KR102197605B1 - Fiber reinforcement and method of reinforcing concrete structure using the same - Google Patents

Fiber reinforcement and method of reinforcing concrete structure using the same Download PDF

Info

Publication number
KR102197605B1
KR102197605B1 KR1020190154566A KR20190154566A KR102197605B1 KR 102197605 B1 KR102197605 B1 KR 102197605B1 KR 1020190154566 A KR1020190154566 A KR 1020190154566A KR 20190154566 A KR20190154566 A KR 20190154566A KR 102197605 B1 KR102197605 B1 KR 102197605B1
Authority
KR
South Korea
Prior art keywords
fiber
layer
weight
reinforcement
fibers
Prior art date
Application number
KR1020190154566A
Other languages
Korean (ko)
Inventor
이진용
조민수
Original Assignee
(주)캐어콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)캐어콘 filed Critical (주)캐어콘
Priority to KR1020190154566A priority Critical patent/KR102197605B1/en
Application granted granted Critical
Publication of KR102197605B1 publication Critical patent/KR102197605B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4501Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with preformed sheet-like elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof

Abstract

The present invention relates to a fiber reinforcing material with an excellent chemical resistance and a method of reinforcing a structure by using the fiber reinforcing material. According to the present invention, the fiber reinforcing material includes: a reinforcing fiber (11) which is at least one of a carbon fiber or an aramid fiber; and a main fiber (13) which is a basalt fiber (12) or a fiber formed by mixing the basalt fiber (12) with a glass fiber or mixing the basalt fiber (12) with a PET fiber.

Description

섬유 보강재 및 이를 이용한 구조물 보강 공법{FIBER REINFORCEMENT AND METHOD OF REINFORCING CONCRETE STRUCTURE USING THE SAME}Fiber reinforcement and structural reinforcement method using the same {FIBER REINFORCEMENT AND METHOD OF REINFORCING CONCRETE STRUCTURE USING THE SAME}

본 발명은 건설분야에 관한 것으로서, 상세하게는 섬유 보강재 및 이를 이용한 구조물 보강 공법에 관한 것이다.The present invention relates to the field of construction, and more particularly, to a fiber reinforcement and a structure reinforcement method using the same.

콘크리트 구조물의 노후화가 진행되면서, 초기 설계하중을 지지하지 못하는 노후 구조물이 증가되고 있다.As concrete structures are deteriorating, old structures that cannot support the initial design load are increasing.

노후된 건물은 용도변경 및 리모델링 과정에서 설계하중을 초과하는 경우가 발생하고 있으며, 노후 교량의 경우에는 초기 설계시의 하중 보다 차량 하중이 증가되는 문제가 발생한다.Old buildings sometimes exceed the design load during use change and remodeling, and in the case of old bridges, there is a problem that the vehicle load increases compared to the load at the time of initial design.

최근에는 콘크리트 구조물의 형태가 다양화되고 복잡해 지고 있고, 건축구조물의 리모델링이 활발해지면서 설계시의 하중보다 하중이 증가하는 경우가 발생하게 되어 건축구조물의 보, 슬래브, 기둥의 강도를 향상시켜야 하는 경우가 발생하고 있다.In recent years, the shape of concrete structures has been diversified and complicated, and as the remodeling of the building structure becomes active, there are cases in which the load increases than the load at the time of design, and the strength of the beams, slabs, and columns of the building structure must be improved Is occurring.

우리나라는 1990년에 건축법에 내진관련 규정을 적용하여 지금까지 지속적으로 관련 규정을 수정하여 왔고, 2005년에는 내진 관련 규정을 현실화하기 위해 규정을 강화하여 개정하였다. 그러나 개정된 내진설계 규정은 신축 건물에 한정되어 적용되고 있기 때문에 내진설계 규정 도입 이전에 건설된 건축구조물은 지진에 대한 영향을 고려하지 않은 채 설계되고, 시공되었다.In 1990, Korea applied seismic-resistance-related regulations to the Building Law, and has continuously revised related regulations. In 2005, the regulations were reinforced and revised in order to realize earthquake-resistant regulations. However, since the revised seismic design regulations are applied only to new buildings, building structures built prior to the introduction of the seismic design regulations were designed and constructed without considering the effects of earthquakes.

내진설계가 반영되지 않은 건물 중 일부가 리모델링 되고, 재건축되고 있으나 아직까지 국내에는 내진설계 규정이 반영되지 않은 노후된 건축물이 많이 잔존해 사용되고 있다. 따라서 지진 발생시 내진설계 규정이 반영되지 않은 건축구조물은 붕괴 및 파손으로 인한 피해를 받을 것으로 예상된다.Some of the buildings that do not reflect the seismic design have been remodeled and rebuilt, but there are still many old buildings that do not reflect the seismic design regulations in Korea. Therefore, it is expected that in the event of an earthquake, building structures that do not reflect the seismic design regulations will suffer damage from collapse and damage.

이를 방지하기 위해 노후된 구조물을 보강하여 초과된 하중에도 손상이 발생되지 않도록 하는 공법을 사용하고 있는데, 가장 일반적으로 사용되는 보강공법이 강판보강공법과 섬유시트 보강공법이다.To prevent this, a method of reinforcing old structures so that damage does not occur even with excessive loads is used. The most commonly used reinforcement methods are the steel plate reinforcement method and the fiber sheet reinforcement method.

강판보강공법은 콘크리트 구조물의 표면에 강판을 결합하여 강성을 향상시키는 공법으로서, 가장 많이 적용된 공법이지만 강판의 자중이 무거워 작업시 중장비가 필요하고, 부식에 취약하다는 문제가 있어왔다.The steel plate reinforcement method is a method that improves stiffness by bonding steel plates to the surface of a concrete structure, and although it is the most applied method, there has been a problem that heavy equipment is required at work and vulnerable to corrosion due to the heavy self-weight of the steel plate.

섬유시트 보강공법은 보강부재가 가볍고 취급이 용이하다는 장점이 있으나, 섬유시트로 가장 많이 사용되는 탄소섬유는 가격이 고가이고, 전도체의 성질을 가지고 있어, 고압전류가 흐르는 곳에서 시공하기 곤란한 문제가 있다.The fiber sheet reinforcement method has the advantage that the reinforcing member is light and easy to handle, but the carbon fiber, which is most commonly used as a fiber sheet, is expensive and has the property of a conductor, which makes it difficult to construct in places where high-voltage current flows. have.

아울러, 유리섬유의 가격은 탄소섬유에 비해 상대적으로 저렴하지만 섬유 재단시 유리분진에 의한 작업자의 안전성이 떨어지는 문제가 있고, 내화학저항성과 내화성이 떨어지고, 폐기시 환경을 오염시킬 수 있는 문제가 있다.In addition, although the cost of glass fiber is relatively inexpensive compared to carbon fiber, there are problems that the safety of workers due to glass dust is poor when cutting fibers, chemical resistance and fire resistance are poor, and there are problems that may pollute the environment when discarded. .

본 발명은 자중이 가벼운 섬유시트를 생산하되, 내화학저항성과 내화성이 우수하고, 내진성능을 향상시켜 구조물의 안전성을 향상시키며, 수명을 연장시킴과 함께 경제성이 우수하고 환경친화적인 섬유 보강재를 제시한다.The present invention produces a fiber sheet with a light weight, but has excellent chemical resistance and fire resistance, improves the safety of the structure by improving the seismic performance, and prolongs the lifespan and provides a fiber reinforcement material that is economical and environmentally friendly. do.

상기 과제의 해결을 위하여 본 발명의 섬유 보강재는 탄소섬유 또는 아라미드섬유 중 적어도 어느 하나인 보강섬유(11), 현무암 섬유(12) 이거나 상기 현무암 섬유(12)와 유리섬유 또는 상기 현무암 섬유(12)와 PET 섬유가 혼합되어 형성되는 주 섬유(13)를 포함하되, 상기 보강섬유(11)와 상기 주 섬유(13)가 1 : 1 ~ 2 : 10 의 체적 비율로 나란히 배열된 제1레이어(100); 상기 제1레이어(100)의 하측에 형성되되, 상기 제1레이어(100)의 섬유 배열 방향과 직교하는 방향으로 상기 현무암 섬유(12), 상기 탄소섬유, 상기 유리섬유, 상기 아라미드섬유, 상기 PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제2레이어(200); 상기 제2레이어(200)의 하측에 형성되되, 상기 제1레이어(100)에 배열된 섬유에 30 ~ 60°의 기울기를 같도록 상기 현무암 섬유(12), 상기 탄소섬유, 상기 유리섬유, 상기 아라미드섬유, 상기 PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제3레이어(300); 상기 제3레이어(300)의 하측에 형성되되, 상기 제1레이어(100)에 배열된 섬유에 -30 ~ -60°의 기울기를 같도록 상기 현무암 섬유(12), 상기 탄소섬유, 상기 유리섬유, 상기 아라미드섬유, 상기 PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제4레이어(400);를 포함한다.In order to solve the above problems, the fiber reinforcement material of the present invention is a reinforcing fiber 11, basalt fiber 12, which is at least one of carbon fiber or aramid fiber, or the basalt fiber 12 and glass fiber or the basalt fiber 12 Including a main fiber 13 formed by mixing and PET fibers, wherein the reinforcing fibers 11 and the main fibers 13 are arranged side by side in a volume ratio of 1: 1 to 2: 10 ); Is formed under the first layer 100, the basalt fiber 12, the carbon fiber, the glass fiber, the aramid fiber, the PET in a direction orthogonal to the fiber arrangement direction of the first layer 100 A second layer 200 formed by arranging at least one of the fibers; The basalt fiber 12, the carbon fiber, the glass fiber, the basalt fiber 12, the carbon fiber, the glass fiber, which is formed under the second layer 200 and has the same inclination of 30 to 60° with the fibers arranged in the first layer 100 A third layer 300 formed by arranging at least one of aramid fibers and PET fibers; The basalt fiber 12, the carbon fiber, and the glass fiber are formed below the third layer 300 and have the same inclination of -30 to -60° to the fibers arranged in the first layer 100 , The aramid fiber, at least one of the PET fiber is arranged to form a fourth layer 400; includes.

상기 현무암 섬유(12)는 이산화규소(SiO2) 50~56 중량%; 산화알루미늄(Al2O3) 15~20 중량%; 산화철(Fe2O3) 8~13 중량%; 산화마그네슘(MgO) 3~7 중량%; 산화나트륨(Na2O) 1.5~5 중량%; 산화칼륨(K2O) 1~4 중량%; 이산화티타늄(TiO2) 1~4 중량%; 오산화인(P2O5) 0.1~0.4 중량%; 산화망간(MnO) 0.1~0.3 중량%; 산화크롬(Cr2O3) 0.02~0.08 중량%;를 포함하는 것이 바람직하다.The basalt fiber 12 is silicon dioxide (SiO 2 ) 50 to 56% by weight; Aluminum oxide (Al 2 O 3 ) 15-20% by weight; Iron oxide (Fe 2 O 3 ) 8 to 13% by weight; 3 to 7% by weight of magnesium oxide (MgO); 1.5-5% by weight of sodium oxide (Na 2 O); Potassium oxide (K 2 O) 1 to 4% by weight; Titanium dioxide (TiO 2 ) 1 to 4% by weight; Phosphorus pentoxide (P 2 O 5 ) 0.1 to 0.4% by weight; Manganese oxide (MnO) 0.1 to 0.3% by weight; It is preferred to include; chromium oxide (Cr 2 O 3 ) 0.02 to 0.08% by weight.

상기 유리섬유는 이산화규소(SiO2) 50~56 중량%; 산화알루미늄(Al2O3) 12~16 중량%; 산화마그네슘(MgO) 1~6 중량%; 산화칼륨(K2O) 19~25 중량%; 산화붕소(B2O3) 5~10 중량%;를 포함하는 것이 바람직하다.The glass fiber is silicon dioxide (SiO 2 ) 50 to 56% by weight; Aluminum oxide (Al 2 O 3 ) 12 to 16% by weight; 1-6% by weight of magnesium oxide (MgO); Potassium oxide (K 2 O) 19-25% by weight; It is preferable to include; boron oxide (B 2 O 3 ) 5 to 10% by weight.

폭은 5 ~ 2000 mm 이고, 두께는 0.1 ~ 10mm 로 제조되는 것이 바람직하다.The width is 5 ~ 2000 mm, the thickness is preferably made of 0.1 ~ 10mm.

상기 제4레이어(400)의 하면에 부직포(500)를 접촉시키고, 상기 제1레이어(100), 상기 제2레이어(200), 상기 제3레이어(300), 상기 제4레이어(400), 상기 부직포(500)로 형성된 섬유 보강재(A)를 에폭시 수지(10)에 함침시킨 후 상기 에폭시 수지(10)를 경화시켜 형성된 것이 바람직하다.The nonwoven fabric 500 is brought into contact with the lower surface of the fourth layer 400, and the first layer 100, the second layer 200, the third layer 300, the fourth layer 400, It is preferable that the fiber reinforcing material (A) formed of the nonwoven fabric 500 is impregnated with the epoxy resin 10 and then the epoxy resin 10 is cured.

상기 부직포(500)는 상기 에폭시 수지(10)가 경화되기 전에 인장력이 도입되고, 상기 부직포(500)에 인장응력이 잔존하는 상태로 상기 에폭시 수지(10)가 경화되는 것이 바람직하다.In the nonwoven fabric 500, a tensile force is introduced before the epoxy resin 10 is cured, and the epoxy resin 10 is cured in a state in which the tensile stress remains in the nonwoven fabric 500.

본 발명의 일 실시 예에 따른 섬유 보강재(A)를 이용한 구조물 보강 공법은 구조물(1)의 표면을 핸드그라인더를 이용하여 면처리 하는 면처리단계; 에어건을 이용하여 상기 구조물(1)의 표면을 청소하는 청소단계; 접착제 또는 앵커를 이용하여 상기 섬유 보강재(A)를 설치하는 섬유 보강재 부착단계; 상기 섬유 보강재(A)의 표면에 마감재를 도포하는 마감재도포단계;를 포함한다.The structure reinforcement method using a fiber reinforcement material (A) according to an embodiment of the present invention includes a surface treatment step of surface-treating the surface of the structure (1) using a hand grinder; A cleaning step of cleaning the surface of the structure 1 using an air gun; Attaching a fiber reinforcement material to install the fiber reinforcement material (A) using an adhesive or anchor; It includes; a finishing material coating step of applying a finishing material to the surface of the fiber reinforcement (A).

본 발명의 또 다른 실시 예에 따른 섬유 보강재(A)를 이용한 구조물 보강공법은 구조물(1)의 표면을 핸드그라인더를 이용하여 면처리 하는 면처리단계; 에어건을 이용하여 상기 구조물(1)의 표면을 청소하는 청소단계; 상기 섬유 보강재(A)에 앵커홀(h)을 형성하는 앵커홀 형성단계; 상기 앵커홀(h)에 앵커를 설치하여 상기 섬유 보강재(A)를 상기 구조물(1)에 고정시키는 섬유보강재 고정단계; 상기 섬유 보강재(A)의 가장자리가 상기 구조물(1)에 접촉되도록 에폭시를 도포하는 가장에폭시 도포단계; 상기 구조물(1)과 상기 섬유 보강재(A)의 면 접합부(S)에 에폭시를 주입하는 에폭시 주입단계;를 포함한다.A structure reinforcement method using a fiber reinforcement material (A) according to another embodiment of the present invention includes a surface treatment step of surface-treating the surface of the structure (1) using a hand grinder; A cleaning step of cleaning the surface of the structure 1 using an air gun; Anchor hole forming step of forming an anchor hole (h) in the fiber reinforcement (A); A fiber reinforcement fixing step of fixing the fiber reinforcement material (A) to the structure (1) by installing an anchor in the anchor hole (h); An epoxy coating step of applying epoxy such that the edge of the fiber reinforcement material (A) is in contact with the structure (1); And an epoxy injection step of injecting epoxy into the surface joint (S) of the structure (1) and the fiber reinforcement (A).

본 발명의 섬유 보강재는 자중이 가벼워 취급이 용이하고, 내화학적 저항성과 내화성이 우수한 장점이 있다.The fiber reinforcement material of the present invention has an advantage of being easy to handle because of its light weight, and excellent chemical resistance and fire resistance.

도 1은 본 발명의 일 실시 예에 따른 제1레이어 도면
도 2는 본 발명의 일 실시 예에 따른 제2레이어 도면
도 3은 본 발명의 일 실시 예에 따른 제3레이어 도면
도 4는 본 발명의 일 실시 예에 따른 제4레이어 도면
도 5는 본 발명의 일 실시 예에 따른 섬유보강재 도면
도 6은 본 발명의 일 실시 예에 따른 섬유보강재 측면도
도 7은 본 발명의 일 실시 예에 따른 직접인장 시험 시편으로서, 표 1의 시험을 위한 시편
도 8은 본 발명의 일 실시 예에 따른 직접인장 시험 시편으로서, 표3의 시험을 위한 시편
도 9는 본 발명의 일 실시 예에 따른 직접인장 시험 시편으로서, 표3의 시험을 위한 시편 사진
도 10은 본 발명의 일 실시 예에 따른 직접인장 시험 결과로서, 표3의 시험결과
도 11은 본 발명의 일 실시 예에 따른 섬유 보강재의 보강력을 확인하기 위한 콘크리트 보 인장시험 전경
도 12는 표 6에 대한 시험결과로서, 원형 단면을 갖는 시험체에 대한 시험결과
도 13은 표 6에 대한 시험결과로서, 사각단면 중 커팅깊이 20mm 시험체에 대한 시험결과
도 14는 표 6에 대한 시험결과로서, 사각단면 중 커팅깊이 10mm 시험체에 대한 시험결과
도 15는 표 7에 대한 시험결과로서, 무보강 시험체에 대한 시험결과
도 16은 표 7에 대한 시험결과로서, 탄소섬유가 보강된 시험체에 대한 시험결과
도 17은 표 7에 대한 시험결과로서, 본원발명의 일 실시 예에 따른 섬유 보강재가 보강된 시험체에 대한 시험결과
도 18은 표 9에 대한 시험결과
도 19는 표 10에 대한 시험결과
도 20은 표 4에 대한 시험결과
1 is a diagram of a first layer according to an embodiment of the present invention
2 is a diagram of a second layer according to an embodiment of the present invention
3 is a diagram of a third layer according to an embodiment of the present invention
4 is a diagram of a fourth layer according to an embodiment of the present invention
5 is a view of a fiber reinforcement according to an embodiment of the present invention
Figure 6 is a side view of a fiber reinforcement according to an embodiment of the present invention
7 is a direct tensile test specimen according to an embodiment of the present invention, a specimen for the test of Table 1
8 is a direct tensile test specimen according to an embodiment of the present invention, a specimen for the test of Table 3
9 is a direct tensile test specimen according to an embodiment of the present invention, a photograph of the specimen for the test in Table 3
10 is a direct tensile test result according to an embodiment of the present invention, the test results in Table 3
11 is a view of a tensile test of a concrete beam for checking the reinforcing strength of a fiber reinforcement according to an embodiment of the present invention
12 is a test result for Table 6, test results for a test specimen having a circular cross section
13 is a test result for Table 6, the test result for a test specimen with a depth of cut of 20 mm in a rectangular cross section
14 is a test result for Table 6, the test result for a test specimen with a depth of cut of 10mm among a square cross section
15 is a test result for Table 7, the test result for the unreinforced test body
16 is a test result for Table 7, test results for a test specimen reinforced with carbon fiber
17 is a test result for Table 7, the test result for a test body reinforced with a fiber reinforcement according to an embodiment of the present invention
18 is a test result for Table 9
19 is a test result for Table 10
20 is a test result for Table 4

본 발명에 따른 섬유 보강재 및 이를 이용한 구조물 보강 공법의 일 실시 예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면 번호를 부여하고 이에 대해 중복되는 설명은 생략하기로 한다.An embodiment of a fiber reinforcement according to the present invention and a structure reinforcing method using the same will be described in detail with reference to the accompanying drawings, and in the description with reference to the accompanying drawings, the same or corresponding components are given the same reference numbers, and A redundant description of this will be omitted.

또한, 이하 사용되는 제1, 제2 등과 같은 용어는 동일 또는 상응하는 구성 요소들을 구별하기 위한 식별 기호에 불과하며, 동일 또는 상응하는 구성 요소들이 제1, 제2 등의 용어에 의하여 한정되는 것은 아니다.In addition, terms such as first and second used hereinafter are merely identification symbols for distinguishing the same or corresponding elements, and the same or corresponding elements are limited by terms such as first and second. no.

또한, 결합이라 함은, 각 구성 요소 간의 접촉 관계에 있어, 각 구성 요소 간에 물리적으로 직접 접촉되는 경우만을 뜻하는 것이 아니라, 다른 구성이 각 구성 요소 사이에 개재되어, 그 다른 구성에 구성 요소가 각각 접촉되어 있는 경우까지 포괄하는 개념으로 사용하도록 한다.In addition, the term “couple” does not mean only a case in which each component is in direct physical contact with each other in the contact relationship between each component, but a different component is interposed between each component, and the component is It should be used as a concept that encompasses each contact.

이하, 첨부도면을 참조하여 섬유 보강재 및 이를 이용한 구조물 보강 공법에 관하여 상세히 설명한다.Hereinafter, a fiber reinforcement and a structure reinforcing method using the same will be described in detail with reference to the accompanying drawings.

본 발명의 섬유 보강재는 탄소섬유 또는 아라미드섬유 중 적어도 어느 하나인 보강섬유(11), 현무암 섬유(12) 이거나 현무암 섬유(12)와 유리섬유 또는 현무암 섬유(12)와 PET 섬유가 혼합되어 형성되는 주 섬유(13)를 포함하되, 보강섬유(11)와 주 섬유(13)가 1 : 1 ~ 2 : 10 의 체적 비율로 나란히 배열된 제1레이어(100); 제1레이어(100)의 하측에 형성되되, 제1레이어(100)의 섬유 배열 방향과 직교하는 방향으로 현무암 섬유(12), 탄소섬유, 유리섬유, 아라미드섬유, PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제2레이어(200); 제2레이어(200)의 하측에 형성되되, 제1레이어(100)에 배열된 섬유에 30 ~ 60°의 기울기를 같도록 현무암 섬유(12), 탄소섬유, 유리섬유, 아라미드섬유, PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제3레이어(300); 제3레이어(300)의 하측에 형성되되, 제1레이어(100)에 배열된 섬유에 -30 ~ -60°의 기울기를 같도록 현무암 섬유(12), 탄소섬유, 유리섬유, 아라미드섬유, PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제4레이어(400);를 포함한다.The fiber reinforcement of the present invention is formed by mixing at least one of carbon fiber or aramid fiber, reinforcing fiber 11, basalt fiber 12 or basalt fiber 12 and glass fiber or basalt fiber 12 and PET fiber. Including the main fibers 13, the reinforcing fibers 11 and the main fibers 13 are 1: 1 to 2: a first layer 100 arranged side by side in a volume ratio of 10; Is formed under the first layer 100, in a direction orthogonal to the fiber arrangement direction of the first layer 100, at least one or more of basalt fiber 12, carbon fiber, glass fiber, aramid fiber, PET fiber A second layer 200 arranged and formed; Is formed under the second layer 200, basalt fiber 12, carbon fiber, glass fiber, aramid fiber, PET fiber so that the inclination of 30 ~ 60 ° is the same to the fibers arranged in the first layer 100 A third layer 300 formed by arranging at least one or more; Is formed on the lower side of the third layer 300, basalt fiber 12, carbon fiber, glass fiber, aramid fiber, PET so that the inclination of -30 ~ -60° is the same to the fibers arranged in the first layer 100 And a fourth layer 400 formed by arranging at least one of the fibers.

이 경우, 본원발명의 섬유 보강재는 4개층의 레이어로 제작되는 시트 보강재로서, 제1레이어에는 현무암 섬유(12)와 보강섬유(11)가 혼합된다.In this case, the fiber reinforcement of the present invention is a sheet reinforcement made of four layers, and the basalt fiber 12 and the reinforcing fiber 11 are mixed in the first layer.

제2레이어, 제3레이어, 제4레이어는 제1레이어의 섬유 배열 방향과 각각 직교방향, 30 ~ 60°의 경사방향, -30 ~ -60°의 경사방향으로 배열되는 특징이 있는데 이와 같은 레이어의 배열 구조를 통해 본 발명의 섬유 보강재는 단일 섬유로 형성된 보강재보다 변형율이 우수하고, 내화성이 우수한 특징이 있다.Layers 2, 3, and 4 have the characteristics of being arranged in a direction perpendicular to the fiber arrangement direction of the first layer, an inclination direction of 30 to 60°, and an inclination direction of -30 to -60°. Through the arrangement structure of the fiber reinforcement of the present invention is superior to the reinforcing material formed of a single fiber has excellent deformation rate and excellent fire resistance.

현무암 섬유(12)는 이산화규소(SiO2) 50~56 중량%; 산화알루미늄(Al2O3) 15~20 중량%; 산화철(Fe2O3) 8~13 중량%; 산화마그네슘(MgO) 3~7 중량%; 산화나트륨(Na2O) 1.5~5 중량%; 산화칼륨(K2O) 1~4 중량%; 이산화티타늄(TiO2) 1~4 중량%; 오산화인(P2O5) 0.1~0.4 중량%; 산화망간(MnO) 0.1~0.3 중량%; 산화크롬(Cr2O3) 0.02~0.08 중량%;를 포함하는 것이 바람직하다. 이 경우, 현무암 섬유(12)에는 이산화 규소가 대량 포함되기 때문에 내화성능이 향상된다.Basalt fiber 12 is silicon dioxide (SiO 2 ) 50 to 56% by weight; Aluminum oxide (Al 2 O 3 ) 15-20% by weight; Iron oxide (Fe 2 O 3 ) 8 to 13% by weight; 3 to 7% by weight of magnesium oxide (MgO); 1.5-5% by weight of sodium oxide (Na 2 O); Potassium oxide (K 2 O) 1 to 4% by weight; Titanium dioxide (TiO 2 ) 1 to 4% by weight; Phosphorus pentoxide (P 2 O 5 ) 0.1 to 0.4% by weight; Manganese oxide (MnO) 0.1 to 0.3% by weight; It is preferred to include; chromium oxide (Cr 2 O 3 ) 0.02 to 0.08% by weight. In this case, since the basalt fiber 12 contains a large amount of silicon dioxide, the fire resistance performance is improved.

유리섬유는 이산화규소(SiO2) 50~56 중량%; 산화알루미늄(Al2O3) 12~16 중량%; 산화마그네슘(MgO) 1~6 중량%; 산화칼륨(K2O) 19~25 중량%; 산화붕소(B2O3) 5~10 중량%;를 포함하는 것이 바람직하다.Glass fiber is silicon dioxide (SiO 2 ) 50 to 56% by weight; Aluminum oxide (Al 2 O 3 ) 12 to 16% by weight; 1-6% by weight of magnesium oxide (MgO); Potassium oxide (K 2 O) 19-25% by weight; It is preferable to include; boron oxide (B 2 O 3 ) 5 to 10% by weight.

본원발명에 따른 섬유 보강재는 폭 5 ~ 2000 mm, 두께 0.1 ~ 10mm 로 제조되는 것이 바람직하다.The fiber reinforcement according to the present invention is preferably manufactured with a width of 5 to 2000 mm and a thickness of 0.1 to 10 mm.

아울러, 본원발명에 따른 섬유 보강재는 제4레이어(400)의 하면에 부직포(500)를 추가로 접촉시키고, 제1레이어(100), 제2레이어(200), 제3레이어(300), 제4레이어(400), 부직포(500)로 형성된 섬유 보강재(A)를 에폭시 수지(10)에 함침시킨 후 에폭시 수지(10)를 경화시켜 하드한 판넬 구조로도 제작 할 수 있다.In addition, the fibrous reinforcement according to the present invention additionally contacts the nonwoven fabric 500 on the lower surface of the fourth layer 400, the first layer 100, the second layer 200, the third layer 300, and After impregnating the fiber reinforcement material (A) formed of the four-layer 400 and nonwoven fabric 500 into the epoxy resin 10, the epoxy resin 10 may be cured to form a hard panel structure.

이는 하드한 판넬 구조로 구조물을 보강해야 하는 경우가 발생하기 때문이다. 특히 습도가 높은 곳에 노출된 구조물 또는 교량의 거더 하면에 적용하는 경우에는 섬유 보강재가 높은 습도에 노출되어 부식되는 것을 방지하기 위해 에폭시 수지(10)로 섬유 보강재를 코팅하여 사용할 수 있다.This is because there are cases in which the structure needs to be reinforced with a hard panel structure. In particular, when applied to the underside of a structure or bridge girder exposed to high humidity, the fiber reinforcement may be coated with an epoxy resin 10 to prevent corrosion due to exposure to high humidity.

부직포(500)는 에폭시 수지(10)가 경화되기 전에 인장력이 도입되고, 부직포(500)에 인장응력이 잔존하는 상태로 에폭시 수지(10)가 경화되는 것이 바람직하다.In the nonwoven fabric 500, tensile force is introduced before the epoxy resin 10 is cured, and the epoxy resin 10 is preferably cured while the tensile stress remains in the nonwoven fabric 500.

본 발명의 일 실시 예에 따른 섬유 보강재(A)를 이용한 구조물 보강 공법은 구조물(1)의 표면을 핸드그라인더를 이용하여 면처리 하는 면처리단계; 에어건을 이용하여 구조물(1)의 표면을 청소하는 청소단계; 접착제 또는 앵커를 이용하여 섬유 보강재(A)를 설치하는 섬유 보강재 부착단계; 섬유 보강재(A)의 표면에 마감재를 도포하는 마감재도포단계;를 포함한다.The structure reinforcement method using a fiber reinforcement material (A) according to an embodiment of the present invention includes a surface treatment step of surface-treating the surface of the structure (1) using a hand grinder; A cleaning step of cleaning the surface of the structure 1 using an air gun; Fiber reinforcement attaching step of installing a fiber reinforcement (A) using an adhesive or anchor; It includes; a finishing material coating step of applying a finishing material to the surface of the fiber reinforcement (A).

에폭시 수지(10)로 코팅된 판넬 구조의 실시예에 따른 섬유 보강재(A)를 이용한 구조물 보강공법은 구조물(1)의 표면을 핸드그라인더를 이용하여 면처리 하는 면처리단계; 에어건을 이용하여 구조물(1)의 표면을 청소하는 청소단계; 섬유 보강재(A)에 앵커홀(h)을 형성하는 앵커홀 형성단계; 앵커홀(h)에 앵커를 설치하여 섬유 보강재(A)를 구조물(1)에 고정시키는 섬유보강재 고정단계; 섬유 보강재(A)의 가장자리가 구조물(1)에 접촉되도록 에폭시를 도포하는 가장에폭시 도포단계; 구조물(1)과 상기 섬유 보강재(A)의 면 접합부(S)에 에폭시를 주입하는 에폭시 주입단계;를 포함한다.The structure reinforcement method using the fiber reinforcement material (A) according to the embodiment of the panel structure coated with the epoxy resin 10 includes a surface treatment step of surface treatment of the surface of the structure 1 using a hand grinder; A cleaning step of cleaning the surface of the structure 1 using an air gun; Anchor hole forming step of forming an anchor hole (h) in the fiber reinforcement (A); A fiber reinforcement fixing step of fixing the fiber reinforcement (A) to the structure (1) by installing an anchor in the anchor hole (h); The most epoxy coating step of applying epoxy such that the edge of the fiber reinforcement material (A) is in contact with the structure (1); And an epoxy injection step of injecting epoxy into the surface joint (S) of the structure (1) and the fiber reinforcement (A).

아래 표 1은 본 발명인 섬유 보강재(실시예)와 탄소섬유로 제작된 보강재(비교예 1), 아라미드섬유로 제작된 보강재(비교예 2), 유리섬유로 제작된 보강재(비교예 3)에 대한 직접인장 시험 결과로서, 실시예와 비교예의 변형률에 대한 시험결과이다. 인장 시험 시편은 도7과 같은 시편을 사용하여 시험 하였다.Table 1 below shows the present inventors fibrous reinforcement (Example) and reinforcement made of carbon fiber (Comparative Example 1), reinforcement made of aramid fiber (Comparative Example 2), and reinforcement made of glass fiber (Comparative Example 3). As a result of the direct tensile test, it is a test result for the strain rates of Examples and Comparative Examples. The tensile test specimen was tested using the specimen shown in FIG. 7.

FiberFiber Strain
(%)
Strain
(%)
Density
(g/㎟)
Density
(g/㎟)
실시예Example 2.72.7 0.00270.0027 비교예 1Comparative Example 1 1.161.16 0.00180.0018 비교예 2Comparative Example 2 2.432.43 0.001440.00144 비교예 3Comparative Example 3 1.281.28 0.002540.00254

아래 표 2는 현무암 섬유(12)와 탄소섬유(11)의 혼합률을 결정하기 위한 혼합률을 나타낸 것으로서, 실시예 2 ~ 8은 현무암 섬유(12)와 탄소섬유(11)의 혼합비율을 나타낸 것이다. 혼합비율은 부피비로 계산된 것이다.Table 2 below shows the mixing ratio for determining the mixing ratio of the basalt fiber 12 and the carbon fiber 11, and Examples 2 to 8 show the mixing ratio of the basalt fiber 12 and the carbon fiber 11 will be. The mixing ratio is calculated by volume ratio.

시편Psalter 현무암섬유/탄소섬유
by volume
Basalt fiber/carbon fiber
by volume
탄소섬유
(EA)㎟
Carbon fiber
(EA)㎟
현무암섬유
(EA)㎟
Basalt fiber
(EA)㎟
Epoxy /
fiber by volume
Epoxy /
fiber by volume
실시예 2Example 2 1.01.0 (10)4.44(10)4.44 (10)4.44(10)4.44 1.51.5 실시예 3Example 3 5.05.0 (3)1.33(3)1.33 (15)6.65(15)6.65 실시예 4Example 4 6.06.0 (3)1.33(3)1.33 (18)7.98(18)7.98 실시예 5Example 5 7.07.0 0.89(2)0.89(2) (14)6.23(14)6.23 실시예 6Example 6 8.08.0 0.89(2)0.89(2) (16)7.12(16)7.12 실시예 7Example 7 9.09.0 0.89(2)0.89(2) (18)8.01(18)8.01 실시예 8Example 8 10.010.0 0.89(2)0.89(2) (20)8.9(20)8.9

실시예 2~8에 대한 직접인장 시험 결과는 도 10에 도시하였고, 실시예 6의 강도가 가장 우수한 것을 확인 하였다. 실시예 6은 현무암섬유/탄소섬유의 부피비율이 8인 예이다. 본 시험을 위한 시험 시편은 도 8과 같고, 시편 제작은 도 9에 도시 하였다.The direct tensile test results for Examples 2 to 8 are shown in FIG. 10, and it was confirmed that the strength of Example 6 was the best. Example 6 is an example in which the volume ratio of basalt fiber/carbon fiber is 8. The test specimen for this test is as shown in FIG. 8, and the specimen fabrication is illustrated in FIG. 9.

아래 표 3은 실시예 2~8에 대한 직접인장 시험 결과이다.Table 3 below shows the direct tensile test results for Examples 2 to 8.

하중
(N)
weight
(N)
변위
(mm)
Displacement
(mm)
단면적
(㎟)
Cross-sectional area
(㎟)
인장강도
(MPa)
The tensile strength
(MPa)
변형율
(%)
Strain
(%)
실시예 2Example 2 17,34917,349 7.537.53 8.98.9 1,9491,949 3.013.01 실시예 3Example 3 16,25016,250 8.188.18 8.08.0 2,0322,032 3.273.27 실시예 4Example 4 18,40618,406 7.747.74 9.39.3 1,9731,973 3.103.10 실시예 5Example 5 14,45714,457 7.717.71 7.17.1 2,0342,034 3.083.08 실시예 6Example 6 16,96616,966 8.278.27 8.08.0 2,1222,122 3.313.31 실시예 7Example 7 13,76013,760 7.827.82 8.98.9 1,5491,549 3.133.13 실시예 8Example 8 15,30015,300 8.598.59 9.89.8 1,5661,566 3.443.44

실험결과, 표 3과 같이 현무암 섬유와 탄소섬유의 비율이 7 : 1 ~ 8 : 1인 경우 최대하중 이후에 하중 증가 없이 변형율이 증가하는 연성적인 파괴 형태를 나타내고 있다.As a result of the experiment, as shown in Table 3, when the ratio of basalt fiber and carbon fiber is 7: 1 ~ 8: 1, it shows a ductile failure pattern in which the strain increases without increasing the load after the maximum load.

아래 표 4는 본원발명과 탄소섬유의 보강효과를 확인하기 위한 시험결과로서, 철근콘크리트 보에 본원발명의 보강섬유와 탄소섬유를 설치하여 시험한 결과이다. 보 단면은 200(B)×200(H)mm, 보 길이는 2m로 하였으며, 시험전경은 도 11과 같다.Table 4 below is a test result for confirming the reinforcing effect of the present invention and carbon fiber, and is a test result of installing the reinforcing fiber and carbon fiber of the present invention on a reinforced concrete beam. The beam cross-section was 200(B)×200(H)mm, the beam length was 2m, and the test front diameter is as shown in FIG.

도 11에서와 같이 보는 인장시험기에 셋팅되고, 섬유의 보강은 인장을 받는 보의 상면에 설치된다.As shown in Fig. 11, it is set on a tensile testing machine, and the reinforcement of the fibers is installed on the upper surface of the beam subjected to tension.

시험체Test body 보강량Reinforcement 항복하중
(kN)
Yield load
(kN)
최대하중
(kN)
Load
(kN)
비고Remark
기준시험체Reference test body -- 66.6966.69 81.7681.76 100%100% 탄소섬유보강Carbon fiber reinforcement 1겹1 ply 65.2565.25 87.8487.84 107%107% 본원발명의
섬유보강재 보강
The present invention
Fiber reinforcement reinforcement
BF: 8겹
CF: 1겹
BF: 8 ply
CF: 1 ply
68.2568.25 88.2488.24 108%108%

표 5와 6은 압축부재인 기둥의 외주면에 설치되는 본 발명의 섬유 보강재의 콘크리트 내측구속효과를 확인하기 위한 시험으로서, 원형 및 사각단면의 기둥 공시체를 제작하고 공시체의 외주면에 섬유 보강재를 감싼 후 압축강도를 테스트한 결과이다. 사각단면의 공시체는 횡보강시 모서리 부분 및 각진 부분에 섬유들뜸현상을 방지하기 위하여 컷팅 후 라운딩 처리를 하였고, 커팅깊이를 10mm, 20mm로 하였다.Tables 5 and 6 are tests to confirm the inner restraint effect of the fiber reinforcement of the present invention installed on the outer circumferential surface of the column, which is a compression member, after making a column specimen of circular and square section and wrapping the fiber reinforcement on the outer circumference of the specimen. This is the result of testing the compressive strength. The specimen of the square section was rounded after cutting in order to prevent the fiber lifting phenomenon at the corners and angled portions during transverse reinforcement, and the cutting depths were 10mm and 20mm.

아래 표 5의 시험에 적용된 본원 발명의 섬유 보강재는 실시예 6의 섬유 보강재를 적용하였다.The fiber reinforcement of Example 6 was applied to the fiber reinforcement of the present invention applied to the test of Table 5 below.

표 5에서 무보강은 공시체 외주면에 섬유 보강재를 설치하지 않은 것이고, 보강은 섬유 보강재를 설치한 것이다.In Table 5, no reinforcement means that the fiber reinforcement is not installed on the outer circumference of the specimen, and the reinforcement is that the fiber reinforcement is installed.

구분division 단면형태Cross-sectional shape 컷팅 깊이
(mm)
Cutting depth
(mm)
사용섬유Fiber used 섬유비율Fiber ratio
무보강No reinforcement 원형circle -- -- -- 사각형Square 1010 2020 보강Reinforcement 원형circle -- 탄소섬유+현무암섬유Carbon fiber + basalt fiber 탄소섬유(1)
현무암섬유(8)
Carbon Fiber(1)
Basalt Fiber(8)
사각형Square 1010 2020

구분division 무보강 콘크리트Unreinforced concrete 보강된 콘크리트Reinforced concrete 섬유보강 효과Fiber reinforcement effect 압축강도
(MPa)
Compressive strength
(MPa)
압축변형율
(%)
Compression strain
(%)
압축강도
(MPa)
Compressive strength
(MPa)
압축변형율
(%)
Compression strain
(%)
강도증가Strength increase 연성증가Ductility increase
원형circle 30.08 30.08 0.24%0.24% 34.14 34.14 1.38%1.38% 1.1 1.1 5.8 5.8 사각형
(컷팅깊이 20mm)
Square
(Cutting depth 20mm)
27.79 27.79 0.26%0.26% 29.52 29.52 0.45%0.45% 1.1 1.1 1.7 1.7
사각형
(컷팅깊이 10mm)
Square
(Cutting depth 10mm)
25.85 25.85 0.25%0.25% 27.69 27.69 0.31%0.31% 1.1 1.1 1.2 1.2

표 6에서와 같이 섬유 보강재가 보강된 콘크리트 공시체가 보강하지 않은 공시체에 비해 압축강도가 증가하고 연성이 증가한 것을 확인할 수 있다.As shown in Table 6, it can be seen that the concrete specimen reinforced with fiber reinforcement increased the compressive strength and increased ductility compared to the unreinforced specimen.

아래 표 7은 실시예 6의 섬유보강재와 탄소섬유가 보강된 구조물의 내진성능 향상 정도를 파악하기 위한 시험으로서, 실험체는 섬유보강재가 설치되지 않은 경우(무보강), 탄소섬유 1겹으로 보강된 탄소섬유 보강 시험체, 본원발명의 실시예 6이 적용된 시험체 총 3가지 경우에 대한 시험 결과이다.Table 7 below is a test to determine the degree of seismic performance improvement of the structure reinforced with the fiber reinforcement and carbon fiber of Example 6. When the fiber reinforcement is not installed (no reinforcement), the test specimen is reinforced with one layer of carbon fiber. These are the test results for a total of three cases, a carbon fiber reinforced test body and a test body to which Example 6 of the present invention was applied.

시험결과 탄소섬유로 보강한 실험체의 최대하중은 172kN이었으며, 최대 하중시의 변위는 78.4mm이었다. 실시예가 적용된 실험체의 최대하중은 174kN이며, 최대변위는 98.5mm이었다. 무보강 시험체와 탄소섬유로 보강된 시험체, 본 발명의 실시예가 적용된 시험체의 최대하중을 비교하면, 각각 116%, 117%로 보강성능이 비슷하지만, 연성지수의 경우는 각각 9.8, 10.9로 실시예 6이 적용된 시험체가 높은 연성지수를 확인할 수 있다.As a result of the test, the maximum load of the specimen reinforced with carbon fiber was 172kN, and the displacement at the maximum load was 78.4mm. The maximum load of the specimen to which the example was applied was 174kN, and the maximum displacement was 98.5mm. Comparing the maximum load of the unreinforced test body, the test body reinforced with carbon fiber, and the test body to which the example of the present invention was applied, the reinforcement performance was similar to 116% and 117%, respectively, but the ductility index was 9.8 and 10.9, respectively. It is possible to confirm the high ductility index of the specimen to which 6 is applied.

실험체Specimen 보강량Reinforcement 항복하중
(MPa)
Yield load
(MPa)
항복변위
(mm)
Yield displacement
(mm)
최대하중
(kN)
Load
(kN)
최대변위
(mm)
Maximum displacement
(mm)
연성지수
(최대변위/항복변위)
Ductility index
(Maximum displacement/yield displacement)
무보강No reinforcement -- 132132 12.012.0 148148 49.449.4 4.124.12 탄소섬유Carbon fiber CF 1겹CF 1-ply 105105 8.08.0 172172 78.478.4 9.89.8 본원발명의보강재적용Reinforcement application of the present invention 실시예 6Example 6 110110 9.09.0 174174 98.598.5 10.910.9

아래 표 8은 탄소섬유, 유리섬유 및 실시예 6이 적용된 본원발명의 섬유 보강재에 대하여 내알칼리성 및 내열성을 확인한 시험결과 이다.Table 8 below is a test result confirming alkali resistance and heat resistance for the carbon fiber, glass fiber, and fiber reinforcement of the present invention to which Example 6 is applied.

실험조건은 열화를 촉진시킬 목적으로 온도조건을 60℃로 설정하였다. 또한, 내알칼리성 시험을 위한 알칼리 용액에는 높은 알칼리농도에서 시험가능하도록 5%의 NaOH용액을 사용하였다. 침지기간은 각각 7, 14, 21, 28일로 설정하고, 기간이 지난 후 섬유침지용액으로 부터 꺼내어 증류수에서 세정한 후 1일간 건조시킨 다음 인장강도 시험을 실시하여 강도변화를 확인하였다. As for the experimental conditions, the temperature condition was set to 60°C for the purpose of promoting deterioration. In addition, a 5% NaOH solution was used for the alkali solution for the alkali resistance test so as to enable the test at a high alkali concentration. The immersion period was set to 7, 14, 21, and 28 days, respectively, and after the period, it was taken out from the fiber immersion solution, washed in distilled water, dried for 1 day, and then subjected to a tensile strength test to check the change in strength.

내열성시험의 경우, 각 섬유에 대해 고온 전기로를 이용한 환경온도를 100℃, 200℃, 400℃, 600℃ 조건으로 설정한 후 이들 온도에서 각각 2시간 정도 폭로하여 1일 상온에서 방치한 후의 인장강도 시험을 실시하여 강도변화를 확인하였다. In the case of heat resistance test, the tensile strength after setting the environmental temperature using a high-temperature electric furnace for each fiber to 100℃, 200℃, 400℃, and 600℃, expose them at these temperatures for about 2 hours, and leave at room temperature for 1 day. The test was conducted to confirm the change in strength.

섬유종류Fiber type 내구성
종류
durability
Kinds
열화
조건
Deterioration
Condition
시험편 수Number of test pieces
탄소섬유Carbon fiber 내알칼리성Alkali resistance NaOH
(농도: 5%, 온도: 60℃)
(침적기간: 7, 14, 21, 28일)
NaOH
(Concentration: 5%, Temperature: 60℃)
(Sedimentation period: 7, 14, 21, 28 days)
각 10개10 each
내열성Heat resistance 고온전기로(가열: 2시간)
100℃~600℃
High-temperature electric furnace (heating: 2 hours)
100℃~600℃
유리섬유Fiberglass 내알칼리성Alkali resistance NaOH
(농도: 5%, 온도: 60℃)
(침적기간: 7, 14, 21, 28일)
NaOH
(Concentration: 5%, Temperature: 60℃)
(Sedimentation period: 7, 14, 21, 28 days)
내열성Heat resistance 고온전기로(가열: 2시간)
100℃~600℃
High-temperature electric furnace (heating: 2 hours)
100℃~600℃
본원발명의
실시예 6 적용
The present invention
Application of Example 6
내알칼리성Alkali resistance NaOH
(농도: 5%, 온도: 60℃)
(침적기간: 7, 14, 21, 28일)
NaOH
(Concentration: 5%, Temperature: 60℃)
(Sedimentation period: 7, 14, 21, 28 days)
내열성Heat resistance 고온전기로(가열: 2시간)
100℃~600℃
High-temperature electric furnace (heating: 2 hours)
100℃~600℃

아래 표 9는 인장강도와 강도 변화율 시험결과로서, 유리섬유의 경우, 28일 침적 후 강도변화율은 21.4% 정도였고, 본원발명의 경우, 강도변화율은 30.5%로 유리섬유에 비하여 양호한 편임을 알 수 있었다. Table 9 below shows the tensile strength and strength change rate test results.In the case of glass fiber, the strength change rate after immersion for 28 days was about 21.4%, and in the case of the present invention, the strength change rate was 30.5%, which is better than glass fiber. there was.

탄소섬유의 경우는 인장강도의 변화가 거의 없어 알칼리성에 의한 침식영향이 다른 섬유에 비하여 상대적으로 매우 작은 것을 확인하였다.In the case of carbon fiber, it was confirmed that there was little change in tensile strength, so that the erosion effect due to alkali was relatively small compared to other fibers.

침지일수


섬유종류
Immersion days


Fiber type
인장강도(MPa)
(강도 변화율(%))
Tensile strength (MPa)
(Intensity change rate (%))
0일0 days 7일7 days 14일14 days 21일21 days 28일28 days 탄소섬유Carbon fiber 1,970
(100)
1,970
(100)
1,945
(98.7)
1,945
(98.7)
1,931
(98.0)
1,931
(98.0)
1,904
(96.6)
1,904
(96.6)
1,902
(96.6)
1,902
(96.6)
유리섬유Fiberglass 858
(100)
858
(100)
575
(67.2)
575
(67.2)
395
(46.1)
395
(46.1)
275
(31.8)
275
(31.8)
180
(21.4)
180
(21.4)
본원발명의
실시예 6 적용
The present invention
Application of Example 6
704
(100)
704
(100)
476
(67.7)
476
(67.7)
354
(50.3)
354
(50.3)
232
(33.0)
232
(33.0)
215
(30.5)
215
(30.5)

아래 표 10은 내열성을 평가한 결과로서, 실험결과, 400℃조건 이상부터 온도증가에 따른 열화경향이 뚜렷이 나타나기 시작해 탄소섬유와 유리섬유 모두 고온 폭로에 의한 강도열화가 현저하게 나타남을 확인하였다.Table 10 below is a result of evaluating the heat resistance. As a result of the experiment, it was confirmed that the deterioration tendency due to temperature increase began to appear clearly from the condition of 400°C or higher, and the strength deterioration due to exposure to high temperature was remarkable for both carbon fiber and glass fiber.

본원발명의 실시예 6이 적용된 경우는 600℃에 이르는 고온조건하에서도 강도변화가 90%대까지 유지되어 고온폭로에 따른 내열성이 타 섬유재료에 비해 상대적으로 월등히 뛰어남을 확인하였다.When Example 6 of the present invention was applied, it was confirmed that the change in strength was maintained up to 90% even under high temperature conditions up to 600°C, so that heat resistance due to high temperature exposure was relatively superior to other fiber materials.

노출온도


섬유종류
Exposure temperature


Fiber type
인장강도(MPa)
(강도 변화율(%))
Tensile strength (MPa)
(Intensity change rate (%))
20℃(상온)20℃ (room temperature) 100℃100 200℃200 400℃400 600℃600℃ 탄소섬유Carbon fiber 1,970
(100)
1,970
(100)
1,931
(98.2)
1,931
(98.2)
1,891
(95.9)
1,891
(95.9)
1,619
(82.2)
1,619
(82.2)
1,206
(61.2)
1,206
(61.2)
유리섬유Fiberglass 858
(100)
858
(100)
841
(98.1)
841
(98.1)
807
(94.3)
807
(94.3)
611
(71.2)
611
(71.2)
482
(56.2)
482
(56.2)
본원발명의
실시예 6 적용
The present invention
Application of Example 6
704
(100)
704
(100)
697
(98.8)
697
(98.8)
701
(99.6)
701
(99.6)
690
(98.6)
690
(98.6)
648
(92)
648
(92)

P : 프리스트레스 1 : 구조물
10 : 섬유 10 : 에폭시 수지
11 : 보강섬유 12 : 현무암 섬유
100 : 제1레이어 200 : 제2레이어
300 : 제3레이어 400 : 제4레이어
P: Prestress 1: Structure
10: fiber 10: epoxy resin
11: reinforcing fiber 12: basalt fiber
100: first layer 200: second layer
300: 3rd layer 400: 4th layer

Claims (8)

탄소섬유 또는 아라미드섬유 중 적어도 어느 하나인 보강섬유(11),
현무암 섬유(12) 이거나 상기 현무암 섬유(12)와 유리섬유 또는 상기 현무암 섬유(12)와 PET 섬유가 혼합되어 형성되는 주 섬유(13)를 포함하되,
상기 보강섬유(11)와 상기 주 섬유(13)가 1 : 1 ~ 2 : 10 의 체적 비율로 나란히 배열된 제1레이어(100);
상기 제1레이어(100)의 하측에 형성되되, 상기 제1레이어(100)의 섬유 배열 방향과 직교하는 방향으로 상기 현무암 섬유(12), 상기 탄소섬유, 상기 유리섬유, 상기 아라미드섬유, 상기 PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제2레이어(200);
상기 제2레이어(200)의 하측에 형성되되, 상기 제1레이어(100)에 배열된 섬유에 30 ~ 60°의 기울기를 갖도록 상기 현무암 섬유(12), 상기 탄소섬유, 상기 유리섬유, 상기 아라미드섬유, 상기 PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제3레이어(300);
상기 제3레이어(300)의 하측에 형성되되, 상기 제1레이어(100)에 배열된 섬유에 -30 ~ -60°의 기울기를 갖도록 상기 현무암 섬유(12), 상기 탄소섬유, 상기 유리섬유, 상기 아라미드섬유, 상기 PET 섬유 중 적어도 어느 하나 이상이 배열되어 형성되는 제4레이어(400);를 포함하고,
상기 현무암 섬유(12)는
이산화규소(SiO2) 50~56 중량%;
산화알루미늄(Al2O3) 15~20 중량%;
산화철(Fe2O3) 8~13 중량%;
산화마그네슘(MgO) 3~7 중량%;
산화나트륨(Na2O) 1.5~5 중량%;
산화칼륨(K2O) 1~4 중량%;
이산화티타늄(TiO2) 1~4 중량%;
오산화인(P2O5) 0.1~0.4 중량%;
산화망간(MnO) 0.1~0.3 중량%;
산화크롬(Cr2O3) 0.02~0.08 중량%;를 포함함과 아울러,
상기 유리섬유는
이산화규소(SiO2) 50~56 중량%;
산화알루미늄(Al2O3) 12~16 중량%;
산화마그네슘(MgO) 1~6 중량%;
산화칼륨(K2O) 19~25 중량%;
산화붕소(B2O3) 5~10 중량%;를 포함하고,
상기 제4레이어(400)의 하면에 부직포(500)를 접촉시키고, 상기 제1레이어(100), 상기 제2레이어(200), 상기 제3레이어(300), 상기 제4레이어(400), 상기 부직포(500)로 형성된 섬유 보강재(A)를 에폭시 수지(10)에 함침시킨 후 상기 에폭시 수지(10)를 경화시키며,
상기 부직포(500)는
상기 에폭시 수지(10)가 경화되기 전에 인장력이 도입되고, 상기 부직포(500)에 인장응력이 잔존하는 상태로 상기 에폭시 수지(10)가 경화되는 것을 특징으로 하는 섬유 보강재.
Reinforcing fibers 11 which are at least one of carbon fibers or aramid fibers,
The basalt fiber 12 or the basalt fiber 12 and the glass fiber or the basalt fiber 12 and the PET fiber are mixed and formed to include a main fiber 13,
A first layer 100 in which the reinforcing fibers 11 and the main fibers 13 are arranged side by side in a volume ratio of 1:1 to 2:10;
Is formed under the first layer 100, the basalt fiber 12, the carbon fiber, the glass fiber, the aramid fiber, the PET in a direction orthogonal to the fiber arrangement direction of the first layer 100 A second layer 200 formed by arranging at least one of the fibers;
The basalt fiber 12, the carbon fiber, the glass fiber, and the aramid are formed under the second layer 200 and have an inclination of 30 to 60° to the fibers arranged in the first layer 100 A third layer 300 formed by arranging at least one or more of fibers and PET fibers;
The basalt fiber 12, the carbon fiber, the glass fiber, which is formed under the third layer 300 and has an inclination of -30 to -60° to the fibers arranged in the first layer 100, Including; a fourth layer 400 formed by arranging at least one or more of the aramid fibers and the PET fibers,
The basalt fiber 12 is
Silicon dioxide (SiO 2 ) 50-56% by weight;
Aluminum oxide (Al 2 O 3 ) 15-20% by weight;
Iron oxide (Fe 2 O 3 ) 8 to 13% by weight;
3 to 7% by weight of magnesium oxide (MgO);
1.5-5% by weight of sodium oxide (Na 2 O);
Potassium oxide (K 2 O) 1 to 4% by weight;
Titanium dioxide (TiO 2 ) 1 to 4% by weight;
Phosphorus pentoxide (P 2 O 5 ) 0.1 to 0.4% by weight;
Manganese oxide (MnO) 0.1 to 0.3% by weight;
Chromium oxide (Cr 2 O 3 ) 0.02 to 0.08% by weight; In addition,
The glass fiber is
Silicon dioxide (SiO 2 ) 50-56% by weight;
Aluminum oxide (Al 2 O 3 ) 12 to 16% by weight;
1-6% by weight of magnesium oxide (MgO);
Potassium oxide (K 2 O) 19-25% by weight;
Including; boron oxide (B 2 O 3 ) 5 to 10% by weight;
The nonwoven fabric 500 is brought into contact with the lower surface of the fourth layer 400, and the first layer 100, the second layer 200, the third layer 300, the fourth layer 400, After impregnating the fiber reinforcement material (A) formed of the nonwoven fabric 500 in the epoxy resin 10, the epoxy resin 10 is cured,
The nonwoven fabric 500 is
Fiber reinforcement, characterized in that the epoxy resin (10) is cured in a state in which a tensile force is introduced before the epoxy resin (10) is cured, and the tensile stress remains in the nonwoven fabric (500) .
삭제delete 삭제delete 제1항에 있어서,
폭은 5 ~ 2000 mm 이고, 두께는 0.1 ~ 10mm 로 제조되는 것을 특징으로 하는 섬유 보강재.
The method of claim 1,
Fiber reinforcement, characterized in that the width is 5 ~ 2000 mm, the thickness is made of 0.1 ~ 10mm.
삭제delete 삭제delete 삭제delete 제1항 또는 제4항의 섬유 보강재(A)를 이용한 구조물 보강공법으로서,
구조물(1)의 표면을 핸드그라인더를 이용하여 면처리 하는 면처리단계;
에어건을 이용하여 상기 구조물(1)의 표면을 청소하는 청소단계;
상기 섬유 보강재(A)에 앵커홀(h)을 형성하는 앵커홀 형성단계;
상기 앵커홀(h)에 앵커를 설치하여 상기 섬유 보강재(A)를 상기 구조물(1)에 고정시키는 섬유보강재 고정단계;
상기 섬유 보강재(A)의 가장자리가 상기 구조물(1)에 접촉되도록 에폭시를 도포하는 가장에폭시 도포단계;
상기 구조물(1)과 상기 섬유 보강재(A)의 면 접합부(S)에 에폭시를 주입하는 에폭시 주입단계;를 포함하는 것을 특징으로 하는 구조물 보강공법.
As a structural reinforcement method using the fiber reinforcement (A) of claim 1 or 4,
A surface treatment step of surface treatment of the surface of the structure 1 using a hand grinder;
A cleaning step of cleaning the surface of the structure 1 using an air gun;
Anchor hole forming step of forming an anchor hole (h) in the fiber reinforcement (A);
A fiber reinforcement fixing step of fixing the fiber reinforcement material (A) to the structure (1) by installing an anchor in the anchor hole (h);
An epoxy coating step of applying epoxy such that the edge of the fiber reinforcement material (A) is in contact with the structure (1);
An epoxy injection step of injecting epoxy into the surface joint (S) of the structure (1) and the fiber reinforcement (A).
KR1020190154566A 2019-11-27 2019-11-27 Fiber reinforcement and method of reinforcing concrete structure using the same KR102197605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190154566A KR102197605B1 (en) 2019-11-27 2019-11-27 Fiber reinforcement and method of reinforcing concrete structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190154566A KR102197605B1 (en) 2019-11-27 2019-11-27 Fiber reinforcement and method of reinforcing concrete structure using the same

Publications (1)

Publication Number Publication Date
KR102197605B1 true KR102197605B1 (en) 2021-01-04

Family

ID=74127525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190154566A KR102197605B1 (en) 2019-11-27 2019-11-27 Fiber reinforcement and method of reinforcing concrete structure using the same

Country Status (1)

Country Link
KR (1) KR102197605B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528757A (en) * 2008-07-23 2011-11-24 エスゲーエル カーボン ソシエタス ヨーロピア Manufacturing method of fiber nonwoven fabric reinforced composite material, and fiber nonwoven fabric reinforced composite material and use thereof
KR101404487B1 (en) * 2013-08-22 2014-06-10 주식회사 로하스기술 Method of repairing and reinforcing cross section of concrete structures using FRP reinforcement
KR101502517B1 (en) * 2014-08-29 2015-03-20 에프알앤디건설(주) Fiber composite panel and strengthening method of concrete structure using the same thing
KR101504514B1 (en) * 2013-07-22 2015-03-30 (주)비에프 Method and apparatus for manufacturing basalt continuous fibers
JP5831667B2 (en) * 2013-11-29 2015-12-09 日東紡績株式会社 Glass fiber fabric-resin composition laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528757A (en) * 2008-07-23 2011-11-24 エスゲーエル カーボン ソシエタス ヨーロピア Manufacturing method of fiber nonwoven fabric reinforced composite material, and fiber nonwoven fabric reinforced composite material and use thereof
KR101504514B1 (en) * 2013-07-22 2015-03-30 (주)비에프 Method and apparatus for manufacturing basalt continuous fibers
KR101404487B1 (en) * 2013-08-22 2014-06-10 주식회사 로하스기술 Method of repairing and reinforcing cross section of concrete structures using FRP reinforcement
JP5831667B2 (en) * 2013-11-29 2015-12-09 日東紡績株式会社 Glass fiber fabric-resin composition laminate
KR101502517B1 (en) * 2014-08-29 2015-03-20 에프알앤디건설(주) Fiber composite panel and strengthening method of concrete structure using the same thing

Similar Documents

Publication Publication Date Title
Wakjira et al. Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study
Yin et al. Experimental investigations of the bending fatigue performance of TRC-strengthened RC beams in conventional and aggressive chlorate environments
Oluwadahunsi et al. Performance of corroded reinforced-concrete beams in flexure strengthened using different basalt fiber textile-reinforced mortar schemes
KR102197605B1 (en) Fiber reinforcement and method of reinforcing concrete structure using the same
Carloni et al. An overview of the design approach to strengthen existing reinforced concrete structures with SRG
KR100537407B1 (en) Method of reinforcing a structure with inserting a reinforcing material vertically
Chen et al. The shear behavior of beams strengthened with FRP grid
KR101502517B1 (en) Fiber composite panel and strengthening method of concrete structure using the same thing
CN211923632U (en) Brick column device is consolidated to high ductility concrete fiber net check cloth
Hassan et al. Rehabilitation of reinforced concrete deep beams using Carbon Fiber Reinforced Polymers (CFRP)
Hawileh et al. Flexural and Bond Behavior of Concrete Beams Strengthened with CFRP and Galvanized Steel Mesh Laminates
US20170101774A1 (en) Method of strengthening an existing infrastructure using sprayed-fiber reinforced polymer composite
Lewangamage et al. A study on reinforced concrete columns partially confined with carbon fibre reinforced polymer (CFRP)
Monni et al. Basalt ropes: a new product for the rehabilitation of historical masonry
US20130139469A1 (en) Use of a textile material as a safety barrier to protect users of any type of construction on the occurrence of damage to structural and non-structural elements
Wu et al. Concrete confined with fiber reinforced cement based thin sheet composites
KR102253856B1 (en) concrete structure reinforcing panel and method for reinforcing concrete structure thereof
RU2744905C2 (en) Method of improving reliability and durability of reinforced concrete structures
KR101040183B1 (en) Fibrous reinforcing sheet for reinforcing of concrete structure and construction method of that
Golias et al. Effectiveness of the Novel Rehabilitation Method of Seismically Damaged RC Joints Using C-FRP Ropes and Comparison with Widely Applied Method Using C-FRP Sheets—Experimental Investigation. Sustainability 2021, 13, 6454
Lejano Confinement effects of different retrofitting materials on the axial strength of reinforced concrete columns
Cai et al. Flexural behaviors of high-performance TRM-retrofitted RC beams under cyclic loading
KR101540243B1 (en) Hybrid fiber composite sheet for concrete structure and strengthening method of concrete structure using the same thing
KR100896766B1 (en) Permeable panel for repairing, reinforcing reinforcement concrete structure and method of thereof
KR100390279B1 (en) Method for repairing bridge

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant