t/2)CENTER(t/2) WMWM 105.2105.2 179.59179.59 CGCG 152.7152.7 243.35243.35 SCSC 183.3183.3 178.99178.99 ROOT(저면)ROOT (base) WMWM 126126 135.45135.45 CGCG 213.1213.1 104.02104.02 SCSC 277.5277.5 294.04294.04

하기 표 4는 노치 위치(용접부(WM), 조대열영향부(CGHAZ), 단상열영향부(SCHAZ))에서의 입열량에 따른 -10℃ CTOD 시험의 결과이며, 모든 조건에서 최소 0.25mm 이상의 우수한 CTOD 결과를 보임을 알 수 있다.Table 4 below is the result of -10°C CTOD test according to the heat input at the notch position (welded part (WM), coarse heat affected part (CGHAZ), single phase heat affected part (SCHAZ)), and at least 0.25 mm or more in all conditions It can be seen that it shows excellent CTOD results.

Heat inputHeat input Notch Notch CTOD(BS7448), mmCTOD(BS7448), mm 5.0kJ/mm5.0kJ/mm Weld MetalWeld Metal 0.390.39 CGHAZCGHAZ 1.471.47 SCHAZSCHAZ 0.40.4 8.75kJ/mm8.75kJ/mm Weld MetalWeld Metal 1.01.0 CGHAZCGHAZ 2.422.42 SCHAZSCHAZ 1.111.11

상술한 바와 같이, 용접입열량 5kJ/mm ~ 8.75kJ/mm에서, 조대열영향부(CGHAZ)의 초석페라이트와 베이나이트의 상 분율이 1: 4.8~33.5이고, 상기 조대열영향부(CGHAZ)는 그 크기가 0.7㎛ 이하이고 전체조직에 대한 상 분율이 0.04 면적% 이하인 M/A상을 포함하며, 그리고 이상역 열영향부(ICHAZ)는 그 크기가 0.9㎛ 이하이고 전체조직에 대한 상 분율이 0.3 면적% 이하인 M/A상을 포함하는 용접이음부를 제공함으로서 안정적인 용접부 인성을 확보할 수 있다. As described above, in the amount of heat input from welding 5kJ/mm to 8.75kJ/mm, the phase fraction of cornerstone ferrite and bainite in the coarse heat affected zone (CGHAZ) is 1: 4.8 to 33.5, and the coarse heat affected zone (CGHAZ) Includes the M/A phase whose size is 0.7㎛ or less and the phase fraction for the whole tissue is 0.04 area% or less, and the ideal zone heat affected zone (ICHAZ) is 0.9㎛ or less and the phase fraction for the whole tissue. By providing a welded joint including an M/A phase of 0.3% by area or less, stable welded toughness can be secured.

본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.In the detailed description of the present invention, a preferred embodiment of the present invention has been described, but a person of ordinary skill in the art to which the present invention pertains can, of course, make various modifications without departing from the scope of the present invention. Therefore, the scope of the present invention is limited to the described embodiments and should not be determined, and should not be determined by the claims to be described later, as well as those equivalent thereto.

Claims (1)

중량%로, 탄소(C): 0.07~0.15%, 규소(Si): 0.10~0.25%, 망간(Mn): 1.5~1.65%, 인(P): 0.008% 이하, S: 0.002% 이하, 알루미늄(Al): 0.015~0.025%, 구리(Cu): 0.2~0.3%, 니켈(Ni): 0.5~1.0%, 니오븀(Nb): 0.017% 이하(0%는 제외), 티타늄(Ti): 0.010~0.025%, 질소(N):0.002~0.005%, 잔부 Fe 및 불가피한 불순물을 포함하고,
용접입열량 5kJ/mm ~ 8.75kJ/mm 범위에서,
조대열영향부(CGHAZ)의 초석페라이트와 베이나이트의 상 분율이 1: 4.8~33.5이고;
상기 조대열영향부(CGHAZ)는 크기가 0.7㎛ 이하이고 전체조직에 대한 상 분율이 0.04 면적% 이하인 M/A(Martensite-Austenite)상을 포함하며; 그리고
이상역 열영향부(ICHAZ)는 크기가 0.9㎛ 이하이고 전체조직에 대한 상 분율이 0.3 면적% 이하인 M/A상을 포함하는 것을 특징으로 하는 저온인성이 우수한 대입열 해양구조용강 용접이음부.
In wt%, carbon (C): 0.07 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.5 to 1.65%, phosphorus (P): 0.008% or less, S: 0.002% or less, aluminum (Al): 0.015 to 0.025%, Copper (Cu): 0.2 to 0.3%, Nickel (Ni): 0.5 to 1.0%, Niobium (Nb): 0.017% or less (excluding 0%), Titanium (Ti): 0.010 ~0.025%, nitrogen (N): 0.002 ~ 0.005%, the balance contains Fe and inevitable impurities,
In the range of welding heat input 5kJ/mm ~ 8.75kJ/mm,
The phase fraction of cornerstone ferrite and bainite in the coarse heat affected zone (CGHAZ) is 1: 4.8-33.5;
The coarse heat affected zone (CGHAZ) includes a M/A (Martensite-Austenite) phase having a size of 0.7 μm or less and a phase fraction of 0.04 area% or less for the entire tissue; And
The ideal heat-affected zone (ICHAZ) is a welded joint of high heat input marine structural steel having excellent low-temperature toughness, characterized in that it includes an M/A phase having a size of 0.9 μm or less and a phase fraction of 0.3 area% or less for the entire structure.
KR1020180164149A 2018-12-18 2018-12-18 Offshore structural steel weldment for high heat input welding KR102200243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180164149A KR102200243B1 (en) 2018-12-18 2018-12-18 Offshore structural steel weldment for high heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180164149A KR102200243B1 (en) 2018-12-18 2018-12-18 Offshore structural steel weldment for high heat input welding

Publications (2)

Publication Number Publication Date
KR20200075455A KR20200075455A (en) 2020-06-26
KR102200243B1 true KR102200243B1 (en) 2021-01-07

Family

ID=71136882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180164149A KR102200243B1 (en) 2018-12-18 2018-12-18 Offshore structural steel weldment for high heat input welding

Country Status (1)

Country Link
KR (1) KR102200243B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323336A (en) 2000-05-16 2001-11-22 Nippon Steel Corp High strength steel sheet excellent in low temperature toughness of heat affected welded zone
JP2004218010A (en) 2003-01-15 2004-08-05 Kobe Steel Ltd Steel for welding
KR101726082B1 (en) 2015-12-04 2017-04-12 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080090567A (en) * 2006-03-16 2008-10-08 수미도모 메탈 인더스트리즈, 리미티드 Steel sheet for submerged arc welding
KR20100067509A (en) 2008-12-11 2010-06-21 주식회사 포스코 Method for producing steel plate for offshore structures having excellent ctod properties in heat affected zone
EP2644733B1 (en) * 2010-11-22 2016-05-25 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323336A (en) 2000-05-16 2001-11-22 Nippon Steel Corp High strength steel sheet excellent in low temperature toughness of heat affected welded zone
JP2004218010A (en) 2003-01-15 2004-08-05 Kobe Steel Ltd Steel for welding
KR101726082B1 (en) 2015-12-04 2017-04-12 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel

Also Published As

Publication number Publication date
KR20200075455A (en) 2020-06-26

Similar Documents

Publication Publication Date Title
CN108368587B (en) High strength steel having excellent embrittlement prevention and embrittlement initiation resistance of welded portion and method for producing the same
JPWO2018199145A1 (en) High Mn steel and method of manufacturing the same
KR20130035277A (en) High-tensile strength steel and manufacturing method thereof
KR20140017001A (en) Steel plate with low yield ratio high toughness and manufacturing method thereof
US20110268601A1 (en) Steel for welded structure and producing method thereof
KR20160079166A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP7022822B2 (en) Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
KR101467049B1 (en) Steel sheet for line pipe and method of manufacturing the same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
JP4751341B2 (en) Steel excellent in CTOD of weld heat affected zone and method for producing the same
KR102255821B1 (en) Ultra-thick steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
KR102200243B1 (en) Offshore structural steel weldment for high heat input welding
KR100847174B1 (en) High tension steel sheet having superior low temperature toughness in weld heat-affected zone
KR101320222B1 (en) High strength steel plate and method of manufacturing the steel plate
KR101786258B1 (en) The steel sheet having high-strength and excellent heat affected zone toughness and method for manufacturing the same
KR102349426B1 (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same
JP2688312B2 (en) High strength and high toughness steel plate
KR101988768B1 (en) Offshore structural steel having a good low-temperature toughness for high heat input welding
KR20190076163A (en) High strength steel and method of manufacturing the same
KR102275814B1 (en) Ultra thick steel plate and manufacturing method for offshore structure having ultra-high strength and high toughness
KR20150002956A (en) Steel sheet for line pipe and method of manufacturing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant