KR102194283B1 - Recombinant vector for promoting plant length growth and volumetric growth and uses thereof - Google Patents

Recombinant vector for promoting plant length growth and volumetric growth and uses thereof Download PDF

Info

Publication number
KR102194283B1
KR102194283B1 KR1020190035791A KR20190035791A KR102194283B1 KR 102194283 B1 KR102194283 B1 KR 102194283B1 KR 1020190035791 A KR1020190035791 A KR 1020190035791A KR 20190035791 A KR20190035791 A KR 20190035791A KR 102194283 B1 KR102194283 B1 KR 102194283B1
Authority
KR
South Korea
Prior art keywords
leu
val
ala
gly
asn
Prior art date
Application number
KR1020190035791A
Other languages
Korean (ko)
Other versions
KR20200114296A (en
Inventor
류호진
김진수
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020190035791A priority Critical patent/KR102194283B1/en
Publication of KR20200114296A publication Critical patent/KR20200114296A/en
Application granted granted Critical
Publication of KR102194283B1 publication Critical patent/KR102194283B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 식물의 길이생장 및 부피생장을 촉진시키는 형질전환용 재조합 벡터; 상기 벡터를 포함하는 식물의 길이생장 및 부피생장 촉진용 조성물; 상기 벡터로 형질전환된 식물체; 상기 식물체의 형질전환된 종자; 및 상기 벡터를 이용하여 인삼뿌리의 부피생장을 촉진시키는 방법에 관한 것이다. 본 발명에 따르면, 왜성 표현형(dwarf phenotype)을 갖는 돌연변이 식물체에 인삼 유래의 지베렐린 수용체 유전자(PgGID1A-D)가 도입되는 경우 식물의 슈트(shoot) 길이 및 실리크 길이가 야생형에 가깝게 회복되는 것을 확인하였는바, 상기 유전자를 이용하면 식물의 길이생장 및 부피생장을 효과적으로 증진시킬 수 있다. 특히, 상기 유전자 및 이를 포함하는 벡터는 인삼뿌리의 부피생장을 촉진시키는데 유용하게 사용될 수 있다.The present invention is a recombinant vector for transformation to promote length and volume growth of plants; A composition for promoting length and volume growth of plants comprising the vector; Plants transformed with the vector; Transformed seeds of the plant; And a method of promoting volume growth of ginseng roots using the vector. According to the present invention, when a gibberellin receptor gene (PgGID1A-D) derived from ginseng is introduced into a mutant plant having a dwarf phenotype, it is confirmed that the shoot length and the silk length of the plant recover close to the wild type. As a result, the use of the gene can effectively enhance the length and volume growth of plants. In particular, the gene and the vector containing the same can be usefully used to promote the volume growth of ginseng roots.

Description

식물의 길이생장 및 부피생장을 촉진시키는 재조합 벡터 및 이의 용도{Recombinant vector for promoting plant length growth and volumetric growth and uses thereof} Recombinant vector for promoting plant length growth and volumetric growth and uses thereof

본 발명은 식물의 길이생장 및 부피생장을 촉진시키는 형질전환용 재조합 벡터; 상기 벡터를 포함하는 식물의 길이생장 및 부피생장 촉진용 조성물; 상기 벡터로 형질전환된 식물체; 상기 식물체의 형질전환된 종자; 및 상기 벡터를 이용하여 인삼뿌리의 부피생장을 촉진시키는 방법에 관한 것이다.The present invention is a recombinant vector for transformation to promote length and volume growth of plants; A composition for promoting length and volume growth of plants comprising the vector; Plants transformed with the vector; Transformed seeds of the plant; And a method of promoting volume growth of ginseng roots using the vector.

식물의 관다발은 세 가지 층으로 이루어져 있으며, 바깥쪽의 체관부 세포, 가운데의 지속적인 분열을 하는 줄기세포인 형성층 세포, 안쪽의 물관부 세포가 형성층 세포로부터 방향성을 갖고 분화하여 각각의 층을 이루게 된다. 이들 세포층은 2차 생장을 통해 점차 두터워지고 식물이 부피생장을 할 수 있게 한다. 이러한 2차 생장은 형성층의 분화에 의해서 일어나게 되고, 형성층의 분화는 식물의 부피생장과 밀접한 상관관계를 갖는다.The vascular bundle of a plant consists of three layers. The outer phloem cells, the cambium cells, which are stem cells continuously dividing in the middle, and the inner water tube cells, differentiate from the cambium cells in a direction and form each layer. These cell layers gradually thicken through secondary growth and allow plants to grow in volume. This secondary growth occurs due to the differentiation of the cambium, and the differentiation of the cambium has a close correlation with the volume growth of plants.

식물 호르몬은 다양한 식물의 생장 및 대사과정이 정상적으로 진행되도록 조절하는 중요한 조절물질이다. 그중 지베렐린 호르몬은 연구의 역사가 깊고 농업현장에 오래전부터 이용되어 왔다. 최근 다양한 스트레스와 지베레린 신호전달이 연관되어 있음이 밝혀졌고, 세포의 신장이나 미세소관 형성과의 관계에 관해 연구되고 있다. 특히 세포의 분열을 촉진하는것에 대한 연구가 진행됨으로써, 식물의 부피생장을 통한 수량성 증대와 연관될 수 있음이 기대되기에 관련 유전자들의 기능연구가 필요한 상황이다.Plant hormones are important regulators that regulate the growth and metabolism of various plants to proceed normally. Among them, the hormone gibberellin has a long history of research and has been used in agricultural fields for a long time. Recently, it has been found that various stresses and gibererin signaling are related, and the relationship between cell elongation and microtubule formation is being studied. In particular, as research on promoting cell division is underway, it is expected that it can be associated with increase in yield through volume growth of plants. Therefore, functional studies of related genes are necessary.

본 발명자들은 인삼의 지베렐린 수용체 유전자를 최초로 규명하였으며, 이러한 인삼 지베렐린 수용체 유전자를 도입한 재조합 벡터로 형질전환된 식물체가 길이 생장 뿐만 아니라 형성층의 세포분열을 통해 부피 생장이 촉진되는 것을 확인함으로써 본 발명을 완성하였다. The present inventors first identified the ginseng gibberellin receptor gene, and confirmed that the plant transformed with the recombinant vector into which the ginseng gibberellin receptor gene was introduced not only promotes length growth but also promotes volume growth through cell division of the cambium. Completed.

한국등록특허 제10-1153463호Korean Patent Registration No. 10-1153463

따라서 본 발명의 목적은 식물의 길이생장 및 부피생장을 효과적으로 촉진시킬 수 있는 형질전환용 재조합 벡터를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a recombinant vector for transformation that can effectively promote length and volume growth of plants.

본 발명의 다른 목적은 상기 형질전환용 재조합 벡터를 포함하는 식물의 길이생장 및 부피생장 촉진용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for promoting length and volume growth of plants comprising the recombinant vector for transformation.

본 발명의 또 다른 목적은 상기 형질전환용 재조합 벡터로 형질전환된 식물체를 제공하는 것이다.Another object of the present invention is to provide a plant transformed with the recombinant vector for transformation.

본 발명의 또 다른 목적은 상기 식물체의 형질전환된 종자를 제공하는 것이다.Another object of the present invention is to provide a transformed seed of the plant.

본 발명의 또 다른 목적은 상기 형질전환용 재조합 벡터를 이용하여 인삼뿌리의 부피생장을 효과적으로 촉진시킬 수 있는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for effectively promoting the volume growth of ginseng roots using the recombinant vector for transformation.

상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 식물의 길이생장 및 부피생장을 촉진시키는, 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 형질전환용 재조합 벡터를 제공한다.In order to achieve the object of the present invention as described above, the present invention provides a recombinant vector for transformation comprising at least one gene of the genes represented by SEQ ID NOs: 1 to 4, promoting length and volume growth of plants. do.

또한, 본 발명은 상기 형질전환용 재조합 벡터를 포함하는 식물의 길이생장 및 부피생장 촉진용 조성물을 제공한다.In addition, the present invention provides a composition for promoting length and volume growth of plants comprising the recombinant vector for transformation.

또한, 본 발명은 상기 형질전환용 재조합 벡터로 형질전환된 길이생장 및 부피생장이 촉진된 형질전환 식물체를 제공한다.In addition, the present invention provides a transgenic plant transformed with the recombinant vector for transformation and promoted length and volume growth.

본 발명의 일실시예에 있어서, 상기 식물체는 단자엽 또는 쌍자엽 식물일 수 있다.In one embodiment of the present invention, the plant may be a monocotyledonous or dicotyledonous plant.

본 발명의 일실시예에 있어서, 상기 쌍자엽 식물은 인삼일 수 있다.In one embodiment of the present invention, the dicotyledonous plant may be ginseng.

또한, 본 발명은 상기 식물체의 형질전환된 종자를 제공한다.In addition, the present invention provides a transformed seed of the plant.

또한, 본 발명은 상기 형질전환용 재조합 벡터를 인삼세포에 형질전환시켜 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 과발현하는 단계를 포함하는, 인삼뿌리의 부피생장을 촉진시키는 방법을 제공한다.In addition, the present invention provides a method for promoting volume growth of ginseng roots, comprising the step of overexpressing one or more genes of the genes represented by SEQ ID NOs: 1 to 4 by transforming the recombinant vector for transformation into ginseng cells. to provide.

본 발명에 따르면, 왜성 표현형(dwarf phenotype)을 갖는 돌연변이 식물체에 인삼 유래의 지베렐린 수용체 유전자(PgGID1A-D)가 도입되는 경우 식물의 슈트(shoot) 길이 및 실리크 길이가 야생형에 가깝게 회복되는 것을 확인하였는바, 상기 유전자를 이용하면 식물의 길이생장 및 부피생장을 효과적으로 증진시킬 수 있다. 특히, 상기 유전자 및 이를 포함하는 벡터는 인삼뿌리의 부피생장을 촉진시키는데 유용하게 사용될 수 있다.According to the present invention, when a gibberellin receptor gene (PgGID1A-D) derived from ginseng is introduced into a mutant plant having a dwarf phenotype, it is confirmed that the shoot length and the silk length of the plant recover close to the wild type. As a result, the use of the gene can effectively enhance the length and volume growth of plants. In particular, the gene and the vector containing the same can be usefully used to promote the volume growth of ginseng roots.

도 1a는 본 발명의 인삼 지베렐린 수용체 단백질(PgGID1A-D)의 계통발생 트리 분석 결과로서 지베렐린 수용체 유전자들의 유연관계를 확인한 계통도이다(Pg, Panax ginseng; At, Arabidopsis thaliana; Os, Oryza sativa).
도 1b는 벼의 지베렐린 수용체 단백질을 통해서 예측한 2차원 구조에 기초한 토폴러지 다이아그램(topology diagram)이다.
도 1c는 본 발명의 인삼 지베렐린 수용체 단백질(PgGID1A-D)의 생물학적 기능성을 알아내기 위하여 인삼 지베렐린 수용체 단백질(PgGID1A-D)과 함께 애기장대, 벼 식물의 동종 단백질 서열 분석을 수행히여 상동성을 확인한 결과이다.
도 2a는 본 발명의 실험에서 사용한 pGFP 벡터맵을 나타낸 것이다.
도 2b는 애기장대 원형질체(30일된 식물의 잎에서 분리)에서 본 발명의 인삼 지베렐린 수용체 단백질(PgGID1A-D)의 세포 내 위치를 확인한 결과이다. 첫 번째 열은 PgGID1A-D의 전장 코딩 영역을 GFP 리포터 유전자에 융합시켜 가시화한 것이며, 두 번째 열은 세포의 핵을 35S :: AtARR2-RFP에 의해 이미지화한 것이며, 세 번째 열은 GFP와 RFP 형광을 결합한 이미지다.
도 2c 및 2d는 본 발명의 실험에서 사용한 pGADT7, pGBKT7 벡터맵을 나타낸 것이다.
도 2e는 효모 잡종 분석(Yesst two-hybrid assay, Y2H)을 통해 본 발명의 인삼 지베렐린 수용체 단백질(PgGID1A-D) 및 PgRGAs 사이의 상호 작용을 분석한 결과이다.
도 3은 코어 도메인(HGGS)에서 지베렐린 및 지베렐린 수용체 단백질 간의 분자 도킹 여부를 3차원 예측구조로 나타낸 것이다(Pg, Panax ginseng; At, Arabidopsis thaliana).
도 4a는 지베렐린에 대한 감수성이 없는 왜성 표현형(dwarf phenotype)을 보이는 Atgid1a/c 돌연변이 애기장대 식물체에 본 발명의 인삼의 지베렐린 수용체 유전자(PgGID1A-D)를 포함하는 벡터를 과발현시킨 결과 길이생장을 보여주는 사진이며, 도 4b 및 4c는 각 실험군별 식물체의 지상부 슈트(shoot, n = 12) 및 실리크(silique, n = 16) 길이의 표현형을 측정하고, GraphPad Prism6 프로그램을 사용하여 수치화한 것이다. Atgid1a/c는 왜성 표현형을 갖는 돌연변이 애기장대를 나타내며; Atgid1a/c, 35S:PgGID1A#1은 PgGID1A 유전자가 도입된 돌연변이 애기장대 식물체를 나타내고; Atgid1a/c, 35S:PgGID1B#1은 PgGID1B 유전자가 도입된 돌연변이 애기장대 식물체를 나타내며; Atgid1a/c, 35S:PgGID1C#2는 PgGID1C 유전자가 도입된 돌연변이 애기장대 식물체를 나타내고; Atgid1a/c, 35S:PgGID1D#2는 PgGID1D 유전자가 도입된 돌연변이 애기장대 식물체를 나타낸다.
도 5a는 실험실에서 50일간 DMSO와 지베렐린(GA)을 처리하여 키운 인삼 뿌리의 단면사진이다. 붉은 화살표는 형성층을 가리킨다. 지베렐린(GA)을 처리하여 키운 인삼 뿌리의 경우 형성층 아래로 일정한 크기의 세포들이 길게 나열된것으로 보이며, 이러한 형태 변화를 통해 DMSO 처리군 보다 지베렐린(GA)을 처리한 임삼 뿌리에서 세포분열이 촉진되었음을 예측할 수 있다.
도 5b는 실험실에서 50일간 DMSO와 지베렐린(GA)을 처리하여 키운 인삼 뿌리의 원주둘레를 측정하여 그래프로 나타낸 것이다.
도 5c는 8주차 인삼을 In situ hybridization을 진행한 사진이다.
Figure 1a is a phylogenetic tree analysis result of the ginseng gibberellin receptor protein (PgGID1A-D) of the present invention, which is a schematic diagram confirming the relationship between the giverelin receptor genes (Pg, Panax ginseng; At, Arabidopsis thaliana; Os, Oryza sativa).
1B is a topology diagram based on a two-dimensional structure predicted through a gibberellin receptor protein of rice.
Figure 1c is to determine the biological functionality of the ginseng gibberellin receptor protein (PgGID1A-D) of the present invention, together with ginseng gibberellin receptor protein (PgGID1A-D), a homologous protein sequence analysis of Arabidopsis and rice plants to confirm homology It is the result.
Figure 2a shows the pGFP vector map used in the experiment of the present invention.
Figure 2b is a result of confirming the intracellular location of the ginseng gibberellin receptor protein (PgGID1A-D) of the present invention in the Arabidopsis protoplast (separated from the leaves of a 30-day-old plant). The first column is visualized by fusing the full-length coding region of PgGID1A-D with the GFP reporter gene, the second column is the image of the cell nucleus by 35S::AtARR2-RFP, and the third column is GFP and RFP fluorescence. It is an image that combines.
2C and 2D show pGADT7 and pGBKT7 vector maps used in the experiment of the present invention.
2E is a result of analyzing the interaction between the ginseng gibberellin receptor protein (PgGID1A-D) and PgRGAs of the present invention through yeast hybrid analysis (Yesst two-hybrid assay, Y2H).
Figure 3 shows the molecular docking between giverelin and gibberellin receptor proteins in the core domain (HGGS) in a three-dimensional predictive structure (Pg, Panax ginseng; At, Arabidopsis thaliana).
Figure 4a is a result of overexpressing a vector containing the giverelin receptor gene (PgGID1A-D) of ginseng of the present invention in Atgid1a/c mutant Arabidopsis plants showing a dwarf phenotype that is not susceptible to gibberellin. Photographs, Figures 4b and 4c are the phenotypes of the above-ground chute (shoot, n = 12) and silk (silique, n = 16) lengths of plants for each experimental group are measured and quantified using the GraphPad Prism6 program. Atgid1a/c represents a mutant Arabidopsis thaliana with a dwarf phenotype; Atgid1a/c, 35S:PgGID1A#1 represents a mutant Arabidopsis plant into which the PgGID1A gene has been introduced; Atgid1a/c, 35S:PgGID1B#1 represents a mutant Arabidopsis plant into which the PgGID1B gene has been introduced; Atgid1a/c, 35S:PgGID1C#2 represents a mutant Arabidopsis plant into which the PgGID1C gene has been introduced; Atgid1a/c, 35S:PgGID1D#2 represents a mutant Arabidopsis plant into which the PgGID1D gene has been introduced.
5A is a cross-sectional photograph of ginseng roots grown by treatment with DMSO and gibberellin (GA) for 50 days in a laboratory. Red arrows point to the cambium. In the case of ginseng roots grown by treatment with gibberellin (GA), cells of a certain size appear to be long listed below the cambium, and it is predicted that cell division was promoted in ginseng roots treated with gibberellin (GA) than in the DMSO-treated group. I can.
Figure 5b is a graph showing the measurement of the circumference of ginseng roots grown by treatment with DMSO and gibberellin (GA) for 50 days in a laboratory.
5C is a photograph of in situ hybridization of ginseng at 8 weeks.

본 발명은 서열번호 5 내지 8의 아미노산 서열 중 1종의 아미노산 서열로 이루어진, 식물의 길이생장 및 부피생장을 촉진시키는 인삼(Panax ginseng) 유래의 지베렐린 수용체 단백질을 제공한다.The present invention provides a gibberellin receptor protein derived from Panax ginseng that promotes plant length and volume growth, consisting of one amino acid sequence among the amino acid sequences of SEQ ID NOs: 5 to 8.

본 발명에서 서열번호 5 내지 8로 표시되는 아미노산 서열은 인삼(Panax ginseng) 유래 폴리펩타이드로, 계통발생 트리 분석 및 단백질 서열 정렬을 통해 인삼에서 지베렐린 수용체 단백질로 최초 동정되었으며, 이들은 각각“PgGID1A”, “PgGID1B”, “PgGID1C”, “PgGID1D”로 명명하였다.In the present invention, the amino acid sequence represented by SEQ ID NOs: 5 to 8 is a polypeptide derived from Panax ginseng, and was first identified as a gibberellin receptor protein in ginseng through phylogenetic tree analysis and protein sequence alignment, respectively, "PgGID1A", It was named “PgGID1B”, “PgGID1C”, and “PgGID1D”.

본 발명에 따른 인삼 지베렐린 수용체 단백질의 범위는 인삼(Panax ginseng)으로부터 분리된 서열번호 5 내지 8로 표시되는 아미노산 서열 중 1종 이상의 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 5 내지 8로 표시되는 아미노산 서열 중 1종 이상의 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 5 내지 8로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다.The scope of the ginseng gibberellin receptor protein according to the present invention includes a protein having at least one amino acid sequence among amino acid sequences represented by SEQ ID NOs: 5 to 8 isolated from Panax ginseng and functional equivalents of the protein. The term "functional equivalent" is at least 70% or more, preferably 80% or more, more preferably, with at least one amino acid sequence among the amino acid sequences represented by SEQ ID NOs: 5 to 8 as a result of the addition, substitution or deletion of amino acids. It refers to a protein having a sequence homology of 90% or more, more preferably 95% or more, and exhibiting substantially the same physiological activity as the protein represented by SEQ ID NOs: 5 to 8.

또한, 본 발명은 상기 인삼 지베렐린 수용체 단백질을 코딩하는 PgGID1A-D 유전자를 제공한다.In addition, the present invention provides a PgGID1A-D gene encoding the ginseng gibberellin receptor protein.

본 발명의 유전자는 인삼 지베렐린 수용체 단백질을 코딩하는 게놈 DNA와 cDNA를 모두 포함한다. 바람직하게는, 본 발명의 유전자는 서열번호 1 내지 4로 표시되는 염기서열 중 1종 이상의 염기서열을 포함할 수 있다. 또한, 상기 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1 내지 4로 표시되는 염기서열 중 1종 이상의 염기서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.The gene of the present invention includes both genomic DNA and cDNA encoding the ginseng gibberellin receptor protein. Preferably, the gene of the present invention may include at least one nucleotide sequence among the nucleotide sequences represented by SEQ ID NOs: 1 to 4. In addition, homologs of the nucleotide sequence are included within the scope of the present invention. Specifically, the gene is at least one nucleotide sequence of the nucleotide sequences represented by SEQ ID NOs: 1 to 4 and 70% or more, more preferably 80% or more, even more preferably 90% or more, most preferably 95 It may include a base sequence having a sequence homology of% or more. The "% of sequence homology" for a polynucleotide is identified by comparing two optimally aligned sequences with a comparison region, and a portion of the polynucleotide sequence in the comparison region is a reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include additions or deletions (ie, gaps) compared to (not including).

또한, 본 발명은 식물의 길이생장 및 부피생장을 촉진시키는, 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 형질전환용 재조합 벡터를 제공한다.In addition, the present invention provides a recombinant vector for transformation comprising at least one gene of the genes represented by SEQ ID NOs: 1 to 4, which promotes length and volume growth of plants.

본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 코딩된 폴리펩티드를 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 야생형 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 야생형 상태의 세포에서 발견되는 유전자를 발현할 수 있으나, 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다. In the present invention, the term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide, or a polypeptide encoded by a heterologous nucleic acid. Recombinant cells may express genes or gene segments that are not found in the wild-type form of the cell in either a sense or antisense form. In addition, the recombinant cell may express a gene found in cells in a wild-type state, but the gene is modified and reintroduced into the cell by artificial means.

본 발명에서, 상기 인삼 유래 지베렐린 수용체 유전자(PgGID1A-D) 서열은 재조합 벡터 내로 삽입될 수 있다. 본 발명의 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 재조합 벡터는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스 벡터, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.In the present invention, the ginseng-derived gibberellin receptor gene (PgGID1A-D) sequence may be inserted into a recombinant vector. The term "vector" of the present invention is used to refer to a DNA fragment(s) or nucleic acid molecule to be delivered into a cell. Vectors replicate DNA and can be reproduced independently in host cells. Recombinant vector means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus vector, or other vector. In general, any plasmid and vector can be used as long as they can replicate and stabilize in the host. An important characteristic of the expression vector is that it has an origin of replication, a promoter, a marker gene and a translation control element.

인삼 유래 지베렐린 수용체 유전자(PgGID1A-D) 각각의 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보솜 결합 부위 및 전사 터미네이터를 포함할 수 있다.Expression vectors containing the sequences of each of the ginseng-derived gibberellin receptor genes (PgGID1A-D) and appropriate transcription/translational control signals can be constructed by methods well known to those skilled in the art. The method includes in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombinant technology. The DNA sequence can be effectively linked to an appropriate promoter in the expression vector to guide mRNA synthesis. In addition, the expression vector may include a ribosome binding site and a transcription terminator as a translation initiation site.

본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a part of itself, a so-called T-region, to plant cells when present in a suitable host such as Agrobacterium tumerfaciens. Other types of Ti-plasmid vectors (see EP 0 116 718 B1) are currently used to transfer hybrid DNA sequences into plant cells, or protoplasts from which new plants can be produced that properly insert hybrid DNA into the plant's genome. have. A particularly preferred form of Ti-plasmid vector is a so-called binary vector as claimed in EP 0 120 516 B1 and in US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host are viral vectors such as those that can be derived from double-stranded plant viruses (e.g., CaMV) and single-stranded viruses, gemini viruses, etc. For example, it can be selected from incomplete plant viral vectors. The use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.

본 발명의 재조합 발현 벡터에서, 상기 프로모터는 형질전환에 적합한 프로모터들로서, 바람직하게는 CaMV 35S 프로모터, 액틴 프로모터, 유비퀴틴 프로모터, pEMU 프로모터, MAS 프로모터, 히스톤 프로모터 또는 Clp 프로모터일 수 있으나, 이에 제한되지 않는다. 본 발명의 용어 "프로모터"란 구조 유전자로부터의 DNA 상부의 영역을 의미하며 전사를 개시하기 위하여 RNA 중합효소가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "항시성(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이며, 본 발명에서는 항시성 프로모터의 사용이 바람직할 수 있다. 따라서, 항시성 프로모터는 선택 가능성을 제한하지 않는다.In the recombinant expression vector of the present invention, the promoter may be a promoter suitable for transformation, preferably a CaMV 35S promoter, an actin promoter, a ubiquitin promoter, a pEMU promoter, a MAS promoter, a histone promoter, or a Clp promoter, but is not limited thereto. . The term "promoter" of the present invention refers to a region above DNA from a structural gene, and refers to a DNA molecule to which RNA polymerase binds to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in a plant cell. The "constitutive promoter" is a promoter that is active under most environmental conditions and developmental states or cell differentiation, and the use of a constitutive promoter may be preferred in the present invention. Thus, constitutive promoters do not limit the possibility of selection.

본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 아그로박테리움 튜머파시엔스(Agrobacteriumtumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터, 파세올린(phaseoline) 터미네이터, 대장균의 rrnB1/B2 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 터미네이터 영역이 식물 세포에서의 유전자 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다. In the recombinant vector of the present invention, a conventional terminator can be used, examples of which include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, and the octopine gene of Agrobacterium tumefaciens. Terminator, phaseoline terminator, rrnB1/B2 terminator of E. coli, and the like, but are not limited thereto. Regarding the need for terminators, it is generally known that terminator regions increase the certainty and efficiency of gene transcription in plant cells. Therefore, the use of a terminator is highly desirable in the context of the present invention.

재조합 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol), G418, 블레오마이신(Bleomycin)과 같은 항생제 내성 유전자, aadA 유전자 등이 있으나, 이에 한정되는 것은 아니다.The recombinant vector may preferably contain one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, and all genes capable of distinguishing a transformed cell from a non-transgenic cell correspond to this. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotics such as kanamycin, hygromycin, chloramphenicol, G418, and bleomycin. Resistance gene, aadA gene, and the like, but are not limited thereto.

본 발명에서 사용되는 재조합 벡터는 pCB302ES, pCXSN, pINDEX3, pBI121, 또는 pgR106 등 일 수 있으나 이에 제한되지는 않는다.The recombinant vector used in the present invention may be pCB302ES, pCXSN, pINDEX3, pBI121, or pgR106, but is not limited thereto.

또한, 본 발명은 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 형질전환용 재조합 벡터를 포함하는 식물의 길이생장 및 부피생장 촉진용 조성물 또는 형질전환체를 제공한다.In addition, the present invention provides a composition or transformant for promoting length and volume growth of a plant comprising a recombinant vector for transformation comprising at least one gene of the genes represented by SEQ ID NO: 1 to 4.

본 발명에서 용어 "형질전환(transformation)"이란 외부로부터 주어진 유전물질인 DNA에 의해 개체 또는 세포의 형질이 유전적으로 변화하는 것을 의미하는 것으로, 본 발명에서는 상기 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자 도입에 의해 형질전환된 식물의 식물의 길이생장 및 부피생장을 촉진된 것을 의미한다. In the present invention, the term "transformation" means that the traits of an individual or cell are genetically changed by DNA, which is a genetic material given from the outside. In the present invention, among the genes represented by SEQ ID NOs: 1 to 4 It means that the length and volume growth of the transformed plant is promoted by the introduction of one or more genes.

본 발명에서 본 발명의 재조합 발현 벡터로 형질전환하는 것은 당업자에게 공지된 형질전환기술에 의해 수행될 수 있다. 예를 들어, 미세사출법 (microprojectile bombardment), 입자 총 충격법 (particle gun bombardment), 실리콘 탄화물 위스커(Silicon carbide whiskers), 초음파 처리(sonication), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법 (microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method), 또는 아그로박테리움(Agrobacterium sp.) 매개에 의한 방법 등을 사용할 수 있으며, 이에 한정되는 것은 아니다.In the present invention, transformation with the recombinant expression vector of the present invention can be performed by transformation techniques known to those skilled in the art. For example, microprojectile bombardment, particle gun bombardment, silicon carbide whiskers, sonication, electroporation, PEG-mediated fusion method ( PEG-mediated fusion), microinjection, liposome-mediated method, In planta transformation, Vacuum infiltration method, floral meristem dipping method), or a method mediated by Agrobacterium sp., and the like, but is not limited thereto.

본 발명에서 용어 "형질전환체"란 본 발명의 식물의 길이생장 및 부피생장을 촉진시키는, 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 재조합 발현 벡터로 형질 전환된 숙주 세포를 의미한다. In the present invention, the term "transformant" refers to a host cell transformed with a recombinant expression vector containing at least one of the genes represented by SEQ ID NOs: 1 to 4, which promotes the length and volume growth of the plant of the present invention. Means.

상기 형질전환체는 미생물이 바람직하며, 이에 제한되지는 않으나, 대장균(Escherichiacoli), 바실러스 서브틸리스 (Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteusmirabilis), 스타필로코쿠스(Staphylococcus) 및 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)일 수 있으며, 보다 바람직하게는 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)일 수 있다.The transformant is preferably a microorganism, but is not limited thereto, Escherichiacoli, Bacillus subtilis, Streptomyces, Pseudomonas, Proteus mirabilis, It may be Staphylococcus (Staphylococcus) and Agrobacterium tumefaciens (Agrobacterium tumefaciens), more preferably Agrobacterium tumefaciens (Agrobacterium tumefaciens).

또한, 본 발명은 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 형질전환용 재조합 벡터로 형질전환된 길이생장 및 부피생장이 촉진된 형질전환 식물체를 제공한다. In addition, the present invention provides a transgenic plant transformed with a recombinant vector for transformation comprising at least one gene of the genes represented by SEQ ID NOs: 1 to 4 and promoted length and volume growth.

본 발명의 용어 "식물체"란 식물이 지닌 유형의 몸으로, 식물의 전체, 식물의 일부, 종자 또는 식물 세포를 포함할 수 있다.The term "plant" of the present invention refers to a body of a plant, and may include the whole plant, a part of the plant, seeds or plant cells.

상기 식물체는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물 또는 인삼, 애기장대, 감자, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물일 수 있으며, 바람직하게는 인삼일 수 있다.The plants include monocotyledonous plants such as rice, barley, wheat, rye, corn, sugar cane, oats, onions, or ginseng, Arabidopsis, potato, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, chard , Sweet potato, celery, carrot, parsley, parsley, cabbage, cabbage, radish, watermelon, melon, cucumber, pumpkin, gourd, strawberry, soybean, mung bean, kidney beans, peas, and other dicotyledons, and preferably ginseng have.

또한, 본 발명은 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 상기 유전자를 과발현하는 단계를 포함하는 야생형에 비해 식물의 길이생장 및 부피생장을 증진시키는 방법을 제공한다.In addition, the present invention is compared to the wild-type plant length growth and volume growth comprising the step of overexpressing the gene by transforming a recombinant vector containing at least one gene of the genes represented by SEQ ID NO: 1 to 4 in plant cells Provides a way to promote

상기 식물세포를 형질전환시키는 방법은 전술한 바와 같다.The method for transforming the plant cell is as described above.

또한, 본 발명은 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 상기 유전자를 과발현하는 단계를 포함하는 야생형에 비해 식물의 길이생장 및 부피생장이 증진된 형질전환 식물체의 제조 방법을 제공한다.In addition, the present invention is compared to the wild-type plant length growth and volume growth comprising the step of overexpressing the gene by transforming a recombinant vector containing at least one gene of the genes represented by SEQ ID NO: 1 to 4 in plant cells It provides a method for producing this enhanced transgenic plant.

상기 식물세포를 형질전환시키는 방법은 전술한 바와 같으며, 또한, 본 발명의 방법은 상기 형질전환된 식물세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).The method for transforming the plant cell is as described above, and the method of the present invention includes the step of regenerating a transformed plant from the transformed plant cell. Any method known in the art may be used as a method for regenerating a transgenic plant. Techniques for the regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vol. 1-5, 1983-1989 Momillan, N.Y.).

또한, 본 발명은 상기 형질전환 식물체의 종자를 제공한다.In addition, the present invention provides the seed of the transgenic plant.

또한, 본 발명은 상기 형질전환용 재조합 벡터를 인삼세포에 형질전환시켜 서열번호 1 내지 4로 표시되는 유전자 중 1종 이상의 유전자를 과발현하는 단계를 포함하는, 인삼뿌리의 부피생장을 촉진시키는 방법을 제공한다.In addition, the present invention provides a method for promoting volume growth of ginseng roots, comprising the step of overexpressing one or more genes of the genes represented by SEQ ID NOs: 1 to 4 by transforming the recombinant vector for transformation into ginseng cells. to provide.

본 발명의 일 실시예에서, 지베렐린에 대한 감수성이 없는 왜성 표현형(dwarf phenotype)을 보이는 Atgid1a/c 돌연변이 애기장대 식물체에 본 발명의 인삼 유래 지베렐린 수용체 유전자(PgGID1A-D)를 포함하는 벡터를 과발현시킨 결과 지상부 슈트(shoot) 및 실리크(silique)의 길이가 효과적으로 생장하는 것을 확인하였다.In an embodiment of the present invention, a vector containing a ginseng-derived giverelin receptor gene (PgGID1A-D) of the present invention is overexpressed in Atgid1a/c mutant Arabidopsis plants showing a dwarf phenotype that is not susceptible to gibberellin. As a result, it was confirmed that the lengths of the above-ground shoot and the silique were effectively grown.

본 발명의 다른 실시예에서, 인삼에 지베렐린을 처리하는 경우 인삼 뿌리의 형성층 세포의 세포분화가 촉진되며, 뿌리의 원주둘레가 증진되는 것을 확인하였는바, 본 발명의 인삼 유래 지베렐린 수용체 유전자(PgGID1A-D)를 포함하는 벡터로 형질전환시키는 경우 지베렐린의 감수성이 높아져 인삼뿌리의 부피 생장이 효과적으로 일어날 수 있다.In another embodiment of the present invention, when ginseng is treated with gibberellin, it was confirmed that the cell differentiation of the cambium cells of the ginseng root is promoted and the circumference of the root is enhanced, the ginseng-derived gibberellin receptor gene (PgGID1A- In the case of transformation with a vector containing D), the sensitivity of gibberellin increases, so that the volume growth of ginseng roots can occur effectively.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention more specifically, and the scope of the present invention is not limited to these examples.

<< 실시예Example 1> 1>

계통발생 트리 분석 및 단백질 서열 정렬을 통한 인삼의 Of ginseng through phylogenetic tree analysis and protein sequence alignment 지베렐린Gibberellin 수용체 관련 유전자 동정 Receptor-related gene identification

지베렐린 수용체-연관된 유전자의 단백질 서열은 이전의 연구에서 선택되었다(GID1A: AT3G05120.1, GID1B: AT3G63010.1, GID1C: AT5G27320.1). 온라인 프로그램 SMS(http : // Bioinformatics.org)를 사용하여 단백질 서열을 정렬하였다. 계통 발생 트리 분석(Phylogenetic tree analysis)은 MEGA7.0 소프트웨어를 이용하여 이웃-결합 방법(neighbor-Joining method), 쌍 방향 삭제(pairwise deletion), 및 p-거리 모델(p-distance model)과 같은 매개 변수를 사용하여 수행되었다. 부트스트랩 분석(Bootstrap analysis)은 1000번 replicate를 수행하였다. 동일성 또는 유사성을 위해 일치해야 하는 서열의 백분율은 70%이다. 본 실험에서는 인삼에서 지베렐린 수용체 단백질로 4개를 동정하였으며, 이들은 각각“PgGID1A”, “PgGID1B”, “PgGID1C”, “PgGID1D”로 명명하였다.The protein sequence of the gibberellin receptor-associated gene was selected in previous studies (GID1A: AT3G05120.1, GID1B: AT3G63010.1, GID1C: AT5G27320.1). Protein sequences were aligned using the online program SMS (http: // Bioinformatics.org). Phylogenetic tree analysis can be performed using MEGA7.0 software for mediation such as the neighbor-joining method, pairwise deletion, and p-distance model. This was done using variables. Bootstrap analysis performed 1000 replicates. The percentage of sequences that must be matched for identity or similarity is 70%. In this experiment, four gibberellin receptor proteins were identified from ginseng, and they were named “PgGID1A”, “PgGID1B”, “PgGID1C” and “PgGID1D”, respectively.

그 결과 도 1에서 나타낸 바와 같이, 기존 모델식물을 통해서 밝혀진 지베렐린 수용체 유전자와 본 발명에서 규명한 인삼의 지베렐린 수용체 유전자의 유연관계의 유사 정도를 확인할 수 있었다. As a result, as shown in FIG. 1, the degree of similarity between the giverelin receptor gene identified through the existing model plant and the gibberellin receptor gene of ginseng identified in the present invention was confirmed.

도 1a는 동족체와 PgGID1A-D 단백질의 계통발생 트리 분석 결과로서 GID1s 유전자들의 유연관계를 확인한 계통도이며, 수평 분지 길이는 잔류물 당 추정된 아미노산 치환 수에 비례한다(Pg, Panax ginseng; At, Arabidopsis thaliana; Os, Oryza sativa). 도 1b는 벼의 GID1을 통해서 예측한 2차원 구조에 기초한 토폴러지 다이아그램(topology diagram)으로 주요 도메인과 잔기가 표시되어 있다(파란색 원은 OsGID1-SLR1 상호 작용에 중요한 잔기이며 빨간색 원은 OsGID1-GA와 OsGID1-SLR1 상호 작용에 중요한 잔기임. 빨간 별은 HSL 단백질과 마찬가지로 효소 활성에 필수 불가결한 잔기임. 유색 영역은 뚜껑(노란색)과 바인딩 포켓(빨간색)을 나타냄). 도 1c는 PgGID1A-D 단백질의 생물학적 기능성을 알아내기 위하여 PgGID1A-D 단백질과 함께 애기장대, 벼 식물의 동종 단백질 서열 분석을 수행히여 상동성을 확인한 결과이다. 도 1c를 통해 인삼의 지베렐린 수용체 단백질 서열이 기존 식물체의 지베렐린 수용체 단백질들과 전체적인 유사성이 높은 것을 확인할 수 있었다. 1A is a schematic diagram showing the relationship between GID1s genes as a result of phylogenetic tree analysis of homologues and PgGID1A-D proteins, and the horizontal branch length is proportional to the estimated number of amino acid substitutions per residue (Pg, Panax ginseng; At, Arabidopsis) thaliana; Os, Oryza sativa). Figure 1b is a topology diagram based on a two-dimensional structure predicted through GID1 of rice, showing major domains and residues (blue circles are important residues for OsGID1-SLR1 interaction, and red circles are OsGID1- Important residue for GA and OsGID1-SLR1 interaction The red star is an essential residue for enzymatic activity, just like the HSL protein, colored regions indicate the lid (yellow) and binding pocket (red)). 1C is a result of confirming homology by performing a sequence analysis of homologous proteins of Arabidopsis and rice plants together with PgGID1A-D protein in order to find out the biological functionality of the PgGID1A-D protein. It can be seen from FIG. 1c that the sequence of the giverelin receptor protein of ginseng has high overall similarity with the giverelin receptor proteins of the existing plant.

상기와 같은 결과를 통해, 본 실험에서에서 규명한 PgGID1A-D 유전자가 인삼에서 지베렐린 수용체로써 기능할 수 있을 것이라 판단되었다.Through the above results, it was determined that the PgGID1A-D gene identified in this experiment could function as a gibberellin receptor in ginseng.

<< 실시예Example 2> 2>

본 발명의 Of the present invention PgGID1APgGID1A -D 단백질의 세포 내 발현 위치 분석-D protein expression site analysis

<2-1> <2-1> PgGID1APgGID1A -D의 일시적 발현 분석-D transient expression analysis

본 실험에서는 PgGID1A-D의 전장 cDNA를 35S :: C4PPDK 프로모터에 의해 유도된 C 말단에 GFP DNA 서열 태그를 함유하는 식물 발현 벡터에 클로닝하였다(도 2a 참조).In this experiment, the full-length cDNA of PgGID1A-D was cloned into a plant expression vector containing a GFP DNA sequence tag at the C-terminus induced by the 35S::C4PPDK promoter (see FIG. 2A).

자세하게는, 인삼 유래 PgGID1A-D 유전자의 발현 벡터 제작을 위해 먼저 PgGID1A-D 유전자를 분리하였다. 인삼(Panax ginseng)의 cDNA를 기질로 PgGID1A-D 유전자가 각각에 특이적이 프라이머 세트(하기 표 1 참조)를 이용하여 PgGID1A-D 유전자를 PCR로 증폭하였다. PCR 증폭은 PCR 튜브에 20ng/μl 밀도의 DNA 1μl, 10x Pfu buffer 5μl, dNTP (each 2mmole) 5μl, each primer 1μl, Pfu-X DNA polymerase 0.5μl, 증류수 36.5μl로 총 PCR mixture 50μl를 만든 후 먼저 94℃에서 2분간 전-변성시킨 후 94℃에서 20초간 변성, 52℃에서 30초간 어닐링, 72℃에서 1분15초간 연장과정을 34 사이클 수행하였으며, 마지막으로 72℃에서 2분간 연장을 실시하였다. 증폭한 PgGID1A-D 유전자의 염기서열을 확인한 후, 도 2a에 나타난 바와 같이, 분리한 PgGID1A-D 유전자를 C4PPDK 프로모터에 의해 유도된 C 말단에 GFP DNA 서열 태그를 함유하는 식물발현벡터에 삽입하여 pGFP-PgGID1A, pGFP-PgGID1B, pGFP-PgGID1C, pGFP-PgGID1D 발현 벡터를 각각 제작하였다. 상기 인삼 유래 PgGID1A-D 유전자의 PCR 증폭 산물을 BamHI 제한효소로 절단한 후 35S :: C4PPDK 프로모터 하류의 BamHⅠ 제한효소 부위에 PgGID1A-D 유전자를 연결하여 식물에서 PgGID1A-D 유전자가 발현하도록 PgGID1A-D 발현 벡터를 제작하였으며, 이때 항생제 저항성 마커로는 앰피실린(amp) 저항성 유전자를 사용하였다.In detail, in order to construct an expression vector for the PgGID1A-D gene derived from ginseng, the PgGID1A-D gene was first isolated. The PgGID1A-D gene was amplified by PCR using a primer set specific to each of the PgGID1A-D genes (see Table 1 below) using cDNA from Panax ginseng as a substrate. For PCR amplification, make 50μl of a total PCR mixture in a PCR tube with 1μl of DNA with a density of 20ng/μl, 5μl of 10x Pfu buffer, 5μl of dNTP (each 2mmole), 1μl of each primer, 0.5μl of Pfu-X DNA polymerase, and 36.5μl of distilled water. After pre-denaturing at 94°C for 2 minutes, denaturation at 94°C for 20 seconds, annealing at 52°C for 30 seconds, extension at 72°C for 1 minute and 15 seconds were performed for 34 cycles, and finally at 72°C for 2 minutes. . After confirming the base sequence of the amplified PgGID1A-D gene, as shown in FIG. 2A, the isolated PgGID1A-D gene was inserted into a plant expression vector containing a GFP DNA sequence tag at the C-terminus induced by the C4PPDK promoter, and pGFP. -PgGID1A, pGFP-PgGID1B, pGFP-PgGID1C, pGFP-PgGID1D expression vectors were prepared, respectively. The PCR amplification product of the ginseng-derived PgGID1A-D gene was cut with BamHI restriction enzyme, and then PgGID1A-D gene was linked to the BamHI restriction enzyme site downstream of the 35S::C4PPDK promoter so that the PgGID1A-D gene could be expressed in plants. An expression vector was constructed, and at this time, an ampicillin (amp) resistance gene was used as an antibiotic resistance marker.

이후, 원형질체 일시적 발현 분석(transient expression assay)을 위해, 30 일된 애기장대 식물의 잎에서 분리된 약 4×104 개의 원형질체를 20μg 상기 플라스미드 벡터(pGFP-PgGID1A, pGFP-PgGID1B, pGFP-PgGID1C, pGFP-PgGID1D)로 형질감염시킨 다음, 20℃에서 6시간 동안 일정한 조건 하에서 항온 배양하였다. ARR2-RFP는 핵 마커로 사용되었다(ARR2는 핵에서 발현하는 전사인자 중에 하나에 해당함). GFP 및 RFP 형광을 형광 현미경(Nikon)으로 관찰하였다. Thereafter, for transient expression assay, about 4×10 4 protoplasts isolated from the leaves of 30-day-old Arabidopsis plants were 20 μg of the plasmid vectors (pGFP-PgGID1A, pGFP-PgGID1B, pGFP-PgGID1C, pGFP). -PgGID1D) and then incubated at 20°C for 6 hours under constant conditions. ARR2-RFP was used as a nuclear marker (ARR2 corresponds to one of the transcription factors expressed in the nucleus). GFP and RFP fluorescence were observed with a fluorescence microscope (Nikon).

그 결과 도 2b에서 나타낸 바와 같이, PgGID1A-D는 핵에서 주로 발현되는 것으로 나타났으며, 일부는 세포질에서 발현되는 것을 확인할 수 있었다.As a result, as shown in FIG. 2B, it was found that PgGID1A-D was mainly expressed in the nucleus, and some were expressed in the cytoplasm.

PCR 증폭에 사용된 프라이머 서열Primer sequence used for PCR amplification 유전자gene 프라이머 서열Primer sequence PgGID1APgGID1A 포워드Forward CGGGATCCATGGCTGGAAGTAGTGGTATTACGGGATCCATGGCTGGAAGTAGTGGTATTA 리버스Reverse AAGGCCTACAGTCAGAACCCACAAAGCAAGGCCTACAGTCAGAACCCACAAAGC PgGID1BPgGID1B 포워드Forward CGGGATCCATGGCTGGAAGTAATGGAATTAATCCGGGATCCATGGCTGGAAGTAATGGAATTAATC 리버스Reverse AAGGCCTACAGTCAGAACCCACAAAGCAAGGCCTACAGTCAGAACCCACAAAGC PgGID1CPgGID1C 포워드Forward AGATCTATGGCTGGGAGTAATGAAATTAATCAGATCTATGGCTGGGAGTAATGAAATTAATC 리버스Reverse AGGCCTGTAGGAACATACAAAACTTTTTATCTCAGGCCTGTAGGAACATACAAAACTTTTTATCTC PgGID1DPgGID1D 포워드Forward GGATCCATGGCTGGTAGTAATGAAGTTAACGGGATCCATGGCTGGTAGTAATGAAGTTAACG 리버스Reverse CCCGGGACAGTTAGGATTCACAAAGTTTTTTACCCGGGACAGTTAGGATTCACAAAGTTTTTTA

<2-2> 효모 잡종 분석 (<2-2> Yeast hybrid analysis ( YesstYesst two-hybrid assay, two-hybrid assay, Y2HY2H ))

본 실험에서는 PgGID1A-D 및 PgRGAs 사이의 상호 작용을 위해 효모 균주 AH109를 pGADT7 벡터 및 pGBKT7 벡터로 형질전환시켰다(도 2c 및 2d 참조). In this experiment, yeast strain AH109 was transformed with pGADT7 vector and pGBKT7 vector for interaction between PgGID1A-D and PgRGAs (see Figs. 2c and 2d).

GAL4-활성화 도메인을 포함하는 벡터 pGADT7(prey)에 PgRGA1-3의 cDNA를 클로닝하고, GAL4 DNA 결합 도메인을 함유하는 벡터 pGBKT7(bait)에 PgGID1A-D의 cDNA를 클로닝하였다. PgRGA1-3의 cDNA 및 PgGID1A-D의 cDNA는 상기 실시예 <2-1>에서 개시하는 동일한 PCR 증폭 과정을 거쳐 준비되었다. 형질전환된 세포는 Leu 및 Trp / Leu, Trp 및 His / Leu, Trp 및 His를 함유하지 않지만, 1mM 3-아미노트리아졸 또는 100nM 지베렐린(GA3, Sigma-Aldrich)을 함유하는 합성 배지에서 성장시켰다.The cDNA of PgRGA1-3 was cloned into the vector pGADT7 (prey) containing the GAL4-activation domain, and the cDNA of PgGID1A-D was cloned into the vector pGBKT7 (bait) containing the GAL4 DNA binding domain. The cDNA of PgRGA1-3 and the cDNA of PgGID1A-D were prepared through the same PCR amplification procedure described in Example <2-1>. Transformed cells did not contain Leu and Trp / Leu, Trp and His / Leu, Trp and His, but were grown in synthetic medium containing 1 mM 3-aminotriazole or 100 nM gibberellin (GA 3 , Sigma-Aldrich). .

참고로, RGA는 지베렐린 신호전달 인자 중 하나로 지베렐린 신호전달의 주요한 억제자이다. 평소에 RGA가 제베렐린 신호를 억제하고 있다가, 지베렐린이 GID1에 결합하게 되면 RGA를 분해하여 지베렐린 신호가 일어나게 된다. GID1/RGA는 서로 약하게 상호작용 할 수 있는데 지베렐린이 존재하면 그 상호작용이 강해진다고 잘 알려져 있다. 뿐만 아니라 RGA는 식물의 생장 억제인자로 잘 알려져 있다. 본 발명에서 사용한 PgRGA1-3는 인삼 유래의 RGA 유전자로 서열번호 9 내지 11의 염기서열로 나타낼 수 있다. For reference, RGA is one of the gibberellin signaling factors and is a major inhibitor of gibberellin signaling. RGA normally suppresses the zeberellin signal, and when gibberellin binds to GID1, the RGA decomposes and the giverelin signal is generated. GID1/RGA can interact weakly with each other, but it is well known that the presence of gibberellin strengthens the interaction. In addition, RGA is well known as a plant growth inhibitory factor. PgRGA1-3 used in the present invention is an RGA gene derived from ginseng and can be represented by the nucleotide sequences of SEQ ID NOs: 9 to 11.

그 결과 도 2e에서 나타낸 바와 같이, 지베렐린 수용체와 DELLA(지베렐린 신호전달 억제자)와의 물리적 결합을 확인하였으며, 지베렐린이 존재할 때 두 단백질의 상호작용이 강해지는 것으로 나타났다. 이를 통해서 본 발명의 인삼의 지베렐린 수용체 PgGID1A-D가 기능적으로 잘 보존되어 있음을 확인하였다.As a result, as shown in Figure 2e, it was confirmed that the physical binding between the giverelin receptor and DELLA (gibberellin signaling inhibitor), and when the presence of gibberellin, the interaction between the two proteins is strong. Through this, it was confirmed that the gibberellin receptor PgGID1A-D of ginseng of the present invention is functionally well preserved.

<< 실시예Example 3> 3>

애기장대의 Arabidopsis 지베렐릴Gibberellil 수용체와 인삼의 Receptors and ginseng 지베렐린Gibberellin 수용체가 Receptor 지베렐린과Gibberellin 결합할 수 있는지 판단하기 위한 3차원 예측구조 3D prediction structure to determine if it can be combined

애기장대 지베렐린 수용체 단백질 GID1a (PDB : 2ZSH)1의 결정학상의 구조는 Protein Data Bank(https://www.rcsb.org/)에서 검색되었다. 이 구조는 PHYRE II 분석 및 PyMOL 구조 시각화 소프트웨어를 사용하여 각각 AtGID1a, PgGID1a, PgGID1c 및 PgGID1d의 핵심 도메인을 예측하는 템플릿으로 사용되었다. 여기에는 공동 결정화된 리간드와 단백질의 분리뿐만 아니라 단백질 데이터 뱅크 파일에서 생략된 단백질에 수소를 첨가하는 것도 포함되었다. 단백질은 MOE 2016.0802를 사용하여 구조 검사와 도킹을 위해 force-field Amber10:EHT 및 termination 0.001 kcal/mol로 설정으로 계산되었다.The crystallographic structure of Arabidopsis gibberellin receptor protein GID1a (PDB: 2ZSH)1 was retrieved from Protein Data Bank (https://www.rcsb.org/). This structure was used as a template to predict the key domains of AtGID1a, PgGID1a, PgGID1c and PgGID1d, respectively, using PHYRE II analysis and PyMOL structure visualization software. This included the separation of co-crystallized ligands and proteins, as well as hydrogenation of proteins that were omitted from the protein data bank file. Proteins were calculated using MOE 2016.0802 with force-field Amber10:EHT and termination set to 0.001 kcal/mol for structural inspection and docking.

그 결과 도 3에서 나타낸 바와 같이, 인삼의 지베렐린 수용체들이 애기장대의 것과 유사하게 결합할 수 있음을 확인하였으며, 그 결합 구조 역시 유사함을 확인하였다. 이를 통해서 인삼의 지베렐린 수용체가 지베렐린과 결합하여 그 기능을 수행할 수 있다고 판단되었다.As a result, as shown in Fig. 3, it was confirmed that the gibberellin receptors of ginseng can bind similarly to Arabidopsis thaliana, and the binding structure is also similar. Through this, it was determined that the gibberellin receptor of ginseng could bind to gibberellin and perform its function.

도 3A에서 GA3(Gibberellic acid, Sigma-Aldrich)에 기초한 모델은 AtGID1A 구조(PDB ID : 2ZSH)와 결합하는 것으로 나타났다. 도 3B-3D는 코어 도메인 PgGID1A, PgGID1C, PgGID1D에서 GA3의 도킹 결과를 나타낸 것이다. 도 3E는 2ZSH에서 PgGID1A-GA3의 도킹 포즈와 AtGID1A-GA3의 결정학적 포즈가 중첩됨을 보여준다. 도 3F는 2ZSH에서 PgGID1C-GA3의 도킹 포즈와 AtGID1A - GA3의 결정학적 포즈가 중첩됨을 보여준다. 도 3G는 2ZSH에서 PgGID1D-GA3의 도킹 포즈와 AtGID1A-GA3의 결정학적 포즈가 중첩됨을 보여준다.In Figure 3A, the model based on GA 3 (Gibberellic acid, Sigma-Aldrich) was shown to bind to the AtGID1A structure (PDB ID: 2ZSH). 3B-3D show the docking results of GA 3 in the core domains PgGID1A, PgGID1C, and PgGID1D. Figure 3E shows that the GA-PgGID1A three docking poses and crystallographic pose of AtGID1A GA-3 overlap in 2ZSH. 3F shows that the docking pose of PgGID1C-GA 3 and the crystallographic pose of AtGID1A-GA 3 overlap in 2ZSH. Figure 3G shows that the GA-PgGID1D three docking poses and crystallographic pose of AtGID1A GA-3 overlap in 2ZSH.

<< 실시예Example 4> 4>

기능적으로 보존된 본 발명의 인삼의 Functionally preserved ginseng of the present invention 지베렐린Gibberellin 수용체( Receptor( PgGID1APgGID1A -D)가 궁극적으로 식물체 내에서 -D) ultimately within the plant 기능하는지Function 확인 Confirm

Atgid1a/c 돌연변이 애기장대(GID1이 손실된 돌연변이) 배경에서 HA-태깅 인삼 지베렐린 수용체(PgGID1A-D)를 과발현하는 형질전환 식물체를 생성하기 위해, PgGID1A-D cDNA를 35S 프로모터 및 HA 태그 서열을 함유하는 식물 형질전환용 벡터(pCB302ES)에 클로닝하였다(Ryu et al., 2014). Atgid1a/c 돌연변이 애기장대는 일본 RIKEN 연구소 (https://epd.brc.riken.jp/en/seed)에서 분양받은 것을 사용하였다.To generate transgenic plants overexpressing the HA-tagged ginseng gibberellin receptor (PgGID1A-D) in the Atgid1a/c mutant Arabidopsis (GID1 lost mutation) background, PgGID1A-D cDNA contains 35S promoter and HA tag sequence It was cloned into a vector for plant transformation (pCB302ES) (Ryu et al., 2014). Atgid1a/c mutant Arabidopsis thaliana was pre-sold from RIKEN Research Institute (https://epd.brc.riken.jp/en/seed) in Japan.

PgGID1A-D의 cDNA는 상기 실시예 <2-1>에서 개시하는 동일한 PCR 증폭 과정을 거쳐 준비되었다. 준비된 PgGID1A-D의 cDNA는 BamHI 및 StuI를 사용하여 분해하고, 벡터 pCB302ES 내로 클로닝하였으며, 상기 벡터는 PgGID1A-D의 코딩 부위가 프로모터 35SC4PPDK (Hwang and Sheen, Nature 413, 383-389 (2001)) 조절 하에 놓이도록 벡터 pCB302-2 (Xiang et al., Plant Mol Biol 40, 711-717 (1999))를 변형하여 얻어진 것이다. 얻어진 벡터를 pCB302ES::(35S::PgGID1A-D)로 명명하였다.The cDNA of PgGID1A-D was prepared through the same PCR amplification procedure described in Example <2-1>. The prepared cDNA of PgGID1A-D was digested using BamHI and StuI, and cloned into the vector pCB302ES, and the vector was regulated by the coding site of PgGID1A-D promoter 35SC4PPDK (Hwang and Sheen, Nature 413, 383-389 (2001)) It was obtained by modifying the vector pCB302-2 (Xiang et al., Plant Mol Biol 40, 711-717 (1999)) to be placed under The obtained vector was named pCB302ES::(35S::PgGID1A-D).

상기 pCB302ES::(35S::PgGID1A-D) 벡터를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) 균주 GV3101에 도입하기 위해 일렉트로포레이션을 사용하였다. 모든 형질전환 계통은 아그로박테리움(Agrobacterium) 매개형 플로랄 딥(floral dip) 방법에 의해 생성되었다. 형질전환 유전자 발현은 면역블로팅으로 확인하였다. 단백질 추출 버퍼(50mM Tris-HCl (pH 7.5), 75mM NaCl, 5mM EDTA, 1mM dithiothreitol, 1× 프로테아제 억제 칵테일 (Roche) 및 1 % Triton X-100)로 총 단백질을 추출하였다. 총 단백질 (3-20 μg)을 SDS-PAGE (10 % 폴리 아크릴 아미드)로 분리하고, 폴리비닐리덴 디플루오라이드 멤브레인에 옮기고, 퍼옥시다아제-결합된 고친화성 항-HA(Roche)의 1/2,000 희석액을 사용하여 면역검출하였다. 한편, 본 실험에서는 각 실험군별 식물체의 지상부 슈트(shoot, n = 12) 및 실리크(silique, n = 16) 길이의 표현형을 측정하고, GraphPad Prism6 프로그램을 사용하여 수치화하였다. Electroporation was used to introduce the pCB302ES::(35S::PgGID1A-D) vector into the Agrobacterium tumefaciens strain GV3101. All transgenic lines were generated by the Agrobacterium mediated floral dip method. Transgene expression was confirmed by immunoblotting. Total protein was extracted with protein extraction buffer (50mM Tris-HCl (pH 7.5), 75mM NaCl, 5mM EDTA, 1mM dithiothreitol, 1× protease inhibition cocktail (Roche) and 1% Triton X-100). Total protein (3-20 μg) was separated by SDS-PAGE (10% polyacrylamide), transferred to a polyvinylidene difluoride membrane, and 1/2,000 of peroxidase-bound high affinity anti-HA (Roche) Immunodetection was performed using the diluted solution. On the other hand, in this experiment, the phenotypes of the above-ground shoot (n = 12) and silique (n = 16) lengths of plants for each experimental group were measured and quantified using the GraphPad Prism6 program.

그 결과 도 4에서 나타낸 바와 같이, 왜성 표현형을 보이는 Atgid1a/c 돌연변이에 인삼의 지베렐린 수용체 유전자를 과발현시킨 결과 왜성 돌연변이 식물체가 야생형에 가깝게 회복되는 것을 관찰할 수 있었다(도 4a 참조). 식물의 길이 뿐만 아니라 실리크의 길이도 어느정도 회복되는 것을 볼 수 있다(도 4b 및 4c 참조). 이러한 내용을 기반으로 볼 때, 본 발명의 인삼에서 지베렐린 신호전달이 진화적으로 잘 보존되어 있으며 식물체 내에서도 기능할 수 있음을 확인하였다. As a result, as shown in FIG. 4, as a result of overexpressing the gibberellin receptor gene of ginseng in the Atgid1a/c mutant showing the dwarf phenotype, it was observed that the dwarf mutant plant recovered close to the wild type (see FIG. 4A). It can be seen that not only the length of the plant but also the length of the silk is recovered to some extent (see Figs. 4b and 4c). Based on these contents, it was confirmed that gibberellin signaling in the ginseng of the present invention is well preserved in evolution and can function in plants.

<< 실시예Example 5> 5>

인삼에서 From ginseng 지베렐린Gibberellin 처리에 따른 부피생장 Volume growth by treatment

본 실험에서는 2년생 인삼에 DMSO와 지베렐린(GA3, Gibberellic acid)을 50일간 처리한 후, 단면을 잘라 관찰하였다. In this experiment, two-year-old ginseng was treated with DMSO and Gibberellic acid (GA 3, Gibberellic acid) for 50 days, and the cross section was cut and observed.

그 결과는 도 5a 내지 5c에서 자세히 나타내었다.The results are shown in detail in FIGS. 5A to 5C.

도 5a에서 붉은 화살표 부분이 형성층 세포를 가리킨다. DMSO 처리 인삼과 달리 지베렐린 처리 인삼의 경우 형성층 아래쪽 세포들이 비슷한 크기로 일자로 나열되는 것으로 나타났다. 상기와 같은 결과를 통해 인삼에 지베렐린 처리에 따라 형성층 아래로 일정한 크기의 세포들이 길게 나열된것으로 보아 세포분열이 촉진되었음을 예측할 수 있었다.In FIG. 5A, the red arrow indicates cambium cells. Unlike DMSO-treated ginseng, in the case of gibberellin-treated ginseng, cells under the cambium were arranged in a similar size and arranged in a row. Through the results as described above, it could be predicted that cell division was promoted as cells of a certain size were arranged long under the cambium layer by the treatment of gibberellin in ginseng.

도 5b에서는 50일간의 생장 과정동안 DMSO와 지베렐린 처리 인삼의 원주 둘레를 측정하여 나타낸 것으로, 지베렐린을 처리한 인삼에서 원주둘레가 커지는 것으로 나타나 인삼의 부피가 커지는 것을 확인하였다. In Figure 5b, it was shown by measuring the circumference of ginseng treated with DMSO and gibberellin during the growth process for 50 days, and it was confirmed that the circumference of ginseng treated with gibberellin increased, indicating that the volume of ginseng increased.

도 5c는 본 발명의 PgGID1D의 인삼 뿌리 조직 내 발현 여부를 In situ hybridization을 이용하여 확인한 결과이다. 8주차 인삼을 In situ hybridization을 진행한 결과 PgGID1D가 형성층(이라고 예측되는 부분/보라색 염색된 부분)에서 발현되는 것을 확인할 수 있었다.Figure 5c is a result of confirming the expression of PgGID1D of the present invention in the ginseng root tissue using in situ hybridization. As a result of in situ hybridization of ginseng at the 8th week, it was confirmed that PgGID1D was expressed in the cambium (the part predicted to be / part stained with purple).

In situ hybridization를 위해 직경이 0.5 cm 인 인삼뿌리의 횡단면을 잘라서 FAA 용액 (50% ethanol, 5% acetic acid, 3.7% formaldehyde)에 4℃에서 10일간 처리한 후, 샘플을 연속적으로 높아지는 농도의 에탄올로 (50, 60, 70, 80, 90, 95, 100%) 30분씩 탈수시킨 후 파라핀에 5일간 임베딩 (embedding) 시켜 10 μm 두께로 섹션 (section) 하였다. 섹션을 일련의 처리 (hydration, proteinase K 처리, acetylation, dehydration)를 거친 후 크실렌 (xylene)으로 처리하였다. In situ hybridization 을 위하여 PgGID1D probe를 제작하였다. 이후, 42℃에서 2시간동안 humid chamber에서 prehybridization을 실시하고 PgGID1D의 sense와 antisense probe를 포함한 hybridization buffer를 넣어 42℃에서 16시간 동안 humid chamber에서 hybridization을 실시하였다. Alkaline phosphatase가 결합된 anti-DIGbody(Roche, Germany)를 이용하여 immumological detection 하였다. 보라색으로 발색된 슬라이드는 광학현미경(OLYMPUS BX51, Japan)으로 촬영하였다.For in situ hybridization, cross sections of ginseng roots with a diameter of 0.5 cm were cut and treated in FAA solution (50% ethanol, 5% acetic acid, 3.7% formaldehyde) at 4℃ for 10 days, and the samples were continuously increased in ethanol. After dehydration with a furnace (50, 60, 70, 80, 90, 95, 100%) for 30 minutes each, they were embedded in paraffin for 5 days and sectioned to a thickness of 10 μm. The section was subjected to a series of treatments (hydration, proteinase K treatment, acetylation, dehydration) and then treated with xylene. PgGID1D probe was fabricated for in situ hybridization. After that, prehybridization was performed in a humid chamber at 42°C for 2 hours, and hybridization buffer including PgGID1D sense and antisense probe was added to perform hybridization in a humid chamber at 42°C for 16 hours. Immumological detection was performed using an anti-DIGbody (Roche, Germany) bound with alkaline phosphatase. The purple colored slide was photographed with an optical microscope (OLYMPUS BX51, Japan).

PgGID1D probe를 제작과정은 다음과 같다.The manufacturing process of the PgGID1D probe is as follows.

가. T vector에 클로닝된 유전자를 T7+SP6 primer로 PCRend. PCR of the gene cloned into the T vector with T7+SP6 primer

PCR 증폭은 PCR 튜브에 20ng/μl 밀도의 DNA 1μl, 10x Pfu buffer 3μl, dNTP (each 2mmole) 3μl, each primer 1μl, Pfu-X DNA polymerase 0.3μl, DEPC treated 증류수 21.7μl로 총 PCR mixture 30μl를 만든 후 먼저 94℃에서 2분간 전-변성시킨 후 94℃에서 20초간 변성, 58℃에서 30초간 어닐링, 72℃에서 1분15초간 연장과정을 38 사이클 수행하였으며, 마지막으로 72℃에서 2분간 연장을 실시하였다.For PCR amplification, a total of 30 μl of PCR mixture was made in a PCR tube with 20 ng/μl of DNA 1μl, 10x Pfu buffer 3μl, dNTP (each 2mmole) 3μl, each primer 1μl, Pfu-X DNA polymerase 0.3μl, DEPC treated distilled water 21.7μl. After that, it was first pre-denatured at 94°C for 2 minutes, then denatured at 94°C for 20 seconds, annealing at 58°C for 30 seconds, extended at 72°C for 1 minute and 15 seconds, 38 cycles, and finally extended at 72°C for 2 minutes. Implemented.

나. PCR product를 전기영동하여 elutionI. ELution by electrophoresis of PCR product

다. probe synthesisAll. probe synthesis

5x RNA polymerase buffer 5ul, RNase inhibitor 1ul, 10x Dig RNA labeling mix 2.5ul, elution한 DNA 15ul, (T7 or SP6) RNA polymerase 2.5ul로 총 25ul mixture를 37℃ 오븐에 20시간 이상 반응시킨다.With 5x RNA polymerase buffer 5ul, RNase inhibitor 1ul, 10x Dig RNA labeling mix 2.5ul, eluted DNA 15ul, (T7 or SP6) RNA polymerase 2.5ul, react a total of 25ul mixture in an oven at 37℃ for 20 hours or more.

다. DNase 1ul을 넣고 37℃ 오븐에 30분 반응시킨다.All. Add 1ul of DNase and react in an oven at 37℃ for 30 minutes.

마. RNA precipitationhemp. RNA precipitation

0.5M EDTA pH8 1ul, 6M LiCl 4ul, 100% EtOH(-20℃) 100ul을 넣고 -20℃ 냉장고에서 20시간 이상 반응시킨다.Add 1ul of 0.5M EDTA pH8, 4ul of 6M LiCl, and 100ul of 100% EtOH (-20℃) and react in a refrigerator at -20℃ for at least 20 hours.

바. 4℃ 13000rpm 15분동안 centrifuse / 상층액 버리고 75% 에탄올 500ul을 넣고 4℃ 13000rpm 10분동안 centrifuse/ 상층액버리고 DEPC treated DW 15ul에 RNA를 녹여준다.bar. Centrifuse at 4℃ 13000rpm for 15 minutes / discard supernatant, add 500ul of 75% ethanol, centrifuse at 4℃ 13000rpm for 10 minutes / discard supernatant, and dissolve RNA in 15ul of DEPC treated DW.

이제까지 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다. Those of ordinary skill in the art to which the present invention pertains so far will be able to understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

<110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Recombinant vector for promoting plant length growth and volumetric growth and uses thereof <130> NPDC-77374 <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> PgGID1A polynucleotide sequence <400> 1 atggctggaa gtagtggtat taatcttagt gagtccaaga tggtggttcc actcaataca 60 tgggtcctca tctccaattt caagctggca tacaatcttc tccgtcgtcc tgatgggtct 120 tttaaccgcc acttggctga gttccttgac cgcaaagtcc tggccaatgc aaatcctgtt 180 aatggggttt tctcctttga tgtcattatt gaccgtagaa ccaacctcct tacccgaatc 240 tatcgaccag caaatgctga attggttcga cctagtattg cggaacttga gaatcctttg 300 agcgtggatg ttgtccctgt catagtcttc ttccatggtg gaagctttgc acattcctct 360 gcaaacagtg ctatctatga cactctatgt cgacgtctag tgggcctttg taatgctgtt 420 gtgatttcag taaattatcg gcgtgctccc gaggaccctt atccctgtgc ctataatgat 480 ggctggactg cgcttgagtg ggttaattcg aggacatggc ttcaaagtcg aaaggactct 540 aaagttcata tatacttggc tggtgatagc tctggtggca atattgttca taatgttgct 600 ttgagggcag tagaatcagg aattgaagtg ttgggaaata tacttctgaa tccaatgttt 660 ggtgggcaag agagaactga atcagagaag cggctggatg ggaaatattt tgtcactgtt 720 caagaccgag actggtattg gagagcattt ctccctgagg gggaagatag ggaccatcca 780 gcctgtaatc ctttcggtcc caaggctata agcatagacg gaatgaattt tccaaagagt 840 cttgtagttg tggctggttt ggaccttatc caggactggc agatggctta cgcggaaggg 900 ctcaagaacg ccggcaaaga ggttaaactt ctatatttgg agaaggcaac aattgggttc 960 tacttgttgc ccaacaatga ccacttctac actgtaatgg atgagataaa aagctttgtg 1020 ggttctgact gt 1032 <210> 2 <211> 1038 <212> DNA <213> Artificial Sequence <220> <223> PgGID1B polynucleotide sequence <400> 2 atggctggaa gtaatggaat taatcttagt gagtccaaga tggtggttcc actcaataca 60 tgggtcctca tctccaattt caagctggca tacaatcttc ttcgtcgtcc tgatgggtct 120 tttaaccgcc acttggctga gttccttgac cgcaaagtcc tggccaatgc aaatcctgtt 180 aatggggttt tctcctttga tgtcattatt gaccgtagaa ccaacctcct tacccgaatc 240 tatcgaccgg caaatgctga attggttcga cctagtattg tggaacttga gaatcctttg 300 agcgctgatg ttgtccctgt catagtcttc ttccatggtg gaagctttgc acattcctct 360 gcaaacagtg ctatctatga cactctatgt cgacgtctgg tgggcctttg taatgctgtt 420 gtgatttcag taaattatcg gcgtgctccc gaggaccctt atccctgtgc ctatgatgat 480 ggctggactg cacttgagtg ggttaattcg aggacatggc ttcaaagtcg aaaggactct 540 aaagttcata tatacttggc tggtgatagc tctggtggca atattgttca taatgttgct 600 ttgagggcag tagaatcagg aattgaagtg ttgggaaata tacttctgaa tccaatgttt 660 ggtgggcaag agagaactga atcagagaag cggctggatg ggaaatattt tgtcactgtt 720 caagaccgag actggtattg gagagcattt ctccctgagg gggaagatag ggaccatcca 780 gcctgtaatc ctttcggtcc caaggctata agcataagca tagaaggaat gaattttccg 840 aagagtcttg tagttgtggc tggtttggac cttatccagg actggcagat ggcttacgcg 900 gaagggctta agaacgccgg caaagaggtt aaacttctat atttggagaa ggcaacaatt 960 gggttctact tgttgcccaa caatgaccac ttctacactg taatggatga aataaaaagc 1020 tttgtgggtt ctgactgt 1038 <210> 3 <211> 1035 <212> DNA <213> Artificial Sequence <220> <223> PgGID1C polynucleotide sequence <400> 3 atggctggga gtaatgaaat taatcttaat gactccaaga tggtggttcc actgaataca 60 tggatcctca tctccaattt caagctggca tataatcttc ttcgtcgccc tgatgggact 120 tttaaccgcc acttggctga gttccttgac cgcaaagtcc aggccaatgc aaatcctgtt 180 gacggggttt tctcttttga tgtcattatc gaccgtggaa ccagcctact tattcgagtt 240 tatcggccag caaatgctga cgagggtatg cctagtattg ctgaccttga gaaacccttg 300 aactctgatg ttgtccctgt cataatcttc ttccatggtg gaagctttgc acattcctct 360 gcaaacagtg ctatctatga cactctatgt cgtcgactag tgggcctttg taaggctgtt 420 gtaatttcag taaattatcg gcgtgctcct gagtaccctt acccctgtgc ctatgaagat 480 ggctggactg cgcttaagtg ggttagttca aggacatggc ttcaaagtca gaaggactct 540 aaagttcaca tatacttagc tggtgatagc tctggtggta atattgttca taatgtttct 600 ttgagggcta tagaatcagg aacaggaatt gaagtgttag gaaatatact actcaatcca 660 atgtttggcg ggaaagagag aactgaatca gagaagcgac tagatgggaa atattttgtc 720 actgttcaag atcgagactg gtattggaaa gcctttctcc cagaagggga agatagggac 780 catgctgcat gtaatccttt tggtcttaag gcaataagca ttgaaggaat gaatttccct 840 aagagtcttg ttgtcgtggc tggtttggac cttgtccagg actggcagtt ggcttatgcg 900 gaagggctta agaaggcagg ccaagaggtg aaacttctat atttagagca ggcaacaatt 960 gggttctact tgttgcccaa caatgaccac ttctacactg tgatgaatga gataaaaagt 1020 tttgtatgtt cctac 1035 <210> 4 <211> 1035 <212> DNA <213> Artificial Sequence <220> <223> PgGID1D polynucleotide sequence <400> 4 atggctggta gtaatgaagt taacgttaat gacgccaaga gggttgttcc actgaataca 60 tggattttga tatctaattt caaactagct tacaacatgc agcgtcgtcc tgatggaaca 120 atcaatcgcg atttggcaga gtttcttgac aggaaagtcc ctgccaacac cattccggtt 180 gatggggttt actcttttga tgttgttgat cgggtcacca gccttctcaa tcgtgtttat 240 cgatcagccc cggaaaatga agctcagtgg ggcctcgttg aactcgaaca tcctttgagc 300 accactgaaa ttgtgcctgt cattattttc ttccacggtg gaagcttcgc ccattcctct 360 gccaatagtg ctatatatga tacattctgc cgccgccttg ttggaatttg caaggctgtt 420 gtggtgtccg ttaactatcg gcgatcgcct gaacatcgat acccctgtgc atacgatgat 480 ggatgggcag ctcttaaatg ggttcattca agatcatggc ttcaaagtgg gaaggattct 540 aaagtccgtg tctatttggc cggtgatagt tcgggtggaa acattgttca ccatgttgct 600 gtgagggctg ctgaatcagg agttgaagta ttgggtaata tacttcttca tccatttttt 660 ggggggcaag agcgaaagga gtcagagacg agattggatg ggaagtactt tgtgacaatt 720 caagataggg actggtattg gagagcttac ttaccggaag gtgaagatag agaccatccg 780 gcatgtaata tatttggccc gagggccaaa agaattgaag gactagtaaa gtttccgaaa 840 agtcttgttt gtgtggctgg tttggatctt gttcaggatt ggcagttggc ttatgtagaa 900 ggcctggagg aagccgggca agaggtgcaa ctcctatacc taaaggaggc aacgataggt 960 ttctacttct tgccgaataa tgaccatttc tataacctca tggagcagat aaaaaacttt 1020 gtgaatccta actgt 1035 <210> 5 <211> 344 <212> PRT <213> Artificial Sequence <220> <223> PgGID1A polypeptide sequence <400> 5 Met Ala Gly Ser Ser Gly Ile Asn Leu Ser Glu Ser Lys Met Val Val 1 5 10 15 Pro Leu Asn Thr Trp Val Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Leu Leu Arg Arg Pro Asp Gly Ser Phe Asn Arg His Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Leu Ala Asn Ala Asn Pro Val Asn Gly Val Phe 50 55 60 Ser Phe Asp Val Ile Ile Asp Arg Arg Thr Asn Leu Leu Thr Arg Ile 65 70 75 80 Tyr Arg Pro Ala Asn Ala Glu Leu Val Arg Pro Ser Ile Ala Glu Leu 85 90 95 Glu Asn Pro Leu Ser Val Asp Val Val Pro Val Ile Val Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Leu Cys Arg Arg Leu Val Gly Leu Cys Asn Ala Val Val Ile Ser Val 130 135 140 Asn Tyr Arg Arg Ala Pro Glu Asp Pro Tyr Pro Cys Ala Tyr Asn Asp 145 150 155 160 Gly Trp Thr Ala Leu Glu Trp Val Asn Ser Arg Thr Trp Leu Gln Ser 165 170 175 Arg Lys Asp Ser Lys Val His Ile Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His Asn Val Ala Leu Arg Ala Val Glu Ser Gly Ile 195 200 205 Glu Val Leu Gly Asn Ile Leu Leu Asn Pro Met Phe Gly Gly Gln Glu 210 215 220 Arg Thr Glu Ser Glu Lys Arg Leu Asp Gly Lys Tyr Phe Val Thr Val 225 230 235 240 Gln Asp Arg Asp Trp Tyr Trp Arg Ala Phe Leu Pro Glu Gly Glu Asp 245 250 255 Arg Asp His Pro Ala Cys Asn Pro Phe Gly Pro Lys Ala Ile Ser Ile 260 265 270 Asp Gly Met Asn Phe Pro Lys Ser Leu Val Val Val Ala Gly Leu Asp 275 280 285 Leu Ile Gln Asp Trp Gln Met Ala Tyr Ala Glu Gly Leu Lys Asn Ala 290 295 300 Gly Lys Glu Val Lys Leu Leu Tyr Leu Glu Lys Ala Thr Ile Gly Phe 305 310 315 320 Tyr Leu Leu Pro Asn Asn Asp His Phe Tyr Thr Val Met Asp Glu Ile 325 330 335 Lys Ser Phe Val Gly Ser Asp Cys 340 <210> 6 <211> 346 <212> PRT <213> Artificial Sequence <220> <223> PgGID1B polypeptide sequence <400> 6 Met Ala Gly Ser Asn Gly Ile Asn Leu Ser Glu Ser Lys Met Val Val 1 5 10 15 Pro Leu Asn Thr Trp Val Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Leu Leu Arg Arg Pro Asp Gly Ser Phe Asn Arg His Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Leu Ala Asn Ala Asn Pro Val Asn Gly Val Phe 50 55 60 Ser Phe Asp Val Ile Ile Asp Arg Arg Thr Asn Leu Leu Thr Arg Ile 65 70 75 80 Tyr Arg Pro Ala Asn Ala Glu Leu Val Arg Pro Ser Ile Val Glu Leu 85 90 95 Glu Asn Pro Leu Ser Ala Asp Val Val Pro Val Ile Val Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Leu Cys Arg Arg Leu Val Gly Leu Cys Asn Ala Val Val Ile Ser Val 130 135 140 Asn Tyr Arg Arg Ala Pro Glu Asp Pro Tyr Pro Cys Ala Tyr Asp Asp 145 150 155 160 Gly Trp Thr Ala Leu Glu Trp Val Asn Ser Arg Thr Trp Leu Gln Ser 165 170 175 Arg Lys Asp Ser Lys Val His Ile Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His Asn Val Ala Leu Arg Ala Val Glu Ser Gly Ile 195 200 205 Glu Val Leu Gly Asn Ile Leu Leu Asn Pro Met Phe Gly Gly Gln Glu 210 215 220 Arg Thr Glu Ser Glu Lys Arg Leu Asp Gly Lys Tyr Phe Val Thr Val 225 230 235 240 Gln Asp Arg Asp Trp Tyr Trp Arg Ala Phe Leu Pro Glu Gly Glu Asp 245 250 255 Arg Asp His Pro Ala Cys Asn Pro Phe Gly Pro Lys Ala Ile Ser Ile 260 265 270 Ser Ile Glu Gly Met Asn Phe Pro Lys Ser Leu Val Val Val Ala Gly 275 280 285 Leu Asp Leu Ile Gln Asp Trp Gln Met Ala Tyr Ala Glu Gly Leu Lys 290 295 300 Asn Ala Gly Lys Glu Val Lys Leu Leu Tyr Leu Glu Lys Ala Thr Ile 305 310 315 320 Gly Phe Tyr Leu Leu Pro Asn Asn Asp His Phe Tyr Thr Val Met Asp 325 330 335 Glu Ile Lys Ser Phe Val Gly Ser Asp Cys 340 345 <210> 7 <211> 392 <212> PRT <213> Artificial Sequence <220> <223> PgGID1C polypeptide sequence <400> 7 Met Ala Gly Ser Asn Glu Ile Asn Leu Asn Asp Ser Lys Met Val Val 1 5 10 15 Pro Leu Asn Thr Trp Ile Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Leu Leu Arg Arg Pro Asp Gly Thr Phe Asn Arg His Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Gln Ala Asn Ala Asn Pro Val Asp Gly Val Phe 50 55 60 Ser Phe Asp Val Ile Ile Asp Arg Gly Thr Ser Leu Leu Ile Arg Val 65 70 75 80 Tyr Arg Pro Ala Asn Ala Asp Glu Gly Met Pro Ser Ile Ala Asp Leu 85 90 95 Glu Lys Pro Leu Asn Ser Asp Val Val Pro Val Ile Ile Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Leu Cys Arg Arg Leu Val Gly Leu Cys Lys Ala Val Val Ile Ser Val 130 135 140 Asn Tyr Arg Arg Ala Pro Glu Tyr Pro Tyr Pro Cys Ala Tyr Glu Asp 145 150 155 160 Gly Trp Thr Ala Leu Lys Trp Val Ser Ser Arg Thr Trp Leu Gln Ser 165 170 175 Gln Lys Asp Ser Lys Val His Ile Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His Asn Val Ser Leu Arg Ala Ile Glu Ser Gly Thr 195 200 205 Gly Ile Glu Val Leu Gly Asn Ile Leu Leu Asn Pro Met Phe Gly Gly 210 215 220 Lys Glu Arg Thr Glu Ser Glu Lys Arg Leu Asp Gly Lys Tyr Phe Val 225 230 235 240 Thr Val Gln Asp Arg Asp Trp Tyr Trp Lys Ala Phe Leu Pro Glu Gly 245 250 255 Glu Asp Arg Asp His Ala Ala Cys Asn Pro Phe Gly Leu Lys Ala Ile 260 265 270 Ser Ile Glu Gly Met Asn Phe Pro Lys Ser Leu Val Val Val Ala Gly 275 280 285 Leu Asp Leu Val Gln Asp Trp Gln Leu Ala Tyr Ala Glu Gly Leu Lys 290 295 300 Lys Ala Gly Gln Glu Val Lys Leu Leu Tyr Leu Glu Gln Ala Thr Ile 305 310 315 320 Gly Phe Tyr Leu Leu Pro Asn Asn Asp His Phe Tyr Thr Val Met Asn 325 330 335 Glu Ile Lys Ser Phe Gln Phe Lys Ile Thr Leu Ser Asp Phe Leu Pro 340 345 350 Arg Arg Arg Glu Arg Gln Glu Asn Val Gly Thr Ile Pro Gly Pro Phe 355 360 365 Asn Leu Gly Ser Glu Leu Ala Trp Leu Met Leu Asn Val Asp Val Ile 370 375 380 Val Asp Pro Leu Ala Pro Ile Ile 385 390 <210> 8 <211> 345 <212> PRT <213> Artificial Sequence <220> <223> PgGID1D polypeptide sequence <400> 8 Met Ala Gly Ser Asn Glu Val Asn Val Asn Asp Ala Lys Arg Val Val 1 5 10 15 Pro Leu Asn Thr Trp Ile Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Met Gln Arg Arg Pro Asp Gly Thr Ile Asn Arg Asp Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Pro Ala Asn Thr Ile Pro Val Asp Gly Val Tyr 50 55 60 Ser Phe Asp Val Val Asp Arg Val Thr Ser Leu Leu Asn Arg Val Tyr 65 70 75 80 Arg Ser Ala Pro Glu Asn Glu Ala Gln Trp Gly Leu Val Glu Leu Glu 85 90 95 His Pro Leu Ser Thr Thr Glu Ile Val Pro Val Ile Ile Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Phe Cys Arg Arg Leu Val Gly Ile Cys Lys Ala Val Val Val Ser Val 130 135 140 Asn Tyr Arg Arg Ser Pro Glu His Arg Tyr Pro Cys Ala Tyr Asp Asp 145 150 155 160 Gly Trp Ala Ala Leu Lys Trp Val His Ser Arg Ser Trp Leu Gln Ser 165 170 175 Gly Lys Asp Ser Lys Val Arg Val Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His His Val Ala Val Arg Ala Ala Glu Ser Gly Val 195 200 205 Glu Val Leu Gly Asn Ile Leu Leu His Pro Phe Phe Gly Gly Gln Glu 210 215 220 Arg Lys Glu Ser Glu Thr Arg Leu Asp Gly Lys Tyr Phe Val Thr Ile 225 230 235 240 Gln Asp Arg Asp Trp Tyr Trp Arg Ala Tyr Leu Pro Glu Gly Glu Asp 245 250 255 Arg Asp His Pro Ala Cys Asn Ile Phe Gly Pro Arg Ala Lys Arg Ile 260 265 270 Glu Gly Leu Val Lys Phe Pro Lys Ser Leu Val Cys Val Ala Gly Leu 275 280 285 Asp Leu Val Gln Asp Trp Gln Leu Ala Tyr Val Glu Gly Leu Glu Glu 290 295 300 Ala Gly Gln Glu Val Gln Leu Leu Tyr Leu Lys Glu Ala Thr Ile Gly 305 310 315 320 Phe Tyr Phe Leu Pro Asn Asn Asp His Phe Tyr Asn Leu Met Glu Gln 325 330 335 Ile Lys Asn Phe Val Asn Pro Asn Cys 340 345 <210> 9 <211> 1728 <212> DNA <213> Artificial Sequence <220> <223> PgRGA1 polynucleotide sequence <400> 9 atgaagagag actacccaca acctaatcat agcaccttct ccacagactg tggtactggc 60 accggtggta gctcctccgt taacaatagc ggcgtgtatt caaatgggaa atctaagatg 120 tgggaggaaa ctgaacaaga cgccggagtt gacgagcttt tggctgttct gggctataaa 180 gtccggtcat ctgacatggc ggatgttgcc cagaaactcg agcacctcga agaagtgatg 240 ggccaagctc aagaagatgg cctttctcat ctcgcttgcg ataccgttca ctacaatccc 300 tccgatctat cgtcttggct cgaattaatg atttctgagc tcgacccacc accaccggga 360 acggatccat ttctcgccca tgcagaattg tctactagca agataatctt tgatgattca 420 tcttcttccg attacgatct taaagcaatc ccaggtaaag ccgtttaccc cacaactatt 480 caatcaccac ttcctccacc aaacaaaaaa ttgaaaatca cgatctcagc ggctccatct 540 gtttggccaa ctccagccca atctcaacta cagccaaaag aacactctca gtcagtagtt 600 ttagtggatt ctcaagaaaa cggagtccga ttagtccaca ctttgatggc ttgtgcggaa 660 gctgtgcaac acgataatct aaagctagcg gaagtccttg tcaaacagat cgcattccta 720 gccgtatccc aaatcggagc gatgcgaaag gttgccactt attttgccga agctctggct 780 caacgaatct accgattata cccacaaaca cctcaagatt ctgcttttgc agatctactg 840 ctaatgcatt tttacgaaac atgcccgtat ttaaaatttg cccattttac tgctaatcaa 900 gctatactcg aagcttttga tgataagaaa agcgtacatg tgattgattt cagtatgaaa 960 caggggacgc agtggccggc tttgatgcag gctttggcct tgcggcctgg tgggccgcct 1020 actttccgat taaccgggat tggaccgccg tcccacgata acactgatca tttgcaagat 1080 gtgggttgga aattggctca atttgcggaa actattcatg tcaagttcga gtatagtggg 1140 tttgtggcga acagtttagc tgatctcgat gcttccatgc ttgatcttcg agagggtgaa 1200 accgtggcgg taaactccgt tttcgagttt catcagctgt tggctcgccc gggtgcaatc 1260 gagaaggtga tgtcggcggt gaaggagatg aagccggaaa tcgtgacggt ggtggagcag 1320 gaagctaatc ataacggtcc tgttttcttg gaccggttta ccgagtcttt gcattattat 1380 tcaaccttat ttgactcttt ggagagttgt ggcggcggtg gatcggcgag taatgaggac 1440 aaggtgatgt cggaggtgtt cttgggcagg cagatatgta acgtggtggc ttgtgaagga 1500 gttgaccgag ttgagaggca cgagactctg ggtcagtgga gaagccggtt cggaagtggc 1560 gggtttaagg cggttcacct ggggtccaat gcgtttaagc aggccagtat gctgctggca 1620 ctgtttgctg gtggggatgg gtacagagtg gaagagaacg aagggtgtct gatgctgggt 1680 tggcacactc ggcccctcat tgctacctcg gcgtggaaac tcagtggt 1728 <210> 10 <211> 1737 <212> DNA <213> Artificial Sequence <220> <223> PgRGA2 polynucleotide sequence <400> 10 atgaagcgag actatccaca acctaatcat atatccttct ctgactgcgg tggtggcacc 60 agcggcagct cttccgtcaa ccatagcggt gtgtattcaa acggaaagtc taagatgtgg 120 gaggaaactg aacaagatgc tggagtggac gagcttttgg cgcttttggg ctacaaagtc 180 cggtcctcag acatggcgga agtagctcaa aaactcgaac atctcgaaga agttatgggg 240 caagctcaag aagacggcct ttcgcatcta gcttgcgata ccgttcatta caacccgtct 300 gatttatctt cctggctcga atctatgatt acagagctca acccaccact ggcaaatgat 360 ctgtttctct ctccggcaga gtcgtctact aacaagataa tcttcgatga ttcatcttct 420 tgcgattatg atcttaaagc aattccggga aacgccgttt accctccgat tgttcaatca 480 cccgttcctc caccaaataa aagattcaaa accatgtgcc caacaaatcc atcaatttgg 540 caaactccgg ttcaatctca acaacaccca aatgaaccct ctcgttcagt agttttggtg 600 gattcccaag aaaacggagt ccgattagtt catactttaa tggcttgcgc tgaagcagtg 660 cagcaaaata agttaaaggt ggcagaagca cttgtcaaac aaatcggatt cctagccgtg 720 tcacaaatcg gagcaatgag aaaggtcgcc acctattttg ctgaagcatt ggctcggcga 780 atctaccgat tgtacccaca aaactctcag gattccgcct tcgctgatct acttgaaatg 840 catttctatg aaacctgtcc ttacctaaaa ttcgcccatt tcactgctaa tcaagctata 900 ctcgaagctt ttgctgataa gaaaagggtt cacgtgatag atttcagcat gaaacagggg 960 atgcagtggc cggctttgat gcaagctttg gctttgaggc caggtgggcc gcctactttc 1020 cggttaactg gtattggacc gccgtcgcac gataatacgg atcatttgca ggaagtgggt 1080 tggaaattag ctcaattggc ggaaactatt catgtagaat ttgagtatag agggttcgtg 1140 gcgaatagtt tagctgatct cgatgcatcc atgcttgatc ttcgagaggg tgaaactgtg 1200 gcggtgaact cggttttcga gattcatcag ctcttggctc gaccgggtgc aattgagaag 1260 gtgatggctg ccgttaagga gatgaagccg gagattgtga cggtggtgga gcaggaagct 1320 aatcacaacg gactggtatt cttggaccgg tttaccgagt ctttacatta ttactcgacc 1380 ctttttgact cgttggagag ctgtggtggc ggcgttgaag acggcggacc ggtgagtaac 1440 caggacaagg tgatgtcgga ggtgttcttg ggaaggcaga tctgtaacgt ggtgggttgt 1500 gaaggggttg accggtttga aaggcacgag actttgggtc agtggagaat ccggttcgac 1560 gcggccgggt ttgaggcggt tcacttgggg tctaacgctt ttaagcaggc tagcatgctg 1620 ctggcactgt ttgctggtgg ggatgggtac agagtggagg agaaggaagg gtgtctgatg 1680 ttgggttggc acactcgccc actcattact acctcagcct ggaaactcag tggttaa 1737 <210> 11 <211> 1728 <212> DNA <213> Artificial Sequence <220> <223> PgRGA3 polynucleotide sequence <400> 11 atgaagagag actacccaca acctaatcat agcaccttct ccacagactg tggtggtggc 60 accggtggta gctcctccgt aaataatagc ggcgtgtatt caaatgggaa atctaagatg 120 tgggaggaaa ctgaacaaga cgccggagtt gacgagcttt tggctgttct gggctataaa 180 gtccggtcat ctgacatggc ggatgttgcc cagaaactcg agcacctcga agaagtgatg 240 ggccaagctc aagaagatgg cctttctcat ctcgcttgcg ataccgttca ctacaacccg 300 tccgatctat cgtcttggct cgaatccatg atttctgagc tcgacccacc accaccggga 360 acggatccat ttctcgccca tgcagaattg tctactagca agataatctt tgatgattca 420 tcttcttccg attacgatct taaagcaatc ccaggtaaag ccgtttaccc cacaactatt 480 caatcaccac ttcctccacc aaacaaaaaa ttgaaaatca cgagctcagc ggctccatct 540 atttggccaa ctccagccca atctcaacta cagccaaaag aacactctca gtcagtagtt 600 ttagtggatt ctcaagaaaa cggagtccga ttagtccaca ctttgatggc ttgtgcggaa 660 gctgtgcaac acgataatct aaagctagcg gaagttcttg tcaaacagat cgcattccta 720 gccgtatccc aaatcggagc gatgcgaaag gttgccactt attttgccga agctctggct 780 cgacgaatct accgattata cccacaaaca cctcaagatt ctgcttttgc agatctactg 840 ctaatgcatt tttacgaaac ctgcccgtat ttaaaatttg cccattttac tgctaatcaa 900 gctatactcg aagcttttga tgataagaag agggtacatg tgattgattt tagtatgaaa 960 caggggacgc agtggccggc tttgatgcag gctttggcct tgcgacctgg tgggccgcct 1020 actttccgat taaccgggat tggaccgccg tcccacgata acactgatca tttgcaggat 1080 gtgggttgta aattggctca atttgcggaa actattcatg tcaagttcga gtatagtggg 1140 tttgtggcga acagtttagc tgatctcgat gcttccatgc ttgatcttcg agagggtgaa 1200 accgtggcgg ttaactccgt tttcgagttt catcagctgt tggctcaccc gggtgcaatc 1260 gagaaggtga tggcggcggt gaaggagatg aagccggaga tcgtgacggt ggtggagcag 1320 gaagctaatc ataacggtcc tgttttcttg caccggttta ccgagtcttt gcattattat 1380 tcaaccctat ttgactcttt ggagagttgt ggcggcggtg gaccggcgag taatcaggac 1440 aaggtgatgt cggaggtgtt cttgggcagg cagatatgta acgtggtggc ttgtgaagga 1500 gttgaccgag ttgagaggca cgagactctg ggtcagtgga gaagccggtt cggaagtggc 1560 gggttcgagg cggttcacct gggatccaat gcgtttaagc aggccagtat gctgctggca 1620 gtgtttgctg gtggggatgg gtacagagtg gaggagaacg aagggtgtct gatgctgggt 1680 tggcacactc ggcccctcat tgctacctcg gcgtggaaac tcagtggt 1728 <110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Recombinant vector for promoting plant length growth and volumetric growth and uses thereof <130> NPDC-77374 <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> PgGID1A polynucleotide sequence <400> 1 atggctggaa gtagtggtat taatcttagt gagtccaaga tggtggttcc actcaataca 60 tgggtcctca tctccaattt caagctggca tacaatcttc tccgtcgtcc tgatgggtct 120 tttaaccgcc acttggctga gttccttgac cgcaaagtcc tggccaatgc aaatcctgtt 180 aatggggttt tctcctttga tgtcattatt gaccgtagaa ccaacctcct tacccgaatc 240 tatcgaccag caaatgctga attggttcga cctagtattg cggaacttga gaatcctttg 300 agcgtggatg ttgtccctgt catagtcttc ttccatggtg gaagctttgc acattcctct 360 gcaaacagtg ctatctatga cactctatgt cgacgtctag tgggcctttg taatgctgtt 420 gtgatttcag taaattatcg gcgtgctccc gaggaccctt atccctgtgc ctataatgat 480 ggctggactg cgcttgagtg ggttaattcg aggacatggc ttcaaagtcg aaaggactct 540 aaagttcata tatacttggc tggtgatagc tctggtggca atattgttca taatgttgct 600 ttgagggcag tagaatcagg aattgaagtg ttgggaaata tacttctgaa tccaatgttt 660 ggtgggcaag agagaactga atcagagaag cggctggatg ggaaatattt tgtcactgtt 720 caagaccgag actggtattg gagagcattt ctccctgagg gggaagatag ggaccatcca 780 gcctgtaatc ctttcggtcc caaggctata agcatagacg gaatgaattt tccaaagagt 840 cttgtagttg tggctggttt ggaccttatc caggactggc agatggctta cgcggaaggg 900 ctcaagaacg ccggcaaaga ggttaaactt ctatatttgg agaaggcaac aattgggttc 960 tacttgttgc ccaacaatga ccacttctac actgtaatgg atgagataaa aagctttgtg 1020 ggttctgact gt 1032 <210> 2 <211> 1038 <212> DNA <213> Artificial Sequence <220> <223> PgGID1B polynucleotide sequence <400> 2 atggctggaa gtaatggaat taatcttagt gagtccaaga tggtggttcc actcaataca 60 tgggtcctca tctccaattt caagctggca tacaatcttc ttcgtcgtcc tgatgggtct 120 tttaaccgcc acttggctga gttccttgac cgcaaagtcc tggccaatgc aaatcctgtt 180 aatggggttt tctcctttga tgtcattatt gaccgtagaa ccaacctcct tacccgaatc 240 tatcgaccgg caaatgctga attggttcga cctagtattg tggaacttga gaatcctttg 300 agcgctgatg ttgtccctgt catagtcttc ttccatggtg gaagctttgc acattcctct 360 gcaaacagtg ctatctatga cactctatgt cgacgtctgg tgggcctttg taatgctgtt 420 gtgatttcag taaattatcg gcgtgctccc gaggaccctt atccctgtgc ctatgatgat 480 ggctggactg cacttgagtg ggttaattcg aggacatggc ttcaaagtcg aaaggactct 540 aaagttcata tatacttggc tggtgatagc tctggtggca atattgttca taatgttgct 600 ttgagggcag tagaatcagg aattgaagtg ttgggaaata tacttctgaa tccaatgttt 660 ggtgggcaag agagaactga atcagagaag cggctggatg ggaaatattt tgtcactgtt 720 caagaccgag actggtattg gagagcattt ctccctgagg gggaagatag ggaccatcca 780 gcctgtaatc ctttcggtcc caaggctata agcataagca tagaaggaat gaattttccg 840 aagagtcttg tagttgtggc tggtttggac cttatccagg actggcagat ggcttacgcg 900 gaagggctta agaacgccgg caaagaggtt aaacttctat atttggagaa ggcaacaatt 960 gggttctact tgttgcccaa caatgaccac ttctacactg taatggatga aataaaaagc 1020 tttgtgggtt ctgactgt 1038 <210> 3 <211> 1035 <212> DNA <213> Artificial Sequence <220> <223> PgGID1C polynucleotide sequence <400> 3 atggctggga gtaatgaaat taatcttaat gactccaaga tggtggttcc actgaataca 60 tggatcctca tctccaattt caagctggca tataatcttc ttcgtcgccc tgatgggact 120 tttaaccgcc acttggctga gttccttgac cgcaaagtcc aggccaatgc aaatcctgtt 180 gacggggttt tctcttttga tgtcattatc gaccgtggaa ccagcctact tattcgagtt 240 tatcggccag caaatgctga cgagggtatg cctagtattg ctgaccttga gaaacccttg 300 aactctgatg ttgtccctgt cataatcttc ttccatggtg gaagctttgc acattcctct 360 gcaaacagtg ctatctatga cactctatgt cgtcgactag tgggcctttg taaggctgtt 420 gtaatttcag taaattatcg gcgtgctcct gagtaccctt acccctgtgc ctatgaagat 480 ggctggactg cgcttaagtg ggttagttca aggacatggc ttcaaagtca gaaggactct 540 aaagttcaca tatacttagc tggtgatagc tctggtggta atattgttca taatgtttct 600 ttgagggcta tagaatcagg aacaggaatt gaagtgttag gaaatatact actcaatcca 660 atgtttggcg ggaaagagag aactgaatca gagaagcgac tagatgggaa atattttgtc 720 actgttcaag atcgagactg gtattggaaa gcctttctcc cagaagggga agatagggac 780 catgctgcat gtaatccttt tggtcttaag gcaataagca ttgaaggaat gaatttccct 840 aagagtcttg ttgtcgtggc tggtttggac cttgtccagg actggcagtt ggcttatgcg 900 gaagggctta agaaggcagg ccaagaggtg aaacttctat atttagagca ggcaacaatt 960 gggttctact tgttgcccaa caatgaccac ttctacactg tgatgaatga gataaaaagt 1020 tttgtatgtt cctac 1035 <210> 4 <211> 1035 <212> DNA <213> Artificial Sequence <220> <223> PgGID1D polynucleotide sequence <400> 4 atggctggta gtaatgaagt taacgttaat gacgccaaga gggttgttcc actgaataca 60 tggattttga tatctaattt caaactagct tacaacatgc agcgtcgtcc tgatggaaca 120 atcaatcgcg atttggcaga gtttcttgac aggaaagtcc ctgccaacac cattccggtt 180 gatggggttt actcttttga tgttgttgat cgggtcacca gccttctcaa tcgtgtttat 240 cgatcagccc cggaaaatga agctcagtgg ggcctcgttg aactcgaaca tcctttgagc 300 accactgaaa ttgtgcctgt cattattttc ttccacggtg gaagcttcgc ccattcctct 360 gccaatagtg ctatatatga tacattctgc cgccgccttg ttggaatttg caaggctgtt 420 gtggtgtccg ttaactatcg gcgatcgcct gaacatcgat acccctgtgc atacgatgat 480 ggatgggcag ctcttaaatg ggttcattca agatcatggc ttcaaagtgg gaaggattct 540 aaagtccgtg tctatttggc cggtgatagt tcgggtggaa acattgttca ccatgttgct 600 gtgagggctg ctgaatcagg agttgaagta ttgggtaata tacttcttca tccatttttt 660 ggggggcaag agcgaaagga gtcagagacg agattggatg ggaagtactt tgtgacaatt 720 caagataggg actggtattg gagagcttac ttaccggaag gtgaagatag agaccatccg 780 gcatgtaata tatttggccc gagggccaaa agaattgaag gactagtaaa gtttccgaaa 840 agtcttgttt gtgtggctgg tttggatctt gttcaggatt ggcagttggc ttatgtagaa 900 ggcctggagg aagccgggca agaggtgcaa ctcctatacc taaaggaggc aacgataggt 960 ttctacttct tgccgaataa tgaccatttc tataacctca tggagcagat aaaaaacttt 1020 gtgaatccta actgt 1035 <210> 5 <211> 344 <212> PRT <213> Artificial Sequence <220> <223> PgGID1A polypeptide sequence <400> 5 Met Ala Gly Ser Ser Gly Ile Asn Leu Ser Glu Ser Lys Met Val Val 1 5 10 15 Pro Leu Asn Thr Trp Val Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Leu Leu Arg Arg Pro Asp Gly Ser Phe Asn Arg His Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Leu Ala Asn Ala Asn Pro Val Asn Gly Val Phe 50 55 60 Ser Phe Asp Val Ile Ile Asp Arg Arg Thr Asn Leu Leu Thr Arg Ile 65 70 75 80 Tyr Arg Pro Ala Asn Ala Glu Leu Val Arg Pro Ser Ile Ala Glu Leu 85 90 95 Glu Asn Pro Leu Ser Val Asp Val Val Pro Val Ile Val Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Leu Cys Arg Arg Leu Val Gly Leu Cys Asn Ala Val Val Ile Ser Val 130 135 140 Asn Tyr Arg Arg Ala Pro Glu Asp Pro Tyr Pro Cys Ala Tyr Asn Asp 145 150 155 160 Gly Trp Thr Ala Leu Glu Trp Val Asn Ser Arg Thr Trp Leu Gln Ser 165 170 175 Arg Lys Asp Ser Lys Val His Ile Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His Asn Val Ala Leu Arg Ala Val Glu Ser Gly Ile 195 200 205 Glu Val Leu Gly Asn Ile Leu Leu Asn Pro Met Phe Gly Gly Gln Glu 210 215 220 Arg Thr Glu Ser Glu Lys Arg Leu Asp Gly Lys Tyr Phe Val Thr Val 225 230 235 240 Gln Asp Arg Asp Trp Tyr Trp Arg Ala Phe Leu Pro Glu Gly Glu Asp 245 250 255 Arg Asp His Pro Ala Cys Asn Pro Phe Gly Pro Lys Ala Ile Ser Ile 260 265 270 Asp Gly Met Asn Phe Pro Lys Ser Leu Val Val Val Ala Gly Leu Asp 275 280 285 Leu Ile Gln Asp Trp Gln Met Ala Tyr Ala Glu Gly Leu Lys Asn Ala 290 295 300 Gly Lys Glu Val Lys Leu Leu Tyr Leu Glu Lys Ala Thr Ile Gly Phe 305 310 315 320 Tyr Leu Leu Pro Asn Asn Asp His Phe Tyr Thr Val Met Asp Glu Ile 325 330 335 Lys Ser Phe Val Gly Ser Asp Cys 340 <210> 6 <211> 346 <212> PRT <213> Artificial Sequence <220> <223> PgGID1B polypeptide sequence <400> 6 Met Ala Gly Ser Asn Gly Ile Asn Leu Ser Glu Ser Lys Met Val Val 1 5 10 15 Pro Leu Asn Thr Trp Val Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Leu Leu Arg Arg Pro Asp Gly Ser Phe Asn Arg His Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Leu Ala Asn Ala Asn Pro Val Asn Gly Val Phe 50 55 60 Ser Phe Asp Val Ile Ile Asp Arg Arg Thr Asn Leu Leu Thr Arg Ile 65 70 75 80 Tyr Arg Pro Ala Asn Ala Glu Leu Val Arg Pro Ser Ile Val Glu Leu 85 90 95 Glu Asn Pro Leu Ser Ala Asp Val Val Pro Val Ile Val Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Leu Cys Arg Arg Leu Val Gly Leu Cys Asn Ala Val Val Ile Ser Val 130 135 140 Asn Tyr Arg Arg Ala Pro Glu Asp Pro Tyr Pro Cys Ala Tyr Asp Asp 145 150 155 160 Gly Trp Thr Ala Leu Glu Trp Val Asn Ser Arg Thr Trp Leu Gln Ser 165 170 175 Arg Lys Asp Ser Lys Val His Ile Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His Asn Val Ala Leu Arg Ala Val Glu Ser Gly Ile 195 200 205 Glu Val Leu Gly Asn Ile Leu Leu Asn Pro Met Phe Gly Gly Gln Glu 210 215 220 Arg Thr Glu Ser Glu Lys Arg Leu Asp Gly Lys Tyr Phe Val Thr Val 225 230 235 240 Gln Asp Arg Asp Trp Tyr Trp Arg Ala Phe Leu Pro Glu Gly Glu Asp 245 250 255 Arg Asp His Pro Ala Cys Asn Pro Phe Gly Pro Lys Ala Ile Ser Ile 260 265 270 Ser Ile Glu Gly Met Asn Phe Pro Lys Ser Leu Val Val Val Ala Gly 275 280 285 Leu Asp Leu Ile Gln Asp Trp Gln Met Ala Tyr Ala Glu Gly Leu Lys 290 295 300 Asn Ala Gly Lys Glu Val Lys Leu Leu Tyr Leu Glu Lys Ala Thr Ile 305 310 315 320 Gly Phe Tyr Leu Leu Pro Asn Asn Asp His Phe Tyr Thr Val Met Asp 325 330 335 Glu Ile Lys Ser Phe Val Gly Ser Asp Cys 340 345 <210> 7 <211> 392 <212> PRT <213> Artificial Sequence <220> <223> PgGID1C polypeptide sequence <400> 7 Met Ala Gly Ser Asn Glu Ile Asn Leu Asn Asp Ser Lys Met Val Val 1 5 10 15 Pro Leu Asn Thr Trp Ile Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Leu Leu Arg Arg Pro Asp Gly Thr Phe Asn Arg His Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Gln Ala Asn Ala Asn Pro Val Asp Gly Val Phe 50 55 60 Ser Phe Asp Val Ile Ile Asp Arg Gly Thr Ser Leu Leu Ile Arg Val 65 70 75 80 Tyr Arg Pro Ala Asn Ala Asp Glu Gly Met Pro Ser Ile Ala Asp Leu 85 90 95 Glu Lys Pro Leu Asn Ser Asp Val Val Pro Val Ile Ile Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Leu Cys Arg Arg Leu Val Gly Leu Cys Lys Ala Val Val Ile Ser Val 130 135 140 Asn Tyr Arg Arg Ala Pro Glu Tyr Pro Tyr Pro Cys Ala Tyr Glu Asp 145 150 155 160 Gly Trp Thr Ala Leu Lys Trp Val Ser Ser Arg Thr Trp Leu Gln Ser 165 170 175 Gln Lys Asp Ser Lys Val His Ile Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His Asn Val Ser Leu Arg Ala Ile Glu Ser Gly Thr 195 200 205 Gly Ile Glu Val Leu Gly Asn Ile Leu Leu Asn Pro Met Phe Gly Gly 210 215 220 Lys Glu Arg Thr Glu Ser Glu Lys Arg Leu Asp Gly Lys Tyr Phe Val 225 230 235 240 Thr Val Gln Asp Arg Asp Trp Tyr Trp Lys Ala Phe Leu Pro Glu Gly 245 250 255 Glu Asp Arg Asp His Ala Ala Cys Asn Pro Phe Gly Leu Lys Ala Ile 260 265 270 Ser Ile Glu Gly Met Asn Phe Pro Lys Ser Leu Val Val Val Ala Gly 275 280 285 Leu Asp Leu Val Gln Asp Trp Gln Leu Ala Tyr Ala Glu Gly Leu Lys 290 295 300 Lys Ala Gly Gln Glu Val Lys Leu Leu Tyr Leu Glu Gln Ala Thr Ile 305 310 315 320 Gly Phe Tyr Leu Leu Pro Asn Asn Asp His Phe Tyr Thr Val Met Asn 325 330 335 Glu Ile Lys Ser Phe Gln Phe Lys Ile Thr Leu Ser Asp Phe Leu Pro 340 345 350 Arg Arg Arg Glu Arg Gln Glu Asn Val Gly Thr Ile Pro Gly Pro Phe 355 360 365 Asn Leu Gly Ser Glu Leu Ala Trp Leu Met Leu Asn Val Asp Val Ile 370 375 380 Val Asp Pro Leu Ala Pro Ile Ile 385 390 <210> 8 <211> 345 <212> PRT <213> Artificial Sequence <220> <223> PgGID1D polypeptide sequence <400> 8 Met Ala Gly Ser Asn Glu Val Asn Val Asn Asp Ala Lys Arg Val Val 1 5 10 15 Pro Leu Asn Thr Trp Ile Leu Ile Ser Asn Phe Lys Leu Ala Tyr Asn 20 25 30 Met Gln Arg Arg Pro Asp Gly Thr Ile Asn Arg Asp Leu Ala Glu Phe 35 40 45 Leu Asp Arg Lys Val Pro Ala Asn Thr Ile Pro Val Asp Gly Val Tyr 50 55 60 Ser Phe Asp Val Val Asp Arg Val Thr Ser Leu Leu Asn Arg Val Tyr 65 70 75 80 Arg Ser Ala Pro Glu Asn Glu Ala Gln Trp Gly Leu Val Glu Leu Glu 85 90 95 His Pro Leu Ser Thr Thr Glu Ile Val Pro Val Ile Ile Phe Phe His 100 105 110 Gly Gly Ser Phe Ala His Ser Ser Ala Asn Ser Ala Ile Tyr Asp Thr 115 120 125 Phe Cys Arg Arg Leu Val Gly Ile Cys Lys Ala Val Val Val Ser Val 130 135 140 Asn Tyr Arg Arg Ser Pro Glu His Arg Tyr Pro Cys Ala Tyr Asp Asp 145 150 155 160 Gly Trp Ala Ala Leu Lys Trp Val His Ser Arg Ser Trp Leu Gln Ser 165 170 175 Gly Lys Asp Ser Lys Val Arg Val Tyr Leu Ala Gly Asp Ser Ser Gly 180 185 190 Gly Asn Ile Val His His Val Ala Val Arg Ala Ala Glu Ser Gly Val 195 200 205 Glu Val Leu Gly Asn Ile Leu Leu His Pro Phe Phe Gly Gly Gln Glu 210 215 220 Arg Lys Glu Ser Glu Thr Arg Leu Asp Gly Lys Tyr Phe Val Thr Ile 225 230 235 240 Gln Asp Arg Asp Trp Tyr Trp Arg Ala Tyr Leu Pro Glu Gly Glu Asp 245 250 255 Arg Asp His Pro Ala Cys Asn Ile Phe Gly Pro Arg Ala Lys Arg Ile 260 265 270 Glu Gly Leu Val Lys Phe Pro Lys Ser Leu Val Cys Val Ala Gly Leu 275 280 285 Asp Leu Val Gln Asp Trp Gln Leu Ala Tyr Val Glu Gly Leu Glu Glu 290 295 300 Ala Gly Gln Glu Val Gln Leu Leu Tyr Leu Lys Glu Ala Thr Ile Gly 305 310 315 320 Phe Tyr Phe Leu Pro Asn Asn Asp His Phe Tyr Asn Leu Met Glu Gln 325 330 335 Ile Lys Asn Phe Val Asn Pro Asn Cys 340 345 <210> 9 <211> 1728 <212> DNA <213> Artificial Sequence <220> <223> PgRGA1 polynucleotide sequence <400> 9 atgaagagag actacccaca acctaatcat agcaccttct ccacagactg tggtactggc 60 accggtggta gctcctccgt taacaatagc ggcgtgtatt caaatgggaa atctaagatg 120 tgggaggaaa ctgaacaaga cgccggagtt gacgagcttt tggctgttct gggctataaa 180 gtccggtcat ctgacatggc ggatgttgcc cagaaactcg agcacctcga agaagtgatg 240 ggccaagctc aagaagatgg cctttctcat ctcgcttgcg ataccgttca ctacaatccc 300 tccgatctat cgtcttggct cgaattaatg atttctgagc tcgacccacc accaccggga 360 acggatccat ttctcgccca tgcagaattg tctactagca agataatctt tgatgattca 420 tcttcttccg attacgatct taaagcaatc ccaggtaaag ccgtttaccc cacaactatt 480 caatcaccac ttcctccacc aaacaaaaaa ttgaaaatca cgatctcagc ggctccatct 540 gtttggccaa ctccagccca atctcaacta cagccaaaag aacactctca gtcagtagtt 600 ttagtggatt ctcaagaaaa cggagtccga ttagtccaca ctttgatggc ttgtgcggaa 660 gctgtgcaac acgataatct aaagctagcg gaagtccttg tcaaacagat cgcattccta 720 gccgtatccc aaatcggagc gatgcgaaag gttgccactt attttgccga agctctggct 780 caacgaatct accgattata cccacaaaca cctcaagatt ctgcttttgc agatctactg 840 ctaatgcatt tttacgaaac atgcccgtat ttaaaatttg cccattttac tgctaatcaa 900 gctatactcg aagcttttga tgataagaaa agcgtacatg tgattgattt cagtatgaaa 960 caggggacgc agtggccggc tttgatgcag gctttggcct tgcggcctgg tgggccgcct 1020 actttccgat taaccgggat tggaccgccg tcccacgata acactgatca tttgcaagat 1080 gtgggttgga aattggctca atttgcggaa actattcatg tcaagttcga gtatagtggg 1140 tttgtggcga acagtttagc tgatctcgat gcttccatgc ttgatcttcg agagggtgaa 1200 accgtggcgg taaactccgt tttcgagttt catcagctgt tggctcgccc gggtgcaatc 1260 gagaaggtga tgtcggcggt gaaggagatg aagccggaaa tcgtgacggt ggtggagcag 1320 gaagctaatc ataacggtcc tgttttcttg gaccggttta ccgagtcttt gcattattat 1380 tcaaccttat ttgactcttt ggagagttgt ggcggcggtg gatcggcgag taatgaggac 1440 aaggtgatgt cggaggtgtt cttgggcagg cagatatgta acgtggtggc ttgtgaagga 1500 gttgaccgag ttgagaggca cgagactctg ggtcagtgga gaagccggtt cggaagtggc 1560 gggtttaagg cggttcacct ggggtccaat gcgtttaagc aggccagtat gctgctggca 1620 ctgtttgctg gtggggatgg gtacagagtg gaagagaacg aagggtgtct gatgctgggt 1680 tggcacactc ggcccctcat tgctacctcg gcgtggaaac tcagtggt 1728 <210> 10 <211> 1737 <212> DNA <213> Artificial Sequence <220> <223> PgRGA2 polynucleotide sequence <400> 10 atgaagcgag actatccaca acctaatcat atatccttct ctgactgcgg tggtggcacc 60 agcggcagct cttccgtcaa ccatagcggt gtgtattcaa acggaaagtc taagatgtgg 120 gaggaaactg aacaagatgc tggagtggac gagcttttgg cgcttttggg ctacaaagtc 180 cggtcctcag acatggcgga agtagctcaa aaactcgaac atctcgaaga agttatgggg 240 caagctcaag aagacggcct ttcgcatcta gcttgcgata ccgttcatta caacccgtct 300 gatttatctt cctggctcga atctatgatt acagagctca acccaccact ggcaaatgat 360 ctgtttctct ctccggcaga gtcgtctact aacaagataa tcttcgatga ttcatcttct 420 tgcgattatg atcttaaagc aattccggga aacgccgttt accctccgat tgttcaatca 480 cccgttcctc caccaaataa aagattcaaa accatgtgcc caacaaatcc atcaatttgg 540 caaactccgg ttcaatctca acaacaccca aatgaaccct ctcgttcagt agttttggtg 600 gattcccaag aaaacggagt ccgattagtt catactttaa tggcttgcgc tgaagcagtg 660 cagcaaaata agttaaaggt ggcagaagca cttgtcaaac aaatcggatt cctagccgtg 720 tcacaaatcg gagcaatgag aaaggtcgcc acctattttg ctgaagcatt ggctcggcga 780 atctaccgat tgtacccaca aaactctcag gattccgcct tcgctgatct acttgaaatg 840 catttctatg aaacctgtcc ttacctaaaa ttcgcccatt tcactgctaa tcaagctata 900 ctcgaagctt ttgctgataa gaaaagggtt cacgtgatag atttcagcat gaaacagggg 960 atgcagtggc cggctttgat gcaagctttg gctttgaggc caggtgggcc gcctactttc 1020 cggttaactg gtattggacc gccgtcgcac gataatacgg atcatttgca ggaagtgggt 1080 tggaaattag ctcaattggc ggaaactatt catgtagaat ttgagtatag agggttcgtg 1140 gcgaatagtt tagctgatct cgatgcatcc atgcttgatc ttcgagaggg tgaaactgtg 1200 gcggtgaact cggttttcga gattcatcag ctcttggctc gaccgggtgc aattgagaag 1260 gtgatggctg ccgttaagga gatgaagccg gagattgtga cggtggtgga gcaggaagct 1320 aatcacaacg gactggtatt cttggaccgg tttaccgagt ctttacatta ttactcgacc 1380 ctttttgact cgttggagag ctgtggtggc ggcgttgaag acggcggacc ggtgagtaac 1440 caggacaagg tgatgtcgga ggtgttcttg ggaaggcaga tctgtaacgt ggtgggttgt 1500 gaaggggttg accggtttga aaggcacgag actttgggtc agtggagaat ccggttcgac 1560 gcggccgggt ttgaggcggt tcacttgggg tctaacgctt ttaagcaggc tagcatgctg 1620 ctggcactgt ttgctggtgg ggatgggtac agagtggagg agaaggaagg gtgtctgatg 1680 ttgggttggc acactcgccc actcattact acctcagcct ggaaactcag tggttaa 1737 <210> 11 <211> 1728 <212> DNA <213> Artificial Sequence <220> <223> PgRGA3 polynucleotide sequence <400> 11 atgaagagag actacccaca acctaatcat agcaccttct ccacagactg tggtggtggc 60 accggtggta gctcctccgt aaataatagc ggcgtgtatt caaatgggaa atctaagatg 120 tgggaggaaa ctgaacaaga cgccggagtt gacgagcttt tggctgttct gggctataaa 180 gtccggtcat ctgacatggc ggatgttgcc cagaaactcg agcacctcga agaagtgatg 240 ggccaagctc aagaagatgg cctttctcat ctcgcttgcg ataccgttca ctacaacccg 300 tccgatctat cgtcttggct cgaatccatg atttctgagc tcgacccacc accaccggga 360 acggatccat ttctcgccca tgcagaattg tctactagca agataatctt tgatgattca 420 tcttcttccg attacgatct taaagcaatc ccaggtaaag ccgtttaccc cacaactatt 480 caatcaccac ttcctccacc aaacaaaaaa ttgaaaatca cgagctcagc ggctccatct 540 atttggccaa ctccagccca atctcaacta cagccaaaag aacactctca gtcagtagtt 600 ttagtggatt ctcaagaaaa cggagtccga ttagtccaca ctttgatggc ttgtgcggaa 660 gctgtgcaac acgataatct aaagctagcg gaagttcttg tcaaacagat cgcattccta 720 gccgtatccc aaatcggagc gatgcgaaag gttgccactt attttgccga agctctggct 780 cgacgaatct accgattata cccacaaaca cctcaagatt ctgcttttgc agatctactg 840 ctaatgcatt tttacgaaac ctgcccgtat ttaaaatttg cccattttac tgctaatcaa 900 gctatactcg aagcttttga tgataagaag agggtacatg tgattgattt tagtatgaaa 960 caggggacgc agtggccggc tttgatgcag gctttggcct tgcgacctgg tgggccgcct 1020 actttccgat taaccgggat tggaccgccg tcccacgata acactgatca tttgcaggat 1080 gtgggttgta aattggctca atttgcggaa actattcatg tcaagttcga gtatagtggg 1140 tttgtggcga acagtttagc tgatctcgat gcttccatgc ttgatcttcg agagggtgaa 1200 accgtggcgg ttaactccgt tttcgagttt catcagctgt tggctcaccc gggtgcaatc 1260 gagaaggtga tggcggcggt gaaggagatg aagccggaga tcgtgacggt ggtggagcag 1320 gaagctaatc ataacggtcc tgttttcttg caccggttta ccgagtcttt gcattattat 1380 tcaaccctat ttgactcttt ggagagttgt ggcggcggtg gaccggcgag taatcaggac 1440 aaggtgatgt cggaggtgtt cttgggcagg cagatatgta acgtggtggc ttgtgaagga 1500 gttgaccgag ttgagaggca cgagactctg ggtcagtgga gaagccggtt cggaagtggc 1560 gggttcgagg cggttcacct gggatccaat gcgtttaagc aggccagtat gctgctggca 1620 gtgtttgctg gtggggatgg gtacagagtg gaggagaacg aagggtgtct gatgctgggt 1680 tggcacactc ggcccctcat tgctacctcg gcgtggaaac tcagtggt 1728

Claims (7)

식물의 길이생장 및 부피생장을 촉진시키는, 서열번호 1로 표시되는 유전자를 포함하는 형질전환용 재조합 벡터.A recombinant vector for transformation comprising a gene represented by SEQ ID NO: 1, which promotes plant length and volume growth. 제1항의 형질전환용 재조합 벡터를 포함하는 식물의 길이생장 및 부피생장 촉진용 조성물.A composition for promoting length and volume growth of plants comprising the recombinant vector for transformation of claim 1. 제1항의 형질전환용 재조합 벡터로 형질전환된 길이생장 및 부피생장이 촉진된 형질전환 식물체.A transgenic plant with promoted length and volume growth transformed with the recombinant vector for transformation of claim 1. 제3항에 있어서,
상기 식물체는 단자엽 또는 쌍자엽 식물인 것을 특징으로 하는 형질전환 식물체.
The method of claim 3,
The plant is a transgenic plant, characterized in that the monocotyledonous or dicotyledonous plant.
제4항에 있어서,
상기 쌍자엽 식물은 인삼인 것을 특징으로 하는 형질전환 식물체.
The method of claim 4,
Transgenic plant, characterized in that the dicotyledonous plant is ginseng.
제3항에 따른 식물체의 형질전환된 종자.The transformed seed of the plant according to claim 3. 제1항의 형질전환용 재조합 벡터를 인삼세포에 형질전환시켜 서열번호 1로 표시되는 유전자를 과발현하는 단계를 포함하는, 인삼뿌리의 부피생장을 촉진시키는 방법.A method of promoting volume growth of ginseng roots, comprising the step of overexpressing the gene represented by SEQ ID NO: 1 by transforming the recombinant vector for transformation of claim 1 into ginseng cells.
KR1020190035791A 2019-03-28 2019-03-28 Recombinant vector for promoting plant length growth and volumetric growth and uses thereof KR102194283B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190035791A KR102194283B1 (en) 2019-03-28 2019-03-28 Recombinant vector for promoting plant length growth and volumetric growth and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190035791A KR102194283B1 (en) 2019-03-28 2019-03-28 Recombinant vector for promoting plant length growth and volumetric growth and uses thereof

Publications (2)

Publication Number Publication Date
KR20200114296A KR20200114296A (en) 2020-10-07
KR102194283B1 true KR102194283B1 (en) 2020-12-22

Family

ID=72883111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190035791A KR102194283B1 (en) 2019-03-28 2019-03-28 Recombinant vector for promoting plant length growth and volumetric growth and uses thereof

Country Status (1)

Country Link
KR (1) KR102194283B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153463B1 (en) 2009-08-04 2012-06-27 대한민국 Genes encoding auxin receptor proteins from rice and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Xuemin Wang 등. Scientific Reports. Vol. 7, No. 41296, 페이지 1-12 (2017.01.27.)*

Also Published As

Publication number Publication date
KR20200114296A (en) 2020-10-07

Similar Documents

Publication Publication Date Title
Wang et al. Clade I TGACG-motif binding basic leucine zipper transcription factors mediate BLADE-ON-PETIOLE-dependent regulation of development
Sun et al. Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation
Guan et al. A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis
US7732663B2 (en) Cyclin-dependent kinase inhibitors as plant growth regulators
Thiel et al. The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein
EP1928226A2 (en) Stress tolerance in plants
CA2723199A1 (en) Transcriptional and post-transcription regulation of transcription factor for drought resistance
KR100742193B1 (en) Novel environmental stress resistance transcription factor and method for enhancing the environmental stress resistance of plants using the same
ZHANG et al. Kiwifruit (Actinidia chinensis) R1R2R3-MYB transcription factor AcMYB3R enhances drought and salinity tolerance in Arabidopsis thaliana
Li et al. Interaction of Phytophthora sojae effector Avr1b with E3 ubiquitin ligase GmPUB1 is required for recognition by soybeans carrying Phytophthora resistance Rps1-b and Rps1-k genes
CA2620766C (en) Stress-induced transcription factor derived from maize
CN107105627B (en) Methods for monocot plant improvement
WO2012064827A1 (en) Methods and compositions to regulate plant transformation susceptibility
US20170159065A1 (en) Means and methods to increase plant yield
KR102194283B1 (en) Recombinant vector for promoting plant length growth and volumetric growth and uses thereof
CN111607598B (en) Application of soybean DDT structural domain gene GmDDT1
CN110950944B (en) OsHCRF1 functional protein and application of coding gene thereof in rice breeding
JP3914993B2 (en) Conferring viral resistance using plant proteins that bind to plant virus migration proteins
KR101028113B1 (en) CaHB1 gene involved in growth enhancement, salt tolerance and senescence regulation of Capsicum annuum and uses thereof
US20190359996A1 (en) Transcription factor genes and proteins from helianthus annuus, and transgenic plants including the same
JP5142247B2 (en) Method for producing plant virus resistant plant and use thereof
CN116064463B (en) Tomato gene SlPKG and application of encoding protein thereof in disease resistance
KR102026766B1 (en) A novel genes for enhancing drought resistance and their uses
WO2013095125A1 (en) Method for producing a plant having enhanced disease resistance to nematodes
KR101688423B1 (en) Novel Gene Related to Plant Cold Stress Tolerance and Use Thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant