KR102200143B1 - Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof - Google Patents

Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof Download PDF

Info

Publication number
KR102200143B1
KR102200143B1 KR1020190012873A KR20190012873A KR102200143B1 KR 102200143 B1 KR102200143 B1 KR 102200143B1 KR 1020190012873 A KR1020190012873 A KR 1020190012873A KR 20190012873 A KR20190012873 A KR 20190012873A KR 102200143 B1 KR102200143 B1 KR 102200143B1
Authority
KR
South Korea
Prior art keywords
crp
bioprobe
target protein
detection
probe
Prior art date
Application number
KR1020190012873A
Other languages
Korean (ko)
Other versions
KR20200095144A (en
Inventor
박승경
파한
지샨
Original Assignee
한국기술교육대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기술교육대학교 산학협력단 filed Critical 한국기술교육대학교 산학협력단
Priority to KR1020190012873A priority Critical patent/KR102200143B1/en
Publication of KR20200095144A publication Critical patent/KR20200095144A/en
Application granted granted Critical
Publication of KR102200143B1 publication Critical patent/KR102200143B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4737C-reactive protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

초기 증폭 단백질 바이오마커를 검출할 수 있도록 신호 증폭에 의한 비색 분석의 민감도와 신속성을 높이기 위해 디자인된 표적단백질 검출용 바이오프로브, 이의 제조 방법, 이를 갖는 분석장치 및 그 방법이 개시된다. 표적단백질 검출용 바이오프로브는, 15nm의 평균 직경을 갖는 금나노입자; 상기 금나노입자에 결합된 C 반응성 단백질(C-reactive protein, CRP) 항체(antibody); 및 상기 금나노입자에 결합되고, 광학 리포터로 태그된 표지된 니켈에 대해 높은 친화성을 갖는 복수의 6X히스택들을 포함한다. 디자인된 6X히스택-금나노입자-안티 CRP 프로브는 물만 사용하는 환경 친화적 절차를 통해 합성되므로 친환경성을 가지고 있다. 또한 6X히스택 나노입자 프로브는 간단한 검출(3단계)로 설계되었으므로 간단성을 가지고 있다. 또한 6X히스택-금나노입자-안티 CRP 프로브는 2시간 이내에 제조되므로 신속성을 가지고 있다. 또한 6X히스택-금나노입자-안티 CRP 프로브의 민감도는 27.7pg/ml의 LOD를 요구하는 CRP 단백질 검출에서 입증되어 민감성을 가지고 있다. Disclosed are a bioprobe for detection of a target protein designed to increase the sensitivity and speed of colorimetric analysis by signal amplification so as to detect an initial amplified protein biomarker, a method for manufacturing the same, an analysis device having the same, and a method thereof. The bioprobe for detection of a target protein includes gold nanoparticles having an average diameter of 15 nm; C-reactive protein (CRP) antibody bound to the gold nanoparticles; And a plurality of 6×histacks bonded to the gold nanoparticles and having high affinity for labeled nickel tagged with an optical reporter. The designed 6X heat-stack-gold nanoparticle-anti-CRP probe is eco-friendly because it is synthesized through an environmentally friendly procedure using only water. In addition, the 6X Histack nanoparticle probe is designed with simple detection (3 steps), so it has simplicity. In addition, the 6X histack-gold nanoparticle-anti-CRP probe is manufactured within 2 hours, so it has rapidity. In addition, the sensitivity of the 6X histack-gold nanoparticle-anti-CRP probe has been demonstrated in the detection of CRP protein requiring an LOD of 27.7 pg/ml and has sensitivity.

Description

표적단백질 검출용 바이오프로브, 이의 제조 방법, 이를 갖는 분석장치 및 그 방법{BIO-PROBE FOR DETECTING TARGET PROTEIN, MANUFACTURING METHOD THEREOF, ANALYZING APPARATUS HAVING THE SAME AND ANALYZING METHOD THEREOF}A bioprobe for detecting a target protein, a method for manufacturing the same, an analysis device having the same, and a method therefor

본 발명은 표적단백질 검출용 바이오프로브, 이의 제조 방법, 이를 갖는 분석장치 및 그 방법에 관한 것으로, 보다 상세하게는 신호 증폭에 의한 비색 분석(colorimetric assay)의 민감도와 신속성을 높이기 위해 디자인된 표적단백질 검출용 바이오프로브, 이의 제조 방법, 이를 갖는 분석장치 및 그 방법에 관한 것이다. The present invention relates to a bioprobe for detection of a target protein, a manufacturing method thereof, an analysis device having the same, and a method thereof, and more particularly, a target protein designed to increase the sensitivity and speed of a colorimetric assay by signal amplification. It relates to a bioprobe for detection, a manufacturing method thereof, an analysis device having the same, and a method thereof.

바이오마커(biomarker)는 생물학적 또는 의학적 검체내에 존재하는 일종의 생체분자로서, 이들의 구조나 농도의 변화를 정성적 및/또는 정량적으로 탐지함으로써 질병의 상태를 진단하고, 약물의 치료효과 및 다른 질병과의 연관성을 종합적으로 판단하게 해주는 표식자 역할을 수행한다. 질병의 조기진단을 위해서는 발병 초기단계에서 나타나는 바이오마커를 정량적으로 분석하는 기술이 필수적이다. 이는, 질병의 모니터링을 위해 현재 사용되는 기술은 민감도, 검역속도, 및 비용 등의 한계성 때문에 질병의 조기진단에 대한 기술적 요구에 적절히 대응하지 못하고 있기 때문이다.A biomarker is a kind of biomolecule that exists in a biological or medical specimen, and diagnoses the condition of a disease by qualitatively and/or quantitatively detecting changes in their structure or concentration, and the therapeutic effect of drugs and other diseases. It plays the role of a marker that allows you to comprehensively judge the relevance of For early diagnosis of disease, a technology that quantitatively analyzes biomarkers appearing in the early stages of onset is essential. This is because the technology currently used for disease monitoring is not adequately responding to the technical demand for early diagnosis of disease due to limitations such as sensitivity, quarantine speed, and cost.

바이오마커를 정량적으로 분석하기 위해서, 효소면역항체법(ELISA: Enzyme-Linked ImmunoSorbent Assay)법, 웨스턴 블랏팅법 및 질량분석기(Mass spectrometry)를 이용한 방법이 보편적으로 사용된다. ELISA는 단백질 검출을 위한 표준 방법이다. C-반응성 단백질(CRP)은 또한 ELISA에 의해 검출된다. C 반응성 단백(CRP)은 5개의 원형 서브 구조가 집합하여 이루어진 단백질이다. 혈청 내에 존재하고 간에서 생성되며, 감염이나 염증성 반응에서 혈액 내 증가를 관찰할 수 있고, 특히, 심혈관 질환(cardiovascular disease, CVD)에서 급격히 증가하는 것으로 알려져 있다 In order to quantitatively analyze biomarkers, methods using an enzyme-linked immunosorbent assay (ELISA) method, western blotting method, and mass spectrometry are commonly used. ELISA is a standard method for protein detection. C-reactive protein (CRP) is also detected by ELISA. C-reactive protein (CRP) is a protein consisting of five circular substructures. It is present in the serum and produced in the liver, and an increase in blood can be observed in infection or inflammatory reaction, and is known to increase rapidly in cardiovascular disease (CVD).

ELISA는 10 단계 이상의 여러 단계가 필요하므로 탐지 시간은 3 내지 6 시간까지 소요된다. ELISA는 2-3세트의 항체가 필요하므로 비용이 많이 든다. CRP ELISA의 검출한계(limited of detection, 이하, LOD)는 200pg/ml이다. Since ELISA requires several steps of 10 or more, the detection time takes from 3 to 6 hours. ELISA is expensive because it requires 2-3 sets of antibodies. The limit of detection (LOD) of CRP ELISA is 200 pg/ml.

100~200pg/ml 범위의 LOD를 갖는 증폭된 신호로 단백질 검출을 위해 자기 나노입자, 양자점, 탄소 도트 기반 프로브가 도입되었으나, 시간이 오래 걸리고(12-24Hrs), 고온(180-300oC)이 요구되며, 독성 시약이다. Magnetic nanoparticles, quantum dots, and carbon dot-based probes were introduced for protein detection as an amplified signal with LOD in the range of 100 to 200 pg/ml, but it takes a long time (12-24Hrs) and requires a high temperature (180-300oC). And is a toxic reagent.

단백질을 검출하는 다른 기술에는 매트릭스 레이저이온화 비행시간차 질량분석(Matrix assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF), 고성능 액체 크로마토그래피(High-Performance Liquid Chromatography, HPLC) 등이 있다. 이러한 기술의 감도는 200pg/ml이다. 하지만, 이러한 검출 기술을 채용하는 검출기기는 값이 비싸고 무거우며, 숙련된 인원 및 시간(8-24 시간)이 많이 걸리는 프로토콜을 필요로 한다. Other techniques for detecting proteins include Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), and High-Performance Liquid Chromatography (HPLC). . The sensitivity of this technique is 200 pg/ml. However, detectors employing such detection techniques are expensive and heavy, and require skilled personnel and a protocol that takes a lot of time (8-24 hours).

특히, 고성능 액체 크로마토그래피(High-Performance Liquid Chromatography; HPLC)가 있다. 이 방법은 감도가 높지만 추출, 카트리지, 면역친화성 칼럼 등의 세척, 분석 등의 프로세스를 거쳐야 하므로 그 검출과정이 복잡하여 전문가가 필요하고 분석에 장시간이 소요될 뿐만 아니라 비용이 높다는 단점이 있다. In particular, there is High-Performance Liquid Chromatography (HPLC). Although this method has high sensitivity, it has a disadvantage in that the detection process is complicated because it has to undergo processes such as extraction, washing of cartridges, and immuno-affinity columns, and analysis, which requires an expert and requires a long time for analysis and high cost.

대한민국 등록특허 제10-1088885호Korean Patent Registration No. 10-1088885 대한민국 공개특허 제10-2017-0017266호Republic of Korea Patent Publication No. 10-2017-0017266 대한민국 등록특허 제10-1612094호Korean Patent Registration No. 10-1612094 대한민국 등록특허 제10-1928620호Korean Patent Registration No. 10-1928620

이에 본 발명의 기술적 과제는 이러한 점에 착안한 것으로, 본 발명의 목적은 초기 증폭 단백질 바이오마커를 검출할 수 있도록 신호 증폭에 의한 비색 분석의 민감도와 신속성을 높이기 위해 디자인된 표적단백질 검출용 바이오프로브를 제공하는 것이다. Accordingly, the technical problem of the present invention is focused on this point, and an object of the present invention is a bioprobe for detection of a target protein designed to increase the sensitivity and speed of colorimetric analysis by signal amplification so that the initial amplified protein biomarker can be detected. Is to provide.

본 발명의 다른 목적은 상기한 표적단백질 검출용 바이오프로브의 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing a bioprobe for detecting the target protein.

본 발명의 또 다른 목적은 상기한 표적단백질 검출용 바이오프로브를 이용한 분석장치를 제공하는 것이다. Another object of the present invention is to provide an analysis device using the bioprobe for detecting a target protein.

본 발명의 또 다른 목적은 상기한 표적단백질 검출용 바이오프로브를 이용한 분석방법을 제공하는 것이다. Another object of the present invention is to provide an analysis method using the bioprobe for detecting a target protein.

상기한 본 발명의 목적을 실현하기 위하여 일실시예에 따른 표적단백질 검출용 바이오프로브는, 15nm의 평균 직경을 갖는 금나노입자; 상기 금나노입자에 결합된 C 반응성 단백질(C-reactive protein, CRP) 항체(antibody); 및 상기 금나노입자에 결합되고, 광학 리포터로 태그된 표지된 니켈에 대해 높은 친화성을 갖는 복수의 6X히스택들을 포함한다. In order to realize the object of the present invention as described above, a bioprobe for detecting a target protein according to an embodiment includes gold nanoparticles having an average diameter of 15 nm; C-reactive protein (CRP) antibody bound to the gold nanoparticles; And a plurality of 6×histacks bonded to the gold nanoparticles and having high affinity for labeled nickel tagged with an optical reporter.

일 실시예에서, 상기 금나노입자는 구연산염(citrate)으로 덮힐 수 있다.In one embodiment, the gold nanoparticles may be covered with citrate.

삭제delete

일 실시예에서, 상기 항체는 단일클론항체를 포함할 수 있다. In one embodiment, the antibody may include a monoclonal antibody.

상기한 본 발명의 다른 목적을 실현하기 위하여 일실시예에 따른 표적단백질 검출용 바이오프로브의 제조 방법은, (i) 15nm의 평균 직경을 갖는 금나노입자를 포함하는 CRP-항체-금나노입자 접합체를 생성하는 단계; 및 (ii) 상기 CRP 단일클론항체-금나노입자 접합체에 6X히스택을 로딩하여 6X히스택-금나노입자-안티 CRP 프로브를 획득하는 단계를 포함한다. In order to realize another object of the present invention, a method of manufacturing a bioprobe for detecting a target protein according to an embodiment includes: (i) CRP-antibody-gold nanoparticle conjugate comprising gold nanoparticles having an average diameter of 15 nm Generating a; And (ii) loading the CRP monoclonal antibody-gold nanoparticle conjugate with 6X histack to obtain a 6X histack-gold nanoparticle-anti-CRP probe.

삭제delete

삭제delete

일 실시예에서, 단계(i)는, (i-1) 15nm의 평균 직경을 갖는 금나노입자를 포함하는 금나노입자 용액(AuNP)의 혼합 용액과 안티 CRP 단일클론항체(Anti-CRP mAb)를 교반하는 단계; (i-2) 단계(i-1)에서 획득된 결과물을 원심 분리하는 단계; 및 (i-3) 단계(i-2)에서 획득된 결과물에서 상층액을 제거하여 CRP-항체-금나노입자 접합체를 획득하는 단계를 포함할 수 있다. In one embodiment, step (i) is, (i-1) a mixed solution of a gold nanoparticle solution (AuNP) containing gold nanoparticles having an average diameter of 15 nm and an anti-CRP monoclonal antibody (Anti-CRP mAb) Agitating; (i-2) centrifuging the product obtained in step (i-1); And (i-3) removing the supernatant from the resultant obtained in step (i-2) to obtain a CRP-antibody-gold nanoparticle conjugate.

일 실시예에서, 상기 안티 CRP 단일클론항체와 상기 금나노입자 용액은 농도는 10 : 1의 비율로 혼합될 수 있다. In one embodiment, the anti-CRP monoclonal antibody and the gold nanoparticle solution may be mixed at a concentration of 10:1.

일 실시예에서, 상기 안티 CRP 단일클론항체의 농도는 30nM이고, 상기 금나노입자 용액의 농도는 3nM일 수 있다. In one embodiment, the concentration of the anti-CRP monoclonal antibody may be 30 nM, and the concentration of the gold nanoparticle solution may be 3 nM.

일 실시예에서, 상기 혼합 용액은 실온에서 500rpm으로 20분 동안 교반될 수 있다. In one embodiment, the mixed solution may be stirred for 20 minutes at 500 rpm at room temperature.

일 실시예에서, 단계(i-2)의 원심 분리는 25분 동안 10,000rpm에서 이루어질 수 있다. In one embodiment, the centrifugation of step (i-2) may take place at 10,000 rpm for 25 minutes.

일 실시예에서, 단계(ii)는, (ii-1) 6X히스택을 첨가하는 단계; (ii-2) 단계(ii-1)에서 획득된 혼합물을 교반하는 단계; (ii-3) 단계(ii-2)에서 획득된 결과물을 원심 분리하는 단계; 및 (ii-4) 단계(ii-3)에서 획득된 결과물에서 상층액을 제거하여 6X히스택-금나노입자-안티 CRP 프로브를 획득하는 단계를 포함할 수 있다. In one embodiment, step (ii), (ii-1) adding 6X heat stack; (ii-2) stirring the mixture obtained in step (ii-1); (ii-3) centrifuging the product obtained in step (ii-2); And (ii-4) removing the supernatant from the resultant obtained in step (ii-3) to obtain a 6X histack-gold nanoparticle-anti-CRP probe.

일 실시예에서, 단계(ii-1)에서 첨가되는 6X히스택의 농도는 대략 150nM일 수 있다. In one embodiment, the concentration of 6X heat stack added in step (ii-1) may be approximately 150 nM.

일 실시예에서, 단계(ii-2)의 교반은 대략 180rpm에서 대략 15분간 이루어질 수 있다. In one embodiment, the agitation of step (ii-2) may be performed at about 180 rpm for about 15 minutes.

일 실시예에서, 단계(ii-3)의 원심 분리는 대략 4℃에서 20분 내지 25분 동안 대략 10,000rpm으로 이루어질 수 있다. In one embodiment, the centrifugation of step (ii-3) may be performed at approximately 4° C. for 20 to 25 minutes at approximately 10,000 rpm.

이러한 표적단백질 검출용 바이오프로브, 이의 제조 방법, 이를 갖는 분석장치 및 그 방법에 의하면, 디자인된 6X히스택-금나노입자-안티 CRP 프로브는 물만 사용하는 환경 친화적 절차를 통해 합성되므로 친환경성을 가지고 있다. 또한 6X히스택 나노입자 프로브는 간단한 검출(3단계)로 설계되었으므로 간단성을 가지고 있다. 또한 6X히스택-금나노입자-안티 CRP 프로브는 2시간 이내에 제조되므로 신속성을 가지고 있다. 또한 6X히스택-금나노입자-안티 CRP 프로브의 민감도는 27.7pg/ml의 LOD(limited of detection)를 요구하는 CRP 단백질 검출에서 입증되어 민감성을 가지고 있다. According to such a bioprobe for detection of a target protein, its manufacturing method, an analysis device having the same, and the method, the designed 6X Heat Stack-Gold Nanoparticle-Anti-CRP probe is synthesized through an environmentally friendly procedure using only water, so it has eco-friendliness have. In addition, the 6X Histack nanoparticle probe is designed with simple detection (3 steps), so it has simplicity. In addition, the 6X histack-gold nanoparticle-anti-CRP probe is manufactured within 2 hours, so it has rapidity. In addition, the sensitivity of the 6X histack-gold nanoparticle-anti-CRP probe has been demonstrated in the detection of CRP protein requiring a limited of detection (LOD) of 27.7 pg/ml, and has sensitivity.

도 1는 본 발명의 일실시예에 따른 표적단백질 검출용 바이오프로브의 제조 방법을 설명하기 위한 흐름도이다.
도 2는 본 발명에 따른 표적단백질 검출용 바이오프로브인 6X히스택-금나노입자-안티 CRP 프로브의 합성 과정을 개략적으로 설명하기 위한 도면이다.
도 3은 본 발명에 따른 표적단백질 검출용 바이오프로브인 6X히스택-금나노입자-안티 CRP 프로브 기반 CRP 검출을 설명하기 위한 도면이다.
도 4는 본 발명에 따른 표적단백질 검출용 바이오프로브인 6X히스택-금나노입자-안티 CRP 프로브를 이용한 C-반응성 단백질(CRP) 검출 과정을 설명하기 위한 도면이다.
도 5은 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브를 이용한 C-반응성 단백질(CRP)의 검출 방법을 설명하기 위한 흐름도이다.
도 6a는 본 발명에 따라 C-반응성 단백질(CRP)의 검출을 설명하기 위한 표이고, 도 6b는 도 6a의 표를 CRP 농도 대 흡광도로 나타낸 그래프이다.
1 is a flowchart illustrating a method of manufacturing a bioprobe for detection of a target protein according to an embodiment of the present invention.
FIG. 2 is a diagram schematically illustrating a synthesis process of a 6X histack-gold nanoparticle-anti-CRP probe, which is a bioprobe for detection of a target protein according to the present invention.
3 is a view for explaining CRP detection based on a 6X histack-gold nanoparticle-anti-CRP probe, which is a bioprobe for detection of a target protein according to the present invention.
4 is a view for explaining a C-reactive protein (CRP) detection process using a 6X histack-gold nanoparticle-anti-CRP probe, a bioprobe for detection of a target protein according to the present invention.
5 is a flowchart illustrating a method of detecting C-reactive protein (CRP) using a 6X histack-gold nanoparticle-anti-CRP probe according to the present invention.
Figure 6a is a table for explaining the detection of C-reactive protein (CRP) according to the present invention, Figure 6b is a graph showing the CRP concentration versus absorbance in the table of Figure 6a.

이하, 첨부한 도면들을 참조하여, 본 발명을 보다 상세하게 설명하고자 한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. In the present invention, various modifications may be made and various forms may be applied, and specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific form disclosed, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.

각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. In describing each drawing, similar reference numerals have been used for similar elements. In the accompanying drawings, the dimensions of the structures are shown to be enlarged compared to the actual size for clarity of the present invention.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may be referred to as a first component. Singular expressions include plural expressions unless the context clearly indicates otherwise.

본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In the present application, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility of being added.

또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. In addition, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Terms as defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined in this application. Does not.

도 1는 본 발명의 일실시예에 따른 표적단백질 검출용 바이오프로브의 제조 방법을 설명하기 위한 흐름도이다. 도 2는 본 발명에 따른 표적단백질 검출용 바이오프로브인 6X히스택-금나노입자-안티 CRP 프로브의 합성 과정을 개략적으로 설명하기 위한 도면이다. 1 is a flowchart illustrating a method of manufacturing a bioprobe for detection of a target protein according to an embodiment of the present invention. FIG. 2 is a diagram schematically illustrating a synthesis process of a 6X histack-gold nanoparticle-anti-CRP probe, which is a bioprobe for detection of a target protein according to the present invention.

도 1 및 도 2를 참조하면, 대략 30nM의 안티 CRP 단일클론항체(Anti-CRP mAb)와 대략 3nM의 금나노입자 용액(AuNP)을 혼합하여 혼합 용액을 형성한다(단계 S110). 여기서, 금나노입자는 구연산염(citrate)으로 덮히고 15nm의 평균 직경을 갖는다. 금나노입자는 Turkevich 방법을 통해 합성되었다. 1 and 2, a mixed solution is formed by mixing approximately 30 nM of anti-CRP monoclonal antibody (Anti-CRP mAb) and approximately 3 nM of gold nanoparticle solution (AuNP) (step S110). Here, the gold nanoparticles are covered with citrate and have an average diameter of 15 nm. Gold nanoparticles were synthesized through the Turkevich method.

이어, 안티 CRP 단일클론항체(Anti-CRP mAb)와 금나노입자 용액(AuNP)의 혼합 용액을 실온에서 대략 500rpm으로 대략 20분 동안 교반 처리한다(단계 S120). Then, the mixed solution of anti-CRP monoclonal antibody (Anti-CRP mAb) and gold nanoparticle solution (AuNP) is stirred at room temperature at about 500 rpm for about 20 minutes (step S120).

이어, 10,000rpm에서 대략 25분 동안 원심 분리 처리한다(단계 S130). Then, centrifugation is performed at 10,000 rpm for approximately 25 minutes (step S130).

이어, 물에 뜨는 상청액(supernatant)을 제거한다(단계 S140). 이때 팔레트는 물에 녹았다. Subsequently, a supernatant floating in water is removed (step S140). At this time, the pallet dissolved in water.

CRP 단일클론항체-금나노입자에 6X히스택을 로딩하는 것은 다음 과정에 의해 이루어진다. CRP monoclonal antibody-gold nanoparticles are loaded with 6X Hisstack by the following procedure.

대략 150nM의 6X히스택을 상기 금나노입자 용액에 첨가한다(단계 S150). 6X히스택(His-tag)(또는 폴리히스티딘택(polyhistidine-tag)은 단백질 내 최소 6개 이상의 히스티딘(Histidine, His) 잔기(residue)로 구성된 아미노산 모티프로 보통 단백질의 N말단이나 C말단에 있다. 이는 또한 헥사히스티딘택(Hexa histidine-tag), 히스택(His-tag), 히스6 택(His6 tag) 등으로도 알려져 있다. 6X히스택은 단백질을 검출하는데 사용할 수 있다. 이는 항-히스택 항체를 이용하거나 혹은 그 대신에 금속 이온을 가진 형광 프로브를 이용해 겔 염색(SDS-PAGE)을 통해서도 가능하다. 이런 것은 세포 이하 단위에서 위치 측정, ELISA, 웨스턴 블럿 또는 면역학적 분석방법들에서 유용하게 쓰일 수 있다. 6X히스택은 특정 표면에 있는 단백질을 부동화시키는데 성공적으로 이용할 수 있다. 이런 표면으로는 니켈이나 코발트로 코팅된 미량 정량판(microtiter plate)이나 단백질 어레이(protein array) 등이 있다. Approximately 150 nM of 6X heat stack is added to the gold nanoparticle solution (step S150). 6X His-tag (or polyhistidine-tag) is an amino acid motif consisting of at least 6 or more histidine (His) residues in a protein, usually at the N-terminus or C-terminus of a protein. It is also known as Hexa histidine-tag, His-tag, His6 tag, etc. 6X Histack can be used to detect proteins. It is also possible by gel staining (SDS-PAGE) using a tag antibody or, instead, a fluorescent probe with metal ions, which is useful in subcellular localization, ELISA, Western blot or immunological assays. The 6X Heat Stack can be successfully used to immobilize proteins on a specific surface, such as a microtiter plate coated with nickel or cobalt or a protein array. .

단계 S150에 의한 혼합물을 대략 180rpm에서 대략 15분간 약하게 교반 처리한다(단계 S160). The mixture obtained in step S150 is subjected to a light stirring treatment at about 180 rpm for about 15 minutes (step S160).

이어, 10,000rpm으로 대략 4℃에서 대략 20분간 원심 분리 처리한다(단계 S170). Then, centrifugation treatment is performed at about 4° C. for about 20 minutes at 10,000 rpm (step S170).

이어, 물에 뜨는 상청액을 제거한다(단계 S180). 이때 팔레트는 물에 녹았다. Subsequently, the supernatant liquid floating in water is removed (step S180). At this time, the pallet dissolved in water.

이어, 기능화된 6X히스택-금나노입자-안티 CRP 프로브를 획득하여 대략 4℃에서 보관한다(단계 S190). Subsequently, a functionalized 6X histack-gold nanoparticle-anti-CRP probe is obtained and stored at approximately 4°C (step S190).

도 3은 본 발명에 따른 표적단백질 검출용 바이오프로브인 6X히스택-금나노입자-안티 CRP 프로브 기반 CRP 검출을 설명하기 위한 도면이다. 3 is a view for explaining CRP detection based on a 6X histack-gold nanoparticle-anti-CRP probe, which is a bioprobe for detection of a target protein according to the present invention.

도 3을 참조하면, CRP를 기질(substrate)에 코팅하여 CRP가 코팅된 기질을 준비한다. 준비된 CRP가 코팅된 기질에 도 1 및 도 2에서 설명된 제조 방법으로 제조된 6X히스택-금나노입자-안티 CRP 프로브를 주입하여, 6X히스택-금나노입자-안티 CRP-CRP 복합체를 구성한다. Referring to FIG. 3, a CRP-coated substrate is prepared by coating CRP on a substrate. The prepared CRP-coated substrate was injected with a 6X histack-gold nanoparticle-anti-CRP probe prepared by the manufacturing method described in FIGS. 1 and 2 to construct a 6X histack-gold nanoparticle-anti-CRP-CRP complex do.

이어, 식물성 단백질인 호스래디쉬 퍼록시다제(horseradish peroxidase, HRP)를 투여하여 6X히스택-금나노입자-니켈-HRP 프로브-CRP-안티 CRP 복합체를 구성한다. Subsequently, a plant protein horseradish peroxidase (HRP) was administered to construct a 6X histack-gold nanoparticle-nickel-HRP probe-CRP-anti-CRP complex.

이어, 기질로서 형광 물질을 투여하면 6X히스택-금나노입자-프로브-CRP-안티 CRP 복합체는 노란색으로 발광한다. Subsequently, when a fluorescent material is administered as a substrate, the 6X histack-gold nanoparticle-probe-CRP-anti-CRP complex emits yellow light.

도 4는 본 발명에 따른 표적단백질 검출용 바이오프로브인 6X히스택-금나노입자-안티 CRP 프로브를 이용한 C-반응성 단백질(CRP) 검출 과정을 설명하기 위한 도면이다. 4 is a view for explaining a C-reactive protein (CRP) detection process using a 6X histack-gold nanoparticle-anti-CRP probe, which is a bioprobe for detection of a target protein according to the present invention.

도 4를 참조하면, 합성하여 보관중인 6X히스택-금나노입자-안티 CRP 프로브를 CRP가 코팅된 플레이트에 투여한다. 상기 CRP 코팅된 웰 플레이트에는 매트릭스 타입으로 구분된 복수의 웰들이 형성되고, 상기 웰들 각각에 CRP들이 코팅되어 있다. Referring to FIG. 4, a 6X histack-gold nanoparticle-anti-CRP probe, which is synthesized and stored, is administered to a plate coated with CRP. A plurality of wells divided into a matrix type are formed in the CRP-coated well plate, and CRPs are coated on each of the wells.

이어, 발색 시험을 위한 트리메틸보론(Tri methyl boron, TMB) 기질(substrate)을 투여한다. MB(3,3',5,5'-tetramethylbenzidine)는 일반적으로 HRP를 사용한 과산화수소 가수분해를 통해 생성된 산소 유리기의 결과로서 산화되면 청색을 나타내는 발색체이다. TMB는 HRP을 검출하는 데 가장 많이 사용되는 발색(chromagenic) 기질로 다양한 형태로 출시된다. TMB 기질 용액은 HRP 활성을 빠르게 감지하여 황산 또는 인산 정지액(stop solution)을 첨가하면 황색(최대파장이 450nm)으로 변하는 청색(최대 파장이 370nm 또는 652nm)을 생성한다. 반응은 HRP-결합에 첨가한 후 일반적으로 5분에서 30 분 사이에 완료된다. Then, a trimethyl boron (TMB) substrate for color development test is administered. MB (3,3',5,5'-tetramethylbenzidine) is a chromosome that exhibits blue color when oxidized as a result of oxygen free radicals produced through hydrogen peroxide hydrolysis using HRP. TMB is a chromagenic substrate most commonly used to detect HRP and is released in various forms. The TMB substrate solution rapidly detects HRP activity and generates a blue color (maximum wavelength of 370 nm or 652 nm) that turns yellow (maximum wavelength 450 nm) when sulfuric acid or phosphoric acid stop solution is added. The reaction is usually completed between 5 and 30 minutes after addition to the HRP-binding.

이어, 정지액(stop solution)을 첨가한 후, 마이크로플레이트 리더(Microplate reader)를 통해 반응 결과값을 읽고 그래프 분석(Graphical anaylsis)을 수행한다. Then, after adding a stop solution, the reaction result value is read through a microplate reader, and graphical anaylsis is performed.

도 5은 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브를 이용한 C-반응성 단백질(CRP)의 검출 방법을 설명하기 위한 흐름도이다. 5 is a flowchart illustrating a method of detecting C-reactive protein (CRP) using a 6X histack-gold nanoparticle-anti-CRP probe according to the present invention.

도 5을 참조하면, 중탄산 나트륨(sodium bicarbonate)(NaHCO3)과 같은 코팅 버퍼(즉, 완충용액)를 웰플레이트 상에 배열된 CRP에 코팅한다(단계 S210). Referring to FIG. 5, a coating buffer such as sodium bicarbonate (NaHCO3) (ie, a buffer solution) is coated on the CRP arranged on the well plate (step S210).

이어, 하룻밤 배양한다(단계 S212). Then, it is cultured overnight (step S212).

이어, 3%의 농도를 갖는 200ul의 BSA(Bovine Serum Albumin)로 웰플레이트를 블로킹한다(단계 S214). Then, the well plate is blocked with 200ul of Bovine Serum Albumin (BSA) having a concentration of 3% (step S214).

이어, 2%의 농도를 갖는 250ul의 PBST(phosphate buffered saline solution containing 0.05% Tween™ 20) 용액으로 웰플레이트를 세정한다(단계 S216). 여기서, 세정은 6회 정도 수행될 수 있다. Then, the well plate is washed with 250ul of PBST (phosphate buffered saline solution containing 0.05% Tween™ 20) solution having a concentration of 2% (step S216). Here, cleaning may be performed about 6 times.

이어, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브 100ul를 웰프레이트의 웰들에 분배한다(단계 S218). Then, 100ul of the 6X histack-gold nanoparticle-anti-CRP probe according to the present invention is distributed to the wells of the well plate (step S218).

이어, 실온에서 대략 90분 동안 배양한다(단계 S220). Then, incubate for about 90 minutes at room temperature (step S220).

이어, 0.2%의 농도를 갖는 200ul의 PBST로 웰플레이트를 세정한다(단계 S222). 여기서, 세정은 6회 정도 수행될 수 있다. Subsequently, the well plate is washed with 200ul of PBST having a concentration of 0.2% (step S222). Here, cleaning may be performed about 6 times.

이어, 1ug/ml의 농도를 갖는 100 ul의 6X히스택-니켈-HRP 처리한다(단계 S224). Then, 100 ul of 6X histack-nickel-HRP having a concentration of 1 ug/ml is performed (step S224).

이어, 대략 15분 동안 암실에서 웰플레이트를 배양한다(단계 S226). Then, the well plate is cultured in the dark for about 15 minutes (step S226).

이어, 0.2%의 농도를 갖는 200ul의 PBST로 웰플레이트를 세정한다(단계 S228). 여기서, 세정은 6회 정도 수행될 수 있다. Then, the well plate is washed with 200ul of PBST having a concentration of 0.2% (step S228). Here, cleaning may be performed about 6 times.

이어, 대략 10분 동안 TMB 기질을 처리한다(단계 S230). Then, the TMB substrate is treated for approximately 10 minutes (step S230).

이어, 정지액으로 0.2M의 HSO4를 첨가한다(단계 S232). Then, 0.2M HSO4 is added as a stop solution (step S232).

이어, 마이크로플레이트 판독기를 기준광 450nm에서 웰플레이트를 읽는다(단계 S234). Then, the microplate reader reads the well plate at 450 nm of the reference light (step S234).

도 6a는 본 발명에 따라 C-반응성 단백질(CRP)의 검출을 설명하기 위한 표이고, 도 6b는 도 6a의 표를 CRP 농도 대 흡광도로 나타낸 그래프이다. Figure 6a is a table for explaining the detection of C-reactive protein (CRP) according to the present invention, Figure 6b is a graph showing the CRP concentration versus absorbance in the table of Figure 6a.

도 6a 및 도 6b를 참조하면, CRP 농도가 0pg/ml일 때, 기준광 450nm에 대한 흡광도는 0.0785로 측정되었다. CRP 농도가 50pg/ml일 때, 기준광 450nm에 대한 흡광도는 0.1026로 측정되었다. CRP 농도가 100pg/ml일 때, 기준광 450nm에 대한 흡광도는 0.1247로 측정되었다. CRP 농도가 500pg/ml일 때, 기준광 450nm에 대한 흡광도는 0.2408로 측정되었다. CRP 농도가 2000pg/ml일 때, 기준광 450nm에 대한 흡광도는 0.3201로 측정되었다. 6A and 6B, when the CRP concentration was 0 pg/ml, the absorbance for the reference light 450 nm was measured to be 0.0785. When the CRP concentration was 50 pg/ml, the absorbance for the reference light 450 nm was measured to be 0.1026. When the CRP concentration was 100 pg/ml, the absorbance for the reference light 450 nm was measured to be 0.1247. When the CRP concentration was 500 pg/ml, the absorbance for the reference light 450 nm was measured to be 0.2408. When the CRP concentration was 2000 pg/ml, the absorbance for the reference light 450 nm was measured to be 0.3201.

이하, C-반응성 단백질 검출을 위한 상업용 ELISA 기반 분석방법과 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브 기반 면역 측정법과의 민감도 비교를 아래 표 1을 참조하여 설명한다. Hereinafter, a sensitivity comparison between a commercial ELISA-based assay method for C-reactive protein detection and a 6X histack-gold nanoparticle-anti-CRP probe-based immunoassay method according to the present invention will be described with reference to Table 1 below.

[표 1][Table 1]

Figure 112019011652021-pat00001
Figure 112019011652021-pat00001

표 1을 참조하면, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브를 이용한 분석방법과 상업적 ELISA 분석방법을 비교하면, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브를 이용한 분석방법은 포획 항체와 2차 항체를 사용하지 않고 직접적인 분석방법을 개발하여 전체 비용과 복잡성을 줄일 수 있다. Referring to Table 1, comparing the analysis method using a 6X histack-gold nanoparticle-anti-CRP probe according to the present invention with a commercial ELISA analysis method, a 6X histack-gold nanoparticle-anti-CRP probe according to the present invention The analysis method used can reduce the overall cost and complexity by developing a direct analysis method without using a capture antibody and a secondary antibody.

또한 C-반응성 단백질에 대한 비색 분석의 성능을 동일한 항체를 사용하는 상용 키트와 비교했을 때, 본 발명에 따른 분석 감도가 27.7pg/ml 이상임을 확인할 수 있다. In addition, when the performance of colorimetric analysis for C-reactive protein is compared with a commercial kit using the same antibody, it can be seen that the assay sensitivity according to the present invention is 27.7 pg/ml or more.

이하, 본 발명에 따른 6X히스택 금나노 프로브와 다른 나노입자 기반 프로브간의 비교를 아래 표 2를 참조하여 설명한다.Hereinafter, a comparison between the 6X His-stack gold nano probe according to the present invention and other nanoparticle-based probes will be described with reference to Table 2 below.

[표 2][Table 2]

Figure 112019011652021-pat00002
Figure 112019011652021-pat00002

표 2를 참조하면, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브는 비교적 낮은 온도에서 물을 사용하는 녹색 합성 절차를 통해 디자인되었다. Referring to Table 2, the 6X histack-gold nanoparticle-anti-CRP probe according to the present invention was designed through a green synthesis procedure using water at a relatively low temperature.

다른 나노 프로브 합성(즉, 자성 입자 기반 프로브, 양자점 기반 프로브, 탄소 도트 기반 프로브)에 비해 프로브의 디자인 절차가 2시간 이내로 빠르고, 단순하다. Compared to other nano-probe synthesis (ie, magnetic particle-based probe, quantum dot-based probe, carbon dot-based probe), the design procedure of the probe is fast and simple within 2 hours.

최초의 동일한 나노입자 상용(34.29pg/ml)에 펩타이드(6X히스택)와 항체의 이중 접합을 확인한 결과, 본 발명에 따라 개발된 프로토콜은 신호 감도를 향상시킨다. As a result of confirming the double conjugation of the peptide (6XHistack) and the antibody on the first commercially available same nanoparticle (34.29pg/ml), the protocol developed according to the present invention improves signal sensitivity.

이하, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브와 다른 금나노입자의 비교를 아래 표 3을 참조하여 설명한다. Hereinafter, a comparison of the 6X histack-gold nanoparticle-anti-CRP probe and other gold nanoparticles according to the present invention will be described with reference to Table 3 below.

[표 3][Table 3]

Figure 112019011652021-pat00003
Figure 112019011652021-pat00003

표 3을 참조하면, 다른 금나노입자 기반 기술에서 압타머(aptamer) 및 항체의 접합 시간은 12~16시간인 반면, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브에서 6X히스택과 항체의 접합 시간은 2시간 이내이다. 여기서, 압타머는 시료 내의 검출하고자 하는 표적물질과 특이적으로 결합할 수 있는 물질로 그 자체로 안정된 삼차 구조를 가지는 단일 가닥 핵산(DNA, RNA, 또는 변형 핵산)을 의미하는 것으로, 상기 결합을 통하여 특이적으로 시료 내의 표적물질의 존재를 확인할 수 있다. 압타머의 제조는 일반적인 압타머의 제조 방법에 따라, 확인하고자 하는 표적물질에 대해 선택적이고 높은 결합력을 가지는 올리고뉴클레오티드의 서열을 결정하여 합성한 후, 올리고뉴클레오티드의 5' 말단이나 3' 말단을 링커의 작용기에 결합할 수 있도록, -SH, -COOH, -OH 또는 -NH2로 변형을 시킴으로써 이루어질 수 있다. Referring to Table 3, the conjugation time of an aptamer and an antibody in other gold nanoparticle-based technologies is 12 to 16 hours, whereas 6X hisstack in the 6X histack-gold nanoparticle-anti-CRP probe according to the present invention The conjugation time of the antibody and the antibody is within 2 hours. Here, the aptamer refers to a single-stranded nucleic acid (DNA, RNA, or modified nucleic acid) having a stable tertiary structure by itself as a substance capable of specifically binding to a target substance to be detected in a sample. Specifically, the presence of the target material in the sample can be confirmed. The preparation of an aptamer is synthesized by determining the sequence of an oligonucleotide having a high binding ability and selective to the target substance to be identified according to a general aptamer preparation method, and then linking the 5'or 3'end of the oligonucleotide. In order to be able to bind to the functional group of -SH, -COOH, -OH or -NH2 can be made by transforming.

또한 마이크로플레이트 판독기를 통한 용액 분석으로 얻은 LOD의 경우, 다른 금나노입자 기반 기술은 페이퍼 기질 기반 10pg/ml인 반면, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브는 용액 기반 27.7pg/ml이다. In addition, in the case of LOD obtained by solution analysis through a microplate reader, the other gold nanoparticle-based technology is 10 pg/ml based on paper substrate, whereas the 6X histack-gold nanoparticle-anti-CRP probe according to the present invention is solution based 27.7 pg. /ml.

또한 다른 금나노입자 기반 기술은 다른 금나노 프로브 디자인에 적용되는 버퍼 기반이므로 녹색 결합 과정이 불가능한 반면, 본 발명에 따른 6X히스택-금나노입자-안티 CRP 프로브는 물을 기반으로 하므로 녹색 결합 과정이 가능하다. 따라서, 버퍼를 사용하지 않으므로 비용을 줄일 수 있고, 친환경적이라 할 수 있다. In addition, other gold nanoparticle-based technologies are buffer-based, which is applied to other gold nano-probe designs, so that the green binding process is impossible, whereas the 6X His-stack-gold nanoparticle-anti-CRP probe according to the present invention is based on water, so the green binding process This is possible. Therefore, since the buffer is not used, the cost can be reduced and it can be said to be eco-friendly.

이상에서 설명된 바와 같이, 본 발명에 따르면, 6X히스택-금나노입자-안티 CRP 프로브는 간단하고 빠른 합성 프로토콜로 성공적으로 디자인되었다. 본 발명에 따라 디자인된 6X히스택-금나노입자-안티 CRP 프로브의 타당성은 CRP 단백질 검출에서 검증되었다. As described above, according to the present invention, the 6X histack-gold nanoparticle-anti-CRP probe was successfully designed with a simple and fast synthesis protocol. The validity of the 6X histack-gold nanoparticle-anti-CRP probe designed according to the present invention was verified in CRP protein detection.

본 발명에 따라 디자인된 6X히스택-금나노입자-안티 CRP 프로브는 다른 임상적으로 중요한 단백질 바이오마커 검출에 적용될 수 있다. The 6X histack-gold nanoparticle-anti-CRP probe designed according to the present invention can be applied to the detection of other clinically important protein biomarkers.

이상에서는 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to examples, it is understood that those skilled in the art may variously modify and change the present invention without departing from the spirit and scope of the present invention described in the following claims. You can understand.

Claims (12)

15nm의 평균 직경을 갖는 금나노입자;
상기 금나노입자에 결합된 C 반응성 단백질(C-reactive protein, CRP) 항체(antibody); 및
상기 금나노입자에 결합되고, 광학 리포터로 태그된 표지된 니켈에 대해 높은 친화성을 갖는 복수의 6X히스택들을 포함하는 것을 특징으로 하는 표적단백질 검출용 바이오프로브.
Gold nanoparticles having an average diameter of 15 nm;
C-reactive protein (CRP) antibody bound to the gold nanoparticles; And
A bioprobe for detection of a target protein, characterized in that it comprises a plurality of 6X hist stacks having high affinity for labeled nickel bound to the gold nanoparticles and tagged with an optical reporter.
삭제delete 제1항에 있어서, 상기 금나노입자는 구연산염(citrate)으로 덮힌 것을 특징으로 하는 표적단백질 검출용 바이오프로브. The bioprobe for detecting a target protein according to claim 1, wherein the gold nanoparticles are covered with citrate. 제1항에 있어서, 상기 항체는 단일클론항체를 포함하는 것을 특징으로 하는 표적단백질 검출용 바이오프로브. The bioprobe for detection of a target protein according to claim 1, wherein the antibody comprises a monoclonal antibody. 삭제delete 삭제delete (i) 15nm의 평균 직경을 갖는 금나노입자를 포함하는 CRP-항체-금나노입자 접합체를 생성하는 단계; 및
(ii) 상기 CRP 단일클론항체-금나노입자 접합체에 6X히스택을 로딩하여 6X히스택-금나노입자-안티 CRP 프로브를 획득하는 단계를 포함하는 것을 특징으로 하는 표적단백질 검출용 바이오프로브의 제조 방법.
(i) generating a CRP-antibody-gold nanoparticle conjugate comprising gold nanoparticles having an average diameter of 15 nm; And
(ii) Preparation of a bioprobe for detection of a target protein comprising the step of obtaining a 6X histack-gold nanoparticle-anti-CRP probe by loading 6X histack into the CRP monoclonal antibody-gold nanoparticle conjugate Way.
제7항에 있어서, 단계(i)는,
(i-1) 15nm의 평균 직경을 갖는 금나노입자를 포함하는 금나노입자 용액(AuNP)의 혼합 용액과 안티 CRP 단일클론항체(Anti-CRP mAb)를 교반하는 단계;
(i-2) 단계(i-1)에서 획득된 결과물을 원심 분리하는 단계; 및
(i-3) 단계(i-2)에서 획득된 결과물에서 상층액을 제거하여 CRP-항체-금나노입자 접합체를 획득하는 단계를 포함하는 것을 특징으로 하는 표적단백질 검출용 바이오프로브의 제조 방법.
The method of claim 7, wherein step (i),
(i-1) stirring a mixed solution of a gold nanoparticle solution (AuNP) containing gold nanoparticles having an average diameter of 15 nm and an anti-CRP monoclonal antibody (Anti-CRP mAb);
(i-2) centrifuging the product obtained in step (i-1); And
(i-3) A method for producing a bioprobe for detection of a target protein, comprising the step of obtaining a CRP-antibody-gold nanoparticle conjugate by removing the supernatant from the result obtained in step (i-2).
제8항에 있어서, 상기 안티 CRP 단일클론항체와 상기 금나노입자 용액은 농도는 10 : 1의 비율로 혼합된 것을 특징으로 하는 표적단백질 검출용 바이오프로브의 제조 방법.The method of claim 8, wherein the anti-CRP monoclonal antibody and the gold nanoparticle solution are mixed at a concentration of 10:1. 제7항에 있어서, 단계(ii)는,
(ii-1) 6X히스택을 첨가하는 단계;
(ii-2) 단계(ii-1)에서 획득된 혼합물을 교반하는 단계;
(ii-3) 단계(ii-2)에서 획득된 결과물을 원심 분리하는 단계; 및
(ii-4) 단계(ii-3)에서 획득된 결과물에서 상층액을 제거하여 6X히스택-금나노입자-안티 CRP 프로브를 획득하는 단계를 포함하는 것을 특징으로 하는 표적단백질 검출용 바이오프로브의 제조 방법.
The method of claim 7, wherein step (ii),
(ii-1) adding 6X heat stack;
(ii-2) stirring the mixture obtained in step (ii-1);
(ii-3) centrifuging the product obtained in step (ii-2); And
(ii-4) Removing the supernatant from the result obtained in step (ii-3) to obtain a 6X histack-gold nanoparticles-anti-CRP probe of a bioprobe for detection of a target protein, characterized in that it comprises Manufacturing method.
제1항 내지 제6항 중 어느 한 항에 따른 표적단백질 검출용 바이오프로브; 및
상기 표적단백질 검출용 바이오프로브로부터 발산되는 신호를 검출할 수 있는 측정 장치를 포함하는 것을 특징으로 하는 분석장치.
The bioprobe for detecting a target protein according to any one of claims 1 to 6; And
And a measuring device capable of detecting a signal emitted from the bioprobe for detecting the target protein.
(a) 제1항 내지 제6항 중 어느 한 항에 따른 표적단백질 검출용 바이오프로브를 분석 대상 시료와 접촉시키는 단계; 및
(b) 단계(a)을 거친 표적단백질 검출용 바이오프로브로부터 발산되는 신호를 검출하는 단계를 포함하는 것을 특징으로 하는 분석방법.
(a) contacting the bioprobe for detection of a target protein according to any one of claims 1 to 6 with a sample to be analyzed; And
(b) an analysis method comprising the step of detecting a signal emitted from the bioprobe for detection of a target protein that has passed through step (a).
KR1020190012873A 2019-01-31 2019-01-31 Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof KR102200143B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190012873A KR102200143B1 (en) 2019-01-31 2019-01-31 Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190012873A KR102200143B1 (en) 2019-01-31 2019-01-31 Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof

Publications (2)

Publication Number Publication Date
KR20200095144A KR20200095144A (en) 2020-08-10
KR102200143B1 true KR102200143B1 (en) 2021-01-08

Family

ID=72049661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190012873A KR102200143B1 (en) 2019-01-31 2019-01-31 Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof

Country Status (1)

Country Link
KR (1) KR102200143B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481526B1 (en) * 2020-11-19 2022-12-26 한국기술교육대학교 산학협력단 Biomarker for detecting amyloid beta and identifying method for concentration of amyloid beta using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088901A1 (en) 2004-10-21 2006-04-27 Zhuangwu Li Methods and kits for determining ubiquitin protein ligase (E3) activity
KR101551925B1 (en) 2013-08-09 2015-09-18 한국과학기술연구원 Target-specific probe comprsing t7 bacteriophage and detecting for biomarker using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088885B1 (en) * 2008-12-23 2011-12-07 연세대학교 산학협력단 Bioprobes, preparation method thereof, analysis apparatus and method using the same
KR101612094B1 (en) 2014-01-16 2016-04-14 한국과학기술연구원 Composition for detecting biomarker comprising target-specific probe and detectable labeling agent-antibody composite and using method of the same
KR102042661B1 (en) 2015-08-06 2019-11-08 광주과학기술원 Complex for detecting target material and method for detecting target material using the same
KR101928620B1 (en) 2016-07-01 2018-12-12 중앙대학교 산학협력단 Aptamer-immune cell bioprobe for detecting targeted proteins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088901A1 (en) 2004-10-21 2006-04-27 Zhuangwu Li Methods and kits for determining ubiquitin protein ligase (E3) activity
KR101551925B1 (en) 2013-08-09 2015-09-18 한국과학기술연구원 Target-specific probe comprsing t7 bacteriophage and detecting for biomarker using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol.130, pp.16156-16157 (2008) 1부.*

Also Published As

Publication number Publication date
KR20200095144A (en) 2020-08-10

Similar Documents

Publication Publication Date Title
Nimse et al. Biomarker detection technologies and future directions
US20090023144A1 (en) Method and its kit for quantitatively detecting specific analyte with single capturing agent
KR20220038550A (en) Improved assay methods
WO2003008972A2 (en) Method for simultaneous multiple probes/multiple targets screening procedure
JP7463486B2 (en) Methods for reducing noise in signal-generating digital assays - Patents.com
WO2017200070A1 (en) Method and kit for target molecule detection
US20210231673A1 (en) Methods and compositions for detection and quantification of small molecules and other analytes
Gao et al. Rolling circle amplification integrated with suspension bead array for ultrasensitive multiplex immunodetection of tumor markers
JP5270672B2 (en) Analyte detection method
KR102200143B1 (en) Bio-probe for detecting target protein, manufacturing method thereof, analyzing apparatus having the same and analyzing method thereof
WO2008150873A1 (en) Ultrasensitive detection of biomolecules using immunoseparation and diffractometry
JP2024050633A (en) Optical imaging system using side illumination for digital assays
JP2010014685A (en) Protein stabilization solution
US20230080184A1 (en) Highly sensitive immunoconjugate, preparing method thereof, in vitro diagnostic reagent and in vitro diagnostic kit including the same
KR102420459B1 (en) Nanoparticle conjugate and method for detecting target meterial using the same
Li et al. Recent advances in the fabrication and detection of lectin microarrays and their application in glycobiology analysis
US20070172904A1 (en) Method for quantitative detection of biological toxins
US20230088664A1 (en) Method of Detecting Analytes in a Sample
Shang et al. Multiplexed in-cell immunoassay for same-sample protein expression profiling
TWI754939B (en) Irreversible and covalent method for immobilizing glycoprotein
Skjærvø based smart sampling for bottom-up protein analysis
CN117554615A (en) ADAMTS13 enzyme activity luminescence immunoassay method and ADAMTS13 enzyme activity assay kit
Wang et al. Alternative and emerging methodologies in ligand-binding assays
JP2006098266A (en) Sample dyeing method and sample analyzing method
KR20070016099A (en) Method for Adjusting the Quantification Range of Individual Analytes in a Multiplexed Assay

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant