KR102194420B1 - Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same - Google Patents

Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same Download PDF

Info

Publication number
KR102194420B1
KR102194420B1 KR1020180148373A KR20180148373A KR102194420B1 KR 102194420 B1 KR102194420 B1 KR 102194420B1 KR 1020180148373 A KR1020180148373 A KR 1020180148373A KR 20180148373 A KR20180148373 A KR 20180148373A KR 102194420 B1 KR102194420 B1 KR 102194420B1
Authority
KR
South Korea
Prior art keywords
weight
alloy powder
brazing
melting point
corrosion resistance
Prior art date
Application number
KR1020180148373A
Other languages
Korean (ko)
Other versions
KR20200063383A (en
Inventor
김대현
이지훈
송정익
조윤주
Original Assignee
주식회사 풍산홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 풍산홀딩스 filed Critical 주식회사 풍산홀딩스
Priority to KR1020180148373A priority Critical patent/KR102194420B1/en
Priority to PCT/KR2019/015021 priority patent/WO2020111562A1/en
Publication of KR20200063383A publication Critical patent/KR20200063383A/en
Application granted granted Critical
Publication of KR102194420B1 publication Critical patent/KR102194420B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로는 5 내지 40 중량%의 Cr, 5 내지 30 중량%의 Fe, 5 내지 20 중량%의 P, 잔부인 Ni 및 기타 불가피한 불순물을 포함하는 Ni-Cr-Fe-P계 브레이징용 합금분말 및 가스 아토마이징(Gas atomizing) 공정을 통한 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법으로, 용해온도는 1300 내지 1650 ℃이며, 용탕노즐구경은 3 내지 10 mm이고, 가스분사압력은 3 내지 15 bar인 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법에 관한 것이다. 본 발명에 따른 합금분말은 기존제품 대비 저융점을 가짐으로써 후처리 공정에서 접합 온도에 유리하게 작용하며, 브레이징에 적용함으로써 고기능성 접합재로서의 다양한 활용이 가능하다.The present invention relates to a Ni-Cr-Fe-P-based brazing alloy powder having a low melting point and high corrosion resistance and a method for producing the same, and more specifically, 5 to 40% by weight of Cr, 5 to 30% by weight of Fe, Ni-Cr-Fe-P-based brazing alloy powder containing 5 to 20% by weight of P, remaining Ni and other inevitable impurities, and Ni-Cr-Fe-P-based brazing through a gas atomizing process As a method for producing molten alloy powder, the melting temperature is 1300 to 1650 °C, the molten metal nozzle diameter is 3 to 10 mm, and the gas injection pressure is 3 to 15 bar, which has a low melting point and high corrosion resistance Ni-Cr-Fe-P It relates to a method of manufacturing alloy powder for brazing system. The alloy powder according to the present invention has a low melting point compared to the existing products, so it acts advantageously to the bonding temperature in the post-treatment process, and by applying it to brazing, it can be used in various ways as a high-functional bonding material.

Description

저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말 및 이의 제조 방법 {Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same}Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same}

본 발명은 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말 및 이의 제조 방법에 관한 것이다.The present invention relates to a Ni-Cr-Fe-P-based brazing alloy powder having a low melting point and high corrosion resistance, and a manufacturing method thereof.

종래, 각종 스테인리스강을 사용하여 구성된 자동차의 배기가스 재순환장치(EGR:Exhaust Gas Recirculation System)의 열교환기(EGR 쿨러), 각종 내열 합금을 사용하여 구성된 가스터빈, 증기터빈 등의 분야에서는 다양한 Fe계 합금 소재나 부품의 브레이징이 행하여졌다.Conventionally, in the fields of heat exchangers (EGR coolers) of automobile exhaust gas recirculation systems (EGR: Exhaust Gas Recirculation System) composed of various stainless steels, gas turbines and steam turbines composed of various heat-resistant alloys, various Fe-based Brazing of alloy materials and parts was performed.

특히, 배기가스, 연소가스, 증기 등의 부식성이 높은 환경에서 사용하는 브레이징 접합 부품은 내식성을 높이는 효과를 갖는 Cr을 포함하는 Ni기 합금 분말을 사용한 브레이징재의 사용이 일반적이다. 또한 브레이징 온도를 낮출 목적으로 융점을 낮추는 효과를 갖는 B이나 P을 포함하는 브레이징재도 사용된다. 상용제품으로 BNi-2(Ni-Cr-B-Fe-Si), BNi-7(Ni-Cr-P) 등을 들 수 있다. Particularly, brazing joint parts used in environments with high corrosiveness such as exhaust gas, combustion gas, and steam are generally used as a brazing material using Ni-based alloy powder containing Cr, which has an effect of improving corrosion resistance. In addition, a brazing material containing B or P having an effect of lowering the melting point for the purpose of lowering the brazing temperature is also used. Commercial products include BNi-2 (Ni-Cr-B-Fe-Si) and BNi-7 (Ni-Cr-P).

선행 특허로는 회가내스 아베(HOGANAS AB)의 한국공개특허공보 제10-2012-0068028호가 있으며, 해당 특허는 Fe: Bal., Cr: 11 내지 35 중량%, Ni: 0 내지 30 중량%, Cu: 2 내지 20 중량%, Si: 2 내지 10 중량%, P: 4 내지 10 중량%, Mn: 0 내지 10 중량%의 범위로 구성되어 있으며, 우수한 젖음성과 고강도, 양호한 부식 저항을 구현하는 것으로 알려져 있다. 그러나, 상기 특허는 제조방법에 관한 사항은 구체적으로 기재하고 있지 않으며, Fe을 기반으로 하는 합금 조성이라는 점에서 본 발명과는 차이가 있다.As a prior patent, there is Korean Laid-Open Patent Publication No. 10-2012-0068028 of HOGANAS AB, the patent is Fe: Bal., Cr: 11 to 35% by weight, Ni: 0 to 30% by weight, Cu: 2 to 20% by weight, Si: 2 to 10% by weight, P: 4 to 10% by weight, Mn: It is composed of a range of 0 to 10% by weight, and has excellent wettability, high strength, and good corrosion resistance. Is known. However, the patent does not specifically describe the manufacturing method, and differs from the present invention in that it is an alloy composition based on Fe.

또한, 회가내스 아베(HOGANAS AB)의 한국공개특허공보 제10-2017-0117573호는 Ni: bal., Cr: 20 내지 35 중량%, Fe: 7 내지 15 중량%, Si: 2.5 내지 9 중량%, Mo: 0 내지 15 중량%의 범위로 구성되어 있으며, 부식저항성이 우수한 것으로 알려져 있다. 하지만, Ni-Cr-Fe-Si-Mo가 주요 원소로서 본 발명과는 주요 유동성 개선 인자인 P에서 차이가 있다.In addition, Korean Patent Publication No. 10-2017-0117573 of HOGANAS AB is Ni: bal., Cr: 20 to 35% by weight, Fe: 7 to 15% by weight, Si: 2.5 to 9% by weight %, Mo: It is composed of a range of 0 to 15% by weight, and is known to have excellent corrosion resistance. However, Ni-Cr-Fe-Si-Mo is a major element and differs from the present invention in P, which is a major fluidity improvement factor.

또한, 상용화된 제품으로는 BNi-2(Ni-Cr-B-Fe-Si) 및 BNi-7(Ni-Cr-P)이 있으나, BNI-2의 경우 유동성 개선을 위해 B을 필수원소로 사용하고 있으며, BNI-7은 접합력 향상 및 저가화를 위한 원소인 Fe이 빠져있어 본 발명과 차이점이 존재한다.In addition, commercialized products include BNi-2 (Ni-Cr-B-Fe-Si) and BNi-7 (Ni-Cr-P), but in the case of BNI-2, B is used as an essential element to improve fluidity. In addition, BNI-7 is different from the present invention because Fe, which is an element for improving bonding strength and reducing cost, is omitted.

브레이징재는 후처리 작업에 요구되는 적절한 브레이징 온도에 부합하기 위하여 적절한 융점을 구비하여야 한다. 이를 위해 합금 조성 설계의 경우 여러 가열시 나타내는 융점(Melting Point)을 관리하여야 하며, 본 발명의 목적은 여러 원소들을 적절히 조합함으로써 저융점을 가지면서도 고내식 및 경제성을 갖는 브레이징 용도의 니켈 기반 합금분말 및 이의 제조방법을 제공하는 것이다.The brazing material must have an appropriate melting point to meet the appropriate brazing temperature required for post-treatment work. To this end, in the case of alloy composition design, it is necessary to manage the melting point displayed during various heating, and the object of the present invention is a nickel-based alloy powder for brazing use that has high corrosion resistance and economical efficiency while having a low melting point by properly combining several elements. And it is to provide a manufacturing method thereof.

이를 위해, 본 발명은 니켈-크롬-철-인(Ni-Cr-Fe-P)계 브레이징용 합금분말로서, 5 내지 40 중량%의 Cr, 5 내지 30 중량%의 Fe, 5 내지 20 중량%의 P, 잔부인 Ni 및 기타 불가피한 불순물을 포함하는 Ni-Cr-Fe-P계 브레이징용 합금분말을 제공한다.To this end, the present invention is a nickel-chromium-iron-phosphorus (Ni-Cr-Fe-P)-based brazing alloy powder, 5 to 40% by weight of Cr, 5 to 30% by weight of Fe, 5 to 20% by weight It provides Ni-Cr-Fe-P-based brazing alloy powder containing P, the balance of Ni and other inevitable impurities.

또한, 본 발명은 가스 아토마이징(Gas atomizing) 공정을 통한 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법으로, 용해온도는 1300 내지 1650 ℃이며, 용탕노즐구경은 3 내지 10 mm이고, 가스분사압력은 3 내지 15 bar인 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법을 제공한다.In addition, the present invention is a method for producing a Ni-Cr-Fe-P-based brazing alloy powder through a gas atomizing process, the melting temperature is 1300 to 1650 ℃, the molten metal nozzle diameter is 3 to 10 mm , The gas injection pressure provides a method for producing a Ni-Cr-Fe-P-based brazing alloy powder having a low melting point and high corrosion resistance of 3 to 15 bar.

본 발명에 따른 Ni-Cr-Fe-P계 브레이징용 합금분말은 저융점 및 고내식성을 가지며, 유사제품 대비 저융점을 가짐으로써 후처리 공정에서 접합 온도에 유리하게 작용한다. 또한 본 발명에 따른 저융점 및 고내식성을 갖는 합금분말로서 브레이징에 적용함으로써 고기능성 접합재로서의 다양한 활용이 가능하다.The Ni-Cr-Fe-P based alloy powder for brazing according to the present invention has a low melting point and high corrosion resistance, and has a low melting point compared to similar products, thereby advantageously acting on the bonding temperature in the post-treatment process. In addition, as an alloy powder having a low melting point and high corrosion resistance according to the present invention, it is possible to utilize variously as a high-functional bonding material by applying it to brazing.

도 1은 본 발명에 따른 가스 아토마이징 공정으로 제조된 분말 입자들에 대한 SEM 현미경 사진이다.
도 2는 접합 온도에 영향을 미치는 융점에 대한 TGA 분석자료이다.
도 3은 브레이징용 분말의 경우 부식 환경에 노출되는 열교환기의 부품 등에 사용되므로 내부식성에 대한 비교평가가 필요하며, 이에 내부식성 테스트 결과에 따른 광학 현미경 사진을 나타내고 있다.
1 is a SEM micrograph of powder particles manufactured by a gas atomizing process according to the present invention.
2 is a TGA analysis data for the melting point affecting the junction temperature.
3 shows a comparative evaluation of corrosion resistance, since the brazing powder is used for parts of a heat exchanger exposed to a corrosive environment, and thus an optical micrograph according to the corrosion resistance test result is shown.

본 발명은 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말 및 특정 조건을 갖는 가스 아토마이징(Gas atomizing) 공정을 통해 이를 제조하기 위한 방법에 관한 것이다. The present invention relates to a Ni-Cr-Fe-P-based brazing alloy powder having a low melting point and high corrosion resistance, and a method for manufacturing the same through a gas atomizing process having a specific condition.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 Ni-Cr-Fe-P계 브레이징용 합금분말로서, 5 내지 40 중량%의 Cr, 5 내지 30 중량%의 Fe, 5 내지 20 중량%의 P, 잔부인 Ni 및 기타 불가피한 불순물을 포함하는 Ni-Cr-Fe-P계 브레이징용 합금분말을 제공한다.The present invention is a Ni-Cr-Fe-P-based brazing alloy powder, containing 5 to 40% by weight of Cr, 5 to 30% by weight of Fe, 5 to 20% by weight of P, the balance of Ni and other inevitable impurities It provides Ni-Cr-Fe-P based alloy powder for brazing.

본 발명의 합금분말은 Ni, Cr, Fe 및 P를 주요 조성으로 포함하며, 보다 구체적으로는 5 내지 40 중량%의 Cr, 5 내지 30 중량%의 Fe, 5 내지 20 중량%의 P, 잔부인 Ni 및 기타 불가피한 불순물을 포함하며, 또는 이들로만 이루어진다. 상기 원소들 중 베이스가 되는 Ni은 바람직하게는 45 중량% 이상, 보다 바람직하게는 55 중량% 이상으로 포함된다. 또한, 상기 합금분말에는 선택적으로 Si 및 Sn 중 하나 이상의 유동성에 기여하는 원소를 포함할 수 있다.The alloy powder of the present invention contains Ni, Cr, Fe and P as main compositions, and more specifically, 5 to 40% by weight of Cr, 5 to 30% by weight of Fe, 5 to 20% by weight of P, the balance It contains, or consists solely of, Ni and other unavoidable impurities. Among the above elements, Ni, which is a base, is preferably contained in an amount of 45% by weight or more, more preferably 55% by weight or more. In addition, the alloy powder may optionally contain an element contributing to the fluidity of at least one of Si and Sn.

상기 합금분말은 베이스가 되는 Ni 이외에 내식성을 위해 Cr을 5 중량% 내지 40 중량% 범위로 포함하며, 바람직하게는 10 중량% 내지 35 중량%, 보다 바람직하게는 20 중량% 내지 30 중량% 범위로 포함한다. 상기 Cr의 함량이 5 중량% 미만인 경우 충분한 내식성 향상을 기대할 수 없으며, 함량이 40 중량%를 초과하는 경우 이후 후처리시 강도 등 제특성에 불리하게 작용하기 때문에 상기 범위로 포함하는 것이 바람직하다.The alloy powder contains Cr in the range of 5% to 40% by weight for corrosion resistance in addition to Ni as the base, preferably 10% to 35% by weight, more preferably 20% to 30% by weight Include. When the Cr content is less than 5% by weight, sufficient corrosion resistance improvement cannot be expected, and when the content exceeds 40% by weight, it is preferable to include it in the above range because it adversely affects various properties such as strength during post-treatment.

본 발명의 합금분말에서 Fe은 5 중량% 내지 30 중량% 범위로 포함되며, 바람직하게는 6 중량% 내지 20 중량%, 보다 바람직하게는 7 중량% 내지 13 중량% 범위로 포함된다. 상기 Fe의 함량이 5 중량% 미만인 경우 후처리시 충분한 강도 향상과 고가의 Ni 소재의 대체를 통한 경제적 이점이 크게 없으며, 함량이 30 중량%를 초과하는 경우 경제성은 확보되나, 이후 후처리시 접합 온도의 향상으로 브레이징 공정의 비용 증가를 유발하며 내식 특성에 불리하게 작용한다.In the alloy powder of the present invention, Fe is included in the range of 5% to 30% by weight, preferably 6% to 20% by weight, more preferably 7% to 13% by weight. If the content of Fe is less than 5% by weight, there is no significant economic advantage through sufficient strength improvement and replacement of expensive Ni material during post-treatment. If the content exceeds 30% by weight, economical efficiency is secured. Increasing the temperature causes an increase in the cost of the brazing process and adversely affects corrosion resistance.

본 발명의 합금분말에서 P은 5 내지 20 중량% 범위로 포함되며, 바람직하게는 8 중량% 내지 17 중량%, 보다 바람직하게는 10 중량% 내지 15 중량% 범위로 포함된다. 상기 함량이 5 중량% 미만인 경우 충분한 융점 강하가 이루어지지 않으며, 이에 따라 후처리 접합 공정에서 유동성이 저하되는 문제점을 나타낸다. 또한, 함량이 20 중량%를 초과하는 경우 유동성은 향상되나, 후처리 접합 공정에서의 과다한 유동성은 접합면의 접합 강도를 떨어트리는 문제를 발생시킨다.In the alloy powder of the present invention, P is included in the range of 5 to 20% by weight, preferably 8% to 17% by weight, more preferably 10% to 15% by weight. When the content is less than 5% by weight, a sufficient melting point drop is not achieved, and thus, fluidity is deteriorated in the post-treatment bonding process. In addition, when the content exceeds 20% by weight, the fluidity is improved, but excessive fluidity in the post-treatment bonding process causes a problem of deteriorating the bonding strength of the bonding surface.

선택적으로, 본 발명의 합금분말은 강도 및 유동성에 기여하는 원소로서 Si 및 Sn 중 하나 이상의 원소를 포함할 수 있으며, Si 및 Sn 중 하나 이상의 원소는 1 중량% 내지 5중량% 범위로 포함되며, 바람직하게는 1.5 중량% 내지 4.5 중량%, 보다 바람직하게는 2 중량% 내지 4 중량% 범위로 포함된다. 상기 함량이 1 중량% 미만인 경우 후처리시 충분한 강도 및 유동성의 향상을 기대할 수 없으며, 함량이 5 중량%를 초과하는 경우 강도 및 유동성은 향상되나, Si의 경우 표면의 규화물(silicide) 형성에 따른 개재물 잔존 및 강도 저하 문제가 발생할 수 있으므로 바람직하지 않다. 한편, 유동성에 영향을 미치는 Si 및 Sn 중 하나 이상의 원소를 사용하는 경우 P과의 관계에서 사용량을 조절하는 것이 바람직하며, 일반적으로는 6 중량% ≤ (Si 및 Sn 중 하나 이상의 원소)+P ≤ 25 중량%를 사용하며, 바람직하게는 8 중량% ≤ (Si 및 Sn 중 하나 이상의 원소)+P ≤ 20 중량%를 사용한다.Optionally, the alloy powder of the present invention may contain at least one element of Si and Sn as elements contributing to strength and fluidity, and at least one element of Si and Sn is included in the range of 1% to 5% by weight, It is preferably included in the range of 1.5% to 4.5% by weight, more preferably 2% to 4% by weight. If the content is less than 1% by weight, sufficient strength and fluidity cannot be expected during post-treatment, and when the content exceeds 5% by weight, strength and fluidity are improved, but in the case of Si, due to the formation of silicide on the surface. It is not preferable because the inclusion remains and strength reduction problems may occur. On the other hand, in the case of using one or more elements of Si and Sn that affect fluidity, it is preferable to adjust the amount used in relation to P, and generally 6% by weight ≤ (one or more elements of Si and Sn) + P ≤ 25 % By weight is used, and preferably 8% by weight <(one or more elements of Si and Sn) + P <20% by weight is used.

본 발명에 따른 Ni-Cr-Fe-P계 브레이징용 합금분말에는 기타 불가피한 불순물이 극미량으로 포함될 수 있다. 기타 불가피한 불순물은 본 발명에 따른 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말의 특성에 영향을 미치지 않는다.The Ni-Cr-Fe-P-based brazing alloy powder according to the present invention may contain other inevitable impurities in a very small amount. Other inevitable impurities do not affect the properties of the Ni-Cr-Fe-P-based brazing alloy powder having a low melting point and high corrosion resistance according to the present invention.

상기 본 발명에 따른 Ni-Cr-Fe-P계 브레이징용 합금분말은 800 내지 1,100 ℃, 바람직하게는 840 내지 970 ℃의 융점을 가진다. 따라서, 일반적으로 사용되는 브레이징 용접재와 같은 효과를 나타내며, 특히 보다 낮은 융점을 가져 저융점에 적합한 브레이징 합금 분말이다. The Ni-Cr-Fe-P-based brazing alloy powder according to the present invention has a melting point of 800 to 1,100°C, preferably 840 to 970°C. Therefore, it exhibits the same effect as a generally used brazing welding material, and has a lower melting point, and is a brazing alloy powder suitable for a low melting point.

또한 본 발명에 따른 Ni-Cr-Fe-P계 브레이징용 합금분말은 pH 1 ~ 2 조건에서 표면에 극히 일부 부식 또는 부식 부위가 거의 관찰 되지 않는 우수한 내식성을 나타낸다. 따라서, 고내식성이 요구되는 자동차용 EGR 쿨러부품 등 용도의 브레이징 소재로 적합하다.In addition, the Ni-Cr-Fe-P-based brazing alloy powder according to the present invention exhibits excellent corrosion resistance in which very little corrosion or corrosion sites are hardly observed on the surface under conditions of pH 1 to 2. Therefore, it is suitable as a brazing material for applications such as automotive EGR cooler parts that require high corrosion resistance.

본 발명은 상기의 합금 조성을 갖는 원소재를 배합하여 산업용 분말 제조 공정인 가스 아토마이징(Gas atomizing) 공정을 사용하여 원료분말을 제조한다.In the present invention, raw material powders are prepared using a gas atomizing process, which is an industrial powder manufacturing process by blending raw materials having the above alloy composition.

보다 구체적으로, 본 발명에 따른 상기 Ni-Cr-Fe-P계 브레이징용 합금분말은 가스 아토마이징(Gas atomizing) 공정을 통해 제조되며, 1300 내지 1650 ℃의 용해온도, 3 내지 10 mm의 용탕노즐구경, 3 내지 15 bar의 가스분사압력을 사용하여 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말을 제조한다.More specifically, the Ni-Cr-Fe-P-based brazing alloy powder according to the present invention is manufactured through a gas atomizing process, a melting temperature of 1300 to 1650 °C, a molten metal nozzle of 3 to 10 mm A Ni-Cr-Fe-P-based brazing alloy powder having a low melting point and high corrosion resistance was prepared using a gas injection pressure of a diameter of 3 to 15 bar.

예를 들어, 본 발명에 따른 Ni-Cr-Fe-P계 브레이징용 합금분말은 본 발명에 따른 합금 조성을 갖는 원소재를 용도를 감안하여 적절한 비율로 배합한 후 산업용 분말 제조장치인 가스 아토마이져(Gas atomizer)를 사용하여 용해온도 1300 내지 1650 ℃, 용탕노즐구경 3 내지 10 mm 및 가스분사압력 약 3 내지 15 Bar로 가스 분사하여 제조한 후, 0 내지 24 Hr의 냉각 시간을 거쳐 충분히 냉각한 다음 100 메쉬(mesh)로 1차 분급하고, 수요업체 요구특성에 따라 입도별 2차 분급을 진행하는 방식을 통해 제조될 수 있다.For example, the Ni-Cr-Fe-P-based brazing alloy powder according to the present invention is a gas atomizer that is an industrial powder manufacturing apparatus after mixing the raw material having the alloy composition according to the present invention in an appropriate ratio in consideration of the purpose. (Gas atomizer) was prepared by spraying gas with a melting temperature of 1300 to 1650 ℃, a molten metal nozzle diameter of 3 to 10 mm, and a gas injection pressure of about 3 to 15 Bar, and then sufficiently cooled through a cooling time of 0 to 24 Hr. Next, it can be manufactured through a method of first classifying into 100 meshes and performing second classifying by particle size according to the characteristics required by the demander.

이때 합금분말의 균일한 조성을 위하여 용해온도는 1300 내지 1650 ℃ 범위가 적절하며, 바람직하게는 1350 내지 1550 ℃, 보다 바람직하게는 1400 내지 1500 ℃의 범위를 사용한다. 1300 ℃ 미만의 온도에서는 균일한 용해 조성물을 얻기가 어려우며, 1650 ℃를 초과하는 경우 과온에 따른 용해 비용 증가 등의 문제로 인해 경제성이 떨어진다.At this time, for a uniform composition of the alloy powder, the melting temperature is suitably in the range of 1300 to 1650°C, preferably 1350 to 1550°C, more preferably 1400 to 1500°C. It is difficult to obtain a uniform dissolution composition at a temperature of less than 1300°C, and if it exceeds 1650°C, economical efficiency is deteriorated due to problems such as an increase in dissolution cost due to overtemperature.

한편, 가스 아토마이징에 따른 출탕 작업 시 분사를 위한 적절한 분사 노즐이 필요하며, 본 발명에서 용탕노즐구경은 3 내지 10 mm를 사용하며, 바람직하게는 4 내지 9 mm, 보다 바람직하게는 5 내지 8 mm 범위를 사용한다. 4 mm 미만의 노즐구경을 사용하는 경우 용탕 막힘이 발생하여 원활한 작업이 이루어지지 않으며, 10 mm를 초과하는 경우 과도한 용탕 줄기에 따른 조대분말의 형성으로 수율 저하 및 경제성이 떨어지는 문제점을 나타낸다.On the other hand, when the tapping operation according to gas atomizing, an appropriate spray nozzle is required for spraying, and in the present invention, the molten metal nozzle diameter is 3 to 10 mm, preferably 4 to 9 mm, more preferably 5 to 8 Use the mm range. If a nozzle diameter of less than 4 mm is used, the molten metal is clogged and the operation is not performed smoothly. If it exceeds 10 mm, the yield decreases and economic efficiency is poor due to the formation of coarse powder due to excessive molten metal stems.

또한, 출탕 시 가스분사압력은 3 내지 15 Bar가 사용되나, 바람직하게는 5 내지 10 bar의 범위를 사용한다. 3 bar 미만에서는 요구되는 입도보다 조대분의 생성으로 인해 수율 저하가 나타나며, 15 bar를 초과하는 경우 요구되는 입도보다 미세한 분말이 생성되어 양산성이 떨어지는 요인이 된다.In addition, the gas injection pressure during tapping is 3 to 15 Bar, but preferably in the range of 5 to 10 bar. If the bar is less than 3 bar, the yield decreases due to the generation of coarse powder than the required particle size, and when it exceeds 15 bar, the powder finer than the required particle size is generated, which causes poor mass productivity.

더불어, 분사 후 적절한 냉각시간이 요구되며, 통상 0 내지 24 Hr, 바람직하게는 6 내지 18 Hr을 거쳐 충분히 냉각한 이후, 100 메쉬(mesh)로 1차 분급한 후 수요업체 요구특성에 따라 입도별 2차 분급을 진행한다.In addition, after spraying, an appropriate cooling time is required, and after sufficiently cooling through 0 to 24 Hr, preferably 6 to 18 Hr, the particle size is classified according to the characteristics required by the customer after the first classification into 100 mesh. Conduct the 2nd classification.

본 발명에 따른 방법을 사용하는 경우 균일한 조성 확보를 위한 적절한 용탕온도 및 분말 입도 제어를 통하여 제조 수율이 향상될 수 있고, 균일한 조성의 저융점에 적합한 합금분말을 얻을 수 있는 장점을 나타낸다.In the case of using the method according to the present invention, the production yield can be improved through the control of an appropriate molten metal temperature and powder particle size for securing a uniform composition, and an alloy powder suitable for a low melting point of a uniform composition can be obtained.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are for illustrating the present invention, and the contents of the present invention are not limited by the following examples.

실시예Example

다음 실시예에 따라 본 발명을 설명한다.The present invention will be described according to the following examples.

(실시예 1 내지 21 및 비교예 1 내지 12)(Examples 1 to 21 and Comparative Examples 1 to 12)

하기 표 1에 기재된 조성 비율을 사용하여 상기의 가스 아토마이징 제조 방법을 이용하여 합금분말을 각각 제조한 후 물성을 평가하였다.After each of the alloy powders was prepared using the above gas atomizing manufacturing method using the composition ratios shown in Table 1, physical properties were evaluated.

융점의 경우, 잉곳 시편을 채취하여 TGA 분석 방법을 사용하여 측정하였으며, 내식성의 경우, pH 1 ~ 2 수준의 왕수(질산 1 : 염산 1 : 증류수 1 비율)를 제조하여 각 합금별 잉곳 시편의 표면을 부식(18 hrs 담금)시켜 광학현미경을 이용하여 부식 정도를 육안으로 관찰하였다.In the case of the melting point, an ingot specimen was collected and measured using a TGA analysis method.For corrosion resistance, aqua regia (nitric acid 1: hydrochloric acid 1: distilled water 1 ratio) was prepared and the surface of the ingot specimen for each alloy Was corroded (immersed for 18 hrs) and the degree of corrosion was observed with the naked eye using an optical microscope.

구분division NiNi Cr
(중량%)
Cr
(weight%)
P
(중량%)
P
(weight%)
Fe
(중량%)
Fe
(weight%)
Si
(중량%)
Si
(weight%)
Sn
(중량%)
Sn
(weight%)
B
(중량%)
B
(weight%)
융점
(℃)
Melting point
(℃)
내식성Corrosion resistance 비고Remark
실시예 1Example 1 Bal.Bal. 2525 66 1010       968968 OO 양호Good 실시예 2Example 2 Bal.Bal. 2525 1212 1010       956956 OO 양호Good 실시예 3Example 3 Bal.Bal. 2525 1818 1010       956956 OO 양호Good 실시예 4Example 4 Bal.Bal. 2525 1212 77       955955 OO 양호Good 실시예 5Example 5 Bal.Bal. 2525 1212 1515       992992 OO 융점증가Increase in melting point 실시예 6Example 6 Bal.Bal. 2525 1212 2828       10011001 OO 융점증가Increase in melting point 실시예 7Example 7 Bal.Bal. 77 1212 1010       971971 ΔΔ 표면부식,
양호
Surface corrosion,
Good
실시예 8Example 8 Bal.Bal. 2020 1212 1010       962962 OO 양호Good 실시예 9Example 9 Bal.Bal. 3838 1212 1010       965965 OO 양호Good 실시예 10Example 10 Bal.Bal. 2525 66 1010 22     964964 OO 양호Good 실시예 11Example 11 Bal.Bal. 2525 1212 1010 22     958958 OO 양호Good 실시예 12Example 12 Bal.Bal. 2525 1818 1010 22     957957 OO 양호Good 실시예 13Example 13 Bal.Bal. 2525 1212 1010 1One     957957 OO 양호Good 실시예 14Example 14 Bal.Bal. 2525 1212 1010 33     951951 OO 양호Good 실시예 15Example 15 Bal.Bal. 2525 1212 1010 55     947947 OO 양호Good 실시예 16Example 16 Bal.Bal. 77 1212 1010 22     959959 ΔΔ 양호Good 실시예 17Example 17 Bal.Bal. 2020 1212 1010 22     958958 OO 양호Good 실시예 18Example 18 Bal.Bal. 3838 1212 1010 22     959959 OO 양호Good 실시예 19Example 19 Bal.Bal. 2525 1212 1010   1One   957957 OO 양호Good 실시예 20Example 20 Bal.Bal. 2525 1212 1010   33   955955 OO 양호Good 실시예 21Example 21 Bal.Bal. 2525 1212 1010   55   951951 OO 양호Good 비교예 1Comparative Example 1 Bal.Bal. 33 1212 1010       984984 XX 표면부식, 융점증가Surface corrosion, increasing melting point 비교예 2Comparative Example 2 Bal.Bal. 4545 1212 1010       10561056 OO 융점증가Increase in melting point 비교예 3Comparative Example 3 Bal.Bal. 2525 33 1010       987987 OO 융점증가Increase in melting point 비교예 4Comparative Example 4 Bal.Bal. 2525 2525 1010       979979 OO 융점증가Increase in melting point 비교예 5Comparative Example 5 Bal.Bal. 2525 1212 3535       11001100 OO 융점증가Increase in melting point 비교예 6
(BNi-2)
Comparative Example 6
(BNi-2)
Bal.Bal. 77   33 55   33 970970 XX 표면부식, 융점증가Surface corrosion, increasing melting point
비교예 7Comparative Example 7 Bal.Bal. 33 1212 1010 22     978978 XX 표면부식Surface corrosion 비교예 8Comparative Example 8 Bal.Bal. 4545 1212 1010 22     982982 OO 융점증가Increase in melting point 비교예 9Comparative Example 9 Bal.Bal. 2525 33 1010 22     988988 OO 융점증가Increase in melting point 비교예 10Comparative Example 10 Bal.Bal. 2525 22 1010 22     984984 OO 융점증가Increase in melting point 비교예 11Comparative Example 11 Bal.Bal. 2525 1515 1010 1515     989989 OO 융점증가Increase in melting point 비교예 12Comparative Example 12 Bal.Bal. 2525           13991399 OO 융점증가Increase in melting point

*내식성 평가기준 (왕수에 18 시간 침지 후 표면부식 여부 관찰, OM) - 표면부식 다량(X), 표면 국부 부식 (Δ), 표면부식 없음(O)*Criteria for evaluation of corrosion resistance (observation of surface corrosion after 18 hours immersion in aqua regia, OM)-Large amount of surface corrosion (X), surface local corrosion (Δ), no surface corrosion (O)

상기 실시예 1 내지 21 및 비교예 1 내지 12의 표에서 확인할 수 있듯이, 본 발명에 따른 실시예는 저융점 및 고내식성을 갖는 결과를 나타내었다. As can be seen in the tables of Examples 1 to 21 and Comparative Examples 1 to 12, the examples according to the present invention showed a result having a low melting point and high corrosion resistance.

보다 구체적으로, 실시예 15의 경우, 947 ℃의 저융점 및 표면부식이 관찰되지 않은 결과를 나타내었다. 반면, 비교예 6의 경우 970 ℃의 융점과 표면부식이 발생하는 결과를 나타내었다.More specifically, in the case of Example 15, a low melting point of 947° C. and surface corrosion were not observed. On the other hand, in the case of Comparative Example 6, a melting point of 970 °C and surface corrosion occurred.

또한, 상기 비교예 12의 경우와 같이 P 성분 및 Si 성분을 첨가하지 않은 경우, 융점이 현저하게 상승하여 브레이징재의 접합 온도로 사용가능한 1050 ℃도 보다 융점이 현저하게 높게 나타남을 알 수 있었다.In addition, as in the case of Comparative Example 12, when the P component and the Si component were not added, the melting point was remarkably increased and the melting point was significantly higher than that of 1050° C., which can be used as the bonding temperature of the brazing material.

한편, 실시예 2의 경우 P 성분 및 Fe 성분을 함유하여 비교예 12에 비해 융점 저하와 함께 내부식성도 양호한 것을 확인할 수 있었다.On the other hand, in the case of Example 2, it was confirmed that the P component and the Fe component were contained, so that the melting point was lowered and corrosion resistance was also good compared to Comparative Example 12.

또한, 실시예 15의 경우 P 성분, Fe 성분과 함께 Si 성분을 포함하고 있는 시편으로 상용제품(비교예 6)보다 우수한 내부식성 평가 및 저융점 온도 결과를 나타내었다.In addition, in the case of Example 15, a specimen containing a Si component along with a P component and an Fe component showed superior corrosion resistance evaluation and low melting point temperature results than that of a commercial product (Comparative Example 6).

또한, 하기 표 2에 기재된 것과 같이 제조 조건들을 다양하게 변경하여 합금분말을 제조한 후, 휘발성이 강한 P성분 편차를 확인하기 위해 성분분석기(ICP)를 통하여 성분 타겟값에서 벗어난 정도를 확인하였고, 수율을 평가하여 그 결과를 하기 표 2에 기재하였다.In addition, after manufacturing the alloy powder by variously changing the manufacturing conditions as shown in Table 2 below, the degree of deviation from the target component value was confirmed through a component analyzer (ICP) in order to confirm the deviation of the highly volatile P component, The yield was evaluated and the results are shown in Table 2 below.

No.No. 합금분말Alloy powder 용해온도
(℃)
Melting temperature
(℃)
노즐구경
(mm)
Nozzle diameter
(mm)
분사압력
(bar)
Injection pressure
(bar)
P성분 타겟값에서 벗어난 정도Degree of deviation from target value of P component 수율yield 비고Remark
1(실시예)1 (Example) 실시예 2Example 2 14501450 44 77 -1-One 8484 양호Good 2(실시예)2 (Example) 실시예 2Example 2 14501450 66 77 -1-One 9494 양호Good 3(실시예)3 (Example) 실시예 2Example 2 14501450 99 77 -1-One 8282 양호Good 4(실시예)4 (Example) 실시예 2Example 2 14501450 66 44 -1-One 9696 양호Good 5(실시예)5 (Example) 실시예 2Example 2 14501450 66 99 -1-One 8686 양호Good 6(실시예)6 (Example) 실시예 2Example 2 14501450 66 1414 -1-One 8484 미분증가Differential increment 7(실시예)7 (Example) 실시예 2Example 2 13201320 66 77 00 8989 양호Good 8(실시예)8 (Example) 실시예 2Example 2 14701470 66 77 -1-One 9292 양호Good 9(실시예)9 (Example) 실시예 2Example 2 16301630 66 77 -2-2 9494 양호Good 10(실시예)10 (Example) 실시예 11Example 11 14501450 44 77 -1-One 8282 양호Good 11(실시예)11 (Example) 실시예 11Example 11 14501450 66 77 -1-One 9191 양호Good 12(실시예)12 (Example) 실시예 11Example 11 14501450 99 77 -1-One 8181 양호Good 13(실시예)13 (Example) 실시예 11Example 11 14501450 66 44 -1-One 9393 양호Good 14(실시예)14 (Example) 실시예 11Example 11 14501450 66 99 -1-One 8282 양호Good 15(실시예)15 (Example) 실시예 11Example 11 14501450 66 1414 -1-One 8282 미분증가Differential increment 16(실시예)16 (Example) 실시예 11Example 11 13201320 66 77 00 8686 양호Good 17(실시예)17 (Example) 실시예 11Example 11 14701470 66 77 -1-One 9090 양호Good 18(실시예)18 (Example) 실시예 11Example 11 16301630 66 77 -3-3 9090 양호Good 19(비교예)19 (Comparative Example) 실시예 2Example 2 12001200 66 77 -- 00 용탕냉각,
노즐막힘
Molten metal cooling,
Nozzle clogged
20(비교예)20 (Comparative Example) 실시예 2Example 2 17501750 66 77 -5-5 8888 고온에 의한
성분휘발
High temperature
Component volatilization
21(비교예)21 (Comparative Example) 실시예 2Example 2 14501450 22 77 -- 00 노즐막힘Nozzle clogged 22(비교예)22 (Comparative Example) 실시예 2Example 2 14501450 1212 77 -1-One 9999 조대분말
생성
Coarse powder
produce
23(비교예)23 (Comparative Example) 실시예 2Example 2 14501450 66 22 -1-One 9797 조대분말
생성
Coarse powder
produce
24(비교예)24 (Comparative Example) 실시예 2Example 2 14501450 66 1717 -1-One 4545 미분화 및
용탕 역류
Undifferentiated and
Molten metal backflow
25(비교예)25 (Comparative) 비교예 6Comparative Example 6 14501450 66 77 -1-One 7272 용탕 점성
증가
Melt viscosity
increase

상기 No. 1 내지 25의 비교를 통해 확인할 수 있듯이, 본 발명에 따른 실시예들은 P성분 타겟값에서 벗어난 정도 및 수율 측면에서 우수한 결과를 나타낸 반면, 비교예들은 용탕냉각, 노즐막힘, 고온에 의한 성분휘발, 조대분말 생성, 미분화 및 용탕 역류, 용탕 점성 증가 등의 여러 문제점을 나타내었다.Above No. As can be seen through the comparison of 1 to 25, the examples according to the present invention showed excellent results in terms of the degree of deviation from the target value of the P component and the yield, while the comparative examples were melt cooling, nozzle clogging, component volatilization due to high temperature, It showed several problems, such as generation of coarse powder, micronization and backflow of molten metal, and increase in molten metal viscosity.

예를 들어, No. 4(실시예)는 P성분 타겟값에서 산화 등 요인에 의해 차이 발생 정도가 -1, 수율 96 %를 나타낸 반면, No. 22(비교예)는 노즐사이즈 증가에 따라 잉곳형태의 조대분말이 생성된 결과를 나타내었다.For example, No. 4 (Example) showed a difference of -1 and a yield of 96% in the P component target value due to factors such as oxidation, whereas No. 22 (Comparative Example) shows the result that ingot-shaped coarse powder was generated as the nozzle size increased.

Claims (8)

Ni-Cr-Fe-P계 브레이징용 합금분말로서,
20 내지 38 중량%의 Cr,
7 내지 13 중량%의 Fe,
6 내지 18 중량%의 P,
잔부인 Ni 및 기타 불가피한 불순물을 포함하는 Ni-Cr-Fe-P계 브레이징용 합금분말.
Ni-Cr-Fe-P-based brazing alloy powder,
20 to 38% by weight of Cr,
7 to 13% by weight of Fe,
6 to 18% by weight of P,
Ni-Cr-Fe-P-based brazing alloy powder containing the balance of Ni and other inevitable impurities.
제 1 항에 있어서,
1 내지 5 중량%의 Si 및 Sn 중 하나 이상의 원소를 추가로 포함하는 것인 Ni-Cr-Fe-P계 브레이징용 합금분말.
The method of claim 1,
Ni-Cr-Fe-P-based brazing alloy powder that further comprises at least one element of Si and Sn of 1 to 5% by weight.
제 2 항에 있어서,
6 중량% ≤ (Si 및 Sn 중 하나 이상의 원소)+P ≤ 25 중량%로 포함되는 것인 Ni-Cr-Fe-P계 브레이징용 합금분말.
The method of claim 2,
Ni-Cr-Fe-P-based brazing alloy powder containing 6% by weight ≤ (one or more elements of Si and Sn) + P ≤ 25% by weight.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
Ni을 45 중량% 이상으로 포함하는 것을 특징으로 하는 Ni-Cr-Fe-P계 브레이징용 합금분말.
The method according to any one of claims 1 to 3,
Ni-Cr-Fe-P based alloy powder for brazing, characterized in that it contains more than 45% by weight of Ni.
가스 아토마이징(gas atomizing) 공정을 통한 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법으로,
상기 Ni-Cr-Fe-P계 브레이징용 합금분말은
20 내지 38 중량%의 Cr,
7 내지 13 중량%의 Fe,
6 내지 18 중량%의 P,
잔부인 Ni 및 기타 불가피한 불순물을 포함하며,
상기 가스 아토마이징(gas atomizing) 공정의 용해온도는 1300 내지 1650 ℃이며, 용탕노즐구경은 3 내지 10 mm이고, 가스분사압력은 5 내지 10 bar인 저융점 및 고내식성을 갖는 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법.
As a method of manufacturing Ni-Cr-Fe-P based alloy powder for brazing through a gas atomizing process,
The Ni-Cr-Fe-P based alloy powder for brazing is
20 to 38% by weight of Cr,
7 to 13% by weight of Fe,
6 to 18% by weight of P,
Contains the balance Ni and other inevitable impurities,
The gas atomizing process has a melting temperature of 1300 to 1650°C, a molten metal nozzle diameter of 3 to 10 mm, and a gas injection pressure of 5 to 10 bar, which has a low melting point and high corrosion resistance. -P-based brazing alloy powder manufacturing method.
제 5 항에 있어서,
상기 용해온도는 1350 내지 1550 ℃인 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법.
The method of claim 5,
The melting temperature is 1350 to 1550 ℃ Ni-Cr-Fe-P-based method for producing an alloy powder for brazing.
삭제delete 제 5 항에 있어서,
1 내지 5 중량%의 Si 및 Sn 중 하나 이상의 원소를 추가로 포함하는 것인 Ni-Cr-Fe-P계 브레이징용 합금분말의 제조방법.
The method of claim 5,
The method for producing a Ni-Cr-Fe-P-based alloy powder for brazing further comprises 1 to 5% by weight of Si and Sn.
KR1020180148373A 2018-11-27 2018-11-27 Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same KR102194420B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180148373A KR102194420B1 (en) 2018-11-27 2018-11-27 Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same
PCT/KR2019/015021 WO2020111562A1 (en) 2018-11-27 2019-11-07 Brazing ni-cr-fe-p-based alloy powder having low melting point and high corrosive resistance and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180148373A KR102194420B1 (en) 2018-11-27 2018-11-27 Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same

Publications (2)

Publication Number Publication Date
KR20200063383A KR20200063383A (en) 2020-06-05
KR102194420B1 true KR102194420B1 (en) 2020-12-28

Family

ID=70854074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180148373A KR102194420B1 (en) 2018-11-27 2018-11-27 Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same

Country Status (2)

Country Link
KR (1) KR102194420B1 (en)
WO (1) WO2020111562A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008293A (en) 2019-05-28 2020-12-01 株式会社东芝 Nickel-based alloy welding material, welding material for nuclear reactor, nuclear power plant and structure, and method for repairing same
JP7370830B2 (en) * 2019-05-28 2023-10-30 株式会社東芝 Nickel-based alloy welding materials, welding materials for nuclear reactors, nuclear equipment and structures, and repair methods for nuclear equipment and structures
CN112775589A (en) * 2021-01-14 2021-05-11 有研工程技术研究院有限公司 Preparation method of high-purity narrow-particle-size nickel-based brazing filler metal alloy powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110575A (en) * 2009-11-26 2011-06-09 Sanyo Special Steel Co Ltd Ni-Fe-BASED ALLOY BRAZING MATERIAL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3354922B2 (en) * 2000-11-15 2002-12-09 福田金属箔粉工業株式会社 Ni-based heat-resistant brazing material
US7392930B2 (en) * 2006-07-06 2008-07-01 Sulzer Metco (Us), Inc. Iron-based braze filler metal for high-temperature applications
KR20100113816A (en) * 2009-04-14 2010-10-22 부산대학교 산학협력단 Manufacture method of metal-complex-powder using for gas atomization
JP6346799B2 (en) * 2013-08-06 2018-06-20 山陽特殊製鋼株式会社 Ni-Cr-Fe base alloy brazing material added with Cu

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110575A (en) * 2009-11-26 2011-06-09 Sanyo Special Steel Co Ltd Ni-Fe-BASED ALLOY BRAZING MATERIAL

Also Published As

Publication number Publication date
KR20200063383A (en) 2020-06-05
WO2020111562A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
KR102194420B1 (en) Ni-Cr-Fe-P based alloy powder for brazing having a low melting point and high corrosion resistance and a method for producing the same
JP5281648B2 (en) Nickel-based brazing foil and brazing method
EP1410872B1 (en) Welding material, gas turbine blade or nozzle and a method of repairing a gas turbine blade or nozzle
KR101862061B1 (en) Nickel-based hydrochloric acid corrosion resistant alloy for soldering
US8951368B2 (en) Iron-based brazing foil and method for brazing
US20200030921A1 (en) Alloys
WO2013077113A1 (en) Ni-Cr-BASED BRAZING MATERIAL HAVING EXCELLENT WETTABILITY/SPREADABILITY AND CORROSION RESISTANCE
WO2012063512A1 (en) Wear-resistant cobalt-based alloy and engine valve coated with same
KR20170117573A (en) A nickel-based alloy having a high melting range suitable for brazing super-austenitic steels
WO2012081346A1 (en) Nickel-based brazing filler metal with excellent heat resistance
JP5486092B2 (en) High toughness cobalt base alloy and engine valve
CN106591823A (en) Treatment process for high-temperature-resistant anti-wear oil pressure nozzle
JP2023519255A (en) cobalt chromium alloy powder
JP2015232175A (en) Method of manufacturing ferrous alloy article using powder metallurgy
CN110520242B (en) Ni-Cr base alloy brazing material containing trace V
JP2023506959A (en) Method for additive manufacturing of maraging steel
CN114786844B (en) Metal powder for additive manufacturing
JP6698910B2 (en) Alloy powder
EP3266559A1 (en) Alloy brazing powder and joined component
CN112775589A (en) Preparation method of high-purity narrow-particle-size nickel-based brazing filler metal alloy powder
CN114952076B (en) Nickel-based brazing filler metal and preparation method and application thereof
CN113215482B (en) Wear-resistant cold-work tool steel
KR20240014463A (en) Nickel brazing material with excellent wet spreading properties
KR20220100873A (en) Low melting point nickel-manganese-silicon based solder filler metal for heat exchanger
CN117754178A (en) SnBi lead-free solder, preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant