KR102193869B1 - RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof - Google Patents

RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof Download PDF

Info

Publication number
KR102193869B1
KR102193869B1 KR1020190064334A KR20190064334A KR102193869B1 KR 102193869 B1 KR102193869 B1 KR 102193869B1 KR 1020190064334 A KR1020190064334 A KR 1020190064334A KR 20190064334 A KR20190064334 A KR 20190064334A KR 102193869 B1 KR102193869 B1 KR 102193869B1
Authority
KR
South Korea
Prior art keywords
mir
hsa
sequence
nucleic acid
microrna
Prior art date
Application number
KR1020190064334A
Other languages
Korean (ko)
Other versions
KR20200137635A (en
Inventor
지성욱
장은숙
석희영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to PCT/KR2019/006603 priority Critical patent/WO2019231288A1/en
Priority to US17/059,736 priority patent/US20220267766A1/en
Priority to KR1020190064334A priority patent/KR102193869B1/en
Priority to JP2020566931A priority patent/JP7432929B2/en
Publication of KR20200137635A publication Critical patent/KR20200137635A/en
Application granted granted Critical
Publication of KR102193869B1 publication Critical patent/KR102193869B1/en
Priority to JP2022105209A priority patent/JP2022141687A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base

Abstract

본 발명은 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산에 관한 것으로, 본 발명에 따른 RNA 간섭 유도 핵산을 이용하면, 마이크로RNA가 비정규 표적 유전자를 억제함으로써 나타내는 생물학적인 기능을 효율적으로 증대하거나, 기존의 마이크로RNA가 나타내는 기능 중 일부, 즉 비정규 표적 유전자를 억제함으로써 나타내는 생물학적 기능만 선택적으로 나타내는 효과를 가지며, 본 발명의 간섭 유도 핵산을 통해 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식 또는 사멸 조절이 가능한바, 약물, 화장품 등 다양한 분야에서 활용이 가능할 것으로 기대된다. The present invention relates to an RNA interference-inducing nucleic acid that suppresses a noncanonical target gene of a microRNA by modifying some sequence of a specific microRNA. When using the RNA interference-inducing nucleic acid according to the present invention, the microRNA is non-normal It has the effect of efficiently increasing the biological function expressed by suppressing the target gene, or selectively expressing only the biological function expressed by suppressing some of the functions exhibited by the existing microRNA, that is, the non-normal target gene. Through this, cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation or death can be controlled, so it is expected to be used in various fields such as drugs and cosmetics.

Description

마이크로RNA의 비정규 표적을 억제하는 RNA 간섭 유도 핵산 및 그 용도 {RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof}RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof

본 발명은 유전자 발현을 저해하는 RNA 간섭 유도 핵산 및 그 용도에 관한 것으로, 마이크로RNA의 비정규 표적을 선택적으로 억제함으로써 발휘되는 유용한 효과를 갖는 간섭 유도 핵산 및 그 용도에 관한 것이다. The present invention relates to an RNA interference-inducing nucleic acid that inhibits gene expression and its use, and to an interference-inducing nucleic acid having a useful effect exerted by selectively inhibiting an irregular target of microRNA and its use.

RNA 간섭(RNA interference)은 전사후 단계에서 유전자의 발현을 억제하는 현상을 말한다. 자연적으로 존재하는 RNA 간섭 현상은 마이크로RNA(micro RNA, miRNA)에 의해서 일어난다. 마이크로RNA는 18-25개의 염기로 구성되어 있으며, 그 중 대부분은 약 21개의 염기로 구성되는 작은 RNA로서, 아고너트(Argonaute) 단백질을 통해 표적이 되는 유전자의 전령RNA (mRNAs)와 상보적 염기 배열을 한다. 동물 마이크로RNA의 경우, 아고너트 단백질과 결합해 표적이 되는 전령RNA와 부분적인 염기배열을 하게 되는데, 이때 마이크로RNA의 5' 말단 기준 1번째부터 8번째까지의 핵산으로 정의되는 발단 지역(seed region)에서 최소한 6개 이상의 연속적인 염기 배열을 할 경우 표적으로 인식하고, 가장 중요하게는 최소한 5'말단 기준 2번째부터 7번째까지의 6개의 염기배열로 연속적으로 표적 전령RNA와 결합했을 경우에 충분히 해당 표적 전령RNA를 분해하거나 번역(translation)이 되는 것을 억제하여 그 발현을 저해한다 (Lewis BP, et.al, 2003, Cell, 115 (7), 787-98). 이렇게 마이크로RNA가 부분적인 염기 배열을 통해 표적 유전자의 전령RNA를 인식하기 때문에, 한개의 마이크로RNA는 보통 수 백개에서 수 천개의 유전자 발현에 영향을 미칠 수 있다.RNA interference refers to a phenomenon that suppresses the expression of a gene in the post-transcriptional stage. The naturally occurring RNA interference phenomenon is caused by micro RNA (miRNA). MicroRNAs are composed of 18-25 bases, most of which are small RNAs composed of about 21 bases, and are complementary to the messenger RNAs (mRNAs) of the target genes through the Argonaute protein. Arrange it. In the case of animal microRNA, it binds to the argonet protein and performs partial nucleotide sequence with the target messenger RNA.At this time, the seed region defined by the 1st to 8th nucleic acids from the 5'end of the microRNA ), if at least 6 consecutive nucleotides are sequenced, it is recognized as a target, and most importantly, it is sufficient when conjugated with the target messenger RNA in a sequence of 6 nucleotides from the 2nd to the 7th based on the 5'end. It degrades the target messenger RNA or inhibits its expression by inhibiting translation (Lewis BP, et.al, 2003, Cell, 115 (7), 787-98). Because microRNAs thus recognize the messenger RNA of a target gene through partial nucleotide sequence, a single microRNA can usually affect the expression of hundreds to thousands of genes.

마이크로RNA의 표적 유전자 발현 저해 작용은 유전자 발현의 중요한 기전의 하나로서 정상상황에서는 세포의 분화와 성장에 관여하고, 기능에 이상이 있을 때는 암 및 퇴행성 질환, 당뇨병 등을 유발하게 되어 생명 현상의 열쇠로 주목받고 있다. 따라서, 마이크로RNA의 유전자 발현 저해 작용을 인위적으로 유도하기 위해, 마이크로RNA의 발단 지역을 포함하는 RNA 간섭 소재(siRNA 또는 shRNA)를 디자인하여 세포 안으로 도입함으로써 인위적으로 세포를 분화시키거나 기능을 바꾸고, 경우에 따라 질병 치료제로 사용하기도 한다. 그러므로, 아고너트로 매개되어 표적 전령RNA를 인식하게 되는 마이크로RNA 발단 지역에서의 상보적 염기 배열은 마이크로RNA를 포함하는 RNA 간섭 소재가 기능을 발휘함에 있어 중요하다. 특히, 이러한 RNA 간섭 소재를 활용하기 위해서는, 각각의 마이크로RNA의 기능을 파악하는 것이 요구되며, 이 때 마이크로RNA의 기능은 어떠한 표적 유전자를 억제하는지에 따라 결정되므로, 마이크로RNA의 전체 표적 유전자(표적체)에 대한 분석이 필요하게 되었다.The inhibition of target gene expression of microRNA is one of the important mechanisms of gene expression. Under normal conditions, it is involved in the differentiation and growth of cells, and when there is a function abnormality, it causes cancer, degenerative diseases, and diabetes, which is the key to life. Is attracting attention. Therefore, in order to artificially induce the function of inhibiting gene expression of microRNAs, an RNA interference material (siRNA or shRNA) containing an initiating region of the microRNA is designed and introduced into the cell to artificially differentiate or change the function, In some cases, it is also used as a treatment for diseases. Therefore, the complementary nucleotide sequence in the microRNA initiation region, which is mediated by an agonist and recognizes the target messenger RNA, is important for the function of the RNA interference material including the microRNA. In particular, in order to utilize such an RNA interference material, it is required to understand the function of each microRNA, and at this time, the function of the microRNA is determined by which target gene is suppressed, so the total target gene of the microRNA (target Sieve) was needed.

전사체적 수준에서, 마이크로RNA 표적체에 대한 연구는 본 발명자에 의해 Ago HITS-CLIP (또는 CLIP-Seq이라 불림) 실험을 통해 처음으로 수행되었다. Ago HITS CLIP 실험 방법은 세포나 조직 샘플에 UV를 조사하여 세포 내에서 RNA와 아고너트 단백질 (Argonaute; Ago) 사이에 공유결합을 통한 복합체를 형성하게 하고, 이러한 RNA-아고너트 복합체를 아고너트 특이적 인식 항체를 이용하여 면역침강법으로 분리한 다음, 분리된 RNA를 차세대염기서열 (Next-generation sequencing)로 분석하는 방법이다. 이를 통해서 아고너트에 결합한 마이크로RNA와, 상보적 염기 배열하는 표적 전령RNA군과 그 위치를 정확하게 분석할 수 있다. At the transcript volume level, studies on microRNA targets were first performed by the present inventors through the Ago HITS-CLIP (or called CLIP-Seq) experiment. In the Ago HITS CLIP test method, a cell or tissue sample is irradiated with UV light to form a complex through covalent bonds between RNA and Argonaute (Ago) in the cell, and this RNA-agonal complex is specific to Argonut. This is a method of analyzing the isolated RNA by next-generation sequencing after separation by immunoprecipitation using an appropriately recognized antibody. Through this, it is possible to accurately analyze the microRNA bound to the agonut, the target messenger RNA group with complementary base sequence, and the location thereof.

그 결과, 본 발명자들은 마이크로RNA가 표적 전령RNA와 결합할 때 마이크로RNA 발단 지역(seed region)과 정확히 상보관계가 아니더라도 결합하는 경우가 있다는 것을 밝혀냈다. 보다 구체적으로, 마이크로RNA의 5' 말단 기준 1번째부터 8번째 염기 서열로 정의되는 마이크로RNA 발단 지역(seed region)이 최소한 6개 이상의 연속적이고 완벽한 염기 서열의 배열로 전령RNA와 결합하는 것, 특히 그중 가장 중요하게는 5'말단 기준 2번째에서 7번째까지의 염기 배열로 결합하는 것을 정규 표적 인식(canonical target recognition)이라고 하고, 상술한 규칙에서 벗어나, 마이크로RNA 발단 지역(seed region)과 연속적이고 정확한 상보서열 관계가 아니더라도 마이크로RNA의 표적으로 인식하고 결합하는 것을 비정규 표적 인식(non-canonical target recognition)이라 한다. Ago HITS-CLIP 분석 결과에 따르면 마이크로RNA가 발단 지역을 통해 비정규적으로 표적을 인식하는 빈도는 정규적으로 인식하는 빈도의 약 50%에 이를 정도로 빈번히 나타남을 알 수 있다. As a result, the present inventors have found that when the microRNA binds to the target messenger RNA, it may bind even if it is not exactly complementary to the microRNA seed region. More specifically, the microRNA seed region defined by the 1st to 8th nucleotide sequences based on the 5'end of the microRNA binds to the messenger RNA in an arrangement of at least 6 consecutive and complete nucleotide sequences, especially Among them, the most important of which is binding in the 2nd to 7th nucleotide sequence based on the 5'end is called canonical target recognition, deviating from the above rules, and is continuous with the microRNA seed region. Recognizing and binding as a target of microRNA, even if it is not an exact complementary sequence relationship, is called non-canonical target recognition. According to the results of Ago HITS-CLIP analysis, it can be seen that the frequency of recognizing targets irregularly through the initiating region of microRNAs is about 50% of the frequency of regular recognition.

따라서, 기존의 마이크로RNA의 발단 지역의 서열을 포함하도록 디자인된 RNA 간섭 소재(예컨대, siRNA 또는 shRNA)는 정규 표적 유전자뿐만 아니라 여러 비정규 표적 유전자를 억제함으로써 생물학적 기능이 나타나는 것임을 알 수 있다. Therefore, it can be seen that the RNA interference material (eg, siRNA or shRNA) designed to include the sequence of the initiating region of the existing microRNA exhibits biological functions by suppressing not only regular target genes but also various irregular target genes.

Chi S et al, Nature, 2009, 460 (7254): 479-86Chi S et al, Nature, 2009, 460 (7254): 479-86

이에, 본 발명이 해결하고자 하는 과제는 기존의 마이크로RNA의 발단 지역의 서열을 그대로 포함하여 디자인된 RNA 간섭 소재가 가지는 한계를 해결하고 효율을 증대하기 위한 것이다. Accordingly, the problem to be solved by the present invention is to solve the limitations of the RNA interference material designed by including the sequence of the originating region of the existing microRNA as it is and to increase the efficiency.

보다 구체적으로, 기존의 마이크로RNA의 발단 지역의 서열을 그대로 포함하여 디자인된 RNA 간섭 소재는 정규 표적 유전자와 비정규 표적 유전자 모두를 억제하되, 정규 표적 유전자는 강하게 억제하지만 그에 비해 비정규 표적 유전자는 매우 약하게 억제한다. 따라서, 본 발명이 해결하고자 하는 과제는, 기존의 마이크로RNA가 비정규 표적 유전자를 억제함으로써 나타내는 생물학적인 기능을 효율적으로 증대하거나, 기존의 마이크로RNA가 나타내는 기능 중 일부, 즉 비정규 표적 유전자를 억제함으로써 나타내는 생물학적 기능만 선택적으로 나타내는 효과를 갖는, RNA 간섭 유도 핵산을 제공하기 위한 것이다. More specifically, the RNA interference material designed by including the sequence of the originating region of the existing microRNA as it is, suppresses both the regular target gene and the irregular target gene, but strongly suppresses the regular target gene, whereas the non-normal target gene is very weak. Suppress. Therefore, the problem to be solved by the present invention is to efficiently increase the biological function exhibited by the existing microRNA by suppressing the irregular target gene, or by suppressing some of the functions represented by the existing microRNA, that is, the irregular target gene. It is to provide an RNA interference-inducing nucleic acid having an effect that selectively exhibits only a biological function.

상술한 과제를 해결하기 위하여, 본 발명은 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산을 제공한다. In order to solve the above problems, the present invention provides an RNA interference-inducing nucleic acid that suppresses a noncanonical target gene of a microRNA by modifying some sequences of a specific microRNA.

보다 구체적으로,More specifically,

본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서, In the present invention, in one or more single strands of the double strands of nucleic acids that induce RNA interference, some sequences of specific microRNAs are modified to induce RNA interference that suppresses noncanonical target genes of microRNAs. As a nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA에서 표적 전령RNA와 결합에서 가장 중요하게 작용하는 부위인 5'말단 기준 2번째에서 7번째까지의 염기 서열을 기준으로 하여, 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 하는 것을 특징으로 하고, 또는 The RNA interference-inducing nucleic acid is based on the 2nd to 7th nucleotide sequence based on the 5'end, which is the site that plays the most important role in binding to the target messenger RNA in a specific microRNA, from the 2nd to the 5th from the 5'end. Contains 4 base sequences of, the 6th and 7th bases are the same, and the 6th and 7th bases have a base sequence complementary to a base that can be aligned with the 6th base of a specific microRNA, and the specific microRNA The bases that can be aligned with the 6th base of are all complementary bases including the G:A and G:U wobble sequences, so that the bulge in the target gene between the 5th and 6th of the microRNA. It is characterized in that the ridge disappears from the non-normal target nucleotide sequence that binds while the) is formed and binds to a continuous nucleotide sequence, or

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 또는 아데닌(Adenine)으로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 해당 부위의 G:A 또는 G:U 워블 배열이 U:A 또는 A:U의 정규적인 염기 배열이 되게 하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다. The RNA interference-inducing nucleic acid is a nucleotide sequence between the 5'end and the ninth base of a specific microRNA, preferably the guanine base is uracil in the 2nd to 7th sequence based on the 5'end or By having a modified base sequence substituted with at least one or more adenine, characterized in that the G:A or G:U wobble arrangement of the site becomes a regular base sequence of U:A or A:U, RNA interference inducing nucleic acids are provided.

바람직하게, 상기 특정 마이크로RNA는 miR-124, miR-155, miR-122, miR-1, let-7, miR-133, miR-302 및 miR-372로 이루어진 군에서 선택되어 동일한 발단서열을 가지면서 18-24개의 염기로 구성된 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다. Preferably, the specific microRNA is selected from the group consisting of miR-124, miR-155, miR-122, miR-1, let-7, miR-133, miR-302 and miR-372 and has the same initiating sequence. It provides an RNA interference-inducing nucleic acid, characterized in that it is composed of 18-24 bases.

바람직하게, 상기 RNA 간섭 유도 핵산은 5' 말단 2번째에서 7번째 염기 서열이 다음 중 어느 하나 이상인 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다: Preferably, the RNA interference-inducing nucleic acid provides an RNA interference-inducing nucleic acid, characterized in that the 2nd to 7th nucleotide sequence at the 5'end is at least one of the following:

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-AA GGC C-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-124-BS) (서열번호 1); RNA interference-inducing nucleic acid (miR-124-BS) showing the nucleotide sequence of 5'-AA GGC C-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124 (SEQ ID NO: 1);

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로 5'-GG AGU U-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-122-BS) (서열번호 2); RNA interference-inducing nucleic acid (miR-122-BS) (SEQ ID NO: 2) showing the nucleotide sequence of 5'-GG AGU U-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122;

miR-155의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UA AUG G-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-155-BS) (서열번호 3); 또는RNA interference-inducing nucleic acid (miR-155-BS) showing the nucleotide sequence of 5'-UA AUG G-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-155 (SEQ ID NO: 3); or

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-GG AAU U-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-1-BS) (서열번호 4).RNA interference-inducing nucleic acid (miR-1-BS) showing the nucleotide sequence of 5'-GG AAU U-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-1 (SEQ ID NO: 4).

바람직하게, 상기 RNA 간섭 유도 핵산의 염기 서열이 다음 중 어느 하나 이상으로 나타내는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다: Preferably, it provides an RNA interference-inducing nucleic acid, characterized in that the base sequence of the RNA interference-inducing nucleic acid is represented by one or more of the following:

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UAA GGC CAC GCG GUG AAU GCC-3‘ 의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-124-BS) (서열번호 5); an RNA interference-inducing nucleic acid (miR-124-BS) showing the nucleotide sequence of 5'-UAA GGC CAC GCG GUG AAU GCC-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124 (SEQ ID NO: 5);

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로 5'-UGG AGU UGU GAC AAU GGU GUU-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-122-BS) (서열번호 6); RNA interference-inducing nucleic acid (miR-122-BS) showing the nucleotide sequence of 5'-UGG AGU UGU GAC AAU GGU GUU-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122 (SEQ ID NO: 6);

miR-155의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UUA AUG GCU AAU CGU GAU AGG-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-155-BS) (서열번호 7); 또는 RNA interference-inducing nucleic acid (miR-155-BS) showing the nucleotide sequence of 5'-UUA AUG GCU AAU CGU GAU AGG-3' as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-155 (SEQ ID NO: 7); or

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UGG AAU UGU AAA GAA GUA UGU-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-1-BS) (서열번호 8).RNA interference-inducing nucleic acid (miR-1-BS) showing the nucleotide sequence of 5'-UGG AAU UGU AAA GAA GUA UGU-3' as an RNA interference inducing nucleic acid that suppresses an irregular target gene of miR-1 (SEQ ID NO: 8).

바람직하게, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 다음 중 어느 하나 이상인 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다: Preferably, the RNA interference-inducing nucleic acid provides an RNA interference-inducing nucleic acid, characterized in that the nucleotide sequence between the 5'end and the ninth base is at least one of the following:

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-UAA UGC ACG-3' (miR-124-G4U) (서열번호 9), 5'-UAA GUC ACG-3' (miR-124-G5U) (서열번호 10) 또는 5'-UAA UUC ACG-3' (miR-124-G4,5U) (서열번호 11)의 염기 서열을 포함하는 RNA 간섭 유도 핵산; As an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124, preferably, a modified nucleotide sequence in which at least one Guanine base is substituted with Uracil in the 2nd to 7th sequence based on the 5'end is used. With 5'-UAA UGC ACG-3' (miR-124-G4U) (SEQ ID NO: 9), 5'-UAA GUC ACG-3' (miR-124-G5U) (SEQ ID NO: 10) or 5'- RNA interference inducing nucleic acid comprising the nucleotide sequence of UAA UUC ACG-3' (miR-124-G4,5U) (SEQ ID NO: 11);

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-UUG AAU GUA-3' (miR-1-G2U) (서열번호 12), 5'-UGU AAU GUA-3' (miR-1-G3U) (서열번호 13), 5'-UGG AAU UUA-3' (miR-1-G7U) (서열번호 14), 5'-UUU AAU GUA-3' (miR-1-G2,3U) (서열번호 15), 5'-UGU AAU UUA-3' (miR-1-G3,7U) (서열번호 16), 5'-UUG AAU UUA-3' (miR-1-G2,7U) (서열번호 17) 또는 5'-UUU AAU UUA-3' (miR-1-G2,3,7U) (서열번호 18)의 염기 서열을 포함하는 RNA 간섭 유도 핵산; As an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-1, preferably a modified nucleotide sequence in which at least one Guanine base is substituted with Uracil from the 2nd to 7th sequence based on the 5'end is used. To have, 5'-UUG AAU GUA-3' (miR-1-G2U) (SEQ ID NO: 12), 5'-UGU AAU GUA-3' (miR-1-G3U) (SEQ ID NO: 13), 5'- UGG AAU UUA-3' (miR-1-G7U) (SEQ ID NO: 14), 5'-UUU AAU GUA-3' (miR-1-G2,3U) (SEQ ID NO: 15), 5'-UGU AAU UUA- 3'(miR-1-G3,7U) (SEQ ID NO: 16), 5'-UUG AAU UUA-3' (miR-1-G2,7U) (SEQ ID NO: 17) or 5'-UUU AAU UUA-3' RNA interference-inducing nucleic acid comprising the nucleotide sequence of (miR-1-G2,3,7U) (SEQ ID NO: 18);

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 As an RNA interference-inducing nucleic acid that suppresses the irregular target gene of miR-122

5'-UUG AGU GUG-3' (miR-122-G2U) (서열번호 19), 5'-UGU AGU GUG-3' (miR-122-G3U) (서열번호 20), 5'-UGG AUU GUG-3' (miR-122-G5U) (서열번호 21), 5'-UGG AGU UUG-3' (miR-122-G7U) (서열번호 22), 5'-UGG AGU GUU-3' (miR-122-G9U) (서열번호 23), 5'-UUU AGU GUG-3' (miR-122-G2,3U) (서열번호 24), 5'-UUG AUU GUG-3' (miR-122-G2,5U) (서열번호 25), 5'-UUG AGU UUG-3' (miR-122-G2,7U) (서열번호 26), 5'-UUG AGU GUU-3' (miR-122-G2,9U) (서열번호 27), 5'-UGU AUU GUG-3' (miR-122-G3,5U) (서열번호 28), 5'-UGU AGU UUG-3' (miR-122-G3,7U) (서열번호 29), 5'-UGU AGU GUU-3' (miR-122-G3,9U) (서열번호 30), 5'-UGG AUU UUG-3' (miR-122-G5,7U) (서열번호 31), 5'-UGG AUU GUU-3' (miR-122-G5,9U) (서열번호 32), 또는 5'-UGG AGU UUU-3 (miR-122-G7,9U) (서열번호 33)의 염기 서열을 포함하는 RNA 간섭 유도 핵산으로, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-UUG AGU GUG-3' (miR-122-G2U) (서열번호 19), 5'-UGU AGU GUG-3' (miR-122-G3U) (서열번호 20), 5'-UGG AUU GUG-3' (miR-122-G5U) (서열번호 21), 5'-UGG AGU UUG-3' (miR-122-G7U) (서열번호 22), 5'-UUU AGU GUG-3' (miR-122-G2,3U) (서열번호 24), 5'-UUG AUU GUG-3' (miR-122-G2,5U) (서열번호 25), 5'-UUG AGU UUG-3' (miR-122-G2,7U) (서열번호 26), 5'-UGU AUU GUG-3' (miR-122-G3,5U) (서열번호 28), 5'-UGU AGU UUG-3' (miR-122-G3,7U) (서열번호 29), 5'-UGG AUU UUG-3' (miR-122-G5,7U) (서열번호 31)의 염기 서열을 포함하는 RNA 간섭 유도 핵산;5'-UUG AGU GUG-3' (miR-122-G2U) (SEQ ID NO: 19), 5'-UGU AGU GUG-3' (miR-122-G3U) (SEQ ID NO: 20), 5'-UGG AUU GUG -3' (miR-122-G5U) (SEQ ID NO: 21), 5'-UGG AGU UUG-3' (miR-122-G7U) (SEQ ID NO: 22), 5'-UGG AGU GUU-3' (miR- 122-G9U) (SEQ ID NO: 23), 5'-UUU AGU GUG-3' (miR-122-G2,3U) (SEQ ID NO: 24), 5'-UUG AUU GUG-3' (miR-122-G2, 5U) (SEQ ID NO: 25), 5'-UUG AGU UUG-3' (miR-122-G2,7U) (SEQ ID NO: 26), 5'-UUG AGU GUU-3' (miR-122-G2,9U) (SEQ ID NO: 27), 5'-UGU AUU GUG-3' (miR-122-G3,5U) (SEQ ID NO: 28), 5'-UGU AGU UUG-3' (miR-122-G3,7U) (SEQ ID NO: Number 29), 5'-UGU AGU GUU-3' (miR-122-G3,9U) (SEQ ID NO: 30), 5'-UGG AUU UUG-3' (miR-122-G5,7U) (SEQ ID NO: 31 ), 5'-UGG AUU GUU-3' (miR-122-G5,9U) (SEQ ID NO: 32), or 5'-UGG AGU UUU-3 (miR-122-G7,9U) (SEQ ID NO: 33) RNA interference-inducing nucleic acid comprising a nucleotide sequence, preferably in the second to seventh sequence based on the 5'end, by having a modified nucleotide sequence in which at least one guanine base is substituted with uracil, 5 '-UUG AGU GUG-3' (miR-122-G2U) (SEQ ID NO: 19), 5'-UGU AGU GUG-3' (miR-122-G3U) (SEQ ID NO: 20), 5'-UGG AUU GUG- 3'(miR-122-G5U) (SEQ ID NO: 21), 5'-UGG AGU UUG-3' (miR-122-G7U) (SEQ ID NO: 22), 5'-UUU AGU GUG-3' (miR-122 -G2,3U) (sequence Number 24), 5'-UUG AUU GUG-3' (miR-122-G2,5U) (SEQ ID NO: 25), 5'-UUG AGU UUG-3' (miR-122-G2,7U) (SEQ ID NO: 26 ), 5'-UGU AUU GUG-3' (miR-122-G3,5U) (SEQ ID NO: 28), 5'-UGU AGU UUG-3' (miR-122-G3,7U) (SEQ ID NO: 29), RNA interference inducing nucleic acid comprising the nucleotide sequence of 5'-UGG AUU UUG-3' (miR-122-G5,7U) (SEQ ID NO: 31);

miR-133의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-UUU UGU CCC-3' (miR-133-G4U) (서열번호 34), 5'-UUU GUU CCC-3' (miR-133-G5U) (서열번호 35) 또는 5'-UUU UUU CCC-3'(miR-124-G4,5U) (서열번호 36)의 염기 서열을 포함하는 RNA 간섭 유도 핵산; As an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-133, preferably a modified nucleotide sequence in which at least one Guanine base is substituted with Uracil in the 2nd to 7th sequence based on the 5'end is used. With 5'-UUU UGU CCC-3' (miR-133-G4U) (SEQ ID NO: 34), 5'-UUU GUU CCC-3' (miR-133-G5U) (SEQ ID NO: 35) or 5'- RNA interference inducing nucleic acid comprising the nucleotide sequence of UUU UUU CCC-3' (miR-124-G4,5U) (SEQ ID NO: 36);

let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 As an RNA interference-inducing nucleic acid that suppresses the irregular target gene of let-7

5'-UUA GGU AGU-3' (let-7-G2U) (서열번호 37), 5'-UGA UGU AGU-3' (let-7-G4U) (서열번호 38), 5'-UGA GUU AGU-3' (let-7-G5U) (서열번호 39), 5'-UGA GGU AUU-3' (let-7-G8U) (서열번호 40), 5'-UUA UGU AGU-3' (let-7-G2,4U) (서열번호 41), 5'-UUA GUU AGU-3' (let-7-G2,5U) (서열번호 42), 5'-UUA GGU AUU-3' (let-7-G2,8U) (서열번호 43), 5'-UGA UUU AGU-3' (let-7-G4,5U) (서열번호 44), 5'-UGA UGU AUU-3' (let-7-G4,8U) (서열번호 45), 또는 5'-UGA GUU AUU-3' (let-7-G5,8U) (서열번호 46)의 염기 서열을 포함하는 RNA 간섭 유도 핵산으로, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-UUA GGU AGU-3' (let-7-G2U) (서열번호 37), 5'-UGA UGU AGU-3' (let-7-G4U) (서열번호 38), 5'-UGA GUU AGU-3' (let-7-G5U) (서열번호 39), 5'-UUA UGU AGU-3' (let-7-G2,4U) (서열번호 41), 5'-UUA GUU AGU-3' (let-7-G2,5U) (서열번호 42), 5'-UGA UUU AGU-3' (let-7-G4,5U) (서열번호 44)의 염기 서열을 포함하는 RNA 간섭 유도 핵산;5'-UUA GGU AGU-3' (let-7-G2U) (SEQ ID NO: 37), 5'-UGA UGU AGU-3' (let-7-G4U) (SEQ ID NO: 38), 5'-UGA GUU AGU -3' (let-7-G5U) (SEQ ID NO: 39), 5'-UGA GGU AUU-3' (let-7-G8U) (SEQ ID NO: 40), 5'-UUA UGU AGU-3' (let- 7-G2,4U) (SEQ ID NO: 41), 5'-UUA GUU AGU-3' (let-7-G2,5U) (SEQ ID NO: 42), 5'-UUA GGU AUU-3' (let-7- G2,8U) (SEQ ID NO: 43), 5'-UGA UUU AGU-3' (let-7-G4,5U) (SEQ ID NO: 44), 5'-UGA UGU AUU-3' (let-7-G4, 8U) (SEQ ID NO: 45), or an RNA interference inducing nucleic acid comprising the nucleotide sequence of 5'-UGA GUU AUU-3' (let-7-G5,8U) (SEQ ID NO: 46), preferably at the 5'end In the reference 2nd to 7th sequence, the guanine base has a modified nucleotide sequence in which at least one base is substituted with Uracil, and 5'-UUA GGU AGU-3' (let-7-G2U) (sequence 37), 5'-UGA UGU AGU-3' (let-7-G4U) (SEQ ID NO: 38), 5'-UGA GUU AGU-3' (let-7-G5U) (SEQ ID NO: 39), 5' -UUA UGU AGU-3' (let-7-G2,4U) (SEQ ID NO: 41), 5'-UUA GUU AGU-3' (let-7-G2,5U) (SEQ ID NO: 42), 5'-UGA RNA interference inducing nucleic acid comprising the base sequence of UUU AGU-3' (let-7-G4,5U) (SEQ ID NO: 44);

miR-302a의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-UAA UUG CUU-3' (miR-302a-G4U) (서열번호 47), 5'-UAA GUU CUU-3' (miR-302a-G6U) (서열번호 48), 또는 5'-UAA UUU CUU-3' (miR-302a-G4,6U) (서열번호 49)의 염기 서열을 포함하는 RNA 간섭 유도 핵산; 또는As an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-302a, preferably a modified base sequence in which at least one Guanine base is substituted with Uracil in the 2nd to 7th sequence based on the 5'end is used. With 5'-UAA UUG CUU-3' (miR-302a-G4U) (SEQ ID NO: 47), 5'-UAA GUU CUU-3' (miR-302a-G6U) (SEQ ID NO: 48), or 5' RNA interference inducing nucleic acid comprising the nucleotide sequence of -UAA UUU CUU-3' (miR-302a-G4,6U) (SEQ ID NO: 49); or

miR-372의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 5'-AAA UUG CUG-3' (miR-372-G4U) (서열번호 50), 5'-AAA GUU CUG-3' (miR-372-G6U) (서열번호 51), 5'-AAA GUG CUU-3' (miR-372-G9U) (서열번호 52), 5'-AAA UUU CUG-3' (miR-372-G4,6U) (서열번호 53), 5'-AAA UUG CUU-3' (miR-372-G4,9U) (서열번호 54), 또는 5'-AAA GUU CUU-3' (miR-372-G6,9U) (서열번호 55)의 염기 서열을 포함하는 RNA 간섭 유도 핵산. As an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-372, preferably a modified nucleotide sequence in which at least one Guanine base is substituted with Uracil from the 2nd to 7th sequence based on the 5'end is used. To have, 5'-AAA UUG CUG-3' (miR-372-G4U) (SEQ ID NO: 50), 5'-AAA GUU CUG-3' (miR-372-G6U) (SEQ ID NO: 51), 5'- AAA GUG CUU-3' (miR-372-G9U) (SEQ ID NO: 52), 5'-AAA UUU CUG-3' (miR-372-G4,6U) (SEQ ID NO: 53), 5'-AAA UUG CUU- RNA interference induction comprising the nucleotide sequence of 3'(miR-372-G4,9U) (SEQ ID NO: 54), or 5'-AAA GUU CUU-3' (miR-372-G6,9U) (SEQ ID NO: 55) Nucleic acid.

바람직하게, 상기 RNA 간섭 유도 핵산의 염기 서열이 다음 중 어느 하나 이상으로 나타내는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다: Preferably, it provides an RNA interference-inducing nucleic acid, characterized in that the base sequence of the RNA interference-inducing nucleic acid is represented by one or more of the following:

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 As an RNA interference-inducing nucleic acid that suppresses the irregular target gene of miR-124

5'-UAA UGC ACG CGG UGA AUG CCA A-3' (miR-124-G4U) (서열번호 56), 5'-UAA GUC ACG CGG UGA AUG CCA A-3'(miR-124-G5U) (서열번호 57) 또는 5'-UAA UUC ACG CGG UGA AUG CCA A-3'(miR-124-G4,5U) (서열번호 58)의 염기 서열을 나타내는 RNA 간섭 유도 핵산; 5'-UAA UGC ACG CGG UGA AUG CCA A-3' (miR-124-G4U) (SEQ ID NO: 56), 5'-UAA GUC ACG CGG UGA AUG CCA A-3' (miR-124-G5U) (SEQ ID NO: RNA interference inducing nucleic acid showing the nucleotide sequence of 5'-UAA UUC ACG CGG UGA AUG CCA A-3' (miR-124-G4,5U) (SEQ ID NO: 58);

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서As an RNA interference-inducing nucleic acid that suppresses the irregular target gene of miR-1

5'-UUG AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2U) (서열번호 59), 5'-UGU AAU GUA AAG AAG UAU GUA U-3' (miR-1-G3U) (서열번호 60), 5'-UGG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G7U) (서열번호 61), 5'-UUU AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2,3U) (서열번호 62), 5'-UGU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G3,7U) (서열번호 63), 5'-UUG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,7U) (서열번호 64) 또는 5'-UUU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,3,7U) (서열번호 65) 의 염기 서열을 나타내는 RNA 간섭 유도 핵산; 5'-UUG AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2U) (SEQ ID NO: 59), 5'-UGU AAU GUA AAG AAG UAU GUA U-3' (miR-1-G3U) (SEQ ID NO: Number 60), 5'-UGG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G7U) (SEQ ID NO: 61), 5'-UUU AAU GUA AAG AAG UAU GUA U-3' (miR-1- G2,3U) (SEQ ID NO: 62), 5'-UGU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G3,7U) (SEQ ID NO: 63), 5'-UUG AAU UUA AAG AAG UAU GUA U Base of -3' (miR-1-G2,7U) (SEQ ID NO: 64) or 5'-UUU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,3,7U) (SEQ ID NO: 65) RNA interference inducing nucleic acid showing sequence;

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서5'-UUG AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2U) (서열번호 66), 5'-UGU AGU GUG ACA AUG GUG UUU G-3 (miR-122-G3U) (서열번호 67), 5'-UGG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G5U) (서열번호 68), 5'-UGG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G7U) (서열번호 69), 5'-UGG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G9U) (서열번호 70), 5'-UUU AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2,3U) (서열번호 71), 5'-UUG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G2,5U) (서열번호 72), 5'-UUG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G2,7U) (서열번호 73), 5'-UUG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G2,9U) (서열번호 74), 5'-UGU AUU GUG ACA AUG GUG UUU G-3 (miR-122-G3,5U) (서열번호 75), 5'-UGU AGU UUG ACA AUG GUG UUU G-3 (miR-122-G3,7U) (서열번호 76), 5'-UGU AGU GUU ACA AUG GUG UUU G-3 (miR-122-G3,9U) (서열번호 77), 5'-UGG AUU UUG ACA AUG GUG UUU G-3' (miR-122-G5,7U) (서열번호 78), 5'-UGG AUU GUU ACA AUG GUG UUU G-3' (miR-122-G5,9U) (서열번호 79) 또는 5'-UGG AGU UUU ACA AUG GUG UUU G-3' (miR-122-G7,9U) (서열번호 80)의 염기 서열을 나타내는 RNA 간섭 유도 핵산; 5'-UUG AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2U) (SEQ ID NO: 66), 5'-UGU AGU GUG ACA AUG as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122 GUG UUU G-3 (miR-122-G3U) (SEQ ID NO: 67), 5'-UGG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G5U) (SEQ ID NO: 68), 5'-UGG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G7U) (SEQ ID NO: 69), 5'-UGG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G9U) (SEQ ID NO: 70), 5 '-UUU AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2,3U) (SEQ ID NO: 71), 5'-UUG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G2,5U ) (SEQ ID NO: 72), 5'-UUG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G2,7U) (SEQ ID NO: 73), 5'-UUG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G2,9U) (SEQ ID NO: 74), 5'-UGU AUU GUG ACA AUG GUG UUU G-3 (miR-122-G3,5U) (SEQ ID NO: 75), 5'-UGU AGU UUG ACA AUG GUG UUU G-3 (miR-122-G3,7U) (SEQ ID NO: 76), 5'-UGU AGU GUU ACA AUG GUG UUU G-3 (miR-122-G3,9U) (SEQ ID NO: 77), 5 '-UGG AUU UUG ACA AUG GUG UUU G-3' (miR-122-G5,7U) (SEQ ID NO: 78), 5'-UGG AUU GUU ACA AUG GUG UUU G-3' (miR-122-G5,9U ) (SEQ ID NO: 79) or 5'-UGG AGU UUU ACA AUG GUG UUU G-3' (miR-122-G7,9U) (SEQ ID NO: 80) RNA interference inducing nucleic acid showing the base sequence;

miR-133의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UUU UGU CCC CUU CAA CCA GCU G -3' (miR-133-G4U) (서열번호 81), 5'-UUU GUU CCC CUU CAA CCA GCU G-3' (miR-133-G5U) (서열번호 82) 또는 5'-UUU UUU CCC CUU CAA CCA GCU G-3'(miR-124-G4,5U) (서열번호 83)의 염기 서열을 포함하는 RNA 간섭 유도 핵산; 5'-UUU UGU CCC CUU CAA CCA GCU G -3' (miR-133-G4U) (SEQ ID NO: 81), 5'-UUU GUU CCC CUU CAA as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-133 Base sequence of CCA GCU G-3' (miR-133-G5U) (SEQ ID NO: 82) or 5'-UUU UUU CCC CUU CAA CCA GCU G-3' (miR-124-G4,5U) (SEQ ID NO: 83) RNA interference inducing nucleic acid comprising a;

let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UUA GGU AGU AGG UUG UAU AGU U-3' (let-7-G2U) (서열번호 84), 5'-UGA UGU AGU AGG UUG UAU AGU U-3' (let-7-G4U) (서열번호 85), 5'-UGA GUU AGU AGG UUG UAU AGU U-3' (let-7-G5U) (서열번호 86), 5'-UGA GGU AUU AGG UUG UAU AGU U-3' (let-7-G8U) (서열번호 87), 5'-UUA UGU AGU AGG UUG UAU AGU U-3' (let-7-G2,4U) (서열번호 88), 5'-UUA GUU AGU AGG UUG UAU AGU U-3' (let-7-G2,5U) (서열번호 89), 5'-UUA GGU AUU AGG UUG UAU AGU U-3' (let-7-G2,8U) (서열번호 90), 5'-UGA UUU AGU AGG UUG UAU AGU U-3' (let-7-G4,5U) (서열번호 91), 5'-UGA UGU AUU AGG UUG UAU AGU U-3' (let-7-G4,8U) (서열번호 92) 또는 5'-UGA GUU AUU AGG UUG UAU AGU U-3' (let-7-G5,8U) (서열번호 93)의 염기 서열을 나타내는 RNA 간섭 유도 핵산; 5'-UUA GGU AGU AGG UUG UAU AGU U-3' (let-7-G2U) (SEQ ID NO: 84), 5'-UGA UGU AGU AGG UUG as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of let-7 UAU AGU U-3' (let-7-G4U) (SEQ ID NO: 85), 5'-UGA GUU AGU AGG UUG UAU AGU U-3' (let-7-G5U) (SEQ ID NO: 86), 5'-UGA GGU AUU AGG UUG UAU AGU U-3' (let-7-G8U) (SEQ ID NO: 87), 5'-UUA UGU AGU AGG UUG UAU AGU U-3' (let-7-G2,4U) (SEQ ID NO: 88 ), 5'-UUA GUU AGU AGG UUG UAU AGU U-3' (let-7-G2,5U) (SEQ ID NO: 89), 5'-UUA GGU AUU AGG UUG UAU AGU U-3' (let-7- G2,8U) (SEQ ID NO: 90), 5'-UGA UUU AGU AGG UUG UAU AGU U-3' (let-7-G4,5U) (SEQ ID NO: 91), 5'-UGA UGU AUU AGG UUG UAU AGU U -3' (let-7-G4,8U) (SEQ ID NO: 92) or 5'-UGA GUU AUU AGG UUG UAU AGU U-3' (let-7-G5,8U) (SEQ ID NO: 93) RNA interference inducing nucleic acids shown;

miR-302a의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-UAA UUG CUU CCA UGU UUU GGU GA-3' (miR-302a-G4U) (서열번호 94), 5'-UAA GUU CUU CCA UGU UUU GGU GA-3' (miR-302a-G6U) (서열번호 95), 또는 5'-UAA UUU CUU CCA UGU UUU GGU GA-3' (miR-302a-G4,6U) (서열번호 96)의 염기 서열을 나타내는 RNA 간섭 유도 핵산; 또는5'-UAA UUG CUU CCA UGU UUU GGU GA-3' (miR-302a-G4U) (SEQ ID NO: 94), 5'-UAA GUU CUU CCA UGU as an RNA interference inducing nucleic acid that inhibits an irregular target gene of miR-302a Base of UUU GGU GA-3' (miR-302a-G6U) (SEQ ID NO: 95), or 5'-UAA UUU CUU CCA UGU UUU GGU GA-3' (miR-302a-G4,6U) (SEQ ID NO: 96) RNA interference inducing nucleic acid showing sequence; or

miR-372의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-AAA UUG CUG CGA CAU UUG AGC GU -3' (miR-372-G4U) (서열번호 97), 5'-AAA GUU CUG CGA CAU UUG AGC GU -3' (miR-372-G6U) (서열번호 98), 5'-AAA GUG CUU CGA CAU UUG AGC GU -3' (miR-372-G9U) (서열번호 99), 5'-AAA UUU CUG CGA CAU UUG AGC GU -3' (miR-372-G4,6U) (서열번호 100), 5'-AAA UUG CUU CGA CAU UUG AGC GU -3' (miR-372-G4,9U) (서열번호 101), 또는 5'-AAA GUU CUU CGA CAU UUG AGC GU -3' (miR-372-G6,9U) (서열번호 102)의 염기 서열을 나타내는 RNA 간섭 유도 핵산. 5'-AAA UUG CUG CGA CAU UUG AGC GU -3' (miR-372-G4U) (SEQ ID NO: 97), 5'-AAA GUU CUG CGA CAU as an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-372 UUG AGC GU -3' (miR-372-G6U) (SEQ ID NO: 98), 5'-AAA GUG CUU CGA CAU UUG AGC GU -3' (miR-372-G9U) (SEQ ID NO: 99), 5'-AAA UUU CUG CGA CAU UUG AGC GU -3' (miR-372-G4,6U) (SEQ ID NO: 100), 5'-AAA UUG CUU CGA CAU UUG AGC GU -3' (miR-372-G4,9U) (SEQ ID NO: No. 101), or an RNA interference-inducing nucleic acid showing the nucleotide sequence of 5′-AAA GUU CUU CGA CAU UUG AGC GU -3′ (miR-372-G6,9U) (SEQ ID NO: 102).

본 발명의 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 조성물을 제공한다. It provides a composition for inhibiting the expression of a non-normal target gene of microRNA comprising the RNA interference-inducing nucleic acid of the present invention.

본 발명의 RNA 간섭 유도 핵산을 포함하는 세포 주기, 분화, 역분화, 형태, 이동, 역분화, 분열, 증식 또는 사멸 조절용 조성물을 제공한다. It provides a composition for controlling cell cycle, differentiation, dedifferentiation, morphology, migration, dedifferentiation, division, proliferation or death, comprising the RNA interference-inducing nucleic acid of the present invention.

바람직하게, 상기 조성물은 다음 중 어느 하나 이상인 것을 특징으로 하는, 조성물을 제공한다:Preferably, the composition provides a composition, characterized in that it is any one or more of the following:

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 암세포 사멸 유도용 조성물; a composition for inducing cancer cell death comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124;

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 신경 돌기 가지 분화 유도용 조성물; a composition for inducing neurite branch differentiation comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124;

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 간암 세포의 세포 주기 정지 유도용 조성물; a composition for inducing cell cycle arrest in liver cancer cells comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122;

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 근세포 분화 촉진 또는 근섬유화 촉진용 조성물; a composition for promoting myocyte differentiation or promoting muscle fibrosis, comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-1;

miR-155의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 근세포 사멸 유도용 조성물; a composition for inducing myocyte death comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-155;

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 신경 모세포종의 세포 사멸 촉진용 조성물; a composition for promoting apoptosis of neuroblastoma comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124;

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 신경 모세포종의 세포 분열 증식 촉진용 조성물; a composition for promoting cell division and proliferation of neuroblastoma comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124;

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 심근 비대 유도용 조성물; a composition for inducing myocardial hypertrophy comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-1;

miR-133의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 심근 비대 유도용 조성물; a composition for inducing myocardial hypertrophy comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-133;

let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 암 세포의 세포 주기 정지 유도용 조성물; a composition for inducing cell cycle arrest of cancer cells, comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of let-7;

let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 간세포의 세포 주기 진행 활성 유도용 조성물; a composition for inducing cell cycle progression activity of hepatocytes comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of let-7;

miR-302a의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 역분화 촉진용 조성물; a composition for promoting dedifferentiation comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-302a;

miR-372의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 역분화 촉진용 조성물; 또는 a composition for promoting dedifferentiation comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-372; or

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산을 포함하는 간암 세포의 세포 이동 저해용 조성물. A composition for inhibiting cell migration of liver cancer cells comprising an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122.

본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법을 제공한다: In the present invention, in one or more single strands of the double strands of nucleic acids that induce RNA interference, including the following steps, some sequences of specific microRNAs are modified to form noncanonical target genes of microRNAs. ) It provides a method for producing an RNA interference-inducing nucleic acid that inhibits the expression of:

특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하도록 RNA 간섭 유도 핵산을 작제하는 단계, 또는 It contains the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases can be aligned with the 6th base of a specific microRNA. It has a base sequence complementary to a base, and all complementary bases including G:A, G:U wobble arrangement are included in the base that can be aligned with the 6th base of the specific microRNA. Constructing an RNA interference-inducing nucleic acid so that a bulge occurs in the target gene between the 5th and 6th and the corresponding bulge disappears from the binding irregular target nucleotide sequence and binds to a continuous nucleotide sequence, or

특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 해당 부위의 G:A 또는 G:U 워블 배열이 U:A 또는 A:U의 정규적인 염기 배열이 되도록 RNA 간섭 유도 핵산을 작제하는 단계.Of the nucleotide sequence between the 5'end and the ninth nucleotide of a specific microRNA, the guanine base has a modified nucleotide sequence in which at least one base is substituted with uracil, and G:A or G:U of the corresponding site Constructing an RNA interference-inducing nucleic acid such that the wobble sequence becomes a normal nucleotide sequence of U:A or A:U.

또한, 본 발명은 다음 단계를 포함하는 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식, 역분화 또는 사멸 조절용 시험 물질을 스크리닝하는 방법을 제공한다: In addition, the present invention provides a method for screening a test substance for regulating cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation, dedifferentiation or death, including the following steps:

RNA 간섭 유도 핵산을 대상 세포에 트랜스펙션하는 단계;Transfecting a target cell with an RNA interference-inducing nucleic acid;

대상 세포에 시험 물질을 처리하는 단계; 및 Treating the test substance to the cell of interest; And

대상 세포에서 RNA 간섭 유도 핵산이 억제하는 마이크로RNA의 비정규 표적 유전자의 발현양 내지 발현 여부를 확인하는 단계.Checking the expression level or whether the non-normal target gene of the microRNA inhibited by the RNA interference-inducing nucleic acid in the target cell.

또한, 본 발명은 RNA 간섭 유도 핵산에 대하여, 하기 1 내지 3을 제공한다:In addition, the present invention provides the following 1 to 3 for RNA interference inducing nucleic acids:

1. 2'OMe 변형된 RNA 간섭 유도 핵산에 대하여1. About 2'OMe modified RNA interference-inducing nucleic acid

본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서, In the present invention, in one or more single strands of the double strands of nucleic acids that induce RNA interference, some sequences of specific microRNAs are modified to induce RNA interference that suppresses noncanonical target genes of microRNAs. As a nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 하는 것을 특징으로 하며,The RNA interference-inducing nucleic acid contains the 2nd to 5th 4 base sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are the 6th of the specific microRNA. Has a base sequence that is complementary to a base that can be aligned with a base, and the base that can be aligned with the 6th base of the specific microRNA includes all complementary bases including G:A and G:U wobble arrangements. In this way, a bulge occurs in the target gene between the 5th and 6th microRNA, and the bulge disappears from the non-normal target nucleotide sequence to which it binds and binds to a continuous nucleotide sequence,

상기 특정 마이크로RNA는 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치에 메틸기(2'OMe)가 첨가된 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The specific microRNA provides an RNA interference-inducing nucleic acid, characterized in that a methyl group (2'OMe) is added to the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end.

바람직하게, 상기 RNA 간섭 유도 핵산은 해당 RNA 간섭 유도 핵산의 정규 발단 표적 유전자의 발현만을 억제하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.Preferably, the RNA interference-inducing nucleic acid provides an RNA-interference-inducing nucleic acid, characterized in that it suppresses only the expression of a target gene for the normal initiation of the corresponding RNA interference-inducing nucleic acid.

바람직하게, 상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 비정규 핵융기 싸이트만을 특이적으로 억제하고, 새롭게 발생할 수 있는 비정규 핵융기 싸이트를 제거하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.Preferably, the RNA interference-inducing nucleic acid provides an RNA interference-inducing nucleic acid, characterized in that it specifically suppresses only the irregular nucleus site of a specific microRNA and removes the irregular nucleus site that may occur newly.

또한, 본 발명은 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 조성물을 제공한다.In addition, the present invention provides a composition for suppressing the expression of non-normal target genes of microRNAs, including RNA interference-inducing nucleic acids.

또한, 본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서, In addition, in the present invention, in one or more single strands of the double strands of nucleic acids inducing RNA interference, including the following steps, some sequences of specific microRNAs are modified to be noncanonical target genes of microRNAs (noncanonical As a method for producing RNA interference-inducing nucleic acids that inhibit the expression of target gene),

특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하도록 RNA 간섭 유도 핵산을 작제하는 단계; 및It contains the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases can be aligned with the 6th base of a specific microRNA. It has a base sequence complementary to a base, and all complementary bases including G:A, G:U wobble arrangement are included in the base that can be aligned with the 6th base of the specific microRNA. Constructing an RNA interference-inducing nucleic acid so that a bulge occurs in the target gene between the 5th and 6th and the corresponding bulge disappears from the non-normal target nucleotide sequence and binds to a continuous nucleotide sequence; And

상기 특정 마이크로RNA의 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치에 메틸기(2'OMe)를 첨가하는 단계를 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산의 제조방법을 제공한다.It provides a method for producing an RNA interference-inducing nucleic acid, comprising the step of adding a methyl group (2'OMe) to the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end of the specific microRNA.

2. 마이크로RNA의 비정규 핵융기 표적 싸이트를 억제하는 RNA 간섭 유도 핵산(서열번호 103 내지 528)에 대하여2. About RNA interference-inducing nucleic acids (SEQ ID NOs: 103 to 528) that inhibit microRNA atypical nucleation target sites

본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서, In the present invention, in one or more single strands of the double strands of nucleic acids that induce RNA interference, some sequences of specific microRNAs are modified to induce RNA interference that suppresses noncanonical target genes of microRNAs. As a nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The RNA interference-inducing nucleic acid contains the 2nd to 5th 4 base sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are the 6th of the specific microRNA. Has a base sequence that is complementary to a base that can be aligned with a base, and the base that can be aligned with the 6th base of the specific microRNA includes all complementary bases including G:A and G:U wobble arrangements. Induction of RNA interference, characterized in that the bulge is formed in the target gene between the 5th and 6th of the microRNA, and the bulge disappears from the non-normal target nucleotide sequence and binds to a continuous nucleotide sequence. Nucleic acids are provided.

바람직하게, 상기 RNA 간섭 유도 핵산은 비정규 핵융기 표적 싸이트만을 선택적으로 억제하고 마이크로RNA의 정규 표적 유전자는 억제하지 않는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.Preferably, the RNA interference-inducing nucleic acid provides an RNA interference-inducing nucleic acid, characterized in that it selectively inhibits only the irregular nucleus target site and not the normal target gene of the microRNA.

바람직하게, 상기 특정 마이크로RNA는 let-7/98/4458/4500, miR-125a-5p/125b-5p/351/670/4319, miR-124/124ab/506, miR-9/9ab, miR-29abcd, miR-103a/107/107ab, miR-221/222/222ab/1928, miR-26ab/1297/4465, miR-15abc/16/16abc/195/322/424/497/1907, miR-126-3p, miR-30abcdef/30abe-5p/384-5p, miR-33ab/33-5p, miR-34ac/34bc-5p/449abc/449c-5p, miR-19ab, miR-99ab/100, miR-17/17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519d, miR-27abc/27a-3p, miR-218/218a, miR-22/22-3p, miR-185/882/3473/4306/4644, miR-181abcd/4262, miR-338/338-3p, miR-127/127-3p, miR-101/101ab, miR-149, miR-324-5p, miR-24/24ab/24-3p, miR-33a-3p/365/365-3p, miR-139-5p, miR-138/138ab, miR-143/1721/4770, miR-25/32/92abc/363/363-3p/367, miR-574-5p, miR-7/7ab, miR-145, miR-135ab/135a-5p, miR-148ab-3p/152, miR-28-5p/708/1407/1653/3139, miR-130ac/301ab/301b/301b-3p/454/721/4295/3666, miR-3132, miR-155, miR-485-3p, miR-132/212/212-3p, hsa-miR-9-3p, miR-374ab, miR-129-3p/129ab-3p/129-1-3p/129-2-3p, hsa-miR-126-5p, miR-425/425-5p/489, miR-423-3p, miR-21/590-5p, miR-31, hsa-miR-20b-3p, hsa-let-7d-3p, miR-191, miR-18ab/4735-3p, miR-369-3p, hsa-miR-5187-5p, miR-382, miR-485-5p/1698/1703/1962, hsa-miR-136-3p, miR-576-3p, miR-204/204b/211, miR-769-5p, miR-342-5p/4664-5p, miR-361-5p, miR-199ab-3p/3129-5p, miR-142-3p, miR-299-5p/3563-5p, miR-193/193b/193a-3p, hsa-miR-1277-5p, miR-140/140-5p/876-3p/1244, hsa-miR-30a/d/e-3p, hsa-let-7i-3p, miR-409-5p/409a, miR-379/1193-5p/3529, miR-136, miR-154/872, miR-4684-3p, miR-361-3p, miR-335/335-5p, miR-423a/423-5p/3184/3573-5p, miR-371/373/371b-5p, miR-1185/3679-5p, miR-3613-3p, miR-93/93a/105/106a/291a-3p/294/295/302abcde/372/373/428/519a/520be/520acd-3p/1378/1420ac, miR-876-5p/3167, miR-329/329ab/362-3p, miR-582-5p, miR-146ac/146b-5p, miR-380/380-3p, miR-499-3p/499a-3p, miR-551a, miR-142-5p, hsa-miR-17-3p, miR-199ab-5p, miR-542-3p, miR-1277, hsa-miR-29c-5p, miR-3145-3p, hsa-miR-106b-3p, hsa-miR-22-5p, miR-744/1716, hsa-miR-132-5p, miR-488, miR-501-3p/502-3p/500/502a, miR-486-5p/3107, miR-450a/451a, hsa-miR-30c-3p, miR-499-5p, miR-421, miR-197, miR-296-5p, miR-326/330/330-5p, miR-214/761/3619-5p, miR-612/1285/3187-5p, miR-409-3p, miR-378/422a/378bcdefhi, miR-342-3p, miR-338-5p, miR-625, miR-200bc/429/548a, hsa-miR-376a-5p, miR-584, miR-411, miR-573/3533/3616-5p/3647-5p, miR-885-5p, hsa-miR-99-3p, miR-876-3p, miR-654-3p, hsa-miR-340-3p, miR-3614-5p, hsa-miR-124-5p, miR-491-5p, miR-96/507/1271, miR-548a-3p/548ef/2285a, hsa-miR-32-3p, miR-3942-5p/4703-5p, miR-34b/449c/1360/2682, hsa-miR-23a/b-5p, miR-362-5p/500b, miR-677/4420, miR-577, miR-3613-5p, miR-369-5p, miR-150/5127, miR-544/544ab/544-3p, hsa-miR-29a-5p, miR-873, miR-3614-3p, miR-186, miR-483-3p, hsa-miR-374a-3p, miR-196abc, hsa-miR-145-3p, hsa-miR-29b-2-5p, hsa-miR-221-5p, miR-323b-3p, miR-616, miR-330-3p, hsa-miR-7-3p, miR-187, hsa-miR-26a-3p, miR-452/4676-3p, miR-129-5p/129ab-5p, miR-223, miR-4755-3p, miR-1247, miR-3129-3p, hsa-miR-335-3p, miR-542-5p, hsa-miR-181a-3p, hsa-miR-186-3p, hsa-miR-27b-5p, miR-491-3p, miR-4687-3p, hsa-miR-101-5p, miR-4772-5p, miR-337-3p, hsa-miR-223-5p, hsa-miR-16/195-3p, miR-3677-3p, hsa-miR-766-5p, miR-299/299-3p/3563-3p, miR-3140-3p, miR-532-5p/511, hsa-miR-24-5p, miR-4778-5p, miR-642b, miR-483-5p, miR-767-5p, hsa-miR-31-3p, miR-574-3p, miR-3173-3p, miR-2127/4728-5p, hsa-miR-103a-2-5p, miR-3591-3p, hsa-miR-625-3p, hsa-miR-15b-3p, miR-522/518e/1422p, miR-548d-3p/548acbz, hsa-miR-452-3p, miR-192/215, miR-1551/4524, hsa-miR-425-3p, miR-3126-3p, hsa-miR-125b-2-3p, miR-324-3p/1913, hsa-miR-141-5p, hsa-miR-365a/b-5p, hsa-miR-29b-1-5p, miR-563/380-5p, miR-1304, miR-216c/1461/4684-5p, hsa-miR-2681-5p, miR-194, miR-296-3p, hsa-miR-205-3p, miR-888, miR-4802-3p, hsa-let-7a/g-3p, miR-762/4492/4498, hsa-miR-744-3p, hsa-miR-148b-5p, miR-514/514b-3p, miR-28-3p, miR-550a, hsa-miR-125b-1-3p, hsa-miR-506-5p, hsa-miR-1306-5p, miR-3189-3p, miR-675-5p/4466, hsa-miR-34a-3p, hsa-miR-454-5p, miR-509-5p/509-3-5p/4418, hsa-miR-19a/b-5p, miR-4755-5p, hsa-miR-93-3p, miR-3130-5p/4482, hsa-miR-488-5p, hsa-miR-378a-5p, miR-575/4676-5p, miR-1307, miR-3942-3p, miR-4677-5p, miR-339-3p, miR-548b-3p, hsa-miR-642b-5p, miR-188-5p, hsa-miR-652-5p, miR-2114, miR-3688-5p, hsa-miR-15a-3p, hsa-miR-181c-3p, miR-122/122a/1352, miR-556-3p, hsa-miR-218-2-3p, miR-643, miR-140-3p, miR-1245, hsa-miR-2115-3p, miR-518bcf/518a-3p/518d-3p, miR-3200-3p, miR-545/3065/3065-5p, miR-1903/4778-3p, hsa-miR-302a-5p, hsa-miR-183-3p, miR-3144-5p, miR-582-3p, miR-4662a-3p, miR-3140-5p, hsa-miR-106a-3p, hsa-miR-135a-3p, miR-345/345-5p, miR-125a-3p/1554, miR-3145-5p, miR-676, miR-3173-5p, hsa-miR-5586-3p, miR-615-3p, miR-3688-3p, miR-4662a-5p, miR-4659ab-5p, hsa-miR-5586-5p, hsa-miR-514a-5p, miR-10abc/10a-5p, hsa-miR-888-3p, miR-3127-5p, miR-508-3p, hsa-miR-185-3p, hsa-miR-200c-5p,hsa-miR-550a-3p, miR-513c/514b-5p, miR-490-3p, hsa-miR-5187-3p, miR-3664-3p, miR-3189-5p, miR-4670-3p, miR-105/105ab, hsa-miR-135b-3p, hsa-miR-5010-3p, miR-493/493b, miR-3605-3p, miR-188-3p, hsa-miR-449c-3p, miR-4761-5p, miR-224, miR-4796-5p, hsa-miR-551b-5p, miR-556-5p, hsa-miR-122-3p, miR-4677-3p, miR-877, miR-576-5p, miR-490-5p, hsa-miR-589-3p, miR-4786-3p, hsa-miR-374b-3p, hsa-miR-26b-3p, miR-3158-3p, miR-4423-3p, miR-518d-5p/519bc-5p520c-5p/523b/526a, miR-4707-3p, hsa-miR-10a-3p, miR-526b, hsa-miR-676-5p, hsa-miR-660-3p, hsa-miR-5004-3p, miR-193a-5p, hsa-miR-222-5p, miR-4661-3p, hsa-miR-25-5p, miR-4670-5p, miR-659, miR-1745/3194-3p, hsa-miR-182-3p, miR-298/2347/2467-3p, hsa-miR-130b-5p, miR-4746-3p, miR-1893/2277-5p, miR-3619-3p, hsa-miR-138-1-3p, miR-4728-3p, miR-3127-3p, miR-671-3p, hsa-miR-211-3p, hsa-miR-2114-3p, hsa-miR-877-3p, miR-3157-5p, miR-502-5p, miR-500a, miR-548g, miR-523, hsa-miR-584-3p, miR-205/205ab, miR-4793-5p, hsa-miR-363-5p, hsa-miR-214-5p, miR-3180-5p, miR-1404/2110, miR-3157-3p, hsa-miR-191-3p, miR-1346/3940-5p/4507, miR-4746-5p, miR-3939, hsa-miR-181a-2-3p, hsa-miR-500a-3p, hsa-miR-196b-3p, hsa-miR-675-3p, hsa-miR-548aj/g/x-5p, miR-4659ab-3p, hsa-miR-5001-3p, hsa-miR-1247-3p, miR-2890/4707-5p, hsa-miR-150-3p, hsa-miR-629-3p, miR-2277-3p, miR-3547/3663-3p, miR-34bc-3p, miR-518ef, miR-3187-3p, miR-1306/1306-3p, miR-3177-3p, miR-1ab/206/613, miR-128/128ab, miR-1296, miR-598/598-3p, miR-887, miR-1-5p, miR-376c/741-5p, miR-374c/655, miR-494, miR-651, miR-1301/5047, miR-381-5p, miR-216a, miR-300/381/539-3p, miR-1249, miR-579, miR-656, miR-433, miR-1180, miR-597/1970, miR-190a-3p, miR-1537, miR-874-5p, miR-410/344de/344b-1-3p, miR-370, miR-219-2-3p/219-3p, miR-3620, miR-504/4725-5p, miR-2964/2964a-5p, miR-450a-2-3p, miR-511, miR-6505-3p, miR-433-5p, miR-6741-3p, miR-370-5p, miR-579-5p, miR-376c-5p,miR-376b-5p, miR-552/3097-5p, miR-1910, miR-758, miR-6735-3p, miR-376a-2-5p, miR-585, miR-451, 및 miR-137/137ab로 이루어진 군에서 선택되어 동일한 발단서열로부터 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지면서 6-24개의 염기로 구성된 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.Preferably, the specific microRNA is let-7/98/4458/4500, miR-125a-5p/125b-5p/351/670/4319, miR-124/124ab/506, miR-9/9ab, miR- 29abcd, miR-103a/107/107ab, miR-221/222/222ab/1928, miR-26ab/1297/4465, miR-15abc/16/16abc/195/322/424/497/1907, miR-126- 3p, miR-30abcdef/30abe-5p/384-5p, miR-33ab/33-5p, miR-34ac/34bc-5p/449abc/449c-5p, miR-19ab, miR-99ab/100, miR-17/ 17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519d, miR-27abc/27a-3p, miR-218/218a, miR-22/22-3p, miR-185/882/ 3473/4306/4644, miR-181abcd/4262, miR-338/338-3p, miR-127/127-3p, miR-101/101ab, miR-149, miR-324-5p, miR-24/24ab/ 24-3p, miR-33a-3p/365/365-3p, miR-139-5p, miR-138/138ab, miR-143/1721/4770, miR-25/32/92abc/363/363-3p/ 367, miR-574-5p, miR-7/7ab, miR-145, miR-135ab/135a-5p, miR-148ab-3p/152, miR-28-5p/708/1407/1653/3139, miR- 130ac/301ab/301b/301b-3p/454/721/4295/3666, miR-3132, miR-155, miR-485-3p, miR-132/212/212-3p, hsa-miR-9-3p, miR-374ab, miR-129-3p/129ab-3p/129-1-3p/129-2-3p, hsa-miR-126-5p, miR-425/425-5p/489, miR-423-3p, miR-21/590-5p, miR-3 1, hsa-miR-20b-3p, hsa-let-7d-3p, miR-191, miR-18ab/4735-3p, miR-369-3p, hsa-miR-5187-5p, miR-382, miR- 485-5p/1698/1703/1962, hsa-miR-136-3p, miR-576-3p, miR-204/204b/211, miR-769-5p, miR-342-5p/4664-5p, miR- 361-5p, miR-199ab-3p/3129-5p, miR-142-3p, miR-299-5p/3563-5p, miR-193/193b/193a-3p, hsa-miR-1277-5p, miR- 140/140-5p/876-3p/1244, hsa-miR-30a/d/e-3p, hsa-let-7i-3p, miR-409-5p/409a, miR-379/1193-5p/3529, miR-136, miR-154/872, miR-4684-3p, miR-361-3p, miR-335/335-5p, miR-423a/423-5p/3184/3573-5p, miR-371/373/ 371b-5p, miR-1185/3679-5p, miR-3613-3p, miR-93/93a/105/106a/291a-3p/294/295/302abcde/372/373/428/519a/520be/520acd- 3p/1378/1420ac, miR-876-5p/3167, miR-329/329ab/362-3p, miR-582-5p, miR-146ac/146b-5p, miR-380/380-3p, miR-499- 3p/499a-3p, miR-551a, miR-142-5p, hsa-miR-17-3p, miR-199ab-5p, miR-542-3p, miR-1277, hsa-miR-29c-5p, miR- 3145-3p, hsa-miR-106b-3p, hsa-miR-22-5p, miR-744/1716, hsa-miR-132-5p, miR-488, miR-501-3p/502-3p/500/ 502a, miR-486-5p/3107, miR-450a/451a, hsa-miR-30c-3p , miR-499-5p, miR-421, miR-197, miR-296-5p, miR-326/330/330-5p, miR-214/761/3619-5p, miR-612/1285/3187-5p , miR-409-3p, miR-378/422a/378bcdefhi, miR-342-3p, miR-338-5p, miR-625, miR-200bc/429/548a, hsa-miR-376a-5p, miR-584 , miR-411, miR-573/3533/3616-5p/3647-5p, miR-885-5p, hsa-miR-99-3p, miR-876-3p, miR-654-3p, hsa-miR-340 -3p, miR-3614-5p, hsa-miR-124-5p, miR-491-5p, miR-96/507/1271, miR-548a-3p/548ef/2285a, hsa-miR-32-3p, miR -3942-5p/4703-5p, miR-34b/449c/1360/2682, hsa-miR-23a/b-5p, miR-362-5p/500b, miR-677/4420, miR-577, miR-3613 -5p, miR-369-5p, miR-150/5127, miR-544/544ab/544-3p, hsa-miR-29a-5p, miR-873, miR-3614-3p, miR-186, miR-483 -3p, hsa-miR-374a-3p, miR-196abc, hsa-miR-145-3p, hsa-miR-29b-2-5p, hsa-miR-221-5p, miR-323b-3p, miR-616 , miR-330-3p, hsa-miR-7-3p, miR-187, hsa-miR-26a-3p, miR-452/4676-3p, miR-129-5p/129ab-5p, miR-223, miR -4755-3p, miR-1247, miR-3129-3p, hsa-miR-335-3p, miR-542-5p, hsa-miR-181a-3p, hsa-miR-186-3p, hsa-miR-27b -5p, miR-491-3p, miR-4687-3p, hsa-miR-101-5 p, miR-4772-5p, miR-337-3p, hsa-miR-223-5p, hsa-miR-16/195-3p, miR-3677-3p, hsa-miR-766-5p, miR-299/ 299-3p/3563-3p, miR-3140-3p, miR-532-5p/511, hsa-miR-24-5p, miR-4778-5p, miR-642b, miR-483-5p, miR-767- 5p, hsa-miR-31-3p, miR-574-3p, miR-3173-3p, miR-2127/4728-5p, hsa-miR-103a-2-5p, miR-3591-3p, hsa-miR- 625-3p, hsa-miR-15b-3p, miR-522/518e/1422p, miR-548d-3p/548acbz, hsa-miR-452-3p, miR-192/215, miR-1551/4524, hsa- miR-425-3p, miR-3126-3p, hsa-miR-125b-2-3p, miR-324-3p/1913, hsa-miR-141-5p, hsa-miR-365a/b-5p, hsa- miR-29b-1-5p, miR-563/380-5p, miR-1304, miR-216c/1461/4684-5p, hsa-miR-2681-5p, miR-194, miR-296-3p, hsa- miR-205-3p, miR-888, miR-4802-3p, hsa-let-7a/g-3p, miR-762/4492/4498, hsa-miR-744-3p, hsa-miR-148b-5p, miR-514/514b-3p, miR-28-3p, miR-550a, hsa-miR-125b-1-3p, hsa-miR-506-5p, hsa-miR-1306-5p, miR-3189-3p, miR-675-5p/4466, hsa-miR-34a-3p, hsa-miR-454-5p, miR-509-5p/509-3-5p/4418, hsa-miR-19a/b-5p, miR- 4755-5p, hsa-miR-93-3p, miR-3130-5p/4482, hsa-miR-488-5p, hsa-miR-378a-5p, miR-575/4676-5p, miR-1307, miR-3942-3p, miR-4677-5p, miR-339-3p, miR-548b-3p, hsa-miR-642b-5p, miR-188-5p, hsa-miR-652-5p, miR-2114, miR-3688-5p, hsa-miR-15a-3p, hsa-miR-181c-3p, miR-122/122a/1352, miR-556-3p, hsa- miR-218-2-3p, miR-643, miR-140-3p, miR-1245, hsa-miR-2115-3p, miR-518bcf/518a-3p/518d-3p, miR-3200-3p, miR- 545/3065/3065-5p, miR-1903/4778-3p, hsa-miR-302a-5p, hsa-miR-183-3p, miR-3144-5p, miR-582-3p, miR-4662a-3p, miR-3140-5p, hsa-miR-106a-3p, hsa-miR-135a-3p, miR-345/345-5p, miR-125a-3p/1554, miR-3145-5p, miR-676, miR- 3173-5p, hsa-miR-5586-3p, miR-615-3p, miR-3688-3p, miR-4662a-5p, miR-4659ab-5p, hsa-miR-5586-5p, hsa-miR-514a- 5p, miR-10abc/10a-5p, hsa-miR-888-3p, miR-3127-5p, miR-508-3p, hsa-miR-185-3p, hsa-miR-200c-5p, hsa-miR- 550a-3p, miR-513c/514b-5p, miR-490-3p, hsa-miR-5187-3p, miR-3664-3p, miR-3189-5p, miR-4670-3p, miR-105/105ab, hsa-miR-135b-3p, hsa-miR-5010-3p, miR-493/493b, miR-3605-3p, miR-188-3p, hsa-miR-449c-3p, miR-4761-5p, miR- 224, miR-4796-5p, hsa-miR-551b-5p , miR-556-5p, hsa-miR-122-3p, miR-4677-3p, miR-877, miR-576-5p, miR-490-5p, hsa-miR-589-3p, miR-4786-3p , hsa-miR-374b-3p, hsa-miR-26b-3p, miR-3158-3p, miR-4423-3p, miR-518d-5p/519bc-5p520c-5p/523b/526a, miR-4707-3p , hsa-miR-10a-3p, miR-526b, hsa-miR-676-5p, hsa-miR-660-3p, hsa-miR-5004-3p, miR-193a-5p, hsa-miR-222-5p , miR-4661-3p, hsa-miR-25-5p, miR-4670-5p, miR-659, miR-1745/3194-3p, hsa-miR-182-3p, miR-298/2347/2467-3p , hsa-miR-130b-5p, miR-4746-3p, miR-1893/2277-5p, miR-3619-3p, hsa-miR-138-1-3p, miR-4728-3p, miR-3127-3p , miR-671-3p, hsa-miR-211-3p, hsa-miR-2114-3p, hsa-miR-877-3p, miR-3157-5p, miR-502-5p, miR-500a, miR-548g , miR-523, hsa-miR-584-3p, miR-205/205ab, miR-4793-5p, hsa-miR-363-5p, hsa-miR-214-5p, miR-3180-5p, miR-1404 /2110, miR-3157-3p, hsa-miR-191-3p, miR-1346/3940-5p/4507, miR-4746-5p, miR-3939, hsa-miR-181a-2-3p, hsa-miR -500a-3p, hsa-miR-196b-3p, hsa-miR-675-3p, hsa-miR-548aj/g/x-5p, miR-4659ab-3p, hsa-miR-5001-3p, hsa-miR -1247-3p, miR-2890/4707-5p, hsa-miR-150-3p, h sa-miR-629-3p, miR-2277-3p, miR-3547/3663-3p, miR-34bc-3p, miR-518ef, miR-3187-3p, miR-1306/1306-3p, miR-3177- 3p, miR-1ab/206/613, miR-128/128ab, miR-1296, miR-598/598-3p, miR-887, miR-1-5p, miR-376c/741-5p, miR-374c/ 655, miR-494, miR-651, miR-1301/5047, miR-381-5p, miR-216a, miR-300/381/539-3p, miR-1249, miR-579, miR-656, miR- 433, miR-1180, miR-597/1970, miR-190a-3p, miR-1537, miR-874-5p, miR-410/344de/344b-1-3p, miR-370, miR-219-2- 3p/219-3p, miR-3620, miR-504/4725-5p, miR-2964/2964a-5p, miR-450a-2-3p, miR-511, miR-6505-3p, miR-433-5p, miR-6741-3p, miR-370-5p, miR-579-5p, miR-376c-5p,miR-376b-5p, miR-552/3097-5p, miR-1910, miR-758, miR-6735- It is selected from the group consisting of 3p, miR-376a-2-5p, miR-585, miR-451, and miR-137/137ab, and contains 4 nucleotide sequences from the 2nd to the 5th from the 5'end from the same starting sequence And, the 6th and 7th bases are the same, and the 6th and 7th bases are composed of 6-24 bases while having a base sequence complementary to a base that can be aligned with the 6th base of a specific microRNA. , RNA interference-inducing nucleic acids are provided.

바람직하게, 상기 RNA 간섭 유도 핵산은 서열번호 103 내지 528 중 어느 하나 이상으로 표시되는 염기 서열을 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다(표 3 참조).Preferably, the RNA interference-inducing nucleic acid provides an RNA interference-inducing nucleic acid, characterized in that it comprises a nucleotide sequence represented by any one or more of SEQ ID NOs: 103 to 528 (see Table 3).

또한, 본 발명은 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 조성물을 제공한다.In addition, the present invention provides a composition for suppressing the expression of non-normal target genes of microRNAs, including RNA interference-inducing nucleic acids.

또한, 본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서, In addition, in the present invention, in one or more single strands of the double strands of nucleic acids inducing RNA interference, including the following steps, some sequences of specific microRNAs are modified to be noncanonical target genes of microRNAs (noncanonical As a method for producing RNA interference-inducing nucleic acids that inhibit the expression of target gene),

특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하도록 RNA 간섭 유도 핵산을 작제하는 단계를 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산의 제조방법을 제공한다.It contains the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases can be aligned with the 6th base of a specific microRNA. It has a base sequence complementary to a base, and all complementary bases including G:A, G:U wobble arrangement are included in the base that can be aligned with the 6th base of the specific microRNA. It characterized in that it comprises the step of constructing an RNA interference-inducing nucleic acid so that a bulge occurs in the target gene between the 5th and 6th and the corresponding bulge disappears from the non-normal target nucleotide sequence and binds to a continuous nucleotide sequence. , It provides a method of preparing a nucleic acid inducing RNA interference.

3. 마이크로RNA의 비정규 G:A 워블 표적 싸이트를 억제하는 RNA 간섭 유도 핵산(서열번호 529 내지 863)에 대하여3. About RNA interference-inducing nucleic acids (SEQ ID NOs: 529 to 863) that inhibit microRNA irregular G:A wobble target sites

본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서, In the present invention, in one or more single strands of the double strands of nucleic acids that induce RNA interference, some sequences of specific microRNAs are modified to induce RNA interference that suppresses noncanonical target genes of microRNAs. As a nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 9번째 염기 사이의 염기 서열 중 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지며, 해당 부위의 G:A 워블(wobble)이 U:A의 정규적인 염기 배열이 되게 하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The RNA interference-inducing nucleic acid has a modified nucleotide sequence in which at least one guanine base is substituted with a uracil base among the nucleotide sequences between the 2nd to 9th bases from the 5'end of a specific microRNA, and the corresponding It provides an RNA interference-inducing nucleic acid, characterized in that the G:A wobble of the region becomes the normal nucleotide sequence of U:A.

바람직하게, 상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 시작하여 6개 내지 8개의 연속적인 염기 서열을 포함하고,Preferably, the RNA interference-inducing nucleic acid includes 6 to 8 consecutive nucleotide sequences starting at the second base from the 5'end of the specific microRNA,

상기 염기 서열은 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The nucleotide sequence provides an RNA interference-inducing nucleic acid, characterized in that at least one or more guanine bases are substituted with uracil bases.

바람직하게, 상기 RNA 간섭 유도 핵산은 G:A 워블(wobble) 배열로 결합하는 마이크로RNA의 비정규 표적 유전자만을 선택적으로 억제하고 마이크로RNA의 정규 표적 유전자는 억제하지 않는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다. Preferably, the RNA interference-inducing nucleic acid is characterized in that it selectively inhibits only the non-normal target gene of the microRNA bound to the G:A wobble arrangement and does not inhibit the normal target gene of the microRNA. Provides.

바람직하게, 상기 특정 마이크로RNA는 hsa-miR-1-3p, hsa-miR-194-5p, hsa-miR-193a-5p, hsa-miR-15b-3p, hsa-miR-200c-5p, hsa-miR-214-5p, hsa-miR-134-5p, hsa-miR-145-3p, hsa-miR-22-5p, hsa-miR-423-3p, hsa-miR-873-3p, hsa-miR-122-5p, hsa-miR-143-3p, hsa-miR-485-5p, hsa-miR-409-5p, hsa-miR-24-3p, hsa-miR-223-3p, hsa-miR-144-5p, hsa-miR-379-5p, hsa-miR-146b-5p/hsa-miR-146a-5p, hsa-miR-539-5p, hsa-miR-296-5p, hsa-miR-767-5p, hsa-miR-34a-5p/hsa-miR-34c-5p, hsa-let-7f-5p/hsa-let-7d-5p/hsa-let-7b-5p/hsa-let-7a-5p/hsa-let-7e-5p/hsa-miR-202-3p/hsa-let-7i-5p/hsa-miR-98-5p/hsa-let-7c-5p/hsa-let-7g-5p, hsa-miR-1271-3p, hsa-miR-138-5p, hsa-miR-19b-3p/hsa-miR-19a-3p, hsa-miR-27a-5p, hsa-miR-146b-3p, hsa-miR-7-5p, hsa-miR-423-5p, hsa-miR-324-5p, hsa-miR-629-5p, hsa-miR-139-3p, hsa-miR-30d-5p/hsa-miR-30e-5p/hsa-miR-30a-5p/hsa-miR-30c-5p/hsa-miR-30b-5p, hsa-miR-221-3p/hsa-miR-222-3p, hsa-miR-509-3p, hsa-miR-769-5p, hsa-miR-142-3p, hsa-miR-185-5p, hsa-miR-508-3p/hsa-miR-219a-5p, hsa-miR-31-5p, hsa-miR-103a-3p/hsa-miR-107, hsa-miR-542-3p, hsa-miR-219a-2-3p, hsa-miR-29c-3p/hsa-miR-29a-3p/hsa-miR-29b-3p, hsa-miR-125b-1-3p, hsa-miR-411-5p, hsa-miR-196a-5p/hsa-miR-196b-5p, hsa-miR-3622a-5p, hsa-miR-127-5p, hsa-miR-22-3p, hsa-miR-153-3p, hsa-miR-15b-5p/hsa-miR-16-5p/hsa-miR-424-5p, hsa-let-7g-3p/hsa-miR-493-5p/hsa-let-7c-3p, hsa-let-7i-3p, hsa-miR-218-5p, hsa-miR-1307-5p, hsa-miR-127-3p, hsa-miR-210-3p, hsa-miR-187-3p, hsa-miR-192-3p, hsa-miR-192-5p, hsa-miR-21-5p, hsa-miR-500a-3p, hsa-miR-203a-3p, hsa-miR-30c-2-3p, hsa-miR-488-3p, hsa-miR-301a-3p/hsa-miR-301b-3p, hsa-miR-126-3p, hsa-miR-26b-3p, hsa-miR-324-3p, hsa-miR-3065-3p, hsa-miR-124-5p, hsa-miR-345-5p, hsa-miR-615-3p, hsa-miR-889-5p/hsa-miR-135a-5p/hsa-miR-135b-5p, hsa-miR-18a-5p, hsa-miR-708-5p/hsa-miR-28-5p, hsa-miR-224-5p, hsa-miR-100-3p, hsa-miR-873-5p, hsa-miR-4662a-5p, hsa-miR-99b-3p/hsa-miR-99a-3p, hsa-miR-433-5p, hsa-miR-3605-5p, hsa-miR-744-5p, hsa-miR-1296-5p, hsa-miR-133a-3p, hsa-miR-382-5p, hsa-miR-425-5p, hsa-miR-377-5p, hsa-miR-3180-3p, hsa-miR-758-3p, hsa-miR-93-3p, hsa-miR-154-5p, hsa-miR-124-3p, hsa-miR-194-3p, hsa-miR-375, hsa-miR-148a-5p, hsa-miR-2277-5p, hsa-miR-17-3p, hsa-miR-4772-3p, hsa-miR-329-5p, hsa-miR-182-5p/hsa-miR-96-5p, hsa-miR-2467-5p/hsa-miR-485-5p, hsa-miR-149-5p, hsa-miR-29b-2-5p, hsa-miR-122-3p, hsa-miR-302a-3p/hsa-miR-520a-3p/hsa-miR-519b-3p/hsa-miR-520b/hsa-miR-519c-3p/hsa-miR-520c-3p/hsa-miR-519a-3p, hsa-miR-532-5p, hsa-miR-132-5p, hsa-miR-541-5p, hsa-miR-671-3p, hsa-miR-518e-3p, hsa-miR-487a-5p, hsa-miR-589-5p/hsa-miR-146b-5p/hsa-miR-146a-5p, hsa-miR-196b-5p/hsa-miR-196a-5p, hsa-miR-486-3p, hsa-miR-378a-3p, hsa-miR-27b-5p, hsa-miR-6720-3p, hsa-miR-574-3p, hsa-miR-29a-5p, hsa-miR-30c-2-3p/hsa-miR-30c-1-3p, hsa-miR-199b-3p, hsa-miR-574-5p, hsa-miR-4677-3p, hsa-miR-654-3p, hsa-miR-652-3p, hsa-miR-19a-3p/hsa-miR-19b-3p, hsa-let-7c-5p/hsa-miR-98-5p/hsa-let-7g-5p/hsa-let-7f-5p/hsa-miR-202-3p/hsa-let-7b-5p/hsa-let-7e-5p/hsa-let-7a-5p/hsa-let-7d-5p/hsa-let-7i-5p, hsa-miR-3663-3p, hsa-miR-152-3p/hsa-miR-148b-3p/hsa-miR-148a-3p, hsa-miR-193b-5p, hsa-miR-502-3p/hsa-miR-501-3p, hsa-miR-299-3p, hsa-miR-140-5p, hsa-miR-96-5p/hsa-miR-182-5p, hsa-miR-193b-3p, hsa-miR-365a-3p, hsa-miR-486-5p, hsa-miR-493-3p, hsa-miR-548am-5p, hsa-miR-20b-5p/hsa-miR-20a-5p/hsa-miR-93-5p/hsa-miR-17-5p/hsa-miR-106b-5p, hsa-miR-541-3p, hsa-miR-452-5p, hsa-miR-221-5p, hsa-miR-518f-3p, hsa-miR-370-3p, hsa-miR-107/hsa-miR-103a-3p, hsa-miR-338-3p, hsa-miR-409-3p, hsa-let-7d-5p/hsa-let-7g-5p/hsa-let-7i-5p/hsa-let-7f-5p/hsa-let-7e-5p/hsa-let-7a-5p/hsa-let-7b-5p/hsa-let-7c-5p, hsa-miR-130b-3p/hsa-miR-301a-3p/hsa-miR-130a-3p/hsa-miR-301b-3p, hsa-miR-512-3p, hsa-miR-191-5p, hsa-miR-509-3-5p, hsa-miR-92a-3p/hsa-miR-92b-3p/hsa-miR-363-3p/hsa-miR-25-3p/hsa-miR-32-5p, hsa-miR-183-5p, hsa-miR-1307-3p, hsa-miR-499a-5p/hsa-miR-208a-3p, hsa-miR-186-5p, hsa-miR-450b-5p, hsa-miR-450a-5p, hsa-miR-101-3p/hsa-miR-144-3p, hsa-miR-320a, hsa-miR-199b-5p/hsa-miR-199a-5p, hsa-miR-135a-5p, hsa-miR-145-5p, hsa-miR-26a-5p, hsa-miR-34c-5p, hsa-miR-125b-5p, hsa-miR-526b-5p, hsa-miR-16-5p/hsa-miR-15b-5p/hsa-miR-424-5p/hsa-miR-15a-5p, hsa-miR-9-3p, hsa-miR-363-5p, hsa-miR-1298-3p, hsa-miR-148a-3p, hsa-miR-302a-3p, hsa-miR-9-5p, hsa-miR-28-3p, hsa-miR-508-3p, hsa-miR-137, hsa-miR-5010-5p, hsa-miR-523-5p, hsa-miR-128-3p, hsa-miR-199a-5p/hsa-miR-199b-5p, hsa-miR-181a-2-3p, hsa-miR-27a-3p/hsa-miR-27b-3p, hsa-let-7d-3p, hsa-miR-129-5p, hsa-miR-424-3p, hsa-miR-181a-3p, hsa-miR-10a-5p, hsa-miR-196b-5p, hsa-miR-92a-1-5p, hsa-miR-483-5p, hsa-miR-1537-3p, hsa-miR-106b-5p/hsa-miR-20a-5p/hsa-miR-17-5p/hsa-miR-93-5p, hsa-miR-30a-3p/hsa-miR-30e-3p, hsa-miR-374a-3p, hsa-miR-675-5p, hsa-miR-503-5p, hsa-miR-340-5p, hsa-miR-208a-3p, hsa-miR-200b-3p/hsa-miR-200c-3p, hsa-miR-518f-5p/hsa-miR-523-5p, hsa-miR-625-3p, hsa-miR-194-5p, hsa-let-7g-3p, hsa-miR-514a-5p, hsa-miR-381-3p, hsa-miR-513c-5p/hsa-miR-514b-5p, hsa-miR-520a-5p, hsa-miR-125b-5p/hsa-miR-125a-5p, hsa-miR-141-3p, hsa-miR-874-3p, hsa-miR-202-5p, hsa-miR-140-3p, hsa-miR-361-3p, hsa-miR-513b-5p, hsa-miR-33a-5p, hsa-let-7a-5p/hsa-let-7c-5p/hsa-let-7b-5p/hsa-let-7d-5p/hsa-let-7f-5p/hsa-let-7e-5p/hsa-let-7i-5p/hsa-let-7g-5p, hsa-miR-136-3p, hsa-miR-508-5p, hsa-miR-204-5p/hsa-miR-211-5p, hsa-miR-146a-5p/hsa-miR-146b-5p, hsa-miR-23a-3p, hsa-miR-21-3p, hsa-miR-877-5p, hsa-miR-302a-5p, hsa-miR-139-5p, hsa-miR-99a-5p/hsa-miR-100-5p/hsa-miR-99b-5p, hsa-miR-216a-5p, 및 hsa-miR-3157-3p로 이루어진 군에서 선택되어, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 또는 2번째에서부터 9번째 서열 중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 해당 부위의 G:A 워블 배열이 U:A의 정규적인 염기 배열이 되게 하면서 6-24개의 염기로 구성된 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.Preferably, the specific microRNA is hsa-miR-1-3p, hsa-miR-194-5p, hsa-miR-193a-5p, hsa-miR-15b-3p, hsa-miR-200c-5p, hsa- miR-214-5p, hsa-miR-134-5p, hsa-miR-145-3p, hsa-miR-22-5p, hsa-miR-423-3p, hsa-miR-873-3p, hsa-miR- 122-5p, hsa-miR-143-3p, hsa-miR-485-5p, hsa-miR-409-5p, hsa-miR-24-3p, hsa-miR-223-3p, hsa-miR-144- 5p, hsa-miR-379-5p, hsa-miR-146b-5p/hsa-miR-146a-5p, hsa-miR-539-5p, hsa-miR-296-5p, hsa-miR-767-5p, hsa-miR-34a-5p/hsa-miR-34c-5p, hsa-let-7f-5p/hsa-let-7d-5p/hsa-let-7b-5p/hsa-let-7a-5p/hsa- let-7e-5p/hsa-miR-202-3p/hsa-let-7i-5p/hsa-miR-98-5p/hsa-let-7c-5p/hsa-let-7g-5p, hsa-miR- 1271-3p, hsa-miR-138-5p, hsa-miR-19b-3p/hsa-miR-19a-3p, hsa-miR-27a-5p, hsa-miR-146b-3p, hsa-miR-7- 5p, hsa-miR-423-5p, hsa-miR-324-5p, hsa-miR-629-5p, hsa-miR-139-3p, hsa-miR-30d-5p/hsa-miR-30e-5p/ hsa-miR-30a-5p/hsa-miR-30c-5p/hsa-miR-30b-5p, hsa-miR-221-3p/hsa-miR-222-3p, hsa-miR-509-3p, hsa- miR-769-5p, hsa-miR-142-3p, hsa-miR-185-5p, hsa-miR-508-3p/hsa-miR-219a-5p, hsa-miR-31-5p, hsa-miR- 103a-3p/hsa-miR-107, hsa-miR-542-3p, hsa-miR-219a-2-3p, hsa-miR-29c-3p/hsa-miR-29a-3p/hsa-miR-29b-3p, hsa-miR-125b-1- 3p, hsa-miR-411-5p, hsa-miR-196a-5p/hsa-miR-196b-5p, hsa-miR-3622a-5p, hsa-miR-127-5p, hsa-miR-22-3p, hsa-miR-153-3p, hsa-miR-15b-5p/hsa-miR-16-5p/hsa-miR-424-5p, hsa-let-7g-3p/hsa-miR-493-5p/hsa- let-7c-3p, hsa-let-7i-3p, hsa-miR-218-5p, hsa-miR-1307-5p, hsa-miR-127-3p, hsa-miR-210-3p, hsa-miR- 187-3p, hsa-miR-192-3p, hsa-miR-192-5p, hsa-miR-21-5p, hsa-miR-500a-3p, hsa-miR-203a-3p, hsa-miR-30c- 2-3p, hsa-miR-488-3p, hsa-miR-301a-3p/hsa-miR-301b-3p, hsa-miR-126-3p, hsa-miR-26b-3p, hsa-miR-324- 3p, hsa-miR-3065-3p, hsa-miR-124-5p, hsa-miR-345-5p, hsa-miR-615-3p, hsa-miR-889-5p/hsa-miR-135a-5p/ hsa-miR-135b-5p, hsa-miR-18a-5p, hsa-miR-708-5p/hsa-miR-28-5p, hsa-miR-224-5p, hsa-miR-100-3p, hsa- miR-873-5p, hsa-miR-4662a-5p, hsa-miR-99b-3p/hsa-miR-99a-3p, hsa-miR-433-5p, hsa-miR-3605-5p, hsa-miR- 744-5p, hsa-miR-1296-5p, hsa-miR-133a-3p, hsa-miR-382-5p, hsa-miR-425-5p, hsa-miR-377-5p, hsa-miR-3180- 3p, h sa-miR-758-3p, hsa-miR-93-3p, hsa-miR-154-5p, hsa-miR-124-3p, hsa-miR-194-3p, hsa-miR-375, hsa-miR- 148a-5p, hsa-miR-2277-5p, hsa-miR-17-3p, hsa-miR-4772-3p, hsa-miR-329-5p, hsa-miR-182-5p/hsa-miR-96- 5p, hsa-miR-2467-5p/hsa-miR-485-5p, hsa-miR-149-5p, hsa-miR-29b-2-5p, hsa-miR-122-3p, hsa-miR-302a- 3p/hsa-miR-520a-3p/hsa-miR-519b-3p/hsa-miR-520b/hsa-miR-519c-3p/hsa-miR-520c-3p/hsa-miR-519a-3p, hsa- miR-532-5p, hsa-miR-132-5p, hsa-miR-541-5p, hsa-miR-671-3p, hsa-miR-518e-3p, hsa-miR-487a-5p, hsa-miR- 589-5p/hsa-miR-146b-5p/hsa-miR-146a-5p, hsa-miR-196b-5p/hsa-miR-196a-5p, hsa-miR-486-3p, hsa-miR-378a- 3p, hsa-miR-27b-5p, hsa-miR-6720-3p, hsa-miR-574-3p, hsa-miR-29a-5p, hsa-miR-30c-2-3p/hsa-miR-30c- 1-3p, hsa-miR-199b-3p, hsa-miR-574-5p, hsa-miR-4677-3p, hsa-miR-654-3p, hsa-miR-652-3p, hsa-miR-19a- 3p/hsa-miR-19b-3p, hsa-let-7c-5p/hsa-miR-98-5p/hsa-let-7g-5p/hsa-let-7f-5p/hsa-miR-202-3p/ hsa-let-7b-5p/hsa-let-7e-5p/hsa-let-7a-5p/hsa-let-7d-5p/hsa-let-7i-5p, hsa-miR-3663-3p, hsa- miR-152-3p/hsa-mi R-148b-3p/hsa-miR-148a-3p, hsa-miR-193b-5p, hsa-miR-502-3p/hsa-miR-501-3p, hsa-miR-299-3p, hsa-miR- 140-5p, hsa-miR-96-5p/hsa-miR-182-5p, hsa-miR-193b-3p, hsa-miR-365a-3p, hsa-miR-486-5p, hsa-miR-493- 3p, hsa-miR-548am-5p, hsa-miR-20b-5p/hsa-miR-20a-5p/hsa-miR-93-5p/hsa-miR-17-5p/hsa-miR-106b-5p, hsa-miR-541-3p, hsa-miR-452-5p, hsa-miR-221-5p, hsa-miR-518f-3p, hsa-miR-370-3p, hsa-miR-107/hsa-miR- 103a-3p, hsa-miR-338-3p, hsa-miR-409-3p, hsa-let-7d-5p/hsa-let-7g-5p/hsa-let-7i-5p/hsa-let-7f- 5p/hsa-let-7e-5p/hsa-let-7a-5p/hsa-let-7b-5p/hsa-let-7c-5p, hsa-miR-130b-3p/hsa-miR-301a-3p/ hsa-miR-130a-3p/hsa-miR-301b-3p, hsa-miR-512-3p, hsa-miR-191-5p, hsa-miR-509-3-5p, hsa-miR-92a-3p/ hsa-miR-92b-3p/hsa-miR-363-3p/hsa-miR-25-3p/hsa-miR-32-5p, hsa-miR-183-5p, hsa-miR-1307-3p, hsa- miR-499a-5p/hsa-miR-208a-3p, hsa-miR-186-5p, hsa-miR-450b-5p, hsa-miR-450a-5p, hsa-miR-101-3p/hsa-miR- 144-3p, hsa-miR-320a, hsa-miR-199b-5p/hsa-miR-199a-5p, hsa-miR-135a-5p, hsa-miR-145-5p, hsa-miR-26a-5p, hsa-miR-34c-5p, h sa-miR-125b-5p, hsa-miR-526b-5p, hsa-miR-16-5p/hsa-miR-15b-5p/hsa-miR-424-5p/hsa-miR-15a-5p, hsa- miR-9-3p, hsa-miR-363-5p, hsa-miR-1298-3p, hsa-miR-148a-3p, hsa-miR-302a-3p, hsa-miR-9-5p, hsa-miR- 28-3p, hsa-miR-508-3p, hsa-miR-137, hsa-miR-5010-5p, hsa-miR-523-5p, hsa-miR-128-3p, hsa-miR-199a-5p/ hsa-miR-199b-5p, hsa-miR-181a-2-3p, hsa-miR-27a-3p/hsa-miR-27b-3p, hsa-let-7d-3p, hsa-miR-129-5p, hsa-miR-424-3p, hsa-miR-181a-3p, hsa-miR-10a-5p, hsa-miR-196b-5p, hsa-miR-92a-1-5p, hsa-miR-483-5p, hsa-miR-1537-3p, hsa-miR-106b-5p/hsa-miR-20a-5p/hsa-miR-17-5p/hsa-miR-93-5p, hsa-miR-30a-3p/hsa- miR-30e-3p, hsa-miR-374a-3p, hsa-miR-675-5p, hsa-miR-503-5p, hsa-miR-340-5p, hsa-miR-208a-3p, hsa-miR- 200b-3p/hsa-miR-200c-3p, hsa-miR-518f-5p/hsa-miR-523-5p, hsa-miR-625-3p, hsa-miR-194-5p, hsa-let-7g- 3p, hsa-miR-514a-5p, hsa-miR-381-3p, hsa-miR-513c-5p/hsa-miR-514b-5p, hsa-miR-520a-5p, hsa-miR-125b-5p/ hsa-miR-125a-5p, hsa-miR-141-3p, hsa-miR-874-3p, hsa-miR-202-5p, hsa-miR-140-3p, hsa-miR-361-3p, hsa- miR -513b-5p, hsa-miR-33a-5p, hsa-let-7a-5p/hsa-let-7c-5p/hsa-let-7b-5p/hsa-let-7d-5p/hsa-let-7f -5p/hsa-let-7e-5p/hsa-let-7i-5p/hsa-let-7g-5p, hsa-miR-136-3p, hsa-miR-508-5p, hsa-miR-204-5p /hsa-miR-211-5p, hsa-miR-146a-5p/hsa-miR-146b-5p, hsa-miR-23a-3p, hsa-miR-21-3p, hsa-miR-877-5p, hsa -miR-302a-5p, hsa-miR-139-5p, hsa-miR-99a-5p/hsa-miR-100-5p/hsa-miR-99b-5p, hsa-miR-216a-5p, and hsa- It is selected from the group consisting of miR-3157-3p, preferably from the 2nd to 7th sequence or the 2nd to 9th sequence based on the 5'end, in which at least one guanine base is substituted with Uracil. It provides an RNA interference-inducing nucleic acid, characterized in that it is composed of 6-24 bases while having a modified nucleotide sequence so that the G:A wobble arrangement of the corresponding region becomes a regular nucleotide arrangement of U:A.

바람직하게, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 2번째 염기에서 시작하여 7번째까지 또는 2번째 염기에서 시작하여 9번째까지의 6개 내지 8개의 연속적인 염기 서열이 서열번호 529 내지 863(표 4 참조) 중 어느 하나 이상으로 표시되는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.Preferably, the RNA interference-inducing nucleic acid has 6 to 8 consecutive nucleotide sequences starting at the 2nd base from the 5'end and up to the 7th or starting at the 2nd base to the 9th, SEQ ID NOs: 529 to 863 (Table 4), it provides an RNA interference-inducing nucleic acid, characterized in that represented by any one or more of.

또한, 본 발명은 상기 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 조성물을 제공한다.In addition, the present invention provides a composition for suppressing the expression of non-normal target genes of microRNAs comprising the RNA interference-inducing nucleic acid.

또한, 본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서, In addition, in the present invention, in one or more single strands of the double strands of nucleic acids inducing RNA interference, including the following steps, some sequences of specific microRNAs are modified to be noncanonical target genes of microRNAs (noncanonical As a method for producing RNA interference-inducing nucleic acids that inhibit the expression of target gene),

특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 시작하여 6개 내지 8개의 연속적인 염기 서열 중 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지도록 RNA 간섭 유도 핵산을 작제하는 단계를 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산의 제조방법을 제공한다.RNA interference to have a modified nucleotide sequence in which at least one guanine base is substituted with a uracil base among 6 to 8 consecutive base sequences starting at the second base from the 5'end of a specific microRNA It provides a method for producing an RNA interference-inducing nucleic acid, comprising the step of constructing an inducible nucleic acid.

이하, 본 발명을 설명한다. Hereinafter, the present invention will be described.

마이크로RNA가 표적 전령RNA와 결합할 때 마이크로RNA 발단 지역(seed region)과 정확히 상보관계가 아니더라도 마이크로RNA의 표적으로 인식하고 전령RNA에 결합하는 경우가 있는바, 이를 비정규 표적 인식(non-canonical target recognition)이라고 한다. 본 발명자들은 이러한 마이크로RNA의 비정규 표적 인식에 착안하여, 마이크로RNA의 일부 서열을 변형시켜 마이크로RNA의 비정규 표적 유전자를 선택적으로 억제하는 RNA 간섭 유도 핵산을 개발하고 이의 효능을 밝힘으로써 본 발명을 완성하였다. When the microRNA binds to the target messenger RNA, it is recognized as a target of the microRNA and binds to the messenger RNA even if it is not exactly complementary to the microRNA seed region.This is a non-canonical target. recognition). The present inventors have completed the present invention by developing an RNA interference-inducing nucleic acid that selectively inhibits irregular target genes of microRNAs by modifying some sequences of microRNAs, focusing on the recognition of such an irregular target of microRNA, and revealing its efficacy. .

본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현만을 억제하는 RNA 간섭 유도 핵산으로서, The present invention is an RNA that inhibits only the expression of a noncanonical target gene of a microRNA by modifying a part of the sequence of a specific microRNA in one or more single strands of a nucleic acid that induces RNA interference. As an interference inducing nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 하는 것을 특징으로 하고, 또는 The RNA interference-inducing nucleic acid contains the 2nd to 5th 4 base sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are the 6th of the specific microRNA. Has a base sequence that is complementary to a base that can be aligned with a base, and the base that can be aligned with the 6th base of the specific microRNA includes all complementary bases including G:A and G:U wobble arrangements. So that a bulge occurs in the target gene between the 5th and 6th of the microRNA, and the bulge disappears from the non-normal target nucleotide sequence to which it binds and binds to a continuous nucleotide sequence, or

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(Guanine) 염기가 유라실(Uracil)로 또는 아데닌(Adenine)으로 적어도 하나 이상 치환된 변형 염기 서열을 가지게 하여, 해당 부위의 G:A 또는 G:U 워블 배열이 U:A 또는 A:U의 정규적인 염기 배열이 되게 하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다. The RNA interference-inducing nucleic acid is a nucleotide sequence between the 5'end and the ninth base of a specific microRNA, preferably the guanine base is uracil in the 2nd to 7th sequence based on the 5'end or By having a modified base sequence substituted with at least one or more adenine, characterized in that the G:A or G:U wobble arrangement of the site becomes a regular base sequence of U:A or A:U, RNA interference inducing nucleic acids are provided.

본 발명에 따른 RNA 간섭 유도 핵산은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥으로서, 바람직하게 마이크로RNA, 짧은 헤어핀 RNA(small hairpin RNA, shRNA) 및 작은 간섭 RNA(small interfering RNA, siRNA), DsiRNA, lsiRNA, ss-siRNA, asiRNA, piRNA, 또는 endo-siRNA 등이 포함된다. The RNA interference-inducing nucleic acid according to the present invention is one or more single strands of the double-stranded nucleic acid that induces RNA interference, preferably microRNA, small hairpin RNA (shRNA), and small interfering RNA (small). interfering RNA, siRNA), DsiRNA, lsiRNA, ss-siRNA, asiRNA, piRNA, or endo-siRNA.

본 발명에 따른 RNA 간섭 유도 핵산은 마이크로RNA의 2가지 비정규 표적 인식(non-canonical target recognition)을 토대로 한다. The RNA interference-inducing nucleic acid according to the present invention is based on two non-canonical target recognition of microRNAs.

보다 구체적으로, 마이크로RNA는 정규 표적 유전자 뿐만 아니라 비정규 표적 유전자도 인식한다. 마이크로RNA가 인식하는 비정규 표적 유전자는 마이크로RNA와 정확하게 일치하는 상보 관계를 가지지 않는다. More specifically, microRNAs recognize not only canonical target genes but also irregular target genes. The non-canonical target gene recognized by the microRNA does not have an exact complementary relationship with the microRNA.

마이크로RNA가 인식하는 비정규 표적 유전자 및 상기 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산의 일 양태는 다음과 같다. One aspect of the non-normal target gene recognized by the microRNA and the RNA interference-inducing nucleic acid that suppresses the non-normal target gene is as follows.

마이크로RNA가 결합하는 비정규 표적 유전자중 하나의 인식 종류는 마이크로RNA의 5' 말단에서 5번째까지의 염기와 모두 연속적으로 상보 관계를 가진다. 그러나 마이크로RNA의 5' 말단에서 6번째의 염기가 인식하는 (마이크로RNA의 5' 말단에서 6번째의 염기와 배열되는) 유전자는 상기 마이크로RNA의 5' 말단에서 5번째 염기와 상보 관계를 갖는 염기와 바로 연속되는 염기가 아니라, 바로 연속되는 염기는 융기 모양으로 밀어내고, 그 다음에 마이크로RNA와 상보 관계를 갖는 염기가 마이크로RNA의 5' 말단에서 6번째의 염기가 인식하는 염기가 된다.One recognition type of non-canonical target genes to which the microRNA binds has a continuous complementary relationship with all of the bases from the 5'end to the 5th of the microRNA. However, the gene recognized by the 6th base at the 5'end of the microRNA (aligned with the 6th base at the 5'end of the microRNA) is a base having a complementary relationship with the 5th base at the 5'end of the microRNA. Rather than a base that is immediately contiguous with and, the immediately contiguous base is pushed out in a raised shape, and then the base that has a complementary relationship with the microRNA becomes the base recognized by the 6th base from the 5'end of the microRNA.

상기 일 양태의 마이크로RNA가 인식하는 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산은, 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째까지의 4개의 염기 서열을 포함한다. 또한, 상기 4개의 염기 서열에 연속하는 2개의 염기는 서로 동일하며, 상기 2개의 염기 서열은 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함된다. The RNA interference-inducing nucleic acid that suppresses the non-normal target gene recognized by the microRNA of the above aspect includes 4 base sequences from the 2nd to the 5th from the 5'end of the specific microRNA. In addition, two bases consecutive to the four base sequences are identical to each other, and the two base sequences have a base sequence that is complementary to a base that can be aligned with the 6th base of a specific microRNA. Bases that can be aligned with the 6th base include all complementary bases including the G:A and G:U wobble configurations.

이러한 특정 마이크로RNA가 인식하는 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산은 상기 마이크로RNA의 염기 서열과 비교하건대, 적어도 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째까지의 4개의 염기 서열을 공통으로 포함한다. RNA interference-inducing nucleic acids that suppress irregular target genes recognized by these specific microRNAs share at least 4 nucleotide sequences from the 5'end to the 5'end of the specific microRNA compared to the nucleotide sequence of the microRNA. Include as.

또한, RNA 간섭 유도 핵산의 5' 말단으로부터 6번째 염기 서열과 7번째 염기 서열은 동일할 수 있으며, 이들 2개의 염기 서열은 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함된다. 예컨대, 특정 마이크로RNA의 6번째 염기: 상기 6번째 염기와 배열할 수 있는 염기: 상기 6번째 염기와 배열할 수 있는 염기와 상보적인 염기는 (A: U,G: A,C), (G: A,U,C: U,A,G), (U: G,A: C,U) 또는 (C: G: C)일 수 있다. 예컨대, 특정 마이크로RNA의 6번째 염기가 A일때, RNA 간섭 유도 핵산의 5' 말단으로부터 6번째 염기 서열과 7번째 염기 서열은 AA, CA일 수 있고; 특정 마이크로RNA의 6번째 염기가 G일때, RNA 간섭 유도 핵산의 5' 말단으로부터 6번째 염기 서열과 7번째 염기 서열은 UG, AG 또는 GG 일 수 있고; 특정 마이크로RNA의 6번째 염기가 U일때, RNA 간섭 유도 핵산의 5' 말단으로부터 6번째 염기 서열과 7번째 염기 서열은 CU, UU 일 수 있으며; 또는 특정 마이크로RNA의 6번째 염기가 C일때, RNA 간섭 유도 핵산의 5' 말단으로부터 6번째 염기 서열과 7번째 염기 서열은 CC 일 수 있다. In addition, the 6th base sequence and the 7th base sequence from the 5'end of the RNA interference-inducing nucleic acid may be identical, and these two base sequences are base sequences complementary to bases that can be aligned with the 6th base of a specific microRNA. And all complementary bases including G:A and G:U wobble arrangements are included in the bases that can be aligned with the 6th base of the specific microRNA. For example, the 6th base of a specific microRNA: a base that can be aligned with the 6th base: a base that is complementary to a base that can be aligned with the 6th base is (A: U,G: A,C), (G : A, U, C: U, A, G), (U: G, A: C, U) or (C: G: C). For example, when the 6th base of a specific microRNA is A, the 6th base sequence and 7th base sequence from the 5'end of the RNA interference inducing nucleic acid may be AA or CA; When the 6th base of a specific microRNA is G, the 6th base sequence and 7th base sequence from the 5'end of the RNA interference inducing nucleic acid may be UG, AG, or GG; When the 6th base of a specific microRNA is U, the 6th base sequence and 7th base sequence from the 5'end of the RNA interference-inducing nucleic acid may be CU or UU; Alternatively, when the 6th base of a specific microRNA is C, the 6th base sequence and the 7th base sequence from the 5'end of the RNA interference-inducing nucleic acid may be CC.

바람직하게 RNA 간섭 유도 핵산의 5' 말단으로부터 6번째 염기 서열과 특정 마이크로RNA의 5' 말단으로부터 6번째 염기 서열은 동일할 수 있고, 바람직하게 RNA 간섭 유도 핵산의 5' 말단으로부터 7번째 염기 서열과 특정 마이크로RNA의 5' 말단으로부터 6번째 염기 서열은 동일할 수 있다. Preferably, the 6th base sequence from the 5'end of the RNA interference-inducing nucleic acid and the 6th base sequence from the 5'end of the specific microRNA may be the same, preferably the 7th base sequence from the 5'end of the RNA interference-inducing nucleic acid The 6th nucleotide sequence from the 5'end of a particular microRNA may be identical.

또한, 바람직하게 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 7번째 염기 서열을 5' 말단으로부터 8번째 염기 서열로 포함할 수 있다. In addition, preferably, the RNA interference-inducing nucleic acid may include a 7th base sequence from the 5'end of a specific microRNA as an 8th base sequence from the 5'end.

또 다른 양태로, 마이크로RNA가 인식하는 비정규 표적 유전자 및 상기 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산의 일 양태는 다음과 같다. In another aspect, an aspect of the non-normal target gene recognized by the microRNA and the RNA interference-inducing nucleic acid that suppresses the non-normal target gene is as follows.

마이크로RNA가 인식하는 비정규 표적 유전자는 마이크로RNA와 마이크로RNA가 인식하는 표적 유전자의 염기가 A:U, G:C, C:G, U:A 의 상보 관계의 배열과 함께 G:A 의 워블 관계의 배열 또는 G:U 의 워블 관계의 배열을 포함한다. For non-normal target genes recognized by microRNA, the bases of the microRNA and the target gene recognized by the microRNA are A:U, G:C, C:G, U:A, along with a complementary relationship arrangement of G:A. Contains an array of or an array of G:U wobble relationships.

마이크로RNA와 마이크로RNA가 인식하는 표적 유전자가 G:A 의 워블 관계에 있을 때, 특정 마이크로RNA의 염기: 상기 특정 마이크로RNA가 인식하는 표적 유전자의 염기: 상기 특정 마이크로RNA가 인식하는 표적 유전자를 억제하는 RNA 간섭 유도 핵산의 염기의 배열은 G:A:U 이다. 또한, 마이크로RNA와 마이크로RNA가 인식하는 표적 유전자가 G:U 의 워블 관계에 있을 때, 특정 마이크로RNA의 염기: 상기 특정 마이크로RNA가 인식하는 표적 유전자의 염기: 상기 특정 마이크로RNA가 인식하는 표적 유전자를 억제하는 RNA 간섭 유도 핵산의 염기의 배열은 G:U:A 이다. When the microRNA and the target gene recognized by the microRNA are in a wobble relationship of G:A, the base of the specific microRNA: the base of the target gene recognized by the specific microRNA: the target gene recognized by the specific microRNA is suppressed The nucleotide sequence of the RNA interference-inducing nucleic acid is G:A:U. In addition, when the microRNA and the target gene recognized by the microRNA are in a wobble relationship of G:U, the base of the specific microRNA: the base of the target gene recognized by the specific microRNA: the target gene recognized by the specific microRNA The arrangement of the bases of the RNA interference-inducing nucleic acid that inhibits G:U:A.

본 발명에 따른 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중 하나 이상의 구아닌(G) 염기가 유라실(U)로 치환된 변형 염기 서열을 가진다. 또는 본 발명에 따른 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 하나 이상의 구아닌(G) 염기가 아데닌(A)로 치환된 변형 염기 서열을 가진다. 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중 구아닌(G) 염기가 하나 이상 포함된 경우, 포함된 구아닌 염기가 모두 유라실(U) 또는 아데닌(A)로 치환될 수도 있고, 적어도 하나 이상의 구아닌 염기가 유라실(U) 또는 아데닌(A)로 치환된다. 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(G) 염기가 하나 이상 포함된 경우, 유라실 또는 아데닌 염기로 치환되는 염기 외에 나머지 염기는 특정 마이크로RNA의 염기와 동일할 수 있다.The RNA interference-inducing nucleic acid according to the present invention has a modified nucleotide sequence in which at least one guanine (G) base is substituted with uracil (U) among the nucleotide sequences between the 5'end and the ninth base of a specific microRNA. Alternatively, in the RNA interference-inducing nucleic acid according to the present invention, one or more guanine (G) bases from the nucleotide sequence from the 5'end to the ninth base of the specific microRNA, preferably from the 2nd to the 7th sequence based on the 5'end, are adenine ( It has a modified base sequence substituted with A). When one or more guanine (G) bases are included in the base sequence between the 5'end of a specific microRNA and the ninth base, all included guanine bases may be replaced with uracil (U) or adenine (A), At least one or more guanine bases are substituted with uracil (U) or adenine (A). If at least one guanine (G) base is included in the nucleotide sequence between the 5'end and the ninth base of a specific microRNA, preferably in the 2nd to 7th sequence based on the 5'end, it is substituted with a uracil or adenine base. In addition to the base to be used, the remaining bases may be the same as those of a specific microRNA.

본 발명에 따른 RNA 간섭 유도 핵산은 마이크로RNA의 비정규 표적 유전자를 선택적으로 억제하고 마이크로RNA의 정규 표적 유전자는 억제하지 않는다. The RNA interference-inducing nucleic acid according to the present invention selectively inhibits non-normal target genes of microRNA and does not inhibit normal target genes of microRNA.

본 발명의 구체적 실시예 2 (도 2 참고)에 따르면, 본 발명에 따른 RNA 간섭 유도 핵산의 표적 유전자에 대한 전령RNA의 발현 조절 기능은 비정규 표적 유전자에 대해 특이적이며, 정규 표적 유전자에 대해서는 억제 효과를 나타내지 않았다. According to a specific example 2 of the present invention (see Fig. 2), the function of regulating the expression of messenger RNA against the target gene of the RNA interference-inducing nucleic acid according to the present invention is specific for non-normal target genes, and suppressed for normal target genes. Did not show any effect.

따라서, 본 발명에 따른 RNA 간섭 유도 핵산을 이용하면, 비정규 표적 유전자 발현만을 선택적으로 억제할 수 있고, 그러므로 RNA 간섭 유도 핵산 발현 억제를 통해 기대되는 효과만을 선택적으로 유도할 수 있다. Therefore, when the RNA interference-inducing nucleic acid according to the present invention is used, only the expression of an irregular target gene can be selectively suppressed, and therefore, only an expected effect can be selectively induced through the inhibition of RNA interference-induced nucleic acid expression.

본 발명에 있어서, 특정 마이크로RNA가 miR-124, miR-155, miR-122, miR-1, miR-133, let-7, mR-302a, miR-372 로 이루어진 군에서 선택된 하나 이상일 수 있다. In the present invention, the specific microRNA may be at least one selected from the group consisting of miR-124, miR-155, miR-122, miR-1, miR-133, let-7, mR-302a, and miR-372.

본 발명에 있어서, 각각 인간의 miR-124, miR-155, miR-122, miR-1, miR-133, let-7, miR-302a 및 miR-372의 염기 서열은 마이크로RNA의 서열 데이터베이스인 miRBase (http://www.mirbase.org/)에서 MIMAT0000422, MIMAT0000646, MIMAT0000421, MIMAT0000416, MIMAT0000427, MIMAT0000062, MIMAT0000684, 및 MIMAT0000724에 기재된 바와 같다. In the present invention, the nucleotide sequences of human miR-124, miR-155, miR-122, miR-1, miR-133, let-7, miR-302a and miR-372, respectively, are miRBase, a sequence database of microRNAs. As described in MIMAT0000422, MIMAT0000646, MIMAT0000421, MIMAT0000416, MIMAT0000427, MIMAT0000062, MIMAT0000684, and MIMAT0000724 at (http://www.mirbase.org/).

다만, 본 발명에 따른 특정 마이크로RNA는 인간의 마이크로RNA로 한정되지 않고, 포유동물을 포함하는 동물의 마이크로RNA를 포함한다. However, the specific microRNA according to the present invention is not limited to human microRNAs, and includes animal microRNAs, including mammals.

본 발명에 따른 특정 마이크로RNA가 인식하는 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일할 수 있으며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되는 것을 특징으로 하는 RNA 간섭 유도 핵산의 길이는 6개 이상의 염기 서열을 포함하며, 이에 제한되지 않지만, 보통 21개 정도로 24개 이하의 염기 서열을 가질 수 있다.As an RNA interference-inducing nucleic acid that suppresses an irregular target gene recognized by a specific microRNA according to the present invention, it contains the 2nd to 5th 4 base sequences from the 5'end of the specific microRNA, and the 6th and 7th bases May be the same, and the 6th and 7th bases have a base sequence that is complementary to a base that can be aligned with the 6th base of a specific microRNA, and the base that can be aligned with the 6th base of the specific microRNA includes G: RNA interference-inducing nucleic acids, characterized in that all complementary bases including A, G:U wobble sequences, are included, include 6 or more nucleotide sequences, but are not limited thereto, but are usually about 21 or 24 It may have the following nucleotide sequence.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-124일 때, miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-124의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일할 수 있으며 6번째와 7번째 염기는 miR-124의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 miR-124의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124 when a specific microRNA is miR-124, and is from the 2nd to 5th end of the 5'end of miR-124. It contains 4 base sequences, the 6th and 7th bases may be the same, and the 6th and 7th bases have a base sequence complementary to a base that can be aligned with the 6th base of miR-124, and the miR- It is an RNA interference-inducing nucleic acid that includes all complementary bases including G:A and G:U wobble sequences in the bases that can be aligned with the 6th base of 124.

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단 2번째에서 7번째 염기 서열이 5'-AA GGC C-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-124BS)일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UAA GGC CAC GCG GUG AAU GCC-3‘ 의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-124BS)일 수 있다. For example, the RNA interference-inducing nucleic acid may be an RNA interference-inducing nucleic acid (miR-124BS) in which the 2nd to 7th base sequence at the 5'end represents the base sequence of 5'-AA GGC C-3'. More preferably, the RNA interference-inducing nucleic acid may be an RNA interference-inducing nucleic acid (miR-124BS) showing the nucleotide sequence of 5′-UAA GGC CAC GCG GUG AAU GCC-3′.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-122일 때, miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-122의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 miR-122의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 miR-122의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122 when a specific microRNA is miR-122, and is the 2nd to 5th from the 5'end of miR-122. It contains 4 base sequences, the 6th and 7th bases are the same, and the 6th and 7th bases have a base sequence complementary to a base that can be aligned with the 6th base of miR-122. It is an RNA interference-inducing nucleic acid that includes all complementary bases including G:A and G:U wobble arrangements as bases that can be aligned with the 6th base.

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단 2번째에서 7번째 염기 서열이 5'-GG AGU U-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-122BS)일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UGG AGU UGU GAC AAU GGU GUU-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-122BS)일 수 있다. For example, the RNA interference-inducing nucleic acid may be an RNA interference-inducing nucleic acid (miR-122BS) in which the 2nd to 7th base sequence of the 5'end represents the base sequence of 5'-GG AGU U-3'. More preferably, the RNA interference inducing nucleic acid may be an RNA interference inducing nucleic acid (miR-122BS) showing the nucleotide sequence of 5′-UGG AGU UGU GAC AAU GGU GUU-3′.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-155일 때, miR-155의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-155의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 miR-155의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 miR-155의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-155 when a specific microRNA is miR-155, from the 2nd to 5th end of the 5'end of miR-155. It contains 4 base sequences, the 6th and 7th bases are the same, the 6th and 7th bases have a base sequence complementary to a base that can be aligned with the 6th base of miR-155, It is an RNA interference-inducing nucleic acid that includes all complementary bases including G:A and G:U wobble arrangements as bases that can be aligned with the 6th base.

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단 2번째에서 7번째 염기 서열이 5'-UA AUG G-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-155BS)일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UUA AUG GC UAA U CGU GAU AGG-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-155BS)일 수 있다. For example, the RNA interference-inducing nucleic acid may be an RNA interference-inducing nucleic acid (miR-155BS) in which the 2nd to 7th base sequence of the 5'end represents the base sequence of 5'-UA AUG G-3'. More preferably, the RNA interference inducing nucleic acid may be an RNA interference inducing nucleic acid (miR-155BS) showing the nucleotide sequence of 5′-UUA AUG GC UAA U CGU GAU AGG-3′.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-1일 때, miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-1의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 miR-1의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 miR-1의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-1 when a specific microRNA is miR-1, and the 2nd to 5th end from the 5'end of miR-1 It includes 4 base sequences, the 6th and 7th bases are the same, and the 6th and 7th bases have a base sequence complementary to a base that can be aligned with the 6th base of miR-1. It is an RNA interference-inducing nucleic acid that includes all complementary bases including G:A and G:U wobble arrangements as bases that can be aligned with the 6th base.

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단 2번째에서 7번째 염기 서열이 5'-GG AAU U-3''의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-1BS)일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UGG AAU UGU AAA GAA GUA UGU-3'의 염기 서열을 나타내는 RNA 간섭 유도 핵산 (miR-1BS)일 수 있다. For example, the RNA interference-inducing nucleic acid may be an RNA interference-inducing nucleic acid (miR-1BS) in which the 2nd to 7th base sequence of the 5'end represents the base sequence of 5'-GG AAU U-3''. More preferably, the RNA interference inducing nucleic acid may be an RNA interference inducing nucleic acid (miR-1BS) showing the nucleotide sequence of 5′-UGG AAU UGU AAA GAA GUA UGU-3′.

본 발명에 따른 특정 마이크로RNA가 인식하는 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, 특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A)으로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 것을 특징으로 하는 RNA 간섭 유도 핵산의 길이는 6개 이상의 염기 서열을 가지며, 이에 제한되지 않지만, 보통 21개 정도로 24개 이하의 염기 서열을 가질 수 있다. As an RNA interference-inducing nucleic acid that suppresses an irregular target gene recognized by a specific microRNA according to the present invention, of the nucleotide sequence between the 5'end and the ninth base of the specific microRNA, preferably from the 2nd to the 7th based on the 5'end. The length of the RNA interference-inducing nucleic acid, characterized in that the guanine (G) base has at least one modified base sequence substituted with uracil (U) or adenine (A), has a length of 6 or more base sequences. Although not limited, it may have a sequence of 24 or less, usually around 21.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-124일 때, miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-124의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-124 when a specific microRNA is miR-124, and the base between the 5'end and the ninth base of miR-124 Among the sequences, preferably, it is an RNA interference-inducing nucleic acid having a modified nucleotide sequence in which at least one guanine (G) base is substituted with uracil (U) or adenine (A) base from the 2nd to 7th sequence based on the 5'end. .

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-UAA UGC AC-3' (miR-124-G4U), 5'-UAA GUC AC-3'(miR-124-G5U) 또는 5'-UAA UUC AC-3'(miR-124-G4,5U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UAA UGC ACG CGG UGA AUG CCA A-3' (miR-124-G4U), 5'-UAA GUC ACG CGG UGA AUG CCA A-3'(miR-124-G5U) 또는 5'-UAA UUC ACG CGG UGA AUG CCA A-3'(miR-124-G4,5U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference-inducing nucleic acid has a nucleotide sequence of 5'-UAA UGC AC-3' (miR-124-G4U), 5'-UAA GUC AC-3' (miR-124) between the 5'end and the ninth base. -G5U) or 5'-UAA UUC AC-3' (miR-124-G4,5U). More preferably, the RNA interference inducing nucleic acid is 5'-UAA UGC ACG CGG UGA AUG CCA A-3' (miR-124-G4U), 5'-UAA GUC ACG CGG UGA AUG CCA A-3' (miR-124 -G5U) or 5'-UAA UUC ACG CGG UGA AUG CCA A-3' (miR-124-G4,5U).

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-1일 때, miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-1의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-1 when a specific microRNA is miR-1, and a base between the 5'end and the 9th base of miR-1 It is an RNA interference-inducing nucleic acid having a modified nucleotide sequence in which at least one guanine (G) base in the sequence is substituted with uracil (U) or adenine (A) base.

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-UUG AAU GUA-3' (miR-1-G2U), 5'-UGU AAU GUA-3' (miR-1-G3U), 5'-UGG AAU UUA-3' (miR-1-G7U), 5'-UUU AAU GUA-3' (miR-1-G2,3U), 5'-UGU AAU UUA-3' (miR-1-G3,7U), 5'-UUG AAU UUA-3' (miR-1-G2,7U) 또는 5'-UUU AAU UUA-3' (miR-1-G2,3,7U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UUG AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2U), 5'-UGU AAU GUA AAG AAG UAU GUA U-3' (miR-1-G3U), 5'-UGG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G7U), 5'-UUU AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2,3U), 5'-UGU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G3,7U), 5'-UUG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,7U) 또는 5'-UUU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,3,7U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference inducing nucleic acid has a base sequence between the 5'end and the ninth base 5'-UUG AAU GUA-3' (miR-1-G2U), 5'-UGU AAU GUA-3' (miR-1 -G3U), 5'-UGG AAU UUA-3' (miR-1-G7U), 5'-UUU AAU GUA-3' (miR-1-G2,3U), 5'-UGU AAU UUA-3' (miR-1-G3,7U), 5'-UUG It may be an RNA interference inducing nucleic acid representing AAU UUA-3' (miR-1-G2,7U) or 5'-UUU AAU UUA-3' (miR-1-G2,3,7U). More preferably, the RNA interference inducing nucleic acid is 5'-UUG AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2U), 5'-UGU AAU GUA AAG AAG UAU GUA U-3' (miR-1 -G3U), 5'-UGG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G7U), 5'-UUU AAU GUA AAG AAG UAU GUA U-3' (miR-1-G2,3U), 5'-UGU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G3,7U), 5'-UUG AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,7U) or 5' -UUU AAU UUA AAG AAG UAU GUA U-3' (miR-1-G2,3,7U) may be an RNA interference inducing nucleic acid showing the base sequence.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-122일 때, miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-122의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-122 when a specific microRNA is miR-122, and the base between the 5'end and the ninth base of miR-122 In the sequence, preferably, in the 2nd to 7th sequence based on the 5'end, the guanine (G) base is an RNA interference-inducing nucleic acid having a modified base sequence in which at least one base is substituted with uracil (U) or adenine (A) base. .

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-UUG AGU GUG-3' (miR-122-G2U), 5'-UGU AGU GUG-3' (miR-122-G3U), 5'-UGG AUU GUG-3' (miR-122-G5U), 5'-UGG AGU UUG-3' (miR-122-G7U), 5'-UGG AGU GUU-3' (miR-122-G9U), 5'-UUU AGU GUG-3' (miR-122-G2,3U), 5'-UUG AUU GUG-3' (miR-122-G2,5U), 5'-UUG AGU UUG-3' (miR-122-G2,7U), 5'-UUG AGU GUU-3' (miR-122-G2,9U), 5'-UGU AUU GUG (miR-122-G3,5U), 5'-UGU AGU UUG-3' (miR-122-G3,7U), 5'-UGU AGU GUU-3' (miR-122-G3,9U), 5'-UGG AUU UUG-3' (miR-122-G5,7U), 5'-UGG AUU GUU-3' (miR-122-G5,9U), 또는 5'-UGG AGU UUU-3 (miR-122-G7,9U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UUG AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2U), 5'-UGU AGU GUG ACA AUG GUG UUU G-3 (miR-122-G3U), 5'-UGG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G5U), 5'-UGG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G7U), 5'-UGG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G9U), 5'-UUU AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2,3U), 5'-UUG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G2,5U), 5'-UUG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G2,7U), 5'-UUG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G2,9U), 5'-UGU AUU GUG ACA AUG GUG UUU G-3 (miR-122-G3,5U), 5'-UGU AGU UUG ACA AUG GUG UUU G-3 (miR-122-G3,7U), 5'-UGU AGU GUU ACA AUG GUG UUU G-3 (miR-122-G3,9U), 5'-UGG AUU UUG ACA AUG GUG UUU G-3' (miR-122-G5,7U), 5'-UGG AUU GUU ACA AUG GUG UUU G-3' (miR-122-G5,9U) 또는 5'-UGG AGU UUU ACA AUG GUG UUU G-3' (miR-122-G7,9U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference-inducing nucleic acid has a nucleotide sequence between the 5'end and the ninth base 5'-UUG AGU GUG-3' (miR-122-G2U), 5'-UGU AGU GUG-3' (miR-122 -G3U), 5'-UGG AUU GUG-3' (miR-122-G5U), 5'-UGG AGU UUG-3' (miR-122-G7U), 5'-UGG AGU GUU-3' (miR- 122-G9U), 5'-UUU AGU GUG-3' (miR-122-G2,3U), 5'-UUG AUU GUG-3' (miR-122-G2,5U), 5'-UUG AGU UUG- 3'(miR-122-G2,7U), 5'-UUG AGU GUU-3' (miR-122-G2,9U), 5'-UGU AUU GUG (miR-122-G3,5U), 5'- UGU AGU UUG-3' (miR-122-G3,7U), 5'-UGU AGU GUU-3' (miR-122-G3,9U), 5'-UGG AUU UUG-3' (miR-122-G5 ,7U), 5′-UGG AUU GUU-3′ (miR-122-G5,9U), or 5′-UGG AGU UUU-3 (miR-122-G7,9U). . More preferably, the RNA interference-inducing nucleic acid is 5'-UUG AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2U), 5'-UGU AGU GUG ACA AUG GUG UUU G-3 (miR-122- G3U), 5'-UGG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G5U), 5'-UGG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G7U), 5'- UGG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G9U), 5'-UUU AGU GUG ACA AUG GUG UUU G-3' (miR-122-G2,3U), 5'-UUG AUU GUG ACA AUG GUG UUU G-3' (miR-122-G2,5U), 5'-UUG AGU UUG ACA AUG GUG UUU G-3' (miR-122-G2,7U), 5'-UUG AGU GUU ACA AUG GUG UUU G-3' (miR-122-G2,9U), 5'-UGU AUU GUG ACA AUG GUG UUU G-3 (miR-122-G3,5U), 5'-UGU AGU UUG ACA AUG GUG UUU G- 3 (miR-122-G3,7U), 5'-UGU AGU GUU ACA AUG GUG UUU G-3 (miR-122-G3,9U), 5'-UGG AUU UUG ACA AUG GUG UUU G-3' (miR -122-G5,7U), 5'-UGG AUU GUU ACA AUG GUG UUU G-3' (miR-122-G5,9U) or 5'-UGG AGU UUU ACA AUG GUG UUU G-3' (miR-122 -G7,9U) may be an RNA interference inducing nucleic acid showing the nucleotide sequence.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-133일 때, miR-133의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-133의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-133 when a specific microRNA is miR-133, and the base between the 5'end and the ninth base of miR-133 In the sequence, preferably, in the 2nd to 7th sequence based on the 5'end, the guanine (G) base is an RNA interference-inducing nucleic acid having a modified base sequence in which at least one base is substituted with uracil (U) or adenine (A) base. .

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-UUU UGU CCC-3' (miR-133-G4U), 5'-UUU GUU CCC-3' (miR-133-G5U) 또는 5'-UUU UUU CCC-3'(miR-124-G4,5U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UUU UGU CCC CUU CAA CCA GCU G -3' (miR-133-G4U), 5'-UUU GUU CCC CUU CAA CCA GCU G-3' (miR-133-G5U) 또는 5'-UUU UUU CCC CUU CAA CCA GCU G-3'(miR-124-G4,5U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference-inducing nucleic acid has a base sequence between the 5'end and the ninth base 5'-UUU UGU CCC-3' (miR-133-G4U), 5'-UUU GUU CCC-3' (miR-133 -G5U) or 5'-UUU UUU CCC-3' (miR-124-G4,5U). More preferably, the RNA interference-inducing nucleic acid is 5'-UUU UGU CCC CUU CAA CCA GCU G-3' (miR-133-G4U), 5'-UUU GUU CCC CUU CAA CCA GCU G-3' (miR-133 -G5U) or 5'-UUU UUU CCC CUU CAA CCA GCU G-3' (miR-124-G4,5U) may be an RNA interference inducing nucleic acid showing the base sequence.

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 let-7 일 때, let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, let-7의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of let-7 when a specific microRNA is let-7, and the base between the 5'end and the ninth base of let-7 Among the sequences, preferably, it is an RNA interference-inducing nucleic acid having a modified nucleotide sequence in which at least one guanine (G) base is substituted with uracil (U) or adenine (A) base from the 2nd to 7th sequence based on the 5'end. .

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-UUA GGU AGU-3' (let-7-G2U), 5'-UGA UGU AGU-3' (let-7-G4U), 5'-UGA GUU AGU-3' (let-7-G5U), 5'-UGA GGU AUU-3' (let-7-G8U), 5'-UUA UGU AGU-3' (let-7-G2,4U), 5'-UUA GUU AGU-3' (let-7-G2,5U), 5'-UUA GGU AUU-3' (let-7-G2,8U), 5'-UGA UUU AGU-3' (let-7-G4,5U), 5'-UGA UGU AUU-3' (let-7-G4,8U), 또는 5'-UGA GUU AUU-3' (let-7-G5,8U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UUA GGU AGU AGG UUG UAU AGU U-3' (let-7-G2U), 5'-UGA UGU AGU AGG UUG UAU AGU U-3' (let-7-G4U), 5'-UGA GUU AGU AGG UUG UAU AGU U-3' (let-7-G5U), 5'-UGA GGU AUU AGG UUG UAU AGU U-3' (let-7-G8U), 5'-UUA UGU AGU AGG UUG UAU AGU U-3' (let-7-G2,4U), 5'-UUA GUU AGU AGG UUG UAU AGU U-3' (let-7-G2,5U), 5'-UUA GGU AUU AGG UUG UAU AGU U-3' (let-7-G2,8U), 5'-UGA UUU AGU AGG UUG UAU AGU U-3' (let-7-G4,5U), 5'-UGA UGU AUU AGG UUG UAU AGU U-3' (let-7-G4,8U) 또는 5'-UGA GUU AUU AGG UUG UAU AGU U-3' (let-7-G5,8U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference-inducing nucleic acid has a base sequence between the 5'end and the ninth base 5'-UUA GGU AGU-3' (let-7-G2U), 5'-UGA UGU AGU-3' (let-7 -G4U), 5'-UGA GUU AGU-3' (let-7-G5U), 5'-UGA GGU AUU-3' (let-7-G8U), 5'-UUA UGU AGU-3' (let- 7-G2,4U), 5'-UUA GUU AGU-3' (let-7-G2,5U), 5'-UUA GGU AUU-3' (let-7-G2,8U), 5'-UGA UUU AGU-3' (let-7-G4,5U), 5'-UGA UGU AUU-3' (let-7-G4,8U), or 5'-UGA GUU AUU-3' (let-7-G5, 8U) may be an RNA interference inducing nucleic acid. More preferably, the RNA interference inducing nucleic acid is 5'-UUA GGU AGU AGG UUG UAU AGU U-3' (let-7-G2U), 5'-UGA UGU AGU AGG UUG UAU AGU U-3' (let-7 -G4U), 5'-UGA GUU AGU AGG UUG UAU AGU U-3' (let-7-G5U), 5'-UGA GGU AUU AGG UUG UAU AGU U-3' (let-7-G8U), 5' -UUA UGU AGU AGG UUG UAU AGU U-3' (let-7-G2,4U), 5'-UUA GUU AGU AGG UUG UAU AGU U-3' (let-7-G2,5U), 5'-UUA GGU AUU AGG UUG UAU AGU U-3' (let-7-G2,8U), 5'-UGA UUU AGU AGG UUG UAU AGU U-3' (let-7-G4,5U), 5'-UGA UGU AUU RNA interference inducing nucleic acid showing the base sequence of AGG UUG UAU AGU U-3' (let-7-G4,8U) or 5'-UGA GUU AUU AGG UUG UAU AGU U-3' (let-7-G5,8U) Can be

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-302a일 때, miR-302a의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-302a의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that inhibits an irregular target gene of miR-302a when a specific microRNA is miR-302a, and the base between the 5'end and the ninth base of miR-302a In the sequence, preferably, in the 2nd to 7th sequence based on the 5'end, the guanine (G) base is an RNA interference-inducing nucleic acid having a modified base sequence in which at least one base is substituted with uracil (U) or adenine (A) base. .

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-UAA UUG CUU-3' (miR-302a-G4U), 5'-UAA GUU CUU-3' (miR-302a-G6U), 또는 5'-UAA UUU CUU-3' (miR-302a-G4,6U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 5'-UAA UUG CUU CCA UGU UUU GGU GA-3' (miR-302a-G4U), 5'-UAA GUU CUU CCA UGU UUU GGU GA-3' (miR-302a-G6U), 또는 5'-UAA UUU CUU CCA UGU UUU GGU GA-3' (miR-302a-G4,6U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference-inducing nucleic acid has a base sequence between the 5'end and the ninth base 5'-UAA UUG CUU-3' (miR-302a-G4U), 5'-UAA GUU CUU-3' (miR-302a -G6U), or an RNA interference inducing nucleic acid representing 5'-UAA UUU CUU-3' (miR-302a-G4,6U). More preferably, the RNA interference-inducing nucleic acid is 5'-UAA UUG CUU CCA UGU UUU GGU GA-3' (miR-302a-G4U), 5'-UAA GUU CUU CCA UGU UUU GGU GA-3' (miR-302a -G6U), or may be an RNA interference inducing nucleic acid showing the nucleotide sequence of 5'-UAA UUU CUU CCA UGU UUU GGU GA-3' (miR-302a-G4,6U).

본 발명에 따른 RNA 간섭 유도 핵산은, 특정 마이크로RNA가 miR-372일 때, miR-372의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, miR-372의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중, 바람직하게는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(G) 염기가 유라실(U) 또는 아데닌(A) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 RNA 간섭 유도 핵산이다. The RNA interference-inducing nucleic acid according to the present invention is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-372 when a specific microRNA is miR-372, and the base between the 5'end and the ninth base of miR-372 In the sequence, preferably, in the 2nd to 7th sequence based on the 5'end, the guanine (G) base is an RNA interference-inducing nucleic acid having a modified base sequence in which at least one base is substituted with uracil (U) or adenine (A) base. .

예컨대, 상기 RNA 간섭 유도 핵산은 5' 말단으로부터 9번째 염기 사이의 염기 서열이 5'-AAA UUG CUG-3' (miR-372-G4U), 5'-AAA GUU CUG-3' (miR-372-G6U), 5'-AAA GUG CUU-3' (miR-372-G9U), 5'-AAA UUU CUG-3' (miR-372-G4,6U), 5'-AAA UUG CUU-3' (miR-372-G4,9U), 또는 5'-AAA GUU CUU-3' (miR-372-G6,9U)을 나타내는 RNA 간섭 유도 핵산일 수 있다. 보다 바람직하게, 상기 RNA 간섭 유도 핵산은 miR-372의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서 5'-AAA UUG CUG CGA CAU UUG AGC GU -3' (miR-372-G4U), 5'-AAA GUU CUG CGA CAU UUG AGC GU -3' (miR-372-G6U), 5'-AAA GUG CUU CGA CAU UUG AGC GU -3' (miR-372-G9U), 5'-AAA UUU CUG CGA CAU UUG AGC GU -3' (miR-372-G4,6U), 5'-AAA UUG CUU CGA CAU UUG AGC GU -3' (miR-372-G4,9U), 또는 5'-AAA GUU CUU CGA CAU UUG AGC GU -3' (miR-372-G6,9U)의 염기 서열을 나타내는 RNA 간섭 유도 핵산의 염기 서열을 나타내는 RNA 간섭 유도 핵산일 수 있다. For example, the RNA interference-inducing nucleic acid has a nucleotide sequence between the 5'end and the ninth base 5'-AAA UUG CUG-3' (miR-372-G4U), 5'-AAA GUU CUG-3' (miR-372 -G6U), 5'-AAA GUG CUU-3' (miR-372-G9U), 5'-AAA UUU CUG-3' (miR-372-G4,6U), 5'-AAA UUG CUU-3' ( miR-372-G4,9U), or an RNA interference inducing nucleic acid representing 5'-AAA GUU CUU-3' (miR-372-G6,9U). More preferably, the RNA interference-inducing nucleic acid is an RNA interference-inducing nucleic acid that suppresses an irregular target gene of miR-372, and is 5'-AAA UUG CUG CGA CAU UUG AGC GU -3' (miR-372-G4U), 5'- AAA GUU CUG CGA CAU UUG AGC GU -3' (miR-372-G6U), 5'-AAA GUG CUU CGA CAU UUG AGC GU -3' (miR-372-G9U), 5'-AAA UUU CUG CGA CAU UUG AGC GU -3' (miR-372-G4,6U), 5'-AAA UUG CUU CGA CAU UUG AGC GU -3' (miR-372-G4,9U), or 5'-AAA GUU CUU CGA CAU UUG AGC It may be an RNA interference-inducing nucleic acid showing the nucleotide sequence of an RNA interference-inducing nucleic acid showing the nucleotide sequence of GU-3′ (miR-372-G6,9U).

또한, 본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서, In addition, the present invention is an RNA that suppresses noncanonical target genes of microRNAs by modifying some sequences of specific microRNAs in one or more single strands of a nucleic acid that induces RNA interference. As an interference inducing nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 하는 것을 특징으로 하며,The RNA interference-inducing nucleic acid contains the 2nd to 5th 4 base sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are the 6th of the specific microRNA. Has a base sequence that is complementary to a base that can be aligned with a base, and the base that can be aligned with the 6th base of the specific microRNA includes all complementary bases including G:A and G:U wobble arrangements. In this way, a bulge occurs in the target gene between the 5th and 6th microRNA, and the bulge disappears from the non-normal target nucleotide sequence to which it binds and binds to a continuous nucleotide sequence,

상기 특정 마이크로RNA는 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치에 메틸기(2'OMe)가 첨가된 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The specific microRNA provides an RNA interference-inducing nucleic acid, characterized in that a methyl group (2'OMe) is added to the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end.

본 발명에 따른 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기로 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기를 포함하고, 상기 마이크로RNA의 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치에 메틸기(2'OMe)가 첨가되어 있는 경우라면, 이를 제외한 나머지 염기 서열에는 제한이 없고, 어떤 염기 서열이든 모두 포함될 수 있으며, 이 때 상기 RNA 간섭 유도 핵산은 6개 내지 24개의 염기 서열을 포함할 수 있고, 바람직하게는 6개 내지 15개, 더 바람직하게는 6개 내지 8개의 염기 서열을 포함할 수 있으나, 상기 핵산의 길이에 특별한 제한은 없다.The RNA interference-inducing nucleic acid according to the present invention includes the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are specific microRNAs. It has a base sequence that is complementary to a base that can be aligned with the 6th base of the specific microRNA, and is a base that can be aligned with the 6th base of the specific microRNA, and is all complementary including a G:A, G:U wobble arrangement. If a base is included and a methyl group (2'OMe) is added at the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end of the microRNA, the rest of the nucleotide sequence other than this is not limited, and any base Any sequence may be included, and in this case, the RNA interference-inducing nucleic acid may contain 6 to 24 nucleotide sequences, preferably 6 to 15, more preferably 6 to 8 nucleotide sequences. However, there is no particular limitation on the length of the nucleic acid.

본 발명에 따른 RNA 간섭 유도 핵산은 마이크로RNA의 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치에 메틸기(2'OMe)가 첨가되어 화학적으로 변형이 일어난 염기 서열을 포함하며, 상기 2'OMe 변형이 일어난 RNA 간섭 유도 핵산은 이의 정규 발단 표적 유전자의 발현만을 선택적으로 억제하고, 비정규 발단 표적 유전자의 발현은 억제하지 않을 수 있다. 이에, 상기 2'OMe 변형이 일어난 RNA 간섭 유도 핵산은 특정 마이크로RNA의 비정규 핵융기 싸이트만을 특이적으로 억제하기 위한 본 발명의 목적은 유지하면서, 새롭게 발생할 수 있는 비정규 핵융기 싸이트는 완전히 제거할 수 있다. The RNA interference-inducing nucleic acid according to the present invention includes a nucleotide sequence chemically modified by adding a methyl group (2'OMe) to the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end of the microRNA, and the 2 'Ome-modified RNA interference-inducing nucleic acids selectively inhibit only the expression of its normal initiating target gene and may not inhibit the expression of non-normal initiation target genes. Thus, the 2'OMe modified RNA interference-inducing nucleic acid maintains the object of the present invention to specifically inhibit only the irregular nucleus site of a specific microRNA, while the newly occurring irregular nucleus site can be completely removed. have.

본 발명에 따른 RNA 간섭 유도 핵산에 있어서, 상기 메틸기(2'OMe)가 첨가될 수 있는 마이크로RNA의 종류에는 제한이 없으며, 마이크로RNA의 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치라면, 어떤 마이크로RNA에도 2'OMe가 첨가될 수 있으나, 본 발명의 구체적인 실시예에 따르면, 상기 2'OMe가 첨가될 수 있는 마이크로RNA는 miR-124 또는 miR-1일 수 있다. In the RNA interference-inducing nucleic acid according to the present invention, there is no restriction on the kind of microRNA to which the methyl group (2'OMe) can be added, and the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end of the microRNA If so, 2'OMe may be added to any microRNA, but according to a specific embodiment of the present invention, the microRNA to which the 2'OMe may be added may be miR-124 or miR-1.

또한, 본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서, In addition, the present invention is an RNA that suppresses noncanonical target genes of microRNAs by modifying some sequences of specific microRNAs in one or more single strands of a nucleic acid that induces RNA interference. As an interference inducing nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The RNA interference-inducing nucleic acid contains the 2nd to 5th 4 base sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are the 6th of the specific microRNA. Has a base sequence that is complementary to a base that can be aligned with a base, and the base that can be aligned with the 6th base of the specific microRNA includes all complementary bases including G:A and G:U wobble arrangements. Induction of RNA interference, characterized in that the bulge is formed in the target gene between the 5th and 6th of the microRNA, and the bulge disappears from the non-normal target nucleotide sequence and binds to a continuous nucleotide sequence. Nucleic acids are provided.

본 발명에 따른 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기로 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기를 포함하고 있는 경우라면, 이를 제외한 나머지 염기 서열에는 제한이 없고, 어떤 염기 서열이든 모두 포함될 수 있으며, 이 때 상기 RNA 간섭 유도 핵산은 6개 내지 24개의 염기 서열을 포함할 수 있고, 바람직하게는 6개 내지 15개, 더 바람직하게는 6개 내지 8개의 염기 서열을 포함할 수 있으나, 상기 핵산의 길이에 특별한 제한은 없다.The RNA interference-inducing nucleic acid according to the present invention includes the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are specific microRNAs. It has a base sequence that is complementary to a base that can be aligned with the 6th base of the specific microRNA, and is a base that can be aligned with the 6th base of the specific microRNA, and is all complementary including a G:A, G:U wobble arrangement. If a base is included, there is no restriction on the remaining base sequences except for this, and any base sequence may be included, and in this case, the RNA interference-inducing nucleic acid may include 6 to 24 base sequences, preferably May include 6 to 15, more preferably 6 to 8 nucleotide sequences, but there is no particular limitation on the length of the nucleic acid.

본 발명에 따른 상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하게 함으로써 비정규 핵융기 표적 싸이트만을 선택적으로 억제하고 마이크로RNA의 정규 표적 유전자는 억제하지 않는다.The RNA interference-inducing nucleic acid according to the present invention includes the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases are specific microRNAs. It has a base sequence that is complementary to a base that can be aligned with the 6th base of RNA, and the bases that can be aligned with the 6th base of the specific microRNA are all complementary including G:A and G:U wobble arrangements. The target site for irregular nucleus fusion by including an enemy base so that a bulge occurs in the target gene between the 5th and 6th of the microRNA, and the bulge disappears from the binding irregular target nucleotide sequence and binds to a continuous nucleotide sequence. Only selectively inhibits the microRNA, but not the canonical target gene of the microRNA.

본 발명에 따른 RNA 간섭 유도 핵산은 서열번호 103 내지 528 중 어느 하나 이상으로 표시되는 염기 서열을 포함할 수 있다(표 3 참조).The RNA interference-inducing nucleic acid according to the present invention may include a nucleotide sequence represented by any one or more of SEQ ID NOs: 103 to 528 (see Table 3).

또한, 본 발명은 RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현만을 억제하는 RNA 간섭 유도 핵산으로서, In addition, the present invention inhibits only the expression of noncanonical target genes of microRNAs by modifying some sequences of specific microRNAs in one or more single strands of nucleic acid that induces RNA interference. As an RNA interference inducing nucleic acid,

상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째에서 9번째 염기 사이의 염기 서열, 또는 5'말단 기준 2번째에서부터 7번째 서열중에서 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지며, 해당 부위의 G:A 워블(wobble)이 U:A의 정규적인 염기 배열이 되게 하는 것을 특징으로 하는, RNA 간섭 유도 핵산을 제공한다.The RNA interference-inducing nucleic acid is a nucleotide sequence between the 2nd to 9th bases from the 5'end of the specific microRNA, or the Guanine base in the 2nd to 7th sequence based on the 5'end as a Uracil base. It provides an RNA interference-inducing nucleic acid, characterized in that it has at least one or more substituted modified nucleotide sequences, and the G:A wobble of the corresponding region becomes a regular nucleotide sequence of U:A.

본 발명에 따른 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 9번째 염기 사이의 서열, 또는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 것일 수 있으며, 상기 RNA 간섭 유도 핵산은 특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 9번째 염기 사이의 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 포함하는 경우라면, 이를 제외한 나머지 염기 서열에는 제한이 없으며, 어떤 염기 서열이든 모두 포함될 수 있다. 이 때 상기 특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 9번째 염기 사이의 염기 서열, 또는 5'말단 기준 2번째에서부터 7번째 서열 중에서 유라실(U) 염기로 치환되는 염기 외에 나머지 염기는 특정 마이크로RNA의 염기와 동일할 수도 있다.The RNA interference-inducing nucleic acid according to the present invention includes a sequence between the 2nd base and the 9th base from the 5'end of a specific microRNA, or of the 2nd to 7th sequence based on the 5'end, the Guanine base is Uracil ) At least one base may be substituted, and the RNA interference-inducing nucleic acid has at least one guanine base between the 2nd base and the 9th base from the 5'end of a specific microRNA as a uracil base. In the case of including a modified nucleotide sequence that is more than substituted, there is no restriction on the remaining nucleotide sequences except for this, and any nucleotide sequence may be included. At this time, the base sequence between the 2nd base and the 9th base from the 5'end of the specific microRNA, or the base substituted with the uracil (U) base among the 2nd to 7th sequences based on the 5'end, the remaining bases are specified. It may be the same as the base of the microRNA.

본 발명에 따른 특정 마이크로RNA가 인식하는 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산으로서, 특정 마이크로RNA의 5' 말단으로부터 2번째에서 9번째 염기 사이의 염기 서열, 또는 5'말단 기준 2번째에서부터 7번째 서열 중에서 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지는 것을 특징으로 하는 RNA 간섭 유도 핵산은 6개 내지 24개의 염기 서열을 포함할 수 있고, 바람직하게는 6개 내지 15개, 더 바람직하게는 6개 내지 8개의 염기 서열을 포함할 수 있으나, 상기 특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 시작하여 6개 내지 8개의 연속적인 염기 서열 중 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 포함하는 RNA 간섭 유도 핵산이라면 핵산의 길이에 특별한 제한은 없다. 이 때, 상기 RNA 간섭 유도 핵산에 있어서, 특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 시작하여 6개 내지 8개의 연속적인 염기 서열 중 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 포함하는 경우라면, 이를 제외한 나머지 염기 서열의 종류에는 제한이 없으며, 어떤 염기 서열이든 모두 포함될 수 있다.As an RNA interference-inducing nucleic acid that suppresses an irregular target gene recognized by a specific microRNA according to the present invention, a nucleotide sequence between the 2nd to 9th bases from the 5'end of the specific microRNA, or the 2nd to 7th based on the 5'end The RNA interference-inducing nucleic acid, characterized in that it has a modified nucleotide sequence in which at least one guanine base is substituted with a uracil base, may include 6 to 24 nucleotide sequences, and is preferably May include 6 to 15, more preferably 6 to 8 nucleotide sequences, but guanine among 6 to 8 consecutive nucleotide sequences starting at the second base from the 5'end of the specific microRNA If the (Guanine) base is an RNA interference-inducing nucleic acid containing at least one modified base sequence substituted with at least one uracil base, there is no particular limitation on the length of the nucleic acid. At this time, in the RNA interference-inducing nucleic acid, a Guanine base among 6 to 8 consecutive base sequences starting from the second base from the 5'end of the specific microRNA is at least one uracil base. In the case of including a modified nucleotide sequence that is more than substituted, there is no restriction on the type of nucleotide sequence other than this, and any nucleotide sequence may be included.

본 발명에 따른 RNA 간섭 유도 핵산은 5' 말단으로부터 2번째 염기에서 시작하여 6개 내지 8개의 연속적인 염기 서열 중 구아닌(G) 염기가 유라실(U) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가져 해당 부위의 G:A 워블 배열이 U:A의 정규적인 염기 배열이 되게 함으로써, G:A 워블(wobble) 배열로 결합하는 마이크로RNA의 비정규 표적 유전자만을 선택적으로 억제하고 마이크로RNA의 정규 표적 유전자는 억제하지 않는다. The RNA interference-inducing nucleic acid according to the present invention is a modified nucleotide sequence in which at least one guanine (G) base is substituted with uracil (U) base among 6 to 8 consecutive nucleotide sequences starting from the second base from the 5'end. By making the G:A wobble sequence at the site become a regular nucleotide sequence of U:A, it selectively inhibits only the non-normal target genes of microRNAs that bind to the G:A wobble sequence, and is a regular target of microRNAs. It does not suppress the gene.

본 발명에 따른 RNA 간섭 유도 핵산은 서열번호 529 내지 863 중 어느 하나 이상으로 표시되는 염기 서열을 포함할 수 있다(표 4 참조).The RNA interference-inducing nucleic acid according to the present invention may include a nucleotide sequence represented by any one or more of SEQ ID NOs: 529 to 863 (see Table 4).

본 발명에 따른 상술한 RNA 간섭 유도 핵산을 이용하면, 마이크로RNA의 비정규 표적 유전자를 특이적으로 억제할 수 있다. When the above-described RNA interference-inducing nucleic acid according to the present invention is used, it is possible to specifically suppress an irregular target gene of microRNA.

이에, 본 발명은 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 조성물 또는 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 키트를 제공한다. Accordingly, the present invention provides a composition for inhibiting the expression of an irregular target gene of a microRNA comprising an RNA interference-inducing nucleic acid or a kit for suppressing the expression of an irregular target gene of a microRNA comprising an RNA interference-inducing nucleic acid.

또한, 본 발명에 따른 상술한 RNA 간섭 유도 핵산을 이용하면, 마이크로RNA의 비정규 표적 유전자를 특이적으로 억제함으로써, 마이크로RNA의 비정규 표적 유전자의 발현 억제로 인해서 일어나는 작용을 선택적으로 조절할 수 있다. In addition, by using the above-described RNA interference-inducing nucleic acid according to the present invention, it is possible to selectively control the action that occurs due to suppression of the expression of the non-normal target gene of the microRNA by specifically inhibiting the non-normal target gene of the microRNA.

보다 구체적으로, 본 발명에 따른 RNA 간섭 유도 핵산을 이용하면, 마이크로RNA의 비정규 표적 유전자를 특이적으로 억제하므로, 본 발명에 따른 상술한 RNA 간섭 유도 핵산을 이용하면, 마이크로RNA의 비정규 표적 유전자 발현에 따른 작용(예컨대, 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식, 또는 사멸)을 특이적으로 조절할 수 있다. More specifically, the use of the RNA interference-inducing nucleic acid according to the present invention specifically suppresses the non-normal target gene of the microRNA. Therefore, using the above-described RNA interference-inducing nucleic acid according to the present invention, expression of the non-normal target gene of the microRNA. Actions according to (eg, cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation, or death) can be specifically regulated.

이에, 본 발명은 RNA 간섭 유도 핵산을 포함하는 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식, 또는 사멸 조절용 조성물 또는 키트를 제공한다. Accordingly, the present invention provides a composition or kit for regulating cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation, or death, including RNA interference-inducing nucleic acids.

본 발명에 있어서, 상기 '세포 주기'는 세포가 성장하여 분열하고 다시 성장하는 연속적인 과정으로, 세포가 M기(세포분열기), G1기(제1분열준비기), S기(DNA 합성기), G2기(제2분열준비기)의 4기(phase)를 반복하는 것을 의미한다. G1기는 세포분열 직후에서 DNA 합성 개시까지의 DNA 합성준비기이고 G2기는 DNA 합성의 종료에서 세포분열 개시까지의 세포분열 준비기이다. In the present invention, the'cell cycle' is a continuous process in which cells grow, divide, and grow again, and the cells are in M phase (cell division), G1 phase (first division preparation), S phase (DNA synthesizer), It means repeating the 4 phases of the G2 phase (second fission preparation phase). Stage G1 is the preparation stage for DNA synthesis from immediately after cell division to the start of DNA synthesis, and stage G2 is the preparation stage for cell division from the end of DNA synthesis to the start of cell division.

본 발명에 있어서, 상기 '세포 주기 조절'은 세포가 상기 4기(phase) 간에 변동하도록 유도하거나, 상기 변동을 촉진 또는 정지(arrest)시키는 것을 포함하며, 예컨대, G2/M기의 세포를 G1/G2기로 변동하도록 유도하는 것이 세포 주기 조절의 예로 포함될 수 있다. In the present invention, the'cell cycle regulation' includes inducing a cell to fluctuate between the four phases, or promoting or arresting the fluctuation, for example, G2/M cells in G1 Inducing fluctuations in the /G2 phase may be included as an example of cell cycle regulation.

본 발명에 있어서, 상기 '세포 분화(differentiation)'는 세포가 형태적, 기능적으로 특수성을 획득하는 과정으로, 세포는 분화를 통해서 크기나 모양, 막전위, 대사 활성, 그리고 신호에 대한 반응이 변화한다. In the present invention, the'cell differentiation' is a process in which a cell acquires morphological and functional specificity, and a cell changes its size, shape, membrane potential, metabolic activity, and response to signals through differentiation. .

본 발명에 있어서, 상기 '세포 분화 조절'은 세포가 분화하는 속도를 촉진 또는 지연시키거나, 분화가 시작되도록 유도하거나, 분화가 시작되지 않도록 억제하는 것을 포함하며, 에컨대 신경세포가 분화되도록 유도하여 형태적 특수성(예. 신경돌기분화)을 획득하도록 유도하는 것이 세포 분화 조절의 예로 포함될 수 있다. 또는 예컨대, 근세포가 분화되도록 유도하여 형태적 특수성(예. 근세포의 근섬유화)을 갖도록 유도하는 것이 세포 분화 조절의 예로 포함될 수 있다. In the present invention, the'regulation of cell differentiation' includes promoting or delaying the rate at which cells differentiate, inducing differentiation to start, or inhibiting differentiation so that differentiation does not start, such as inducing neurons to differentiate Inducing the acquisition of morphological specificity (eg neurite differentiation) can be included as an example of cell differentiation regulation. Or, for example, inducing muscle cells to differentiate and inducing them to have morphological specificity (eg, muscle fibrosis of muscle cells) may be included as an example of cell differentiation regulation.

본 발명에 있어서, 상기 ‘역분화’란 분화 진행을 되돌리는 것 내지 분화가 다 된 세포를 분화가 되기 전의 미분화 시기의 전분화능을 획득하여 나아가 중기세포와 같이 변하는 현상을 말한다. In the present invention, the term'reverse differentiation' refers to a phenomenon in which the progression of differentiation is reversed or the pluripotency of the differentiated cells is acquired at the time of undifferentiation before differentiation, and further changes like mesenteric cells.

본 발명에 있어서, 상기 '역분화 조절'은 세포가 역분화 되도록 유도, 촉진하거나, 역분화 진행을 억제, 지연하는 것을 포함하며, 역분화 조절 결과는 예컨대 세포 성장 형태(예. 군집 형성 등), 역분화 인자(Oct3/4, Sox2, c-Myc, Klf4)의 활성 등을 확인함으로써 판단할 수 있다. In the present invention, the'regulation of dedifferentiation' includes inducing, promoting, or inhibiting or delaying the progress of dedifferentiation so that cells are dedifferentiated, and the result of dedifferentiation control is, for example, a cell growth pattern (eg, cluster formation, etc.) , It can be determined by checking the activity of dedifferentiation factors (Oct3/4, Sox2, c-Myc, Klf4).

본 발명에 있어서, 상기 '세포 형태'는 세포의 모양, 구조, 크기 등을 포함하는 표현형 상의 특징을 의미하며, 세포 형태는 생물의 종류에 따라, 또 같은 생물이라도 조직이나 기관의 종류에 따라 다종다양하다.In the present invention, the'cell type' refers to a phenotypic characteristic including the shape, structure, and size of a cell, and the cell type is different depending on the type of tissue or organ even in the same organism. Varies.

본 발명에 있어서, 상기 '세포 형태 조절'은 세포의 모양, 구조, 크기 등을 포함하는 표현형 상의 특징의 변화를 유도하는 것으로, 세포의 자연적 형태 변화를 촉진, 지연, 유도 또는 억제하는 것과 세포의 형태를 비-자연적으로 변화시키는 것을 촉진 내지 유도하는 것을 포함한다. 예컨대, 심근 세포의 심근 비대 현상을 유도하는 것이 예로 포함될 수 있다. In the present invention, the'cell morphology control' is to induce a change in phenotypic characteristics including the shape, structure, size of the cell, etc., promoting, delaying, inducing or inhibiting the change in the natural morphology of the cell. It includes promoting or inducing non-naturally changing morphology. For example, inducing myocardial hypertrophy of cardiomyocytes may be included as an example.

본 발명에 있어서, 상기 '세포 이동'은 세포의 움직임을 의미하며, 동물의 성장 및 생리 활동을 위해 중요한 과정으로, 세포들은 주로 주어진 자극에 빠른 반응을 보이며 보통 비집단적인 형상으로 이동하는데 반해, 다른 세포 유형들은 특정한 성장 기간이나 특수한 상황에서만 이동할 수 있다. 세포 이동은 신경관과 맥관의 발단이나 상피 조직의 상처 치유 과정에서 주로 일어나며, 세포 집단 이동은 다종의 종양 전이에 기여한다. In the present invention, the'cell migration' refers to the movement of cells, and is an important process for the growth and physiological activity of animals, whereas cells mainly respond quickly to a given stimulus and usually move in a non-collective shape, Other cell types can only migrate during specific growth periods or under specific circumstances. Cell migration occurs mainly during the initiation of neural and vasculature or wound healing of epithelial tissues, and cell population migration contributes to the metastasis of a variety of tumors.

본 발명에 있어서, 상기 '세포 이동 조절'은 세포의 이동을 지연, 촉진, 유도 또는 억제(저해)하는 것을 의미한다. In the present invention, the'regulation of cell migration' means to delay, promote, induce or inhibit (inhibit) the movement of cells.

본 발명에 있어서, '세포 분열, 증식'은 모 세포가 두 개의 딸 세포로 나뉘는 과정으로, 세포 수를 늘리는 과정을 의미한다. In the present invention,'cell division and proliferation' refers to a process in which a parent cell is divided into two daughter cells, and means a process of increasing the number of cells.

본 발명에 있어서, '세포 분열, 증식 조절'은 세포 분열, 증식을 지연, 촉진, 억제 내지 유도하는 것을 포함한다. 세포 주기 중 M기(세포분열기)로 세포의 기(phase)를 유도하는 경우 세포 분열, 증식을 유도하게 될 수 있다. 예컨대, G0/G1 기에 분포하는 세포의 수를 감소시키고 G2/M 기에 분포하는 세포의 수를 증가시키면, 세포 분열, 증식 조절의 예로 포함될 수 있다. In the present invention,'cell division and proliferation control' includes delaying, promoting, inhibiting or inducing cell division and proliferation. Cell division and proliferation can be induced when the phase of the cell is induced in the M phase (cell division) during the cell cycle. For example, when the number of cells distributed in the G0/G1 phase is decreased and the number of cells distributed in the G2/M phase is increased, it may be included as an example of cell division and proliferation regulation.

본 발명에 있어서, '세포 사멸(Apoptosis)'은 세포가 기능적인 역할은 유지하면서 유전적 성질에 의해 죽음으로 이르는 단계를 의미하며, 이른 세포 사멸과 늦은 세포 사멸이 모두 포함된다. 세포 사멸에 의하면 세포 전체가 위축되면서 새로운 단백질이 합성되고 세포의 자살 유전자에 의해 죽음으로 유도된다. In the present invention,'apoptosis' refers to a step leading to death by genetic properties while maintaining a functional role of a cell, and includes both early and late cell death. According to apoptosis, the entire cell is atrophy, and a new protein is synthesized and death is induced by the cell's suicide gene.

본 발명에 있어서, '세포 사멸 조절'은 세포 사멸을 유도, 지연, 촉진 또는 억제하는 것을 포함한다. In the present invention,'regulating cell death' includes inducing, delaying, promoting or inhibiting cell death.

보다 구체적으로, 본 발명은 miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-124BS)을 포함하는 암세포 사멸 유도용 조성물;More specifically, the present invention is a composition for inducing cancer cell death comprising an RNA interference-inducing nucleic acid (preferably, miR-124BS) that suppresses an irregular target gene of miR-124;

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-124BS)을 포함하는 신경 돌기 가지 분화 유도용 조성물; a composition for inducing neurite branch differentiation comprising an RNA interference-inducing nucleic acid (preferably, miR-124BS) that suppresses an irregular target gene of miR-124;

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-122BS)을 포함하는 간암 세포의 세포 주기 정지 유도용 조성물; a composition for inducing cell cycle arrest of liver cancer cells, comprising an RNA interference-inducing nucleic acid (preferably, miR-122BS) that suppresses an irregular target gene of miR-122;

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-1BS)을 포함하는 근세포 분화 촉진 또는 근섬유화 촉진용 조성물; a composition for promoting myocyte differentiation or promoting muscle fibrosis, comprising an RNA interference-inducing nucleic acid (preferably, miR-1BS) that suppresses an irregular target gene of miR-1;

miR-155의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-155BS)을 포함하는 근세포 사멸 유도용 조성물; a composition for inducing myocyte death comprising an RNA interference-inducing nucleic acid (preferably, miR-155BS) that suppresses an irregular target gene of miR-155;

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-124-G5U)을 포함하는 신경 모세포종의 세포 사멸 촉진용 조성물; a composition for promoting apoptosis of neuroblastoma, comprising an RNA interference-inducing nucleic acid (preferably, miR-124-G5U) that suppresses an irregular target gene of miR-124;

miR-124의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-124-G4U)을 포함 하는 신경 모세포종의 세포 분열 증식 촉진용 조성물; a composition for promoting cell division and proliferation of neuroblastoma comprising an RNA interference-inducing nucleic acid (preferably, miR-124-G4U) that suppresses an irregular target gene of miR-124;

miR-1의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-1-G2U, miR-1-G3U, miR-1-G7U)을 포함하는 심근 비대 유도용 조성물; a composition for inducing myocardial hypertrophy comprising an RNA interference-inducing nucleic acid (preferably, miR-1-G2U, miR-1-G3U, miR-1-G7U) that suppresses an irregular target gene of miR-1;

miR-133의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-133-G4U)을 포함하는 심근 비대 유도용 조성물;a composition for inducing myocardial hypertrophy comprising an RNA interference-inducing nucleic acid (preferably, miR-133-G4U) that suppresses an irregular target gene of miR-133;

let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, let-7-G2U, let-7-G2,4U)을 포함하는 암 세포의 세포 주기 정지 유도용 조성물;a composition for inducing cell cycle arrest of cancer cells, comprising an RNA interference-inducing nucleic acid (preferably, let-7-G2U, let-7-G2, 4U) that suppresses an irregular target gene of let-7;

let-7의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, let-7-G4U)을 포함하는 간세포의 세포 주기 진행 활성 유도용 조성물; a composition for inducing cell cycle progression activity of hepatocytes comprising an RNA interference-inducing nucleic acid (preferably, let-7-G4U) that suppresses an irregular target gene of let-7;

miR-302a의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-302a-G4U)을 포함하는 역분화 촉진용 조성물; a composition for promoting dedifferentiation comprising an RNA interference-inducing nucleic acid (preferably, miR-302a-G4U) that suppresses an irregular target gene of miR-302a;

miR-372의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-372-G4U)을 포함하는 역분화 촉진용 조성물; 또는 a composition for promoting dedifferentiation comprising an RNA interference-inducing nucleic acid (preferably, miR-372-G4U) that suppresses an irregular target gene of miR-372; or

miR-122의 비정규 표적 유전자를 억제하는 RNA 간섭 유도 핵산(바람직하게, miR-122-G2U, 또는 miR-122-G2,3U)을 포함하는 간암 세포의 세포 이동 저해용 조성물.A composition for inhibiting cell migration of liver cancer cells comprising an RNA interference-inducing nucleic acid (preferably, miR-122-G2U, or miR-122-G2,3U) that inhibits an irregular target gene of miR-122.

또한, 본 발명에 따른 RNA 간섭 유도 핵산을 이용하면, 마이크로RNA의 비정규 표적 유전자를 특이적으로 억제함으로써, 마이크로RNA의 비정규 표적 유전자의 작용을 선택적으로 조절할 수 있는바, 다양한 분야(예컨대, 약학, 화장품학, 세포학 등)에서 활용될 수 있다. In addition, by using the RNA interference-inducing nucleic acid according to the present invention, it is possible to selectively regulate the action of the non-normal target gene of the microRNA by specifically inhibiting the non-normal target gene of the microRNA, and various fields (eg, pharmaceutical, Cosmetics, cytology, etc.).

또한, 본 발명에 따른 RNA 간섭 유도 핵산은 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식 또는 사멸 조절용 시험 물질을 스크리닝하는 방법에 활용될 수 있다. In addition, the RNA interference-inducing nucleic acid according to the present invention can be used in a method of screening a test substance for regulating cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation or death.

보다 구체적으로, 본 발명에 따른 RNA 간섭 유도 핵산을 대상 세포에 도입하는 단계;More specifically, introducing the RNA interference-inducing nucleic acid according to the present invention into a target cell;

대상 세포에 시험 물질을 처리하는 단계; 및 Treating the test substance to the cell of interest; And

대상 세포에서 RNA 간섭 유도 핵산이 억제하는 마이크로RNA의 비정규 표적 유전자의 발현양 내지 발현 여부를 확인하는 단계를 포함하는, Comprising the step of confirming the expression amount or whether the non-normal target gene of the microRNA inhibited by the RNA interference-inducing nucleic acid in the target cell,

세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식 또는 사멸 조절용 시험 물질을 스크리닝하는 방법을 제공한다. It provides a method for screening a test substance for regulating cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation or death.

본 발명에 있어서, 상기 대상 세포는 인간을 포함한 포유 동물에서 유래된 것이면 제한되지 않고 포함되며, 대상 세포를 추출하는 조직 내지 종류 등은 제한되지 않으며 예컨대 신경세포, 심근세포, 암세포, 근세포 등이 포함될 수 있다. In the present invention, the target cell is included without limitation as long as it is derived from mammals including humans, and the tissue or type from which the target cell is extracted is not limited, and for example, nerve cells, cardiomyocytes, cancer cells, muscle cells, etc. I can.

본 발명에 있어서, 상기 RNA 간섭 유도 핵산의 대상 세포에의 도입은 당업계 공지된 다양한 방법에 따라 적절히 수행될 수 있으며, 예컨대 도입은 인산칼슘를 이용한 형질감염(Graham, FL 등, Virology, 52:456(1973)), DEAE 덱스트란에 의한 형질감염, 미세주사에 의한 형질감염(Capecchi, MR, Cell, 22:479(1980)), 양이온성 지질에 의한 형질감염(Wong, TK 등, Gene, 10:87(1980)), 전기천공법(Neumann E등, EMBO J, 1:841(1982)), 형질도입 또는 트랜스펙션과 같이 문헌(Basic methods in molecular biology, Davis 등, 1986 및 Molecular cloning: A laboratory manual, Davis 등, 1986)에 기재된 바와 같이 본 발명이 속한 기술 분야에서 통상의 지식을 가진 자에게 익히 공지되어 있는 방법들에 따라 이뤄질 수 있다. 바람직하게, 트랜스펙션에 의할 수 있다. 트랜스펙션 효율은 세포의 종류 뿐만 아니라 세포 배양조건, 트랜스펙션 시약 등에 따라 많은 차이가 날 수 있다In the present invention, the introduction of the RNA interference-inducing nucleic acid into the target cell may be appropriately performed according to various methods known in the art, for example, the introduction is transfection using calcium phosphate (Graham, FL, etc., Virology, 52:456. (1973)), transfection with DEAE dextran, transfection by microinjection (Capecchi, MR, Cell, 22:479(1980)), transfection with cationic lipids (Wong, TK et al., Gene, 10 :87 (1980)), electroporation (Neumann E et al., EMBO J, 1:841 (1982)), transduction or transfection as described in Basic methods in molecular biology, Davis et al., 1986 and Molecular cloning: A laboratory manual, Davis et al., 1986), and may be performed according to methods well known to those of ordinary skill in the art to which the present invention belongs. Preferably, it can be by transfection. Transfection efficiency can vary greatly depending on the cell type as well as the cell culture conditions and transfection reagents.

본 발명에 있어서, 시험 물질은 마이크로RNA의 비정규 표적 유전자의 발현을조절하여 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식 또는 사멸에 영향을 미치는지 검사하기 위해 스크리닝에서 이용되는 미지의 물질을 의미하며, 화합물, 추출물, 단백질 또는 핵산 등이 포함되고, 이에 제한되지 않는다. In the present invention, the test substance is an unknown substance used in screening to examine whether it affects the cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation or death by controlling the expression of the non-normal target gene of the microRNA. Means, and includes, but is not limited to, compounds, extracts, proteins or nucleic acids.

본 발명에 있어서, 마이크로RNA의 비정규 표적 유전자의 발현양 내지 발현 여부는 당업계 공지된 다양한 발현 분석 방법에 의해 확인할 수 있으며, 예컨대 RT-PCR, ELISA(참조: Sambrook, J et al, Molecular Cloning A Laboratory Manual, 3rd ed Cold Spring Harbor Press(2001)), western blot, FACS analysis 등이 사용될 수 있으며, 이에 제한되지 않는다. In the present invention, the expression amount or whether the microRNA of the non-normal target gene can be confirmed by various expression analysis methods known in the art, such as RT-PCR, ELISA (see Sambrook, J et al, Molecular Cloning A Laboratory Manual, 3rd ed Cold Spring Harbor Press (2001)), western blot, FACS analysis, etc. may be used, but are not limited thereto.

본 발명에 있어서, 상기 마이크로RNA의 비정규 표적 유전자의 발현양 내지 발현 여부를 확인하고, 그 결과 마이크로RNA의 비정규 표적 유전자의 발현양 내지 발현에 있어 시험물질 없이 RNA 간섭 유도 핵산 만을 처리한 경우와 비교해 차이가 있다면, 시험물질은 마이크로RNA의 비정규 표적 유전자의 발현에 영향을 미치는 것으로 판단할 수 있다. 나아가, 상기 시험물질은 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식 또는 사멸 조절 기능을 가지는 것으로 판단할 수 있다. In the present invention, the amount or expression of the non-normal target gene of the microRNA is checked, and as a result, compared with the case of treating only the RNA interference-inducing nucleic acid without a test substance in the expression amount or expression of the non-normal target gene of the microRNA. If there is a difference, it can be determined that the test substance has an effect on the expression of the non-canonical target gene of the microRNA. Furthermore, the test substance may be determined to have a function of regulating cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation or death.

또한, 본 발명은 상술한 RNA 간섭 유도 핵산의 제조방법을 제공한다. In addition, the present invention provides a method for preparing the above-described RNA interference-inducing nucleic acid.

보다 구체적으로, 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산의 제조방법을 제공한다: More specifically, in one or more single strands of the double-stranded nucleic acid that induces RNA interference, including the following steps, some sequence of a specific microRNA is modified to be a noncanonical target gene of the microRNA. gene) to inhibit RNA interference-inducing nucleic acids:

특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되도록 RNA 간섭 유도 핵산을 작제하는 단계, 또는 It contains the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases can be aligned with the 6th base of a specific microRNA. RNA interference-inducing nucleic acid is used to include all complementary bases including G:A and G:U wobble arrangements in bases that have a base sequence complementary to a base and can be aligned with the 6th base of the specific microRNA. Constructing, or

특정 마이크로RNA의 5' 말단으로부터 9번째 염기 사이의 염기 서열 중 구아닌(Guanine) 염기가 유라실 또는 아데닌으로 적어도 하나 이상 치환된 변형 염기 서열을 가지도록 RNA 간섭 유도 핵산을 작제하는 단계. Constructing an RNA interference-inducing nucleic acid to have a modified base sequence in which at least one guanine base is substituted with uracil or adenine among the base sequence between the 5'end and the ninth base of a specific microRNA.

또한, 본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서, In addition, in the present invention, in one or more single strands of the double strands of nucleic acids inducing RNA interference, including the following steps, some sequences of specific microRNAs are modified to be noncanonical target genes of microRNAs (noncanonical As a method for producing RNA interference-inducing nucleic acids that inhibit the expression of target gene),

특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하도록 RNA 간섭 유도 핵산을 작제하는 단계; 및It contains the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases can be aligned with the 6th base of a specific microRNA. It has a base sequence complementary to a base, and all complementary bases including G:A, G:U wobble arrangement are included in the base that can be aligned with the 6th base of the specific microRNA. Constructing an RNA interference-inducing nucleic acid so that a bulge occurs in the target gene between the 5th and 6th and the corresponding bulge disappears from the non-normal target nucleotide sequence and binds to a continuous nucleotide sequence; And

상기 특정 마이크로RNA의 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2' 위치에 메틸기(2'OMe)를 첨가하는 단계를 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산의 제조방법을 제공한다.It provides a method for producing an RNA interference-inducing nucleic acid, comprising the step of adding a methyl group (2'OMe) to the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end of the specific microRNA.

또한, 본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서, In addition, in the present invention, in one or more single strands of the double strands of nucleic acids inducing RNA interference, including the following steps, some sequences of specific microRNAs are modified to be noncanonical target genes of microRNAs (noncanonical As a method for producing RNA interference-inducing nucleic acids that inhibit the expression of target gene),

특정 마이크로RNA의 5' 말단으로부터 2번째에서 5번째의 4개의 염기 서열을 포함하고, 6번째와 7번째 염기는 동일하며 6번째와 7번째 염기는 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기와 상보적인 염기 서열을 가지며, 상기 특정 마이크로RNA의 6번째 염기와 배열할 수 있는 염기에는 G:A, G:U 워블(wobble) 배열을 포함한 모든 상보적 염기가 포함되게 하여, 마이크로RNA의 5번째와 6번째 사이에 표적 유전자에서 융기(bulge)가 생기면서 결합하는 비정규 표적 염기 배열에서 해당 융기가 사라지고 연속적인 염기 배열로 결합하도록 RNA 간섭 유도 핵산을 작제하는 단계를 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산의 제조방법을 제공한다.It contains the 2nd to 5th 4 nucleotide sequences from the 5'end of the specific microRNA, the 6th and 7th bases are the same, and the 6th and 7th bases can be aligned with the 6th base of a specific microRNA. It has a base sequence complementary to a base, and all complementary bases including G:A, G:U wobble arrangement are included in the base that can be aligned with the 6th base of the specific microRNA. It characterized in that it comprises the step of constructing an RNA interference-inducing nucleic acid so that a bulge occurs in the target gene between the 5th and 6th and the corresponding bulge disappears from the non-normal target nucleotide sequence and binds to a continuous nucleotide sequence. , It provides a method of preparing a nucleic acid inducing RNA interference.

또한, 본 발명은 다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서, In addition, in the present invention, in one or more single strands of the double strands of nucleic acids inducing RNA interference, including the following steps, some sequences of specific microRNAs are modified to be noncanonical target genes of microRNAs (noncanonical As a method for producing RNA interference-inducing nucleic acids that inhibit the expression of target gene),

특정 마이크로RNA의 5' 말단으로부터 2번째 염기에서 시작하여 6개 내지 8개의 연속적인 염기 서열 중 구아닌(Guanine) 염기가 유라실(Uracil) 염기로 적어도 하나 이상 치환된 변형 염기 서열을 가지도록 RNA 간섭 유도 핵산을 작제하는 단계를 포함하는 것을 특징으로 하는, RNA 간섭 유도 핵산의 제조방법을 제공한다.RNA interference to have a modified nucleotide sequence in which at least one guanine base is substituted with a uracil base among 6 to 8 consecutive base sequences starting at the second base from the 5'end of a specific microRNA It provides a method for producing an RNA interference-inducing nucleic acid, comprising the step of constructing an inducible nucleic acid.

RNA 간섭 유도 핵산에 관해서는 이미 기재하였으므로, 중복 기재를 피하기 위해, 설명을 생략한다. Since the RNA interference-inducing nucleic acid has already been described, description is omitted in order to avoid overlapping description.

RNA 간섭 유도 핵산 작제는 당업계 공지된 다양한 방법에 따르며, 특정 방법으로 제한되지 않는다. RNA interference-inducing nucleic acid construction follows a variety of methods known in the art, and is not limited to a specific method.

또한, 본 발명은 특정 마이크로RNA의 5' 말단으로부터 6번째 뉴클레오티드의 리보실 링의 2'위치에 메틸기(2'OME) 를 넣어 변형한 간섭 유도 핵산을 제공한다. In addition, the present invention provides an interference-inducing nucleic acid modified by inserting a methyl group (2'OME) at the 2'position of the ribosyl ring of the 6th nucleotide from the 5'end of a specific microRNA.

상기 변형된 간섭 유도 핵산은 해당 miRNA의 비정규 핵융기 싸이트만을 특이적으로 억제하려는 본 발명의 목적은 유지하면서, 새롭게 나타날 수 있는 비정규 핵융기 결합은 완전히 제거하는 효과가 있다. The modified interference-inducing nucleic acid maintains the object of the present invention to specifically inhibit only the irregular nucleus site of the corresponding miRNA, and has the effect of completely eliminating the newly appearing irregular nucleus linkage.

본 발명에 따른 간섭 유도 핵산을 이용하면 기존의 마이크로RNA가 비정규 표적 유전자를 억제함으로써 나타내는 생물학적인 기능을 효율적으로 증대하거나, 기존의 마이크로RNA가 나타내는 기능 중 일부, 즉 비정규 표적 유전자를 억제함으로써 나타내는 생물학적 기능만 선택적으로 나타내는 효과를 가질 수 있다. 또한, 이러한 간섭 유도 핵산을 통해 세포 주기, 분화, 역분화, 형태, 이동, 분열, 증식 또는 사멸 조절이 가능한바, 약물, 화장품 등 다양한 분야에서 활용이 가능할 것으로 기대된다. When the interference-inducing nucleic acid according to the present invention is used, the biological function exhibited by the conventional microRNA suppressing the non-normal target gene can be efficiently increased, or some of the functions exhibited by the existing microRNA, that is, the biological exhibited by suppressing the irregular target gene. It can have the effect of selectively displaying only functions. In addition, since such interference-inducing nucleic acids can regulate cell cycle, differentiation, dedifferentiation, morphology, migration, division, proliferation or death, it is expected to be used in various fields such as drugs and cosmetics.

도 1은 마이크로RNA의 비정규 표적을 억제하는 간섭 유도 핵산의 작용 기작을 도식화해서 나타낸 것이다.
도 2는 miR-124의 정규 타겟 (발단:Seed) 과 비정규 핵융기 타겟 (핵융기: nucleation bulge) 의 표적 유전자 억제를 루시퍼라제 리포터의 효소로 측정하여 miR-124-BS의 비정규 표적 특이적 발현 억제 효과에 대해서 확인한 것이다.
도 3은 자궁경부암세포 (HeLa)에서 miR-124의 정규 타겟 (발단:Seed) 과 비정규 핵융기 타겟 (핵융기: nucleation bulge) 이 유도하는 세포사멸을 miR-124-BS에서 유세포 (Fluorescence-activated cell sorting: FACS) 분석을 통해 확인한 결과를 나타낸 것이다.
도 4는 miR-124의 비정규 핵융기 타겟 (핵융기: nucleation bulge)이 유도하는 신경돌기 분화를 miR-124-BS의 인간 신경 종양 모세포종(Sh-Sy-5y)에서의 발현을 통해 세포형태 및 마커의 발현 양상으로 관찰한 결과를 나타낸 것이다.
도 5는 miR-124의 핵융기 타겟 (핵융기: nucleation bulge) 을 정규 타겟 (발단:Seed)으로 조절하는 miR-124-BS의 자연적인 형태인 miR-124-BS(4753)와 miR-124와 동일한 발단 서열을 가지는 miR-124-(3714)이 유도하는 신경 돌기 가지 분화를 세포형태상, 분자생물학적 특징으로 관찰한 결과를 나타낸 것이다.
도 6은 마우스 신경모세포종 (N2a)에서 miR-124의 비정규 핵융기 타겟 (핵융기: nucleation bulge)이 유도하는 신경 돌기 가지 분화가 MAPRE1 유전자의 발현 조절을 통한 기작임을 세포형태상, 분자생물학적 특징으로 관찰한 결과를 나타낸 것이다.
도 7은 마우스 신경 모세포종 (N2a) 세포에서 miR-124-BS가 유도하는 비정규 핵융기 타겟 (핵융기: nucleation bulge) 유전자의 발현 억제를 전사체 수준에서 RNA-Seq 분석을 통해 확인한 결과를 나타낸 것이다.
도 8은 인간 간암세포주 (HepG2)에서 miR-122의 비정규 핵융기 타겟 (핵융기: nucleation bulge) 이 유도하는 cell cycle arrest 를 miR-122-BS와 유세포 분석을 통해 관찰한 결과를 나타낸 것이다.
도 9는 근세포주에서 miR-1의 비정규 핵융기 타겟 (핵융기: nucleation bulge)이 유도하는 근육세포의 두꺼워지는 효과와 miR-155 비정규 핵융기 타겟(핵융기: nucleation bulge)이 유도하는 근세포 분화 저해 및 세포사멸 유도를 각각 miR-1-BS, miR-155-BS를 통해 세포 형태상, 분자 생물학적 특징과 유세포 분석으로 관찰한 결과를 나타낸 것이다.
도 10은 사람의 뇌조직에서 아고너트 단백질과 결합하는 마이크로RNA와 표적체 RNA 데이터인 Ago HITS-CLIP 결과를 생물정보학적으로 분석한 결과로, 정규 발단 타겟 (발단: seed) 뿐 아니라, 비정규 GA 배열 발단 (G:A wobble) 타겟이 자연적으로 존재하는 것을 확인한 결과를 나타낸 것이다.
도 11은 마우스 신경 모세포종 (N2a) 세포에서 miR-124의 4번 비정규 GA 배열 발단 타겟, 5번 비정규 GA 배열 발단 타겟이 뇌세포 분화에 있어 miR-124와 전혀 다른 기능을 보이는 것을 miR-124-G4U, miR-124-G5U를 통해 세포 형태상의 관찰과, 세포 사멸을 유세포 분석으로 관찰한 결과를 나타낸 것이다.
도 12는 인간 신경 모세포종 (SH-sy-5y) 세포에서 miR-124의 4번 비정규 GA 배열 발단 타겟, 5번 비정규 GA 배열 발단 타겟의 억제의 생물학적 기능을 miR-124-G4U, miR-124-G5U을 통해 세포 분열(proliferation)과 세포주기 분석에 대한 유세포 분석 (Fluorescence-activated cell sorting: FACS)으로 관찰한 결과를 나타낸 것이다.  
도 13은 miR-1의 7번 비정규 GA 배열 발단 타겟이 유전자 억제 기능을 한다는 점을 형광 단백질 리포터에서 유세포 분석 (Fluorescence-activated cell sorting: FACS)을 통해 심근세포주(h9c2)에서 확인한 결과를 나타낸 것이다.
도 14는 miR-1의 2번, 3번, 7번 비정규 GA 배열 발단 타겟의 기능을 랫트(rat)의 신생백서 심근세포 (neonatal cardiomyocyte)에서 miR-1-G2U, miR-1-G3U, miR-1-G7U를 발현시킨 후 심근비대 유도 효과에 대한 세포형태상과 분자생물학적 특징에 대한 관찰을 통해 확인한 결과를 나타낸 것이다.
도 15는 miR-133의 4번 비정규 GA 배열 발단 타겟의 기능을 심근세포 (h9c2)에서 miR-133-G4U를 발현시킨 후 심근비대 유도 효과에 대한 세포형태상 특징을 관찰한 결과를 나타낸 것이다.
도 16는 miR-122의 2번, 3번 비정규 GA 배열 발단 타겟을 통해 유전자의 발현을 억제한다는 사실을 인간 간암세포주 (HepG2) 에서 루시퍼라제 리포터의 효소 활성 측정을 통해 관찰한 결과를 나타낸 것이다.
도 17은 miR-122에 의한 2번 비정규 GA 배열 발단 타겟, 2,3번 비정규 GA 배열 발단 타겟 발현의 저해가 인간 간암 세포주 (HepG2)의 이동을 저해하는 기능을 miR-122-G2U, miR-122-G2,3,U의 발현을 통해 세포형태상의 관찰로 확인한 결과를 나타낸 것이다.
도 18은 miR-122에 의한 2,3번 비정규 GA 배열 발단 타겟 발현의 억제가 인간 간암 세포주 (HepG2)의 세포 주기 정지 (cell cycle arrest) 를 유도한다는 것을 miR-122-G2,3U의 발현을 통해 유세포 분석으로 확인한 결과를 나타낸 것이다.
도 19는 miR-122에 의한 2,3번 비정규 GA 배열 발단 타겟, 2,7번 비정규 GA 배열 발단 타겟의 발현 저해가 인간 간암 세포주 (HepG2)의 세포 주기 정지 (cell cycle arrest) 를 유도한다는 것을 miR-122-G2,3U, miR-122-G2,7U의 발현을 통해 유세포 분석으로 확인한 결과를 나타낸 것이다.
도 20은 let-7에 의한 2번 또는 2,4번 비정규 GA 배열 발단 타겟 발현의 저해가 인간 간암 세포주 (HepG2)의 세포 주기 정지 (cell cycle arrest) 를 유도한다는 것과 4번의 비정규 GA 배열 발단 타겟 발현의 저해가 세포 주기를 촉진한다는 것을 let-7a-G2U, let-7a-G2,4U, let-7-G4U의 발현을 통해 유세포 분석으로 확인한 결과를 나타낸 것이다.
도 21은 miR-372 또는 miR-302a에 의한 4번 비정규 GA 배열 발단 타겟 발현의 저해를 유도하는 miR-372-G4U 또는 miR-302a-G4U가 miR-372 또는 miR-302a와 함께 역분화를 촉진시킨다는 것을 Oct4 유전자 발현 리포터로 확인한 결과를 나타낸 것이다.
도 22는 5‘말단 기준 6번째에 2‘OMe 변형이 해당 RNA 간섭 유도체의 비정규 핵융기 표적을 억제하지 못하는 현상을 확인한 결과를 나타낸 것이다.
도 23은 5‘말단 기준 6번째에 2‘OMe 변형이 전사체에서 전체 비정규 핵융기 표적 mRNA를 억제하지 못하는 것을 확인한 결과를 나타낸 것이다.
도 24는 Ago HITS CLIP 실험을 통해 비정규 핵융기 싸이트에 결합하는 마이크로RNA를 분석한 결과를 나타낸 것이다.
도 25는 암환자 마이크로RNA 시퀀싱 데이터베이스(TCGA)에서 서열 변이를 분석하여 비정규 GA 배열 발단 타겟을 정규 타겟으로 인식하는 G>U 변이를 종양 마이크로RNA에 동정한 결과를 나타낸 것이다.
1 schematically shows the mechanism of action of an interference-inducing nucleic acid that suppresses an irregular target of a microRNA.
FIG. 2 is a non-normal target specific expression of miR-124-BS by measuring target gene suppression of a normal target (starter: Seed) and a non-regular nucleation target (nucleation bulge) of miR-124 with the enzyme of a luciferase reporter. They confirmed the inhibitory effect.
3 shows apoptosis induced by a normal target (start: Seed) and an irregular nucleation target (nucleation bulge) of miR-124 in cervical cancer cells (HeLa) in miR-124-BS. Cell sorting: FACS) shows the results confirmed through analysis.
Figure 4 is a cell morphology and cell morphology through expression of miR-124-BS in human neuroblastoma (Sh-Sy-5y) of neurite differentiation induced by an irregular nucleation target (nucleation bulge) of miR-124. It shows the results observed by the expression pattern of the marker.
5 shows miR-124-BS(4753) and miR-124, which are the natural forms of miR-124-BS that regulates miR-124's nucleation target (nucleation bulge) with a regular target (starter: Seed). This is the result of observing the differentiation of neurite branches induced by miR-124-(3714) having the same starting sequence as in cell morphology and molecular biological characteristics.
Figure 6 shows that in mouse neuroblastoma (N2a), neurite branch differentiation induced by an irregular nucleation target (nucleation bulge) of miR-124 is a mechanism through regulation of the expression of the MAPRE1 gene. It shows the observed result.
7 shows the results of confirming the suppression of the expression of an irregular nucleation target (nucleation bulge) gene induced by miR-124-BS in mouse neuroblastoma (N2a) cells through RNA-Seq analysis at the transcript level. .
FIG. 8 shows the results of observing cell cycle arrest induced by an irregular nucleation target (nucleation bulge) of miR-122 in human liver cancer cell line (HepG2) through flow cytometry with miR-122-BS.
9 shows the effect of thickening of muscle cells induced by an irregular nucleation target (nucleation bulge) of miR-1 in a myocyte line and myocyte differentiation induced by a miR-155 irregular nucleation target (nucleation bulge). Inhibition and induction of apoptosis were observed by miR-1-BS and miR-155-BS, respectively, in terms of cell morphology, molecular biological characteristics, and flow cytometric analysis.
10 is a result of bioinformatically analyzing the results of Ago HITS-CLIP, which is microRNA and target RNA data, which bind to the agonut protein in human brain tissue, as well as the normal initiation target (initiation: seed), as well as non-normal GA This is the result of confirming that the G:A wobble target naturally exists.
FIG. 11 shows that miR-124 in mouse neuroblastoma (N2a) cells shows a completely different function from miR-124 in brain cell differentiation of miR-124 with the 4th irregular GA sequence initiating target and the 5th non-normal GA sequence initiating target. It shows the results of observation of cell morphology and cell death by flow cytometry through G4U and miR-124-G5U.
Figure 12 shows the biological functions of the inhibition of miR-124 of the 4th irregular GA sequence initiation target and the 5th non-normal GA sequence initiation target in human neuroblastoma (SH-sy-5y) cells, miR-124-G4U, miR-124- It shows the results of observation by flow cytometry (Fluorescence-activated cell sorting: FACS) for cell proliferation and cell cycle analysis through G5U.
FIG. 13 shows the results of confirming that the target of the 7th irregular GA sequence of miR-1 has a gene suppression function in the myocardial cell line (h9c2) through flow cytometry (Fluorescence-activated cell sorting: FACS) in a fluorescent protein reporter. .
Figure 14 shows the function of the 2nd, 3rd, 7th irregular GA sequence initiating target of miR-1 in the neonatal cardiomyocytes of rats miR-1-G2U, miR-1-G3U, miR After expressing -1-G7U, the results confirmed through observation of cell morphology and molecular biological characteristics for the effect of inducing myocardial hypertrophy are shown.
Figure 15 shows the result of observing the cell morphological characteristics for the myocardial hypertrophy induction effect after expressing miR-133-G4U in cardiomyocytes (h9c2) for the function of the 4th irregular GA sequence initiating target of miR-133.
Figure 16 shows that miR-122 inhibits gene expression through the 2nd and 3rd irregular GA sequence initiating targets, a human liver cancer cell line (HepG2) The results observed through the measurement of the enzyme activity of the luciferase reporter are shown.
Figure 17 shows the function of inhibiting the expression of the 2nd irregular GA sequence initiation target and the 2nd and 3rd irregular GA sequence initiation target by miR-122 inhibiting the migration of human liver cancer cell line (HepG2) miR-122-G2U, miR- It shows the results confirmed by observation of the cell morphology through the expression of 122-G2,3,U.
Figure 18 shows that the suppression of the expression of the 2nd and 3rd irregular GA sequence initiating target by miR-122 induces cell cycle arrest of the human liver cancer cell line (HepG2), showing the expression of miR-122-G2,3U. It shows the results confirmed by flow cytometry.
FIG. 19 shows that inhibition of expression of the 2nd and 3rd irregular GA sequence initiation target and the 2nd and 7th irregular GA sequence initiation target by miR-122 induces cell cycle arrest of human liver cancer cell line (HepG2). It shows the results confirmed by flow cytometry through the expression of miR-122-G2,3U and miR-122-G2,7U.
Figure 20 shows that inhibition of the expression of the 2nd or 2nd, 4th irregular GA sequence initiating target by let-7 induces cell cycle arrest of the human liver cancer cell line (HepG2) and 4 non-normal GA sequence initiation targets The results confirmed by flow cytometry through the expression of let-7a-G2U, let-7a-G2,4U, and let-7-G4U that inhibition of expression promotes the cell cycle.
Figure 21 shows miR-372-G4U or miR-302a-G4U, which induces inhibition of the expression of the 4 irregular GA sequence triggering target by miR-372 or miR-302a, promotes dedifferentiation together with miR-372 or miR-302a It shows the result of confirming that it is done with an Oct4 gene expression reporter.
22 shows the result of confirming the phenomenon that the 2'OMe modification at the 6th of the 5'end cannot inhibit the irregular nucleus target of the corresponding RNA interference derivative.
Figure 23 shows the results confirming that the 2'OMe modification at the 6th of the 5'end cannot suppress the entire non-normal nucleus target mRNA in the transcript.
FIG. 24 shows the results of analyzing microRNAs that bind to irregular nucleus sites through the Ago HITS CLIP experiment.
FIG. 25 shows the results of identifying a G>U mutation that recognizes an irregular GA sequence initiating target as a normal target by analyzing a sequence mutation in a cancer patient microRNA sequencing database (TCGA) in a tumor microRNA.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 일례일 뿐, 본 발명이 하기 실시예에 한정된 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only examples of the present invention, and the present invention is not limited to the following examples.

[[ 실시예Example 1] One] 마이크로RNA의MicroRNA 비정규 표적을 억제하는 간섭 유도 핵산의 작용 기작 Mechanism of action of interference-inducing nucleic acids that inhibit irregular targets

본 발명자들은 Ago HITS CLIP 실험을 통해, 아고너트 단백질에서 마이크로RNA가 표적체와 염기배열을 할 때, 마이크로RNA 발단과 완전 상보적 배열을 하는 정규 발단 타겟 외에도, 마이크로RNA 발단과 완전 상보적 배열을 하지 않고 표적 전령RNA와 결합한다는 사실을 아고너트 단백질에 결합한 RNA 복합체 서열 결과 (Ago HITS-CLIP) 의 분석을 통해 확인하였다. 아울러, 이런 특징을 지닌 RNA의 염기 서열을 분석해 본 결과, 마이크로RNA의 6번 염기가 표적체에 핵융기 (nucleation bulge) 를 유도하여 염기 배열하는 표적체 (마이크로RNA 비정규 핵융기 타겟 싸이트)와, 마이크로RNA 발단 지역에서 GA 배열 (wobble)을 허용하는 표적체 (마이크로RNA 비정규 GA배열 발단 타겟 싸이트)가 자연적으로 존재한다는 것을 확인하였다 (도 1). Through the Ago HITS CLIP experiment, the present inventors determined that in addition to the normal initiation target in which the microRNA is nucleotide sequenced with the target in the agonut protein, the microRNA initiation and the complete complementary arrangement are in addition to the microRNA initiation and a complete complementary arrangement. It was confirmed through analysis of the RNA complex sequence result (Ago HITS-CLIP) bound to the Argonut protein that it binds to the target messenger RNA without doing so. In addition, as a result of analyzing the nucleotide sequence of the RNA with these characteristics, base 6 of the microRNA induces a nucleation bulge in the target and the target body (microRNA irregular nucleus target site) induces nucleotide sequence, It was confirmed that a target (microRNA irregular GA sequence initiating target site) that allows GA sequence (wobble) naturally exists in the microRNA initiation region (FIG. 1).

도 1에 나타낸 도식화된 예로 보면, miR-124 는 아고너트 단백질을 매개로 발단염기서열 (5‘-UAAGGCAC-3')을 통해 표적체의 염기 서열 5'- GUGCCUUA-3'에 대하여 최소 6개의 연속된 상보적 염기배열을 하게 되며, 이러한 염기 배열을 가지는 표적체는 마이크로RNA 의 정규 발단 타겟 싸이트 (canonical seed site)로 보고된 바 있다 (Nature, 2009, 460 (7254): 479-86). In the schematic example shown in FIG. 1, miR-124 is at least 6 for the base sequence 5'-GUGCCUUA-3' of the target through the starting nucleotide sequence (5'-UAAGGCAC-3') via the agonut protein. It has been reported as a canonical seed site for normal initiation of microRNAs, and targets having such a sequence of complementary nucleotide sequences (Nature, 2009, 460 (7254): 479-86).

또한 아고너트와 결합한 RNA 복합체 중, miR-124 발단염기서열 (5'-UAAGGCAC-3')과 마이크로RNA 비정규 핵융기 타겟 싸이트 (5'- GUGGCCUU -3') 로 miR-124의 5‘말단 기준 5번째와 6번째에 사이에 표적 전령RNA의 G가 벌지(bulge)로 배열되도록 상보적 염기 배열을 한 표적을 확인하였고, 이를 바탕으로 마이크로RNA 비정규 핵융기 타겟 싸이트와 상보적으로 염기배열이 가능한 miR-124의 발단 염기 서열은 miR-124 발단의 6번-7번에 사이에 6번 염기가 한번 더 반복되는 염기서열 (5-UAAGGCCA-3)을 가지며, 이에 대하여 연속적이고 완벽한 상보 서열은 miR-124의 비정규 핵융기 타겟을 억제하는 miR-124BS (BS: Bulge site) siRNA 로 사용하였다. In addition, among the RNA complexes bound to Argonut, miR-124 starting nucleotide sequence (5'-UAAGGCAC-3') and microRNA irregular nucleus target site (5'- GUGGCCUU -3') based on the 5'end of miR-124. Between the 5th and 6th, a target with a complementary nucleotide sequence was identified so that the G of the target messenger RNA was arranged in a bulge, and based on this, the nucleotide sequence was complementary to the microRNA irregular nucleus target site. The starting nucleotide sequence of miR-124 has a nucleotide sequence (5-UAAGGCCA-3) in which base 6 is repeated once more between 6 and 7 of the miR-124 initiation, and a continuous and perfect complementary sequence to this is miR It was used as miR-124BS (BS: Bulge site) siRNA that suppresses the irregular nucleus target of -124.

아고너트와 결합한 RNA 복합체에서 마이크로RNA와 결합한 표적 전령RNA의 서열을 분석하였을 때, 기존의 상보적인 염기배열 이외에 G:A 워블(wobble) 염기 배열이 마이크로RNA의 발단서열과 표적 전령RNA의 결합에서 일어난다는 것을 확인하였다. 따라서 miR-124의 경우 발단염기서열 (5'-UAAGGCAC-3')에서 5'말단 기준 4번째의 G염기가 G:A 워블 배열을 하여 마이크로RNA 비정규 GA배열 발단 타겟 싸이트(5'- UGGCAUU -3')를 인식하고, 이를 바탕으로 miR-124의 비정규 GA배열 발단 타겟 싸이트와 연속적이고 완벽하게 상보적인 서열로 siRNA를 디자인 하여 miR-124-GU를 발명하였으며, 이 siRNA는 miR-124의 비정규 GA배열 발단 타겟의 발현을 저해하는 siRNA로 사용하였다. When analyzing the sequence of the target messenger RNA bound to the microRNA in the RNA complex bound to the agonut, in addition to the existing complementary nucleotide sequence, the G:A wobble nucleotide sequence was found in the binding of the microRNA initiating sequence and the target messenger RNA. Confirmed to happen. Therefore, in the case of miR-124, the 4th G base based on the 5'end in the starting base sequence (5'-UAAGGCAC-3') performs a G:A wobble arrangement, and the microRNA irregular GA sequence initiating target site (5'- UGGCAUU- 3′), and based on this, miR-124-GU was invented by designing siRNA with a sequence that is continuous and completely complementary to the target site for starting the irregular GA sequence of miR-124. It was used as an siRNA that inhibits the expression of the GA sequence initiating target.

[[ 실시예Example 2] 비정규 2] Irregular 핵융기Nuclear proliferation 타겟target 싸이트와Site and 연속적이고 완벽하게 상보적인 염기 서열을 발단지역에 포함하는 Contiguous and completely complementary nucleotide sequence in the starting region 마이크로RNAMicroRNA -BS의 -BS 억제능Inhibitory ability 확인 Confirm

자연적으로 존재하는 miR-124의 정규적인 발단 타겟 싸이트 (seed target site) 중 miR-124의 5'말단 기준 2번째부터 7번째까지의 염기와 상보적인 것은 5'- GUGCCUU-3' 염기 서열로 이러한 정규적인 발단 타겟 싸이트는 miR-124의 발단 (5'-UAAGGCAC-3') 과 최소 6개의 연속된 염기로 완전 상보적 염기배열을 하게 된다 (도 2a).Among the naturally occurring regular starting target sites of miR-124, the 5'-GUGCCUU-3' base sequence complementary to the 2nd to 7th bases based on the 5'end of miR-124. The regular initiation target site is a fully complementary nucleotide sequence with the initiation of miR-124 (5'-UAAGGCAC-3') and at least 6 consecutive bases (Fig. 2a).

Ago HITS CLIP 실험을 통해 발견한 miR-124의 비정규 핵융기 타겟 싸이트 (Nuc site; nucleation bulge site) 는 5'- GUGGCCUU -3'로 miR-124의 6번 C 염기가 타겟과 핵융기를 형성하여 염기 배열하게 되고, 이에 따라 miR-124의 5‘말단 기준 5번째와 6번째 사이에 배열되는 표적 RNA의 G가 벌지(bulge)로 형성된다. 이를 바탕으로 비정규 핵융기 타겟 싸이트 (nucleation bulge site)와 연속적이고 완전하게 상보 결합하는 염기 서열 (5'-UAAGGCCA-3') 을 마이크로RNA 발단으로 하는 siRNA를 디자인하여 miR-124-BS siRNA로 명명하였다 (도 2a). miR-124-BS는 miR-124의 비정규 표적인 핵융기 타겟 싸이트 (Nuc site)를 정규적인 발단 타겟으로 인식하여 이를 가지고 있는 비정규적 표적의 유전자 발현을 특이적이고 보다 강력하게 저해할 것으로 생각하고, 이러한 사실을 루시퍼라제 리포터 실험을 통해 확인하였다 (도 2b-c). The nucleation bulge site (Nuc site; nucleation bulge site) of miR-124 discovered through Ago HITS CLIP experiment is 5'- GUGGCCUU -3', and base 6 of miR-124 forms a nucleus with the target. As a result, the G of the target RNA arranged between the 5th and 6th of the 5'end of miR-124 is formed into a bulge. Based on this, a siRNA was designed using a nucleotide sequence (5'-UAAGGCCA-3') that is continuously and completely complementary to a non-normal nucleation bulge site and named as miR-124-BS siRNA. (Fig. 2a). miR-124-BS recognizes the nucleus target site, which is an irregular target of miR-124, as a regular initiating target, and it is thought that it will specifically and more strongly inhibit the gene expression of the irregular target having it. This fact was confirmed through the luciferase reporter experiment (Fig. 2b-c).

우선은 miR-124가 기존의 정규적인 표적인 발단 싸이트(seed site)에 비하여 얼마나 비정규적인 표적인 핵융기 타겟 싸이트를 억제할 수 있는지를 확인하기 위해서 루시퍼라제 리포터에 miR-124에 대한 해당 싸이트를 삽입하였고, 이와 함께 여러 농도 (0, 0.01, 0.1, 0.5, 2.5, 15nM)의 miR-124를 세포에 도입 시킨 후 루시퍼라제의 활성으로 IC50 (inhibitory concentration 50)를 측정해 본 결과, 정규 발단 싸이트는 약 0.5nM, 비정규 핵융기 싸이트는 약 0.2nM로 유사한 것으로 확인할 수 있었다 (도 2b). 하지만 최고로 억제되는 비율을 보면 정규 발단 싸이트는 약 50%, 비정규 핵융기 싸이트는 약 80%로 비정규 핵융기 싸이트를 통한 저해가 다소 약함을 알 수 있었다. 특히 유전자 발현 저해가 시작되는 점을 살펴 보았을 때, 정규 발단 타겟은 약 0.01nM 이상에서, 비정규 핵융기 타겟은 0.1nM 이상의 농도 조건에서 유전자 억제가 시작되는 점을 루시퍼라제 활성 측정을 통해 확인하였다 (도 2b). 따라서 miR-124는 정규 타겟과 비정규 핵융기 타겟의 발현을 조절하며, 정규 타겟 발현 조절 효율이 높다는 점을 알 수 있었다.First of all, in order to check how much miR-124 can suppress the irregular target nuclear blasting target site compared to the existing regular target seed site, the corresponding site for miR-124 in the luciferase reporter is described. In addition, after introducing miR-124 at various concentrations (0, 0.01, 0.1, 0.5, 2.5, 15 nM) into the cells, the IC 50 (inhibitory concentration 50) was measured by the activity of luciferase. It was confirmed that the site was about 0.5 nM, and the irregular nucleus site was about 0.2 nM (Fig. 2b). However, when looking at the rate of suppression at the highest level, it was found that the inhibition through the non-regular nuclear fusion site was somewhat weak, with about 50% of the regular initiation sites and about 80% of the irregular nuclear fusion sites. In particular, when looking at the initiation of gene expression inhibition, it was confirmed through luciferase activity measurement that gene suppression begins at concentrations of about 0.01 nM or more for the normal initiating target and 0.1 nM for the irregular nucleus target ( Fig. 2b). Therefore, it was found that miR-124 regulates the expression of regular targets and non-regular nucleus targets, and has high efficiency in regulating expression of regular targets.

이때 실시한 루시퍼라제 리포터 실험은 해당하는 miR-124 타겟 싸이트 서열을 psi-check2 벡터 (Promega 사)의 레닐라 루시퍼라제 유전자 3'UTR (3'untranslated region) 부분에 2번 연속 배열로 클로닝 하여 실시하였다. 비정규 융기싸이트 서열은 MINK1의 3'UTR 부분에 자연적으로 존재하는 비정규 핵융기 타겟 싸이트 를 사용하였다. miR-124는 인간 유래의 서열로 miRBase 데이터베이스에 따라, 해당되는 가이드 가닥 (guide strand), 운반 가닥 (passenger strand) 을 각각 Bioneer사에서 화학적으로 합성 제작 후, HPLC로 분리, 상기 회사에서 제공한 방법에 따라 가이드 가닥과 운반 가닥의 이중체 (duplex)로 제조하였다. miR-124와 루시퍼라제 리포터 벡터는 Lipofectamine 2000 시약 (Invitrogen)을 이용하여 제조자의 프로토콜에 따라 대략 10,000개의 자궁경부암 세포 (HeLa: ATCC CCL-2) 에 전달(co-transfection)시켰다. HeLa 세포는 10% FBS (fetal bovine serum), 100 U/ml 페니실린, 및 100 ㎍/ml 스텝토마이신을 보충한 Dulbecco's 개질 Eagle's 배지 (Invitrogen)에서 배양하였으며, 트랜스펙션 수행시는 항생제 없는 완전배지에서 세포를 배양하였다. 트랜스펙션을 수행한 24시간 후, Promega사의 Dual-luciferase reporter assay system을 이용하여 제조사의 프로토콜에 따라 루시퍼라제의 활성을 측정하였으며, 레닐라 루시퍼라제 활성 계측은 promega사의 Glomax Luminometer를 이용하여 최소 3번 이상의 반복 실험하였고, 반딧불(firefly) 루시퍼라제의 활성에 의해 표준화되어 계산하였다.The luciferase reporter experiment conducted at this time was performed by cloning the corresponding miR-124 target site sequence into the 3'UTR (3'untranslated region) portion of the Renilla luciferase gene of the psi-check2 vector (Promega) in a second sequence. . As for the irregular ridge site sequence, a non-normal ridge target site naturally present in the 3'UTR portion of MINK1 was used. miR-124 is a human-derived sequence, according to the miRBase database, the corresponding guide strand and the carrier strand are chemically synthesized by Bioneer, separated by HPLC, and the method provided by the company. Was prepared as a guide strand and a transport strand duplex. The miR-124 and luciferase reporter vector were co-transfected into approximately 10,000 cervical cancer cells (HeLa: ATCC CCL-2) using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer's protocol. HeLa cells were cultured in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% FBS (fetal bovine serum), 100 U/ml penicillin, and 100 μg/ml steptomycin, and complete medium without antibiotics when performing transfection. The cells were cultured in. After 24 hours of transfection, luciferase activity was measured using Promega's Dual-luciferase reporter assay system according to the manufacturer's protocol, and Renilla luciferase activity was measured at least 3 by using promega's Glomax Luminometer. The experiment was repeated more than once, and the calculation was normalized by the activity of firefly luciferase.

miR-124의 비정규 핵융기 타겟만을 특이적으로 억제하기 위해 발명한 miR-124-BS의 기능을 확인하기 위하여, 동일하게 루시퍼라제 리포터를 사용하여 실험하였다. 그 결과 miR-124-BS는 miR-124 정규 발단 타겟에 대하여 어떤 농도 (0~ 10 nM) 에서도 루시퍼라제 리포터 효소 활성을 저해시키지 못하였으나, miR-124 비정규 핵융기 타겟 리포터에 대해서는 0.1nM 이상의 농도에서 루시퍼라제 리포터 효소 활성을 저해시키는 효과를 확인할 수 있었다 (도 2c). 이때의 유전자 억제 효율을 IC50으로 측정해보았을 때 비정규 핵융기 타겟에 대한 억제가 약 0.5nM로 나타났다. 이러한 점으로 보아, miR-124-BS의 miR-124 비정규 핵융기 타겟 발현 조절 기능은 비정규 핵융기 타겟 싸이트 특이적이라고 해석할 수 있다 (도 2c). 이때의 루시퍼라제 리포터 실험은 miR-124-BS를 이전과 동일하게 바이오니아사에서 합성하여 제작하고, 해당 루시퍼라제 리포터 벡터와 함께 자궁경부암 세포 (HeLa: ATCC CCL-2)에 트랜스펙션(co-transfection)한 후 24시간 후에 루시퍼라제 효소 활성을 측정하여 수행하였다. In order to confirm the function of miR-124-BS, which was invented to specifically suppress only the non-canonical nucleus target of miR-124, the same experiment was performed using a luciferase reporter. As a result, miR-124-BS did not inhibit the luciferase reporter enzyme activity at any concentration (0-10 nM) with respect to the miR-124 normal initiating target, but at a concentration of 0.1 nM or more for the miR-124 irregular nucleus target reporter. It was confirmed the effect of inhibiting the luciferase reporter enzyme activity in (Fig. 2c). When the gene suppression efficiency at this time was measured by IC 50 , the suppression against the non-regular nucleus target was about 0.5 nM. In view of this, it can be interpreted that the function of regulating the expression of the miR-124 irregular nucleus target of miR-124-BS is specific to the irregular nucleus target site (Fig. 2c). At this time, the luciferase reporter experiment was produced by synthesizing miR-124-BS at Bioneer in the same manner as before, and transfection (co-) into cervical cancer cells (HeLa: ATCC CCL-2) with the corresponding luciferase reporter vector. 24 hours after transfection), luciferase enzyme activity was measured and performed.

상기의 실시예에서 발명자는 마이크로RNA의 비정규 유기 표적만을 억제할 수 있도록 하는 목적으로 해당 싸이트 서열에 대해서 연속적이고 완벽하게 상보적인 발단 지역 서열을 포함하는 miRNA-BS를 발명하였으며, 그 효과를 검증하기 위해서 miR-124에 적용해서 루시퍼라제 리포터 실험을 통해 확인해보았을 때, miR-124-BS가 정규 발단 표적의 발현은 억제하지 못하고, 비정규 융기 표적의 발현은 효과적으로 억제할 수 있다는 특징을 검증할 수 있었다.In the above examples, the inventors invented miRNA-BS containing an initiating region sequence that is continuous and completely complementary to the site sequence for the purpose of suppressing only irregular organic targets of microRNA, and to verify the effect. For this reason, when applied to miR-124 and confirmed through a luciferase reporter experiment, it was possible to verify the characteristics that miR-124-BS could not inhibit the expression of the normal initiating target and effectively suppress the expression of the irregular raised target. .

[[ 실시예Example 3] 3] miRmiR -124의 비정규 -124 irregular 핵융기Nuclear proliferation 타겟target 발현 저해를 통해 유도되는 자궁경부암 세포의 세포 사멸현상 관찰 Observation of apoptosis of cervical cancer cells induced through inhibition of expression

miR-124-BS가 miR-124가 억제하는 여러 표적 중 비정규 융기 표적만을 억제한다는 사실을 이전 실시예에서 확인한 후, 이를 통해 miR-124의 특정 기능만을 나타낼 수 있는지를 확인하고자 하였다. miR-124의 경우 일반적으로 신경세포에만 특이적으로 발현되므로 주로 신경세포에 관련된 역할을 하는 것으로 알려져 있다. 하지만 종양으로 발생된 야교종에서는 miR-124의 발현이 떨어져 있으며, 이와 상관되어 miR-124의 발현을 인위적으로 종양세포에 유도할 경우 종양 세포의 사멸을 일으킬 수 있다는 사실이 관찰되었다. 따라서 이러하게 miR-124의 다양하고 다른 기능이 그 표적을 인식하는 종류에 따라 다른지를 확인하고자, miR-124-BS를 자궁경부암 세포(HeLa)에 도입하고 세포의 사멸을 유세포 분석으로 관찰하였다 (도 3a). After confirming in the previous examples that miR-124-BS inhibits only irregular raised targets among the various targets inhibited by miR-124, it was attempted to confirm whether it can only exhibit specific functions of miR-124. In the case of miR-124, since it is generally expressed specifically only in neurons, it is known to play a role mainly related to neurons. However, it has been observed that the expression of miR-124 in tumor-generated nocturnal gliomas is reduced, and correlated with this, if the expression of miR-124 is artificially induced into tumor cells, it can cause the death of tumor cells. Therefore, in order to confirm whether the various and different functions of miR-124 differ depending on the type of recognizing the target, miR-124-BS was introduced into cervical cancer cells (HeLa) and the cell death was observed by flow cytometry ( Fig. 3a).

본 실험은 75nM의 miR-124 또는 miR-124-BS 이중체를 자궁경부암 세포 (HeLa: ATCC CCL-2)에 RNAiMAX 시약(Invitrogen 사)을 사용하여 제조자의 프로토콜에 따라 트랜스팩션(transfection)한 후, 72시간 후에 트립신을 처리하여 세포를 배양 접시로부터 떼어내고, BD Pharmingen 社 의 Annexin V: FITC Apoptosis Detection Kit II 를 제조사가 제공한 방법에 따라 세포를 처리하여 BD Aria I (BD Biosciences)으로 Annexin V로는 apoptosis를 PI(Propidium Iodide)로는 necrosis를 측정하여 수행하였다. 이때 대조군으로는 예쁜 꼬마선충(C.elegans)의 마이크로RNA인 cel-miR-67의 서열과 동일하게 합성하여 사용하였다In this experiment, 75nM miR-124 or miR-124-BS duplex was transfected into cervical cancer cells (HeLa: ATCC CCL-2) using RNAiMAX reagent (Invitrogen) according to the manufacturer's protocol. , After 72 hours, the cells were removed from the culture dish by trypsin treatment, and the cells were treated with BD Pharmingen's Annexin V: FITC Apoptosis Detection Kit II according to the method provided by the manufacturer, and then Annexin V with BD Aria I (BD Biosciences). Apoptosis was measured with a furnace and necrosis with a PI (Propidium Iodide). At this time, as a control, it was synthesized and used in the same manner as the sequence of cel-miR-67, a microRNA of C.elegans.

이러한 실험을 각각 대조군, miR-124 발현, miR-124-BS 발현으로 나누어서 비교해본 결과, miR-124가 발현 되었을 경우 자궁경부암 세포(HeLa)에서 대조군에 비해 apoptosis (Annexin V 로 염색 된 세포의 수)에 의해서 사멸이 진행되는 비율이 약 30%에서 약78%로 증가하는 것을 관찰하였으며, 동일하게 miR-124-BS도 약 73%로 2배이상 증가하는 것을 확인하였다 (도 3a). miR-124-BS가 miR-124의 정규 발단 싸이트는 억제하지 못하고 비정규 융기 싸이트만을 억제했던 이전 실시예 2의 결과로 비추어 볼 때, 자궁경부암의 세포 사멸은 비정규 핵융기 타겟의 발현 억제로 일어남을 알 수 있다.As a result of dividing these experiments into control, miR-124 expression, and miR-124-BS expression, respectively, when miR-124 was expressed, apoptosis (the number of cells stained with Annexin V) in cervical cancer cells (HeLa) compared to the control group. ), it was observed that the rate at which the death proceeds increased from about 30% to about 78%, and similarly, it was confirmed that miR-124-BS increased more than twice to about 73% (FIG. 3A). In view of the results of the previous Example 2, in which miR-124-BS did not inhibit the normal initiating site of miR-124 but only suppressed the irregular raised site, cervical cancer cell death occurred due to suppression of the expression of the irregular nucleus target. Able to know.

miR-124 는 뇌조직 특이적 마이크로RNA로, 조직세포 특이적 전사체 발현이 없는 전혀 다른 세포에서는 뇌조직 특이적 기능을 하지 않는다고 보고된 바 있다 (Farh K et al, 2005, Science, 310 (5755) 1817-21). 따라서, miR-124가 비정규 융기 표적을 억제함으로 일으키는 기능을 신경 세포에서 관찰하기 위해서, miR-124-BS를 소뇌 신경줄기세포주인 C17.2에 도입한 후, 세포분화를 세포 형태학적으로 관찰하였다 (도 3b, 위의 도면). 그 결과 miR-124를 도입한 경우에는 C17.2 세포의 신경 돌기 가지 분화가 길게 만들어 지면서 촉진되었으나, miR-124-BS의 경우에는 분화는 관찰되었으나 가지가 짧은 형태로 다르게 관찰되었다. 따라서 miR-124에 의해서 일어나는 일반적인 신경 돌기 가지 분화는 정규적인 발단 싸이트 표적을 억제함으로 일어나는 것을 알 수 있다. 이때, miRNA의 도입은 이전 실시예 2와 동일한 방법으로 50nM의 miRNA를 합성하여 RNAiMax 시약으로 실행하였다.miR-124 is a brain tissue-specific microRNA, and it has been reported that it does not have a brain tissue-specific function in completely other cells without tissue cell-specific transcript expression (Farh K et al, 2005, Science, 310 (5755). ) 1817-21). Therefore, in order to observe the function that miR-124 causes by inhibiting the irregular elevation target in nerve cells, after introducing miR-124-BS into the cerebellar neural stem cell line C17.2, cell differentiation was observed cellular morphology ( Figure 3b, above). As a result, when miR-124 was introduced, the differentiation of the neurite branches of C17.2 cells was made longer and promoted. In the case of miR-124-BS, the differentiation was observed, but the branches were differently observed. Therefore, it can be seen that the normal neurite branch differentiation caused by miR-124 occurs by suppressing the normal initiating site target. At this time, the introduction of miRNA was carried out with the RNAiMax reagent by synthesizing 50nM miRNA in the same manner as in Example 2.

또한, 이전 HeLa 세포에서 miR-124-BS가 세포 사멸을 유도하였으므로, 신경세포에서도 이러한 기능이 나타나는 지를 실시예 2에서 수행한 방법과 동일하게 C17.2 세포에서 유세포 분석으로 관찰하였다. 그 결과 miR-124 발현의 경우에는 세포사멸이 일어나는 비율이 대조군의 21%에 비해서 거의 비슷한 정도인 22.4% 인데 비해, miR-124-BS는 33.4%로 다소 증가하는 것으로 나타났다 (도 3b, 중간 도면). 이는 자궁경부암 세포에서 동일하게 세포 사멸이 miR-124의 비정규 융기 표적 억제를 통해 일어난다는 점에서 동일한 경향성을 보이나, 그 증가율은 약 2배로 나타나는 자궁경부암보다는 매우 작은 것을 알 수 있었다. miR-124는 신경줄기세포에서 분화에 관련된 역할을 주로 하는데, 이때 세포주기의 조절은 중요한 역할을 할 수 있다. 따라서 miR-124와 miR-124-BS를 C17.4 세포에 도입한 후 세포주기를 PI(Propidium Iodide) 염색을 통해 유세포 분석을 적용하여 관찰하였다 (도 3b, 밑의 도면). 이때 miR-124는 G0/G1에서의 세포주기 정지 상태(cell cycle arrest)를 대조군인 69%에 비해 다소 증가시킨 83%로 유도시키는 것으로 나타났다. 이에 비하여 miR-124-BS의 발현은 세포주기 정지가 현저하게 일어나지 않음을 관찰할 수 있었다. 이때의 실험은 이전 실시예와 동일하게 해당 마이크로RNA를 트랜스팩션하고 48시간동안 배양 후, 세포를 떼어 에탄올로 고정 (fix) 하고 1mg/ml 의 propidium iodide (PI; Sigma-Aldrich)를 0.2 mg/ml의 RnaseA 와 함께 37℃에서 30분간 반응시킨 다음 BD FACSCalibur (BD Biosciences) 로 유세포 분석을 수행하였다.In addition, since miR-124-BS induces apoptosis in previous HeLa cells, it was observed by flow cytometry in C17.2 cells in the same manner as in Example 2, whether this function appeared in neurons. As a result, in the case of miR-124 expression, the rate at which apoptosis occurs is 22.4%, which is almost the same as that of 21% of the control group, whereas miR-124-BS slightly increases to 33.4% (Fig. 3b, middle drawing. ). It was found that apoptosis in cervical cancer cells is the same in that apoptosis occurs through the inhibition of the irregular raised target of miR-124, but the increase rate is very small than that of cervical cancer, which is about twice as high. miR-124 plays a role mainly related to differentiation in neural stem cells, and in this case, regulation of the cell cycle can play an important role. Therefore, after the introduction of miR-124 and miR-124-BS into C17.4 cells, the cell cycle was observed by applying flow cytometry through PI (Propidium Iodide) staining (FIG. 3B, the figure below). At this time, miR-124 was found to induce cell cycle arrest at G0/G1 to 83%, slightly increased compared to 69% of the control group. In contrast, it could be observed that the expression of miR-124-BS did not significantly arrest the cell cycle. In this experiment, the microRNA was transfected and cultured for 48 hours, as in the previous example, and then the cells were removed and fixed with ethanol, and 1 mg/ml of propidium iodide (PI; Sigma-Aldrich) was 0.2 mg/ml. After reacting with ml of RnaseA at 37° C. for 30 minutes, flow cytometry was performed with BD FACSCalibur (BD Biosciences).

상기의 실시예에서의 결과를 정리하면, miR-124-BS에 의해 miR-124 비정규 핵융기 타겟 발현을 저해하는 경우만으로도, miR-124와 동일하게 자궁경부암 세포 (Hela) 의 사멸을 유도하며, 이를 통해 miR-124의 비정규 융기 표적의 저해 기능은 암세포의 사멸임을 알 수 있다. 또한 신경줄기세포의 경우 miR-124의 발현에 의해서 신경 돌기 가지 분화가 일어나면서, 약간의 세포사멸과 세포 주기 정지가 일어나는 데, miR-124의 비정규 융기 표적만을 저해하는 miR-124-BS에서는 이러한 기능 다소 다른 형태로 나타난다. 따라서 miR-124의 신경세포 분화 기능은 기존의 알려진 정규적인 발단 표적 유전자의 억제에 의해서 주로 일어남을 알 수 있으며, 다른 형태로는 비정규 융기 타겟을 통해 일어날 수 있음을 생각할 수 있었다. Summarizing the results in the above examples, just when miR-124 irregular nucleus target expression is inhibited by miR-124-BS, it induces death of cervical cancer cells (Hela) in the same manner as miR-124, From this, it can be seen that the inhibitory function of miR-124's irregular elevation target is the death of cancer cells. In addition, in the case of neural stem cells, the differentiation of neurites occurs due to the expression of miR-124, resulting in slight apoptosis and cell cycle arrest. In miR-124-BS, which inhibits only the irregular raised target of miR-124, this function It appears in a somewhat different form. Therefore, it can be seen that the neuronal differentiation function of miR-124 is mainly caused by the suppression of the known regular initiating target gene, and in other forms, it could be thought that it can occur through non-regular raised targets.

[[ 실시예Example 4] 4] miRmiR -124-BS가 -124-BS miRmiR -124 비정규 -124 Irregular 핵융기Nuclear proliferation 타겟target 발현을 저해함으로써 가지가 많고 돌기가 짧은 다른 형태의 신경분화(branched By inhibiting expression, different types of branched neurons with short processes neuriteneurite outgrowth) 유도 기능 확인 outgrowth) inducing function

miR-124-BS가 miR-124와는 다른 형태의 신경 가지 돌기 분화를 일으키는 것을 이전 실시예에서 확인한 후, 이를 보다 자세히 살펴보기 위해서 인간 신경 모세포종(neuroblastoma)인 sh-sy-5y 세포주(CRL-2266)를 사용하여 실험을 하였다. 이때 추가적으로 miR-124-BS 이외에 miR-124의 비정규 핵융기 싸이트를 인식하고 억제할 수 있는 발단 서열을 동일하게 가지지만, 이외의 서열은 다른 서열을 가지고 있는 마이크로RNA 서열을 miR-124와 동일하게 한 miR-124-BS(4753)을 이전 실시예에서 기술한 방법으로 합성하여 실험을 진행하였다. 이때 사용한 miR-124-BS(4753)의 서열은 5‘-CAAGGCCAAAGGAAGAGAACAG-3’ 이며, 대조군(control)으로써는 예쁜 꼬마선충(C.elegans)의 마이크로RNA인 cel-miR-67(NT; non-targeting)의 서열과 동일하게 합성하여 사용하였다. 해당되는 miRNA를 이전 실시예에서 기술한 동일한 방법으로 트랜트팩션하고 60시간 동안 세포를 배양을 한 후, 세포 형태학적 변화를 광학현미경으로 관찰하였다 (도 4a). After confirming in the previous example that miR-124-BS causes neural dendritic differentiation in a different form from miR-124, in order to examine this in more detail, the sh-sy-5y cell line (CRL-2266), which is a human neuroblastoma. ) Was used to experiment. At this time, in addition to miR-124-BS, miR-124 has the same initiating sequence that can recognize and suppress the irregular nucleus site, but other sequences have the same microRNA sequence as miR-124. An experiment was conducted by synthesizing one miR-124-BS (4753) by the method described in the previous example. The sequence of miR-124-BS (4753) used at this time is 5'-CAAGGCCAAAGGAAGAGAACAG-3', and as a control, cel-miR-67 (NT; non-), a microRNA of C.elegans, is used as a control. targeting) was synthesized and used in the same manner as the sequence. Corresponding miRNA was transfected in the same manner as described in the previous example, and the cells were cultured for 60 hours, and then cell morphological changes were observed with an optical microscope (FIG. 4A).

그 결과, miR-124의 발현은 인간 신경 모세포종 (Sh-sy-5y)의 신경돌기를 길게 분화시키는 형태상 변화를 관찰할 수 있었으며, 반면에 miR-124의 비정규 융기 표적만을 억제할 수 있는 발단 서열을 miR-124-BS와 동일하게 지니고 있는 miR-124-BS(4753)의 경우에는, 짧지만 한 세포에서 많은 수의 신경 돌기 가지가 생기는 세포 형태 (branched neurite outgrowth) 가 관찰되었다 (도 4a). 이를 바탕으로 추가로 카테콜아민계 신경세포 (CAD, CRL-11179)에서도 동일한 실험을 진행해 보았다. 이때는 해당 마이크로RNA를 트랜스펙션 시키고, 52시간 동안 세포를 배양한 후 관찰하였다 (도 4b). 그 결과 인간 신경 모세포종 (Sh-sy-5y, CRL-2266) 세포에서 보인 결과와 동일하게 miR-124는 숫자가 적지만 긴 돌기를 형성하고, miR-124-BS(4753)은 짧지만 많은 신경돌기 가지가 뻗어 나오는 분화 현상을 관찰할 수 있었다. (도 4b). 추가적으로, miR-124와 miR-124-BS(4753)을 함께 동일 비율로 세포내에 전달할 경우, 긴 신경 돌기를 가진 세포와 많은 신경돌기 가지를 친 세포가 동시에 관찰되었다. 이는 발명한 miR-124-BS와 기존의 miR-124와 함께 발현했을 경우, 인위적으로 좀 더 복잡한 신경 네트워크에서 보이는 뇌세포와 유사하게 다양한 형태의 신경 분화를 촉진시킬 수 있는 가능성을 보여준다.As a result, the expression of miR-124 could be observed to change the morphology of long differentiation of the neurite out of human neuroblastoma (Sh-sy-5y), whereas it was possible to suppress only the irregular elevation target of miR-124. In the case of miR-124-BS (4753) having the same sequence as miR-124-BS, a short but branched neurite outgrowth was observed in which a large number of neurite branches were formed in one cell (Fig. 4a). ). Based on this, the same experiment was conducted in additional catecholamine-based neurons (CAD, CRL-11179). At this time, the microRNA was transfected, and the cells were cultured for 52 hours, and then observed (Fig. 4b). As a result, miR-124 has a small number but forms a long process, similar to the results shown in human neuroblastoma (Sh-sy-5y, CRL-2266) cells, and miR-124-BS (4753) is short but many neurons. It was possible to observe the eruption of the protruding branches. (Fig. 4b). Additionally, when miR-124 and miR-124-BS (4753) were delivered intracellularly at the same ratio together, cells with long neurites and cells with many neurite branches were simultaneously observed. This shows the possibility that when expressed together with the invented miR-124-BS and the existing miR-124, it can artificially promote various types of neural differentiation similar to brain cells seen in more complex neural networks.

추가적으로 이러한 마이크로RNA에 의해서 촉진되는 CAD 세포주의 신경분화는 신경세포 특이적인 마커인 Tuj1에 대한 면역 염색을 통해서 확인하였다 (도 4b, 아래 도면). 이때의 실험은 해당 마이크로RNA를 트랜스팩션 한 후 52시간 후에, CAD 세포를 4% 파라포름 알데하이드로 고정 (fixation) 후, 1차 항체인 Tuj1 (MRB-435P, Covance Antibody Products 社) 을 1:1000 의 비율로, Alexa 594 형광물질이 결합된 2차 항체 (Abcam: ab150076)는 1:1000 의 비율로 항체 염색 (immune-staining) 한 후, DAPI로 핵을 염색하여 수행하였다.Additionally, the neuronization of CAD cell lines promoted by these microRNAs was confirmed through immunostaining for Tuj1, a neuron-specific marker (FIG. 4B, below). In this experiment, 52 hours after transfection of the corresponding microRNA, CAD cells were fixed with 4% paraformaldehyde, and the primary antibody, Tuj1 (MRB-435P, Covance Antibody Products) was 1:1000. At the ratio of, Alexa 594 fluorescent substance-conjugated secondary antibody (Abcam: ab150076) was subjected to antibody staining (immune-staining) at a ratio of 1:1000, followed by staining the nucleus with DAPI.

상기의 실시예의 결과로 미루어, miR-124는 비정규 핵융기 표적만을 억제하므로써 기존의 miR-124의 기능과는 다른 형태인 짧지만 많은 신경돌기 가지를 형성시키는 기능을 가지고 있음을 알 수 있다. 특히 miR-124-BS와는 서열이 다르나 동일하게 발단지역의 서열을 가지고 있어서 비정규 핵융기 표적만을 억제할 수 있는 miR-124-BS(4753)을 사용하여 이러한 사실을 관찰하였으며, 이는 비정규 핵융기 표적을 인식할 수 있는 발단 서열을 포함하고 있는 RNA간섭 유도체는 miR-124-BS와 동일한 효과를 나타내다는 사실을 밝혀준다. 또한 miR-124-BS에 의해서 생성되는 복잡한 신경돌기 가지는 복잡한 신경 네트워크를 보이는 인간 뇌세포와 유사하게 다양한 형태의 신경 분화를 촉진시킬 수 있는 방법으로 활용될 수 있음을 나타낸다.From the results of the above examples, it can be seen that miR-124 has a function of forming short but many neurite branches, which are different from the functions of the existing miR-124 by inhibiting only the irregular nuclear ridge target. In particular, this fact was observed using miR-124-BS (4753), which is different from miR-124-BS, but it has the same sequence of the starting region, which can only suppress irregular nucleus targets. It turns out that the RNA interference derivatives containing a starting sequence capable of recognizing miR-124-BS have the same effect as miR-124-BS. In addition, it indicates that the complex neurite branches produced by miR-124-BS can be used as a method that can promote various types of neural differentiation similar to human brain cells showing complex neural networks.

[[ 실시예Example 5] 5] miRmiR -124-BS를 -124-BS siRNA와siRNA and shRNAshRNA 벡터로 발현시킨 후, 이로 인하여 유도되는 신경 돌기 분화(branched neurite outgrowth) 의 형태 및 분자생물학적 특징 확인. After expression as a vector, the morphology and molecular biological characteristics of branched neurite outgrowth induced thereby confirmed.

miR-124-BS의 발현으로 유도되는 특이적인 신경 돌기 분화 현상을 생쥐 신경 모세포종인 N2a (CCL-131)에서 추가적으로 확인하고자, 실시예 4와 동일하게 miR-124, miR-124-BS(4753)을 세포에 도입한 후 72시간동안 배양하면서 세포의 형태 변화를 관찰하였다 (도 5a). 또한 동시에 miR-124의 발단 서열을 동일하게 가지고 있지만 그 외의 부분은 다른 서열을 지닌 miR-124(3714)도 5‘-GAAGGCAGCAGUGCUCCCCUGU-3’ 서열로 합성하여 siRNA 형태로 이중체를 형성시킨 후 세포에 도입하여 실험하였다. 이때 대조군으로써는 예쁜 꼬마선충(C.elegans)의 마이크로RNA인 cel-miR-67(NT; non-targeting)의 서열과 동일하게 합성하여 사용하였다. To further confirm the specific neurite differentiation induced by the expression of miR-124-BS in mouse neuroblastoma N2a (CCL-131), miR-124, miR-124-BS (4753) as in Example 4 Was introduced into the cells and cultured for 72 hours to observe the change in the morphology of the cells (FIG. 5A). In addition, miR-124 (3714), which has the same starting sequence of miR-124 at the same time, but has a different sequence for other parts, is synthesized with the 5'-GAAGGCAGCAGUGCUCCCCUGU-3' sequence to form a duplex in the form of siRNA. Introduced and experimented. At this time, as a control, it was synthesized and used in the same manner as the sequence of cel-miR-67 (NT; non-targeting), a microRNA of C. elegans.

그 결과, miR-124 가 전달된 실험군에서는 카테콜아민계 신경세포인 CAD에서 보인 것과 유사한 긴 신경돌기를 가지는 신경세포를 관찰할 수 있었고, miR-124-BS(4753)을 트랜스팩션한 세포에서는 다양한 방향으로 가지를 뻗은 짧은 신경돌기를 가진 세포 형태상의 특징을 확인할 수 있었다(도 5a, 위). 또한 miR-124(3714)를 트랜스펙션한 실험군에서는 miR-124와 동일하게 비교적 긴 세포 돌기를 보이는 세포를 많이 관찰 할 수 있었다(도 5a, 위). 이와 같은 세포 형태상의 변화는 분화된 신경세포에서 발현되는 해당 단백질에 대한 항체, Tuj1 (Covance Antibody Products, MRB-435P), vGLUT1(synaptic systes 사, 135-303), MAP2 (millipore 사, MAB3418)을 사용하여 그 발현 양이 증가한 것을 면역 블롯 실험(immuno blotting)을 통해 4가지 대조군 단백질(ACT-B, TUB-A, GAPDH, H3B)의 발현에 대비하여 확인할 수 있었다 (도 5 a, 아래). 이를 통해 miR-124와 유사하지만 다른 형태를 보이는 miR-124-BS(4753)에 의한 신경분화는 형태학적으로는 다소 다르나, 유전자 발현 마커상 동일하게 분화를 유도한 것을 확인할 수 있었으며, miR-124와 동일한 발단 서열을 지니고 있어서 동일하게 주로 정규적 발단 표적을 억제할 것으로 보이는 miR-124(3714)는 예상대로 miR-124처럼 신경세포의 가지가 길게 분화하는 특징을 보인다는 점을 알 수 있었다. 또한 miR-124-BS(4753), miR-124(3714)가 발현된 경우 모두다 분화된 신경세포에서 보이는 단백질 발현양이 증가되었는바, 이들은 모두 분화된 형태의 신경세포의 분자적 특징을 지니고 있음을 확인할 수 있었다. As a result, in the experimental group to which miR-124 was delivered, neurons having long neurites similar to those seen in CAD, a catecholamine-based neuron, were observed, and in the cells transfected with miR-124-BS(4753), various directions were observed. It was possible to confirm the features of the cell morphology with short neurite outstretched by branches (Fig. 5a, above). In addition, in the experimental group transfected with miR-124 (3714), it was possible to observe a large number of cells showing relatively long cell protrusions, similar to miR-124 (Fig. 5a, above). Such changes in cell morphology include antibodies against the protein expressed in differentiated neurons, Tuj1 (Covance Antibody Products, MRB-435P), vGLUT1 (synaptic systes, 135-303), and MAP2 (millipore, MAB3418). It was confirmed that the amount of expression was increased compared to the expression of the four control proteins (ACT-B, TUB-A, GAPDH, H3B) through immunoblotting (Fig. 5a, below). Through this, it was confirmed that the neuron differentiation by miR-124-BS (4753), which is similar to miR-124 but shows a different morphology, is slightly different in morphology, but induces differentiation in the same way as a gene expression marker. As expected, miR-124(3714), which has the same initiating sequence and is likely to suppress the regular initiating target in the same way, shows the characteristic of long differentiation of neuronal branches like miR-124 as expected. In addition, when both miR-124-BS (4753) and miR-124 (3714) were expressed, the amount of protein expressed in differentiated neurons increased. All of them have molecular characteristics of differentiated neurons. It could be confirmed that there is.

지금까지의 실시예서의 마이크로RNA의 발현은 합성된 이중체를 세포에 도입하여 실시하였으나, 마이크로RNA의 발현은 이를 생성시킬 수 있는 헤어핀 형태의 RNA인 shRNA 형태를 발현 시키는 벡터를 도입하여서도 가능하다. 따라서 pre-miRNA로 발현시키는 벡터인 pCAG-miR30 플라스미드 (addgene #14758)를 사용하여 miR-124, miR-124-BS(4753), miR-124(3714)를 shRNA 형태로 발현시키는 벡터를 제작하였다. 이때 사용한 pCAG-miR30 벡터는 마이크로RNA를 강하게 발현시키기 위해 CAG 프로모터를 사용하였고, 마이크로RNA-30 의 원형체 (backbone)를 발현시키도록 디자인 되어서, 마이크로 RNA 발현을 극대화 시키는 장점을 지니고 있다 (Paddison P et al, Nature methods, 2004, 1(2): 163-7). The expression of microRNAs in the examples so far was carried out by introducing the synthesized duplex into cells, but the expression of microRNAs is also possible by introducing a vector expressing the shRNA form, which is a hairpin-like RNA capable of generating it. . Therefore, a vector expressing miR-124, miR-124-BS (4753), and miR-124 (3714) in the form of shRNA was constructed using the pCAG-miR30 plasmid (addgene #14758), a vector expressing pre-miRNA. . The pCAG-miR30 vector used at this time uses a CAG promoter to strongly express microRNA, and is designed to express the backbone of microRNA-30, so it has the advantage of maximizing microRNA expression (Paddison P et al, Nature methods, 2004, 1(2): 163-7).

각각 miR-124, miR-124-BS(4753), miR-124(3714)를 발현시키도록 만들어진 pCAG 벡터는 아무것도 발현되는 않는 pCAG 벡터를 대조군으로 사용하여, N2a 세포에 도입되었고, 그 이후 세포 형태를 관찰하였다 (도 5b). 신경 모 세포종인 N2a에 도입된 헤어핀구조의 실험군은, miR-124, miR-124-BS(4753), miR-124(3714) 이중체가 보이는 세포 형태상의 변화와 유사한 변화를 보였다. 트랜스펙션 후 72시간 배양시, miR-124와 miR-124(3714)가 발현된 실험군에서는 긴 신경돌기를 지닌 신경 모 세포종을 관찰할 수 있었다. 이에 반하여, miR-124-BS(4753)가 발현된 실험군에서는 짧고 다양한 방향으로 뻗은 신경돌기를 지닌 신경 세포종을 관찰할 수 있었다(도 5b, 위). 이러한 세포 형태의 변화는 분화된 신경세포에서 발현되는 단백질인 Tuj1 (O. von Bohlen et al.  2007 Cell and Tissue Research, 329, 3, 409-20) 의 발현이나, Synaptophysin (SYP)의 발현이 증가한 것으로 확인되었으며 (도 5b, 아래), 따라서 miR-124, miR-124-BS(4753), miR-124(3714) 헤어핀 벡터가 도입된 세포가 대조군에 비해 분화된 형태의 신경세포의 특징을 지님을 확인할 수 있었다. TUJ1의 증가는 이전 실시예와 동일한 방법으로 면역 블롯 실험으로 관찰하였으며, Synaptophysin은 qPCR(Quantitative Polymerase Chain Reaction) 실험을 통해 이전 논문 (S.E.Kwon et al. 2011  Neuron 70, 847-54)에서 기술된 primer 서열을 사용하여 진행하였다. 이때의 실험은 해당 벡터를 N2a 세포에 Lipofectamine 3000 시약 (Invitrogen 사)을 해당 회사의 프로토콜에 따라 사용하여 수행하여 트랜스팩션 한 후, 24시간 후에 총 RNA를 RNeasy 키트(Qiagen)로 추출하고, 해당 프로토콜에 따라 Superscript III RT(Invitrogen)로 역전사하고, SYBR® Green PCR Master Mix (Applied Biosystems)로 qPCR을 수행하여 해당 프라이머로 SYP의 전령RNA의 양을 측정하고 GAPDH 전령RNA 값으로 표준화하였다.The pCAG vector made to express miR-124, miR-124-BS (4753), and miR-124 (3714), respectively, was introduced into N2a cells using a pCAG vector expressing nothing as a control. Was observed (Fig. 5b). The experimental group of the hairpin structure introduced into the neuroblastoma N2a showed a change similar to that of the cell morphology seen by miR-124, miR-124-BS (4753), and miR-124 (3714) duplexes. When cultured for 72 hours after transfection, neuroblastomas with long neurites were observed in the experimental group expressing miR-124 and miR-124 (3714). On the contrary, in the experimental group in which miR-124-BS(4753) was expressed, neurocytomas with neurites extending in short and various directions could be observed (FIG. 5B, above). This change in cell morphology is the expression of Tuj1 (O. von Bohlen et al.   2007 Cell and Tissue Research, 329, 3, 409-20), a protein expressed in differentiated neurons, but increased expression of Synaptophysin (SYP). It was confirmed (Fig. 5b, below), and thus miR-124, miR-124-BS (4753), and miR-124 (3714) hairpin vector-introduced cells have the characteristics of differentiated neurons compared to the control group. Could be confirmed. The increase of TUJ1 was observed by immunoblot experiment in the same manner as in the previous example, and Synaptophysin was primer described in the previous paper (SEKwon et al. 2011  Neuron 70, 847-54) through qPCR (Quantitative Polymerase Chain Reaction) experiment. Proceed using the sequence. In this experiment, the vector was transfected using the Lipofectamine 3000 reagent (Invitrogen) in N2a cells according to the company's protocol, and after 24 hours, the total RNA was extracted with the RNeasy kit (Qiagen), and the protocol According to the method, reverse transcription was performed with Superscript III RT (Invitrogen), and qPCR was performed with SYBR® Green PCR Master Mix (Applied Biosystems) to measure the amount of messenger RNA of SYP with the corresponding primer, and normalized to the GAPDH messenger RNA value.

상기의 실시예의 결과로 미루어 볼 때, 마이크로RNA의 도입을 shRNA 형태로 발현하게 하는 벡터를 사용하더라도, miR-124의 발단 부분만의 서열만 동일하게 가진다면 (miR-124(3714)), miR-124와 동일하게 정규적인 표적 유전자의 발현 억제를 통해 일반적으로 긴 신경 돌기 분화를 일으킨다는 것을 알 수 있다. 또한 miR-124의 비정규 융기 표적도 shRNA형태로 발단 부분만 miR-124-BS와 동일하게 발현(miR-124-BS(4753))된다면 가지가 더 많은 신경 돌기 분화를 일으킬 수 있다. 이렇게 miR-124에 의한 정규 표적 억제와 비정규 융기 표적 억제 둘다 신경세포의 신경돌기분화형태의 분자적인 유전자 마커 발현을 보이며, 이를 통해 모두 신경세포로 분화했음을 확인할 수 있었다.From the results of the above examples, even if a vector that allows the introduction of microRNA to be expressed in the form of shRNA is used, if only the sequence at the beginning of miR-124 is the same (miR-124(3714)), miR As with -124, it can be seen that normal long neurite differentiation is caused by suppressing the expression of the target gene. In addition, if the irregular raised target of miR-124 is also expressed in the form of shRNA in the same way as miR-124-BS (miR-124-BS (4753)), branches can cause more neurite differentiation. In this way, both normal target suppression and irregular elevation target suppression by miR-124 showed molecular gene marker expression in the form of neurite differentiation of neurons, and through this, it was confirmed that both were differentiated into neurons.

[[ 실시예Example 6] 6] miRmiR -124-BS가 -124-BS MAPRE1MAPRE1 의 발현 조절을 통해 마우스 신경모세포종 (N2a)의 신경돌기분화 유도 확인 Confirmation of induction of neurite differentiation of mouse neuroblastoma (N2a) through expression control of

추가적으로 miR-124, miR-124-BS(4753), miR-124(3714) 의 신경모세포종(N2a)에서 신경돌기분화 유도를 세포 형태학상으로 관찰하고, 이를 정량적으로 분석하여 보았다 (도 6a). 정량 분석 시, 각각의 신경세포에서 유래한 신경 가지를 구분하기 위해서 녹색형광단백질 (GFP: Green fluorescent protein) 을 발현시키는 pUltra (addgene #24129) 플라스미드와 해당 마이크로RNA 발현 벡터를 이전 실시예에서의 방법과 동일하게 트랜스펙션(co-transfection)시키고, 72시간동안 세포배양을 진행하면서, 신경돌기를 형광현미경 (Leica 사)으로 관찰하면서 신경돌기 가지의 수를 측정하고, 세포당 생성된 신경돌기의 길이를 이미지J 프로그램을 통해 분석하였다. Additionally, the induction of neurite outgrowth in neuroblastoma (N2a) of miR-124, miR-124-BS (4753), and miR-124 (3714) was observed in terms of cell morphology, and this was quantitatively analyzed (FIG. 6a ). In quantitative analysis, pUltra (addgene #24129) expressing a green fluorescent protein (GFP)   plasmid and the corresponding microRNA expression vector were used in the previous examples in order to distinguish neural branches derived from each neuron. In the same way as, the number of neurite branches was measured while observing the neurite with a fluorescence microscope (Leica) while performing the cell culture for 72 hours. The length was analyzed through the Image J program.

그 결과, 100개의 세포에 대해, 세포당 발현된 신경돌기 가지의 수 (neurite branch) 가 대조군에 비해 miR-124, miR-124-BS(4753), miR-124(3714) 에서는 약 3~5배 증가한 것을 확인하였다 (도 6a, 아래 왼쪽). 하지만 miR-124-BS(4753)가 발현되 경우에는 miR-124나 miR-124(3714)가 발현된 경우에 비해 유의하게 더 많은 가지가 만들어 짐이 관찰되었다. 또한 세포당 생성된 신경돌기의 길이도 대조군에 비해 miR-124-BS(4753), miR-124(3714) 실험군에서 4~6배로 증가한 것을 확인할 수 있었으면, 보다 자세하게는 miR-124 또는 miR-124(3714)가 발현되었을 경우에는 miR-124-BS(4753)이 발현되었을 때보다 더 긴 신경 돌기 가지가 만들어 진다는 것을 관찰할 수 있었다 (도 6a, 아래 오른쪽). 이는 이전 실시예 (도 4, 도 5, 도 6)에서 세포 형태학적으로 관찰한 것과 동일한 결과이다.As a result, for 100 cells, the number of neurite branches expressed per cell was about 3 to 5 in miR-124, miR-124-BS (4753), and miR-124 (3714) compared to the control group. It was confirmed that the fold increased (Fig. 6A, lower left). However, when miR-124-BS (4753) was expressed, significantly more branches were observed than when miR-124 or miR-124 (3714) was expressed. In addition, if it could be confirmed that the length of neurites generated per cell increased 4-6 times in the miR-124-BS (4753) and miR-124 (3714) experimental groups compared to the control group, in more detail miR-124 or miR-124 When (3714) was expressed, it could be observed that longer neurite branches were formed than when miR-124-BS(4753) was expressed (Fig. 6a, lower right). This is the same result as observed in the cell morphology in the previous examples (Fig. 4, Fig. 5, Fig. 6).

miR-124-BS의 의해서 일어나는 특이적인 신경분화 현상이 어떠한 유전자의 비정규 융기 싸이트에 의해서 일어나는지 알아보기 위해서, 신경분화에 관련된 유전자의 3‘UTR 부분에 서열에서 miR-124의 비정규 융기 표적 서열을 찾아보았다. 그 결과 신경세포의 분화를 조절한다고 보고된 MAPRE1(Microtubule-associated protein RP/EB family member 1: Elena Tortosa et al. 2013 EMBO   32, 1293-1306) 유전자를 찾게 되었다. MAPRE1은 신경 돌기를 생성시킬 때 이를 구성하는 마이크로튜블(micorotuble)의 끝에 붙는 단백질로 해당 마이크로튜블의 형성 조절을 통해 신경 돌기의 형태를 결정할 수 있다. 따라서 이 MAPRE1 유전자가 miR-124의 비정규 융기 표적으로 인식되어 그 발현이 저해되는 지를 확인하고자, N2a 세포에 miR-124-BS를 도입한 후 MAPRE1의 전령RNA의 양을 실시예 5b에서 수행한 방법에 따라 qPCR 실험을 실시하여 측정해보았다 (도 6b). 2가지 다른 프라이머를 가지고 qPCR을 시행해 보았을 때 두 결과 모두 대조군에 비교하여 miR-124-BS 도입된 실험군에서는 70~40 % 수준으로 MAPRE1 발현이 감소하는 것을 확인할 수 있었다. 이를 통해 MAPRE1이 miR-124의 비정규 융기 싸이트로 그 발현이 억제된다는 것을 확인할 수 있었다.In order to find out whether the specific neuronal differentiation caused by miR-124-BS is caused by the irregular elevation site of a certain gene, search for the irregular elevation target sequence of miR-124 in the sequence at the 3'UTR part of the gene related to neuronal differentiation. saw. As a result, MAPRE1 (Microtubule-associated protein RP/EB family member 1: Elena       et al. 2013 EMBO       32,   1293-1306) gene was found that was reported to regulate neuronal differentiation. MAPRE1 is a protein attached to the end of a microtuble that constitutes a neurite when it is generated, and can determine the shape of a neurite through regulation of the formation of the corresponding microtubule. Therefore, in order to confirm whether this MAPRE1 gene is recognized as an irregular raised target of miR-124 and its expression is inhibited, the method of carrying out the amount of messenger RNA of MAPRE1 in Example 5b after introducing miR-124-BS into N2a cells According to the qPCR experiment was performed and measured (Fig. 6b). When qPCR was performed with two different primers, both results showed that the miR-124-BS-introduced experimental group decreased MAPRE1 expression to a level of 70-40% compared to the control group. Through this, it was confirmed that the expression of MAPRE1 was inhibited as an irregular elevation site of miR-124.

MAPRE1이 miR-124의 비정규 융기 표적이고, 매우 중요한 타겟이라면, miR-124-BS의 비정규 융기 표적 억제로 인하여 나타나는 신경분화 형태가 MAPRE-1의 발현 감소로 인해서 더 촉진이 되어야 한다. 따라서 이러한 점을 확인하기 위해서 MAPRE1을 저해할 수 있는 siRNA를 2가지 제작하고 이와 함께 miR-124를 함께 N2a 세포에 트랜스팩션하고 세포형태학상 변화를 보이는 지 확인하는 실험을 수행하였다 (도 6c). 그 결과, miR-124만 발현시킨 대조군에 비해서, miR-124와 MAPRE1에 대한 siRNA를 함께 발현시킨 실험군에서 신경돌기 가지가 많이 증가한 것을 관찰할 수 있었고, 이는 두 종류의 다른 서열의 MAPRE1 siRNA를 사용한 실험에서도 동일하게 관찰하였다 (도 6c). 이때의 실험은 이전 실시예에서 사용한 방법과 동일하게 RNA를 세포에 도입했으면, 이 후 48시간동안 세포 배양하면서 형태를 관찰하였다. If MAPRE1 is an irregular uplift target of miR-124 and is a very important target, the neurological differentiation pattern that appears due to the suppression of the irregular uplift target of miR-124-BS should be further promoted due to decreased expression of MAPRE-1. Therefore, in order to confirm this point, two siRNAs capable of inhibiting MAPRE1 were produced, and miR-124 was transfected into N2a cells together with this, and an experiment was performed to confirm whether a change in cell morphology was shown (FIG. 6c ). As a result, compared to the control group expressing only miR-124, it was observed that the number of neurite branches increased significantly in the experimental group expressing the siRNA for miR-124 and MAPRE1 together, which was achieved by using two different sequences of MAPRE1 siRNA. The same was observed in the experiment (Fig. 6c). In this experiment, if RNA was introduced into the cells in the same manner as in the previous examples, the morphology was observed while culturing the cells for 48 hours thereafter.

이를 통해 miR-124-BS 가 유도하는 짧고 가지가 많은 신경 돌기 분화는 적어도 부분적으로는 MAPRE1 유전자의 발현을 miR-124의 비정규 융기 표적 싸이트를 통해서 억제하여 나타날 수 있는 생물학적 기능임을 확인하였다. Through this, it was confirmed that miR-124-BS-induced short and branched neurite differentiation is a biological function that can be manifested by at least partially inhibiting the expression of the MAPRE1 gene through an irregular elevation target site of miR-124.

[[ 실시예Example 7] 7] 전사체Transcript 수준에서 At the level miRmiR -124-BS의 세포 도입시 Upon introduction of -124-BS into cells miRmiR -124의 비정규 융기 표적 유전자의 저해 경향성 분석Analysis of the inhibition tendency of the non-normal elevation target gene of -124

마우스 신경모세포종(N2a)에서 miR-124-BS를 통해 억제된 유전자는 궁극적으로 신경모세포종의 신경돌기가지를 많이 생성시키는 신경세포 분화를 유도한다는 것을 확인하였다 (도 5). 이러한 현상은, miR-124-BS의 발단서열이 miR-124의 비정규 융기 표적을 인식하고 억제하는 기작에 의해서 나타날 것으로 생각되며, 그러한 가능성을 표적 유전자로 찾아낸 MAPRE1으로 확인하였다 (도 6). 하지만 실제로는 수백개의 miR-124 비정규 융기 표적 유전자들이 억제되어 일어나는 현상 일 것이다. In mouse neuroblastoma (N2a), it was confirmed that the gene suppressed through miR-124-BS ultimately induces neuronal differentiation, which produces a large number of neuroblastoma neurites (FIG. 5). This phenomenon is thought to appear by a mechanism in which the initiating sequence of miR-124-BS recognizes and suppresses the irregular raised target of miR-124, and such a possibility was confirmed by MAPRE1 found as a target gene (FIG. 6). However, in reality, it may be caused by the inhibition of hundreds of miR-124 irregularly raised target genes.

본 발명자들이 발명한 miR-124-BS가 실제로 모든 유전자가 발현되어 있는 전사체 수준에서 miR-124의 비정규 융기 표적 유전자만을 확인하기 위하여, miR-124와 miR-124-BS를 N2a 세포에 도입한 후에 RNA-Seq 분석을 시행하였다. 이때의 대조군으로는 miR-124와 동일한 염기서열이나 5' 말단 기준 6번이 비염기 (pi)인 이중체 (miR-124-6pi)를 사용하였으면, 이러한 변형은 miRNA의 5‘말단 기준 6번째에 염기가 없기에 표적 전령RNA와 전혀 배열하지 못한다고 보고되었다 ((Lee HS et. Al. 2015, Nat Commun. 6:10154).The miR-124-BS invented by the present inventors introduced miR-124 and miR-124-BS into N2a cells in order to identify only the irregularly raised target genes of miR-124 at the level of the transcript where all genes are expressed. Later, RNA-Seq analysis was performed. As a control at this time, if the same nucleotide sequence as miR-124 but a duplex (miR-124-6pi) whose 5'end is a non-base (pi) was used, this modification is the 6th based on the 5'end of the miRNA. It has been reported that it does not align with the target messenger RNA at all because there is no base in ((Lee HS et. Al. 2015, Nat Commun. 6:10154).

RNA-Seq 실험은 실험 대조군으로 예쁜 꼬마선충(C.elegans)의 마이크로RNA인 cel-miR-67의 서열에서 5' 말단 기준 6번을 비염기로 변환한 것 (NT-6pi)를 사용하여 N2a세포에 miR-124, miR-124-BS, miR-124-6pi 이중체를 75nM 농도로 각각 전달시키고, 24시간 배양 후, 전체 RNA를 RNAeasy (Qiagen) 키트로 추출한 후, Otogenetics에서 라이브러리를 제작하고 차세대서열분석(Next-generation sequencing)을 수행하였다. 이 후, 상기 실험으로 얻어진 서열 데이터인 FASTAQ 파일을 TopHat2 프로그램으로 마우스 유전체 서열 (mm9)에 맵핑하고, Cufflink, Cuffdiff 프로그램으로 발현값 (FPKM)을 구하여, 대조군 NT-6pi를 도입한 마우스 신경 모세포종 (N2a) 세포에서의 결과로 표준화하여 로그비 (Fold change, log2 ratio)로 나타내어 분석을 실시하였다.In the RNA-Seq experiment, N2a cells were converted from the sequence of cel-miR-67, a microRNA of C.elegans, to a non-base 6 of the 5'end as an experimental control (NT-6pi). The miR-124, miR-124-BS, and miR-124-6pi duplex were delivered at a concentration of 75 nM, respectively, and after 24 hours incubation, the total RNA was extracted with an RNAeasy (Qiagen) kit, and a library was prepared in Otogenetics and the next generation Next-generation sequencing was performed. Thereafter, the FASTAQ file, which is the sequence data obtained in the above experiment, was mapped to the mouse genome sequence (mm9) with the TopHat2 program, and the expression value (FPKM) was obtained with the Cufflink and Cuffdiff programs, and a mouse neuroblastoma in which the control NT-6pi was introduced ( N2a) was normalized to the results in cells and expressed as a log ratio (fold change, log2 ratio) for analysis.

마이크로RNA의 표적 싸이트를 가지고 있는 유전자의 전령RNA의 양이 해당 마이크로RNA의 발현으로 저해되는 지를 RNA-Seq 결과에서 분석하기 위해서 miR-124의 정규 발단 싸이트 (5'말단 기준 2번째에서부터 8번째까지와 염기 배열하는 7mer)를 3'UTR에 가지고 있으면서, 해당 싸이트의 서열이 여러 종에서 보존된 것을 선택하고자 phastCons 점수가 0.9 이상인 유전자를 선별하였고, 이러한 프로파일 결과를 해당 마이크로RNA의 발현에 의존적으로 저해되는 순서대로 누적비율 (cumulative fraction)로 비교 분석하였다. 또한 동일한 방법으로 miR-124의 비정규 융기 싸이트(nuc, 7mer)도 동정하여 해당 유전자의 억제 비율을 동일하게 누적비율로 분석하였다. 이때 miR-124의 비정규 융기 싸이트를 가지고 있는 유전자가 동시에 정규 발단 싸이트를 가지고 있어서, 그 억제 효과에 대한 판단이 어려울 수 있으므로 전체 전령RNA에 miR-124의 정규 발단 서열이 없는 경우 (nuc only)와 반대로 정규 발단 싸이트만 있고 비정규 융기 싸이트는 없는 경우(seed only)도 분석하였다.In order to analyze from the RNA-Seq results whether the amount of messenger RNA of the gene carrying the microRNA target site is inhibited by the expression of the corresponding microRNA, the normal starting site of miR-124 (from the 2nd to the 8th based on the 5'end) And 7mer) in the 3'UTR, and in order to select that the sequence of the site is conserved in several species, a gene with a phastCons score of 0.9 or higher was selected, and this profile result was inhibited dependently on the expression of the corresponding microRNA. It was compared and analyzed by cumulative fraction in the order of In addition, by the same method, irregular raised sites (nuc, 7mer) of miR-124 were also identified, and the rate of inhibition of the corresponding gene was analyzed by the same cumulative rate. At this time, since the gene with the non-normal bulging site of miR-124 has a regular starting site at the same time, it may be difficult to judge the inhibitory effect.Therefore, when the entire messenger RNA does not have the normal starting sequence of miR-124 (nuc only) and On the contrary, only regular starting sites and no irregular raised sites (seed only) were also analyzed.

miR-124 발현된 실험군의 RNA-Seq 서열분석에서 miR-124 발현에 따른 비율 변화(fold change)를 누적비율 (cumulative fraction)에 따라 분석하였을 때, miR-124의 보존된 정규 발단 싸이트를 3‘UTR에 가지고 있는 유전자(miR-124 seed)나 해당 싸이트 만을 가지고 있는 유전자 (miR-124 seed only)는 전체 유전자(Total mRNA)에 분포에 비해 매우 많이 억제되는 현상을 확인하였으며 (도 7a, 위), 이에 비하여 miR-124의 비정규 융기 싸이트를 가지고 있는 유전자는 유의하게 억제되다 매우 약한게 저해되는 것으로 관찰할 수 있었다 (도 7a, 아래). 하지만, 이러한 억제 현상은 대조군인 miR-124-6pi를 도입한 세포에서는 관찰되지 않았다 (도 7b). In the RNA-Seq sequencing analysis of the miR-124-expressing experimental group, when the fold change according to the miR-124 expression was analyzed according to the cumulative fraction, the conserved regular starting site of miR-124 was 3' It was confirmed that the gene (miR-124 seed) in the UTR or the gene (miR-124 seed only) having only the site was inhibited very much compared to the distribution in the total gene (Total mRNA) (Fig. 7a, above). In contrast, it could be observed that the gene having the irregular raised site of miR-124 was significantly inhibited but very weakly inhibited (Fig. 7a, below). However, this inhibition was not observed in the cells introduced with the control miR-124-6pi (Fig. 7b).

본 발명자가 개발한 miR-124-BS를 발현시킨 경우에서는 RNA-Seq 서열분석에서 miR-124-BS 발현에 따른 비율 변화(fold change)를 누적비율 (cumulative fraction)에 따라 분석하였을 때, miR-124의 보존된 정규 발단 싸이트를 3‘UTR에 가지고 있는 유전자(miR-124 seed)에서는 약간의 저해 효과를 보였지만, miR-124의 비정규 융기 싸이트는 없고 해당 정규 발단 싸이트 만을 가지고 있는 유전자 (miR-124 seed only)에서는 전혀 변화가 없음을 확인하였다 (도 7c, 위). 하지만, miR-124의 비정규 융기 표적을 가지고 있는 유전자의 경우 (miR-124 nuc)나 해당 표적만을 가지고 있는 유전자의 경우 (miR-124 nuc only) 둘 다 강하고 유효하게 유전자 억제 현상이 일어남을 알 수 있었다 (도 7c, 아래). 도 7c에서 miR-124-BS가 발현 되었을 경우, miR-124의 정규 발단 싸이트 만을(miR-124 seed only) 가지고 있는 유전자는 저해가 일어나지 않는 것으로 보아 miR-124의 정규 발단 싸이트를 전혀 억제하지 못하는 것으로 결론을 내릴 수 있지만, miR-124-BS가 다소 miR-124의 발단 싸이트 표적을 저해한 것은, 아마도 하지만 miR-124의 정규 싸이트가 있는 경우에는 아마도 miR-124의 비정규 융기 싸이트가 함께 존재하여 억제 효과를 조금이라도 나타내는 것으로 추측된다.In the case of expressing the miR-124-BS developed by the present inventor, when the fold change according to the expression of miR-124-BS was analyzed according to the cumulative fraction in RNA-Seq sequencing, miR- The gene (miR-124 seed) having the conserved normal initiation site of 124 in 3'UTR showed a slight inhibitory effect, but there was no irregular elevation site of miR-124, and the gene having only the normal initiation site (miR-124 seed only), it was confirmed that there was no change at all (Fig. 7c, above). However, in the case of a gene with an irregular elevation target of miR-124 (miR-124 nuc) or a gene with only the target (miR-124 nuc only), it can be seen that gene suppression occurs strongly and effectively. Was (Figure 7c, below). In Figure 7c, when miR-124-BS was expressed, the gene having only the normal initiating site of miR-124 (miR-124 seed only) did not inhibit the normal initiating site of miR-124 at all. Although it can be concluded that miR-124-BS somewhat inhibited the initiating site target of miR-124, perhaps, but in the presence of the regular site of miR-124, the irregular elevation site of miR-124 may be present together. It is presumed to exhibit any inhibitory effect.

상기의 실시예의 결과로 미루어 볼 때, 전사체 수준에서 miRNA는 기존의 정규 발단 표적 유전자의 억제를 매우 강하고 효율적으로 억제하지만, 비정규 융기 표적은 매우 약하게 저해함을 알 수 있었으며, miRNA-BS는 전사체 수준에서 miRNA의 비정규 융기 표적의 발현을 억제하지만, 기존의 정규 발단 서열은 억제하지 못한다는 것을 확인할 수 있었다.From the results of the above examples, it was found that miRNA at the transcript level very strongly and efficiently inhibits the suppression of the existing normal initiating target gene, but very weakly inhibits the irregular raised target. It was confirmed that it suppressed the expression of the irregular raised target of miRNA at the cadaver level, but not the existing normal initiating sequence.

[[ 실시예Example 8] 8] miRmiR -122-BS가 인간 -122-BS is human 간암세포주Liver cancer cell line ( ( HepG2HepG2 ) 에서 유도하는 세포 주기 정지 상태 (cell cycle arrest)의 ) Of cell cycle arrest induced in 유세포Flow cytometry 분석을 통한 확인 Confirmation through analysis

miR-124의 비정규 핵융기 표적에 의한 miR-124의 신경세포 분화유도를 관찰한 결과를 바탕으로 다른 마이크로RNA의 비정규 핵융기 표적의 생물학적 기능에 대한 실험을 수행하였다. miR-122 는 발단 염기 서열로 5'-UGG AGU GU-3'를 가지며, 이의 비정규 핵융기 타겟 싸이트와 염기 배열하는 siRNA의 염기 서열인 miR-122-BS는 6번 U가 한번 더 반복되는 형태 일 수 있으며, 이 경우에는 5'-UGG AGU U GUG ACA AUG GUG -3' 서열을 5‘ 말단에 가지면서 19개의 염기로 구성되며, 20번째와 21번째 염기로는 dt (Deoxy Thymine Nucleotide)로 이루어 진다. 특히 이중체 구조에서는 해당 dt 부분이 3'말단에 2개의 뉴클레오티드 돌출부(overhang)를 구성할 수 있도록 가이드와 운반자 가닥의 이중체로 구성하였다. 이때, 운반자 가닥은 가이드 가닥과 완전 상보 염기 결합을 하며, 5'말단 기준 1번째와 2번째 모두를 2'OMe로 변형하고, 염기 서열 끝에 dt 를 2개 포함하게 구성하였다 (도 8a). miR-122-BS의 가이드 가닥과 운반자 가닥은 바이오니아사 에서 화학적으로 합성하고 HPLC로 분리하였으며, 상기 회사에서 제공한 방법에 따라 가이드 가닥과 운반 가닥의 이중체(duplex)로 제조하였다. Based on the results of observing the induction of neuronal differentiation of miR-124 by the irregular nucleus target of miR-124, an experiment was conducted on the biological function of the irregular nucleus target of other microRNAs. miR-122 has 5'-UGG AGU GU-3' as the starting nucleotide sequence, and miR-122-BS, which is the nucleotide sequence of siRNA that nucleotides sequence with its irregular nucleus target site, repeats U once again In this case, the 5'-UGG AGU U GUG ACA AUG GUG -3' sequence is at the 5'end and consists of 19 bases, and the 20th and 21st bases are dt (Deoxy Thymine Nucleotide). It is done. In particular, in the duplex structure, the dt portion was composed of a duplex of a guide and a carrier strand so that two nucleotide overhangs were formed at the 3'end. At this time, the carrier strand performs a complete complementary base bond with the guide strand, and both the first and the second based on the 5'end were modified to 2'OMe, and two dt were included at the end of the base sequence (FIG. 8A). The guide strand and the carrier strand of miR-122-BS were chemically synthesized by Bioneer and separated by HPLC, and prepared as a duplex of the guide strand and the carrier strand according to the method provided by the company.

이렇게 제조한 miR-122-BS (도 8a)를 인간 간암세포주 (HepG2)에 도입하고 이후 세포 주기의 변화를 유세포 분석을 통해 관찰하였다. 이때의 실험은 대조군인 NT-6pi, miR-122, miR-122-BS의 이중체를 50nM 농도로 HepG2에 RNAiMAX (Invitrogen) 시약을 이용하여, 세포에 전달 (transfection) 하고, 24 시간 배양 후, 노코다졸(nocodazole) 을 100ng/ml 로 16시간 동안 처리하여 G2/M (분열준비기/분열기)에 세포를 동기화(synchronization)한 다음, MuseTM Cell Cycle Kit (Catalog No. MCH100106, Milipore)을 이용하여, 회사가 제공하는 실험 방법에 따라 Muse Cell Analyzer (Milipore) 로 세포 주기를 분석하였다. The prepared miR-122-BS (FIG. 8A) was introduced into a human liver cancer cell line (HepG2), and then the change in cell cycle was observed through flow cytometry. In this experiment, the duplex of the control group NT-6pi, miR-122, miR-122-BS was transferred to HepG2 at a concentration of 50 nM using RNAiMAX (Invitrogen) reagent, transferred to cells (transfection), and cultured for 24 hours. Nocodazole was treated at 100ng/ml for 16 hours to synchronize the cells to G2/M (dividing preparation/dividing stage), and then using Muse TM Cell Cycle Kit (Catalog No. MCH100106, Milipore). Thus, the cell cycle was analyzed with Muse Cell Analyzer (Milipore) according to the experimental method provided by the company.

그 결과, NT-6pi 가 전달된 대조군의 세포주기 분석과 비교하여, miR-122-BS 실험군은 G0/G1기의 세포가 10. 7% 에서 24.3% 로 약 2배 정도 증가하는 것으로 간암 세포인 HepG2의 세포 주기 정지가 증가됨을 확인할 수 있었다 (도 8b-c). 이러한 G0/G1기의 세포 증가는 miR-122가 전달된 세포에서는 관찰되지 않았다. 이어, miR-122-BS 가 전달된 인간 간암세포주 (HepG2)의 G2/M 기 세포분포는 대조군과 비교시 83. 4% 에서 67.3% 로 감소하였으며, 이러한 결과는 miR-122가 전달된 세포에서는 관찰되지 않았다 (도 8b,c).As a result, compared to the cell cycle analysis of the control group to which NT-6pi was delivered, the miR-122-BS experimental group showed that the G0/G1 phase cells increased about 2 times from 10.7% to 24.3%. It was confirmed that the cell cycle arrest of HepG2 was increased (Fig. 8b-c). This G0/G1 phase cell increase was not observed in the cells to which miR-122 was delivered. Subsequently, the G2/M phase cell distribution of the human liver cancer cell line (HepG2) to which miR-122-BS was delivered decreased from 83.4% to 67.3% compared to the control, and these results were found in the cells to which miR-122 was delivered. Not observed (Fig. 8b,c).

이를 통해 miR-122-BS 는 miR-122 의 비정규 핵융기 표적 발현의 조절을 통해, 인간 간암 세포주에서 세포주기 정지를 유도하는 생물학적 기능을 보이며, 이는 miR-122 가 작용하는 생물학적 기능과는 전혀 다른 기능임을 관찰할 수 있었다. Through this, miR-122-BS shows a biological function of inducing cell cycle arrest in human liver cancer cell lines through the regulation of the expression of the irregular nucleus target of miR-122, which is completely different from the biological function of miR-122. It could be observed that it is a function.

[ 실시예 9] miR -1-BS가 골격 근육세포 (C2C12 ) 에서 유도하는 근육섬유화 기능 및, miR -155-BS가 세포 사멸 기능 확인 [ Example 9] miR- 1-BS is skeletal muscle cells ( C2C12 ) Induced muscle fibrosis function and miR- 155-BS confirmed apoptosis function

miRNA-BS가 miRNA의 정규 발단 표적의 발현을 억제해서 나타나는 기능과는 다른 새로운 생물학적 기능을 관찰하였기에, 이러한 기능이 근육세포에서 어떻게 나타나는 지를 관찰하기 위해서 근육세포에서 발현하면서 중요한 기능을 하는 miR-1, miR-155에 miRNA-BS를 적용해보았다.Since miRNA-BS has observed a new biological function different from the function that appears by inhibiting the expression of the normal initiating target of miRNA, miR-1 plays an important function while expressed in muscle cells to observe how these functions appear in muscle cells. , miRNA-BS was applied to miR-155.

우선, miR-1은 근조직 특이적 마이크로RNA로, 근세포 분화 (differentiation) 에 기능한다고 보고되어 있으므로 (Chen J et.al, Nature genetics, 2006, 38(2): 228-233), miR-1-BS를 골격 근육세포주인 C2C12에 발현시킨 후 세포 형태학적 변화(도 9a)와 분화시에 발현되는 유전자 마커의 발현 유무(도 9b)를 조사하였다. 이 때 miR-1-BS를 이전 실시예에서 사용한 동일한 방법으로 합성하고 세포에 트랜스팩션 해주었으며, 48시간 동안 세포 배양시 10% FBS (fetal bovine serum), 100 U/ml 페니실린, 및 100 ㎍/ml 스텝토마이신을 보충한 Dulbecco's 개질 Eagle's 배지 (Invitrogen)를 사용하여 이는 증식 배양 조건 (growth condition; GM) 상태 (도 9a, 위)와 이렇게 키운 후 FBS를 제거한 결핍 배양 조건 (deprivation media condition; DM) 으로 48시간 더 배양한 상태(도 9a, 아래)로 나누어서 관찰하였다. 이후 세포는 4% 파라포름 알데히드 (para-form aldehyde: PFA)를 처리하여 세포를 고정하고 분화된 근육세포에 발현하는 myosin 2 heavy chain 단백질을 1차 항체 (MF20 : Developmental studies hybridoma bank ) 로 반응 시킨 후 , Alexa 488 형광물질이 붙은 마우스 2차 항체 (ab150105) 로 염색하여 세포 형태 및 분화를 관찰하였다 (도 9a). First of all, miR-1 is a muscle tissue-specific microRNA and is reported to function in myocyte differentiation (Chen J et.al, Nature genetics, 2006, 38(2): 228-233), miR-1- BS is a skeletal muscle cell line After expression in C2C12, cell morphological changes (FIG. 9A) and the presence or absence of expression of gene markers expressed during differentiation (FIG. 9B) were investigated. At this time, miR-1-BS was synthesized by the same method used in the previous example and transfected into cells, and when cells were cultured for 48 hours, 10% FBS (fetal bovine serum), 100 U/ml penicillin, and 100 μg/ Using Dulbecco's modified Eagle's medium (Invitrogen) supplemented with ml steptomycin, it was in a growth condition (GM) state (Fig. 9A, above) and a deprivation media condition (DM) in which FBS was removed after cultivation. ) Was observed by dividing into a state that was further cultured for 48 hours (Fig. 9a, bottom). Afterwards, the cells were treated with 4% para-form aldehyde (PFA) to fix the cells and reacted with the myosin 2 heavy chain protein expressed in differentiated muscle cells with a primary antibody (MF20: Developmental studies hybridoma bank). Then, by staining with a mouse secondary antibody (ab150105) with Alexa 488 fluorescent substance, cell morphology and differentiation were observed (FIG. 9A).

그 결과 생쥐 골격 근육세포(C2C12)는 증식 배양 조건(GM)에서는 miR-1-BS가 발현되었을 때, 대조군인 NT나 miR-1 이중체가 전달된 세포에 비해서 더 많은 수의 분화된 근세포를 MF20 염색 결과로 확인 할 수 있었다. 배양시 혈청을 감소시키는 결핍 배양 조건 (deprivation media condition; DM)에서는 근섬유 (muscle fiber) 로의 분화가 진행되는 것을 모두 관찰 하였으나, miR-1-BS가 대조군인 NT를 발현시킨 골격 근육세포에서 보다 더 굵은 형태를 관찰 할 수 있었다 (도 9a). 이는 miR-1-BS가 증식 배양 조건에서 보다 빨리 근세포 분화를 유도하여 생긴 결과 일 수 있다. 이러한 근육 세포의 분화는 분화시에 발현이 증가하는 유전자의 발현 양을 마커로 분자적으로 확인할 수 있는데, 이에 따라 sk-actin과 Myogenin 발현 양을 해당 전령RNA에 특이적인 프라이머로 RT(Reverse transcription)-PCR을 수행해서 분화시에도 발현량에 차이가 없는 b-actin의 전령RNA의 양과 비교하여 검출해 보았다 (도 9b). 그 결과 miR-1(1)과 miR-1-BS(1BS) 모두 발현시에 sk-actin과 Myogenin의 전사량이 증가함을 확인 할 수 있었으며, Myogenin의 경우 그 양이 miR-1-BS에 의해 miR-1보다 더 많이 증가함을 관찰할 수 있었다As a result, mouse skeletal muscle cells (C2C12), when miR-1-BS was expressed under proliferation culture conditions (GM), a greater number of differentiated myocytes compared to the cells to which NT or miR-1 duplexes were transferred were transferred to MF20. It was confirmed by the staining result. In the deprivation media condition (DM), which reduces serum during culture, all of the differentiation into muscle fibers was observed, but miR-1-BS was more than that in skeletal muscle cells expressing NT, the control group. It was possible to observe the thick form (Fig. 9a). This may be the result of miR-1-BS inducing myocyte differentiation more quickly under proliferation culture conditions. In the differentiation of these muscle cells, the amount of expression of the gene that increases in expression during differentiation can be molecularly identified as a marker. Accordingly, the amount of sk-actin and Myogenin expression is determined by a primer specific for the messenger RNA. -PCR was performed to detect the amount of the messenger RNA of b-actin, which did not differ in the expression level even during differentiation (Fig. 9b). As a result, it was confirmed that the amount of transcription of sk-actin and Myogenin increased when both miR-1(1) and miR-1-BS(1BS) were expressed. In the case of Myogenin, the amount of miR-1-BS It could be observed that it increased more than miR-1

miR-155는 근세포 분화를 억제하는 마이크로RNA (Seok H et. Al, JBC, 286(41):35339-46 2011)로, 위에서 miR-1에 대해서 실시한 동일한 방법으로 miR-155-BS의 효과를 골격 근육세포(C2C12)의 분화를 통해 관찰하였다 (도 9c). 그 결과, 대조군인 NT, miR-155, miR-155-BS를 발현시킨 후 증식 배양 조건(GM)에서는 세포의 별다른 형태학적 차이를 관찰하지 못하였으나, 근 세포의 분화를 유도하는 결핍 배양 조건(DM)에서는 대조군은 분화되고, miR-155이 발현되는 경우에는 억제되지만, miR-155-BS를 도입한 경우에는 분화가 도리어 없어지는 것을 myosin 2 heavy chain 단백질을 통한 면역염색(immune-staining) 실험을 통해 확인하였다 (도 9c). 특히, miR-155-BS를 발현한 C2C12 세포를 자세히 살펴보았을 때, miR-155-BS 가 세포의 사멸을 유도한 것이 관찰되었다. 이에 반해, miR-155가 전달된 근세포에서는 세포 사멸은 전혀 관찰되지 않았다 (도 9c, 아래). 이를 보다 자세히 조사해보기 위해서 해당 마이크로RNA가 발현된 C2C12 세포를 48시간동안 증식 배양 조건에서 키운 후에, 실시예 3에서의 방법과 동일한 유세포 분석을 적용하여 세포 사멸을 살펴보았다 (도 9d). 그 결과, miR-155-BS 가 전달된 실험군은 대조군에 비해 약 1.5~2.5배 이상 세포사멸이 증가한 것으로 확인되었다 (도 9d, e). miR-155 is a microRNA that inhibits myocyte differentiation (Seok H et. Al, JBC, 286(41):35339-46 2011), and the effect of miR-155-BS was demonstrated in the same way as for miR-1 above. It was observed through differentiation of skeletal muscle cells (C2C12) (Fig. 9c). As a result, after expressing the control group NT, miR-155, miR-155-BS, no significant morphological difference was observed in the growth culture conditions (GM), but the deficient culture conditions that induce the differentiation of muscle cells ( In DM), the control group is differentiated, and when miR-155 is expressed, it is suppressed, but when miR-155-BS is introduced, the differentiation is eliminated by an immuno-staining experiment using myosin 2 heavy chain protein. It was confirmed through (Fig. 9c). In particular, when looking closely at C2C12 cells expressing miR-155-BS, it was observed that miR-155-BS induced cell death. In contrast, no cell death was observed in the myocytes to which miR-155 was delivered (FIG. 9C, bottom). In order to investigate this in more detail, C2C12 cells expressing the corresponding microRNA were grown in proliferation culture conditions for 48 hours, and then cell death was examined by applying the same flow cytometric analysis as in Example 3 (FIG. 9D). As a result, it was confirmed that the experimental group to which miR-155-BS was delivered increased apoptosis by about 1.5 to 2.5 times or more compared to the control group (FIG. 9d, e).

상기의 실시예를 통해, miR-1-BS는 골격 근육 세포의 분화를 촉진하여 굵은 근 섬유 분화를 유도하며, miR-155-BS는 골격 근육 세포의 사멸을 유도하며, 이러한 기능은 기존의 근육 세포를 수축시키는 miR-1의 기능과 근육 세포 분화를 억제하는 miR-155의 기능과는 다른 것을 확인할 수 있었다.Through the above examples, miR-1-BS promotes the differentiation of skeletal muscle cells to induce the differentiation of thick muscle fibers, and miR-155-BS induces the death of skeletal muscle cells. It was confirmed that the function of miR-1 to contract cells and miR-155 to inhibit muscle cell differentiation were different.

[[ 실시예Example 10] Ago HITS CLIP 분석에서 10] In Ago HITS CLIP analysis 워블Wobble (wobble) 염기 배열을 (wobble) base sequence 마이크로RNA의MicroRNA 발단위치에서 허용하는 비정규 표적 Irregular target allowed by the initiation value 싸이트의Site 발견 discovery

마이크로RNA의 표적을 전사체 수준에서 분석할 수 있는 방법으로는 Ago HITS CLIP이라는 실험 방법이 개발되어 널리 사용되고 있다 (Nature, 2009, 460 (7254): 479-86). Ago HITS CLIP 실험은 세포나 조직 샘플에 UV를 조사하여 세포내에서 RNA와 아고너트 단백질 사이에 공유결합을 유도하고, 이렇게 생성된 RNA-아고너트 복합체를 아고너트를 특이적으로 인식하는 항체를 이용하여 면역침강법으로 분리한 다음, 분리된 RNA를 차세대염기서열 (Next-generation sequencing)로 분석하는 방법이다. 이렇게 얻어진 염기서열 데이터는 생물정보학적 분석을 통해서 마이크로RNA의 표적mRNA를 동정할 수 있을 뿐만 아니라, 그 결합 위치와 서열도 정확하게 분석할 수 있다 (Nature, 2009, 460 (7254): 479-86). Ago HITS-CLIP은 최초로 생쥐의 대뇌피질 조직에 적용되어 뇌 조직에서의 마이크로RNA의 표적에 대한 지도를 작성하였고, 그 이후 지금까지 여러 조직에 해당 방법이 적용되었다. 이러한 여러 Ago HITS-CLIP 분석을 통해 여러조직에서의 마이크로RNA 결합 위치가 밝혀지게 되었고, 특히 이러한 표적 서열에서 마이크로RNA의 발단 결합과는 유사하지만, 표적 mRNA의 서열에서 다른 형태의 비정규적 결합 표적이 많이 존재한다는 것을 알게 되었다 (Nat Struct Mol Biol. 2012 Feb 12;19(3):321-7). As a method for analyzing the target of microRNA at the transcript level, an experimental method called Ago HITS CLIP has been developed and is widely used (Nature, 2009, 460 (7254): 479-86). In the Ago HITS CLIP experiment, a cell or tissue sample is irradiated with UV light to induce a covalent bond between the RNA and the argonet protein in the cell, and the resulting RNA-agonal complex uses an antibody that specifically recognizes the agonut. This is a method of sequencing the separated RNA by immunoprecipitation and then analyzing the separated RNA by next-generation sequencing. The obtained nucleotide sequence data can not only identify the target mRNA of the microRNA through bioinformatics analysis, but also accurately analyze its binding position and sequence (Nature, 2009, 460 (7254): 479-86). . Ago HITS-CLIP was first applied to the cerebral cortical tissue of mice to map the targets of microRNAs in the brain tissue, and the method has been applied to various tissues until now. Through these various Ago HITS-CLIP analyzes, the microRNA binding sites in various tissues were revealed. In particular, although these target sequences are similar to the initiating binding of microRNAs, other forms of non-canonical binding targets in the target mRNA sequence It was found that many exist (Nat Struct Mol Biol. 2012 Feb 12;19(3):321-7).

밝혀진 비정규적 결합 법칙 중 일부는 기존의 알려진 염기배열 이외에 G:U 염기배열을 통한 워블(wobble)로 존재한다는 것이 관찰되었다. 워블 염기배열은 기존의 염기배열과는 다르게 특정 RNA에서 발견되며, 잘 알려진 G:U 워블은 마이크로RNA의 비정규 표적에서도 배열할 수 있음이 제시되었다. 하지만 이에 비해 그 결합이 약하고 자주 관찰 되지 않았고, 특히 G:A 워블의 경우는 특정 RNA에서 염기배열을 형성할 수 있지만 그 외에는 전혀 조사가 되지 않았다. 하지만 마이크로RNA의 발단 서열 같은 경우에는 염기배열의 자유에너지(free energy)가 구조적으로 아고너트 단백질에 의해 안정화되기 때문에 일반적으로 약한 G:A 염기배열이 상대적으로 중요할 수 있으며, 본 발명자들은 이러한 사실에 주목하여 다음과 같은 분석을 진행하였다. It was observed that some of the revealed irregular binding laws exist as wobbles through the G:U base sequence in addition to the known base sequence. Unlike conventional nucleotide sequences, wobble nucleotide sequences are found in specific RNAs, and it has been suggested that well-known G:U wobbles can be arranged in irregular targets of microRNAs. However, compared to this, the binding was weak and was not frequently observed. In particular, G:A wobbles can form a nucleotide sequence in a specific RNA, but other than that, it has not been investigated at all. However, in the case of the starting sequence of microRNA, since the free energy of the nucleotide sequence is structurally stabilized by the argonet protein, in general, the weak G:A nucleotide sequence may be relatively important. Paying attention to, the following analysis was conducted.

우선은 G:A를 포함한 워블 염기배열이 사람의 뇌 조직에서의 마이크로RNA 표적에 존재하는지를 확인하기 위해서 사후 뇌 조직의 회백질 (gray matter)에 Ago HITS-CLIP을 수행한 데이터(Boudreau RL et al, Neuron, Vol.81 (2), 2014, 294-305)를 분석하였다 (도 10a). 이때의 분석은 Ago HITS-CLIP을 개발(Nature, 2009, 460 (7254): 479-86)했을 때의 방법에 따라 아고너트-마이크로RNA와 함께 결합했던 RNA 서열을 시퀀싱된 FASTQ 파일에서 Bowtie2 프로그램으로 인간 유전체 서열에 배열하여 수행하였다, 또한 동시에 해당 시퀀싱 결과를 인간 마이크로RNA서열에 배열하여, 해당 뇌 조직에서 아고너트 단백질 자주 결합하고 있는 20 종류의 마이크로RNA (top20 miRNA: 도 10b) 도 분석하였다. 최종적으로는 이렇게 파악한 top20 miRNA에 대하여 해당 발단 (seed) 서열인 5’말단으로부터 2번째부터 8번째까지에 대하여 상보적인 서열을 가지는 정규 표적(canonical target) 싸이트를 살펴보았다 (도 10b). 이때 마이크로RNA 결합위치에, 상당히 많은 수의 정규 발단 표적 싸이트가 발견됨을 관찰하였다 (도 3b, 미디안 값 1292.5싸이트, 오차범위+/- 706.62). 이 후, 이러한 마이크로RNA의 발단 염기 서열에서 G:U 또는 G:A 워블 염기배열로 결합할 수 있는 비정규적 표적 싸이트가 존재하는 지를 Ago HITS-CLIP 데이터에서 살펴보았다. 이 때 분석에 대한 대조군(Control)으로 마이크로RNA 발단 (seed) 염기 서열과 동일한 염기 서열로 인해 염기의 상보적 배열이 불가능한 표적 서열을 사용하여 분석하였다. First, in order to confirm whether the wobble nucleotide sequence including G:A is present in the microRNA target in human brain tissue, data obtained by performing Ago HITS-CLIP on gray matter of brain tissue after death (Boudreau RL et al, Neuron, Vol. 81 (2), 2014, 294-305) was analyzed (Fig. 10A). The analysis at this time was carried out according to the method of developing Ago HITS-CLIP (Nature, 2009, 460 (7254): 479-86), and the RNA sequence that was bound together with Argonaut-microRNA was used in the sequenced FASTQ file with the Bowtie2 program. It was carried out by arranging the human genome sequence, and at the same time, the sequencing result was arranged on the human microRNA sequence, and 20 kinds of microRNAs (top20 miRNA: FIG. 10b) frequently bound to the agonut protein in the brain tissue were also analyzed. Finally, for the above-identified top20 miRNA, a canonical target site having a sequence complementary to the 2nd to 8th from the 5'end, which is the seed sequence, was examined (Fig. 10b). At this time, it was observed that a fairly large number of normal initiating target sites were found at the microRNA binding site (Fig. 3b, median value 1292.5 sites, error range +/- 706.62). After that, it was examined in the Ago HITS-CLIP data whether there is an irregular target site capable of binding to the G:U or G:A wobble nucleotide sequence in the starting nucleotide sequence of this microRNA. At this time, as a control for the analysis, a target sequence in which complementary alignment of bases was impossible due to the same base sequence as the microRNA seed base sequence was used for analysis.

분석 결과, G:A 워블이 허용된 표적 (중앙값 1119.5 싸이트, 오차범위+/- 526.48) 과 G:U 워블이 허용된 표적 (중앙값 995싸이트, 오차범위+/- 523.22) 싸이트 모두 대조군 (중앙값 891싸이트, 오차범위+/- 410.71) 에 비해 높은 분포를 보였으며, 특히 G:A 워블이 존재하는 마이크로RNA 표적 싸이트는 G:U 워블보다 약 1.1배 더 많이 존재함을 나타내었다 (도 10b). 뇌조직에서 특이적으로 발현되는 miR-124는 발단 부분에 2개의 G를 5’말단으로부터 4번째와 5번째에 가지고 있어서, 이를 통한 G:U, G:A 워블 염기배열을 할 수 있다 (도 10c). 따라서 이러한 특정 위치의G에 의한 G:A, G:U 워블 염기배열을 구별하여 분석해본 결과 (도 10d), miR-124의 정규 발단 표적 싸이트(seed)가 가장 많이 발견되었다 (1,992개). 하지만, 이와 견줄 수 있을 정도로 4번째가 G:U 워블(1,542개)을 이루는 것을 발견하였으며, 그 다음으로는 G:A 워블(1,542개)을 이루는 것을 관찰하였다. 또한 5번??의 G도 G:U 워블(1,800개)과 G:A 워블(1,198개)을 이루는 표적 싸이트가 많이 보였으며, 이렇게 조사한 모든 싸이트는 대조군의 개수(647개) 보다 모두 많이 존재하는 것을 확인할 수 있었다 (도 10d). 따라서, 마이크로RNA는 발단부분의 염기서열을 통한 표적 mRNA를 인식할 때, 발단 부분을 통한 정규적인 염기배열 뿐만 아니라 비정규적으로 G:U 또는 G:A 워블 염기배열을 허용하며, 특히 G:A 워블 염기배열이 이러한 결합을 통해서 표적 mRNA와 결합할 수 있다는 것을 알 수 있었다. 이러한 G:A 워블 염기를 통한 마이크로RNA의 표적 인식은 보고 된 바가 없는 새로운 결과이며, 따라서 상기 실시예에서 관찰한 바와 같이 여러 마이크로RNA에서 비정규적인 표적으로 인식된다는 것을 확인할 수 있었다,As a result of the analysis, both G:A wobble-allowed targets (median 1119.5 sites, error range+/- 526.48) and G:U wobble-allowed targets (median 995 sites, error range+/- 523.22) sites were both control (median 891) Site, error range +/- 410.71) showed a higher distribution, and in particular, microRNA target sites with G:A wobbles showed that there were about 1.1 times more than G:U wobbles (Fig. 10b). MiR-124, which is specifically expressed in brain tissue, has two Gs at the 4th and 5th from the 5'end at the beginning, so it can perform G:U, G:A wobble nucleotide sequence (Fig. 10c). Therefore, as a result of distinguishing and analyzing the G:A, G:U wobble nucleotide sequence by G at this specific position (FIG. 10D), the most common target sites for the normal initiation of miR-124 (seed) were found (1,992). However, it was found that the fourth made up G:U wobbles (1,542) to a degree comparable to this, and then observed that it made up G:A wobbles (1,542). In addition, there were many target sites consisting of G:U wobbles (1,800) and G:A wobbles (1,198) in G of No. 5??, and all sites examined in this way exist more than the number of control groups (647). It could be confirmed that (Fig. 10d). Therefore, when microRNA recognizes the target mRNA through the nucleotide sequence of the starting part, as well as the regular nucleotide sequence through the starting part, the microRNA allows irregular G:U or G:A wobble nucleotide sequence, especially G:A It was found that the wobble sequence can bind to the target mRNA through this binding. The target recognition of the microRNA through the G:A wobble base is a new result that has not been reported, and thus it was confirmed that it was recognized as an irregular target in several microRNAs as observed in the above examples.

상기의 실시예를 통해, 마이크로RNA의 비정규 표적 인식에는 발단 서열에 G:A 워블 배열을 허용하는 경우가 존재하고, 이를 통해 많은 마이크로RNA가 표적 유전자의 전령RNA에 결합하여 그 유전자의 발현을 억제할 것으로 여겨진다.Through the above examples, there are cases in which the G:A wobble arrangement is allowed in the starting sequence for the recognition of irregular targets of microRNAs, through which many microRNAs bind to the messenger RNA of the target gene and suppress the expression of the gene. It is believed to do.

[[ 실시예Example 11] 11] 마이크로RNA의MicroRNA 비정규 표적인 Irregular target G:AG:A 발단 배열 Starting arrangement 싸이트를Site 인식하는 Recognized mIRNAmIRNA -GU의 개발 및 -GU development and miRmiR -124 적용 시 When -124 is applied miRmiR -124--124- G5U의G5U 신경세포 사멸 증대 효과 확인 Confirmation of the effect of increasing neuronal cell death

실시예 10에서 마이크로RNA의 비정규 표적 인식에는 발단 서열에 G:A 워블 배열을 허용하는 경우가 있다는 것을 발견하였고, 이를 비정규 G:A 발단 배열 싸이트로 명칭하고, 이에 대하여 상보적으로 배열할 수 있는 새로운 RNA 간섭 유도 물질의 서열인 miRNA-GU를 다음과 같이 발명하였다. 이러한 서열 결정 기술을 miR-124를 대상으로 적용해 보면, miR-124는 발단서열이 5'-AAGGCAC-3'으로 비정규 GA 배열 발단 표적은 4번 G 염기, 5번 G염기가 각각 G:A 워블 염기 배열이 가능한 염기 서열이며, 따라서 이러한 G:A 워블 배열을 기존의 상보적인 염기 배열로 바꾸는 형식인 miRNA-GU의 서열로 바꾸면, miR-124-G4U (5'-AAUGCAC-3'), miR-124-G5U (5'-AAGUCAC-3')로 변경할 수 있다. 이렇게 변경된 miR-124-G4U와 miR-124-G5U는 기존의 miR-124가 G:A 워블 배열 형태로 약하게 결합하고 인식했던 비정규 표적 싸이트를 상보적인 배열로 결합할 수 있기에, miR-124에서의 비정규 G:A 발단 배열 표적의 기능을 나타낼 수 있다. In Example 10, it was found that there are cases in which the G:A wobble arrangement is allowed in the starting sequence for the recognition of an irregular target of microRNA, and this is called an irregular G:A starting sequence site, and can be arranged complementarily. The sequence of a new RNA interference inducing substance, miRNA-GU, was invented as follows. When this sequencing technique is applied to miR-124, miR-124 has an initiating sequence of 5'-AAGGCAC-3', and the target for initiating an irregular GA sequence is G:A base 4 and base G 5, respectively. It is a nucleotide sequence capable of wobble nucleotide sequence, and therefore, if this G:A wobble sequence is replaced with the sequence of miRNA-GU, which is a format that converts the existing complementary nucleotide sequence, miR-124-G4U (5'-AAUGCAC-3'), It can be changed to miR-124-G5U (5'-AAGUCAC-3'). The modified miR-124-G4U and miR-124-G5U can bind to the irregular target site that the existing miR-124 weakly binds in the G:A wobble configuration and can bind to the recognized irregular target site in a complementary configuration. The function of the non-canonical G:A initiating arrangement target can be indicated.

따라서, miRNA 비정규 GA 배열 발단 타겟을 매개로 하는 생물학적 기능을 알아보기 위하여, 비정규 GA 배열 발단 타겟을 miR-124에 적용하여 실험을 수행하였다. 이를 위해서 이전에 실시예서의 동일한 방법에 따라 대조군으로 NT (도 11b에 N2a로 기술), miR-124, miR-124-G4U, miR-124-G5U를 신경 모세포종인 N2a에 도입하고 세포의 형태를 72시간동안 배양하면서 관찰해보았다 (도 11b). 그 결과, miR-124를 발현 시켰을 경우 긴 신경 가지 돌기가 형성되는 분화 현상이 일어나지만, miR-124-G4U, miR-124-G5U가 전달된 실험군의 경우 분화가 일어나지 않는 현상을 관찰하다 (도 11b). 이렇게 기존의 miR-124의 기능인 신경분화능이 miRNA-GU로 변경하였을 때 관찰되지 않았기에, 세포 사멸 정도에서의 변화를 인간ㅇ 신경 모세포종인 Sh-sy-5y 세포주에서 관찰하였다. 이때의 유세포 분석은 실시예 9에서 사용한 방법과 유사하게, Muse Annexin V and Dead Cell Assay Kit  (millipore 社)을 이용하였으며, Muse Cell Analyzer (Milipore)을 통해 수행하였다. 그 결과 miR-124-G-5U의 발현은 세포 사멸을 대조군에 비해 2배이상 증가시킨 것을 확인하였고 (도 11c), 이를 이른 세포사멸 (early apoptosis) 이나 늦은 세포사멸 (late apoptosis) 로 세분화해서 분석한 경우, miR-124가 전달된 실험군에 비해, miR-124-G-5U가 전달된 실험군은 이른 세포사멸 (early apoptosis) 과 늦은 세포사멸 (late apoptosis) 두가지 경우 모두 유의적으로 증가한 것으로 분석되었다 (도 11d). miR-124-G-4U 가 전달된 실험군의 경우 miR-124가 전달된 실험군에 비해 늦은 세포사멸 (late apoptosis)이 유의적으로 억제되었으며 (도 11 c,d) 살아있는 세포의 수도 많음을 관찰할 수 있었다 (도 11 b).Therefore, in order to investigate the biological function mediated by the miRNA irregular GA sequence initiating target, an experiment was performed by applying the non-normal GA sequence initiating target to miR-124. To this end, NT (described as N2a in Fig. 11B), miR-124, miR-124-G4U, and miR-124-G5U were introduced into the neuroblastoma N2a as controls according to the same method as in the previous example, and the shape of the cell was It was observed while incubating for 72 hours (FIG. 11B). As a result, when miR-124 was expressed, a phenomenon of differentiation occurs in which long nerve branch processes are formed, but in the case of the experimental group to which miR-124-G4U and miR-124-G5U were delivered, no differentiation occurred (Fig. 11b). In this way, the existing function of miR-124 was not observed when the function of miRNA-GU was changed to miRNA-GU, so a change in the degree of apoptosis was observed in the human neuroblastoma Sh-sy-5y cell line. Similar to the method used in Example 9, the flow cytometry at this time was performed using the Muse Annexin V and Dead Cell Assay Kit (millipore), and performed through the Muse Cell Analyzer (Milipore). As a result, it was confirmed that the expression of miR-124-G-5U increased apoptosis by more than 2 times compared to the control group (Fig. 11c), and this was subdivided into early apoptosis or late apoptosis. In the case of analysis, compared to the experimental group to which miR-124 was delivered, the experimental group to which miR-124-G-5U was delivered significantly increased in both cases of early apoptosis and late apoptosis. Became (Fig. 11D). In the case of the experimental group to which miR-124-G-4U was delivered, late apoptosis was significantly suppressed compared to the experimental group to which miR-124 was delivered (Fig. 11 c and d). Could be (Fig. 11 b).

이를 바탕으로, miR-124-GU에 의한 miR-124 비정규 GA 배열 발단 타겟 억제는 miR-124에 의해서 유도되는 신경분화의 능력은 사라지고, 대신에 다른 생물학적 기능인 세포 사멸 조절 기능을 나타내는 것으로 확인할 수 있었다.Based on this, it was confirmed that inhibition of miR-124 irregular GA sequence initiation target by miR-124-GU disappears the ability of neuron differentiation induced by miR-124, and instead represents another biological function, apoptosis regulation function. .

[[ 실시예Example 12] 12] miRmiR -124--124- G4UG4U 가 유도하는 신경 모세포의 세포 분열 촉진 Promotes cell division of neuroblasts induced by

이전 실시예에서 miR-124-G4U의 경우에는 신경 세포 분화능을 상실하고, 세포 사멸에서도 별다른 기능이 나타나지 않아, 세포 분열에 대해서 살펴보았다. 즉, 대조군 NT, miR-124, miR-124-G4U, miR-124-G5U를 각각 신경 모세포종 세포인 N2a에 이전 실시예에서 수행한 방법과 동일한 방법으로 도입 시킨 후 세포 분열 증식 현상에 대해서 유세포 분석을 실시하였다 (도 12a). 이 때의 실험은 Muse Ki67 Proliferation Kit (millipore 社) 을 이용하여 제조사가 제공한 실험 방법에 따라세포를 처리한 후, Muse  Cell Analyzer (Milipore) 로 세포 분열을 분석하여 진행하였다. 이 방법은 Ki67이 염색된 세포의 수를 측정함으로 세포 분열 증식이 증가된 세포의 수를 정량적으로 분석하는 방법이다. N2a 세포에서 miR-124를 발현시키면 대조군인 NT에 비해서 세포가 분화함으로 Ki67의 염색의 세기가 줄어든 세포가 늘어난다. 하지만 miR-124-G4U 전달된 실험군은 대조군(NT)에 비교하여 세포 분열이 증식된 세포인 Ki67 염색 세포가 61%에서 65%로 다소 늘어났다. 이에 비해 miR-14-G5U는 대조군과 비교하여 차이가 없음을 관찰 할 수 있었다.In the previous example, in the case of miR-124-G4U, nerve cell differentiation ability was lost, and no other function appeared even in apoptosis, so cell division was examined. That is, after introducing control NT, miR-124, miR-124-G4U, and miR-124-G5U into neuroblastoma cells N2a in the same manner as in the previous example, flow cytometric analysis for cell division and proliferation Was carried out (Fig. 12A). In this experiment, cells were treated according to the experimental method provided by the manufacturer using the Muse Ki67 Proliferation Kit (millipore   company)  , and then the cell division was analyzed with Muse   Cell Analyzer (Milipore). This method quantitatively analyzes the number of cells with increased cell division proliferation by measuring the number of cells stained with Ki67. When miR-124 is expressed in N2a cells, cells are differentiated compared to the control, NT, and the number of cells with reduced Ki67 staining intensity increases. However, in the experimental group delivered with miR-124-G4U, the number of Ki67-stained cells, which are proliferated cells, slightly increased from 61% to 65% compared to the control group (NT). In contrast, it could be observed that there was no difference in miR-14-G5U compared to the control group.

추가적으로 miR-124-G4U가 세포주기에 주는 영향을 조사하기 위해서, 인간 신경 모세포종인 sh-sy-5y 세포주를 이용하여 유세포 분석을 실시하였다 (도 12b). 이때의 분석은 miR-124-G4U와 miR-124-G5U의 기능을 세포 주기별로 알아보기 위하여 MuseTM Cell Cycle Kit (Catalog No. MCH100106, Milipore)을 이용하여, Muse Cell Analyzer (Milipore) 로 분석하였다. 그 결과, miR-124의 경우 세포의 주기가 G0/G1에 있는 수가 증가하는 세포 분열 정지(cell cycle arrest)가 관찰되었으나, miR-124-G4U, miR-124-G5U는 miR-124에 의한 세포 분열 정지 현상은 사라지고 대조군과 동일하게 세포 주기가 돌아가는 것을 관찰하였다.In addition, in order to investigate the effect of miR-124-G4U on the cell cycle, flow cytometry was performed using the human neuroblastoma sh-sy-5y cell line (FIG. 12B). The analysis at this time was analyzed by Muse Cell Analyzer (Milipore) using Muse TM Cell Cycle Kit (Catalog No. MCH100106, Milipore) to find out the functions of miR-124-G4U and miR-124-G5U by cell cycle. . As a result, in the case of miR-124, cell cycle arrest was observed with an increase in the number of cell cycles in G0/G1, but miR-124-G4U and miR-124-G5U were cells induced by miR-124. It was observed that the cessation of division disappeared and the cell cycle returned as in the control group.

상기의 실시예를 통해 miR-124 비정규 GA 배열 발단 타겟 억제하는 RNA 간섭 유도 변형 서열 중 miR-124-G4U는 신경 모세포의 세포 분열 증식을 증가 시키는 기능을 가지는 것을 알 수 있었다.Through the above examples, it was found that miR-124-G4U among the RNA interference-inducing modified sequences that inhibit the miR-124 irregular GA sequence initiation target has a function of increasing cell division and proliferation of neuroblasts.

[[ 실시예Example 13] 13] 심근세포주Myocardial cell line 에서 in miRmiR -1이 비정규 GA 배열 발단 -1 starts an irregular GA arrangement 타겟target 유전자의 발현을 억제할 수 있다는 것을 That we can suppress the expression of genes 형광단백질Fluorescent protein 리포터를 이용하여 확인 Confirmation with Reporter

위의 실시예에서 마이크로RNA가 비정규적으로 발단 서열에서 G:A 워블 배열을 허용하여 표적 mRNA와 결합할 수 있으며, 이것이 새로운 기능을 가질 수 있다는 사실을 발견한 후, 이러한 결합이 실제로 표적 유전자의 억제를 일으킬 수 있는지를 세포수준에서 확인하는 리포터 실험을 진행하였다. 이때 확인 실험은 심근세포인 h9c2와 같이 근육계 세포에서 많이 발현되는 것으로 알려진 miR-1을 대상으로 진행하였으며, 특히 miR-1의 5’말단으로부터 7번째에 존재하는 G에 주목하여, 이를 통한 G:A 워블 염기배열을 대상으로 수행하였다 (도 13). 마이크로RNA에 의한 유전자 억제는 보다 정밀하게 개별 세포 수준에서 측정하기 위해서 형광 단백질 발현 리포터 시스템을 구축하여 사용하였다 (도 13). 형광 단백질 발현 리포터 시스템은 두가지 색의 형광단백질이 하나의 벡터에 발현되게 구성되었으며, 이때 SV40 프로모터에는 녹색 형광 단백질 (green fluorescent protein: GFP)이 발현되게 하고, 그 3'UTR (3'untranslated region) 부분에 마이크로 RNA의 표적 싸이트를 여러 개 연속적으로 배열하여, 녹색 형광 단백질의 세기를 통해 마이크로RNA에 의한 유전자 억제 효과를 측정할 수 있도록 하였으며, 동시에 적색 형광 단백질 (red fluorescent protein: RFP)은 TK 프로모터에 의해 발현되도록 하여 그 세기 정도로 녹색 형광 신호를 표준화하여 사용하였다 (도 13a, 위).In the above example, after discovering that the microRNA can irregularly allow G:A wobble arrangement in the initiating sequence to bind to the target mRNA, and this may have a new function, this binding actually A reporter experiment was conducted to confirm at the cellular level whether it could cause inhibition. At this time, the confirmation experiment was conducted on miR-1, which is known to be highly expressed in muscle cells, such as h9c2, a cardiomyocyte.In particular, paying attention to the G present at the 7th from the 5'end of miR-1, through which G: A wobble nucleotide sequence was performed as a target (FIG. 13). In order to measure gene suppression by microRNA more precisely at the level of individual cells, a fluorescent protein expression reporter system was constructed and used (FIG. 13). The fluorescent protein expression reporter system was constructed so that two-colored fluorescent proteins were expressed in one vector. At this time, a green fluorescent protein (GFP) was expressed in the SV40 promoter, and the 3'UTR (3'untranslated region). Several target sites of microRNA were sequentially arranged in the part, so that the effect of gene suppression by microRNA could be measured through the intensity of the green fluorescent protein, and at the same time, the red fluorescent protein (RFP) is the TK promoter. The green fluorescent signal was normalized to the level of the intensity by allowing it to be expressed by (Fig. 13A, above).

이렇게 구축된 형광 단백질 발현 리포터 벡터에 miR-1의 5’말단으로부터 2번째부터 8번째까지 염기에 대해서 상보적이면서, 7번째 염기에 G에 대해서는 G;A 워블로 염기배열하는 비정규 표적 싸이트(7G:A-site)를 삽입하여 리포터를 제작한 후 (GFP-7G:A site), 이것이 miR-1에 의해서 억제되는지를 실험을 통해 확인하였다. 이때 실험은, 500ng GFP-7G:A site 리포터 벡터와 25uM의 miR-1을lipofectamine 2000 (Invitrogen 사) 시약을 이용하여 회사에서 제공하는 프로토콜에 따라 심근세포주인 H9c2에 동시에 도입(co-transfection)하였고, 24시간 후 Life Technologu사의 Attune NxT를 통해 각각의 형광 신호를 유세포 분석으로 측정하였다. 그 결과 miR-1의 발현에 의해서 miR-1의 7G:A 싸이트가 매우 효율적으로 억제(도 13a, 가운데)되는 것을 대조군 핵산(cont; NT)을 도입한 세포(도 13a, 왼쪽)와 비교하여 확인하였다. 즉, 심근세포주인 h9c2 에서 두가지 형광 단백질의 발현 정도에 따라 네부분 (Q5-1, Q5-2, Q5-3, Q5-4)으로 분석한 결과 miR-1이 도입된 세포의 경우, 대조군 핵산이 도입된 경우보다 103 세기의 적색 형광 단백질과 103 세기의 녹색 형광 단백질을 보이는 세포의 분포가 59.51% (control: Q5-3)에서 41.80 % (miR-1: Q5-3)로 감소된 것을 관찰하였다.The fluorescent protein expression reporter vector constructed in this way is complementary to the bases from the 2nd to the 8th from the 5'end of miR-1, and G is G for the 7th base; A non-normal target site (7G :A-site) was inserted to prepare a reporter (GFP-7G:A site), and it was confirmed through an experiment whether this was inhibited by miR-1. At this time, in the experiment, 500ng GFP-7G:A site reporter vector and 25uM of miR-1 were simultaneously introduced (co-transfected) into the cardiomyocyte line H9c2 using a lipofectamine 2000 (Invitrogen) reagent according to the protocol provided by the company. After 24 hours, each fluorescence signal was measured by flow cytometry through Life Technologu's Attune NxT. As a result, the 7G:A site of miR-1 was very efficiently suppressed (Fig. 13A, center) by the expression of miR-1 compared with the cells introduced with a control nucleic acid (cont; NT) (Fig. 13A, left). Confirmed. That is, as a result of analysis in four parts (Q5-1, Q5-2, Q5-3, Q5-4) according to the expression level of the two fluorescent proteins in the cardiomyocyte line h9c2, in the case of cells into which miR-1 was introduced, the control nucleic acid the decrease in the case where the introduction of more than 3 of the 10 century, red fluorescent protein and 10 3rd century the cellular distribution of the visible green fluorescent protein 59.51% (control:: Q5-3) 41.80% (Q5-3 miR-1) from Observed.

GFP-7G:A site 리포터 벡터는 miR-1의 도입 없이도 h9c2 세포에서 어느정도 억제되고 있는 것이 대조군에서 관찰되었다. 이것은 h9c2세포내에서 이미 발현되고 있는 miR-1에 의해서 리포터 표적 mRNA와의 G;A 워블 염기배열을 통해 억제하는 것으로 예상할 수 있다. 이러한 점을 확인하기 위해서 h9c2 세포 내의 miR-1의 발현을 억제할 수 있는 miRIDIAN microRNA Hairpin inhibitor (miR-1 inhibitor, 도 13a, 오른쪽)를 Dharmacon사로부터 구입하여 50uM 농도로 세포에 트랜스펙션시켜 사용하였다. 이러한 결과, 대조군에서 비해 (도 13a, 왼쪽 도면) miR-1 inhibitor를 도입한 경우 (도 13a, 오른쪽 도면), 103 세기의 적색 형광 단백질과 103 세기의 녹색 형광 단백질을 보이는 세포의 분포가 81.56% (miR-1 inhibitor: Q5-3) 로 증가하는 것으로 보아, 세포내에 존재하는 miR-1이 miR-1의 7G:A 싸이트를 통해 유전자 발현을 억제할 수 있음을 확인하였다 (도 13a). It was observed in the control group that the GFP-7G:A site reporter vector was somewhat inhibited in h9c2 cells even without the introduction of miR-1. This can be expected to be inhibited by miR-1 already expressed in h9c2 cells through G;A wobble nucleotide sequence with reporter target mRNA. To confirm this, a miRIDIAN microRNA Hairpin inhibitor (miR-1 inhibitor, Fig. 13a, right), which can inhibit the expression of miR-1 in h9c2 cells, was purchased from Dharmacon and transfected into cells at a concentration of 50 uM. I did. These results, the distribution of the visible (Fig. 13a, left side of the figure) miR-1 inhibitor one case (Fig. 13a, right figure), ten 3rd century red fluorescent protein and green fluorescent protein of 10 3 intensity of introducing than in control cells 81.56% (miR-1 inhibitor: Q5-3), it was confirmed that miR-1 present in the cell can suppress gene expression through the 7G:A site of miR-1 (Fig. 13a) .

이는 추가적으로 형광 단백질 발현 리포터에 마이크로RNA 표적 싸이트를 넣지 않은 대조군 (GFP-no site)과 miR-1의 7G:A 싸이트 들어간 리포터인 GFP-7G:A site를 H9c2 세포에 도입하여 그 활성을 비교하여 확인하였으며, 양성 대조군으로는 miR-1을 함께 도입한 경우와 정량적으로 비교하여 확인하였다 (도 13b). 이때의 분석은 유세포 분석기에서 측정한 적색 형광 단백질(RFP) 값을 구간별로 나누고, 이때의 녹색 형광 단백질(GFP) 값을 평균을 내어 로그 비율로 변환하였으며, 이때 대조군인 GFP-no site의 녹색 형광 단백질 수치를 1로 두고 (relative log GFP) 상대적으로 계산하였다. 이때, mR-1 과 7번 G 염기에 대해, G:A 워블 (wobble) 을 통해 상보적으로 염기 배열되는 싸이트가 있는 경우 (GFP-7G:A site), 특히 1.5 - 3값의 적색 형광 단백질의 발현 (log RFP) 이 보이는 구간에서, G:A 워블 (wobble) 을 통한 녹색 형광 단백질의 발현 (relative log GFP) 이 1보다 10% 정도 낮아지는 것을 확인하였다. 이러한 억제는 양성 대조군에서는 특히 1.5 - 4 구간의 적색 형광 단백질의 발현 (log RFP)에서 40%-10% 정도 녹색 형광 단백질의 발현 (relative log GFP) 이 억제되는 패턴과 동일하게 나타나는 점을 관찰하였다.In addition, a control (GFP-no site) in which the microRNA target site was not added to the fluorescent protein expression reporter and the GFP-7G:A site, a reporter containing the 7G:A site of miR-1, were introduced into H9c2 cells to compare their activity. It was confirmed, and as a positive control, it was confirmed by quantitatively comparing with the case of introducing miR-1 together (Fig. 13b). In this analysis, the red fluorescent protein (RFP) value measured by the flow cytometer was divided by section, and the green fluorescent protein (GFP) value at this time was averaged and converted into a log ratio. At this time, the green fluorescence of the control GFP-no site The protein level was set to 1 (relative log GFP) and was calculated relatively. At this time, for mR-1 and 7 G bases, when there is a site that is complementarily nucleotide sequenced through G:A wobble (GFP-7G:A site), in particular, a red fluorescent protein with a value of 1.5-3 In the section where the expression of (log RFP) is visible, it was confirmed that the expression of green fluorescent protein (relative log GFP) through G:A wobble was lowered by about 10% than 1. In the positive control, it was observed that the expression of the green fluorescent protein (relative log GFP) was inhibited by 40%-10% in the expression of the red fluorescent protein (log RFP) in the 1.5-4 section, especially in the positive control. .

위의 실시예에서 관찰한 결과가 해당 형광 단백질 리포터에서 사용한 서로 다른 프로모터의 세기와 두가지 다른 형광단백질이 가지는 형광 활성도의 차이에 의해서 영향을 받지 않음을 확인하기 위해서, 두개의 형광 단백질을 서로 바꿔져 있는 형광 단백질 리포터인 p.UTA.3.0 (Lemus-Diaz N et al, Scientific Reports,(7), 2017)을 Addgene(plasmid # 82447)으로부터 구입하여 사용하였다. 이때 리포터 실험은 p.UTA.3.0 벡터에서 SV40 프로모터에 의해 조절되는 적색 형광 단백질 (red fluorescent protein: RFP)의 3’ UTR 부분에 miR-1-7G;A 서열을 5번 반복하여 삽입한 후 리포터 벡터(RFP-7G:A site)를 제작하여 진행하였으며, 이때 적색 형광 단백질 발현 수치는 Tk 프로모터로 발현되는 녹색 형광 단백질 (green fluorescent protein: GFP) 값을 세포내에 도입된 정도를 반영한 표준화로 사용하여 변형하여 사용하였다 (도 13c, 위). 그 결과 이전 실시예와 동일하게 miR-1의 7G;A 싸이트가 h9c2에서 발현되는 miR-1에 의해서 억제되는 것을 miRNA 표적 위치가 없는 리포터 (RFP-no site)의 대조군과 miR-1의 7G;A site가 들어간 리포터(RFP-7G:A site)의 결과를 비교하여 확인하였으며, 동시에 양성 대조군이 miR-1과의 co-transfection 에서도 이전 실시예와 같은 현상을 관찰하였다 (도 4c-d). In order to confirm that the results observed in the above examples are not affected by the difference in the intensity of the different promoters used in the corresponding fluorescent protein reporter and the fluorescence activity of the two different fluorescent proteins, the two fluorescent proteins were interchanged. A fluorescent protein reporter p.UTA.3.0 (Lemus-Diaz N et al, Scientific Reports, (7), 2017) was purchased and used from Addgene (plasmid # 82447). At this time, in the reporter experiment, miR-1-7G; A sequence was repeatedly inserted into the 3'UTR part of the red fluorescent protein (RFP) regulated by the SV40 promoter in the p.UTA.3.0 vector, and then the reporter A vector (RFP-7G:A site) was prepared and proceeded, in which case the expression level of the red fluorescent protein was used as a standardization reflecting the degree of introduction into the cell by using the value of the green fluorescent protein (GFP) expressed by the Tk promoter. It was modified and used (Fig. 13c, above). As a result, as in the previous example, 7G of miR-1; 7G of miR-1 and a control group of a reporter (RFP-no site) without a miRNA target site showed that the A site was inhibited by miR-1 expressed in h9c2; The results of the reporter containing the A site (RFP-7G:A site) were compared and confirmed, and at the same time, the same phenomenon as in the previous example was observed in co-transfection with miR-1 as a positive control group (Fig. 4c-d).

상기로부터, Ago HITS-CLIP 분석을 통해 발견한 마이크로RNA의 비정규 표적이 실제로 마이크로RNA의 발단 서열에서 G:A 워블 배열을 통해 결합할 수 있을 뿐 아니라, 해당 표적 유전자의 발현을 억제할 수 있음을 확인하였다. 따라서 이러한 점으로 미루러 볼 때, G;A 워블 배열을 통한 표적 싸이트를 이용하여 마이크로RNA와 충분히 결합 할 수 있으며, 이러한 점을 miRNA-GU를 통해 유서하게 유도할 수 있다면, 비정규적 표적 억제에 의한 마이크로RNA의 생물학적 기능만을 활용할 수 있을 것으로 생각된다.From the above, it was found that the non-normal target of the microRNA discovered through the Ago HITS-CLIP analysis could not only bind through the G:A wobble arrangement in the starting sequence of the microRNA, but also suppress the expression of the target gene. Confirmed. Therefore, from this point of view, it is possible to sufficiently bind to microRNA using a target site through the G;A wobble array, and if this point can be vigorously induced through miRNA-GU, it is possible to suppress irregular targets. It is thought that only the biological function of microRNA can be utilized.

[[ 실시예Example 14] 14] miRmiR -- 1 의1 of 2, 3, 2, 3, 7 번Number 7 G 염기에 대한 비정규 GA 배열 발단 Initiation of irregular GA sequence for G base 타겟target 유전자 조절을 통한 Through gene regulation 심근세포의Cardiomyocyte 비대화 유도 기능 확인 Confirmation of hypertrophy induction function

이러한 비정규적인 유전자 억제 현상은 G:A 워블 염기 배열이 마이크로RNA의 비전형 타겟으로 작용하여, 생물학적 기능을 조절할 수도 있다는 가능성을 miRNA-GU를 통해 확인하고자, 이전 실시예에서 살펴본 심근세포의 miR-1을 중심으로 실험을 진행하였다. In order to confirm the possibility through miRNA-GU that the G:A wobble nucleotide sequence may act as an atypical target of microRNAs and regulate biological functions, such an irregular gene suppression phenomenon, miR-1 of cardiomyocytes as described in the previous example. The experiment was conducted centering on.

비정규적인 G:A 워블 표적이 특정한 생물학적 기능을 가지고 있는지를 조사하기 위해서는, miR-1이 정규적인 표적은 인식하지 않고, 비정규적인G:A 워블 배열 표적 싸이트만을 인식하게 하여야 하므로, miR-1의 발단 지역에 있는 G가 C가 아닌 A와 염기 배열하도록 해당 G를 U로 치환하여 제작한 miRNA-GU를 실험에 사용하였다. 본 실험에서는 보다 생리학적으로 심장과 유사한 조건으로 수행하기 위해서 랫트(rat)의 심장 조직으로부터 1차 심근세포 (primary rat neonatal cardiomyocyte culture)를 배양하여 수행하였다. 이때, 심근세포의 배양은 생후 1일차 랫트 (rat neonate) 의 심장조직에서 효소 반응을 통해 심근 세포를 분리하고 (Cellutron 사의 neomyt kit), 심근세포는 10% FBS (fetal bovine serum), 5% HS (horse serum), 100 U/ml 페니실린, 및 100 ㎍/ml 스텝토마이신을 보충한 Dulbecco's 개질 Eagle's 배지 (Invitrogen)와 M199 (WellGene) 배지를 4:1 로 섞어 준비한 배지에 brdU를 첨가하여, 심장 조직에 존재하는 세포주기를 갖는 다른 세포들과 구별하여 배양하였다.In order to investigate whether the non-canonical G:A wobble target has a specific biological function, miR-1 must not recognize the regular target, but only recognize the irregular G:A wobble sequence target site. MiRNA-GU was used in the experiment by substituting U for G so that G in the starting region nucleotide sequenced with A instead of C. In this experiment, primary rat neonatal cardiomyocyte cultures were cultured from cardiac tissues of rats in order to perform more physiologically similar to the heart. At this time, in the culture of cardiomyocytes, cardiac myocardial cells were isolated from the heart tissues of rats on day 1 after birth through an enzymatic reaction (Cellutron's neomyt kit), and myocardial cells were 10% FBS (fetal bovine serum), 5% HS. (horse serum), 100 U/ml penicillin, and Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 100 µg/ml steptomycin and M199 (WellGene) medium were mixed at 4:1, and brdU was added to the prepared medium. It was cultured to differentiate it from other cells having a cell cycle present in the tissue.

이렇게 얻어진 1차배양 심근세포에서 심근비대현상이 유도되는 지를 우선적으로 확인하였다 (도 14a). 심근세포는 세포주기를 멈추고, 심근 세포의 크기를 증가시킬 수 있는 특징을 가지고 있는데, 이를 심근 비대 현상이라고 한다. 심근 비대 현상은 심근 세포의 기능 저하를 보완하는 역할을 해왔으며, 심장질병의 병리 중간 단계로도 알려져 있으며, 세포 형태학적 관찰 및 유전자 발현 프로파일 변화가 잘 알려진 심장 질병 모델 시스템이다. 심근 비대증의 세포 모델에서는 페닐에프린 (PE) 과 같은 아드레널직 리셉터 작용제 (agonist) 를 심근 세포에 처리해주면 심근 비대증을 유도할 수 있다 (Molkentin, JD et al, 1998, Cell 93(2), 215-228). 따라서, 배양한 심근 세포에 100uM의 페닐에프린을 처리하여 심근 비대를 유도 하였고, 이에 따라 아무것도 처리하지 않은 대조군(도 6a, rCMC)과 비교하여 심근 세포의 크기가 증가하는 것을 형태학적으로 확인하였다 (도 14a, +PE). 또한 1차 심근세포에 miR-1을 도입하였을 때 심근 세포의 크기가 감소하는 것을 관찰하였다 (도 14a, 위줄 오른쪽). 이는 잘 알려진 심근 비대현상과 miR-1 의 심근세포에서의 기능과 일치한다 (Molkentin, JD et al, 1998, Cell 93(2), 215-228, Ikeda S et al, Mol cell boil, 2009, vol29, 2193-2204). It was first checked whether the myocardial hypertrophy is induced in the primary cultured cardiomyocytes thus obtained (Fig. 14a). Cardiomyocytes have the characteristics of stopping the cell cycle and increasing the size of myocardial cells, which is called myocardial hypertrophy. Myocardial hypertrophy has played a role in compensating for the deterioration of cardiomyocyte function, is also known as an intermediate pathology of heart disease, and is a heart disease model system well known for cell morphological observation and gene expression profile changes. In a cell model of myocardial hyperplasia, treatment with an adrenal receptor agonist such as phenylephrine (PE) on myocardial cells can induce myocardial hypertrophy (Molkentin, JD et al, 1998, Cell 93(2), 215-228). Therefore, the cultured cardiomyocytes were treated with 100 uM of phenylephrine to induce myocardial hypertrophy, and accordingly, it was confirmed morphologically that the size of the myocardial cells increased compared to the control group (Fig. 6a, rCMC) that was not treated with anything. (Fig. 14A, +PE). In addition, when miR-1 was introduced into the primary cardiomyocytes, it was observed that the size of the cardiomyocytes decreased (FIG. 14A, upper row, right). This is consistent with the well-known myocardial hypertrophy and miR-1 function in cardiomyocytes (Molkentin, JD et al, 1998, Cell 93(2), 215-228, Ikeda S et al, Mol cell boil, 2009, vol 29 , 2193-2204).

miR-1은 발단지역에 3개의 G를 포함하고 있으며, 이에 따라 정규적인 표적은 인식하지 않고, 비정규적인G:A 워블 배열 표적 싸이트만을 인식하게 하기 위해서, 이러한 G를 U로 치환한 miR-1을 디자인 하였으며, 이를 G가 있는 위치에 따라 5’말단 기준 2번째 위치(miR-1-G2U), 3번째 위치(miR-1-G3U), 7번?? 위치(miR-1-G7U)에 적용하여 합성하였다. 이때, 도 14에 사용한 miR-1의 치환 염기 서열은 다음과 같으며 (miR-1-G2U: 5’p-UUGAAUGUAAAGAAGUAUGUAU-3’; miR-1-G3U: 5’p-UGUAAUGUAAAGAAGUAUGUAU-3’; miR-1-G7U: 5’p-UGGAAUUUAAAGAAGUAUGUAU-3’) 이는 가이드 가닥으로 합성되었고, 운반자 가닥은 기존의 miR-1의 것을 디자인하여 Bioneer사에서 화학적으로 합성 제작 후, HPLC로 분리, 상기 회사에서 제공한 방법에 따라 가이드 가닥과 운반 가닥의 이중체 (duplex)로 제조하여 사용하였다. 해당 마이크로RNA의 1차 심근세포주로의 도입(transfection)은 RNAimax (Invitrogen 사) 시약을 이용하여 50uM 농도로 수행 하였다miR-1 contains three Gs in the starting region, and thus miR-1 substituted with U in order to recognize only the irregular G:A wobble sequence target site without recognizing the regular target. Was designed, and according to the position of the G, the 2nd position (miR-1-G2U), 3rd position (miR-1-G3U), 7th?? It was synthesized by applying to position (miR-1-G7U). At this time, the substitution nucleotide sequence of miR-1 used in FIG. 14 is as follows (miR-1-G2U: 5'p-UUGAAUGUAAAGAAGUAUGUAU-3'; miR-1-G3U: 5'p-UGUAAUGUAAAGAAGUAUGUAU-3'; miR -1-G7U: 5'p-UGGAAUUUAAAGAAGUAUGUAU-3') This was synthesized as a guide strand, and the carrier strand was designed for the existing miR-1, chemically synthesized by Bioneer, separated by HPLC, and provided by the company. According to one method, a guide strand and a transport strand were prepared and used as a duplex. The transfection of the microRNA into the primary cardiomyocyte line was performed at a concentration of 50uM using RNAimax (Invitrogen) reagent.

그 결과 miR-1-G2U 또는 miR-1-G3U 또는 miR-1-G7U 를 1차 심근세포배양에 도입하였을 때 심근 세포의 형태가 심근 비대를 유도한 세포 (도 14a, +PE)와 유사한 수준으로 커진 것을 관찰 할 수 있었다 (도 14a). 이때 각각의 세포 크기를 정량적으로 분석하기 위해서, 100개 이상의 세포가 이미지J 프로그램 (NIH)을 통해 정량화 되었으며, 이에 따라 miR-1의 G:A 워블 배열 싸이트만을 인식하게 합성한 miR-1 치환체(miR-1-G2U, miR-1-G3U, miR-1-G7U) 모두 대조군(NT) 핵산을 도입했을 때와 비교해서 약 1.5~1.8 배 정도 그 크기가 커진것으로 분석되었다. 이는 페닐에프린(PE) 약물이 유도하는 심근세포비대증 모델의 심근 세포 크기와 비슷한 수준이며, miR-1 자체는 심근세포 형태상으로는 세포 크기를 감소시키는 효과를 보임으로써, 그 정규적인 표적 억제효과가 G;A 워블을 통한 표적 억제와는 세포 형태학상 다른 기능을 나타내는 것을 관찰하였다 (도 14b). 또한, 추가적으로 본 실시예에서 관찰한 심근비대 현상을 분자적 수준에서 확인하기 위해서 마커로 그 발현이 증가하는 것으로 알려진 ANP (atrial naturiuretic peptide) 유전자의 발현을 qPCR (Quantitative Polymerase Chain Reaction) 실험을 통해 GAPDH와 비교하여 상대적인 값으로 측정해 보았다 (도 14c). 그 결과, miR-1의 G:A 워블 배열 싸이트만을 인식하게 합성한 miR-1 치환 체 (miR-1-G2U, miR-1-G3U, miR-1-G7U)를 심근세포에 도입했을 경우에는 모두ANP 발현양을 대조군(NT)에 비해 1.2~1.5 배 정도 유의하게 증가시킨 것을 4번의 반복 실험을 통해 확인할 수 있었다. 이러한 ANP 발현 증가는 페닐에프린(PE) 약물을 처리한 심근 세포 실험군이 대조군에 비해 크기가 약 2배 정도 증가한 것 보다는 적지만, 원래의 miR-1이 도입 되었을 때 도리어 ANP 발현이 유의하게 감소하는 현상과는 반대되는 것으로, 이를 통해 miR-1은 G:A 워블 배열 싸이트를 통해 완전히 다른 생물학적 기능을 나타낸다고 볼 수 있다. As a result, when miR-1-G2U or miR-1-G3U or miR-1-G7U was introduced into the primary cardiomyocyte culture, the shape of the cardiomyocyte was similar to that of the cells inducing myocardial hypertrophy (Fig. 14A, +PE). It could be observed that it became larger (Fig. 14a). At this time, in order to quantitatively analyze the size of each cell, more than 100 cells were quantified through the Image J program (NIH), and accordingly, the miR-1 substituent synthesized to recognize only the G:A wobble sequence site of miR-1 ( Both miR-1-G2U, miR-1-G3U, and miR-1-G7U) were analyzed to have increased in size by about 1.5 to 1.8 times compared to when the control (NT) nucleic acid was introduced. This is similar to the size of the cardiomyocytes in the model of cardiomyocyte hypertrophy induced by the phenylephrine (PE) drug, and miR-1 itself has an effect of reducing the cell size in the form of cardiomyocytes, so its regular target inhibitory effect is achieved. It was observed that it exhibits a different function in cell morphology than target inhibition through G;A wobble (FIG. 14B). In addition, in order to further confirm the myocardial hypertrophy observed in this example at a molecular level, the expression of the ANP (atrial naturiuretic peptide) gene, which is known to increase its expression as a marker, was evaluated by qPCR (Quantitative Polymerase Chain Reaction) experiment. Compared to and measured as a relative value (Fig. 14c). As a result, when the synthesized miR-1 substitutions (miR-1-G2U, miR-1-G3U, miR-1-G7U) were introduced into cardiomyocytes to recognize only the G:A wobble sequence site of miR-1 It was confirmed through four repeated experiments that the ANP expression level was significantly increased by 1.2 to 1.5 times compared to the control group (NT). This increase in ANP expression is less than that of the cardiomyocyte test group treated with the phenylephrine (PE) drug, which increased in size by about two times compared to the control group, but when the original miR-1 was introduced, ANP expression was significantly decreased. Contrary to this phenomenon, it can be seen that miR-1 exhibits completely different biological functions through the G:A wobble arrangement site.

상기로부터 마이크로RNA 발단 지역에서 G:A 워블 배열을 통해 억제하는 비정규 표적은 기존의 정규적인 표적 인식과는 생물학적으로 다른 기능을 나타낼 수 있다는 점을 최종적으로 알 수 있었다. 이러한 발견은 마이크로RNA의 정규적인 표적을 통한 기능과 비정규적 표적을 통한 기능이 서로 다르다는 것을 나타내며, 이러한 점으로 미루러 볼 때 마이크로RNA의 G:A 워블 표적만을 억제할 수 있다면 G:A 워블 표적에 의해서 일어나는 생물학적 기능만을 선택적으로 제어할 수 있을 것이다.From the above, it was finally seen that the non-canonical target inhibited through the G:A wobble arrangement in the microRNA initiation region may exhibit a biologically different function from the conventional normal target recognition. These findings indicate that microRNA functions through regular targets and non-canonical targets are different from each other, and from this point, if only the G:A wobble target of microRNA can be suppressed, the G:A wobble target Only the biological functions caused by it could be selectively controlled.

[[ 실시예Example 15] 심근 세포주 ( 15] myocardial cell line ( H9c2H9c2 )에서 )in miRmiR -133--133- G4UG4U 발현을 통한 Through expression 심비대증의Hypertrophic 유도 관찰 Judo observation

G:A 워블 염기 배열이 마이크로RNA의 발단부분에 작용하여 인식하는 비정규적 표적 현상에 대해서, 추가적으로 그 생물학적 기능을 심근세포에서 확인하고자, 이전 실시예에서 살펴본 miR-1 이외에 심근 세포에서 기능을 하는 것으로 알려진 miR-133에 대해 miRNA-GU를 적용해 보았다. miR-133은 근세포 발달 및 질병 병리를 조절하며, 심근 비대현상의 억제기능을 지닌다고 알려졌다 (Nat Med. 2007, 13(5): 613-618; Ikeda S et al, Mol cell boil, 2009, vol29, 2193-2204). 따라서 본 발명진은 miR-133의 비정규 GA 배열 타겟 싸이트 중 5‘말단 기준 4번째 G를 통해서 이루어지는 표적 인식을 특이적으로 억제하는 간섭유도 핵산인 miR-133-G4U (5’-UUUUGUCCCCUUCAACCAGCUG-3’)를 위의 실시예에서와 같이 바이오니아사에서 합성 제작하여, 50 nM 농도의 이중체로 RNAiMAX 시약 (Invitrogen 사) 을 이용하여 심근세포주 h9c2 에 전달시켜 그 세포 형태상의 변화를 관찰하였다 (도 15a). 그 결과, miR-133-G4U의 발현이 H9c2 세포의 크기를 대조군 (NT) 에 비해 증대시켰으며 (도 15a), 100개 이상의 세포의 크기를 이미지J (NIH) 프로그램을 통해 정량적으로 분석한 결과, 약 2배정도 유의하게 증가 시킴을 확인할 수 있었다 (도 15b).For the irregular target phenomenon recognized by the G:A wobble nucleotide sequence acting on the starting part of the microRNA, in order to additionally confirm its biological function in cardiomyocytes, it functions in cardiomyocytes other than the miR-1 discussed in the previous example. MiRNA-GU was applied to known miR-133. miR-133 is known to regulate myocyte development and disease pathology, and to suppress myocardial hypertrophy (Nat Med. 2007, 13(5): 613-618; Ikeda S et al, Mol cell boil, 2009, vol29, 2193-2204). Therefore, the present inventors aimed at miR-133-G4U (5'-UUUUGUCCCCUUCAACCAGCUG-3', an interference-inducing nucleic acid that specifically inhibits target recognition through the 4th G based on the 5'end among the target sites for the non-normal GA sequence of miR-133). ) Was synthesized and produced by Bioneer as in the above example, and transferred to the myocardial cell line h9c2 using an RNAiMAX reagent (Invitrogen) as a duplex having a concentration of 50 nM, and the change in cell morphology was observed (FIG. 15A). As a result, the expression of miR-133-G4U increased the size of H9c2 cells compared to the control (NT) (FIG. 15A), and the size of 100 or more cells was quantitatively analyzed through the Image J (NIH) program. , It was confirmed that the increase was significantly increased by about 2 times (FIG. 15B).

따라서, miR-133-G4U에 의해서 일어나는 miR-133의 비정규 GA 배열 발단 타겟 발현 저하는 심비대증을 유도하며, 이는 심비대증을 억제하는 miR-133 의 정규 발단 표적 저해 기능과는 다른 새로운 기능임을 유추할 수 있다. Therefore, it is inferred that miR-133's deterioration in the expression of the non-regular GA sequence initiation target caused by miR-133-G4U induces cardiac hypertrophy, which is a new function different from the normal initiation target inhibition function of miR-133, which inhibits cardiac hypertrophy. can do.

[[ 실시예Example 16] 간암 16] liver cancer 세포내의Intracellular miRmiR -122 에 의한 비정규 GA 배열 발단 Initiation of irregular GA arrangement by -122 싸이트Site 유전자의 발현 저해 효과를 The effect of inhibiting gene expression 루시퍼라제Luciferase 리포터를 통해 확인 Confirmed through reporter

이전 실시예 10에서 miRNA가 비정규적으로 G:A 워블 배열 발단 싸이트와 결합한다는 발견에서, 이러한 비정규적 표적 결합만을 특이적으로 인식하게 하는 miRNA-GU를 발명하게 되었고, 이를 miR-124, miR-1, miR-133에 적용하였을 때, 기존의 기능과는 다른 효과가 나타남을 실시예 11, 12, 14, 14에서 관찰하였다. 그리고 또한 실제로 마이크로RNA에 비정규적 G:A 워블 배열 발단 싸이트를 가지고 있는 표적 유전자의 발현을 저해 할 수 있는지를 확인하기 위해, 실시예 13에서 miR-1을 대상으로 심근 조직 세포주에서 그 기능을 확인하였다. 추가적으로 간 조직과 간암 세포에 특이적으로 발현하는 miR-122을 대상으로 비정규 G:A 워블 배열 발단 표적 유전자의 발현을 저해할 수 있는 지를 루시퍼라제 리포터 시스템을 사용하여 확인하고자 하였다 (도 16).In the discovery that miRNA in the previous Example 10 irregularly binds to the G:A wobble sequence initiating site, miRNA-GU that specifically recognizes only such irregular target binding was invented, and miR-124, miR- 1, When applied to miR-133, it was observed in Examples 11, 12, 14, and 14 that an effect different from the existing function appeared. In addition, in order to confirm whether microRNA can actually inhibit the expression of a target gene having an irregular G:A wobble sequence initiating site, its function was confirmed in a myocardial tissue cell line targeting miR-1 in Example 13. I did. In addition, it was attempted to confirm using the luciferase reporter system whether it can inhibit the expression of the non-normal G:A wobble sequence initiating target gene targeting miR-122, which is specifically expressed in liver tissues and liver cancer cells (FIG. 16).

간암 또는 간 조직에 특이적으로 발현하여 기능하는 miR-122는, 그 발단 서열 (5'발단 기준 1-8번 염기: 5’- UGG AGU GU-3’)에 5‘말단 기준 2번째, 3번째, 5번째, 7번째에 G:A 워블 배열을 할 수 있는 G를 가지고 있다. 따라서 우선적으로는 이중 2번째 G가 비정규적으로 G:A 워블 배열을 통해 인식할 수 있는 해당 표적 싸이트을 대상으로 그 억제 효율을 측정하기 위해서, 실시예 2에서 진행한 동일한 방법으로 IC50 (Inhibitory concentration 50)을 측정하여 정규적 발단 싸이트와 비교하며 살펴 보았다 (도면 16a). MiR-122, which functions by expressing and functioning specifically in liver cancer or liver tissue, is 2nd and 3rd based on the 5'end in its initiating sequence (base 1-8 of the 5'start: 5'- UGG AGU GU-3'). It has a G that can do a G:A wobble arrangement at the 1st, 5th and 7th. Therefore, first of all, in order to measure the inhibitory efficiency for the target site where the second G is irregularly recognized through the G:A wobble arrangement, IC 50 (Inhibitory concentration 50) was measured and compared with the regular starting site (Fig. 16a).

실험을 진행하기 위한 루시퍼라제 리포처 벡터는 miR-122 의 2번 G 염기에 대해 GA염기 배열이 가능한 비정규 GA배열 발단 타겟의 발현 억제를 감지하기 위해서, miRNA-122의 2번 G 염기에 대한 비정규 GA배열 발단 싸이트 (2G:A) 서열 (5'발단 기준 1-9번 염기: 5’-CAC ACU CAA-3’)을 psi-check2 (Promega사) 벡터 안에 있는 레닐라 루시퍼라제 유전자의 3'UTR (3'untranslated region) 부분에 5번 연속적으로 배열되게 하게 도입하여 제작하였다. 또한 동시에 정규 발단 싸이트 (5'발단 기준 1-9번 염기: 5’-CAC ACU CCA-3’)에 대한 루시퍼라제 리포터 벡터도 동일하게 제작하였다.The luciferase reporter vector for conducting the experiment was to detect the suppression of the expression of the non-normal GA sequence initiating target capable of GA base sequence for the 2 G base of miR-122. GA sequence initiating site (2G:A) sequence (base 1-9 of 5'start: 5'-CAC ACU CAA-3') is 3'of Renilla luciferase gene in psi-check2 (Promega) vector. It was fabricated by introducing it to be sequentially arranged 5 times in the UTR (3'untranslated region) part. At the same time, a luciferase reporter vector for the regular initiation site (base 1-9 based on 5'start: 5'-CAC ACU CCA-3') was also constructed in the same way.

이렇게 제작된 루시퍼라제 리포터 벡터를 가지고, miR-122의 여러 농도에서 정규 발단 싸이트 (seed site)와 5‘말단 기준 2번째 G를 통한 비정규 GA배열 발단 싸이트 (2G:A site)를 가지는 표적 유전자의 발현 저해 효과를 해당 루시퍼라제 리포터의 활성의 변화로 측정하고, IC50 (inhibitory concentration 50) 값을 살펴본 결과, miR-122는 정규 발단 표적 싸이트에 대해서는 약 0.5 nM, 비정규 GA배열 발단 싸이트 (2G:A site)에 대해서는 약 7nM 로 측정되어, miR-122가 비정규 GA배열 발단 싸이트 (2G:A site)를 가지는 유전자의 발현을 억제하는 것을 확인하였으며, 그 효율은 정규 발단 싸이트에 비해서 낮음을 알 수 있다 (도 16a). 또한 유전자 발현 억제가 시작되는 농도를 비정규 GA배열 발단 타겟에서 루시퍼라제 리포터로 살펴보았을 때, 1.5 nM 이상의 농도 조건에서 루시퍼라제 효소 활성이 저해되는 것을 확인하였다 (도 16a). 이는 miR-122가 정규 발단 타겟 싸이트 발현을 억제하는 것과 약 2배 정도 억제 효율의 차이를 보였다. With the luciferase reporter vector constructed in this way, the target gene having a normal starting site (seed site) and an irregular GA sequence starting site (2G:A site) through the second G based on the 5'end at various concentrations of miR-122 The expression inhibition effect was measured by the change in the activity of the corresponding luciferase reporter, and as a result of examining the IC 50 (inhibitory concentration 50) value, miR-122 was about 0.5 nM for the normal initiation target site, and the non-normal GA sequence initiation site (2G: A site) was measured to be about 7 nM, and it was confirmed that miR-122 inhibits the expression of a gene having an irregular GA sequence initiating site (2G:A site), and its efficiency was low compared to the normal initiating site. There is (Fig. 16a). In addition, when the concentration at which gene expression inhibition begins was examined by the luciferase reporter in the non-regular GA sequence initiating target, it was confirmed that the luciferase enzyme activity was inhibited under the concentration condition of 1.5 nM or more (FIG. 16A). This showed the difference between miR-122 inhibiting the expression of the normal initiating target site and about twice the inhibition efficiency.

본 실험은 상기 실시예에서 사용했던 동일한 방법으로 miR-122의 이중체를 합성하고, 이를 여러 농도 (0, 1, 5, 10, 25nM)에서 해당 psi-check2 벡터(50ng)와 함께 Lipofectamine 2000 시약 (Invitrogen)을 이용하여 제조자의 프로토콜에 따라 대략 10,000개의 간암세포주 (Huh7, KCLB: 60104) 에 전달(co-transfection)시켜서 96 well에서 배양하며 진행하였으며, 실시예 2에서 수행한 방법과 동일하게 루시퍼라제 활성을 측정하여 실행하였다.In this experiment, the duplex of miR-122 was synthesized by the same method used in the above example, and it was Lipofectamine 2000 reagent with the corresponding psi-check2 vector (50 ng) at various concentrations (0, 1, 5, 10, 25 nM). (Invitrogen) was delivered to approximately 10,000 liver cancer cell lines (Huh7, KCLB: 60104)   according to the manufacturer's protocol, and cultured in 96 wells, and lucifer was performed in the same manner as in Example 2. It was carried out by measuring the enzyme activity.

miR-122가 비정규 GA배열 발단 싸이트 유전자의 발현을 억제한다는 사실을 확인한 후, 이것이 세포안에 존재하는 miR-122에 의해서 동일하게 조절되는 지를 확인하기 위해서, miR-122가 존재하는 간암세포인 Huh7 세포주를 사용하여, 5‘ 말단 기준 2번째 G 및 3번째 G에 의해서 일어나는 비정규 GA배열 발단 싸이트 (2G:A)에 대한 루시퍼라제 리포터 실험을 수행하였다 (도 16b). 이러한 실험을 진행하기 위해서 추가적으로 5' 말단 기준 3번째 G에 의해서 일어나는 비정규 GA배열 발단 싸이트 (3G:A)에 대한 루시퍼라제 리포터 벡터 (luc-3G:A site), 5' 말단 기준 2번째와 3번째 G에 의해서 함께 일어나는 비정규 GA배열 발단 싸이트 (luc-2G:A, 3G:A site)에 대한 루시퍼라제 리포터 벡터, 전체 miR-122의 서열에 완전 상보적인 서열을 측정하는 루시퍼라제 리포터 벡터 (luc-PM site) 를 상기에 기술된 동일한 방법으로 제작하였고, 5’말단 기준 2번째 G에 의해서 일어나는 비정규 GA배열 발단 싸이트(2G:A)에 대한 루시퍼라제 리포터 벡터 (luc-2G:A site) 와 함께 간암세포주에 도입 후 루시퍼라제의 활성을 측정하여 실험하였다 (도 16b).After confirming that miR-122 inhibits the expression of the irregular GA sequence initiating site gene, to confirm whether it is equally regulated by miR-122 present in the cells, the Huh7 cell line, a liver cancer cell in which miR-122 exists. Using, a luciferase reporter experiment was performed for an irregular GA sequence initiating site (2G:A) caused by the 2nd G and the 3rd G based on the 5'end (FIG. 16B). In order to proceed with this experiment, additionally, a luciferase reporter vector (luc-3G:A site) for an irregular GA sequence initiating site (3G:A) caused by the 3rd G at the 5'end, the 2nd and 3rd at the 5'end. The luciferase reporter vector for the non-canonical GA sequence initiating site (luc-2G:A, 3G:A site) caused by the G-th, a luciferase reporter vector for measuring a sequence completely complementary to the sequence of the entire miR-122 (luc -PM site) was prepared in the same manner as described above, and a luciferase reporter vector (luc-2G:A site) for the irregular GA sequence initiating site (2G:A) caused by the 2nd G based on the 5'end Together, the experiment was performed by measuring the activity of luciferase after introduction into a liver cancer cell line (Fig. 16b).

그 결과, miR-122 존재하는 것으로 알려진 Huh7에 세포에 luc-PM site 벡터를 도입하였을 때 그 활성이 루시퍼라제 벡터 자체만 도입된 대조군에 비해 약 50% 정도 줄어드는 것을 관찰하여, Huh7 세포에 miR-122가 존재함을 확인하였으며, 동시에 miR-122는 3번 비정규 GA배열 발단 타겟 리포터 (Luc-3G:A), 2,3번 비정규 GA배열 발단 타겟 리포터 (Luc-2G:A, 3G:A)의 활성을 억제하는 것을 확인할 수 있었다. 또한 이러한 억제 효과가 miR-122에 의해 유도된 것인지 알기 위하여, miR-122의 발현 저해제 (hsa-miR-122-5p inhibitor, IH-300591-06-0010)를 다마콘사에서 구매하여 50nM로 처리하였고, 이 때 이런 모든 억제 현상이 사라지는 것으로 확인하였다. As a result, it was observed that when the luc-PM site vector was introduced into Huh7, which is known to exist with miR-122, its activity decreased by about 50% compared to the control in which only the luciferase vector itself was introduced. It was confirmed that 122 was present, and at the same time, miR-122 was the 3rd irregular GA sequence triggering target reporter (Luc-3G:A), the 2nd and 3rd irregular GA sequence triggering target reporter (Luc-2G:A, 3G:A). It was confirmed that inhibiting the activity of. In addition, in order to know whether this inhibitory effect was induced by miR-122, an expression inhibitor of miR-122 (hsa-miR-122-5p inhibitor, IH-300591-06-0010) was purchased from Damacon and treated with 50 nM. In this case, it was confirmed that all these inhibition phenomena disappeared.

상기의 실시예를 통해, miR-122는 비록 정규적 발단 싸이트보다는 약하지만, 5‘말단 기준 2번 비정규 GA 배열 발단 타겟의 발현을 억제할 수 있다는 사실을 확인하였으며, 또한 간암세포인 Huh7에 자연적으로 존재하는 miR-122는 5‘ 말단 기준 3번 비정규 GA배열 발단 타겟 유전자와, 2,3번 비정규 GA배열 발단 타겟 유전자의 발현을 억제한다는 사실을 알 수 있었다. 특히 간암세포인 Huh7에서 이루어지는 억제 효과는 miR-122의 발현 저해제 처리에 의해 사라지는 것으로 miR-122에 의한 조절임을 확인하였다(도 16b). 따라서, miR-122는 비정규 GA배열 발단 타겟 유전자의 발현을 억제하는 조절 기능이 있음을 알 수 있다.Through the above examples, it was confirmed that miR-122, although weaker than the regular initiating site, can inhibit the expression of the 2 non-normal GA sequence initiating target based on the 5'end. It was found that the present miR-122 inhibited the expression of the target gene for initiating the 3rd irregular GA sequence and the target gene for the 2nd and 3rd non-normal GA sequence based on the 5'end. In particular, it was confirmed that the inhibitory effect made in Huh7, a liver cancer cell, disappeared by treatment with an expression inhibitor of miR-122, which was regulated by miR-122 (FIG. 16B). Therefore, it can be seen that miR-122 has a regulatory function to suppress the expression of the target gene for initiating the irregular GA sequence.

[[ 실시예Example 17] 17] miRmiR -122의 특정 비정규 -122 specific irregular GA배열GA array 발단 표적 유전자의 발현 억제를 통한 Through suppression of the expression of the initiating target gene 간암세포주의Liver cancer cell line 세포 이동 저해 현상 확인 Confirmation of cell migration inhibition

miR-122 의 비정규 GA 배열 발단 표적의 간암 세포내 기능을 알아보기 위해서, 해당 비정규 GA 배열 발단 표적 싸이트를 상보적으로 인식하여 저해하는 miRNA-GU를 적용하여 이를 간암세포인 hepG2에 도입한 후에, 간암 세포의 성질 중 암전이에 중요한 세포 이동 능력이 어떻게 달라지는 지를 상처 치유 분석(wound healing assay)을 수행하여 살펴보았다.In order to find out the function of the non-normal GA sequence initiating target of miR-122 in liver cancer cells, miRNA-GU, which complementarily recognizes and inhibits the non-normal GA sequence initiating target site, was applied and introduced into hepG2, a liver cancer cell, Among the properties of liver cancer cells, a wound healing assay was performed to investigate how the cell migration ability, which is important for cancer metastasis, changes.

간암세포주인 hepG2에서의 상처 치유 분석은 우선은 miR-122의 5‘ 말단 기준 2번 비정규 GA배열 발단 타겟, 3번 비정규 GA배열 발단 타겟, 2,3번 비정규 GA배열 발단 타겟에 상보적으로 인식하는 miRNA-GU를 해당 서열로 합성한 후 이를 상기 실시예에서 실행한 동일한 방법으로 hepG2 세포안에 도입 하고, 24시간 배양 후, 1000ul팁을 이용하여 세포배양층 (cell layer) 에 흠 (scratch) 을 만들고, 세포를 48시간까지 배양하며 각 실험군의 세포가 이동하는 것을 대조군인 NT-6pi를 도입한 것과 비교 관찰하며 진행하였다. 이때 실험에 사용된 간섭 유도 핵산의 서열은 다음과 같다 (miR-122: 5’ - UG GAG UGU GAC AAU GGU GUU UG - 3’; miR-122-G2U: 5’ - UU GAG UGU GAC AAU GGU GUU UG - 3’; miR-122-G3U: 5’ - UG UAG UGU GAC AAU GGU GUU UG - 3’; miR-122-G2,3U: 5’ - UU UAG UGU GAC AAU GGU GUU UG - 3’). In the analysis of wound healing in hepG2, a liver cancer cell line, first, based on the 5'end of miR-122, the 2nd irregular GA sequence initiation target, the 3rd non-normal GA sequence initiation target, and the 2nd and 3rd irregular GA sequence initiation targets were recognized complementarily. After synthesizing the miRNA-GU with the corresponding sequence, it was introduced into hepG2 cells in the same manner as in the above example, and after culturing for 24 hours, a scratch was made on the cell layer using a 1000ul tip. And, the cells were cultured for up to 48 hours, and the migration of the cells of each experimental group was observed and compared with the introduction of the control group NT-6pi. The sequence of the interference-inducing nucleic acid used in the experiment is as follows (miR-122: 5'-UG GAG UGU GAC AAU GGU GUU UG-3'; miR-122-G2U: 5'-UU GAG UGU GAC AAU GGU GUU UG-3'; miR-122-G3U: 5'-UG UAG UGU GAC AAU GGU GUU UG-3'; miR-122-G2,3U: 5'-UU UAG UGU GAC AAU GGU GUU UG-3').

그 결과, 대조군인 NT-6pi 의 경우와 동일한게 miR-122를 도입한 경우에는 , 48 시간 세포 배양 시, 만들어진 흠이 거의 채워지는 세포 이동을 관찰할 수 있었다. 하지만 miR-122-G2U, miR-122-G2,3U siRNA 가 전달된 실험군에서는 이러한 세포 이동이 저해되는 것을 보였으며, 이런 저해 현상은 miR-122-G2,3U siRNA 가 전달된 실험군에서 가장 강하게 나타났다 (도 17a). 이를 정량적으로 측정해본 결과, miR-122-G2U, miR-122-G2,3U siRNA의 경우 대조군에 비해 2~3배 세포 이동이 저해되었음을 확인하였다 (도 17 b). 해당, 정량 분석은 miR-122의 세포 이동을 세포 형태상으로 관찰한 다음, 이 관찰 결과를 이미지J 프로그램 (NIH) 을 이용하여 분석하여 측정하였다. 추가적으로, miR-122-G3U siRNA 가 유도하는 세포 이동을 실험을 진행한 결과, miR-122-G3U에 의해서는 세포 이동 저해 기능을 관찰할 수 없었다 (도 17c-d). As a result, when miR-122 was introduced as in the case of NT-6pi as a control group, cell migration was observed that almost completely filled the defects made when the cells were cultured for 48 hours. However, in the experimental group to which miR-122-G2U, miR-122-G2, 3U siRNA was delivered, this cell migration was inhibited, and this inhibition was most strongly in the experimental group to which miR-122-G2,3U siRNA was delivered. (Fig. 17a). As a result of quantitatively measuring this, it was confirmed that the miR-122-G2U, miR-122-G2, 3U siRNA inhibited cell migration 2-3 times compared to the control group (FIG. 17 b ). For the quantitative analysis, the cell migration of miR-122 was observed in the form of a cell, and then the observation result was analyzed and measured using the Image J program (NIH). In addition, as a result of conducting an experiment on the cell migration induced by miR-122-G3U siRNA, it was not possible to observe the function of inhibiting cell migration by miR-122-G3U (Fig. 17c-d).

이를 바탕으로 miR-122 의 비정규 GA배열 발단 표적 억제는 간암 세포의 이동을 저해하며, 이는 2번 염기의 GA배열이 우선적으로 작용하며, 이어 첨가적으로 3번 염기의 GA배열이 더해질 경우, 세포 이동 저해 기능의 강화가 유도된다는 점을 알 수 있다.Based on this, inhibition of miR-122's non-regular GA sequence initiating target inhibits the migration of liver cancer cells, which preferentially acts on the GA sequence of base 2, followed by the addition of the GA sequence of base 3, cells It can be seen that the enhancement of the migration inhibitory function is induced.

[[ 실시예Example 18] 18] miRmiR -122-G2,3U에 의한 비정규 Irregular by -122-G2,3U GA배열GA array 발단 표적 조절로 인한 세포 주기 정지(cell cycle arrest)의 증가 확인 Confirmation of increased cell cycle arrest due to initiating target regulation

세포의 이동은 세포 분열과 밀접하게 연관되어 있으며, 특히 암세포에서 많이 관찰되고 있다 (Cancer research, 2004, 64(22):8420-8427). 따라서 miR-122-G2,3U가 유도하는 간암 세포 이동의 저해가 세포 주기 조절과 관계가 있는지 확인하기 위해 실시예 12에서의 동일한 방법으로 유세포 분석 실험을 진행하였다. 이때 NT-6pi, miR-122, miR-122-G2, miR-122-3U, miR-122-G2,3U를 간암세포주인 HepG2에 전달한 후 각 세포의 세포주기를 측정한 결과, miR-122-G2,3U 전달된 실험군에서, G0/G1 분포를 보인 세포의 비율이 대조군(NP-6pi)의 평균 52%에서 68%로 증가한 것을 확인했으며, G2/M 기의 세포 분포가 현저히 낮은 것을 확인하였다 (도 18). 하지만, miR-122, miR-122-G2U, miR-122-G3U는 대조군에 비해 유의한 차이점을 관찰하지 못하였다. 이 때 세포 주기 분석 실험은, 합성된 해당 siRNA 이중체를 50nM 농도로 HepG 에 전달해, 24시간 배양하고 Muse Cell Cycle Kit (Catalog No. MCH100106, Milipore)을 이용하여, 해당 회사가 제공하는 프로토콜에 따라 실험을 수행하고, Muse Cell Analyzer (Milipore) 로 측정하였다. Cell migration is closely related to cell division, and is particularly observed in cancer cells (Cancer research, 2004, 64(22):8420-8427). Therefore, flow cytometry experiments were performed in the same manner as in Example 12 to confirm whether miR-122-G2,3U-induced inhibition of liver cancer cell migration is related to cell cycle regulation. At this time, NT-6pi, miR-122, miR-122-G2, miR-122-3U, miR-122-G2, 3U were delivered to HepG2, a liver cancer cell line, and the cell cycle of each cell was measured. As a result, miR-122- In the G2,3U-delivered experimental group, it was confirmed that the proportion of cells showing a G0/G1 distribution increased from 52% on average to 68% of the control (NP-6pi), and it was confirmed that the cell distribution in the G2/M phase was remarkably low. (Fig. 18). However, no significant differences were observed for miR-122, miR-122-G2U, and miR-122-G3U compared to the control group. At this time, in the cell cycle analysis experiment, the synthesized siRNA duplex was delivered to HepG at a concentration of 50 nM, cultured for 24 hours, and then, using the Muse Cell Cycle Kit (Catalog No. MCH100106, Milipore), according to the protocol provided by the company. The experiment was carried out and measured with a Muse Cell Analyzer (Milipore).

따라서 miR-122-G2,3U 가 조절하는 암세포 기능은 세포 분열 (G2/M) 을 낮추고, 세포주기 정지상태 (cell cycle arrest: (G0/G1)) 를 유도한다는 것을 확인하였으며, 이에 본 실시예의 결과는 miR-122가 비정규 GA 배열 발단 싸이트를 5‘말단 기준 2번째 G 와 3번째 G 모두를 동시에 G:A 워블 배열하여 인식하여, 간암 세포 주기의 진행을 막는 기능을 나타낸다고 해석할 수 있다.Therefore, it was confirmed that the cancer cell function regulated by miR-122-G2,3U lowers cell division (G2/M) and induces cell cycle arrest (G0/G1), according to this example. The results can be interpreted that miR-122 represents the function of preventing the progression of the liver cancer cell cycle by simultaneously recognizing both the 2nd G and the 3rd G based on the 5'end of the non-normal GA sequence initiating site by G:A wobble arrangement.

[[ 실시예Example 19] 19] miRmiR -122-G2,3U, -122-G2,3U, miRmiR -122-G2,7U에 의한 비정규 Irregular by -122-G2,7U GA배열GA array 발단 표적 조절로 인한 세포주기 정지상태 유도 관찰 Observation of induction of cell cycle arrest due to initiating target control

miR-122의 비정규 GA 배열 발단 표적에 기능은 이전 실시예 17에서miR-122-G2,3U가 간세포의 이동을 저해하는 기능이 있다는 점을 파악했으며, 이때 특히 miR-122-G2,3U의 발현에 의해서 유도되는 세포 이동의 저해는, 2번 G 염기의 비정규 GA배열 발단 표적 조절의 생물학적 기능에 3번 G 염기의 조절 효과가 첨가될 경우, 그 기능이 극대화 되는 것을 관찰하였다 (도 17). 따라서 miR-122의 2, 3, 7번 G 염기가 추가적인 조합으로 비정규 GA배열 발단 표적 저해의 생물학적 기능이 변화하는지 알아보기 위해, miR-122-G7U, miR-122-G3,7U, miR-122-G2,7U siRNA의 세포 주기 조절 기능을 추가적으로 확인하는 실험을 수행하였다. In the previous example 17, miR-122-G2,3U was found to have a function of inhibiting the migration of hepatocytes as a function of the target for initiating the irregular GA sequence of miR-122, in particular the expression of miR-122-G2,3U Inhibition of cell migration induced by, was observed that the function was maximized when the modulatory effect of G base 3 was added to the biological function of target regulation at the initiation of the irregular GA sequence of base 2 G (Fig. 17). Therefore, in order to investigate whether the biological function of target inhibition at the initiation of the irregular GA sequence is changed by an additional combination of G bases 2, 3, and 7 of miR-122, miR-122-G7U, miR-122-G3,7U, miR-122 An experiment was conducted to additionally confirm the cell cycle regulation function of -G2,7U siRNA.

이 때의 실험은 동일하게 간암세포주인 HepG2를 사용하였으며, 이전 실시예 18에서의 방법과 동일하게 해당 miRNA-GU 이중체로 제조하여 50 nM 농도로 세포에 트랜스팩션 하였다. 하지만 이번 세포주기 관찰에서는 24시간 배양 후 노코다졸 (nocodazole) 을 100ng/ml 로 16시간 동안 처리하여 G2/M (분열준비기/분열기)에 HepG2 세포를 동기화(synchronization)한 다음, 얼마나 많은 수의 세포가 G2/M에서 멈춰있는지로 G0/G1에서의 세포주기 정지 상태의 세포의 양을 Muse Cell Analyzer (Milipore) 유세포 분서기로 측정하였다(도 19).In this experiment, hepG2, a liver cancer cell line, was used in the same manner, and the miRNA-GU duplex was prepared in the same manner as in Example 18 and transfected into cells at a concentration of 50 nM. However, in this cell cycle observation, after 24 hours incubation, nocodazole was treated at 100 ng/ml for 16 hours to synchronize HepG2 cells to G2/M (dividing preparation/dividing stage), and then how many Whether or not the cells were stopped at G2/M, the amount of cells in the cell cycle arrested state at G0/G1 was measured with a Muse Cell Analyzer (Milipore) flow cytometer (FIG. 19).

그 결과, miR-122-G2U는 대조군인 NT-6pi에 비하여 세포주기 정지상태인 G0/G1에 있는 세포 수가 차이가 없었지만, miR-122-G2,3U siRNA, miR-122-G2,7U와 같이 2번째 G에 첨부적으로 비정규 GA배열 발단 타겟 싸이트를 조절하는 경우, 세포주기 정지상태 (G0/G1) 의 비율이 증가하는 것을 확인할 수 있었다(도 19a). 하지만 miR-122-G3, 7U 는 별다른 증가를 보이지 않았다 (도 19a). 이를 정량적으로 분석해 보면, miR-122-G2,3U siRNA이 전달된 실험군의 경우, 대조군에 비해 약 2배 이상 세포주기 정지상태 (G0/G1) 의 비율이 증가했으며, 이어 miR-122-G2,7U 실험군에서는 약 1.5 배로 세포주기 정지상태 (G0/G1)의 비율이 중가함을 관찰했다 (도 19b). As a result, miR-122-G2U did not have a difference in the number of cells in G0/G1 in cell cycle arrest compared to NT-6pi, the control group, but miR-122-G2,3U siRNA, miR-122-G2,7U In addition to the second G, when the non-normal GA sequence initiating target site was regulated, it was confirmed that the rate of cell cycle arrest (G0/G1) increased (FIG. 19A). However, miR-122-G3, 7U did not show any significant increase (Fig. 19a). Quantitative analysis showed that in the case of the experimental group to which miR-122-G2, 3U siRNA was delivered, the rate of cell cycle arrest (G0/G1) increased by about twice or more compared to the control group, followed by miR-122-G2, In the 7U experimental group, it was observed that the ratio of cell cycle arrest (G0/G1) increased by about 1.5 times (FIG. 19B).

이를 바탕으로, miR-122-G2,3U siRNA, miR-122-G2,7U siRNA에 의한 비정규 GA배열 발단 표적의 조절을 통해 세포 주기 중지 상태를 증대시킬 수 있음을 확인하였다. Based on this, it was confirmed that the cell cycle arrest status can be increased through the regulation of the non-normal GA sequence initiating target by miR-122-G2,3U siRNA and miR-122-G2,7U siRNA.

[ [ 실시예Example 20] let-7a- 20] let-7a- G2UG2U , let-7a-G2,4U에 의한 비정규 , let-7a-G2,4U denormal GA배열GA array 발단 표적 조절이 유도하는 세포주기 정지 상태 유도 관찰 Observation of cell cycle arrest induction induced by initiating target regulation

항암 조절 (Tumor suppressor) 기능을 하는 대표적인 마이크로RNA로는 let-7 family 가 있다. 이는 예쁜 꼬마 선충의 발달 과정을 조절하는 기능이 보고 (Nature, 2000, 403(6772): 901-906)된 이후, 다양한 암세포에서 억제된 발현 (Cancer Res., 2004, 64(11): 3753-3756) 및 종양 형성 과정 (Tumorigenesis) 조절을 통한 항암 기능 (Cell, 2005, 120(5): 635-647 ;Genes Dev. 2007, 21(9):1025-1030) 이 보고되어 왔으며, 이를 바탕으로 암진단 및 항암제 개발의 가능성을 지닌 중요한 유전자로 연구되어왔다. 이에 본 발명자들은 let-7 의 비정규 GA배열 발단 표적의 저해가 유도하는 생물학적 기능을 알아보는 실험을 진행하였다. A representative microRNA that functions as an anticancer control (Tumor suppressor) is the let-7 family. It was reported that the function that regulates the development process of the pretty little nematode was reported (Nature, 2000, 403(6772): 901-906), and was then suppressed in various cancer cells (Cancer Res., 2004, 64(11): 3753- 3756) and anti-cancer function (Cell, 2005, 120(5): 635-647 ;Genes Dev. 2007, 21(9):1025-1030) through regulation of tumor formation process (Tumorigenesis) have been reported. It has been studied as an important gene with potential for cancer diagnosis and development of anticancer drugs. Accordingly, the present inventors conducted an experiment to find out the biological function induced by the inhibition of the target for initiating an irregular GA sequence of let-7.

let-7a의 5'말단 1번째에서부터 9번째까지의 발단 서열은 5'-UGA GGU AGU-3'로써 G:A 워블 염기 배열을 할 수 있는 G는 2번째, 4번째, 5번째, 8번째에 존재한다. 본 발명자는 이 중에 2번째와 4번째 G에 주목을 하고 이를 miRNA-GU로 변형하여 합성하고, 이를 간암 세포주인 HepG2 세포에 도입한 후 세포 주기에서 어떠한 영향을 미치는 지를 이전 실시예 19에서 실시한 방법과 동일하게 실험을 수행하였다. 이때 합성하여 사용한 let-7에 대한 염기서열은 다음과 같다 (let-7a: 5’- U GAG GUA GUA GGU UGU AUA G UU - 3’;let-7a-G2U: 5’ - U UAG GUA GUA GGU UGU AUA G UU - 3’; let-7a-G4U: 5’ - U GAU GUA GUA GGU UGU AUA G UU - 3’; let-7a-G2,4U: 5’- U UAU GUA GUA GGU UGU AUA G UU - 3’). The starting sequence from the 1st to the 9th of the 5'end of let-7a is 5'-UGA GGU AGU-3', and the G:A wobble base sequence is the 2nd, 4th, 5th, 8th Exists in The present inventors paid attention to the second and fourth G among them, synthesized by transforming them into miRNA-GU, and introduced them into HepG2 cells, a liver cancer cell line, and then how they affected the cell cycle in the previous Example 19. The experiment was carried out in the same manner as. The nucleotide sequence for let-7 synthesized and used at this time is as follows (let-7a: 5'- U GAG GUA GUA GGU UGU AUA G UU-3';let-7a-G2U: 5'-U UAG GUA GUA GGU UGU AUA G UU-3'; let-7a-G4U: 5'-U GAU GUA GUA GGU UGU AUA G UU-3'; let-7a-G2,4U: 5'- U UAU GUA GUA GGU UGU AUA G UU -3').

그 결과, let-7a의 경우는 대조군인 NT-6pi에 비해서 별다른 차이를 나타내지 못하였지만, let-7a-G2U와 let-7a-G2,4U는 G0/G1에서의 세포 주기 정지 상태를 증가시키고, let-7-G4U는 도리어 G2/M에 있는 세포의 양을 증가시켜 세포 주기를 빠르게 돌아가게 한다는 것을 관찰할 수 있었다 (도 20a). 이를 4번의 반복 실험으로 정량화 해보면, let-7a-G2U 실험군의 경우, G1/G0세포의 분포가 대조군 (Nt-6pi) 과 비교시, 약 1.5 배 정도 증가하였으며, G2/M 세포의 분포가 감소하는 것을 관찰 할 수 있었다 (도 20b). 이를 통해 let-7a의 2번 비정규 GA배열 발단 타겟의 발현 억제는 HepG2 세포의 세포 주기 정지상태를 유도함을 확인할 수 있었다. 이어 let-7a 의 발단에 존재하는 4번 G염기의 경우, 단독 GA 배열 (let-7a-G4U)로는 HepG2 의 세포 주기 정지 상태를 유도를 감소 시키면서, 도리어 G2/M 상태로 빠르게 진행되어 노코다졸 약물 처리로 많은 세포 수가 머무르는 결과를 보였다. 또한 2번과 4번이 동시에 GA 배열 할 경우 (let-7a-G2,4U), HepG2 의 세포 주기 정지 상태 유도를 관찰할 수 있었다. 이러한 세포 주기 정지 상태는 let-7a 가 전달된 HepG2 세포에서 관찰되지 않았다 (도 20 b). 따라서, let-7a의 2번과 2,4번 비정규 GA배열 발단 타겟의 발현 억제는 HepG2 세포의 세포 주기 정지 상태를 유도하며, 이는 let-7a 이 본 발명자들이 수행한 HepG2 세포 조절에서 보이는 기능과는 전혀 다른 기능임을 확인하였다. As a result, in the case of let-7a, there was no significant difference compared to the control NT-6pi, but let-7a-G2U and let-7a-G2,4U increase cell cycle arrest in G0/G1, It could be observed that let-7-G4U, on the contrary, increases the amount of cells in G2/M to rapidly cycle the cell cycle (FIG. 20A). Quantifying this by 4 repeated experiments. In the case of the let-7a-G2U experimental group, the distribution of G1/G0 cells increased by about 1.5 times compared to the control (Nt-6pi), and the distribution of G2/M cells decreased. Could be observed (Fig. 20b). Through this, it was confirmed that the inhibition of the expression of the 2nd irregular GA sequence initiating target of let-7a induces cell cycle arrest in HepG2 cells. Then, in the case of G base 4 present at the beginning of let-7a, the single GA sequence (let-7a-G4U) reduces the induction of the cell cycle arrest state of HepG2, but rather rapidly proceeds to the G2/M state and is nocoda. The result was that a large number of cells were retained by treatment with the sol drug. In addition, when the 2nd and 4th GAs were arranged at the same time (let-7a-G2,4U), the induction of the cell cycle arrest state of HepG2 could be observed. Such cell cycle arrest was not observed in HepG2 cells to which let-7a was delivered (FIG. 20 b ). Thus, inhibition of the expression of the 2nd and 2nd, 4th irregular GA sequence initiating targets of let-7a induces a cell cycle arrest state of HepG2 cells, which is a function that let-7a is seen in the regulation of HepG2 cells performed by the present inventors. It was confirmed that is a completely different function.

상기의 실시예를 통해, let-7은 5‘말단 기준 2번 G를 통한 비정규 GA 발단 배열 싸이트의 유전자를 억제함으로써 암세포 주기 정지를 촉진 시키는 역할을 하며, 더 바람직하게는 5’ 말단 기준 2번 G와 4번 G가 함께 G;A 워블 배열로 작용할 때 그 효과가 가장 크다는 것을 알 수 있다. 또한 let-7의 5‘말단 기준 4번 G를 통한 비정규 GA 발단 배열 싸이트는 도리어 암세포의 세포 주기 진행을 촉진 시켜, 암세포의 증식을 유도할 것으로 여겨진다.Through the above examples, let-7 plays a role of promoting cancer cell cycle arrest by inhibiting the genes of the irregular GA starting sequence site through G at the 5'end, more preferably 2 times at the 5'end. It can be seen that the effect is greatest when G and No. 4 G work together in a G;A wobble arrangement. In addition, it is believed that the non-regular GA initiating sequence site through the 5'terminal standard G of let-7 promotes the cell cycle progression of cancer cells and induces the proliferation of cancer cells.

[[ 실시예Example 21] 21] miRmiR -302--302- 4GU4GU , , miRmiR -372--372- 4GU에To 4GU 의한 비정규 By irregular GA배열GA array 발단 표적 저해가 유도하는 Inducing target inhibition 역분화Retrodifferentiation 촉진을 Promote OCT4OCT4 프로모터 리포터로 관찰 Observation with promoter reporter

분화된 세포는 몇가지 전사인자의 인위적인 발현으로 분화능을 다시 획득할 수 있으며, 최종적으로 다시 배아세포와 같은 전능 분화능을 획득한 세포를 역분화 세포 (induced pluripotent stem cell) 라고 한다. 이러한 기술은 쥐의 배성섬유아세포 (mouse embryonic fibroblast: MEM)에 4개의 인자 (Oct3/4, Sox2, c-Myc, Klf4)를 도입하여, 줄기세포와 같이 분화 다양성을 가진 유도 만능 줄기세포 (iPS cell: inducible pluripotent stem cell)를 만들 수 있음이 보고되었다 (Cell, 2006,126 (4): 663-676). 유사하게 인간의 체세포에 4개의 인자 (OCT4, SOX2, NANOG, and LIN28) 전달을 통해 유도 만능 줄기세포를 만들 수 있음이 보고된 바 있다 (Science,2007, 318(5858): 1917-1920). 이는 역분화 (dedifferentiation)과정을 거쳐 만능으로 분화될 수 있는 재생 가능성을 인간 세포를 포함한 어떤 세포를 통해서도 만들어 낼 수 있다는 점에서 그 응용 가능성이 매우 높은 분야이며, 최초 발견 후, 유도 만능 줄기세포 생성 효율성을 높히기 위한 노력이 지속되어왔다. 그 일환으로 보고된 마이크로RNA 유도 만능줄기세포 (mirPS) 역시 효율적으로 만능성 (pluripotency)을 유도 하는 방법의 하나로써, miR-302a와 miR-372 같은 마이크로RNA가 단독으로 또는 4개의 인자 (Oct3/4, Sox2, c-Myc, Klf4) 와 함께 세포를 역분화시키는 기능이 보고되었다 (RNA, 2008 14(10): 2115-2124; Nat Biotechnol. 2011, 29 (5): 443-448). 따라서, 본 발명자들은 miR-302a와 miR-372의 비정규 GA배열 발단 표적 발현의 저해가 세포를 역분화 시키는 과정을 촉진 할 수 있는지를 알아보는 실험을 진행하였다. Differentiated cells can acquire differentiation capacity again by artificial expression of several transcription factors, and cells that have finally acquired the same omnipotent differentiation capacity as embryonic cells are called induced pluripotent stem cells. This technique introduces four factors (Oct3/4, Sox2, c-Myc, Klf4) into mouse embryonic fibroblasts (MEM), and induces pluripotent stem cells (iPS) with differentiation diversity like stem cells. cell: inducible pluripotent stem cell) has been reported (Cell, 2006,126 (4): 663-676). Similarly, it has been reported that induced pluripotent stem cells can be produced through the delivery of four factors (OCT4, SOX2, NANOG, and LIN28) to human somatic cells (Science, 2007, 318(5858): 1917-1920). This is a field with high application potential in that it can create regeneration potential through any cell including human cells through the process of dedifferentiation. After the initial discovery, the generation of induced pluripotent stem cells Efforts have been made to increase efficiency. MicroRNA-induced pluripotent stem cells (mirPS) reported as part of this are also one of the methods for efficiently inducing pluripotency.MicroRNAs such as miR-302a and miR-372 are used alone or with four factors (Oct3/ 4, Sox2, c-Myc, Klf4) has been reported to reverse differentiation of cells (RNA, 2008 14(10): 2115-2124; Nat Biotechnol. 2011, 29 (5): 443-448). Therefore, the present inventors conducted an experiment to find out whether inhibition of the expression of targets initiating the irregular GA sequence of miR-302a and miR-372 can promote the process of dedifferentiating cells.

우선 만능성 (pluripotency) 유도를 모니터 하기 위해, 줄기세포에서 활성화된다고 보고된 Oct4 프로모터와 이에 의존하여 발현되는 녹색 형광 단백질이 포함된 플라스미드를 구입하였다 (Addgene #21319) (도 21 a). 이러한 Oct4 발현 리포터 벡터 (pOct4:GFP) 를 분화가 된 자궁경부암 세포 HeLa에 도입하였을 때는, 녹색 형광 단백질이 발현되지 않으나 해당 세포가 역분화되어 분화능을 획득하였을 때는 Oct4 발현 리포터에서 녹색 형광 단백질이 발현되게 된다. 이러한 Oct4 발현 리포터 벡터와 함께 역분화를 일으키는 것으로 알려진 마이크로RNA인 miR-302a, miR-372를 대상으로 실험을 수행하였다. miR-302a와 miR-372의 발단 서열중 5‘말단 기준 2번째에서 8번째의 서열은 "AA GUG CU" 이며 따라서 비정규 GA배열 발단 배열은 5’ 말단 기준 4번째 G와 6번째 G를 통해서 가능하다. 하지만 본 발명자들은 4번째의 G에 주목하여 miR-302-G4U, miR-372-G4U를 합성하여 실험을 수행하였다.First, in order to monitor pluripotency induction, a plasmid containing the Oct4 promoter, which is reported to be activated in stem cells, and a green fluorescent protein expressed depending on it, was purchased (Addgene #21319) (FIG. 21A). When the Oct4 expression reporter vector (pOct4:GFP) was introduced into the differentiated cervical cancer cells HeLa, green fluorescent protein was not expressed, but when the cells were dedifferentiated to obtain differentiation capacity, the green fluorescent protein was expressed in the Oct4 expression reporter. It will be. The experiment was performed on the microRNAs miR-302a and miR-372, which are known to cause dedifferentiation together with the Oct4 expression reporter vector. Of the starting sequences of miR-302a and miR-372, the 2nd to 8th sequences based on the 5'end are "AA GUG CU", so the non-normal GA sequence starting sequence is possible through the 4th G and 6th G based on the 5'end. Do. However, the present inventors performed an experiment by synthesizing miR-302-G4U and miR-372-G4U by paying attention to the fourth G.

우선적으로 실험은, HeLa 세포에 Oct4 발현 리포터 벡터 (pOct4:GFP)를 Lipofectamine 2000 (Invitrogen 사) 시약을 이용하여 제조사의 프로토콜에 따라 전달한 다음, 인간 miR-302와 miR-372 서열대로 가이드 가닥과, 운반자 가닥을 상기 실시예와 같이 바이오니아에서 합성 제작하여, 이중체로 제조하고 RNAimax (Invitrogen 사) 시약을 이용하여 50nM 농도로 순차적 전달을 하였다. 또한, miR-302와 miR-372의 비정규 GA배열 발단 표적 특이적 siRNA의 제작은 발단내 G 염기를 U로 치환하여 상기예와 동일하게 준비하여, 50nM 농도로 세포에 전달하였다. 이에 사용된 핵산의 염기 서열은 다음과 같다 (miR-302: 5’- UAAGUGCUUCCAUGUUUUGGUGA-3’; miR-302-4GU: 5’- UAAUUGCUU CCAUGUUUUGGUGA-3’; miR-302 운반가닥: 5’- ACUUAAACGUGGAUGUACUUGCU-3’; miR-372: 5’- AAAGUGCUGCG ACAUUUGAGCGU-3’; miR-372-G4U: 5’- AAAUUGC UGCGACA UUUGAGCGU-3’, miR-372 운반가닥: 5’-CCUCAAAUGUGGAGCACUAUUCU-3’). 이렇게 리포터 벡터와 RNA를 도입한 HeLa 세포는 14일동안 10% FBS (fetal bovine serum), 100 U/ml 페니실린, 및 100 ㎍/ml 스텝토마이신을 보충한 Dulbecco's 개질 Eagle's 배지 (Invitrogen)에서 배양하였으며, 트랜스펙션 수행시는 항생제 없는 완전배지에서 세포를 배양하였다.Firstly, in the experiment, an Oct4 expression reporter vector (pOct4:GFP) was delivered to HeLa cells according to the manufacturer's protocol using a reagent Lipofectamine 2000 (Invitrogen), followed by a guide strand according to the sequence of human miR-302 and miR-372, The carrier strand was synthesized in Bioneer as in the above example, prepared as a duplex, and sequentially delivered at a concentration of 50 nM using an RNAimax (Invitrogen) reagent. In addition, the preparation of target-specific siRNA for the initiation of the irregular GA sequence of miR-302 and miR-372 was prepared in the same manner as in the above example by substituting U for the G base in the initiation, and delivered to the cells at a concentration of 50 nM. The nucleotide sequence of the nucleic acid used here is as follows (miR-302: 5'-UAAGUGCUUCCAUGUUUUGGUGA-3'; miR-302-4GU: 5'-UAAUUGCUU CCAUGUUUUGGUGA-3'; miR-302 carrier strand: 5'- ACUUAAACGUGGAUGUACUUGCU- 3'; miR-372: 5'- AAAGUGCUGCG ACAUUUGAGCGU-3'; miR-372-G4U: 5'- AAAUUGC UGCGACA UUUGAGCGU-3', miR-372 carrier strand: 5'-CCUCAAAUGUGGAGCACUAUUCU-3'). HeLa cells into which the reporter vector and RNA were introduced were cultured in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% FBS (fetal bovine serum), 100 U/ml penicillin, and 100 μg/ml steptomycin for 14 days. , When performing transfection, cells were cultured in complete medium without antibiotics.

그 결과, miR-302나 miR-372 가 단독으로 전달된 실험군에서는 대조군에 비해 군집형태 (colony) 의 세포 성장을 보였으나, Oct4 프로모터의 활성을 나타내는 녹색 형광 단백질 발현이 14일 배양 시기까지는 관찰되지는 않았다. 하지만, miR-302와 miR-372비정규 GA배열 발단 표적 억제 siRNA가 도입된 실험군에서는 군집 형태의 세포 성장 뿐 아니라, Oct4 프로모터의 활성을 나타내는 녹색 형광 단백질 발현이 관찰되었으며 (도 21 b-c, 적색 화살표), 이는 miR-302와 miR-372 과 각각의 비정규 GA배열 발단 표적 억제 siRNA 가 동시에 세포로 전달되었을 때 좀 더 강하고 큰 녹색 형광 단백질 발현 세포 군집을 관찰할 수 있었다 (도 21 b-c). 이를 바탕으로 miR-302와 miR-372 비정규 GA배열 발단 표적의 저해는 세포를 역분화시키고 Oct4 발현을 통해 분화능을 획득하는 것을 촉진 할 수 있다는 점을 알 수있다. As a result, the experimental group in which miR-302 or miR-372 was delivered alone showed colony-like cell growth compared to the control group, but expression of green fluorescent protein indicating the activity of the Oct4 promoter was not observed until the 14-day culture period. Did. However, in the experimental group into which the miR-302 and miR-372 irregular GA sequence initiating target suppression siRNA was introduced, not only the cell growth in the form of a cluster, but also the expression of green fluorescent protein indicating the activity of the Oct4 promoter was observed (Fig. 21 bc, red arrow). , When miR-302 and miR-372 and each of the non-normal GA sequence initiating target inhibitory siRNAs were simultaneously delivered to the cells, a stronger and larger green fluorescent protein-expressing cell population could be observed (FIG. 21 bc). Based on this, it can be seen that inhibition of miR-302 and miR-372 non-normal GA sequence initiating targets can promote cell dedifferentiation and acquire differentiation capacity through Oct4 expression.

상기의 실시예를 통해, miR-372-G4U와 miR-302a-G4U는 기존의 miR-372, miR-302 만을 단독으로 발현 시켜 세포의 역분화를 일으키는 것 보다 효율적으로 세포의 역분화를 촉진 시킬 수 있다는 점을 관찰 할 수 있으며, 이에 따라 miR-372-G4U와 miR-302a-G4U는 세포의 역분화를 촉진 시키는 소재로 사용될 수 있다는 점을 알 수 있다.Through the above examples, miR-372-G4U and miR-302a-G4U can promote cell dedifferentiation more efficiently than existing miR-372 and miR-302 by expressing only miR-372 and miR-302 alone. It can be observed that miR-372-G4U and miR-302a-G4U can be used as materials to promote cell dedifferentiation.

[[ 실시예Example 22] 5‘말단 기준 6번째에 2‘ 22] 5 '2 at the end of the 6th OMeOMe 변형이 해당 RNA 간섭 유도체의 비정규 Modification is irregular of the corresponding RNA interference derivative 핵융기Nuclear proliferation 표적을 억제하지 못하는 현상을 확인 Identify the phenomenon of not being able to suppress the target

상기 실시예에서, 비정규 핵융기 타겟이 정규 발단 타겟과는 전혀 다른 새로운 생물학적 기능을 보이며, 따라서 비정규 핵융기 타겟의 발현 저해만 조절하는 RNA 간섭 유도 핵산인 miRNA-BS를 발명하고, 이의 기능을 확인하였다. 하지만 miRNA-BS의 경우에도 기존의 miRNA의 비정규 핵융기 싸이트를 상보적으로 배열하도록 그 발단 서열이 바뀌었지만, 바뀐 발단 서열을 통해서 또다시 새로운 핵융기 싸이트가 생겨남을 확인할 수 있었다. 따라서 miRNA-BS와 같은 RNA 간섭 유도 핵산이 정규 발단 서열만 인식하고, 비정규 핵융기 싸이트는 인식하지 못하는 기술이 필요함을 알게 되었다. 이에, 본 발명자들은 비정규 핵융기 결합을 하기 위해서는 발단 서열에 있어서 5‘말단 기준 6번 위치의 염기가 중요하며, 이 6번 위치에 염기 배열의 배열 세기에 따라 비정규 핵융기 결합이 일어나는 정도가 달라질 수 있음에 주목하여, 6번 위치의 염기 배열 세기를 줄일 목적으로, 다음과 같은 실험을 진행하였다. 즉, miR-124의 6번 뉴클레오티드의 리보실 링의 2’위치에 메틸기 (2’ OMe) 를 넣어 변형하고, 변형된 간섭 유도 핵산 (miR-124-6me)이 miR-124의 비정규 핵융기 타겟 저해 기능이 있는지를 루시퍼라제 리포터 실험으로 관찰하였다. 2'OMe 변형된 miR-124는 합성(바이오니아 사)을 통해 제조하였고, 이전 실시예 2에서 수행한 방법과 동일한 방법으로 루시퍼라제 리포터 실험을 진행하고 유전자 억제 효율을 IC50로 측정하였다 (도 22a). 이 때 사용한 루시퍼라제 리포터 벡터는 miR-124의 정규 발단 싸이트 (Luc-seed)와 비정규 핵융기 싸이트 (Luc-nucleation bulge)에 대한 것을 사용하였다.In the above embodiment, the non-normal fusion target shows a new biological function completely different from the normal initiation target, and therefore, miRNA-BS, an RNA interference-inducing nucleic acid that regulates only the inhibition of the expression of the non-normal fusion target, was invented, and its function was confirmed. I did. However, in the case of miRNA-BS, the starting sequence was changed to complementarily align the existing miRNA's irregular nucleus site, but it was confirmed that a new nucleus site was created again through the changed starting sequence. Therefore, it was found that RNA interference-inducing nucleic acids such as miRNA-BS need a technique that recognizes only the canonical initiation sequence and not the irregular nucleus site. Accordingly, the present inventors believe that the base at position 6 based on the 5'end in the starting sequence is important in order to perform irregular nucleus bonding, and the degree of occurrence of irregular nucleus bonding varies depending on the alignment strength of the base sequence at this 6 position. In order to reduce the nucleotide sequence intensity at position 6, the following experiment was conducted. In other words, a methyl group (2' OMe) was added to the 2'position of the ribosyl ring of nucleotide 6 of miR-124 and modified, and the modified interference-inducing nucleic acid (miR-124-6me) was a non-normal nucleus target of miR-124. Whether there was an inhibitory function was observed by the luciferase reporter experiment. 2'OMe-modified miR-124 was prepared through synthesis (Bionia Corporation), and a luciferase reporter experiment was conducted in the same manner as in the previous Example 2, and gene suppression efficiency was measured by IC 50 (FIG. 22A ). The luciferase reporter vector used at this time was used for the normal initiation site (Luc-seed) of miR-124 and the non-normal nucleation site (Luc-nucleation bulge).

그 결과, 실시예 2에서 보였던 miR-124에 의한 비정규 융기 표적 유전자 저해 효과가 사라졌으며, 반면에 정규 발단 싸이트를 통한 유전자 발현 억제는 IC50 값이 0.3 nM로 2‘OMe를 6번째 뉴크레오티드에 가하더라도 여전히 우수한 억제 효과를 보이는 것으로 관찰되었다 (도 22a). 추가적으로 동일한 방법으로 miR-124가 아닌 다른 마이크로RNA인 miR-1의 6번째 뉴크레오티드에 2'OMe를 적용하고 (miR-1-6me), 이를 miR-1의 정규 발단 싸이트(Luc-seed)와 비정규 핵융기 싸이트 (Luc-nucleation bulge)를 포함한 루시퍼라제 벡터로 표적에 대한 유전자 발현 저해 효과를 살펴보았을 때 (도 22b), 이전 miR-124에서의 결과와 동일하게 miR-1에 의한 비정규 융기 표적 유전자 저해 효과가 사라졌으며, 반면에 정규 발단 싸이트를 통한유전자 발현 억제는 IC50 값이 0.7nM로 우수하다는 것을 확인할 수 있었다. 상기의 실시예를 통해, RNA 간섭을 유도하는 핵산의 5‘말단 기준 6번째에 2’OMe 변형을 가하게 되면, 해당 RNA 간섭 유도 핵산에 의해서 유도되는 정규 발단 표적 유전자의 발현 억제 효과는 유지되면서, 비정규 핵융기 표적 유전자의 발현 억제는 사라지는 것을 확인 할 수 있었다.As a result, the inhibitory effect of miR-124 on the target gene for irregular elevation as seen in Example 2 disappeared, whereas the suppression of gene expression through the normal initiation site had an IC 50 value of 0.3 nM, and 2'OMe was the 6th nucleotide. Even when added to was observed to still exhibit an excellent inhibitory effect (Fig. 22a). Additionally, in the same way, 2'OMe was applied to the 6th nucleotide of miR-1, a microRNA other than miR-124 (miR-1-6me), and this was the normal starting site of miR-1 (Luc-seed). When examining the effect of inhibiting gene expression on the target with a luciferase vector including a Luc-nucleation bulge (FIG. 22b), irregular bulge by miR-1 as the result of previous miR-124 The target gene inhibitory effect disappeared, whereas the gene expression suppression through the normal initiation site was confirmed to have an excellent IC 50 value of 0.7 nM. Through the above example, when the 2'OMe modification is applied to the 6th 5'end of the nucleic acid that induces RNA interference, the effect of inhibiting the expression of the target gene for normal initiation induced by the corresponding RNA interference-inducing nucleic acid is maintained, It was confirmed that the suppression of the expression of the target gene for abnormal nuclear fusion disappears.

[[ 실시예Example 23] 523] 5 ‘말단 기준 6번째에 2‘‘2 at the end of the 6th’ OMeOMe 변형이 Transformation 전사체에서In the transcript 전체 비정규 핵융기 표적 All irregular nuclear fusion targets mRNA를mRNA 억제하지 못하는 것을 RNA- RNA- SeqSeq 분석으로 확인 Confirmed by analysis

상기 실시예 22에서 miR-1의 6번째 뉴크레오티드에 2'OM 변형을 가하게 되면 (miR-1-6me) 정규 발단 표적 유전자의 발현 억제 효과는 유지되면서, 비정규 핵융기 표적 유전자의 발현 억제는 감소되는 것을 확인하였다. 따라서, 본 발명자들이 발명한 miR-1-6me가 실제로 miR-1 기능에 관련된 모든 유전자가 발현되어 있는 심근세포주인 h9c2의 전사체에서 miR-1의 비정규 융기 표적 유전자의 억제 기능이 감소하였는 지를 확인하기 위하여, miR-1과 miR-1-6me를 h9c2 세포에 도입한 후에 RNA-Seq 분석을 시행하였다. RNA-Seq 실험은 실험 대조군으로 예쁜 꼬마선충(C.elegans)의 마이크로RNA인 cel-miR-67의 서열에서 5' 말단 기준 6번을 비염기로 변환한 것 (NT-6pi)를 사용하여 실시예 7에서와 같은 동일한 방법으로 실험을 수행하였다. 이때 RNA-Seq 라이브러리는 Lexogen사의 SENSE Total RNA-Seq Library Kit를 사용하여 제작하였으며, 이 후 Illumina사의 MiniSeq을 사용하여 시퀀싱하였다.In Example 22, when a 2'OM modification was applied to the 6th nucleotide of miR-1 (miR-1-6me), the effect of inhibiting the expression of the target gene for normal initiation was maintained, while the suppression of the expression of the target gene for the irregular nucleus was It was confirmed that it decreased. Therefore, it was confirmed that miR-1-6me invented by the present inventors actually reduced the inhibitory function of the non-normal elevation target gene of miR-1 in the transcript of h9c2, a cardiomyocyte cell line in which all genes related to miR-1 function were expressed. To do this, RNA-Seq analysis was performed after introducing miR-1 and miR-1-6me into h9c2 cells. The RNA-Seq experiment was performed using a non-base 6 of the 5'end in the sequence of cel-miR-67, a microRNA of C.elegans, as an experimental control (NT-6pi). The experiment was carried out in the same manner as in 7. At this time, the RNA-Seq library was prepared using Lexogen's SENSE Total RNA-Seq Library Kit, and then sequenced using Illumina's MiniSeq.

이 후, 상기 실험으로 얻어진 서열 데이터인 FASTAQ 파일을 TopHat2 프로그램으로 생쥐 유전체 서열 (rn6)에 맵핑하고, Cufflink, Cuffdiff 프로그램으로 발현값 (FPKM)을 구하여, 대조군 NT-6pi를 도입한 h9c2 세포에서의 결과로 표준화하여 로그비 (Fold change, log2 ratio)로 나타내어 분석을 실시하였다. 이때, 마이크로RNA의 표적 싸이트를 가지고 있는 유전자의 전령RNA의 양이 해당 마이크로RNA의 발현으로 저해되는 지를 RNA-Seq 결과에서 분석하기 위해서 miR-1의 정규 발단 싸이트 (5'말단 기준 2번째에서부터 8번째까지와 염기 배열하는 7mer)를 3'UTR에 가지고 있는 유전자를 선별하였고, 이러한 프로파일 결과를 해당 마이크로RNA의 발현에 의존적으로 저해되는 순서대로 누적비율 (cumulative fraction)로 비교 분석하였다 (도 23a). 그 결과 miR-1과 miR-1-6me 모두 miR-1의 정규 발단 싸이트를 3‘UTR에 가지고 있는 유전자(seed)를 전체 유전자(Total mRNA)의 분포에 비해 매우 잘 억제할 수 있음을 확인하였다. 이 후, 동일한 방법으로 miR-1의 비정규 융기 싸이트(nuc, 7mer)를 3'UTR에 가지고 있는 유전자에 대해서도 누적비율로 분석하여, miR-1-6me에 의해 miR-1의 비정규 핵융기 표적 유전자의 발현 저해가 감소되었는지를 miR-1이 도입된 세포와 miR-1-6me가 도입된 세포 안에서의 해당 표적 mRNA의 양을 상대적으로 비교해보았다 (도23b). 그 결과, miR-1에서는 miR-1-6me에서의 발현과 비교했을 때 전체 유전자 (Total mRNA)에 비해 유의하게 상대적으로 비정규 핵융기 표적 유전자가 여전히 저해되는 것을 관찰하였고, 이것을 통해 miR-1-6me에서 해당 비정규 핵융기 표적 유전자의 발현 억제가 감소됨을 확인할 수 있었다.Thereafter, the FASTAQ file, which is the sequence data obtained by the above experiment, was mapped to the mouse genome sequence (rn6) with the TopHat2 program, and the expression value (FPKM) was obtained with the Cufflink and Cuffdiff programs, and the control NT-6pi was introduced in h9c2 cells. The results were standardized and expressed as a log ratio (Fold change, log2 ratio) for analysis. At this time, in order to analyze from the RNA-Seq results whether the amount of messenger RNA of the gene carrying the microRNA target site is inhibited by the expression of the corresponding microRNA, the normal starting site of miR-1 (from the 2nd to 8th based on the 5'end) A gene having a 3'UTR) was selected and the result of this profile was compared and analyzed as a cumulative fraction in the order of inhibition dependent on the expression of the corresponding microRNA (Fig. 23a). . As a result, it was confirmed that both miR-1 and miR-1-6me can suppress the gene (seed) having the normal starting site of miR-1 in 3'UTR compared to the distribution of the total gene (Total mRNA). . After that, by the same method, the gene that has an irregular ridge of miR-1 (nuc, 7mer) in the 3'UTR was also analyzed at the cumulative ratio, and the target gene of the miracle of miR-1 by miR-1-6me The amount of the corresponding target mRNA in the cells to which miR-1 was introduced and the cells to which miR-1-6me was introduced was compared to see if the inhibition of expression of was decreased (Fig. 23b). As a result, it was observed that in miR-1, when compared to the expression in miR-1-6me, the non-normal nucleus target gene was still significantly inhibited compared to the total mRNA, through which miR-1- In 6me, it was confirmed that the inhibition of the expression of the non-normal nucleus target gene was reduced.

상기의 실시예의 결과로 미루어 볼 때, 전사체 수준에서 기존의 마이크로RNA는 기존의 정규 발단 표적 유전자와 함께 비정규 융기 표적 유전자를 함께 효율적으로 억제하지만, 6번째 뉴크레오티드에 2'OMe 변형을 가한 마이크로RNA (miRNA-6me)는 여전히 정규 발단 표적 유전자를 억제하지만, 비정규 융기 표적 유전자는 억제하지 못한다는 것을 알 수 있었다. 따라서, 5‘말단 기준 6번째에 가하는 2'OMe 변형은 miRNA-BS에 적용하여 해당 miRNA의 비정규 핵융기 싸이트만을 특이적으로 억제하려는 본래의 의도는 유지하면서, 새롭게 나타날 수 있는 비정규 핵융기 결합은 완전히 제거함으로써 그 부작용을 최소화 할 수 있다.Judging from the results of the above examples, at the transcript level, the existing microRNA efficiently suppresses the non-normal elevation target gene together with the existing normal initiation target gene, but a 2'OMe modification was added to the 6th nucleotide. It was found that microRNA (miRNA-6me) still suppressed the normal initiating target gene, but not the irregular raised target gene. Therefore, the 2'OMe modification applied to the 6th of the 5'end is applied to miRNA-BS, maintaining the original intention to specifically suppress only the irregular nucleus site of the corresponding miRNA, while the newly appearing irregular nucleus binding is not By completely removing it, you can minimize its side effects.

[[ 실시예Example 24] Ago24] Ago HITS CLIP 실험 분석을 통해 비정규 Irregular through HITS CLIP experiment analysis 핵융기Nuclear proliferation 싸이트에On site 결합하는 Combined 마이크로RNA의MicroRNA 동정 Sympathy

마이크로RNA가 비정규 핵융기 싸이트만을 인식하여 억제할 수 있게 만든 발명이 적용될 수 있는 마이크로RNA를 동정하기 위해서, 마이크로RNA의 표적을 전사체 수준에서 분석할 수 있는 방법인 Ago HITS CLIP 실험 결과를 분석하여, 비정규 핵융기 싸이트에 결합하는 마이크로RNA를 분석하였다. 우선 태어난지 13일이 지난 마우스(p13)의 대뇌 피질에서 수행한 Ago HITS-CLIP 데이터를 실시예 10에서의 방법과 동일하게 서열 분석하여, 우선은 아고너트와 함께 결합하는 발현 상위 20개의 마이크로RNA가 표적 mRNA와 비정규 핵융기 싸이트와 결합한다는 사실을 확인하였다(도 24a). 따라서, 해당 마이크로RNA(도 24b)는 발단부분의 염기서열을 통한 표적 mRNA를 인식할 때, 발단 부분을 통한 정규적인 염기배열뿐만 아니라 비정규적으로 핵융기 싸이트를 통해서 표적 mRNA와 결합할 수 있다는 것을 알 수 있었다. In order to identify microRNAs that can be applied to the invention that allows microRNAs to recognize and suppress only irregular nucleus sites, we analyzed the results of Ago HITS CLIP, a method that can analyze the target of microRNA at the transcript level. , MicroRNA that binds to the irregular nucleus site was analyzed. First of all, Ago HITS-CLIP data performed in the cerebral cortex of a mouse (p13) 13 days after birth was sequenced in the same manner as in Example 10. First, the top 20 microRNAs of expression that bind together with Agonut were It was confirmed that it binds to the target mRNA and the irregular nucleus site (FIG. 24A). Therefore, when recognizing the target mRNA through the nucleotide sequence of the starting part, the corresponding microRNA (FIG. 24B) can bind to the target mRNA through the nucleus site irregularly as well as the regular nucleotide sequence through the starting part. Could know.

상기 실시예의 마우스 Ago HITS-CLIP 데이터 분석에서 확장하여, 인간의 뇌와 심장 조직에서 수행한 다른 Ago HITS-CLIP 결과 (boudreau RL et al, 2014, Neuron, 81(2) 294-305, Spengler RM et al, 2016, Nucleic Acids Res, 44(15) 7120-7131)를 위의 실시예와 동일한 방법으로 분석하고, Ago와 해당 마이크로RNA가 결합하는 정규 발단 싸이트 및 비정규 핵융기 싸이트의 빈도수를 계산하였다 (인간 뇌 마이크로RNA, 표 1; 인간 심장 마이크로RNA, 표 2).Expanding on the mouse Ago HITS-CLIP data analysis of the above example, other Ago HITS-CLIP results performed on human brain and heart tissues (boudreau RL et al, 2014, Neuron, 81(2) 294-305, Spengler RM et al, 2016, Nucleic Acids Res, 44(15) 7120-7131) was analyzed in the same manner as in the above example, and the frequency of the normal initiation site and the irregular nucleus site to which Ago and the corresponding microRNA are bound was calculated ( Human brain microRNA, Table 1; Human heart microRNA, Table 2).

Figure 112019056051922-pat00001
Figure 112019056051922-pat00001

Figure 112019056051922-pat00002
Figure 112019056051922-pat00002

Figure 112019056051922-pat00003
Figure 112019056051922-pat00003

Figure 112019056051922-pat00004
Figure 112019056051922-pat00004

Figure 112019056051922-pat00005
Figure 112019056051922-pat00005

Figure 112019056051922-pat00006
Figure 112019056051922-pat00006

Figure 112019056051922-pat00007
Figure 112019056051922-pat00007

Figure 112019056051922-pat00008
Figure 112019056051922-pat00008

Figure 112019056051922-pat00009
Figure 112019056051922-pat00009

Figure 112019056051922-pat00010
Figure 112019056051922-pat00010

Figure 112019056051922-pat00011
Figure 112019056051922-pat00011

Figure 112019056051922-pat00012
Figure 112019056051922-pat00012

Figure 112019056051922-pat00013
Figure 112019056051922-pat00013

Figure 112019056051922-pat00014
Figure 112019056051922-pat00014

Figure 112019056051922-pat00015
Figure 112019056051922-pat00015

Figure 112019056051922-pat00016
Figure 112019056051922-pat00016

Figure 112019056051922-pat00017
Figure 112019056051922-pat00017

Figure 112019056051922-pat00018
Figure 112019056051922-pat00018

그 결과 해당 결과 표에 기술되어 있는 마이크로RNA (표 1 내지 2)가 해당 조직에서 비정규 핵융기 싸이트와 결합하고 있다는 사실을 확인할 수 있었다. 따라서, 상기 실시예에서 Ago HITS-CLIP을 분석한 모든 데이터를 종합하여 발굴된 마이크로RNA에 대해서, 비정규 핵융기 싸이트를 정규 발단 싸이트로 인식하도록 변형시키는 본 발명을 적용하게 되면, 하기 표 3에 나와 있는 것과 같이 총 426개의 서열(BS sequence)로 RNA 간섭 핵산의 5'말단 기준 2번째부터 7번째까지의 뉴크레오티드가 구성되게 되고, 이렇게 변형된 RNA 간섭 핵산은 해당 마이크로RNA의 비정규 융기 표적만을 결합하고 해당 기능만을 나타내게 될 것이다.As a result, it was confirmed that the microRNAs (Tables 1 to 2) described in the corresponding result table were bound to the irregular nucleus site in the tissue. Therefore, when applying the present invention to modify the microRNA discovered by synthesizing all the data analyzed for Ago HITS-CLIP in the above example to recognize an irregular nucleus site as a regular initiation site, it is shown in Table 3 below. As shown, a total of 426 sequences (BS sequences) are composed of nucleotides from the 2nd to the 7th based on the 5'end of the RNA interfering nucleic acid, and the modified RNA interfering nucleic acid is only the irregular raised target of the corresponding microRNA. Will combine and show only those functions.

Figure 112019056051922-pat00019
Figure 112019056051922-pat00019

Figure 112019056051922-pat00020
Figure 112019056051922-pat00020

Figure 112019056051922-pat00021
Figure 112019056051922-pat00021

Figure 112019056051922-pat00022
Figure 112019056051922-pat00022

Figure 112019056051922-pat00023
Figure 112019056051922-pat00023

Figure 112019056051922-pat00024
Figure 112019056051922-pat00024

Figure 112019056051922-pat00025
Figure 112019056051922-pat00025

Figure 112019056051922-pat00026
Figure 112019056051922-pat00026

상기의 실시예의 Ago HITS-CLIP 실험 시퀀싱 분석을 통해, 여러 조직 세포에서 비정규 융기 표적에 결합하는 마이크로RNA를 동정하였고, 이에 비정규 핵융기 싸이트를 정규 발단 싸이트로 인식하도록 변형시키는 본 발명을 적용하게 되면 총 426개의 서열(BS sequence)이 만들어지게 되고, 이에 따라 마이크로RNA의 비정규 표적 억제 기능만을 나타내는 기술을 완성하였다.Through the Ago HITS-CLIP experimental sequencing analysis of the above examples, microRNAs that bind to irregular raised targets in various tissue cells were identified, and accordingly, when applying the present invention to modify the irregular nucleus site to be recognized as a normal starting site. A total of 426 sequences (BS sequences) were created, and accordingly, a technique was completed that shows only the function of inhibiting non-normal targets of microRNA.

[[ 실시예Example 25] 암환자25] Cancer patients 마이크로RNAMicroRNA 시퀀싱 데이터베이스( Sequencing database ( TCGATCGA )에서 서열 변이를 분석하고, 이를 통해 비정규 ) To analyze the sequence variation, and through this G:AG:A 워블Wobble 발단 배열 Starting arrangement 싸이트에On site 결합하는 Combined 마이크로RNA의MicroRNA 동정 Sympathy

상기의 실시예를 통하여 마이크로RNA가 비정규적으로 G:A 워블 싸이트와 결합하여 표적 유전자 발현을 저해한다는 사실을 확인하였고, 이를 통해 본 발명에서 비정규 G:A 워블 싸이트를 정규 발단 싸이트로 인식하도록 서열을 변형하는 마이크로RNA 서열 변환 방식(miRNA-BS)을 개발하였다. 이렇게 기존의 마이크로RNA 발단 서열에 있는 G를 통해서 워블 배열로 표적 mRNA의 A와 결합하는 것이 마이크로RNA의 기능을 바꾼다면, 이러한 기작이 종양과 같은 질병에서 마이크로RNA의 서열 변이를 통해 나타날 수 있다는 생각에서 암환자의 조직에서 마이크로RNA를 시퀀싱한 결과(miRNA-Seq)를 분석하였다. 이때, 암환자 마이크로RNA 서열 실험 관련 TCGA 데이터베이스에서 8105개를 얻고, 추가로 Gene Expression Omnibus (GEO) 데이터베이스에서 암 관련 마이크로RNA 서열 결과 468개를 얻어, 총 8,573개의 종양 마이크로RNA 서열 결과를 실시예 10에서 사용한 방법과 동일하게 bowtie2 프로그램을 통해 맵핑하고 변이가 일어난 곳을 분석하였다. 이때의 각 암 종류별로 분석에 사용된 마이크로RNA 서열 데이터는 도 25a에 나와 있는 것과 같다.Through the above examples, it was confirmed that the microRNA inhibited the expression of the target gene by irregularly binding to the G:A wobble site, and through this, the sequence to recognize the irregular G:A wobble site as a regular initiating site in the present invention. A microRNA sequence conversion method (miRNA-BS) was developed to modify. In this way, if binding to A of target mRNA through wobble arrangement through G in the existing microRNA initiating sequence changes the function of microRNA, this mechanism can be seen through sequence mutation of microRNA in diseases such as tumors. The results of sequencing microRNAs in the tissues of cancer patients (miRNA-Seq) were analyzed. At this time, 8105 cancer-related microRNA sequence experiments were obtained from the TCGA database, and 468 cancer-related microRNA sequence results were additionally obtained from the Gene Expression Omnibus (GEO) database, and a total of 8,573 tumor microRNA sequence results were obtained in Example 10. In the same way as in the method used in, the mapping through the bowtie2 program and the place where the mutation occurred was analyzed. The microRNA sequence data used in the analysis for each cancer type at this time is as shown in FIG. 25A.

해당 결과에서 변이가 일어난 빈도(fraction)를 마이크로RNA 5'말단 기준 위치(position)별로 구분하여 가장 많이 일어난 변이 10,000개(top 10000)와 가정 적게 일어난 변이 10,000개(bottom 10000)의 분포를 살펴본 결과 (도 25b), 가장 많이 일어난 변이 10,000개의 경우에는 마이크로RNA의 발단 부분 (2번째부터 8번째사이)에 주로 일어난다는 점을 관찰할 수 있었다. 또한 가장 많이 일어난 변이 100개와 가장 적게 일어난 변이 100개를 heatmap 상에서 살펴보았을 때도 (도 25c) 상기에서 실시예와 동일하게 변이가 발단 지역에 몰려 있음을 알 수 있었다. 이렇게 발단 부분에서 나타나는 경향성을 보이는 종양 마이크로RNA의 서열 변이는 이를 역전사시켜 DNA로 서열 분석한 해당 결과에서 염기 구성으로 각각 A, T, C, G로 구분해서 살펴보았을 때 오로지 G만이 발단 서열에서 형성되는 경향성을 보였다 (도 25d). 이러한 경향성은 상위 변이율 100개에 대해서뿐만 아니라, 이를 넘어서서 변이가 일어나는 모든 경우에 G에서 주로 변이가 일어나는 것임을 다시 확인할 수 있었다 (도 25e). In the result, the frequency (fraction) of mutations was classified by the position of the 5'end of the microRNA, and the distribution of the most frequent mutations (top 10000) and the hypothesized mutations (bottom 10000) was examined. (FIG. 25B), it could be observed that in the case of 10,000 mutations that occur most often, they mainly occur at the beginning of the microRNA (between the 2nd and 8th). In addition, when looking at the most frequently occurring mutations 100 and the least occurring mutations 100 on the heatmap (FIG. 25C), it was found that the mutations were concentrated in the initiating region in the same manner as in the Example. The sequence mutations of tumor microRNAs that show a tendency to appear at the beginning are reverse-transcribed and sequenced with DNA.When looking at the results of sequencing as A, T, C, and G, only G is formed in the starting sequence. Showed a tendency to become (FIG. 25D). This tendency was confirmed again that the mutation mainly occurs in G not only for the top 100 mutation rates, but also in all cases where mutation occurs beyond this (FIG. 25E).

이는 본 발명자가 주목한 비정규 G:A 워블을 인식하는 마이크로RNA의 G가 반대편 표적 mRNA의 A를 더 잘 결합하기 위해서 U로 변이 되어 나타나는 현상일 수 있어, 실제로 상위 변이율로 나타나는 G에 일어나는 변이에서 어떤 염기로 바뀌었는지를 분석해본 결과 (도 25f), 대부분이 역전사시켜 DNA로 서열 분석한 해당 결과에서 G에서 T로 바뀐 것임을 관찰하였다. 이러한 결과는 마이크로RNA가 실제로 암조직에서는 발단 부분에 존재하는 G가 비정규 G:A 워블 발단 표적을 보다 더 잘 정규 발단으로 인식하기 위해, 자신의 G를 U로 바꿔 표적의 A랑 염기배열한다는 것을 의미하고, 따라서 이러한 방식의 변이는 본 발명에서 개발한 비정규 G:A 워블 발단 서열을 정규 발단 서열로 인식하게 만드는 서열 결정 방식을 어떠한 마이크로RNA의 어떤 위치의 G에 적용해야 하는지를 알려준다. 따라서 이러한 결과를 모두 종합하여, 암 환자당 정규화 변이 빈도수가 2이상인 마이크로RNA를 선정하였다 (표 4 참조). 표 4에 나와 있는 것과 같이 총 335개의 서열(sequence (G>U))로 RNA 간섭 핵산의 5'말단 기준 2번째부터 뉴크레오티드가 구성되게 되고, 이렇게 변형된 RNA 간섭 핵산은 해당 마이크로RNA의 비정규 G:A 워블 융기 표적만을 결합하고 해당 기능만을 나타내게 될 것이다.This may be a phenomenon in which the G of the microRNA that recognizes the irregular G:A wobble that the present inventors noted is mutated to U in order to better bind the A of the target mRNA on the other side. As a result of analyzing which base was changed in (FIG. 25F), it was observed that most of them were reverse-transcribed and sequenced with DNA, indicating that G was changed from G to T. These results show that in cancer tissues, in fact, in order to better recognize the non-regular G:A wobble initiating target as a normal initiation, the G present in the initiation part of the microRNA changes its G to U and nucleotide sequence with the target A. It means, and therefore, this variant of the method tells us how to apply the sequencing method to recognize the irregular G:A wobble initiating sequence developed in the present invention as a canonical initiating sequence to which position G of which microRNA. Therefore, by combining all of these results, microRNAs with a normalized mutation frequency of 2 or more per cancer patient were selected (see Table 4). As shown in Table 4, a total of 335 sequences (sequence (G>U)) consist of nucleotides from the 2nd reference to the 5'end of the RNA interference nucleic acid, and the modified RNA interference nucleic acid Only irregular G:A wobble elevation targets will be bound and will exhibit only that function.

Figure 112019056051922-pat00027
Figure 112019056051922-pat00027

Figure 112019056051922-pat00028
Figure 112019056051922-pat00028

Figure 112019056051922-pat00029
Figure 112019056051922-pat00029

Figure 112019056051922-pat00030
Figure 112019056051922-pat00030

Figure 112019056051922-pat00031
Figure 112019056051922-pat00031

Figure 112019056051922-pat00032
Figure 112019056051922-pat00032

Figure 112019056051922-pat00033
Figure 112019056051922-pat00033

상기 실시예의 마이크로RNA 시퀀싱 변이 분석을 통해, 여러 암 환자에서 비정규 G:A 워블 발단 표적을 정규 표적으로 인식하는 변이 마이크로RNA를 동정하였고, 이에 비정규 G:A 워블 발단 싸이트를 정규 발단 싸이트로 인식하도록 변형시키는 본 발명(miRNA-GU)를 적용하게 되면 총 335개의 서열(sequence (G>U))이 만들어지게 되고 (표 4), 이에 따라 마이크로RNA의 비정규 표적 억제 기능만을 나타내는 기술을 완성하였다.Through the microRNA sequencing mutation analysis of the above example, a mutant microRNA that recognizes an irregular G:A wobble initiating target as a regular target in several cancer patients was identified, and thus to recognize an irregular G:A wobble initiating site as a regular initiation site. When applying the present invention (miRNA-GU) to modify, a total of 335 sequences (sequence (G>U)) were created (Table 4), and accordingly, a technique was completed showing only the function of inhibiting non-normal targets of microRNA.

<110> Korea University <120> RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof <130> MP19-147 <160> 863 <170> KoPatentIn 3.0 <210> 1 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5' 2~7 of miR-124-BS <400> 1 aaggcc 6 <210> 2 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5' 2~7 of miR-122-BS <400> 2 aaggcc 6 <210> 3 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5' 2~7 of miR-155-BS <400> 3 uaaugg 6 <210> 4 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5' 2~7 of miR-1-BS <400> 4 ggaauu 6 <210> 5 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-124-BS <400> 5 uaaggccacg cggugaaugc c 21 <210> 6 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-122-BS <400> 6 uggaguugug acaauggugu u 21 <210> 7 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-155-BS <400> 7 uuaaugggcu aaucgugaua gg 22 <210> 8 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-1-BS <400> 8 uggaauugua aagaaguaug u 21 <210> 9 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-124-G4U <400> 9 uaaugcacg 9 <210> 10 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-124-G5U <400> 10 uaagucacg 9 <210> 11 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-124-G4,5U <400> 11 uaauucacg 9 <210> 12 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G2U <400> 12 uugaaugua 9 <210> 13 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G3U <400> 13 uguaaugua 9 <210> 14 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G7U <400> 14 uggaauuua 9 <210> 15 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G2,3U <400> 15 uuuaaugua 9 <210> 16 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G3,7U <400> 16 uguaauuua 9 <210> 17 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G2,7U <400> 17 uugaauuua 9 <210> 18 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-1-G2,3,7U <400> 18 uuuaauuua 9 <210> 19 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G2U <400> 19 uugagugug 9 <210> 20 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G3U <400> 20 uguagugug 9 <210> 21 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G5U <400> 21 uggauugug 9 <210> 22 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G7U <400> 22 uggaguuug 9 <210> 23 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G9U <400> 23 uggaguguu 9 <210> 24 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G2,3U <400> 24 uuuagugug 9 <210> 25 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G2,5U <400> 25 uugauugug 9 <210> 26 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G2,7U <400> 26 uugaguuug 9 <210> 27 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G2,9U <400> 27 uugaguguu 9 <210> 28 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G3,5U <400> 28 uguauugug 9 <210> 29 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G3,7U <400> 29 uguaguuug 9 <210> 30 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G3,9U <400> 30 uguaguguu 9 <210> 31 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G5,7U <400> 31 uggauuuug 9 <210> 32 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G5,9U <400> 32 uggauuguu 9 <210> 33 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-122-G7,9U <400> 33 uggaguuuu 9 <210> 34 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-133-G4U <400> 34 uuuuguccc 9 <210> 35 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-133-G5U <400> 35 uuuguuccc 9 <210> 36 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-124-G4,5U <400> 36 uuuuuuccc 9 <210> 37 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G2U <400> 37 uuagguagu 9 <210> 38 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G4U <400> 38 ugauguagu 9 <210> 39 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G5U <400> 39 ugaguuagu 9 <210> 40 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G8U <400> 40 ugagguauu 9 <210> 41 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G2,4U <400> 41 uuauguagu 9 <210> 42 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G2,5U <400> 42 uuaguuagu 9 <210> 43 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G2,8U <400> 43 uuagguauu 9 <210> 44 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G4,5U <400> 44 ugauuuagu 9 <210> 45 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G4,8U <400> 45 ugauguauu 9 <210> 46 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of let-7-G5,8U <400> 46 ugaguuauu 9 <210> 47 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-302a-G4U <400> 47 uaauugcuu 9 <210> 48 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-302a-G6U <400> 48 uaaguucuu 9 <210> 49 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-302a-G4,6U <400> 49 uaauuucuu 9 <210> 50 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-372-G4U <400> 50 aaauugcug 9 <210> 51 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-372-G6U <400> 51 aaaguucug 9 <210> 52 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-372-G9U <400> 52 aaagugcuu 9 <210> 53 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-372-G4,6U <400> 53 aaauuucug 9 <210> 54 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-372-G4,9U <400> 54 aaauugcuu 9 <210> 55 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5' 1~9 of miR-372-G6,9U <400> 55 aaaguucuu 9 <210> 56 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G4U <400> 56 uaaugcacgc ggugaaugcc aa 22 <210> 57 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G5U <400> 57 uaagucacgc ggugaaugcc a 21 <210> 58 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G4,5U <400> 58 uaauucacgc ggugaaugcc aa 22 <210> 59 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2U <400> 59 uugaauguaa agaaguaugu au 22 <210> 60 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G3U <400> 60 uguaauguaa agaaguaugu au 22 <210> 61 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G7U <400> 61 uggaauuuaa agaaguaugu au 22 <210> 62 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2,3U <400> 62 uuuaauguaa agaaguaugu au 22 <210> 63 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G3,7U <400> 63 uguaauuuaa agaaguaugu au 22 <210> 64 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2,7U <400> 64 uugaauuuaa agaaguaugu au 22 <210> 65 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2,3,7U <400> 65 uuuaauuuaa agaaguaugu au 22 <210> 66 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2U <400> 66 uugaguguga caaugguguu ug 22 <210> 67 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3U <400> 67 uguaguguga caaugguguu ug 22 <210> 68 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G5U <400> 68 uggauuguga caaugguguu ug 22 <210> 69 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G7U <400> 69 uggaguuuga caaugguguu ug 22 <210> 70 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G9U <400> 70 uggaguguua caaugguguu ug 22 <210> 71 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,3U <400> 71 uuuaguguga caaugguguu ug 22 <210> 72 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,5U <400> 72 uugauuguga caaugguguu ug 22 <210> 73 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,7U <400> 73 uugaguuuga caaugguguu ug 22 <210> 74 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,9U <400> 74 uugaguguua caaugguguu ug 22 <210> 75 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3,5U <400> 75 uguauuguga caaugguguu ug 22 <210> 76 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3,7U <400> 76 uguaguuuga caaugguguu ug 22 <210> 77 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3,9U <400> 77 uguaguguua caaugguguu ug 22 <210> 78 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G5,7U <400> 78 uggauuuuga caaugguguu ug 22 <210> 79 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G5,9U <400> 79 uggauuguua caaugguguu ug 22 <210> 80 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G7,9U <400> 80 uggaguuuua caaugguguu ug 22 <210> 81 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-133-G4U <400> 81 uuuugucccc uucaaccagc ug 22 <210> 82 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-133-G5U <400> 82 uuuguucccc uucaaccagc ug 22 <210> 83 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G4,5U <400> 83 uuuuuucccc uucaaccagc ug 22 <210> 84 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2U <400> 84 uuagguagua gguuguauag uu 22 <210> 85 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G4U <400> 85 ugauguagua gguuguauag uu 22 <210> 86 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G5U <400> 86 ugaguuagua gguuguauag uu 22 <210> 87 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G8U <400> 87 ugagguauua gguuguauag uu 22 <210> 88 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2,4U <400> 88 uuauguagua gguuguauag uu 22 <210> 89 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2,5U <400> 89 uuaguuagua gguuguauag uu 22 <210> 90 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2,8U <400> 90 uuagguauua gguuguauag uu 22 <210> 91 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G4,5U <400> 91 ugauuuagua gguuguauag uu 22 <210> 92 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G4,8U <400> 92 ugauguauua gguuguauag uu 22 <210> 93 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G5,8U <400> 93 ugaguuauua gguuguauag uu 22 <210> 94 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-302a-G4U <400> 94 uaauugcuuc cauguuuugg uga 23 <210> 95 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-302a-G6U <400> 95 uaaguucuuc cauguuuugg uga 23 <210> 96 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-302a-G4,6U <400> 96 uaauuucuuc cauguuuugg uga 23 <210> 97 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G4U <400> 97 aaauugcugc gacauuugag cgu 23 <210> 98 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G6U <400> 98 aaaguucugc gacauuugag cgu 23 <210> 99 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G9U <400> 99 aaagugcuuc gacauuugag cgu 23 <210> 100 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G4,6U <400> 100 aaauuucugc gacauuugag cgu 23 <210> 101 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G4,9U <400> 101 aaauugcuuc gacauuugag cgu 23 <210> 102 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G6,9U <400> 102 aaaguucuuc gacauuugag cgu 23 <210> 103 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> let-7/98/4458/4500 BS seq <400> 103 gagguu 6 <210> 104 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-125a-5p/125b-5p/351/670/4319 BS seq <400> 104 cccugg 6 <210> 105 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-124/124ab/506 BS seq <400> 105 aaggcc 6 <210> 106 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-9/9ab BS seq <400> 106 cuuugg 6 <210> 107 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-29abcd BS seq <400> 107 agcacc 6 <210> 108 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-103a/107/107ab BS seq <400> 108 gcagcc 6 <210> 109 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-221/222/222ab/1928 BS seq <400> 109 gcuacc 6 <210> 110 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-26ab/1297/4465 BS seq <400> 110 ucaagg 6 <210> 111 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-15abc/16/16abc/195/322/424/497/1907 BS seq <400> 111 agcagg 6 <210> 112 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-126-3p BS seq <400> 112 cguacc 6 <210> 113 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-30abcdef/30abe-5p/384-5p BS seq <400> 113 guaaaa 6 <210> 114 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-33ab/33-5p BS seq <400> 114 ugcauu 6 <210> 115 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-34ac/34bc-5p/449abc/449c-5p BS seq <400> 115 ggcagg 6 <210> 116 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-19ab BS seq <400> 116 gugcaa 6 <210> 117 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-99ab/100 BS seq <400> 117 acccgg 6 <210> 118 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-17/17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519d BS seq <400> 118 aaaguu 6 <210> 119 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-27abc/27a-3p BS seq <400> 119 ucacaa 6 <210> 120 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-218/218a BS seq <400> 120 ugugcc 6 <210> 121 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-22/22-3p BS seq <400> 121 agcugg 6 <210> 122 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-185/882/3473/4306/4644 BS seq <400> 122 ggagaa 6 <210> 123 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-181abcd/4262 BS seq <400> 123 acauuu 6 <210> 124 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-338/338-3p BS seq <400> 124 ccagcc 6 <210> 125 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-127/127-3p BS seq <400> 125 cggauu 6 <210> 126 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-101/101ab BS seq <400> 126 acaguu 6 <210> 127 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-149 BS seq <400> 127 cuggcc 6 <210> 128 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-324-5p BS seq <400> 128 gcaucc 6 <210> 129 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-24/24ab/24-3p BS seq <400> 129 ggcucc 6 <210> 130 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-33a-3p/365/365-3p BS seq <400> 130 aaugcc 6 <210> 131 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-139-5p BS seq <400> 131 cuacaa 6 <210> 132 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-138/138ab BS seq <400> 132 gcuggg 6 <210> 133 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-143/1721/4770 BS seq <400> 133 gagauu 6 <210> 134 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-25/32/92abc/363/363-3p/367 BS seq <400> 134 auugcc 6 <210> 135 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-574-5p BS seq <400> 135 gagugg 6 <210> 136 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-7/7ab BS seq <400> 136 ggaagg 6 <210> 137 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-145 BS seq <400> 137 uccagg 6 <210> 138 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-135ab/135a-5p BS seq <400> 138 auggcc 6 <210> 139 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-148ab-3p/152 BS seq <400> 139 cagugg 6 <210> 140 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-28-5p/708/1407/1653/3139 BS seq <400> 140 aggagg 6 <210> 141 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-130ac/301ab/301b/301b-3p/454/721/4295/3666 BS seq <400> 141 agugcc 6 <210> 142 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3132 BS seq <400> 142 ggguaa 6 <210> 143 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-155 BS seq <400> 143 uaaugg 6 <210> 144 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-485-3p BS seq <400> 144 ucauaa 6 <210> 145 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-132/212/212-3p BS seq <400> 145 aacagg 6 <210> 146 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-3p BS seq <400> 146 uaaagg 6 <210> 147 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-374ab BS seq <400> 147 uauaaa 6 <210> 148 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-129-3p/129ab-3p/129-1-3p/129-2-3p BS seq <400> 148 agcccc 6 <210> 149 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-126-5p BS seq <400> 149 auuauu 6 <210> 150 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-425/425-5p/489 BS seq <400> 150 augacc 6 <210> 151 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-423-3p BS seq <400> 151 gcucgg 6 <210> 152 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-21/590-5p BS seq <400> 152 agcuuu 6 <210> 153 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-31 BS seq <400> 153 ggcaaa 6 <210> 154 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-20b-3p BS seq <400> 154 cuguaa 6 <210> 155 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7d-3p BS seq <400> 155 uauacc 6 <210> 156 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-191 BS seq <400> 156 aacggg 6 <210> 157 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-18ab/4735-3p BS seq <400> 157 aagguu 6 <210> 158 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-369-3p BS seq <400> 158 auaauu 6 <210> 159 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5187-5p BS seq <400> 159 gggauu 6 <210> 160 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-382 BS seq <400> 160 aaguuu 6 <210> 161 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-485-5p/1698/1703/1962 BS seq <400> 161 gaggcc 6 <210> 162 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-136-3p BS seq <400> 162 aucauu 6 <210> 163 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-576-3p BS seq <400> 163 agaugg 6 <210> 164 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-204/204b/211 BS seq <400> 164 ucccuu 6 <210> 165 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-769-5p BS seq <400> 165 gagacc 6 <210> 166 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-342-5p/4664-5p BS seq <400> 166 gggguu 6 <210> 167 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-361-5p BS seq <400> 167 uaucaa 6 <210> 168 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-199ab-3p/3129-5p BS seq <400> 168 caguaa 6 <210> 169 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-142-3p BS seq <400> 169 guaguu 6 <210> 170 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-299-5p/3563-5p BS seq <400> 170 gguuuu 6 <210> 171 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-193/193b/193a-3p BS seq <400> 171 acuggg 6 <210> 172 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1277-5p BS seq <400> 172 aauauu 6 <210> 173 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-140/140-5p/876-3p/1244 BS seq <400> 173 aguggg 6 <210> 174 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30a/d/e-3p BS seq <400> 174 uuucaa 6 <210> 175 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7i-3p BS seq <400> 175 ugcgcc 6 <210> 176 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-409-5p/409a BS seq <400> 176 gguuaa 6 <210> 177 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-379/1193-5p/3529 BS seq <400> 177 gguagg 6 <210> 178 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-136 BS seq <400> 178 cuccaa 6 <210> 179 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-154/872 BS seq <400> 179 agguuu 6 <210> 180 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4684-3p BS seq <400> 180 guugcc 6 <210> 181 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-361-3p BS seq <400> 181 cccccc 6 <210> 182 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-335/335-5p BS seq <400> 182 caagaa 6 <210> 183 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-423a/423-5p/3184/3573-5p BS seq <400> 183 gagggg 6 <210> 184 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-371/373/371b-5p BS seq <400> 184 cucaaa 6 <210> 185 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1185/3679-5p BS seq <400> 185 gaggaa 6 <210> 186 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3613-3p BS seq <400> 186 caaaaa 6 <210> 187 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-93/93a/105/106a/291a-3p/294/295/302abcde/372/373/428/519a/520 be/520acd-3p/1378/1420ac BS seq <400> 187 aagugg 6 <210> 188 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-876-5p/3167 BS seq <400> 188 ggauuu 6 <210> 189 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-329/329ab/362-3p BS seq <400> 189 acacaa 6 <210> 190 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-582-5p BS seq <400> 190 uacagg 6 <210> 191 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-146ac/146b-5p BS seq <400> 191 gagaaa 6 <210> 192 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-380/380-3p BS seq <400> 192 auguaa 6 <210> 193 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-499-3p/499a-3p BS seq <400> 193 acaucc 6 <210> 194 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-551a BS seq <400> 194 cgaccc 6 <210> 195 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-142-5p BS seq <400> 195 auaaaa 6 <210> 196 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p BS seq <400> 196 cugcaa 6 <210> 197 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-199ab-5p BS seq <400> 197 ccaguu 6 <210> 198 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-542-3p BS seq <400> 198 gugacc 6 <210> 199 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1277 BS seq <400> 199 acguaa 6 <210> 200 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29c-5p BS seq <400> 200 gaccgg 6 <210> 201 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3145-3p BS seq <400> 201 gauauu 6 <210> 202 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-106b-3p BS seq <400> 202 cgcacc 6 <210> 203 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-5p BS seq <400> 203 guucuu 6 <210> 204 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-744/1716 BS seq <400> 204 gcgggg 6 <210> 205 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-132-5p BS seq <400> 205 ccgugg 6 <210> 206 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-488 BS seq <400> 206 ugaaaa 6 <210> 207 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-501-3p/502-3p/500/502a BS seq <400> 207 augcaa 6 <210> 208 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-486-5p/3107 BS seq <400> 208 ccuguu 6 <210> 209 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-450a/451a BS seq <400> 209 uuugcc 6 <210> 210 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30c-3p BS seq <400> 210 ugggaa 6 <210> 211 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-499-5p BS seq <400> 211 uaagaa 6 <210> 212 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-421 BS seq <400> 212 ucaacc 6 <210> 213 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-197 BS seq <400> 213 ucaccc 6 <210> 214 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-296-5p BS seq <400> 214 gggccc 6 <210> 215 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-326/330/330-5p BS seq <400> 215 cucugg 6 <210> 216 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-214/761/3619-5p BS seq <400> 216 cagcaa 6 <210> 217 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-612/1285/3187-5p BS seq <400> 217 cugggg 6 <210> 218 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-409-3p BS seq <400> 218 aauguu 6 <210> 219 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-378/422a/378bcdefhi BS seq <400> 219 cuggaa 6 <210> 220 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-342-3p BS seq <400> 220 cucacc 6 <210> 221 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-338-5p BS seq <400> 221 acaauu 6 <210> 222 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-625 BS seq <400> 222 gggggg 6 <210> 223 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-200bc/429/548a BS seq <400> 223 aauacc 6 <210> 224 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-376a-5p BS seq <400> 224 uagauu 6 <210> 225 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-584 BS seq <400> 225 uauggg 6 <210> 226 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-411 BS seq <400> 226 aguagg 6 <210> 227 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-573/3533/3616-5p/3647-5p BS seq <400> 227 ugaagg 6 <210> 228 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-885-5p BS seq <400> 228 ccauuu 6 <210> 229 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-99-3p BS seq <400> 229 aagcuu 6 <210> 230 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-876-3p BS seq <400> 230 gguggg 6 <210> 231 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-654-3p BS seq <400> 231 augucc 6 <210> 232 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-340-3p BS seq <400> 232 ccgucc 6 <210> 233 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3614-5p BS seq <400> 233 cacuuu 6 <210> 234 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-5p BS seq <400> 234 guguuu 6 <210> 235 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-491-5p BS seq <400> 235 gugggg 6 <210> 236 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-96/507/1271 BS seq <400> 236 uuggcc 6 <210> 237 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548a-3p/548ef/2285a BS seq <400> 237 aaaacc 6 <210> 238 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-32-3p BS seq <400> 238 aauuuu 6 <210> 239 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3942-5p/4703-5p BS seq <400> 239 agcaaa 6 <210> 240 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-34b/449c/1360/2682 BS seq <400> 240 aggcaa 6 <210> 241 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-23a/b-5p BS seq <400> 241 ggguuu 6 <210> 242 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-362-5p/500b BS seq <400> 242 auccuu 6 <210> 243 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-677/4420 BS seq <400> 243 ucacuu 6 <210> 244 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-577 BS seq <400> 244 agauaa 6 <210> 245 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3613-5p BS seq <400> 245 guuguu 6 <210> 246 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-369-5p BS seq <400> 246 gaucgg 6 <210> 247 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-150/5127 BS seq <400> 247 cucccc 6 <210> 248 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-544/544ab/544-3p BS seq <400> 248 uucugg 6 <210> 249 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29a-5p BS seq <400> 249 cugauu 6 <210> 250 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-873 BS seq <400> 250 caggaa 6 <210> 251 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3614-3p BS seq <400> 251 agccuu 6 <210> 252 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-186 BS seq <400> 252 aaagaa 6 <210> 253 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-483-3p BS seq <400> 253 cacucc 6 <210> 254 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-374a-3p BS seq <400> 254 uuaucc 6 <210> 255 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-196abc BS seq <400> 255 agguaa 6 <210> 256 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-2-5p BS seq <400> 256 gauucc 6 <210> 257 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-2-5p BS seq <400> 257 ugguuu 6 <210> 258 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-5p BS seq <400> 258 ccuggg 6 <210> 259 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-323b-3p BS seq <400> 259 ccaauu 6 <210> 260 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-616 BS seq <400> 260 gucauu 6 <210> 261 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-330-3p BS seq <400> 261 caaagg 6 <210> 262 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-3p BS seq <400> 262 aacaaa 6 <210> 263 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-187 BS seq <400> 263 cguguu 6 <210> 264 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26a-3p BS seq <400> 264 cuauuu 6 <210> 265 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-452/4676-3p BS seq <400> 265 acuguu 6 <210> 266 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-129-5p/129ab-5p BS seq <400> 266 uuuuuu 6 <210> 267 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-223 BS seq <400> 267 gucagg 6 <210> 268 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4755-3p BS seq <400> 268 gccagg 6 <210> 269 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1247 BS seq <400> 269 cccguu 6 <210> 270 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3129-3p BS seq <400> 270 aacuaa 6 <210> 271 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-335-3p BS seq <400> 271 uuuucc 6 <210> 272 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-542-5p BS seq <400> 272 cggggg 6 <210> 273 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-3p BS seq <400> 273 ccaucc 6 <210> 274 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-186-3p BS seq <400> 274 cccaaa 6 <210> 275 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27b-5p BS seq <400> 275 gagcuu 6 <210> 276 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-491-3p BS seq <400> 276 uuaugg 6 <210> 277 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4687-3p BS seq <400> 277 ggcugg 6 <210> 278 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-101-5p BS seq <400> 278 aguuaa 6 <210> 279 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4772-5p BS seq <400> 279 gaucaa 6 <210> 280 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-337-3p BS seq <400> 280 uccuaa 6 <210> 281 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-223-5p BS seq <400> 281 guguaa 6 <210> 282 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-16/195-3p BS seq <400> 282 caauaa 6 <210> 283 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3677-3p BS seq <400> 283 ucgugg 6 <210> 284 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-766-5p BS seq <400> 284 ggaggg 6 <210> 285 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-299/299-3p/3563-3p BS seq <400> 285 augugg 6 <210> 286 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3140-3p BS seq <400> 286 gcuuuu 6 <210> 287 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-532-5p/511 BS seq <400> 287 augccc 6 <210> 288 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-5p BS seq <400> 288 gccuaa 6 <210> 289 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4778-5p BS seq <400> 289 auucuu 6 <210> 290 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-642b BS seq <400> 290 gacacc 6 <210> 291 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-483-5p BS seq <400> 291 agacgg 6 <210> 292 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-767-5p BS seq <400> 292 gcaccc 6 <210> 293 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-31-3p BS seq <400> 293 gcuauu 6 <210> 294 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-574-3p BS seq <400> 294 acgcuu 6 <210> 295 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3173-3p BS seq <400> 295 aaggaa 6 <210> 296 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2127/4728-5p BS seq <400> 296 gggagg 6 <210> 297 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-103a-2-5p BS seq <400> 297 gcuucc 6 <210> 298 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3591-3p BS seq <400> 298 aacacc 6 <210> 299 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-625-3p BS seq <400> 299 acuauu 6 <210> 300 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15b-3p BS seq <400> 300 gaaucc 6 <210> 301 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-522/518e/1422p BS seq <400> 301 aaaugg 6 <210> 302 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548d-3p/548acbz BS seq <400> 302 aaaaaa 6 <210> 303 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-452-3p BS seq <400> 303 ucaucc 6 <210> 304 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-192/215 BS seq <400> 304 ugaccc 6 <210> 305 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1551/4524 BS seq <400> 305 uagcaa 6 <210> 306 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-425-3p BS seq <400> 306 ucgggg 6 <210> 307 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3126-3p BS seq <400> 307 aucugg 6 <210> 308 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-2-3p BS seq <400> 308 cacaaa 6 <210> 309 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-324-3p/1913 BS seq <400> 309 cugccc 6 <210> 310 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-141-5p BS seq <400> 310 aucuuu 6 <210> 311 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-365a/b-5p BS seq <400> 311 gggacc 6 <210> 312 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-1-5p BS seq <400> 312 cugguu 6 <210> 313 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-563/380-5p BS seq <400> 313 gguugg 6 <210> 314 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1304 BS seq <400> 314 uugagg 6 <210> 315 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-216c/1461/4684-5p BS seq <400> 315 ucucuu 6 <210> 316 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2681-5p BS seq <400> 316 uuuuaa 6 <210> 317 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-194 BS seq <400> 317 guaacc 6 <210> 318 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-296-3p BS seq <400> 318 aggguu 6 <210> 319 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-205-3p BS seq <400> 319 auuucc 6 <210> 320 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-888 BS seq <400> 320 acucaa 6 <210> 321 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4802-3p BS seq <400> 321 acaugg 6 <210> 322 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7a/g-3p BS seq <400> 322 uguacc 6 <210> 323 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-762/4492/4498 BS seq <400> 323 gggcuu 6 <210> 324 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-744-3p BS seq <400> 324 uguugg 6 <210> 325 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-148b-5p BS seq <400> 325 aguucc 6 <210> 326 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-514/514b-3p BS seq <400> 326 uugacc 6 <210> 327 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-28-3p BS seq <400> 327 acuagg 6 <210> 328 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-550a BS seq <400> 328 gugccc 6 <210> 329 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p BS seq <400> 329 cggguu 6 <210> 330 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-506-5p BS seq <400> 330 auucaa 6 <210> 331 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1306-5p BS seq <400> 331 caccuu 6 <210> 332 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3189-3p BS seq <400> 332 ccuugg 6 <210> 333 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-675-5p/4466 BS seq <400> 333 ggugcc 6 <210> 334 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-3p BS seq <400> 334 aaucaa 6 <210> 335 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-454-5p BS seq <400> 335 cccuaa 6 <210> 336 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-509-5p/509-3-5p/4418 BS seq <400> 336 acugcc 6 <210> 337 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-19a/b-5p BS seq <400> 337 guuuuu 6 <210> 338 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4755-5p BS seq <400> 338 uucccc 6 <210> 339 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-93-3p BS seq <400> 339 cugcuu 6 <210> 340 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3130-5p/4482 BS seq <400> 340 acccaa 6 <210> 341 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-488-5p BS seq <400> 341 ccagaa 6 <210> 342 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-378a-5p BS seq <400> 342 uccugg 6 <210> 343 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-575/4676-5p BS seq <400> 343 agccaa 6 <210> 344 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1307 BS seq <400> 344 cucggg 6 <210> 345 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3942-3p BS seq <400> 345 uucagg 6 <210> 346 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4677-5p BS seq <400> 346 uguucc 6 <210> 347 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-339-3p BS seq <400> 347 gagcgg 6 <210> 348 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548b-3p BS seq <400> 348 aagaaa 6 <210> 349 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-642b-5p BS seq <400> 349 guuccc 6 <210> 350 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-188-5p BS seq <400> 350 aucccc 6 <210> 351 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-652-5p BS seq <400> 351 aacccc 6 <210> 352 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2114 BS seq <400> 352 aguccc 6 <210> 353 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3688-5p BS seq <400> 353 guggcc 6 <210> 354 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15a-3p BS seq <400> 354 aggccc 6 <210> 355 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181c-3p BS seq <400> 355 accauu 6 <210> 356 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-122/122a/1352 BS seq <400> 356 ggaguu 6 <210> 357 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-556-3p BS seq <400> 357 uauuaa 6 <210> 358 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-218-2-3p BS seq <400> 358 augguu 6 <210> 359 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-643 BS seq <400> 359 cuuguu 6 <210> 360 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-140-3p BS seq <400> 360 accacc 6 <210> 361 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1245 BS seq <400> 361 agugaa 6 <210> 362 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2115-3p BS seq <400> 362 aucagg 6 <210> 363 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-518bcf/518a-3p/518d-3p BS seq <400> 363 aaagcc 6 <210> 364 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3200-3p BS seq <400> 364 accuuu 6 <210> 365 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-545/3065/3065-5p BS seq <400> 365 caacaa 6 <210> 366 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1903/4778-3p BS seq <400> 366 cuucuu 6 <210> 367 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-5p BS seq <400> 367 cuuaaa 6 <210> 368 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-183-3p BS seq <400> 368 ugaauu 6 <210> 369 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3144-5p BS seq <400> 369 ggggaa 6 <210> 370 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-582-3p BS seq <400> 370 aacugg 6 <210> 371 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4662a-3p BS seq <400> 371 aagauu 6 <210> 372 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3140-5p BS seq <400> 372 ccugaa 6 <210> 373 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-106a-3p BS seq <400> 373 ugcaaa 6 <210> 374 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-135a-3p BS seq <400> 374 auaggg 6 <210> 375 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-345/345-5p BS seq <400> 375 cugacc 6 <210> 376 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-125a-3p/1554 BS seq <400> 376 cagguu 6 <210> 377 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3145-5p BS seq <400> 377 acuccc 6 <210> 378 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-676 BS seq <400> 378 uguccc 6 <210> 379 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3173-5p BS seq <400> 379 gcccuu 6 <210> 380 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5586-3p BS seq <400> 380 agaguu 6 <210> 381 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-615-3p BS seq <400> 381 ccgagg 6 <210> 382 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3688-3p BS seq <400> 382 auggaa 6 <210> 383 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4662a-5p BS seq <400> 383 uagccc 6 <210> 384 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4659ab-5p BS seq <400> 384 ugccaa 6 <210> 385 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5586-5p BS seq <400> 385 auccaa 6 <210> 386 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-514a-5p BS seq <400> 386 acucuu 6 <210> 387 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-10abc/10a-5p BS seq <400> 387 acccuu 6 <210> 388 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-888-3p BS seq <400> 388 acugaa 6 <210> 389 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3127-5p BS seq <400> 389 ucaggg 6 <210> 390 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-508-3p BS seq <400> 390 gauugg 6 <210> 391 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-3p BS seq <400> 391 ggggcc 6 <210> 392 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-200c-5p,hsa-miR-550a-3p BS seq <400> 392 gucuuu 6 <210> 393 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-513c/514b-5p BS seq <400> 393 ucucaa 6 <210> 394 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-490-3p BS seq <400> 394 aaccuu 6 <210> 395 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5187-3p BS seq <400> 395 cugaaa 6 <210> 396 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3664-3p BS seq <400> 396 cucagg 6 <210> 397 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3189-5p BS seq <400> 397 gccccc 6 <210> 398 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4670-3p BS seq <400> 398 gaaguu 6 <210> 399 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-105/105ab BS seq <400> 399 caaauu 6 <210> 400 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-135b-3p BS seq <400> 400 uguagg 6 <210> 401 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5010-3p BS seq <400> 401 uuuguu 6 <210> 402 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-493/493b BS seq <400> 402 gaaggg 6 <210> 403 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3605-3p BS seq <400> 403 cuccgg 6 <210> 404 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-188-3p BS seq <400> 404 ucccaa 6 <210> 405 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-449c-3p BS seq <400> 405 ugcuaa 6 <210> 406 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4761-5p BS seq <400> 406 caaggg 6 <210> 407 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-224 BS seq <400> 407 aagucc 6 <210> 408 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4796-5p BS seq <400> 408 gucuaa 6 <210> 409 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-551b-5p BS seq <400> 409 aaaucc 6 <210> 410 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-556-5p BS seq <400> 410 augagg 6 <210> 411 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-3p BS seq <400> 411 acgccc 6 <210> 412 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4677-3p BS seq <400> 412 cugugg 6 <210> 413 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-877 BS seq <400> 413 uagagg 6 <210> 414 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-576-5p BS seq <400> 414 uucuaa 6 <210> 415 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-490-5p BS seq <400> 415 cauggg 6 <210> 416 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-589-3p BS seq <400> 416 cagaaa 6 <210> 417 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4786-3p BS seq <400> 417 gaagcc 6 <210> 418 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-374b-3p BS seq <400> 418 uuagcc 6 <210> 419 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26b-3p BS seq <400> 419 cuguuu 6 <210> 420 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3158-3p BS seq <400> 420 agggcc 6 <210> 421 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4423-3p BS seq <400> 421 uaggcc 6 <210> 422 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-518d-5p/519bc-5p520c-5p/523b/526a BS seq <400> 422 ucuagg 6 <210> 423 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4707-3p BS seq <400> 423 gcccgg 6 <210> 424 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-10a-3p BS seq <400> 424 aaauuu 6 <210> 425 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-526b BS seq <400> 425 ucuugg 6 <210> 426 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-676-5p BS seq <400> 426 cuucaa 6 <210> 427 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-660-3p BS seq <400> 427 ccuccc 6 <210> 428 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5004-3p BS seq <400> 428 uuggaa 6 <210> 429 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-193a-5p BS seq <400> 429 gggucc 6 <210> 430 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-222-5p BS seq <400> 430 ucaguu 6 <210> 431 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4661-3p BS seq <400> 431 aggauu 6 <210> 432 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-25-5p BS seq <400> 432 ggcggg 6 <210> 433 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4670-5p BS seq <400> 433 agcgaa 6 <210> 434 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-659 BS seq <400> 434 uugguu 6 <210> 435 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1745/3194-3p BS seq <400> 435 gcucuu 6 <210> 436 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-182-3p BS seq <400> 436 gguucc 6 <210> 437 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-298/2347/2467-3p BS seq <400> 437 gcagaa 6 <210> 438 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-130b-5p BS seq <400> 438 cucuuu 6 <210> 439 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4746-3p BS seq <400> 439 gcgguu 6 <210> 440 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1893/2277-5p BS seq <400> 440 gcgcgg 6 <210> 441 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3619-3p BS seq <400> 441 ggaccc 6 <210> 442 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-1-3p BS seq <400> 442 cuacuu 6 <210> 443 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4728-3p BS seq <400> 443 augcuu 6 <210> 444 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3127-3p BS seq <400> 444 ccccuu 6 <210> 445 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-671-3p BS seq <400> 445 ccgguu 6 <210> 446 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-211-3p BS seq <400> 446 cagggg 6 <210> 447 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2114-3p BS seq <400> 447 gagccc 6 <210> 448 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-877-3p BS seq <400> 448 ccucuu 6 <210> 449 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3157-5p BS seq <400> 449 ucagcc 6 <210> 450 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-502-5p BS seq <400> 450 uccuuu 6 <210> 451 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-500a BS seq <400> 451 aauccc 6 <210> 452 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548g BS seq <400> 452 aaacuu 6 <210> 453 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-523 BS seq <400> 453 aacgcc 6 <210> 454 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-584-3p BS seq <400> 454 caguuu 6 <210> 455 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-205/205ab BS seq <400> 455 ccuucc 6 <210> 456 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4793-5p BS seq <400> 456 cauccc 6 <210> 457 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-363-5p BS seq <400> 457 gggugg 6 <210> 458 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-214-5p BS seq <400> 458 gccugg 6 <210> 459 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3180-5p BS seq <400> 459 uuccaa 6 <210> 460 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1404/2110 BS seq <400> 460 uggggg 6 <210> 461 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3157-3p BS seq <400> 461 ugcccc 6 <210> 462 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-191-3p BS seq <400> 462 cugcgg 6 <210> 463 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1346/3940-5p/4507 BS seq <400> 463 uggguu 6 <210> 464 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4746-5p BS seq <400> 464 cggucc 6 <210> 465 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3939 BS seq <400> 465 acgcgg 6 <210> 466 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-2-3p BS seq <400> 466 ccacuu 6 <210> 467 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-500a-3p BS seq <400> 467 ugcacc 6 <210> 468 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196b-3p BS seq <400> 468 cgacaa 6 <210> 469 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-675-3p BS seq <400> 469 uguauu 6 <210> 470 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-548aj/g/x-5p BS seq <400> 470 gcaaaa 6 <210> 471 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4659ab-3p BS seq <400> 471 uucuuu 6 <210> 472 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5001-3p BS seq <400> 472 ucugcc 6 <210> 473 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1247-3p BS seq <400> 473 cccggg 6 <210> 474 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2890/4707-5p BS seq <400> 474 ccccgg 6 <210> 475 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-150-3p BS seq <400> 475 ugguaa 6 <210> 476 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-3p BS seq <400> 476 uucucc 6 <210> 477 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2277-3p BS seq <400> 477 gacagg 6 <210> 478 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3547/3663-3p BS seq <400> 478 gagcaa 6 <210> 479 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-34bc-3p BS seq <400> 479 aucacc 6 <210> 480 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-518ef BS seq <400> 480 aagcgg 6 <210> 481 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3187-3p BS seq <400> 481 uggccc 6 <210> 482 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1306/1306-3p BS seq <400> 482 cguugg 6 <210> 483 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3177-3p BS seq <400> 483 gcacgg 6 <210> 484 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1ab/206/613 BS seq <400> 484 ggaauu 6 <210> 485 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-128/128ab BS seq <400> 485 cacagg 6 <210> 486 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1296 BS seq <400> 486 uagggg 6 <210> 487 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-598/598-3p BS seq <400> 487 acgucc 6 <210> 488 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-887 BS seq <400> 488 ugaacc 6 <210> 489 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1-5p BS seq <400> 489 cauacc 6 <210> 490 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-376c/741-5p BS seq <400> 490 acauaa 6 <210> 491 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-374c/655 BS seq <400> 491 uaauaa 6 <210> 492 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-494 BS seq <400> 492 gaaacc 6 <210> 493 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-651 BS seq <400> 493 uuaggg 6 <210> 494 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1301/5047 BS seq <400> 494 ugcagg 6 <210> 495 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-381-5p BS seq <400> 495 gcgagg 6 <210> 496 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-216a BS seq <400> 496 aaucuu 6 <210> 497 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-300/381/539-3p BS seq <400> 497 auacaa 6 <210> 498 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1249 BS seq <400> 498 cgcccc 6 <210> 499 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-579 BS seq <400> 499 ucauuu 6 <210> 500 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-656 BS seq <400> 500 auauuu 6 <210> 501 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-433 BS seq <400> 501 ucaugg 6 <210> 502 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1180 BS seq <400> 502 uuccgg 6 <210> 503 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-597/1970 BS seq <400> 503 gugucc 6 <210> 504 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-190a-3p BS seq <400> 504 uauauu 6 <210> 505 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1537 BS seq <400> 505 aaaccc 6 <210> 506 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-874-5p BS seq <400> 506 ggcccc 6 <210> 507 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-410/344de/344b-1-3p BS seq <400> 507 auauaa 6 <210> 508 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-370 BS seq <400> 508 ccugcc 6 <210> 509 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-219-2-3p/219-3p BS seq <400> 509 gaauuu 6 <210> 510 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3620 BS seq <400> 510 cacccc 6 <210> 511 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-504/4725-5p BS seq <400> 511 gacccc 6 <210> 512 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2964/2964a-5p BS seq <400> 512 gauguu 6 <210> 513 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-450a-2-3p BS seq <400> 513 uugggg 6 <210> 514 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-511 BS seq <400> 514 ugucuu 6 <210> 515 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-6505-3p BS seq <400> 515 gacuuu 6 <210> 516 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-433-5p BS seq <400> 516 acgguu 6 <210> 517 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-6741-3p BS seq <400> 517 cggcuu 6 <210> 518 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-370-5p BS seq <400> 518 aggucc 6 <210> 519 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-579-5p BS seq <400> 519 cgcggg 6 <210> 520 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-376c-5p,miR-376b-5p BS seq <400> 520 guggaa 6 <210> 521 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-552/3097-5p BS seq <400> 521 acaggg 6 <210> 522 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1910 BS seq <400> 522 cagucc 6 <210> 523 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-758 BS seq <400> 523 uugugg 6 <210> 524 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-6735-3p BS seq <400> 524 ggccuu 6 <210> 525 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-376a-2-5p BS seq <400> 525 guagaa 6 <210> 526 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-585 BS seq <400> 526 gggcgg 6 <210> 527 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-451 BS seq <400> 527 aaccgg 6 <210> 528 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-137/137ab BS seq <400> 528 uauugg 6 <210> 529 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1-3p G2U <400> 529 ugaaug 6 <210> 530 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-194-5p G2U <400> 530 uuaaca 6 <210> 531 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193a-5p G2U <400> 531 uggucu 6 <210> 532 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15b-3p G2U <400> 532 uaauca 6 <210> 533 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-200c-5p G2U <400> 533 uucuua 6 <210> 534 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-214-5p G2U <400> 534 uccugu 6 <210> 535 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-134-5p G2U <400> 535 uugacu 6 <210> 536 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-145-3p G2U <400> 536 uauucc 6 <210> 537 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-5p G2U <400> 537 uuucuu 6 <210> 538 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-3p G2U <400> 538 ucucgg 6 <210> 539 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-873-3p G2U <400> 539 uagacu 6 <210> 540 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G2U <400> 540 ugagug 6 <210> 541 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-143-3p G2U <400> 541 uagaug 6 <210> 542 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-485-5p G2U <400> 542 uaggcu 6 <210> 543 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-409-5p G2U <400> 543 uguuac 6 <210> 544 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-3p G2U <400> 544 ugcuca 6 <210> 545 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-223-3p G2U <400> 545 uucagu 6 <210> 546 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-144-5p G2U <400> 546 uauauc 6 <210> 547 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-379-5p G2U <400> 547 uguaga 6 <210> 548 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-146b-5p/hsa-miR-146a-5p G2U <400> 548 uagaac 6 <210> 549 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-539-5p G2U <400> 549 uagaaa 6 <210> 550 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-296-5p G2U <400> 550 uggccc 6 <210> 551 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-767-5p G2U <400> 551 ucacca 6 <210> 552 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-5p/hsa-miR-34c-5p G2U <400> 552 ugcagu 6 <210> 553 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7f-5p/hsa-let-7d-5p/hsa-let-7b-5p/hsa-let-7a-5p/hsa-let-7 e-5p/hsa-miR-202-3p/hsa-let-7i-5p/hsa-miR-98-5p/hsa-let-7c-5p/hsa -let-7g-5p G2U <400> 553 uaggua 6 <210> 554 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1271-3p G2U <400> 554 uugccu 6 <210> 555 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G2U <400> 555 ucuggu 6 <210> 556 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-19b-3p/hsa-miR-19a-3p G2U <400> 556 uugcaa 6 <210> 557 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-5p G2U <400> 557 uggcuu 6 <210> 558 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-146b-3p G2U <400> 558 ucccug 6 <210> 559 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-5p G2U <400> 559 ugaaga 6 <210> 560 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G2U <400> 560 uagggg 6 <210> 561 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-324-5p G2U <400> 561 ucaucc 6 <210> 562 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-5p G2U <400> 562 ugguuu 6 <210> 563 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-139-3p G2U <400> 563 ugagac 6 <210> 564 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30d-5p/hsa-miR-30e-5p/hsa-miR-30a-5p/hsa-miR-30c-5p/hsa-m iR-30b-5p G2U <400> 564 uuaaac 6 <210> 565 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-3p/hsa-miR-222-3p G2U <400> 565 ucuaca 6 <210> 566 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3p G2U <400> 566 uauugg 6 <210> 567 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-769-5p G2U <400> 567 uagacc 6 <210> 568 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-142-3p G2U <400> 568 uuagug 6 <210> 569 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-5p G2U <400> 569 ugagag 6 <210> 570 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-3p/hsa-miR-219a-5p G2U <400> 570 uauugu 6 <210> 571 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-31-5p G2U <400> 571 ugcaag 6 <210> 572 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-103a-3p/hsa-miR-107 G2U <400> 572 ucagca 6 <210> 573 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-542-3p G2U <400> 573 uugaca 6 <210> 574 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-219a-2-3p G2U <400> 574 uaauug 6 <210> 575 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29c-3p/hsa-miR-29a-3p/hsa-miR-29b-3p G3U <400> 575 aucacc 6 <210> 576 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G3U <400> 576 cugguu 6 <210> 577 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-5p G3U <400> 577 guaaga 6 <210> 578 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-411-5p G3U <400> 578 auuaga 6 <210> 579 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196a-5p/hsa-miR-196b-5p G3U <400> 579 auguag 6 <210> 580 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3622a-5p G3U <400> 580 augcac 6 <210> 581 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-5p G3U <400> 581 uuaagc 6 <210> 582 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-3p G3U <400> 582 aucugc 6 <210> 583 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-153-3p G3U <400> 583 uucaua 6 <210> 584 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193a-5p G3U <400> 584 gugucu 6 <210> 585 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-5p G3U <400> 585 guagag 6 <210> 586 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1-3p G3U <400> 586 guaaug 6 <210> 587 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15b-5p/hsa-miR-16-5p/hsa-miR-424-5p G3U <400> 587 aucagc 6 <210> 588 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7g-3p/hsa-miR-493-5p/hsa-let-7c-3p G3U <400> 588 uuuaca 6 <210> 589 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7i-3p G3U <400> 589 uucgca 6 <210> 590 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-218-5p G3U <400> 590 uuugcu 6 <210> 591 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-5p G3U <400> 591 cuaccg 6 <210> 592 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-3p G3U <400> 592 cugauc 6 <210> 593 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G3U <400> 593 uuugcg 6 <210> 594 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-187-3p G3U <400> 594 cuuguc 6 <210> 595 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-192-3p G3U <400> 595 uuccaa 6 <210> 596 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-192-5p G3U <400> 596 uuaccu 6 <210> 597 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-5p/hsa-miR-34c-5p G3U <400> 597 gucagu 6 <210> 598 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-21-5p G3U <400> 598 aucuua 6 <210> 599 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-500a-3p G3U <400> 599 uucacc 6 <210> 600 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-5p G3U <400> 600 guguuu 6 <210> 601 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-379-5p G3U <400> 601 guuaga 6 <210> 602 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-203a-3p G3U <400> 602 uuaaau 6 <210> 603 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-3p G3U <400> 603 gucuca 6 <210> 604 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30c-2-3p G3U <400> 604 uuggag 6 <210> 605 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-488-3p G3U <400> 605 uuaaag 6 <210> 606 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-301a-3p/hsa-miR-301b-3p G3U <400> 606 auugca 6 <210> 607 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-126-3p G3U <400> 607 cuuacc 6 <210> 608 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G3U <400> 608 guagug 6 <210> 609 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-5p G3U <400> 609 gugcuu 6 <210> 610 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26b-3p G4U <400> 610 cuuuuc 6 <210> 611 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-324-3p G4U <400> 611 cuuccc 6 <210> 612 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3065-3p G4U <400> 612 caucac 6 <210> 613 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G4U <400> 613 gauggg 6 <210> 614 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-5p G4U <400> 614 guuuuc 6 <210> 615 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-345-5p G4U <400> 615 cuuacu 6 <210> 616 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-615-3p G4U <400> 616 ccuagc 6 <210> 617 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-889-5p/hsa-miR-135a-5p/hsa-miR-135b-5p G4U <400> 617 auugcu 6 <210> 618 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193a-5p G4U <400> 618 gguucu 6 <210> 619 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-18a-5p G4U <400> 619 aaugug 6 <210> 620 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G4U <400> 620 cguguu 6 <210> 621 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-708-5p/hsa-miR-28-5p G4U <400> 621 aguagc 6 <210> 622 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-224-5p G4U <400> 622 aauuca 6 <210> 623 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-100-3p G4U <400> 623 aaucuu 6 <210> 624 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-873-5p G4U <400> 624 caugaa 6 <210> 625 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-4662a-5p G4U <400> 625 uaucca 6 <210> 626 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-99b-3p/hsa-miR-99a-3p G4U <400> 626 aaucuc 6 <210> 627 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-433-5p G4U <400> 627 acugug 6 <210> 628 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-542-3p G4U <400> 628 guuaca 6 <210> 629 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3605-5p G4U <400> 629 gaugau 6 <210> 630 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-744-5p G4U <400> 630 gcuggg 6 <210> 631 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1296-5p G4U <400> 631 uauggc 6 <210> 632 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-133a-3p G4U <400> 632 uuuguc 6 <210> 633 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-382-5p G4U <400> 633 aauuug 6 <210> 634 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-425-5p G4U <400> 634 auuaca 6 <210> 635 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-377-5p G4U <400> 635 gauguu 6 <210> 636 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-3p G4U <400> 636 cguauc 6 <210> 637 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3180-3p G4U <400> 637 ggugcg 6 <210> 638 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-143-3p G4U <400> 638 gauaug 6 <210> 639 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-758-3p G4U <400> 639 uuuuga 6 <210> 640 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-93-3p G4U <400> 640 cuucug 6 <210> 641 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-128-2-5p G4U <400> 641 ggugcc 6 <210> 642 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-134-5p G4U <400> 642 guuacu 6 <210> 643 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-154-5p G4U <400> 643 aguuua 6 <210> 644 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3622a-5p G4U <400> 644 agucac 6 <210> 645 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-3p G4U <400> 645 aaugca 6 <210> 646 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-5p G4U <400> 646 ggucuu 6 <210> 647 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-194-3p G4U <400> 647 cauugg 6 <210> 648 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-375 G4U <400> 648 uuuuuc 6 <210> 649 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-148a-5p G4U <400> 649 aauuuc 6 <210> 650 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2277-5p G4U <400> 650 gcucgg 6 <210> 651 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-769-5p G4U <400> 651 gauacc 6 <210> 652 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p G4U <400> 652 cuucag 6 <210> 653 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-873-3p G4U <400> 653 gauacu 6 <210> 654 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-4772-3p G4U <400> 654 cuucaa 6 <210> 655 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-329-5p G4U <400> 655 aguuuu 6 <210> 656 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-182-5p/hsa-miR-96-5p G4U <400> 656 uuugca 6 <210> 657 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2467-5p/hsa-miR-485-5p G4U <400> 657 gaugcu 6 <210> 658 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-149-5p G4U <400> 658 cuugcu 6 <210> 659 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-2-5p G4U <400> 659 uguuuu 6 <210> 660 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-3p G4U <400> 660 acucca 6 <210> 661 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-3p/hsa-miR-520a-3p/hsa-miR-519b-3p/hsa-miR-520b/hsa- miR-519c-3p/hsa-miR-520c-3p/hsa-miR-519a-3p G4U <400> 661 aauugc 6 <210> 662 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-532-5p G4U <400> 662 auuccu 6 <210> 663 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-132-5p G4U <400> 663 ccuugg 6 <210> 664 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-541-5p G4U <400> 664 aaugau 6 <210> 665 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-671-3p G4U <400> 665 ccuguu 6 <210> 666 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-296-5p G4U <400> 666 gguccc 6 <210> 667 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-518e-3p G4U <400> 667 aaucgc 6 <210> 668 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-487a-5p G4U <400> 668 uguuua 6 <210> 669 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-589-5p/hsa-miR-146b-5p/hsa-miR-146a-5p G4U <400> 669 gauaac 6 <210> 670 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196b-5p/hsa-miR-196a-5p G4U <400> 670 aguuag 6 <210> 671 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-486-3p G4U <400> 671 ggugca 6 <210> 672 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-5p G4U <400> 672 gguuuu 6 <210> 673 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-378a-3p G4U <400> 673 cuugac 6 <210> 674 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27b-5p G4U <400> 674 gaucuu 6 <210> 675 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-6720-3p G4U <400> 675 gcuccu 6 <210> 676 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-574-3p G4U <400> 676 acucuc 6 <210> 677 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29a-5p G4U <400> 677 cuuauu 6 <210> 678 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30c-2-3p/hsa-miR-30c-1-3p G4U <400> 678 ugugag 6 <210> 679 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199b-3p G4U <400> 679 cauuag 6 <210> 680 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-574-5p G4U <400> 680 gauugu 6 <210> 681 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-539-5p G4U <400> 681 gauaaa 6 <210> 682 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-4677-3p G4U <400> 682 cuuuga 6 <210> 683 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-654-3p G4U <400> 683 auuucu 6 <210> 684 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-652-3p G4U <400> 684 auugcg 6 <210> 685 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-19a-3p/hsa-miR-19b-3p G4U <400> 685 guucaa 6 <210> 686 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7c-5p/hsa-miR-98-5p/hsa-let-7g-5p/hsa-let-7f-5p/hsa-miR-2 02-3p/hsa-let-7b-5p/hsa-let-7e-5p/hsa-let-7a-5p/hsa-let-7d-5p/hsa -let-7i-5p G4U <400> 686 gaugua 6 <210> 687 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3663-3p G4U <400> 687 gaucac 6 <210> 688 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-152-3p/hsa-miR-148b-3p/hsa-miR-148a-3p G4U <400> 688 cauugc 6 <210> 689 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193b-5p G4U <400> 689 gguguu 6 <210> 690 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-502-3p/hsa-miR-501-3p G4U <400> 690 auucac 6 <210> 691 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-299-3p G4U <400> 691 auuugg 6 <210> 692 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-140-5p G5U <400> 692 aguugu 6 <210> 693 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-96-5p/hsa-miR-182-5p G5U <400> 693 uuguca 6 <210> 694 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193b-3p G5U <400> 694 acuugc 6 <210> 695 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-365a-3p G5U <400> 695 aauucc 6 <210> 696 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-486-5p G5U <400> 696 ccuuua 6 <210> 697 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G5U <400> 697 cgguuu 6 <210> 698 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G5U <400> 698 uguucg 6 <210> 699 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-493-3p G5U <400> 699 gaaugu 6 <210> 700 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-548am-5p G5U <400> 700 aaauua 6 <210> 701 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-218-5p G5U <400> 701 uguucu 6 <210> 702 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-20b-5p/hsa-miR-20a-5p/hsa-miR-93-5p/hsa-miR-17-5p/hsa-miR -106b-5p G5U <400> 702 aaauug 6 <210> 703 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-541-3p G5U <400> 703 gguugg 6 <210> 704 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-452-5p G5U <400> 704 acuuuu 6 <210> 705 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-5p G5U <400> 705 ccuugc 6 <210> 706 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-518f-3p G5U <400> 706 aaaucg 6 <210> 707 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-370-3p G5U <400> 707 ccuucu 6 <210> 708 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-107/hsa-miR-103a-3p G5U <400> 708 gcauca 6 <210> 709 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G5U <400> 709 ggauug 6 <210> 710 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-338-3p G5U <400> 710 ccauca 6 <210> 711 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-409-3p G5U <400> 711 aauuuu 6 <210> 712 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-3p G5U <400> 712 aaguca 6 <210> 713 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7d-5p/hsa-let-7g-5p/hsa-let-7i-5p/hsa-let-7f-5p/hsa-let-7 e-5p/hsa-let-7a-5p/hsa-let-7b-5p/hsa-let-7c-5p G5U <400> 713 gaguua 6 <210> 714 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-130b-3p/hsa-miR-301a-3p/hsa-miR-130a-3p/hsa-miR-301b-3p G5U <400> 714 aguuca 6 <210> 715 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-512-3p G5U <400> 715 aguucu 6 <210> 716 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-191-5p G5U <400> 716 aacuga 6 <210> 717 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3-5p G5U <400> 717 acuuca 6 <210> 718 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-92a-3p/hsa-miR-92b-3p/hsa-miR-363-3p/hsa-miR-25-3p/hsa-mi R-32-5p G5U <400> 718 auuuca 6 <210> 719 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-18a-5p G5U <400> 719 aaguug 6 <210> 720 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-183-5p G5U <400> 720 auguca 6 <210> 721 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G5U <400> 721 gcuugu 6 <210> 722 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-3p G5U <400> 722 cucugc 6 <210> 723 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G5U <400> 723 gagugg 6 <210> 724 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-499a-5p/hsa-miR-208a-3p G5U <400> 724 uaauac 6 <210> 725 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-378a-3p G5U <400> 725 cuguac 6 <210> 726 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-186-5p G5U <400> 726 aaauaa 6 <210> 727 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-450b-5p G5U <400> 727 uuuuca 6 <210> 728 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-450a-5p G5U <400> 728 uuuucg 6 <210> 729 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-142-3p G5U <400> 729 guauug 6 <210> 730 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-101-3p/hsa-miR-144-3p G5U <400> 730 acauua 6 <210> 731 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-320a G5U <400> 731 aaaucu 6 <210> 732 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199b-5p/hsa-miR-199a-5p G5U <400> 732 ccauug 6 <210> 733 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1296-5p G5U <400> 733 uagugc 6 <210> 734 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-5p G5U <400> 734 ggauag 6 <210> 735 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-135a-5p G5U <400> 735 augucu 6 <210> 736 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-411-5p G6U <400> 736 aguaua 6 <210> 737 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-145-5p G6U <400> 737 uccauu 6 <210> 738 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26a-5p G6U <400> 738 ucaauu 6 <210> 739 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193b-3p G6U <400> 739 acuguc 6 <210> 740 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34c-5p G6U <400> 740 ggcauu 6 <210> 741 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-379-5p G6U <400> 741 gguaua 6 <210> 742 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-5p G6U <400> 742 cccuua 6 <210> 743 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-5p G6U <400> 743 ccuguc 6 <210> 744 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-526b-5p G6U <400> 744 ucuuua 6 <210> 745 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-5p G6U <400> 745 ggaaua 6 <210> 746 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-16-5p/hsa-miR-15b-5p/hsa-miR-424-5p/hsa-miR-15a-5p G6U <400> 746 agcauc 6 <210> 747 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-3p G6U <400> 747 uaaauc 6 <210> 748 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-363-5p G6U <400> 748 ggguug 6 <210> 749 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1298-3p G6U <400> 749 aucuug 6 <210> 750 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3p G6U <400> 750 gauuug 6 <210> 751 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-744-5p G6U <400> 751 gcggug 6 <210> 752 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-148a-3p G6U <400> 752 caguuc 6 <210> 753 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-3p G6U <400> 753 aaguuc 6 <210> 754 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1296-5p G6U <400> 754 uagguc 6 <210> 755 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G6U <400> 755 gaggug 6 <210> 756 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-5p G6U <400> 756 cuuuug 6 <210> 757 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G6U <400> 757 gcuguu 6 <210> 758 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-3p G6U <400> 758 agcuuc 6 <210> 759 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-28-3p G6U <400> 759 acuaua 6 <210> 760 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-3p G6U <400> 760 gauuuu 6 <210> 761 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-137 G6U <400> 761 uauuuc 6 <210> 762 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5010-5p G6U <400> 762 ggggua 6 <210> 763 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-523-5p G6U <400> 763 ucuaua 6 <210> 764 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-191-5p G6U <400> 764 aacgua 6 <210> 765 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-128-3p G6U <400> 765 cacauu 6 <210> 766 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199a-5p/hsa-miR-199b-5p G7U <400> 766 ccaguu 6 <210> 767 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-2-3p G7U <400> 767 ccacuu 6 <210> 768 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-3p/hsa-miR-27b-3p G7U <400> 768 ucacau 6 <210> 769 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7d-3p G7U <400> 769 uauacu 6 <210> 770 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-129-5p G7U <400> 770 uuuuuu 6 <210> 771 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G7U <400> 771 ugugcu 6 <210> 772 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-219a-2-3p G7U <400> 772 gaauuu 6 <210> 773 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-424-3p G7U <400> 773 aaaacu 6 <210> 774 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-18a-5p G7U <400> 774 aagguu 6 <210> 775 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-488-3p G7U <400> 775 ugaaau 6 <210> 776 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1-3p G7U <400> 776 ggaauu 6 <210> 777 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-3p G7U <400> 777 ccaucu 6 <210> 778 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199b-3p G7U <400> 778 caguau 6 <210> 779 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-10a-5p G7U <400> 779 acccuu 6 <210> 780 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196b-5p G7U <400> 780 agguau 6 <210> 781 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-92a-1-5p G7U <400> 781 gguugu 6 <210> 782 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-483-5p G7U <400> 782 agacgu 6 <210> 783 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p G7U <400> 783 cugcau 6 <210> 784 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-363-5p G7U <400> 784 gggugu 6 <210> 785 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-5p G7U <400> 785 cuuugu 6 <210> 786 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1537-3p G7U <400> 786 aaaccu 6 <210> 787 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-106b-5p/hsa-miR-20a-5p/hsa-miR-17-5p/hsa-miR-93-5p G7U <400> 787 aaaguu 6 <210> 788 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-143-3p G7U <400> 788 gagauu 6 <210> 789 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30a-3p/hsa-miR-30e-3p G7U <400> 789 uuucau 6 <210> 790 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-3p G7U <400> 790 gcucgu 6 <210> 791 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1298-3p G7U <400> 791 aucugu 6 <210> 792 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-5p G7U <400> 792 cgaccu 6 <210> 793 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G7U <400> 793 gagggu 6 <210> 794 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G7U <400> 794 ggaguu 6 <210> 795 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-374a-3p G8U <400> 795 uuaucau 7 <210> 796 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-675-5p G8U <400> 796 ggugcgu 7 <210> 797 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-92a-1-5p G8U <400> 797 gguuggu 7 <210> 798 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-5p G8U <400> 798 cgaccgu 7 <210> 799 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-503-5p G8U <400> 799 agcagcu 7 <210> 800 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-3p G8U <400> 800 ggcucau 7 <210> 801 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-340-5p G8U <400> 801 uauaaau 7 <210> 802 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3-5p G8U <400> 802 acugcau 7 <210> 803 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-5p/hsa-miR-34c-5p G8U <400> 803 ggcaguu 7 <210> 804 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-526b-5p G8U <400> 804 ucuugau 7 <210> 805 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-203a-3p G8U <400> 805 ugaaauu 7 <210> 806 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-153-3p G8U <400> 806 ugcauau 7 <210> 807 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-208a-3p G8U <400> 807 uaagacu 7 <210> 808 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-200b-3p/hsa-miR-200c-3p G8U <400> 808 aauacuu 7 <210> 809 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-518f-5p/hsa-miR-523-5p G8U <400> 809 ucuagau 7 <210> 810 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-625-3p G8U <400> 810 acuauau 7 <210> 811 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-194-5p G8U <400> 811 guaacau 7 <210> 812 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7g-3p G8U <400> 812 uguacau 7 <210> 813 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1298-3p G8U <400> 813 aucuggu 7 <210> 814 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-514a-5p G8U <400> 814 acucugu 7 <210> 815 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-483-5p G8U <400> 815 agacggu 7 <210> 816 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-126-3p G8U <400> 816 cguaccu 7 <210> 817 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-128-3p G8U <400> 817 cacaguu 7 <210> 818 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-381-3p G8U <400> 818 auacaau 7 <210> 819 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-320a G8U <400> 819 aaagcuu 7 <210> 820 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-513c-5p/hsa-miR-514b-5p G8U <400> 820 ucucaau 7 <210> 821 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G8U <400> 821 gcugguu 7 <210> 822 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-520a-5p G8U <400> 822 uccagau 7 <210> 823 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-5p/hsa-miR-125a-5p G8U <400> 823 cccugau 7 <210> 824 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-141-3p G8U <400> 824 aacacuu 7 <210> 825 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-874-3p G8U <400> 825 ugcccuu 7 <210> 826 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-202-5p G8U <400> 826 uccuauu 7 <210> 827 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-140-3p G8U <400> 827 accacau 7 <210> 828 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-361-3p G8U <400> 828 cccccau 7 <210> 829 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-513b-5p G8U <400> 829 ucacaau 7 <210> 830 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-134-5p G8U <400> 830 gugacuu 7 <210> 831 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-33a-5p G8U <400> 831 ugcauuu 7 <210> 832 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-512-3p G8U <400> 832 agugcuu 7 <210> 833 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7a-5p/hsa-let-7c-5p/hsa-let-7b-5p/hsa-let-7d-5p/hsa-let-7 f-5p/hsa-let-7e-5p/hsa-let-7i-5p/hsa-let-7g-5p G8U <400> 833 gagguau 7 <210> 834 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-375 G8U <400> 834 uuguucu 7 <210> 835 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-136-3p G8U <400> 835 aucaucu 7 <210> 836 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-5p G8U <400> 836 acuccau 7 <210> 837 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-3p G9U <400> 837 aaggcacu 8 <210> 838 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-204-5p/hsa-miR-211-5p G9U <400> 838 ucccuuuu 8 <210> 839 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G9U <400> 839 ugugcguu 8 <210> 840 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-146a-5p/hsa-miR-146b-5p G9U <400> 840 gagaacuu 8 <210> 841 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-3p G9U <400> 841 gauuguau 8 <210> 842 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-23a-3p G9U <400> 842 ucacauuu 8 <210> 843 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-219a-2-3p G9U <400> 843 gaauuguu 8 <210> 844 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-21-3p G9U <400> 844 aacaccau 8 <210> 845 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G9U <400> 845 ggaguguu 8 <210> 846 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-877-5p G9U <400> 846 uagaggau 8 <210> 847 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-129-5p G9U <400> 847 uuuuugcu 8 <210> 848 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-526b-5p G9U <400> 848 ucuugagu 8 <210> 849 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-5p G9U <400> 849 cuuaaacu 8 <210> 850 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-532-5p G9U <400> 850 augccuuu 8 <210> 851 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-520a-5p G9U <400> 851 uccagagu 8 <210> 852 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-139-5p G9U <400> 852 cuacaguu 8 <210> 853 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-99a-5p/hsa-miR-100-5p/hsa-miR-99b-5p G9U <400> 853 acccguau 8 <210> 854 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-320a G9U <400> 854 aaagcugu 8 <210> 855 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-216a-5p G9U <400> 855 aaucucau 8 <210> 856 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-3p G9U <400> 856 cggauccu 8 <210> 857 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G9U <400> 857 cggguuau 8 <210> 858 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-381-3p G9U <400> 858 auacaagu 8 <210> 859 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-3p/hsa-miR-27b-3p G9U <400> 859 ucacaguu 8 <210> 860 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5010-5p G9U <400> 860 gggggauu 8 <210> 861 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3157-3p G9U <400> 861 ugcccuau 8 <210> 862 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p G9U <400> 862 cugcaguu 8 <210> 863 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-523-5p G9U <400> 863 ucuagagu 8 <110> Korea University <120> RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof <130> MP19-147 <160> 863 <170> KoPatentIn 3.0 <210> 1 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5'2~7 of miR-124-BS <400> 1 aaggcc 6 <210> 2 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5'2~7 of miR-122-BS <400> 2 aaggcc 6 <210> 3 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5'2~7 of miR-155-BS <400> 3 uaaugg 6 <210> 4 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> 5'2~7 of miR-1-BS <400> 4 ggaauu 6 <210> 5 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-124-BS <400> 5 uaaggccacg cggugaaugc c 21 <210> 6 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-122-BS <400> 6 uggaguugug acaauggugu u 21 <210> 7 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-155-BS <400> 7 uuaaugggcu aaucgugaua gg 22 <210> 8 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-1-BS <400> 8 uggaauugua aagaaguaug u 21 <210> 9 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-124-G4U <400> 9 uaaugcacg 9 <210> 10 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-124-G5U <400> 10 uaagucacg 9 <210> 11 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-124-G4,5U <400> 11 uaauucacg 9 <210> 12 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G2U <400> 12 uugaaugua 9 <210> 13 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G3U <400> 13 uguaaugua 9 <210> 14 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G7U <400> 14 uggaauuua 9 <210> 15 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G2,3U <400> 15 uuuaaugua 9 <210> 16 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G3,7U <400> 16 uguaauuua 9 <210> 17 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G2,7U <400> 17 uugaauuua 9 <210> 18 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-1-G2,3,7U <400> 18 uuuaauuua 9 <210> 19 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G2U <400> 19 uugagugug 9 <210> 20 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G3U <400> 20 uguagugug 9 <210> 21 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G5U <400> 21 uggauugug 9 <210> 22 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G7U <400> 22 uggaguuug 9 <210> 23 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G9U <400> 23 uggaguguu 9 <210> 24 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G2,3U <400> 24 uuuagugug 9 <210> 25 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G2,5U <400> 25 uugauugug 9 <210> 26 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G2,7U <400> 26 uugaguuug 9 <210> 27 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G2,9U <400> 27 uugaguguu 9 <210> 28 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G3,5U <400> 28 uguauugug 9 <210> 29 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G3,7U <400> 29 uguaguuug 9 <210> 30 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G3,9U <400> 30 uguaguguu 9 <210> 31 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G5,7U <400> 31 uggauuuug 9 <210> 32 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G5,9U <400> 32 uggauuguu 9 <210> 33 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-122-G7,9U <400> 33 uggaguuuu 9 <210> 34 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-133-G4U <400> 34 uuuuguccc 9 <210> 35 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-133-G5U <400> 35 uuuguuccc 9 <210> 36 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-124-G4,5U <400> 36 uuuuuuccc 9 <210> 37 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G2U <400> 37 uuagguagu 9 <210> 38 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G4U <400> 38 ugauguagu 9 <210> 39 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G5U <400> 39 ugaguuagu 9 <210> 40 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G8U <400> 40 ugagguauu 9 <210> 41 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G2,4U <400> 41 uuauguagu 9 <210> 42 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G2,5U <400> 42 uuaguuagu 9 <210> 43 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G2,8U <400> 43 uuagguauu 9 <210> 44 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G4,5U <400> 44 ugauuuagu 9 <210> 45 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G4,8U <400> 45 ugauguauu 9 <210> 46 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of let-7-G5,8U <400> 46 ugaguuauu 9 <210> 47 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-302a-G4U <400> 47 uaauugcuu 9 <210> 48 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-302a-G6U <400> 48 uaaguucuu 9 <210> 49 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-302a-G4,6U <400> 49 uaauuucuu 9 <210> 50 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-372-G4U <400> 50 aaauugcug 9 <210> 51 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-372-G6U <400> 51 aaaguucug 9 <210> 52 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-372-G9U <400> 52 aaagugcuu 9 <210> 53 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-372-G4,6U <400> 53 aaauuucug 9 <210> 54 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-372-G4,9U <400> 54 aaauugcuu 9 <210> 55 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 5'1~9 of miR-372-G6,9U <400> 55 aaaguucuu 9 <210> 56 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G4U <400> 56 uaaugcacgc ggugaaugcc aa 22 <210> 57 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G5U <400> 57 uaagucacgc ggugaaugcc a 21 <210> 58 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G4,5U <400> 58 uaauucacgc ggugaaugcc aa 22 <210> 59 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2U <400> 59 uugaauguaa agaaguaugu au 22 <210> 60 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G3U <400> 60 uguaauguaa agaaguaugu au 22 <210> 61 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G7U <400> 61 uggaauuuaa agaaguaugu au 22 <210> 62 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2,3U <400> 62 uuuaauguaa agaaguaugu au 22 <210> 63 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G3,7U <400> 63 uguaauuuaa agaaguaugu au 22 <210> 64 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2,7U <400> 64 uugaauuuaa agaaguaugu au 22 <210> 65 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-1-G2,3,7U <400> 65 uuuaauuuaa agaaguaugu au 22 <210> 66 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2U <400> 66 uugaguguga caaugguguu ug 22 <210> 67 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3U <400> 67 uguaguguga caaugguguu ug 22 <210> 68 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G5U <400> 68 uggauuguga caaugguguu ug 22 <210> 69 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G7U <400> 69 uggaguuuga caaugguguu ug 22 <210> 70 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G9U <400> 70 uggaguguua caaugguguu ug 22 <210> 71 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,3U <400> 71 uuuaguguga caaugguguu ug 22 <210> 72 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,5U <400> 72 uugauuguga caaugguguu ug 22 <210> 73 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,7U <400> 73 uugaguuuga caaugguguu ug 22 <210> 74 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G2,9U <400> 74 uugaguguua caaugguguu ug 22 <210> 75 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3,5U <400> 75 uguauuguga caaugguguu ug 22 <210> 76 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3,7U <400> 76 uguaguuuga caaugguguu ug 22 <210> 77 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G3,9U <400> 77 uguaguguua caaugguguu ug 22 <210> 78 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G5,7U <400> 78 uggauuuuga caaugguguu ug 22 <210> 79 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G5,9U <400> 79 uggauuguua caaugguguu ug 22 <210> 80 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-122-G7,9U <400> 80 uggaguuuua caaugguguu ug 22 <210> 81 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-133-G4U <400> 81 uuuugucccc uucaaccagc ug 22 <210> 82 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-133-G5U <400> 82 uuuguucccc uucaaccagc ug 22 <210> 83 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-124-G4,5U <400> 83 uuuuuucccc uucaaccagc ug 22 <210> 84 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2U <400> 84 uuagguagua gguuguauag uu 22 <210> 85 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G4U <400> 85 ugauguagua gguuguauag uu 22 <210> 86 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G5U <400> 86 ugaguuagua gguuguauag uu 22 <210> 87 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G8U <400> 87 ugagguauua gguuguauag uu 22 <210> 88 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2,4U <400> 88 uuauguagua gguuguauag uu 22 <210> 89 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2,5U <400> 89 uuaguuagua gguuguauag uu 22 <210> 90 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G2,8U <400> 90 uuagguauua gguuguauag uu 22 <210> 91 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G4,5U <400> 91 ugauuuagua gguuguauag uu 22 <210> 92 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G4,8U <400> 92 ugauguauua gguuguauag uu 22 <210> 93 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> let-7-G5,8U <400> 93 ugaguuauua gguuguauag uu 22 <210> 94 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-302a-G4U <400> 94 uaauugcuuc cauguuuugg uga 23 <210> 95 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-302a-G6U <400> 95 uaaguucuuc cauguuuugg uga 23 <210> 96 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-302a-G4,6U <400> 96 uaauuucuuc cauguuuugg uga 23 <210> 97 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G4U <400> 97 aaauugcugc gacauuugag cgu 23 <210> 98 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G6U <400> 98 aaaguucugc gacauuugag cgu 23 <210> 99 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G9U <400> 99 aaagugcuuc gacauuugag cgu 23 <210> 100 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G4,6U <400> 100 aaauuucugc gacauuugag cgu 23 <210> 101 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G4,9U <400> 101 aaauugcuuc gacauuugag cgu 23 <210> 102 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-372-G6,9U <400> 102 aaaguucuuc gacauuugag cgu 23 <210> 103 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> let-7/98/4458/4500 BS seq <400> 103 gagguu 6 <210> 104 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-125a-5p/125b-5p/351/670/4319 BS seq <400> 104 cccugg 6 <210> 105 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-124/124ab/506 BS seq <400> 105 aaggcc 6 <210> 106 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-9/9ab BS seq <400> 106 cuuugg 6 <210> 107 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-29abcd BS seq <400> 107 agcacc 6 <210> 108 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-103a/107/107ab BS seq <400> 108 gcagcc 6 <210> 109 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-221/222/222ab/1928 BS seq <400> 109 gcuacc 6 <210> 110 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-26ab/1297/4465 BS seq <400> 110 ucaagg 6 <210> 111 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-15abc/16/16abc/195/322/424/497/1907 BS seq <400> 111 agcagg 6 <210> 112 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-126-3p BS seq <400> 112 cguacc 6 <210> 113 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-30abcdef/30abe-5p/384-5p BS seq <400> 113 guaaaa 6 <210> 114 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-33ab/33-5p BS seq <400> 114 ugcauu 6 <210> 115 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-34ac/34bc-5p/449abc/449c-5p BS seq <400> 115 ggcagg 6 <210> 116 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-19ab BS seq <400> 116 gugcaa 6 <210> 117 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-99ab/100 BS seq <400> 117 acccgg 6 <210> 118 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-17/17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519d BS seq <400> 118 aaaguu 6 <210> 119 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-27abc/27a-3p BS seq <400> 119 ucacaa 6 <210> 120 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-218/218a BS seq <400> 120 ugugcc 6 <210> 121 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-22/22-3p BS seq <400> 121 agcugg 6 <210> 122 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-185/882/3473/4306/4644 BS seq <400> 122 ggagaa 6 <210> 123 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-181abcd/4262 BS seq <400> 123 acauuu 6 <210> 124 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-338/338-3p BS seq <400> 124 ccagcc 6 <210> 125 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-127/127-3p BS seq <400> 125 cggauu 6 <210> 126 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-101/101ab BS seq <400> 126 acaguu 6 <210> 127 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-149 BS seq <400> 127 cuggcc 6 <210> 128 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-324-5p BS seq <400> 128 gcaucc 6 <210> 129 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-24/24ab/24-3p BS seq <400> 129 ggcucc 6 <210> 130 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-33a-3p/365/365-3p BS seq <400> 130 aaugcc 6 <210> 131 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-139-5p BS seq <400> 131 cuacaa 6 <210> 132 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-138/138ab BS seq <400> 132 gcuggg 6 <210> 133 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-143/1721/4770 BS seq <400> 133 gagauu 6 <210> 134 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-25/32/92abc/363/363-3p/367 BS seq <400> 134 auugcc 6 <210> 135 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-574-5p BS seq <400> 135 gagugg 6 <210> 136 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-7/7ab BS seq <400> 136 ggaagg 6 <210> 137 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-145 BS seq <400> 137 uccagg 6 <210> 138 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-135ab/135a-5p BS seq <400> 138 auggcc 6 <210> 139 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-148ab-3p/152 BS seq <400> 139 cagugg 6 <210> 140 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-28-5p/708/1407/1653/3139 BS seq <400> 140 aggagg 6 <210> 141 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-130ac/301ab/301b/301b-3p/454/721/4295/3666 BS seq <400> 141 agugcc 6 <210> 142 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3132 BS seq <400> 142 ggguaa 6 <210> 143 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-155 BS seq <400> 143 uaaugg 6 <210> 144 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-485-3p BS seq <400> 144 ucauaa 6 <210> 145 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-132/212/212-3p BS seq <400> 145 aacagg 6 <210> 146 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-3p BS seq <400> 146 uaaagg 6 <210> 147 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-374ab BS seq <400> 147 uauaaa 6 <210> 148 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-129-3p/129ab-3p/129-1-3p/129-2-3p BS seq <400> 148 agcccc 6 <210> 149 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-126-5p BS seq <400> 149 auuauu 6 <210> 150 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-425/425-5p/489 BS seq <400> 150 augacc 6 <210> 151 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-423-3p BS seq <400> 151 gcucgg 6 <210> 152 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-21/590-5p BS seq <400> 152 agcuuu 6 <210> 153 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-31 BS seq <400> 153 ggcaaa 6 <210> 154 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-20b-3p BS seq <400> 154 cuguaa 6 <210> 155 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7d-3p BS seq <400> 155 uauacc 6 <210> 156 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-191 BS seq <400> 156 aacggg 6 <210> 157 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-18ab/4735-3p BS seq <400> 157 aagguu 6 <210> 158 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-369-3p BS seq <400> 158 auaauu 6 <210> 159 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5187-5p BS seq <400> 159 gggauu 6 <210> 160 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-382 BS seq <400> 160 aaguuu 6 <210> 161 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-485-5p/1698/1703/1962 BS seq <400> 161 gaggcc 6 <210> 162 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-136-3p BS seq <400> 162 aucauu 6 <210> 163 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-576-3p BS seq <400> 163 agaugg 6 <210> 164 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-204/204b/211 BS seq <400> 164 ucccuu 6 <210> 165 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-769-5p BS seq <400> 165 gagacc 6 <210> 166 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-342-5p/4664-5p BS seq <400> 166 gggguu 6 <210> 167 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-361-5p BS seq <400> 167 uaucaa 6 <210> 168 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-199ab-3p/3129-5p BS seq <400> 168 caguaa 6 <210> 169 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-142-3p BS seq <400> 169 guaguu 6 <210> 170 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-299-5p/3563-5p BS seq <400> 170 gguuuu 6 <210> 171 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-193/193b/193a-3p BS seq <400> 171 acuggg 6 <210> 172 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1277-5p BS seq <400> 172 aauauu 6 <210> 173 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-140/140-5p/876-3p/1244 BS seq <400> 173 aguggg 6 <210> 174 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30a/d/e-3p BS seq <400> 174 uuucaa 6 <210> 175 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7i-3p BS seq <400> 175 ugcgcc 6 <210> 176 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-409-5p/409a BS seq <400> 176 gguuaa 6 <210> 177 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-379/1193-5p/3529 BS seq <400> 177 gguagg 6 <210> 178 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-136 BS seq <400> 178 cuccaa 6 <210> 179 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-154/872 BS seq <400> 179 agguuu 6 <210> 180 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4684-3p BS seq <400> 180 guugcc 6 <210> 181 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-361-3p BS seq <400> 181 cccccc 6 <210> 182 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-335/335-5p BS seq <400> 182 caagaa 6 <210> 183 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-423a/423-5p/3184/3573-5p BS seq <400> 183 gagggg 6 <210> 184 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-371/373/371b-5p BS seq <400> 184 cucaaa 6 <210> 185 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1185/3679-5p BS seq <400> 185 gaggaa 6 <210> 186 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3613-3p BS seq <400> 186 caaaaa 6 <210> 187 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-93/93a/105/106a/291a-3p/294/295/302abcde/372/373/428/519a/520 be/520acd-3p/1378/1420ac BS seq <400> 187 aagugg 6 <210> 188 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-876-5p/3167 BS seq <400> 188 ggauuu 6 <210> 189 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-329/329ab/362-3p BS seq <400> 189 acacaa 6 <210> 190 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-582-5p BS seq <400> 190 uacagg 6 <210> 191 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-146ac/146b-5p BS seq <400> 191 gagaaa 6 <210> 192 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-380/380-3p BS seq <400> 192 auguaa 6 <210> 193 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-499-3p/499a-3p BS seq <400> 193 acaucc 6 <210> 194 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-551a BS seq <400> 194 cgaccc 6 <210> 195 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-142-5p BS seq <400> 195 auaaaa 6 <210> 196 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p BS seq <400> 196 cugcaa 6 <210> 197 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-199ab-5p BS seq <400> 197 ccaguu 6 <210> 198 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-542-3p BS seq <400> 198 gugacc 6 <210> 199 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1277 BS seq <400> 199 acguaa 6 <210> 200 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29c-5p BS seq <400> 200 gaccgg 6 <210> 201 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3145-3p BS seq <400> 201 gauauu 6 <210> 202 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-106b-3p BS seq <400> 202 cgcacc 6 <210> 203 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-5p BS seq <400> 203 guucuu 6 <210> 204 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-744/1716 BS seq <400> 204 gcgggg 6 <210> 205 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-132-5p BS seq <400> 205 ccgugg 6 <210> 206 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-488 BS seq <400> 206 ugaaaa 6 <210> 207 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-501-3p/502-3p/500/502a BS seq <400> 207 augcaa 6 <210> 208 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-486-5p/3107 BS seq <400> 208 ccuguu 6 <210> 209 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-450a/451a BS seq <400> 209 uuugcc 6 <210> 210 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30c-3p BS seq <400> 210 ugggaa 6 <210> 211 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-499-5p BS seq <400> 211 uaagaa 6 <210> 212 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-421 BS seq <400> 212 ucaacc 6 <210> 213 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-197 BS seq <400> 213 ucaccc 6 <210> 214 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-296-5p BS seq <400> 214 gggccc 6 <210> 215 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-326/330/330-5p BS seq <400> 215 cucugg 6 <210> 216 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-214/761/3619-5p BS seq <400> 216 cagcaa 6 <210> 217 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-612/1285/3187-5p BS seq <400> 217 cugggg 6 <210> 218 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-409-3p BS seq <400> 218 aauguu 6 <210> 219 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-378/422a/378bcdefhi BS seq <400> 219 cuggaa 6 <210> 220 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-342-3p BS seq <400> 220 cucacc 6 <210> 221 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-338-5p BS seq <400> 221 acaauu 6 <210> 222 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-625 BS seq <400> 222 gggggg 6 <210> 223 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-200bc/429/548a BS seq <400> 223 aauacc 6 <210> 224 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-376a-5p BS seq <400> 224 uagauu 6 <210> 225 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-584 BS seq <400> 225 uauggg 6 <210> 226 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-411 BS seq <400> 226 aguagg 6 <210> 227 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-573/3533/3616-5p/3647-5p BS seq <400> 227 ugaagg 6 <210> 228 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-885-5p BS seq <400> 228 ccauuu 6 <210> 229 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-99-3p BS seq <400> 229 aagcuu 6 <210> 230 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-876-3p BS seq <400> 230 gguggg 6 <210> 231 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-654-3p BS seq <400> 231 augucc 6 <210> 232 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-340-3p BS seq <400> 232 ccgucc 6 <210> 233 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3614-5p BS seq <400> 233 cacuuu 6 <210> 234 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-5p BS seq <400> 234 guguuu 6 <210> 235 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-491-5p BS seq <400> 235 gugggg 6 <210> 236 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-96/507/1271 BS seq <400> 236 uuggcc 6 <210> 237 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548a-3p/548ef/2285a BS seq <400> 237 aaaacc 6 <210> 238 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-32-3p BS seq <400> 238 aauuuu 6 <210> 239 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3942-5p/4703-5p BS seq <400> 239 agcaaa 6 <210> 240 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-34b/449c/1360/2682 BS seq <400> 240 aggcaa 6 <210> 241 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-23a/b-5p BS seq <400> 241 ggguuu 6 <210> 242 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-362-5p/500b BS seq <400> 242 auccuu 6 <210> 243 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-677/4420 BS seq <400> 243 ucacuu 6 <210> 244 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-577 BS seq <400> 244 agauaa 6 <210> 245 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3613-5p BS seq <400> 245 guuguu 6 <210> 246 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-369-5p BS seq <400> 246 gaucgg 6 <210> 247 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-150/5127 BS seq <400> 247 cucccc 6 <210> 248 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-544/544ab/544-3p BS seq <400> 248 uucugg 6 <210> 249 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29a-5p BS seq <400> 249 cugauu 6 <210> 250 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-873 BS seq <400> 250 caggaa 6 <210> 251 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3614-3p BS seq <400> 251 agccuu 6 <210> 252 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-186 BS seq <400> 252 aaagaa 6 <210> 253 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-483-3p BS seq <400> 253 cacucc 6 <210> 254 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-374a-3p BS seq <400> 254 uuaucc 6 <210> 255 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-196abc BS seq <400> 255 agguaa 6 <210> 256 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-2-5p BS seq <400> 256 gauucc 6 <210> 257 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-2-5p BS seq <400> 257 ugguuu 6 <210> 258 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-5p BS seq <400> 258 ccuggg 6 <210> 259 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-323b-3p BS seq <400> 259 ccaauu 6 <210> 260 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-616 BS seq <400> 260 gucauu 6 <210> 261 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-330-3p BS seq <400> 261 caaagg 6 <210> 262 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-3p BS seq <400> 262 aacaaa 6 <210> 263 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-187 BS seq <400> 263 cguguu 6 <210> 264 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26a-3p BS seq <400> 264 cuauuu 6 <210> 265 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-452/4676-3p BS seq <400> 265 acuguu 6 <210> 266 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-129-5p/129ab-5p BS seq <400> 266 uuuuuu 6 <210> 267 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-223 BS seq <400> 267 gucagg 6 <210> 268 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4755-3p BS seq <400> 268 gccagg 6 <210> 269 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1247 BS seq <400> 269 cccguu 6 <210> 270 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3129-3p BS seq <400> 270 aacuaa 6 <210> 271 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-335-3p BS seq <400> 271 uuuucc 6 <210> 272 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-542-5p BS seq <400> 272 cggggg 6 <210> 273 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-3p BS seq <400> 273 ccaucc 6 <210> 274 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-186-3p BS seq <400> 274 cccaaa 6 <210> 275 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27b-5p BS seq <400> 275 gagcuu 6 <210> 276 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-491-3p BS seq <400> 276 uuaugg 6 <210> 277 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4687-3p BS seq <400> 277 ggcugg 6 <210> 278 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-101-5p BS seq <400> 278 aguuaa 6 <210> 279 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4772-5p BS seq <400> 279 gaucaa 6 <210> 280 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-337-3p BS seq <400> 280 uccuaa 6 <210> 281 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-223-5p BS seq <400> 281 guguaa 6 <210> 282 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-16/195-3p BS seq <400> 282 caauaa 6 <210> 283 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3677-3p BS seq <400> 283 ucgugg 6 <210> 284 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-766-5p BS seq <400> 284 ggaggg 6 <210> 285 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-299/299-3p/3563-3p BS seq <400> 285 augugg 6 <210> 286 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3140-3p BS seq <400> 286 gcuuuu 6 <210> 287 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-532-5p/511 BS seq <400> 287 augccc 6 <210> 288 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-5p BS seq <400> 288 gccuaa 6 <210> 289 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4778-5p BS seq <400> 289 auucuu 6 <210> 290 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-642b BS seq <400> 290 gacacc 6 <210> 291 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-483-5p BS seq <400> 291 agacgg 6 <210> 292 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-767-5p BS seq <400> 292 gcaccc 6 <210> 293 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-31-3p BS seq <400> 293 gcuauu 6 <210> 294 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-574-3p BS seq <400> 294 acgcuu 6 <210> 295 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3173-3p BS seq <400> 295 aaggaa 6 <210> 296 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2127/4728-5p BS seq <400> 296 gggagg 6 <210> 297 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-103a-2-5p BS seq <400> 297 gcuucc 6 <210> 298 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3591-3p BS seq <400> 298 aacacc 6 <210> 299 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-625-3p BS seq <400> 299 acuauu 6 <210> 300 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15b-3p BS seq <400> 300 gaaucc 6 <210> 301 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-522/518e/1422p BS seq <400> 301 aaaugg 6 <210> 302 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548d-3p/548acbz BS seq <400> 302 aaaaaa 6 <210> 303 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-452-3p BS seq <400> 303 ucaucc 6 <210> 304 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-192/215 BS seq <400> 304 ugaccc 6 <210> 305 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1551/4524 BS seq <400> 305 uagcaa 6 <210> 306 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-425-3p BS seq <400> 306 ucgggg 6 <210> 307 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3126-3p BS seq <400> 307 aucugg 6 <210> 308 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-2-3p BS seq <400> 308 cacaaa 6 <210> 309 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-324-3p/1913 BS seq <400> 309 cugccc 6 <210> 310 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-141-5p BS seq <400> 310 aucuuu 6 <210> 311 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-365a/b-5p BS seq <400> 311 gggacc 6 <210> 312 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-1-5p BS seq <400> 312 cugguu 6 <210> 313 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-563/380-5p BS seq <400> 313 gguugg 6 <210> 314 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1304 BS seq <400> 314 uugagg 6 <210> 315 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-216c/1461/4684-5p BS seq <400> 315 ucucuu 6 <210> 316 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2681-5p BS seq <400> 316 uuuuaa 6 <210> 317 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-194 BS seq <400> 317 guaacc 6 <210> 318 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-296-3p BS seq <400> 318 aggguu 6 <210> 319 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-205-3p BS seq <400> 319 auuucc 6 <210> 320 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-888 BS seq <400> 320 acucaa 6 <210> 321 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4802-3p BS seq <400> 321 acaugg 6 <210> 322 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7a/g-3p BS seq <400> 322 uguacc 6 <210> 323 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-762/4492/4498 BS seq <400> 323 gggcuu 6 <210> 324 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-744-3p BS seq <400> 324 uguugg 6 <210> 325 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-148b-5p BS seq <400> 325 aguucc 6 <210> 326 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-514/514b-3p BS seq <400> 326 uugacc 6 <210> 327 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-28-3p BS seq <400> 327 acuagg 6 <210> 328 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-550a BS seq <400> 328 gugccc 6 <210> 329 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p BS seq <400> 329 cggguu 6 <210> 330 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-506-5p BS seq <400> 330 auucaa 6 <210> 331 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1306-5p BS seq <400> 331 caccuu 6 <210> 332 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3189-3p BS seq <400> 332 ccuugg 6 <210> 333 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-675-5p/4466 BS seq <400> 333 ggugcc 6 <210> 334 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-3p BS seq <400> 334 aaucaa 6 <210> 335 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-454-5p BS seq <400> 335 cccuaa 6 <210> 336 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-509-5p/509-3-5p/4418 BS seq <400> 336 acugcc 6 <210> 337 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-19a/b-5p BS seq <400> 337 guuuuu 6 <210> 338 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4755-5p BS seq <400> 338 uucccc 6 <210> 339 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-93-3p BS seq <400> 339 cugcuu 6 <210> 340 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3130-5p/4482 BS seq <400> 340 acccaa 6 <210> 341 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-488-5p BS seq <400> 341 ccagaa 6 <210> 342 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-378a-5p BS seq <400> 342 uccugg 6 <210> 343 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-575/4676-5p BS seq <400> 343 agccaa 6 <210> 344 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1307 BS seq <400> 344 cucggg 6 <210> 345 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3942-3p BS seq <400> 345 uucagg 6 <210> 346 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4677-5p BS seq <400> 346 uguucc 6 <210> 347 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-339-3p BS seq <400> 347 gagcgg 6 <210> 348 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548b-3p BS seq <400> 348 aagaaa 6 <210> 349 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-642b-5p BS seq <400> 349 guuccc 6 <210> 350 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-188-5p BS seq <400> 350 aucccc 6 <210> 351 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-652-5p BS seq <400> 351 aacccc 6 <210> 352 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2114 BS seq <400> 352 aguccc 6 <210> 353 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3688-5p BS seq <400> 353 guggcc 6 <210> 354 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15a-3p BS seq <400> 354 aggccc 6 <210> 355 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181c-3p BS seq <400> 355 accauu 6 <210> 356 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-122/122a/1352 BS seq <400> 356 ggaguu 6 <210> 357 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-556-3p BS seq <400> 357 uauuaa 6 <210> 358 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-218-2-3p BS seq <400> 358 augguu 6 <210> 359 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-643 BS seq <400> 359 cuuguu 6 <210> 360 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-140-3p BS seq <400> 360 accacc 6 <210> 361 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1245 BS seq <400> 361 agugaa 6 <210> 362 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2115-3p BS seq <400> 362 aucagg 6 <210> 363 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-518bcf/518a-3p/518d-3p BS seq <400> 363 aaagcc 6 <210> 364 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3200-3p BS seq <400> 364 accuuu 6 <210> 365 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-545/3065/3065-5p BS seq <400> 365 caacaa 6 <210> 366 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1903/4778-3p BS seq <400> 366 cuucuu 6 <210> 367 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-5p BS seq <400> 367 cuuaaa 6 <210> 368 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-183-3p BS seq <400> 368 ugaauu 6 <210> 369 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3144-5p BS seq <400> 369 ggggaa 6 <210> 370 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-582-3p BS seq <400> 370 aacugg 6 <210> 371 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4662a-3p BS seq <400> 371 aagauu 6 <210> 372 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3140-5p BS seq <400> 372 ccugaa 6 <210> 373 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-106a-3p BS seq <400> 373 ugcaaa 6 <210> 374 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-135a-3p BS seq <400> 374 auaggg 6 <210> 375 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-345/345-5p BS seq <400> 375 cugacc 6 <210> 376 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-125a-3p/1554 BS seq <400> 376 cagguu 6 <210> 377 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3145-5p BS seq <400> 377 acuccc 6 <210> 378 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-676 BS seq <400> 378 uguccc 6 <210> 379 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3173-5p BS seq <400> 379 gcccuu 6 <210> 380 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5586-3p BS seq <400> 380 agaguu 6 <210> 381 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-615-3p BS seq <400> 381 ccgagg 6 <210> 382 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3688-3p BS seq <400> 382 auggaa 6 <210> 383 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4662a-5p BS seq <400> 383 uagccc 6 <210> 384 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4659ab-5p BS seq <400> 384 ugccaa 6 <210> 385 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5586-5p BS seq <400> 385 auccaa 6 <210> 386 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-514a-5p BS seq <400> 386 acucuu 6 <210> 387 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-10abc/10a-5p BS seq <400> 387 acccuu 6 <210> 388 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-888-3p BS seq <400> 388 acugaa 6 <210> 389 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3127-5p BS seq <400> 389 ucaggg 6 <210> 390 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-508-3p BS seq <400> 390 gauugg 6 <210> 391 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-3p BS seq <400> 391 ggggcc 6 <210> 392 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-200c-5p,hsa-miR-550a-3p BS seq <400> 392 gucuuu 6 <210> 393 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-513c/514b-5p BS seq <400> 393 ucucaa 6 <210> 394 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-490-3p BS seq <400> 394 aaccuu 6 <210> 395 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5187-3p BS seq <400> 395 cugaaa 6 <210> 396 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3664-3p BS seq <400> 396 cucagg 6 <210> 397 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3189-5p BS seq <400> 397 gccccc 6 <210> 398 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4670-3p BS seq <400> 398 gaaguu 6 <210> 399 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-105/105ab BS seq <400> 399 caaauu 6 <210> 400 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-135b-3p BS seq <400> 400 uguagg 6 <210> 401 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5010-3p BS seq <400> 401 uuuguu 6 <210> 402 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-493/493b BS seq <400> 402 gaaggg 6 <210> 403 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3605-3p BS seq <400> 403 cuccgg 6 <210> 404 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-188-3p BS seq <400> 404 ucccaa 6 <210> 405 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-449c-3p BS seq <400> 405 ugcuaa 6 <210> 406 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4761-5p BS seq <400> 406 caaggg 6 <210> 407 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-224 BS seq <400> 407 aagucc 6 <210> 408 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4796-5p BS seq <400> 408 gucuaa 6 <210> 409 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-551b-5p BS seq <400> 409 aaaucc 6 <210> 410 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-556-5p BS seq <400> 410 augagg 6 <210> 411 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-3p BS seq <400> 411 acgccc 6 <210> 412 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4677-3p BS seq <400> 412 cugugg 6 <210> 413 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-877 BS seq <400> 413 uagagg 6 <210> 414 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-576-5p BS seq <400> 414 uucuaa 6 <210> 415 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-490-5p BS seq <400> 415 cauggg 6 <210> 416 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-589-3p BS seq <400> 416 cagaaa 6 <210> 417 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4786-3p BS seq <400> 417 gaagcc 6 <210> 418 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-374b-3p BS seq <400> 418 uuagcc 6 <210> 419 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26b-3p BS seq <400> 419 cuguuu 6 <210> 420 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3158-3p BS seq <400> 420 agggcc 6 <210> 421 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4423-3p BS seq <400> 421 uaggcc 6 <210> 422 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-518d-5p/519bc-5p520c-5p/523b/526a BS seq <400> 422 ucuagg 6 <210> 423 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4707-3p BS seq <400> 423 gcccgg 6 <210> 424 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-10a-3p BS seq <400> 424 aaauuu 6 <210> 425 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-526b BS seq <400> 425 ucuugg 6 <210> 426 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-676-5p BS seq <400> 426 cuucaa 6 <210> 427 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-660-3p BS seq <400> 427 ccuccc 6 <210> 428 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5004-3p BS seq <400> 428 uuggaa 6 <210> 429 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-193a-5p BS seq <400> 429 gggucc 6 <210> 430 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-222-5p BS seq <400> 430 ucaguu 6 <210> 431 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4661-3p BS seq <400> 431 aggauu 6 <210> 432 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-25-5p BS seq <400> 432 ggcggg 6 <210> 433 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4670-5p BS seq <400> 433 agcgaa 6 <210> 434 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-659 BS seq <400> 434 uugguu 6 <210> 435 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1745/3194-3p BS seq <400> 435 gcucuu 6 <210> 436 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-182-3p BS seq <400> 436 gguucc 6 <210> 437 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-298/2347/2467-3p BS seq <400> 437 gcagaa 6 <210> 438 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-130b-5p BS seq <400> 438 cucuuu 6 <210> 439 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4746-3p BS seq <400> 439 gcgguu 6 <210> 440 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1893/2277-5p BS seq <400> 440 gcgcgg 6 <210> 441 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3619-3p BS seq <400> 441 ggaccc 6 <210> 442 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-1-3p BS seq <400> 442 cuacuu 6 <210> 443 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4728-3p BS seq <400> 443 augcuu 6 <210> 444 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3127-3p BS seq <400> 444 ccccuu 6 <210> 445 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-671-3p BS seq <400> 445 ccgguu 6 <210> 446 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-211-3p BS seq <400> 446 cagggg 6 <210> 447 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2114-3p BS seq <400> 447 gagccc 6 <210> 448 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-877-3p BS seq <400> 448 ccucuu 6 <210> 449 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3157-5p BS seq <400> 449 ucagcc 6 <210> 450 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-502-5p BS seq <400> 450 uccuuu 6 <210> 451 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-500a BS seq <400> 451 aauccc 6 <210> 452 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-548g BS seq <400> 452 aaacuu 6 <210> 453 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-523 BS seq <400> 453 aacgcc 6 <210> 454 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-584-3p BS seq <400> 454 caguuu 6 <210> 455 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-205/205ab BS seq <400> 455 ccuucc 6 <210> 456 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4793-5p BS seq <400> 456 cauccc 6 <210> 457 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-363-5p BS seq <400> 457 gggugg 6 <210> 458 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-214-5p BS seq <400> 458 gccugg 6 <210> 459 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3180-5p BS seq <400> 459 uuccaa 6 <210> 460 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1404/2110 BS seq <400> 460 uggggg 6 <210> 461 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3157-3p BS seq <400> 461 ugcccc 6 <210> 462 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-191-3p BS seq <400> 462 cugcgg 6 <210> 463 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1346/3940-5p/4507 BS seq <400> 463 uggguu 6 <210> 464 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4746-5p BS seq <400> 464 cggucc 6 <210> 465 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3939 BS seq <400> 465 acgcgg 6 <210> 466 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-2-3p BS seq <400> 466 ccacuu 6 <210> 467 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-500a-3p BS seq <400> 467 ugcacc 6 <210> 468 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196b-3p BS seq <400> 468 cgacaa 6 <210> 469 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-675-3p BS seq <400> 469 uguauu 6 <210> 470 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-548aj/g/x-5p BS seq <400> 470 gcaaaa 6 <210> 471 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-4659ab-3p BS seq <400> 471 uucuuu 6 <210> 472 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5001-3p BS seq <400> 472 ucugcc 6 <210> 473 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1247-3p BS seq <400> 473 cccggg 6 <210> 474 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2890/4707-5p BS seq <400> 474 ccccgg 6 <210> 475 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-150-3p BS seq <400> 475 ugguaa 6 <210> 476 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-3p BS seq <400> 476 uucucc 6 <210> 477 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2277-3p BS seq <400> 477 gacagg 6 <210> 478 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3547/3663-3p BS seq <400> 478 gagcaa 6 <210> 479 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-34bc-3p BS seq <400> 479 aucacc 6 <210> 480 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-518ef BS seq <400> 480 aagcgg 6 <210> 481 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3187-3p BS seq <400> 481 uggccc 6 <210> 482 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1306/1306-3p BS seq <400> 482 cguugg 6 <210> 483 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3177-3p BS seq <400> 483 gcacgg 6 <210> 484 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1ab/206/613 BS seq <400> 484 ggaauu 6 <210> 485 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-128/128ab BS seq <400> 485 cacagg 6 <210> 486 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1296 BS seq <400> 486 uagggg 6 <210> 487 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-598/598-3p BS seq <400> 487 acgucc 6 <210> 488 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-887 BS seq <400> 488 ugaacc 6 <210> 489 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1-5p BS seq <400> 489 cauacc 6 <210> 490 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-376c/741-5p BS seq <400> 490 acauaa 6 <210> 491 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-374c/655 BS seq <400> 491 uaauaa 6 <210> 492 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-494 BS seq <400> 492 gaaacc 6 <210> 493 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-651 BS seq <400> 493 uuaggg 6 <210> 494 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1301/5047 BS seq <400> 494 ugcagg 6 <210> 495 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-381-5p BS seq <400> 495 gcgagg 6 <210> 496 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-216a BS seq <400> 496 aaucuu 6 <210> 497 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-300/381/539-3p BS seq <400> 497 auacaa 6 <210> 498 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1249 BS seq <400> 498 cgcccc 6 <210> 499 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-579 BS seq <400> 499 ucauuu 6 <210> 500 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-656 BS seq <400> 500 auauuu 6 <210> 501 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-433 BS seq <400> 501 ucaugg 6 <210> 502 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1180 BS seq <400> 502 uuccgg 6 <210> 503 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-597/1970 BS seq <400> 503 gugucc 6 <210> 504 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-190a-3p BS seq <400> 504 uauauu 6 <210> 505 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1537 BS seq <400> 505 aaaccc 6 <210> 506 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-874-5p BS seq <400> 506 ggcccc 6 <210> 507 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-410/344de/344b-1-3p BS seq <400> 507 auauaa 6 <210> 508 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-370 BS seq <400> 508 ccugcc 6 <210> 509 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-219-2-3p/219-3p BS seq <400> 509 gaauuu 6 <210> 510 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-3620 BS seq <400> 510 cacccc 6 <210> 511 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-504/4725-5p BS seq <400> 511 gacccc 6 <210> 512 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-2964/2964a-5p BS seq <400> 512 gauguu 6 <210> 513 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-450a-2-3p BS seq <400> 513 uugggg 6 <210> 514 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-511 BS seq <400> 514 ugucuu 6 <210> 515 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-6505-3p BS seq <400> 515 gacuuu 6 <210> 516 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-433-5p BS seq <400> 516 acgguu 6 <210> 517 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-6741-3p BS seq <400> 517 cggcuu 6 <210> 518 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-370-5p BS seq <400> 518 aggucc 6 <210> 519 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-579-5p BS seq <400> 519 cgcggg 6 <210> 520 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-376c-5p,miR-376b-5p BS seq <400> 520 guggaa 6 <210> 521 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-552/3097-5p BS seq <400> 521 acaggg 6 <210> 522 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-1910 BS seq <400> 522 cagucc 6 <210> 523 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-758 BS seq <400> 523 uugugg 6 <210> 524 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-6735-3p BS seq <400> 524 ggccuu 6 <210> 525 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-376a-2-5p BS seq <400> 525 guagaa 6 <210> 526 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-585 BS seq <400> 526 gggcgg 6 <210> 527 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-451 BS seq <400> 527 aaccgg 6 <210> 528 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> miR-137/137ab BS seq <400> 528 uauugg 6 <210> 529 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1-3p G2U <400> 529 ugaaug 6 <210> 530 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-194-5p G2U <400> 530 uuaaca 6 <210> 531 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193a-5p G2U <400> 531 uggucu 6 <210> 532 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15b-3p G2U <400> 532 uaauca 6 <210> 533 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-200c-5p G2U <400> 533 uucuua 6 <210> 534 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-214-5p G2U <400> 534 uccugu 6 <210> 535 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-134-5p G2U <400> 535 uugacu 6 <210> 536 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-145-3p G2U <400> 536 uauucc 6 <210> 537 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-5p G2U <400> 537 uuucuu 6 <210> 538 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-3p G2U <400> 538 ucucgg 6 <210> 539 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-873-3p G2U <400> 539 uagacu 6 <210> 540 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G2U <400> 540 ugagug 6 <210> 541 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-143-3p G2U <400> 541 uagaug 6 <210> 542 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-485-5p G2U <400> 542 uaggcu 6 <210> 543 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-409-5p G2U <400> 543 uguuac 6 <210> 544 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-3p G2U <400> 544 ugcuca 6 <210> 545 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-223-3p G2U <400> 545 uucagu 6 <210> 546 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-144-5p G2U <400> 546 uauauc 6 <210> 547 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-379-5p G2U <400> 547 uguaga 6 <210> 548 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-146b-5p/hsa-miR-146a-5p G2U <400> 548 uagaac 6 <210> 549 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-539-5p G2U <400> 549 uagaaa 6 <210> 550 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-296-5p G2U <400> 550 uggccc 6 <210> 551 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-767-5p G2U <400> 551 ucacca 6 <210> 552 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-5p/hsa-miR-34c-5p G2U <400> 552 ugcagu 6 <210> 553 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7f-5p/hsa-let-7d-5p/hsa-let-7b-5p/hsa-let-7a-5p/hsa-let-7 e-5p/hsa-miR-202-3p/hsa-let-7i-5p/hsa-miR-98-5p/hsa-let-7c-5p/hsa -let-7g-5p G2U <400> 553 uaggua 6 <210> 554 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1271-3p G2U <400> 554 uugccu 6 <210> 555 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G2U <400> 555 ucuggu 6 <210> 556 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-19b-3p/hsa-miR-19a-3p G2U <400> 556 uugcaa 6 <210> 557 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-5p G2U <400> 557 uggcuu 6 <210> 558 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-146b-3p G2U <400> 558 ucccug 6 <210> 559 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-5p G2U <400> 559 ugaaga 6 <210> 560 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G2U <400> 560 uagggg 6 <210> 561 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-324-5p G2U <400> 561 ucaucc 6 <210> 562 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-5p G2U <400> 562 ugguuu 6 <210> 563 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-139-3p G2U <400> 563 ugagac 6 <210> 564 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30d-5p/hsa-miR-30e-5p/hsa-miR-30a-5p/hsa-miR-30c-5p/hsa-m iR-30b-5p G2U <400> 564 uuaaac 6 <210> 565 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-3p/hsa-miR-222-3p G2U <400> 565 ucuaca 6 <210> 566 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3p G2U <400> 566 uauugg 6 <210> 567 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-769-5p G2U <400> 567 uagacc 6 <210> 568 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-142-3p G2U <400> 568 uuagug 6 <210> 569 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-5p G2U <400> 569 ugagag 6 <210> 570 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-3p/hsa-miR-219a-5p G2U <400> 570 uauugu 6 <210> 571 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-31-5p G2U <400> 571 ugcaag 6 <210> 572 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-103a-3p/hsa-miR-107 G2U <400> 572 ucagca 6 <210> 573 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-542-3p G2U <400> 573 uugaca 6 <210> 574 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-219a-2-3p G2U <400> 574 uaauug 6 <210> 575 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29c-3p/hsa-miR-29a-3p/hsa-miR-29b-3p G3U <400> 575 aucacc 6 <210> 576 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G3U <400> 576 cugguu 6 <210> 577 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-5p G3U <400> 577 guaaga 6 <210> 578 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-411-5p G3U <400> 578 auuaga 6 <210> 579 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196a-5p/hsa-miR-196b-5p G3U <400> 579 auguag 6 <210> 580 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3622a-5p G3U <400> 580 augcac 6 <210> 581 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-5p G3U <400> 581 uuaagc 6 <210> 582 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-3p G3U <400> 582 aucugc 6 <210> 583 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-153-3p G3U <400> 583 uucaua 6 <210> 584 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193a-5p G3U <400> 584 gugucu 6 <210> 585 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-5p G3U <400> 585 guagag 6 <210> 586 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1-3p G3U <400> 586 guaaug 6 <210> 587 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-15b-5p/hsa-miR-16-5p/hsa-miR-424-5p G3U <400> 587 aucagc 6 <210> 588 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7g-3p/hsa-miR-493-5p/hsa-let-7c-3p G3U <400> 588 uuuaca 6 <210> 589 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7i-3p G3U <400> 589 uucgca 6 <210> 590 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-218-5p G3U <400> 590 uuugcu 6 <210> 591 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-5p G3U <400> 591 cuaccg 6 <210> 592 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-3p G3U <400> 592 cugauc 6 <210> 593 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G3U <400> 593 uuugcg 6 <210> 594 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-187-3p G3U <400> 594 cuuguc 6 <210> 595 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-192-3p G3U <400> 595 uuccaa 6 <210> 596 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-192-5p G3U <400> 596 uuaccu 6 <210> 597 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-5p/hsa-miR-34c-5p G3U <400> 597 gucagu 6 <210> 598 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-21-5p G3U <400> 598 aucuua 6 <210> 599 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-500a-3p G3U <400> 599 uucacc 6 <210> 600 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-5p G3U <400> 600 guguuu 6 <210> 601 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-379-5p G3U <400> 601 guuaga 6 <210> 602 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-203a-3p G3U <400> 602 uuaaau 6 <210> 603 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-3p G3U <400> 603 gucuca 6 <210> 604 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30c-2-3p G3U <400> 604 uuggag 6 <210> 605 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-488-3p G3U <400> 605 uuaaag 6 <210> 606 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-301a-3p/hsa-miR-301b-3p G3U <400> 606 auugca 6 <210> 607 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-126-3p G3U <400> 607 cuuacc 6 <210> 608 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G3U <400> 608 guagug 6 <210> 609 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-5p G3U <400> 609 gugcuu 6 <210> 610 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26b-3p G4U <400> 610 cuuuuc 6 <210> 611 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-324-3p G4U <400> 611 cuuccc 6 <210> 612 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3065-3p G4U <400> 612 caucac 6 <210> 613 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G4U <400> 613 gauggg 6 <210> 614 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-5p G4U <400> 614 guuuuc 6 <210> 615 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-345-5p G4U <400> 615 cuuacu 6 <210> 616 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-615-3p G4U <400> 616 ccuagc 6 <210> 617 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-889-5p/hsa-miR-135a-5p/hsa-miR-135b-5p G4U <400> 617 auugcu 6 <210> 618 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193a-5p G4U <400> 618 gguucu 6 <210> 619 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-18a-5p G4U <400> 619 aaugug 6 <210> 620 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G4U <400> 620 cguguu 6 <210> 621 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-708-5p/hsa-miR-28-5p G4U <400> 621 aguagc 6 <210> 622 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-224-5p G4U <400> 622 aauuca 6 <210> 623 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-100-3p G4U <400> 623 aaucuu 6 <210> 624 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-873-5p G4U <400> 624 caugaa 6 <210> 625 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-4662a-5p G4U <400> 625 uaucca 6 <210> 626 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-99b-3p/hsa-miR-99a-3p G4U <400> 626 aaucuc 6 <210> 627 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-433-5p G4U <400> 627 acugug 6 <210> 628 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-542-3p G4U <400> 628 guuaca 6 <210> 629 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3605-5p G4U <400> 629 gaugau 6 <210> 630 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-744-5p G4U <400> 630 gcuggg 6 <210> 631 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1296-5p G4U <400> 631 uauggc 6 <210> 632 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-133a-3p G4U <400> 632 uuuguc 6 <210> 633 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-382-5p G4U <400> 633 aauuug 6 <210> 634 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-425-5p G4U <400> 634 auuaca 6 <210> 635 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-377-5p G4U <400> 635 gauguu 6 <210> 636 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-3p G4U <400> 636 cguauc 6 <210> 637 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3180-3p G4U <400> 637 ggugcg 6 <210> 638 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-143-3p G4U <400> 638 gauaug 6 <210> 639 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-758-3p G4U <400> 639 uuuuga 6 <210> 640 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-93-3p G4U <400> 640 cuucug 6 <210> 641 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-128-2-5p G4U <400> 641 ggugcc 6 <210> 642 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-134-5p G4U <400> 642 guuacu 6 <210> 643 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-154-5p G4U <400> 643 aguuua 6 <210> 644 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3622a-5p G4U <400> 644 agucac 6 <210> 645 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-3p G4U <400> 645 aaugca 6 <210> 646 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-5p G4U <400> 646 ggucuu 6 <210> 647 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-194-3p G4U <400> 647 cauugg 6 <210> 648 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-375 G4U <400> 648 uuuuuc 6 <210> 649 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-148a-5p G4U <400> 649 aauuuc 6 <210> 650 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2277-5p G4U <400> 650 gcucgg 6 <210> 651 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-769-5p G4U <400> 651 gauacc 6 <210> 652 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p G4U <400> 652 cuucag 6 <210> 653 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-873-3p G4U <400> 653 gauacu 6 <210> 654 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-4772-3p G4U <400> 654 cuucaa 6 <210> 655 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-329-5p G4U <400> 655 aguuuu 6 <210> 656 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-182-5p/hsa-miR-96-5p G4U <400> 656 uuugca 6 <210> 657 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-2467-5p/hsa-miR-485-5p G4U <400> 657 gaugcu 6 <210> 658 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-149-5p G4U <400> 658 cuugcu 6 <210> 659 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29b-2-5p G4U <400> 659 uguuuu 6 <210> 660 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-3p G4U <400> 660 acucca 6 <210> 661 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-3p/hsa-miR-520a-3p/hsa-miR-519b-3p/hsa-miR-520b/hsa- miR-519c-3p/hsa-miR-520c-3p/hsa-miR-519a-3p G4U <400> 661 aauugc 6 <210> 662 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-532-5p G4U <400> 662 auuccu 6 <210> 663 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-132-5p G4U <400> 663 ccuugg 6 <210> 664 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-541-5p G4U <400> 664 aaugau 6 <210> 665 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-671-3p G4U <400> 665 ccuguu 6 <210> 666 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-296-5p G4U <400> 666 gguccc 6 <210> 667 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-518e-3p G4U <400> 667 aaucgc 6 <210> 668 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-487a-5p G4U <400> 668 uguuua 6 <210> 669 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-589-5p/hsa-miR-146b-5p/hsa-miR-146a-5p G4U <400> 669 gauaac 6 <210> 670 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196b-5p/hsa-miR-196a-5p G4U <400> 670 aguuag 6 <210> 671 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-486-3p G4U <400> 671 ggugca 6 <210> 672 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-629-5p G4U <400> 672 gguuuu 6 <210> 673 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-378a-3p G4U <400> 673 cuugac 6 <210> 674 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27b-5p G4U <400> 674 gaucuu 6 <210> 675 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-6720-3p G4U <400> 675 gcuccu 6 <210> 676 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-574-3p G4U <400> 676 acucuc 6 <210> 677 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-29a-5p G4U <400> 677 cuuauu 6 <210> 678 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30c-2-3p/hsa-miR-30c-1-3p G4U <400> 678 ugugag 6 <210> 679 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199b-3p G4U <400> 679 cauuag 6 <210> 680 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-574-5p G4U <400> 680 gauugu 6 <210> 681 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-539-5p G4U <400> 681 gauaaa 6 <210> 682 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-4677-3p G4U <400> 682 cuuuga 6 <210> 683 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-654-3p G4U <400> 683 auuucu 6 <210> 684 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-652-3p G4U <400> 684 auugcg 6 <210> 685 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-19a-3p/hsa-miR-19b-3p G4U <400> 685 guucaa 6 <210> 686 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7c-5p/hsa-miR-98-5p/hsa-let-7g-5p/hsa-let-7f-5p/hsa-miR-2 02-3p/hsa-let-7b-5p/hsa-let-7e-5p/hsa-let-7a-5p/hsa-let-7d-5p/hsa -let-7i-5p G4U <400> 686 gaugua 6 <210> 687 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3663-3p G4U <400> 687 gaucac 6 <210> 688 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-152-3p/hsa-miR-148b-3p/hsa-miR-148a-3p G4U <400> 688 cauugc 6 <210> 689 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193b-5p G4U <400> 689 gguguu 6 <210> 690 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-502-3p/hsa-miR-501-3p G4U <400> 690 auucac 6 <210> 691 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-299-3p G4U <400> 691 auuugg 6 <210> 692 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-140-5p G5U <400> 692 aguugu 6 <210> 693 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-96-5p/hsa-miR-182-5p G5U <400> 693 uuguca 6 <210> 694 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193b-3p G5U <400> 694 acuugc 6 <210> 695 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-365a-3p G5U <400> 695 aauucc 6 <210> 696 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-486-5p G5U <400> 696 ccuuua 6 <210> 697 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G5U <400> 697 cgguuu 6 <210> 698 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G5U <400> 698 uguucg 6 <210> 699 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-493-3p G5U <400> 699 gaaugu 6 <210> 700 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-548am-5p G5U <400> 700 aaauua 6 <210> 701 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-218-5p G5U <400> 701 uguucu 6 <210> 702 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-20b-5p/hsa-miR-20a-5p/hsa-miR-93-5p/hsa-miR-17-5p/hsa-miR -106b-5p G5U <400> 702 aaauug 6 <210> 703 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-541-3p G5U <400> 703 gguugg 6 <210> 704 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-452-5p G5U <400> 704 acuuuu 6 <210> 705 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-5p G5U <400> 705 ccuugc 6 <210> 706 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-518f-3p G5U <400> 706 aaaucg 6 <210> 707 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-370-3p G5U <400> 707 ccuucu 6 <210> 708 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-107/hsa-miR-103a-3p G5U <400> 708 gcauca 6 <210> 709 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G5U <400> 709 ggauug 6 <210> 710 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-338-3p G5U <400> 710 ccauca 6 <210> 711 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-409-3p G5U <400> 711 aauuuu 6 <210> 712 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-3p G5U <400> 712 aaguca 6 <210> 713 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7d-5p/hsa-let-7g-5p/hsa-let-7i-5p/hsa-let-7f-5p/hsa-let-7 e-5p/hsa-let-7a-5p/hsa-let-7b-5p/hsa-let-7c-5p G5U <400> 713 gaguua 6 <210> 714 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-130b-3p/hsa-miR-301a-3p/hsa-miR-130a-3p/hsa-miR-301b-3p G5U <400> 714 aguuca 6 <210> 715 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-512-3p G5U <400> 715 aguucu 6 <210> 716 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-191-5p G5U <400> 716 aacuga 6 <210> 717 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3-5p G5U <400> 717 acuuca 6 <210> 718 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-92a-3p/hsa-miR-92b-3p/hsa-miR-363-3p/hsa-miR-25-3p/hsa-mi R-32-5p G5U <400> 718 auuuca 6 <210> 719 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-18a-5p G5U <400> 719 aaguug 6 <210> 720 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-183-5p G5U <400> 720 auguca 6 <210> 721 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G5U <400> 721 gcuugu 6 <210> 722 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-3p G5U <400> 722 cucugc 6 <210> 723 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G5U <400> 723 gagugg 6 <210> 724 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-499a-5p/hsa-miR-208a-3p G5U <400> 724 uaauac 6 <210> 725 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-378a-3p G5U <400> 725 cuguac 6 <210> 726 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-186-5p G5U <400> 726 aaauaa 6 <210> 727 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-450b-5p G5U <400> 727 uuuuca 6 <210> 728 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-450a-5p G5U <400> 728 uuuucg 6 <210> 729 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-142-3p G5U <400> 729 guauug 6 <210> 730 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-101-3p/hsa-miR-144-3p G5U <400> 730 acauua 6 <210> 731 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-320a G5U <400> 731 aaaucu 6 <210> 732 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199b-5p/hsa-miR-199a-5p G5U <400> 732 ccauug 6 <210> 733 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1296-5p G5U <400> 733 uagugc 6 <210> 734 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-185-5p G5U <400> 734 ggauag 6 <210> 735 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-135a-5p G5U <400> 735 augucu 6 <210> 736 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-411-5p G6U <400> 736 aguaua 6 <210> 737 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-145-5p G6U <400> 737 uccauu 6 <210> 738 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-26a-5p G6U <400> 738 ucaauu 6 <210> 739 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-193b-3p G6U <400> 739 acuguc 6 <210> 740 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34c-5p G6U <400> 740 ggcauu 6 <210> 741 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-379-5p G6U <400> 741 gguaua 6 <210> 742 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-5p G6U <400> 742 cccuua 6 <210> 743 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-221-5p G6U <400> 743 ccuguc 6 <210> 744 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-526b-5p G6U <400> 744 ucuuua 6 <210> 745 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-7-5p G6U <400> 745 ggaaua 6 <210> 746 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-16-5p/hsa-miR-15b-5p/hsa-miR-424-5p/hsa-miR-15a-5p G6U <400> 746 agcauc 6 <210> 747 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-3p G6U <400> 747 uaaauc 6 <210> 748 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-363-5p G6U <400> 748 ggguug 6 <210> 749 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1298-3p G6U <400> 749 aucuug 6 <210> 750 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3p G6U <400> 750 gauuug 6 <210> 751 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-744-5p G6U <400> 751 gcggug 6 <210> 752 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-148a-3p G6U <400> 752 caguuc 6 <210> 753 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-3p G6U <400> 753 aaguuc 6 <210> 754 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1296-5p G6U <400> 754 uagguc 6 <210> 755 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G6U <400> 755 gaggug 6 <210> 756 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-5p G6U <400> 756 cuuuug 6 <210> 757 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G6U <400> 757 gcuguu 6 <210> 758 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-22-3p G6U <400> 758 agcuuc 6 <210> 759 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-28-3p G6U <400> 759 acuaua 6 <210> 760 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-3p G6U <400> 760 gauuuu 6 <210> 761 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-137 G6U <400> 761 uauuuc 6 <210> 762 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5010-5p G6U <400> 762 ggggua 6 <210> 763 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-523-5p G6U <400> 763 ucuaua 6 <210> 764 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-191-5p G6U <400> 764 aacgua 6 <210> 765 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-128-3p G6U <400> 765 cacauu 6 <210> 766 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199a-5p/hsa-miR-199b-5p G7U <400> 766 ccaguu 6 <210> 767 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-2-3p G7U <400> 767 ccacuu 6 <210> 768 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-3p/hsa-miR-27b-3p G7U <400> 768 ucacau 6 <210> 769 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7d-3p G7U <400> 769 uauacu 6 <210> 770 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-129-5p G7U <400> 770 uuuuuu 6 <210> 771 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G7U <400> 771 ugugcu 6 <210> 772 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-219a-2-3p G7U <400> 772 gaauuu 6 <210> 773 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-424-3p G7U <400> 773 aaaacu 6 <210> 774 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-18a-5p G7U <400> 774 aagguu 6 <210> 775 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-488-3p G7U <400> 775 ugaaau 6 <210> 776 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1-3p G7U <400> 776 ggaauu 6 <210> 777 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-181a-3p G7U <400> 777 ccaucu 6 <210> 778 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-199b-3p G7U <400> 778 caguau 6 <210> 779 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-10a-5p G7U <400> 779 acccuu 6 <210> 780 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-196b-5p G7U <400> 780 agguau 6 <210> 781 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-92a-1-5p G7U <400> 781 gguugu 6 <210> 782 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-483-5p G7U <400> 782 agacgu 6 <210> 783 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p G7U <400> 783 cugcau 6 <210> 784 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-363-5p G7U <400> 784 gggugu 6 <210> 785 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-9-5p G7U <400> 785 cuuugu 6 <210> 786 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1537-3p G7U <400> 786 aaaccu 6 <210> 787 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-106b-5p/hsa-miR-20a-5p/hsa-miR-17-5p/hsa-miR-93-5p G7U <400> 787 aaaguu 6 <210> 788 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-143-3p G7U <400> 788 gagauu 6 <210> 789 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-30a-3p/hsa-miR-30e-3p G7U <400> 789 uuucau 6 <210> 790 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-3p G7U <400> 790 gcucgu 6 <210> 791 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1298-3p G7U <400> 791 aucugu 6 <210> 792 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-5p G7U <400> 792 cgaccu 6 <210> 793 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-423-5p G7U <400> 793 gagggu 6 <210> 794 <211> 6 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G7U <400> 794 ggaguu 6 <210> 795 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-374a-3p G8U <400> 795 uuaucau 7 <210> 796 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-675-5p G8U <400> 796 ggugcgu 7 <210> 797 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-92a-1-5p G8U <400> 797 gguuggu 7 <210> 798 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1307-5p G8U <400> 798 cgaccgu 7 <210> 799 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-503-5p G8U <400> 799 agcagcu 7 <210> 800 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-24-3p G8U <400> 800 ggcucau 7 <210> 801 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-340-5p G8U <400> 801 uauaaau 7 <210> 802 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-509-3-5p G8U <400> 802 acugcau 7 <210> 803 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-34a-5p/hsa-miR-34c-5p G8U <400> 803 ggcaguu 7 <210> 804 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-526b-5p G8U <400> 804 ucuugau 7 <210> 805 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-203a-3p G8U <400> 805 ugaaauu 7 <210> 806 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-153-3p G8U <400> 806 ugcauau 7 <210> 807 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-208a-3p G8U <400> 807 uaagacu 7 <210> 808 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-200b-3p/hsa-miR-200c-3p G8U <400> 808 aauacuu 7 <210> 809 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-518f-5p/hsa-miR-523-5p G8U <400> 809 ucuagau 7 <210> 810 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-625-3p G8U <400> 810 acuauau 7 <210> 811 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-194-5p G8U <400> 811 guaacau 7 <210> 812 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7g-3p G8U <400> 812 uguacau 7 <210> 813 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-1298-3p G8U <400> 813 aucuggu 7 <210> 814 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-514a-5p G8U <400> 814 acucugu 7 <210> 815 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-483-5p G8U <400> 815 agacggu 7 <210> 816 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-126-3p G8U <400> 816 cguaccu 7 <210> 817 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-128-3p G8U <400> 817 cacaguu 7 <210> 818 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-381-3p G8U <400> 818 auacaau 7 <210> 819 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-320a G8U <400> 819 aaagcuu 7 <210> 820 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-513c-5p/hsa-miR-514b-5p G8U <400> 820 ucucaau 7 <210> 821 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-138-5p G8U <400> 821 gcugguu 7 <210> 822 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-520a-5p G8U <400> 822 uccagau 7 <210> 823 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-5p/hsa-miR-125a-5p G8U <400> 823 cccugau 7 <210> 824 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-141-3p G8U <400> 824 aacacuu 7 <210> 825 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-874-3p G8U <400> 825 ugcccuu 7 <210> 826 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-202-5p G8U <400> 826 uccuauu 7 <210> 827 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-140-3p G8U <400> 827 accacau 7 <210> 828 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-361-3p G8U <400> 828 cccccau 7 <210> 829 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-513b-5p G8U <400> 829 ucacaau 7 <210> 830 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-134-5p G8U <400> 830 gugacuu 7 <210> 831 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-33a-5p G8U <400> 831 ugcauuu 7 <210> 832 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-512-3p G8U <400> 832 agugcuu 7 <210> 833 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-let-7a-5p/hsa-let-7c-5p/hsa-let-7b-5p/hsa-let-7d-5p/hsa-let-7 f-5p/hsa-let-7e-5p/hsa-let-7i-5p/hsa-let-7g-5p G8U <400> 833 gagguau 7 <210> 834 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-375 G8U <400> 834 uuguucu 7 <210> 835 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-136-3p G8U <400> 835 aucaucu 7 <210> 836 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-5p G8U <400> 836 acuccau 7 <210> 837 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-124-3p G9U <400> 837 aaggcacu 8 <210> 838 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-204-5p/hsa-miR-211-5p G9U <400> 838 ucccuuuu 8 <210> 839 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-210-3p G9U <400> 839 ugugcguu 8 <210> 840 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-146a-5p/hsa-miR-146b-5p G9U <400> 840 gagaacuu 8 <210> 841 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-508-3p G9U <400> 841 gauuguau 8 <210> 842 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-23a-3p G9U <400> 842 ucacauuu 8 <210> 843 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-219a-2-3p G9U <400> 843 gaauuguu 8 <210> 844 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-21-3p G9U <400> 844 aacaccau 8 <210> 845 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-122-5p G9U <400> 845 ggaguguu 8 <210> 846 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-877-5p G9U <400> 846 uagaggau 8 <210> 847 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-129-5p G9U <400> 847 uuuuugcu 8 <210> 848 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-526b-5p G9U <400> 848 ucuugagu 8 <210> 849 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-302a-5p G9U <400> 849 cuuaaacu 8 <210> 850 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-532-5p G9U <400> 850 augccuuu 8 <210> 851 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-520a-5p G9U <400> 851 uccagagu 8 <210> 852 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-139-5p G9U <400> 852 cuacaguu 8 <210> 853 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-99a-5p/hsa-miR-100-5p/hsa-miR-99b-5p G9U <400> 853 acccguau 8 <210> 854 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-320a G9U <400> 854 aaagcugu 8 <210> 855 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-216a-5p G9U <400> 855 aaucucau 8 <210> 856 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-127-3p G9U <400> 856 cggauccu 8 <210> 857 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-125b-1-3p G9U <400> 857 cggguuau 8 <210> 858 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-381-3p G9U <400> 858 auacaagu 8 <210> 859 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-27a-3p/hsa-miR-27b-3p G9U <400> 859 ucacaguu 8 <210> 860 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-5010-5p G9U <400> 860 gggggauu 8 <210> 861 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-3157-3p G9U <400> 861 ugcccuau 8 <210> 862 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-17-3p G9U <400> 862 cugcaguu 8 <210> 863 <211> 8 <212> RNA <213> Artificial Sequence <220> <223> hsa-miR-523-5p G9U <400> 863 ucuagagu 8

Claims (5)

RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)를 억제하는 RNA 간섭 유도 핵산으로서,
상기 RNA 간섭 유도 핵산은
5' 말단 2번째에서 7번째 염기 서열이 하기 표에 나타낸 서열번호 103 내지 528 중 어느 하나 이상인 것을 특징으로 하는, RNA 간섭 유도 핵산 :
Figure 112020072571615-pat00067

Figure 112020072571615-pat00068

Figure 112020072571615-pat00069

Figure 112020072571615-pat00070

Figure 112020072571615-pat00071

Figure 112020072571615-pat00072

Figure 112020072571615-pat00073

Figure 112020072571615-pat00074

As an RNA interference-inducing nucleic acid that suppresses a noncanonical target gene of microRNA by modifying a partial sequence of a specific microRNA in one or more single strands of a nucleic acid that induces RNA interference,
The RNA interference inducing nucleic acid is
RNA interference-inducing nucleic acid, characterized in that the 2nd to 7th nucleotide sequence of the 5'end is at least one of SEQ ID NOs: 103 to 528 shown in the following table:
Figure 112020072571615-pat00067

Figure 112020072571615-pat00068

Figure 112020072571615-pat00069

Figure 112020072571615-pat00070

Figure 112020072571615-pat00071

Figure 112020072571615-pat00072

Figure 112020072571615-pat00073

Figure 112020072571615-pat00074

제1항에 있어서,
상기 RNA 간섭 유도 핵산은 비정규 핵융기 표적 싸이트만을 선택적으로 억제하고 마이크로RNA의 정규 표적 유전자는 억제하지 않는 것을 특징으로 하는, RNA 간섭 유도 핵산.
The method of claim 1,
The RNA interference-inducing nucleic acid selectively inhibits only the non-normal nucleus target site and does not inhibit the normal target gene of the microRNA.
삭제delete 제1항 또는 제2항의 RNA 간섭 유도 핵산을 포함하는 마이크로RNA의 비정규 표적 유전자 발현 억제용 조성물.
A composition for inhibiting expression of a non-normal target gene of microRNA comprising the RNA interference-inducing nucleic acid of claim 1 or 2.
다음의 단계를 포함하는, RNA 간섭(RNA interference)을 유도하는 핵산의 이중가닥 중 하나 이상의 단일가닥에 있어서, 특정 마이크로RNA의 일부 서열이 변형되어 마이크로RNA의 비정규 표적 유전자(noncanonical target gene)의 발현을 억제하는 RNA 간섭 유도 핵산의 제조방법으로서,
5' 말단 2번째에서 7번째 염기 서열이 하기 표에 나타낸 서열번호 103 내지 528 중 어느 하나 이상인 것을 특징으로 하는 RNA 간섭 유도 핵산을 작제하는 단계를 포함하는, RNA 간섭 유도 핵산의 제조방법:
Figure 112020072571615-pat00075

Figure 112020072571615-pat00076

Figure 112020072571615-pat00077

Figure 112020072571615-pat00078

Figure 112020072571615-pat00079

Figure 112020072571615-pat00080

Figure 112020072571615-pat00081

Figure 112020072571615-pat00082

In one or more single strands of a nucleic acid inducing RNA interference, including the following steps, a partial sequence of a specific microRNA is modified to express a noncanonical target gene of a microRNA As a method for producing an RNA interference-inducing nucleic acid that inhibits,
A method for producing an RNA interference-inducing nucleic acid comprising the step of constructing an RNA interference-inducing nucleic acid, characterized in that the second to seventh nucleotide sequence of the 5'end is at least one of SEQ ID NOs: 103 to 528 shown in the following table:
Figure 112020072571615-pat00075

Figure 112020072571615-pat00076

Figure 112020072571615-pat00077

Figure 112020072571615-pat00078

Figure 112020072571615-pat00079

Figure 112020072571615-pat00080

Figure 112020072571615-pat00081

Figure 112020072571615-pat00082

KR1020190064334A 2018-05-31 2019-05-31 RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof KR102193869B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/KR2019/006603 WO2019231288A1 (en) 2018-05-31 2019-05-31 Rna interference-inducing nucleic acid inhibiting noncanonical targets of micro rna, and use for same
US17/059,736 US20220267766A1 (en) 2018-05-31 2019-05-31 Rna interference-inducing nucleic acid inhibiting noncanonical targets of micro rna, and use for same
KR1020190064334A KR102193869B1 (en) 2019-05-31 2019-05-31 RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof
JP2020566931A JP7432929B2 (en) 2018-05-31 2019-05-31 RNA interference-inducing nucleic acids that suppress non-canonical targets of microRNAs and their uses
JP2022105209A JP2022141687A (en) 2018-05-31 2022-06-30 Rna interference-inducing nucleic acid inhibiting noncanonical targets of micro rna, and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190064334A KR102193869B1 (en) 2019-05-31 2019-05-31 RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof

Publications (2)

Publication Number Publication Date
KR20200137635A KR20200137635A (en) 2020-12-09
KR102193869B1 true KR102193869B1 (en) 2020-12-22

Family

ID=73787247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190064334A KR102193869B1 (en) 2018-05-31 2019-05-31 RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof

Country Status (1)

Country Link
KR (1) KR102193869B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050223427A1 (en) 2004-04-01 2005-10-06 Dharmacon, Inc. Modified polynucleotides for reducing off-target effects in RNA interference
WO2015093769A1 (en) 2013-12-17 2015-06-25 성균관대학교산학협력단 Nucleic acid inducing rna interference modified for preventing off-target, and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129852B1 (en) * 2016-10-11 2020-07-24 주식회사 인코드젠 Small interfering RNA and Pharmaceutical Composition for Treatment of HPV related cancer comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050223427A1 (en) 2004-04-01 2005-10-06 Dharmacon, Inc. Modified polynucleotides for reducing off-target effects in RNA interference
WO2015093769A1 (en) 2013-12-17 2015-06-25 성균관대학교산학협력단 Nucleic acid inducing rna interference modified for preventing off-target, and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mol. Cells, 제39권,5호,375-381면(2016.04.27.) 1부.*

Also Published As

Publication number Publication date
KR20200137635A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
Sarkar et al. MiR-322/424 and-503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A
US8841437B2 (en) Precursor miRNA loop-modulated target regulation
US20130150256A1 (en) Novel micrornas for the detection and isolation of human embryonic stem cell-derived cardiac cell types
US10519443B2 (en) Microrna inhibitor system and methods of use thereof
Yang et al. An anti-let-7 sponge decoys and decays endogenous let-7 functions
EP2077326A1 (en) Novel nucleic acid
EP2611918A1 (en) Mirnas involved in the blood brain barrier function
EP3170893B1 (en) Method for extracting differentiated cells
EP3822350A1 (en) Rna interference-inducing nucleic acid inhibiting noncanonical targets of micro rna, and use for same
KR102193869B1 (en) RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof
KR102193873B1 (en) RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof
KR102193864B1 (en) RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof
KR102012943B1 (en) RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof
WO2011111715A1 (en) Nucleic acid capable of regulating cell cycle
JP7432929B2 (en) RNA interference-inducing nucleic acids that suppress non-canonical targets of microRNAs and their uses
Liu et al. Identification of microRNA–RNA interactions using tethered RNAs and streptavidin aptamers
KR20190137015A (en) RNA interference inducing nucleic acids suppressing noncanonical targets of microRNA and use thereof
JP2022141687A (en) Rna interference-inducing nucleic acid inhibiting noncanonical targets of micro rna, and uses thereof
KR20130017309A (en) Composition for promoting chondrogenesis from stem cells and anti-tumor composition comprising anti-sense oligonucleotides
EP3822351A1 (en) Modified nucleic acid inhibiting micro rna, and use thereof
Cheng et al. Effect of Hsa-miRNA-203a-3p on proliferation of skin squamous cell carcinoma-1 human skin squamous cell cancer cells by targeting adenomatous polyposis coli using magnetic nanoparticles
KR102240833B1 (en) Methods for inhibiting bone marrow differentiation using exosomes transfected let-7 inhibitors
JP7362097B2 (en) How to control nucleases in a cell-specific manner
EP3344768B1 (en) Micrornas for the treatment of heart diseases
奥村翔 Development of antisense oligonucleotides for suppressing breast cancer cell proliferation and the system for evaluating drug response of cardiomyocytes

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant