KR102192846B1 - Transgenic avian producing improved monoclonal antibodies specific to human cd20 and a method for producing the same - Google Patents

Transgenic avian producing improved monoclonal antibodies specific to human cd20 and a method for producing the same Download PDF

Info

Publication number
KR102192846B1
KR102192846B1 KR1020190005990A KR20190005990A KR102192846B1 KR 102192846 B1 KR102192846 B1 KR 102192846B1 KR 1020190005990 A KR1020190005990 A KR 1020190005990A KR 20190005990 A KR20190005990 A KR 20190005990A KR 102192846 B1 KR102192846 B1 KR 102192846B1
Authority
KR
South Korea
Prior art keywords
human
monoclonal antibody
specific monoclonal
transgenic
producing
Prior art date
Application number
KR1020190005990A
Other languages
Korean (ko)
Other versions
KR20190093123A (en
Inventor
한재용
김영민
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to PCT/KR2019/000901 priority Critical patent/WO2019151698A1/en
Publication of KR20190093123A publication Critical patent/KR20190093123A/en
Application granted granted Critical
Publication of KR102192846B1 publication Critical patent/KR102192846B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/30Bird
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Abstract

본 발명은 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류 및 이의 제조방법에 관한 것이다. 본 발명에 따른 형질전환 조류의 제조방법은 고효율로 효능이 개선된 인간 CD20 특이적 단일클론항체를 생산하는 형질 전환 개체를 제조할 수 있어 바이오베터(biobetter) 생산에 적합한 새로운 모델로 제시될 수 있다. 본 발명에 따른 형질전환 조류로부터 생산된 인간 CD20 특이적 단일클론항체는 당쇄구조 분석 결과 비푸코실화(afucosylation)되어 상용 CD20 단일클론항체보다 CDC(complement dependent cytotoxicity, 보체매개성 면역반응)가 높고, ADCC(antibody dependent cell-mediated cytotoxicity, 항체매개성 면역반응)의 경우 대조약보다 약 8-16배의 효율이 높아 경제적이고 안정적인 항체 제조 방법으로 널리 활용될 수 있을 것으로 기대된다.The present invention relates to a transgenic algae producing human CD20 specific monoclonal antibody and a method for producing the same. The method for producing a transgenic algae according to the present invention can produce a transgenic individual that produces a human CD20-specific monoclonal antibody with improved efficacy with high efficiency, and thus can be presented as a new model suitable for biobetter production. . The human CD20-specific monoclonal antibody produced from the transgenic bird according to the present invention is afucosylated as a result of sugar chain structure analysis, and has a higher CDC (complement dependent cytotoxicity, complement-mediated immune response) than the commercial CD20 monoclonal antibody, In the case of ADCC (antibody dependent cell-mediated cytotoxicity, antibody-mediated immune response), it is expected to be widely used as an economical and stable antibody manufacturing method as it is about 8-16 times more efficient than the reference drug.

Description

효능이 개선된 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류 및 이의 제조방법{TRANSGENIC AVIAN PRODUCING IMPROVED MONOCLONAL ANTIBODIES SPECIFIC TO HUMAN CD20 AND A METHOD FOR PRODUCING THE SAME}Transgenic algae producing a human CD20-specific monoclonal antibody with improved efficacy and its manufacturing method {TRANSGENIC AVIAN PRODUCING IMPROVED MONOCLONAL ANTIBODIES SPECIFIC TO HUMAN CD20 AND A METHOD FOR PRODUCING THE SAME}

본 발명은 효능이 개선된 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류 및 이의 제조방법에 관한 것이다. The present invention relates to a transgenic algae producing a human CD20-specific monoclonal antibody with improved efficacy and a method for producing the same.

다양한 줄기세포 및 배아를 활용한 생명공학 기술과 고효율의 유전자 발현 조절기술 등을 복합적으로 활용한 형질전환 동물 생산은 인류가 직면한 난치병의 치료제 및 건강수명 증진을 위한 핵심기술로 주목 받고 있다.The production of transgenic animals using a combination of biotechnology technology using various stem cells and embryos and high-efficiency gene expression control technology is attracting attention as a key technology for the treatment of incurable diseases faced by mankind and the improvement of healthy lifespan.

닭의 경우, 포유류 가축들에 비해 산자수가 많고, 달걀을 통한 단백질의 대량생산이 가능하며, 계란(알)의 경우 난 단백질이 10여 종에 불과하여 알을 통하여 생산된 단백질로부터 원하는 물질을 분리 정제하는 것이 용이해 이상적인 생체반응기(bioreactor) 동물로 간주되고 있다. 그러나, 조류에 특화된 기술개발 및 연관기술의 도입이 포유류에 비해 상대적으로 뒤쳐져 실용기술 개발에 한계가 있었다.In the case of chickens, the number of livestock is higher than that of mammalian livestock, and mass production of proteins is possible through eggs, and in the case of eggs (eggs), only 10 kinds of egg proteins are used to separate desired substances from proteins produced through eggs. Because of its ease of purification, it is considered an ideal bioreactor animal. However, the development of technology specialized for birds and the introduction of related technologies were relatively lagging compared to mammals, so there was a limit to the development of practical technologies.

이처럼 형질전환 닭이 치료용 항체 또는 기능적 물질 생산에 탁월한 장점을 가지고 있음이 기존의 연구를 통해 잘 알려져 있지만, 기술적 한계에 의해 높은 효율의 형질전환 조류 생산 및 알을 통한 의약용 단백질 생산 연구는 진행된 바가 거의 없다.As such, it is well known through existing studies that transgenic chickens have excellent advantages in the production of therapeutic antibodies or functional substances, but due to technical limitations, studies on the production of high-efficiency transgenic algae and production of pharmaceutical proteins through eggs have been conducted. There are few bars.

M.J. Glennie, R.R. French, M.S. Cragg, R.P. Taylor, Mechanisms of killing by anti-CD20 monoclonal antibodies, Mol. Immunol. 44 (2007) 3823-3837. M.J. Glennie, R.R. French, M.S. Cragg, R.P. Taylor, Mechanisms of killing by anti-CD20 monoclonal antibodies, Mol. Immunol. 44 (2007) 3823-3837. A.J. Harvey, G. Speksnijder, L.R. Baugh, J.A. Morris, R. Ivarie, Expression of exogenous protein in the egg white of transgenic chickens, Nat. Biotechnol. 20 (2002) 396-399. A.J. Harvey, G. Speksnijder, L.R. Baugh, J.A. Morris, R. Ivarie, Expression of exogenous protein in the egg white of transgenic chickens, Nat. Biotechnol. 20 (2002) 396-399.

이에, 본 발명자들은 닭의 난관 특이 발현을 위한 오브알브민 (Ovalbumin, OV) 프로모터를 포함하는 piggyBac 트랜스포존(transposon)을 사용하여 닭의 원시생식세포(primordial germ cells, PGCs)를 형질전환 시키고, 이로부터 높은 효율로 형질전환 자손 생산이 가능하고, 생산된 형질전환 닭으로부터 CDC(complement dependent cytotoxicity, 보체매개성 면역반응)가 높고, ADCC(antibody dependent cell-mediated cytotoxicity, 항체매개성 면역반응)가 높은 인간 CD20 특이적 단일클론항체가 높은 효율로 생산됨을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors transformed chicken primordial germ cells (PGCs) using a piggyBac transposon containing an Ovalbumin (OV) promoter for specific expression of oviduct in chickens, and thereby It is possible to produce transgenic progeny with high efficiency, and CDC (complement dependent cytotoxicity, complement-mediated immune response) is high, and ADCC (antibody dependent cell-mediated cytotoxicity, antibody-mediated immune response) is high. It was confirmed that the human CD20 specific monoclonal antibody was produced with high efficiency, and the present invention was completed.

따라서, 본 발명의 목적은 (a) 5' 및 3' 피기백 트랜스포존(piggyBac transposon) 특이적 역위 말단 반복부(Terminal Repeat, TR); 및 (b) 상기 5' TR과 3' TR 사이에 위치하는 오브알부민 프로모터 및 상기 오브알부민 프로모터에 작동가능하도록 연결된 인간 CD20 특이적 단일클론항체를 코딩하는 유전자를 포함하는 재조합 벡터를 제공하는 데에 있다.Accordingly, an object of the present invention is (a) 5'and 3'piggyBac transposon specific inverted terminal repeats (Terminal Repeat, TR); And (b) an ovalbumin promoter positioned between the 5'TR and the 3'TR, and a gene encoding a human CD20 specific monoclonal antibody operably linked to the ovalbumin promoter. have.

또한, 본 발명의 목적은 상기 재조합 벡터로 형질전환된 공여생식세포주를 제공하는 데에 있다.In addition, an object of the present invention is to provide a donor germ cell line transformed with the recombinant vector.

또한, 본 발명의 목적은 상기 공여생식세포주를 수용체 조류의 배아에 이식하는 단계를 포함하는 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델의 제조방법을 제공하는 데에 있다.In addition, it is an object of the present invention to provide a method for producing a transgenic avian model producing a human CD20-specific monoclonal antibody comprising the step of transplanting the donor germ cell line into an embryo of a recipient bird.

또한, 본 발명의 목적은 상기 방법으로 제조된 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델 및 상기 형질전환 조류모델로부터 인간 CD20 특이적 단일클론항체를 수득하는 단계를 포함하는 인간 CD20 특이적 단일클론항체의 제조방법을 제공하는 데에 있다.In addition, an object of the present invention is a transgenic avian model producing a human CD20-specific monoclonal antibody prepared by the above method, and a human CD20-specific comprising the step of obtaining a human CD20-specific monoclonal antibody from the transgenic avian model. It is to provide a method for producing an enemy monoclonal antibody.

상기와 같은 목적을 달성하기 위하여, 본 발명은 (a) 5' 및 3' 피기백 트랜스포존(piggyBac transposon) 특이적 역위 말단 반복부(Terminal Repeat, TR); 및 (b) 상기 5' TR과 3' TR 사이에 위치하는 오브알부민(Ovalbumin, OV) 프로모터 및 상기 오브알부민 프로모터에 작동가능하도록 연결된 인간 CD20 특이적 단일클론항체를 코딩하는 유전자를 포함하는 재조합 벡터를 제공한다.In order to achieve the above object, the present invention (a) 5'and 3'piggyBac transposon (piggyBac transposon) specific inverted terminal repeat (Terminal Repeat, TR); And (b) an ovalbumin (OV) promoter positioned between the 5'TR and the 3'TR, and a recombinant vector comprising a gene encoding a human CD20 specific monoclonal antibody operably linked to the ovalbumin promoter. Provides.

또한, 본 발명은 상기 재조합 벡터로 형질전환된 공여생식세포주를 제공한다.In addition, the present invention provides a donor germ cell line transformed with the recombinant vector.

또한, 본 발명은 상기 공여생식세포주를 수용체 조류의 배아에 이식하는 단계를 포함하는 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델의 제조방법을 제공한다.In addition, the present invention provides a method for producing a transgenic avian model producing a human CD20-specific monoclonal antibody comprising the step of transplanting the donor germ cell line into an embryo of a recipient bird.

또한, 본 발명은 상기 방법으로 제조된 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델을 제공한다.In addition, the present invention provides a transgenic bird model for producing a human CD20-specific monoclonal antibody prepared by the above method.

또한, 본 발명은 상기 형질전환 조류모델로부터 인간 CD20 특이적 단일클론항체를 수득하는 단계를 포함하는 인간 CD20 특이적 단일클론항체의 제조방법을 제공한다.In addition, the present invention provides a method for producing a human CD20-specific monoclonal antibody comprising the step of obtaining a human CD20-specific monoclonal antibody from the transgenic avian model.

또한, 본 발명은 상기 방법으로 생산한 인간 CD20 특이적 단일클론항체를 제공한다.In addition, the present invention provides a human CD20 specific monoclonal antibody produced by the above method.

본 발명에 따른 형질전환 조류의 제조방법은 고효율로 효능이 개선된 인간 CD20 특이적 단일클론항체를 생산하는 형질 전환 개체를 제조할 수 있어 바이오베터(biobetter) 생산에 적합한 새로운 모델로 제시될 수 있다. 본 발명에 따른 형질전환 조류로부터 생산된 인간 CD20 특이적 단일클론항체는 당쇄구조 분석 결과 비푸코실화(afucosylation)되어 상용 CD20 단일클론항체보다 CDC(complement dependent cytotoxicity, 보체매개성 면역반응)가 높고, ADCC(antibody dependent cell-mediated cytotoxicity, 항체매개성 면역반응)의 경우 대조약보다 약 8-16배의 효율이 높아 경제적이고 안정적인 항체 제조 방법으로 널리 활용될 수 있을 것으로 기대된다.The method for producing a transgenic algae according to the present invention can produce a transgenic individual that produces a human CD20-specific monoclonal antibody with improved efficacy with high efficiency, and thus can be presented as a new model suitable for biobetter production. . The human CD20-specific monoclonal antibody produced from the transgenic bird according to the present invention is afucosylated as a result of sugar chain structure analysis, and has a higher CDC (complement dependent cytotoxicity, complement-mediated immune response) than the commercial CD20 monoclonal antibody, In the case of ADCC (antibody dependent cell-mediated cytotoxicity, antibody-mediated immune response), it is expected to be widely used as an economical and stable antibody manufacturing method as it is about 8-16 times more efficient than the reference drug.

도 1은 본 발명에 따른 재조합 벡터의 개열지도 및 상기 재조합 벡터를 도입한 닭의 형질전환 여부를 확인한 결과를 나타낸 도이다. 도 1의 a: piggyBac cCD20 mAb 재조합 벡터의 개열지도, 도 1의 b: 트랜스진(transgene, 외래유전자)을 가진 형질전환 닭의 G0부터 G3까지의 계통도 및 트랜스진을 가진 각 세대 형질전환 닭의 유전체를 분석한 결과를 나타낸 도, 도 1의 c: 야생형 및 형질전환 타겟 부위(transgenic loci)를 검출하기 위한 트랜스진 특이적 프라이머 세트의 모식도, 도 1의 d: G2에서 트랜스진 특이적 프라이머를 사용한 이형접합성 형질전환 닭 [Tg33(he)4(he)] 및 동형접합성 형질전환 닭 [Tg33(ho)4(ho)]의 PCR 수행 결과.
도 2는 형질전환 닭의 조직들에 대한 cCD20 mAb 특이적 프라이머를 사용한 난관 팽대부(magnum) 특이적인 트랜스진 발현 검증 결과를 나타낸 도이다.
도 3은 DNA walking을 통한 cCD20 mAb 트랜스진의 유전자 삽입 위치 검증 결과를 나타낸 도이다.
도 4는 ELISA 및 웨스턴 블랏을 통해 형질전환 닭으로부터 생산된 cCD20 mAb의 확인 및 이를 정량화한 결과를 나타낸 도이다. 도 4의 a: G2 Tg4(he)와 G2 Tg33(he)에서 분리한 항-인간 IgG 항체를 이용한 ELISA를 통해 정제된 cCD20 mAb의 농도 측정 결과, 도 4의 b: G2 Tg4(he)와 G2 Tg33(he) 형질전환 닭으로부터 수득한 난백에서 발현된 항-인간 IgG 항체의 웨스턴 블랏 수행 결과, 도 4의 c: SDS-PAGE 이후 G2 Tg33(he)Tg4(he)와 G2 Tg33(ho)4(ho)형질전환 닭에서 cCD20 mAb를 확인하기 위한 쿠마시 블루 염색 결과, 도 4의 d: 항-인간 IgG 항체를 이용한 ELISA를 통한 G3 91ho/87ho 형질전환 닭에서 정제된 cCD20 mAb의 정량 결과 (***p < 0.001, **p < 0.01).
도 5는 형질전환 닭으로부터 생산된 cCD20 mAb의 N-글리칸 당쇄 함량 분석 결과를 나타낸 도이다. 도 5의 a: 분석 시료(cCD20 mAb)의 당쇄 구조, 도 5의 b: 이온 추출 크로마토그래피(XIC)를 통한 14개 N-글리칸 프로필 분석 결과.
도 6는 형질전환 닭으로부터 생산된 cCD20 mAb의 결합력 분석 및 세포사멸능력을 분석한 결과를 나타낸 도이다. 도 6의 a: 0.01, 0.05, 0.1, 0.5, 1, 5 또는 10㎍/ml의 cCD20 mAb 처리 후 CD20 결합 친화도에 대한 유세포 분석 수행 결과, 도 6의 b: 0.01, 0.1, 1, 5 또는 10㎍/ml 항체 처리 후 cCD20 mAb 및 리툭시맙의 결합 친화도를 확인하기 위한 농도별 평균 형광 강도(MFI) 값 분석 결과, 도 6의 c: 5㎍/ml의 cCD20 mAb 처리 후 유세포 분석기에 의한 Raji 세포에서의 apoptotic 세포 분석 결과(양성 대조군으로 리툭시맙 사용), 도 6의 d: 0.1, 1 또는 5㎍/ml 항체 처리 후 apoptotic 세포 분석 결과 (양성 대조군으로 리툭시맙 사용, 음성 대조군으로 cCD20 mAb 비처리군 사용; ***p<0.001, p>0.05는 유의차 없음).
도 7은 형질전환 닭으로부터 생산된 cCD20 mAb의 CDC 활성 분석 결과를 나타낸 도이다(***p<0.001).
도 8은 형질전환 닭으로부터 생산된 cCD20 mAb의 ADCC 활성 분석 결과를 나타낸 도이다(***p<0.001).
1 is a diagram showing a cleavage map of a recombinant vector according to the present invention and a result of confirming whether or not a chicken into which the recombinant vector was transformed. 1a: piggyBac The cleavage map of the cCD20 mAb recombinant vector, b of FIG. 1: a schematic diagram of a transgenic chicken with a transgene (exogenous gene) from G0 to G3, and the result of analyzing the genome of each generation transgenic chicken with a transgene. Figure 1 c: a schematic diagram of a transgene-specific primer set for detecting wild-type and transgenic loci, Fig. 1 d: Heterozygous transgenic chicken using a transgene-specific primer in G2 PCR results of [Tg33(he)4(he)] and homozygous transgenic chicken [Tg33(ho)4(ho)].
FIG. 2 is a diagram showing the results of verification of expression of a transgene specific to the oviduct magnum using a cCD20 mAb-specific primer for tissues of a transgenic chicken.
3 is a diagram showing the result of verifying the gene insertion location of the cCD20 mAb transgene through DNA walking.
FIG. 4 is a diagram showing the confirmation and quantification of cCD20 mAb produced from transgenic chickens by ELISA and Western blot. Figure 4a: The result of measuring the concentration of purified cCD20 mAb through ELISA using an anti-human IgG antibody isolated from G2 Tg4 (he) and G2 Tg33 (he), Figure 4 b: G2 Tg4 (he) and G2 Western blot results of anti-human IgG antibodies expressed in egg whites obtained from Tg33(he) transgenic chickens, Figure 4c: G2 Tg33(he)Tg4(he) and G2 Tg33(ho)4 after SDS-PAGE (ho) Results of Coomassie blue staining to confirm cCD20 mAb in transgenic chickens, Fig.4 d: Quantification results of cCD20 mAb purified from G3 91ho/87ho transgenic chickens through ELISA using anti-human IgG antibody ( ***p <0.001, **p <0.01).
5 is a diagram showing the results of analysis of the N-glycan sugar chain content of cCD20 mAb produced from a transgenic chicken. Figure 5 a: the sugar chain structure of the analysis sample (cCD20 mAb), Figure 5 b: 14 N-glycan profile analysis results through ion extraction chromatography (XIC).
Figure 6 is a diagram showing the results of analyzing the binding force and apoptosis ability of cCD20 mAb produced from a transgenic chicken. Figure 6 a: results of flow cytometry for CD20 binding affinity after treatment with 0.01, 0.05, 0.1, 0.5, 1, 5 or 10 μg/ml of cCD20 mAb, Figure 6 b: 0.01, 0.1, 1, 5 or Analysis of the average fluorescence intensity (MFI) value for each concentration to confirm the binding affinity of cCD20 mAb and rituximab after 10 μg/ml antibody treatment, c in FIG. 6: After 5 μg/ml cCD20 mAb treatment, flow cytometry Results of apoptotic cell analysis in Raji cells by (Rituximab used as a positive control), Fig.6 d: Results of apoptotic cell analysis after treatment with 0.1, 1, or 5㎍/ml antibody (Rituximab used as a positive control, negative control) As the cCD20 mAb untreated group; ***p<0.001, p>0.05 no significant difference).
7 is a diagram showing the results of analysis of CDC activity of cCD20 mAb produced from transgenic chickens (***p<0.001).
Figure 8 is a diagram showing the ADCC activity analysis results of cCD20 mAb produced from a transgenic chicken (***p<0.001).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 (a) 5' 및 3' 피기백 트랜스포존(piggyBac transposon) 특이적 역위 말단 반복부(Terminal Repeat, TR); 및 (b) 상기 5' TR과 3' TR 사이에 위치하는 오브알부민(Ovalbumin, OV) 프로모터 및 상기 오브알부민 프로모터에 작동가능하도록 연결된 인간 CD20 특이적 단일클론항체를 코딩하는 유전자를 포함하는 재조합 벡터를 제공한다.The present invention includes (a) 5'and 3'piggyBac transposon-specific inverted terminal repeats (Terminal Repeat, TR); And (b) an ovalbumin (OV) promoter positioned between the 5'TR and the 3'TR, and a recombinant vector comprising a gene encoding a human CD20 specific monoclonal antibody operably linked to the ovalbumin promoter. Provides.

본 명세서에서 사용된 용어 '단일클론 항체'란 당해 분야에 공지된 용어로서 단일 항원성 부위에 대해서 지시되는 고도의 특이적인 항체를 의미한다. 통상적으로, 상이한 에피토프(항원결정기)들에 대해 지시되는 상이한 항체들을 포함하는 다클론 항체와는 다르게, 단일클론 항체는 항원상의 단일 결정기에 대해서 지시된다. 단일클론항체는 항원-항체 결합을 이용하는 진단 및 분석학적 분석법의 선택성과 특이성을 개선시키는 장점이 있으며, 또한 하이브리도마 배양에 의해 합성되기 때문에 다른 면역글로불린에 의해 오염되지 않는 장점을 갖는다. 본 명세서의 인간 CD20 특이적 단일클론항체는, 전체 항체 형태뿐 아니라 항체 분자의 기능적인 단편을 포함한다. 전체 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 구조이며 각각의 경쇄는 중쇄와 다이설파이드 결합으로 연결되어 있다. 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ), 엡실론(ε) 타입을 가지고 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가진다. 경쇄의 불변영역은 카파(κ) 및 람다(λ) 타입을 가진다.The term “monoclonal antibody” as used herein refers to a highly specific antibody directed against a single antigenic site as a term known in the art. Typically, unlike polyclonal antibodies, which contain different antibodies directed against different epitopes (antigen determinants), monoclonal antibodies are directed against a single determinant on the antigen. Monoclonal antibodies have the advantage of improving the selectivity and specificity of diagnostic and analytical assays using antigen-antibody binding, and have the advantage of not being contaminated by other immunoglobulins because they are synthesized by hybridoma culture. Human CD20 specific monoclonal antibodies of the present specification include functional fragments of antibody molecules as well as whole antibody forms. The whole antibody is a structure having two full-length light chains and two full-length heavy chains, and each light chain is connected to a heavy chain by a disulfide bond. The heavy chain constant region has gamma (γ), mu (μ), alpha (α), delta (δ), and epsilon (ε) types, and subclasses gamma 1 (γ1), gamma 2 (γ2), and gamma 3 (γ3). ), gamma4(γ4), alpha1(α1) and alpha2(α2). The constant region of the light chain has kappa (κ) and lambda (λ) types.

상기 항체 분자의 기능적인 단편이란 항원 결합 기능을 보유하고 있는 단편을 뜻하며 Fab, F(ab'), F(ab')2, 및 Fv 등을 포함한다. 항체 단편 중 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변 영역 및 중쇄의 첫 번째 불변영역(CH1)을 가지는 구조로 1개의 항원 결합부위를 가진다. Fab'는 중쇄 CH1 도메인의 C 말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루고 있다. Fv는 중쇄 가변영역 및 경쇄 가변영역만을 가지고 있는 최소의 항체조각을 말하며, dsFv(이쇄 Fv)는 비공유 결합으로 중쇄 가변영역과 경쇄 가변영역이 연결되어 있고 scFv(단쇄 Fv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 영역과 단쇄의 가변 영역이 공유 결합으로 연결되거나 또는 C 말단에서 바로 연결되어 있어서 dsFv와 같이 다이머와 같은 구조를 이룰 수 있다.The functional fragment of the antibody molecule means a fragment having an antigen-binding function, and includes Fab, F(ab'), F(ab')2, Fv, and the like. Among antibody fragments, Fab has a structure having a light chain and a heavy chain variable region, a light chain constant region, and a heavy chain first constant region (CH1), and has one antigen-binding site. Fab' differs from Fab in that it has a hinge region containing at least one cysteine residue at the C-terminus of the heavy chain CH1 domain. In the F(ab')2 antibody, a cysteine residue in the hinge region of Fab' forms a disulfide bond. Fv refers to the smallest antibody fragment having only the heavy and light chain variable regions, dsFv (double chain Fv) is a non-covalent bond between the heavy chain variable region and the light chain variable region, and scFv (single chain Fv) is generally a peptide linker. Through this, the variable region of the heavy chain and the variable region of the short chain are connected by covalent bonds or are directly connected at the C-terminus, thereby forming a dimer-like structure such as dsFv.

본 명세서에서 사용되는 용어 '벡터'는 프로모터로 하여금 외부 DNA 서열의 발현, 즉 전사 및 번역을 유도하도록 하는 모든 핵산 분자, 바람직하게는 DNA 서열을 의미한다.As used herein, the term'vector' refers to any nucleic acid molecule, preferably a DNA sequence, which causes the promoter to induce the expression of foreign DNA sequences, ie, transcription and translation.

본 발명에 있어서, 상기 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 IRES(internal ribosome entry site)를 포함하는 것을 특징으로 할 수 있다.In the present invention, the gene encoding the human CD20 specific monoclonal antibody may be characterized in that it contains an internal ribosome entry site (IRS).

본 발명에 있어서, 상기 재조합 벡터는 5' TR과 3' TR 사이에 위치하는 하나 이상의 에스트로겐 반응 요소(estrogen response element, ERE)를 더 포함하는 것을 특징으로 할 수 있다. In the present invention, the recombinant vector may be characterized in that it further comprises one or more estrogen response elements (estrogen response element, ERE) located between the 5'TR and 3'TR.

또한, 본 발명에 있어서, 상기 재조합 벡터는 오브알부민 유전자의 3' UTR을 더 포함하는 것을 특징으로 할 수 있다. In addition, in the present invention, the recombinant vector may be characterized in that it further comprises a 3'UTR of the ovalbumin gene.

또한, 본 발명에 있어서, 상기 재조합 벡터는 폴리아데닐화 부위(polyadenylation site, poly A)를 더 포함하는 것을 특징으로 할 수 있다.In addition, in the present invention, the recombinant vector may be characterized in that it further comprises a polyadenylation site (poly A).

상기 에스트로겐 반응 요소는 본 발명의 유전자를 과발현 시키기 위한 것으로, 에스트로겐과 반응하는 경우, 유전자 발현이 증가한다. 또한, 오브알부민은 조류의 난관 내에서 가장 발현이 높은 단백질로, 상기 프로모터는 난관 내 특이적으로 발현할 수 있도록 한다(오브알부민 프로모터 또는 난관 특이적 프로모터). 본 발명의 일 구현예에 있어서, 상기 오브알부민 프로모터는 5' TR과 3' TR 사이에 위치하며, OV 5' UTR을 코딩하는 서열을 포함하는 것을 특징으로 한다.The estrogen response element is for overexpressing the gene of the present invention, and when it reacts with estrogen, gene expression increases. In addition, ovalbumin is a protein having the highest expression in the oviduct of birds, and the promoter allows it to be specifically expressed in the oviduct (ovalbumin promoter or oviduct specific promoter). In one embodiment of the present invention, the ovalbumin promoter is located between 5'TR and 3'TR, and comprises a sequence encoding OV 5'UTR.

본 명세서에서 사용되는 용어 '프로모터'는 코딩 서열 또는 기능적 RNA의 발현을 조절하는 DNA 서열을 의미한다.The term'promoter' as used herein refers to a DNA sequence that controls the expression of a coding sequence or functional RNA.

본 발명의 벡터는 형질도입된 세포를 확인하기 위하여, 항생제 내성 유전자를 포함시킬 수 있으며, 상기 항생제는 바람직하게는 네오마이신일 수 있다.The vector of the present invention may include an antibiotic resistance gene in order to identify the transduced cells, and the antibiotic may be preferably neomycin.

본 발명의 일 구현예에 있어서, 5' TR 및 3' TR은 각각 서열번호 3 및 11로 표시되는 염기서열로 이루어진 것을 특징으로 한다. 또한, OV 유전자의 5' UTR를 포함하는 오브알부민의 프로모터(난관 특이적 프로모터)는 서열번호 7로 표시되는 염기서열로 이루어진 것을 특징으로 하며, OV 유전자의 3' UTR은 서열번호 10으로 표시되는 염기서열로 이루어진 것을 특징으로 한다. 나아가, 본 발명의 재조합 벡터는 서열번호 5로 표시되는 염기서열로 이루어진 네오마이신 내성 유전자를 포함한다.In one embodiment of the present invention, 5'TR and 3'TR are characterized in that they consist of nucleotide sequences represented by SEQ ID NOs: 3 and 11, respectively. In addition, the promoter of ovalbumin (foliar specific promoter) including the 5'UTR of the OV gene is characterized by consisting of a nucleotide sequence represented by SEQ ID NO: 7, and the 3'UTR of the OV gene is represented by SEQ ID NO: 10. It is characterized by consisting of a base sequence. Furthermore, the recombinant vector of the present invention includes a neomycin resistance gene consisting of the nucleotide sequence represented by SEQ ID NO: 5.

상기 염기서열들의 변이체가 본 발명의 범위 내에 포함되는 것으로 본다. 구체적으로, 본 발명에 따른 유전자는 상기 염기서열과 각각 70% 이상, 80% 이상, 90% 이상 또는 95% 이상의 서열 상동성을 갖는 염기서열을 포함할 수 있다.Variants of the above nucleotide sequences are considered to be included within the scope of the present invention. Specifically, the gene according to the present invention may include a nucleotide sequence having 70% or more, 80% or more, 90% or more, or 95% or more sequence homology with the nucleotide sequence, respectively.

본 발명에 있어서, 상기 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 서열번호 1로 표시되는 인간 CD20 특이적 단일클론항체의 경쇄영역을 코딩하는 유전자 및 서열번호 2로 표시되는 인간 CD20 특이적 단일클론항체의 중쇄영역을 코딩하는 유전자를 포함하는 것을 특징으로 할 수 있다.In the present invention, the gene encoding the human CD20 specific monoclonal antibody is a gene encoding the light chain region of the human CD20 specific monoclonal antibody represented by SEQ ID NO: 1 and a human CD20 specific single antibody represented by SEQ ID NO: 2 It may be characterized by including a gene encoding the heavy chain region of the clonal antibody.

보다 구체적으로는, 상기 서열번호 1로 표시되는 인간 CD20 특이적 단일클론항체의 경쇄영역을 코딩하는 유전자는 인간의 CD20 항원에 결합 하는 항체의 카파 경쇄를 발현하는 항체 발현 부위 유전자 서열로 항-CD20 mAb의 경쇄 가변영역과 경쇄 불변영역 모두를 코딩하는 서열이며(VL + hIg 카파 부위), 해당 서열에 의해 번역된 아미노산은 경쇄가변영역 중 카파를 구성하며 Fab 조각의 일부를 구성한다. 또한, 상기 서열번호 2로 표시되는 인간 CD20 특이적 단일클론항체의 중쇄영역을 코딩하는 유전자는 항-CD20 mAb의 중쇄 가변영역(CDR)과 중쇄 불변영역(CH1, CH2, CH3) 모두를 코딩하는 서열이며(VH + hIgG 불변 부위), 해당 서열에 의해 번역된 아미노산은 항체의 Fab 조각의 일부 및 Fc 조각을 구성한다. 이를 이용해 면역세포들이 해당 항체를 인지할 수 있고, 항체매개성 면역반응(Antobody dependent cell cytotoxicity, ADCC)을 유도 할 수 있다. More specifically, the gene encoding the light chain region of the human CD20-specific monoclonal antibody represented by SEQ ID NO: 1 is an antibody expression site gene sequence that expresses the kappa light chain of an antibody that binds to the human CD20 antigen. It is a sequence that encodes both the light chain variable region and the light chain constant region of the mAb (V L + hIg kappa region), and the amino acids translated by the sequence constitute the kappa of the light chain variable region and constitute a part of the Fab fragment. In addition, the gene encoding the heavy chain region of the human CD20 specific monoclonal antibody represented by SEQ ID NO: 2 encodes both the heavy chain variable region (CDR) and the heavy chain constant region (CH1, CH2, CH3) of the anti-CD20 mAb. Sequence (V H + hIgG constant region), and the amino acids translated by that sequence constitute part of the Fab fragment and the Fc fragment of the antibody. Using this, immune cells can recognize the antibody and induce an antibody-mediated immune response (Antobody dependent cell cytotoxicity, ADCC).

상기 서열번호 1 또는 2 외에도 상기 서열들의 변이체가 본 발명의 범위 내에 포함되는 것으로 본다. 변이체는, 염기서열은 변화되지만 서열번호 1 또는 2의 염기서열과 유사한 기능적 특성, 즉 인간 CD20 특이적 단일클론항체의 경쇄영역 또는 중쇄영역을 코딩하는 특성을 갖는 염기서열로 이루어진 폴리뉴클레오티드를 의미한다. 구체적으로, 본 발명에 따른 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 서열번호 1 또는 2의 염기서열과 각각 70% 이상, 80% 이상, 90% 이상 또는 95% 이상의 서열 상동성을 갖는 염기서열을 포함할 수 있다.In addition to SEQ ID NO: 1 or 2, variants of the above sequences are considered to be included within the scope of the present invention. Variant refers to a polynucleotide consisting of a nucleotide sequence that has a functional property similar to that of SEQ ID NO: 1 or 2, ie, a light chain region or a heavy chain region of a human CD20 specific monoclonal antibody, although the nucleotide sequence is changed. . Specifically, the gene encoding the human CD20-specific monoclonal antibody according to the present invention is a base having 70% or more, 80% or more, 90% or more, or 95% or more sequence homology with the nucleotide sequence of SEQ ID NO: 1 or 2, respectively. Sequence.

본 발명에 있어서, 상기 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 닭에서의 효율적인 발현을 위해 코돈최적화된 것을 특징으로 할 수 있다.In the present invention, the gene encoding the human CD20 specific monoclonal antibody may be characterized by codon-optimized for efficient expression in chickens.

본 명세서에서 사용되는 용어 '코돈 최적화'란 특정 유전자를 다른 개체에서 발현시키는 경우, 유전자가 동일한 아미노산 서열을 갖는 단백질을 발현할 수 있도록, 유전자의 염기서열을 변환시키는 것을 의미한다. 본 발명의 코돈 최적화된 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 이를 조류에서 발현시키는 경우, 인간에서 발현되는 경우와 동일한 아미노산 서열을 갖는 단백질을 생산할 수 있으며, 본 명세서 내에서는 c(chickenized)CD20과 병용하여 사용된다.The term'codon optimization' as used herein refers to converting the nucleotide sequence of a gene so that when a specific gene is expressed in another individual, the gene can express a protein having the same amino acid sequence. When the gene encoding the codon-optimized human CD20-specific monoclonal antibody of the present invention is expressed in birds, it can produce a protein having the same amino acid sequence as when expressed in humans, and in the present specification c (chickenized) It is used in combination with CD20.

또한, 본 발명에 따른 재조합 벡터는 상기 서열번호 1로 표시되는 인간 CD20 특이적 단일클론항체의 경쇄영역을 코딩하는 유전자 및 서열번호 2로 표시되는 인간 CD20 특이적 단일클론항체의 중쇄영역을 코딩하는 유전자 사이에 pIRES intron 및 IRES를 포함할 수 있다. 상기 pIRES intron은 IRES의 인트론 서열로서 IRES에 의한 유전자 번역이 효율적으로 일어날 수 있도록 하며, IRES(internal ribosome entry site)는 단백질 번역과정에서 리보솜이 결합하는 부위로 상기 유전자 사이에 존재하여 번역을 효율적으로 일어날 수 있도록 한다. 본 발명의 일 구현예에서, 상기 IRES는 VL + hIg 카파 부위를 발현하는 유전자와 VH + hIgG 불변 부위를 발현하는 유전자 사이에 존재하여, 전사 후 단백질 번역 과정에서 온전한 형태의 인간 CD20 mAb를 발현함으로써 하나의 발현 벡터의 형질도입으로 목적하는 항체의 발현을 유도할 수 있다.In addition, the recombinant vector according to the present invention is a gene encoding the light chain region of the human CD20-specific monoclonal antibody represented by SEQ ID NO: 1 and the heavy chain region of the human CD20-specific monoclonal antibody represented by SEQ ID NO: 2 It may include pIRES intron and IRES between genes. The pIRES intron is an intron sequence of IRES that enables gene translation by IRES to occur efficiently, and an internal ribosome entry site (IRS) is a site to which ribosomes bind during protein translation and exists between the genes to efficiently translate Make it happen. In one embodiment of the present invention, the IRES is present between the gene expressing the V L + hIg kappa region and the gene expressing the V H + hIgG constant region, so that the intact form of the human CD20 mAb in the protein translation process after transcription By expression, the expression of the desired antibody can be induced by transduction of one expression vector.

본 발명의 일 구현예에 있어서, 상기 재조합 벡터는 5' TR, poly A, 네오마이신 내성 유전자(NeoR), SV40, OV 프로모터(OV 3.5), 인간 CD20 특이적 chickenized 단일클론항체(cCD20 mAb), OV 유전자의 3' UTR(OV 3'UTR) 및 3' TR를 코딩하는 유전자를 포함할 수 있다. 또한, 상기 인간 CD20 특이적 단일클론항체는 VL + hIg 카파 부위, pIRES intron, IRES 및 VH + hIgG 불변 부위를 코딩하는 유전자를 포함할 수 있다.In one embodiment of the present invention, the recombinant vector is 5'TR, poly A, neomycin resistance gene (Neo R ), SV40, OV promoter (OV 3.5), human CD20 specific chickenized monoclonal antibody (cCD20 mAb) , 3'UTR of the OV gene (OV 3'UTR) and a gene encoding 3'TR. In addition, the human CD20 specific monoclonal antibody may include a gene encoding a V L + hIg kappa region, pIRES intron, IRES and V H + hIgG constant region.

또한, 본 발명은 상기 재조합 벡터로 형질전환된 공여생식세포주를 제공한다.In addition, the present invention provides a donor germ cell line transformed with the recombinant vector.

본 발명에 있어서, 상기 공여생식세포주는 공여체 조류의 원시생식세포(primordial germ cells, PGCs)인 것을 특징으로 할 수 있다. 또한, 상기 원시생식세포는 상기 공여체 조류의 1-10일령 배아의 원시 생식기로부터 유래된 것을 특징으로 할 수 있다.In the present invention, the donor germ cell line may be characterized in that the donor algal primordial germ cells (PGCs). In addition, the primitive germ cells may be characterized in that it is derived from the primitive reproductive organs of a 1-10 day old embryo of the donor bird.

본 발명에 있어서, 상기 공여체 조류는 닭, 메추라기, 칠면조, 오리, 거위, 꿩 및 비둘기를 포함하며, 바람직하게는 닭인 것을 특징으로 할 수 있다.In the present invention, the donor bird includes chicken, quail, turkey, duck, goose, pheasant and pigeon, and may be characterized in that it is preferably a chicken.

또한, 본 발명에 있어서, 상기 공여생식세포주는 수탁번호가 KCLRF-BP-00431임을 특징으로 할 수 있다.In addition, in the present invention, the donor germline cell line may be characterized in that the accession number is KCLRF-BP-00431.

또한, 본 발명은 본 발명에 따른 공여생식세포주를 수용체 조류의 배아에 이식하는 단계를 포함하는 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델의 제조방법을 제공한다. 본 발명의 바람직한 양태에서, 본 발명의 형질전환 조류모델은 도 1의 a의 개열지도를 갖는 형질전환용 벡터로 형질전환된 것일 수 있다. 상기 형질전환 조류모델은 인간 CD20 특이적 단일클론항체를 생산할 수 있다.In addition, the present invention provides a method for producing a transgenic avian model producing a human CD20 specific monoclonal antibody comprising the step of transplanting the donor germ cell line according to the present invention into an embryo of a recipient bird. In a preferred embodiment of the present invention, the transgenic bird model of the present invention may be transformed with a vector for transformation having a cleavage map of FIG. 1 a. The transgenic avian model can produce a human CD20 specific monoclonal antibody.

또한, 본 발명은 상기 형질전환 조류모델로부터 인간 CD20 특이적 단일클론항체를 수득하는 단계를 포함하는 인간 CD20 특이적 단일클론항체의 제조방법 및 상기 제조방법으로 생산한 인간 CD20 특이적 단일클론항체를 제공한다.In addition, the present invention provides a method for producing a human CD20-specific monoclonal antibody comprising the step of obtaining a human CD20-specific monoclonal antibody from the transgenic avian model, and a human CD20-specific monoclonal antibody produced by the method. to provide.

본 발명의 단일클론항체는 정제하지 않은 상태로 사용될 수 있으나, 당업계에서 통상적으로 사용되는 방법에 따라 필요에 의해 정제하여 사용될 수 있다. 이러한 정제 방법의 예로는 투석, 염 침전, 이온 교환 크로마토그래피, 크기 배제 크로마토그래피, 친화성크로마토그래피 등이 있으나, 상기 예에 의해 본 발명의 항체 정제 방법이 제한되는 것은 아니다.The monoclonal antibody of the present invention may be used without purification, but may be purified and used according to a method commonly used in the art. Examples of such purification methods include dialysis, salt precipitation, ion exchange chromatography, size exclusion chromatography, and affinity chromatography, but the antibody purification method of the present invention is not limited by the above examples.

또한 본 발명의 단일클론 항체는 항원의 특정 에피토프를 인식하여 항원-항체 복합체의 결합특성을 갖는 한, 2개의 전체 길이의 경사슬 및 2개의 전체 길이의중사슬을 가지는 완전한 형태뿐만 아니라 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab')2 및 Fv 등일 수 있다.In addition, as long as the monoclonal antibody of the present invention recognizes a specific epitope of an antigen and has the binding properties of an antigen-antibody complex, not only the complete form having two full-length light chains and two full-length heavy chains, but also the antibody molecule Includes functional fragments. The functional fragment of an antibody molecule refers to a fragment having at least an antigen-binding function, and may be Fab, F(ab'), F(ab')2, Fv, and the like.

본 발명의 형질전환 조류모델은 인간 CD20 특이적 단일클론항체가 난관 특이적으로 발현되어 난백 내에 축적되어 고효율로 인간 CD20 특이적 단일클론항체를 생산할 수 있다. In the transgenic avian model of the present invention, a human CD20-specific monoclonal antibody is specifically expressed in the fallopian tube and accumulated in the egg white to produce a human CD20-specific monoclonal antibody with high efficiency.

상기 인간 CD20 특이적 단일클론항체는 비푸코실화(afucosylation)된 것을 특징으로 할 수 있다. 나아가, 비푸코실화된 결과로서 Fc 도메인에 의한 세포면역 기능이 향상된 것을 특징으로 할 수 있다. 구체적으로, 본 발명의 일 실시예에서는 본 발명에 따라 생산된 인간 CD20 특이적 단일클론항체는 비푸코실화된 결과로서 상용 CD20 단일클론항체보다 CDC(complement dependent cytotoxicity, 보체매개성 면역반응)가 높고, ADCC(antibody dependent cell-mediated cytotoxicity, 항체매개성 면역반응)의 경우 대조약보다 약 8-16배의 효율이 높음을 확인하고 있다. 상기 실시예에서는, 대조약으로 리툭시맙(rituximab)을 사용하였다.The human CD20 specific monoclonal antibody may be characterized by afucosylation. Furthermore, as a result of non-fucosylation, it may be characterized in that the cellular immune function by the Fc domain is improved. Specifically, in an embodiment of the present invention, the human CD20-specific monoclonal antibody produced according to the present invention has a higher CDC (complement dependent cytotoxicity, complement-mediated immune response) than a commercial CD20 monoclonal antibody as a result of non-fucosylation. , In the case of ADCC (antibody dependent cell-mediated cytotoxicity, antibody-mediated immune response), it is confirmed that the efficiency is about 8-16 times higher than that of the reference drug. In the above example, rituximab was used as a reference drug.

본 명세서에서 사용되는 용어 '비푸코실화'는 푸코스 잔기가 제거된 상태의 항체를 의미한다. 갈락토실화(galactosylation)와 더불어, 비푸코실화는 항체의 ADCC 및 CDC에 큰 영향을 미치는 중요한 당쇄 변형방법으로 널리 알려져 있다.The term "non-fucosylated" as used herein refers to an antibody in which fucose residues have been removed. In addition to galactosylation, non-fucosylation is widely known as an important sugar chain modification method that has a great influence on ADCC and CDC of antibodies.

나아가, 상기 인간 CD20 특이적 단일클론항체는 증가된 ADCC(항체매개성 면역반응)에 따른 CD20 발현 암에 대한 치료 효과를 나타낼 수 있는 것을 특징으로 한다.Furthermore, the human CD20-specific monoclonal antibody is characterized in that it can exhibit a therapeutic effect on CD20-expressing cancers according to an increased ADCC (antibody-mediated immune response).

본 명세서에서 사용되는 용어 'CD20 발현'은 종양 또는 암, 바람직하게는 비-고형 종양으로부터의 세포, 바람직하게는 T 또는 B 세포, 더욱 바람직하게는 B 세포의 세포 표면 상에서 유의한 발현 수준의 CD20 항원을 나타내는 것으로 의도된다.The term'CD20 expression' as used herein refers to a significant expression level of CD20 on the cell surface of a tumor or a cell from a cancer, preferably a non-solid tumor, preferably a T or B cell, more preferably a B cell. It is intended to represent an antigen.

본 명세서에서 사용되는 용어 'CD20 발현 암'은 암 세포가 CD20 항원의 발현을 나타내는 모든 암을 말한다. 이러한 CD20 발현 암은 예를 들어, 림프종, 림프구성 백혈병, 폐암, 비소세포 폐(NSCL)암, 세기관지폐포 폐암, 뼈암, 췌장암, 피부암, 머리 또는 목암, 피부 또는 안내(intraocular) 흑색종, 자궁암, 난소암, 직장암, 항문부암, 위암, 위장암, 결장암, 유방암, 자궁암, 난관암종, 자궁내막암종, 자궁경부암종, 질암종, 외음부암종, 호지킨 질환, 식도암, 소장암, 내분비계암, 갑상선암, 부갑상선암, 부신암, 연조직육종, 요도암, 음경암, 전립선암, 방광암, 신장 또는 요관암, 콩팥세포암종, 콩팥골반암종, 중피종, 간세포암, 담관암, 중추 신경계(CNS)의 신생물, 척추종양, 뇌줄기신경아교종, 다형성 아교모세포종, 별아교세포종, 신경초종, 뇌실막세포종, 속질모세포종, 수막종, 편평세포암종, 뇌하수체샘종일 수 있고, 상기 임의의 암 중 난치성 유형을 포함하며, 또는 상기 암 중 1 종 이상의 조합일 수 있다. 'CD20 발현 암' 환자는 당업계에 공지된 표준 어세이에 의해 결정될 수 있다. 예를 들어 CD20 항원 발현은 면역조직화학 (IHC) 검출, FACS, 또는 상응하는 mRNA 의 PCR-기반 검출을 통해 측정될 수 있다.The term'CD20 expressing cancer' as used herein refers to all cancers in which cancer cells express the CD20 antigen. Such CD20 expressing cancers are, for example, lymphoma, lymphocytic leukemia, lung cancer, non-small cell lung (NSCL) cancer, bronchoalveolar lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, skin or intraocular melanoma, uterine cancer, Ovarian cancer, rectal cancer, anal cancer, gastric cancer, gastrointestinal cancer, colon cancer, breast cancer, uterine cancer, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, Parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, bladder cancer, kidney or ureter cancer, kidney cell carcinoma, renal pelvic carcinoma, mesothelioma, hepatocellular carcinoma, bile duct cancer, neoplasms of the central nervous system (CNS), spine It may be a tumor, cerebral stem glioma, glioblastoma polymorphic, astrocytoma, schwannoma, ventricular cell tumor, medulloblastoma, meningioma, squamous cell carcinoma, pituitary adenoma, including refractory types of any of the above cancers, or one of the above cancers It may be a combination of the above. Patients with'CD20 expressing cancer' can be determined by standard assays known in the art. For example, CD20 antigen expression can be measured via immunohistochemistry (IHC) detection, FACS, or PCR-based detection of the corresponding mRNA.

따라서, 본 발명의 형질전환 조류모델 및 이를 통해 생산된 인간 CD20 특이적 단일클론항체는 약학적 조성물 등 의약학을 비롯한 관련분야에서 유용하게 사용될 수 있다.Therefore, the transgenic algal model of the present invention and the human CD20-specific monoclonal antibody produced through it can be usefully used in related fields, including pharmaceuticals, such as pharmaceutical compositions.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

실시예Example 1. 실험동물 모델 1. Experimental animal model

모든 동물실험은 서울대학교 동물실험센터의 승인 하에 수행되었다(SNU-150827-1). 실험에 사용된 닭은 서울대학교 동물 농장의 표준 관리 프로그램에 따라 유지 및 관리 하였으며, 동물의 관리, 생식 및 배아 조작은 서울대학교 동물 유전공학과의 표준 프로토콜을 준수하여 진행하였다.All animal experiments were performed under the approval of the Seoul National University Animal Testing Center (SNU-150827-1). The chickens used in the experiment were maintained and managed according to the standard management program of the animal farm of Seoul National University, and the management, reproduction, and embryo manipulation of animals were carried out in accordance with the standard protocol of the Department of Animal Genetics Engineering, Seoul National University.

실시예Example 2. 2. piggyBacpiggyBac 항-CD20 Anti-CD20 mAbmAb 발현 재조합 벡터 구축 Expression recombinant vector construction

piggyBac 트랜스포존을 이용하여 piggyBac OV 항-CD20 mAb 발현 재조합 벡터를 제작하였다. 항-CD20 mAb(monoclonal antibody, 단일클론항체) 유전자는 Gallus gallus Codon Usage database (https ://www.kazusa.or.jp/codon)를 이용하여 암탉에서 발현되기에 적합하도록 코돈 최적화하였다. 코돈 최적화된 닭화(chickenized) CD20 mAb(cCD20 mAb) 유전자는 경쇄에 해당하는 VL + hIg 카파 부위 및 중쇄에 해당하는 VH hIgG 불변 부위와 함께 닭 라이소자임(lysozyme) 신호 펩타이드 서열을 포함하고, 내부 리보솜 유입점(internal ribosome entry site, IRES)과 연결하였다. 상기 발현 카세트를 1.4kb의 OV 프로모터 및 1.6kb의 OV 5' UTR 영역; 폴리-A 꼬리 서열을 포함하는 1.6kb의 OV 3' UTR 영역을 포함하는 piggyBac 백본(backbone)에 연결하였다. 상기 재조합 벡터의 개열지도를 도 1의 a에 나타내었다. 사용한 모든 유전자, 3' UTR, 5' TR, 3' TR 및 프로모터의 서열 정보는 하기 표 1에 나타내었다.The piggyBac OV anti-CD20 mAb expression recombinant vector was constructed using piggyBac transposon. Wherein -CD20 mAb (monoclonal antibody, monoclonal antibody) gene Gallus gallus Codon Usage database: was codon optimized for using (https //www.kazusa.or.jp/codon) suitable for expression in the hen. The codon optimized chickenized CD20 mAb (cCD20 mAb) gene contains a chicken lysozyme signal peptide sequence with a V L + hIg kappa region corresponding to the light chain and a V H hIgG constant region corresponding to the heavy chain. It was connected to an internal ribosome entry site (IRS). The expression cassette was used as a 1.4 kb OV promoter and a 1.6 kb OV 5'UTR region; It was ligated to a piggyBac backbone containing a 1.6 kb OV 3'UTR region containing a poly-A tail sequence. The cleavage map of the recombinant vector is shown in FIG. 1A. Sequence information of all used genes, 3'UTR, 5'TR, 3'TR and promoters is shown in Table 1 below.

이름name 서열 (5' - 3')Sequence (5'-3') 서열번호Sequence number 인간 CD20 mAb의 경쇄(VL + hIg Kappa)Light chain of human CD20 mAb (V L + hIg Kappa) ATGGATTTTCAGGTGCAGATTATCAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGGACAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGCAGGGCCAGCTCAAGTGTAAGTTACATCCACTGGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTATGCCACATCCAACCTGGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGGTCTGGGACTTCTTACTCTCTCACCATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGTGGACTAGTAACCCACCCACGTTCGGAGGGGGGACCAAGCTGGAAATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAGATGGATTTTCAGGTGCAGATTATCAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGGACAAATTGTTCTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGCAGGGCCAGCTCAAGTGTAAGTTACATCCACTGGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTATGCCACATCCAACCTGGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGGTCTGGGACTTCTTACTCTCTCACCATCAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGTGGACTAGTAACCCACCCACGTTCGGAGGGGGGACCAAGCTGGAAATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG 1One 인간 CD20 mAb의 중쇄(VH hIgG constant)Heavy chain of human CD20 mAb (V H hIgG constant) ATGGGTTGGAGCCTCATCTTGCTCTTCCTTGTCGCTGTTGCTACGCGTGTCCTGTCCCAGGTACAACTGCAGCAGCCTGGGGCTGAGCTGGTGAAGCCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACATTTACCAGTTACAATATGCACTGGGTAAAACAGACACCTGGTCGGGGCCTGGAATGGATTGGAGCTATTTATCCCGGAAATGGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACGGCGGTGACTGGTACTTCAATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCTGCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAATGAGGATGGGTTGGAGCCTCATCTTGCTCTTCCTTGTCGCTGTTGCTACGCGTGTCCTGTCCCAGGTACAACTGCAGCAGCCTGGGGCTGAGCTGGTGAAGCCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACATTTACCAGTTACAATATGCACTGGGTAAAACAGACACCTGGTCGGGGCCTGGAATGGATTGGAGCTATTTATCCCGGAAATGGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACGGCGGTGACTGGTACTTCAATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCTGCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAATGAGG 22 5' TR5'TR ATGCGTCAATTTTACGCAGACTATCTTTCTAGGGATGCGTCAATTTTACGCAGACTATCTTTCTAGGG 33 Poly APoly A GAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTG 44 Neomycin-resistance geneNeomycin-resistance gene ATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGTGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGTGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGA 55 SV40SV40 GGGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGGGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCG 66 3.5kb OV promoter3.5kb OV promoter TGACACCAGATGACAGAGAAGTGCATCTGAGAAAACCTATTCCCAATCTCCTTTCTCTTTCTGCAGACTGACATGCATTTCATAGGTAGAGATAACATTTACTGGGAAGCACATCTATCATCACAAAAAGCAGGCAAGATTTTCAGACTTTCTTAGTGGCTGAAATAGAAGCAAAAGACGTGATTAAAAACAAAATGAAACAAAAAAAATCAGTTGATACCTGTGGTGTAGACATCCAGCAAAAAAATATTATTTGCACTACCATCTTGTCTTAAGTCCTCAGACTTGGCAAGGAGAATGTAGATTTCCACAGTATATATGTTTTCACAAAAGGAAGGAGAGAAACAAAAGAAAATGGCACTGACTAAACTTCAGCTAGTGGTATAGGAAAGTAATTCTGCTTAACAGAGATTGCAGTGATCTCTATGTATGTCCTGAAGAATTATGTTGTACTTTTTTCCCCCATTTTTAAATCAAACAGTGCTTTACAGAGGTCAGAATGGTTTCTTTACTGTTTGTCAATTCTATTATTTCAATACAGAACAATAGCTTCTATAACTGAAATATATTTGCTATTGTATATTATGACTGTCCCTCGAACCATGAACACTCCTCCAGCTGAATTTCACAATTCCTCTGTCATCTGCCAGGCCATTAAGTTATTCATGGAAGATCTTTGAGGAACACTGCAAGTTCATATCATAAACACATTTGAAATTGAGTATTGTTTTGCATTGTATGGAGCTATGTTTTGCTGTATCCTCAGAATAAAAGTTTGTTATAAAGCATTCACACCCATAAAAAGATAGATTTAAATATTCCAACTATAGGAAAGAAAGTGTGTCTGCTCTTCACTCTAGTCTCAGTTGGCTCCTTCACATGCACGCTTCTTTATTTCTCCTATTTTGTCAAGAAAATAATAGGTCAAGTCTTGTTCTCATTTATGTCCTGTCTAGCGTGGCTCAGATGCACATTGTACATACAAGAAGGATCAAATGAAACAGACTTCTGGTCTGTTACTACAACCATAGTAATAAGCACACTAACTAATAATTGCTAATTATGTTTTCCATCTCCAAGGTTCCCACATTTTTCTGTTTTCTTAAAGATCCCATTATCTGGTTGTAATTGAAGCTCAATGGAACATGAGCAATATTTCCCAGTCTTCTCTCCCATCCAACAGTCCCGATGGATTAGCAGAACAGGCAGAAAACACATTGTTACCCAGAATTAAAAACTAATATTTGCTCTCCATTCAATCCAAAATGGACCTATTGAAACTAAAATCTAACCCAATCCCATTAAATGATTTCTATGGTGTCAAAGGTCAAACTTCTGAAGGGAACCTGTGGGTGGGTCACAATTCAGACTATATATTCCCCAGGGCTCAGCCAGTGTCTGTACATACAGCTAGAAAGCTGTATTGCCTTTAGCAGTCAAGCTCGAAAGGTAAGCAACTCTCTGGAATTACCTTCTCTCTATATTAGCTCTTACTTGCACCTAAACTTTAAAAAATTAACAATTATTGTGCTATGTGTTGTATCTTTAAGGGTGAAGTACCTGCGTGATACCCCCTATAAAAACTTCTCACCTGTGTATGCATTCTGCACTATTTTATTATGTGTAAAAGCTTTGTGTTTGTTTTCAGGAGGCTTATTCTTTGTGCTTAAAATATGTTTTTAATTTCAGAACATCTTATCCTGTCGTTCACTATCTGATATGCTTTGCAGTTTGCTTGATTAACTTCTAGCCCTACGGAGTGCACAGAGAGCAAAATCATGGTGTTCAGTGAATTCTGGGGAGTTATTTTAATGTGAAAATTCTCTAGAAGTTTAATTCCTGCAAAGTGCAGCTGCTGATCACTACACAAGATAAAAATGTGGGGGGTGCATAAACGTATATTCTTACAATAATAGATACATGTGAACTTATATACAGAAAAGAAAATGAGAAAAATGTGTGTGTGTATACTCACACACGTGGTCAGTAAAAACTTTTGAGGGGTTTAATACAGAAAATCCAATCCTGAGGCCCCAGCACTCAGTACGCATATAAAGGGCTGGGCTCTGAAGGACTTCTGACTTTCACAGATTATATAAATCTCAGGAAAGCAACTAGATTCATGCTGGCTCCAAAAGCTGTGCTTTATATAAGCACACTGGCTATACAATAGTTGTACAGTTCAGCTCTTTATAATAGAAACAGACAGAACAAGTATAAATCTTCTATTGGTCTATGTCATGAACAAGAATTCATTCAGTGGCTCTGTTTTATAGTAAACATTGCTATTTTATCATGTCTGCATTTCTCTTCTGTCTGAATGTCACCACTAAAATTTAACTCCACAGAAAGTTTATACTACAGTACACATGCATATCTTTGAGCAAAGCAAACCATACCTGAAGGTGCAATAGAGCAGAATATGAATTACATGCGTGTCTTTCTCCTAGACTACATGACCCCATATAAATTACATTCCTTATCTATTCTGCCATCACCAAAACAAAGGTAAAAATACTTTTGAAGATCTACTCATAGCAAGTAGTGTGCAACAAACAGATATTTCTCTACATTTATTTTTAGGGAATAAAAATAAGAAATAAAATAGTCAGCAAGCCTCTGCTTTCTCATATATCTGTCCAAACCTAAAGTTTACTGAAATTTGCTCTTTGAATTTCCAGTTTTGCAAGCCTATCAGATTGTGTTTTAATCAGAGGTACTGAAAAGTATCAATGAATTCTAGCTTTCACTGAACAAAAATATGTAGAGGCAACTGGCTTCTGGGACAGTTTGCTACCCAAAAGACAACTGAATGCAAATACATAAATAGATTTATGAATATGGTTTTGAACATGCACATGAGAGGTGGATATAGCAACAGACACATTACCACAGAATTACTTTAAAACTACTTGTTAACATTTAATTGCCTAAAAACTGCTCGTAATTTACTGTTGTAGCCTACCATAGAGTACCCTGCATGGTACTATGTACAGCATTCCATCCTTACATTTTCACTGTTCTGCTGTTTGCTCTAGACAACTCAGAGTTCACCTGACACCAGATGACAGAGAAGTGCATCTGAGAAAACCTATTCCCAATCTCCTTTCTCTTTCTGCAGACTGACATGCATTTCATAGGTAGAGATAACATTTACTGGGAAGCACATCTATCATCACAAAAAGCAGGCAAGATTTTCAGACTTTCTTAGTGGCTGAAATAGAAGCAAAAGACGTGATTAAAAACAAAATGAAACAAAAAAAATCAGTTGATACCTGTGGTGTAGACATCCAGCAAAAAAATATTATTTGCACTACCATCTTGTCTTAAGTCCTCAGACTTGGCAAGGAGAATGTAGATTTCCACAGTATATATGTTTTCACAAAAGGAAGGAGAGAAACAAAAGAAAATGGCACTGACTAAACTTCAGCTAGTGGTATAGGAAAGTAATTCTGCTTAACAGAGATTGCAGTGATCTCTATGTATGTCCTGAAGAATTATGTTGTACTTTTTTCCCCCATTTTTAAATCAAACAGTGCTTTACAGAGGTCAGAATGGTTTCTTTACTGTTTGTCAATTCTATTATTTCAATACAGAACAATAGCTTCTATAACTGAAATATATTTGCTATTGTATATTATGACTGTCCCTCGAACCATGAACACTCCTCCAGCTGAATTTCACAATTCCTCTGTCATCTGCCAGGCCATTAAGTTATTCATGGAAGATCTTTGAGGAACACTGCAAGTTCATATCATAAACACATTTGAAATTGAGTATTGTTTTGCATTGTATGGAGCTATGTTTTGCTGTATCCTCAGAATAAAAGTTTGTTATAAAGCATTCACACCCATAAAAAGATAGATTTAAATATTCCAACTATAGGAAAGAAAGTGTGTCTGCTCTTCACTCTAGTCTCAGTTGGCTCCTTCACATGCACGCTTCTTTATTTCTCCTATTTTGTCAAGAAAATAATAGGTCAAGTCTTGTTCTCATTTATGTCCTGTCTAGCGTGGCTCAGATGCACATTGTACATACAAGAAGGATCAAATGAA ACAGACTTCTGGTCTGTTACTACAACCATAGTAATAAGCACACTAACTAATAATTGCTAATTATGTTTTCCATCTCCAAGGTTCCCACATTTTTCTGTTTTCTTAAAGATCCCATTATCTGGTTGTAATTGAAGCTCAATGGAACATGAGCAATATTTCCCAGTCTTCTCTCCCATCCAACAGTCCCGATGGATTAGCAGAACAGGCAGAAAACACATTGTTACCCAGAATTAAAAACTAATATTTGCTCTCCATTCAATCCAAAATGGACCTATTGAAACTAAAATCTAACCCAATCCCATTAAATGATTTCTATGGTGTCAAAGGTCAAACTTCTGAAGGGAACCTGTGGGTGGGTCACAATTCAGACTATATATTCCCCAGGGCTCAGCCAGTGTCTGTACATACAGCTAGAAAGCTGTATTGCCTTTAGCAGTCAAGCTCGAAAGGTAAGCAACTCTCTGGAATTACCTTCTCTCTATATTAGCTCTTACTTGCACCTAAACTTTAAAAAATTAACAATTATTGTGCTATGTGTTGTATCTTTAAGGGTGAAGTACCTGCGTGATACCCCCTATAAAAACTTCTCACCTGTGTATGCATTCTGCACTATTTTATTATGTGTAAAAGCTTTGTGTTTGTTTTCAGGAGGCTTATTCTTTGTGCTTAAAATATGTTTTTAATTTCAGAACATCTTATCCTGTCGTTCACTATCTGATATGCTTTGCAGTTTGCTTGATTAACTTCTAGCCCTACGGAGTGCACAGAGAGCAAAATCATGGTGTTCAGTGAATTCTGGGGAGTTATTTTAATGTGAAAATTCTCTAGAAGTTTAATTCCTGCAAAGTGCAGCTGCTGATCACTACACAAGATAAAAATGTGGGGGGTGCATAAACGTATATTCTTACAATAATAGATACATGTGAACTTATATACAGAAAAGAAAATGAGAAAAATGTGTGTGTGTATACTCACACACGTGGTCAGTAAAAACTTTTGA GGGGTTTAATACAGAAAATCCAATCCTGAGGCCCCAGCACTCAGTACGCATATAAAGGGCTGGGCTCTGAAGGACTTCTGACTTTCACAGATTATATAAATCTCAGGAAAGCAACTAGATTCATGCTGGCTCCAAAAGCTGTGCTTTATATAAGCACACTGGCTATACAATAGTTGTACAGTTCAGCTCTTTATAATAGAAACAGACAGAACAAGTATAAATCTTCTATTGGTCTATGTCATGAACAAGAATTCATTCAGTGGCTCTGTTTTATAGTAAACATTGCTATTTTATCATGTCTGCATTTCTCTTCTGTCTGAATGTCACCACTAAAATTTAACTCCACAGAAAGTTTATACTACAGTACACATGCATATCTTTGAGCAAAGCAAACCATACCTGAAGGTGCAATAGAGCAGAATATGAATTACATGCGTGTCTTTCTCCTAGACTACATGACCCCATATAAATTACATTCCTTATCTATTCTGCCATCACCAAAACAAAGGTAAAAATACTTTTGAAGATCTACTCATAGCAAGTAGTGTGCAACAAACAGATATTTCTCTACATTTATTTTTAGGGAATAAAAATAAGAAATAAAATAGTCAGCAAGCCTCTGCTTTCTCATATATCTGTCCAAACCTAAAGTTTACTGAAATTTGCTCTTTGAATTTCCAGTTTTGCAAGCCTATCAGATTGTGTTTTAATCAGAGGTACTGAAAAGTATCAATGAATTCTAGCTTTCACTGAACAAAAATATGTAGAGGCAACTGGCTTCTGGGACAGTTTGCTACCCAAAAGACAACTGAATGCAAATACATAAATAGATTTATGAATATGGTTTTGAACATGCACATGAGAGGTGGATATAGCAACAGACACATTACCACAGAATTACTTTAAAACTACTTGTTAACATTTAATTGCCTAAAAACTGCTCGTAATTTACTGTTGTAGCCTACCATAGAGTACCCTGCATGGTACTATGTACAGCATT CCATCCTTACATTTTCACTGTTCTGCTGTTTGCTCTAGACAACTCAGAGTTCACC 77 pIRES intronpIRES intron GTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGGTCGATCGAGCATGCATCTAGGGCGGCCAATTCGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTCTGCGCTAAGCTCAGGCTACACTGCACACTGCACACTCCGCACTCCGCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTCTTTTTGTTGTCTCAAGCTTGAGGTGTGGCAGGCCCTCGATGATCGGCACACT 88 IRESIRES GCCCCTCTCCCTCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGGCCCCTCTCCCTCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACG 99 3' UTR3'UTR AAAGAAGAAAGCTGAAAAACTCTGTCCCTTCCAACAAGACCCAGAGCACTGTAGTATCAGGGGTAAAATGAAAAGTATGTTATCTGCTGCATCCAGACTTCATAAAAGCTGGAGCTTAATCTAGAAAAAAAATCAGAAAGAAATTACACTGTGAGAACAGGTGCAATTCACTTTTCCTTTACACAGAGTAATACTGGTAACTCATGGATGAAGGCTTAAGGGAATGAAATTGGACTCACAGTACTGAGTCATCACACTGAAAAATGCAACCTGATACATCAGCAGAAGGTTTATGGGGGAAAAATGCAGCCTTCCAATTAAGCCAGATATCTGTATGACCAAGCTGCTCCAGAATTAGTCACTCAAAATCTCTCAGATTAAATTATCAACTGTCACCAACCATTCCTATGCTGTCAAGGCAATTGCTTGTTCTCTGTGTTCCTGATACTACAAGGCTCTTCCTGACTTCCTAAAGATGCATTATAAAAATCTTATAATTCACATTTCTCCCTAAACTTTGACTCAATCATGGTATGTTGGCAAATATGGTATATTACTATTCAAATTGTTTTCCTTGTACCCATATGTAATGGGTCTTGTGAATGTGCTCTTTTGTTCCTTTAATCATAATAAAAACATGTTTAAGCAAACACTTTTCACTTGTAGTATTTGAAGTACAGCAAGGTTGTGTAGCAGGGAAAGAATGACATGCAGAGGAATAAGTATGGACACACAGGCTAGCAGCGACTGTAGAACAAGTACTAATGGGTGAGAAGTTGAACAAGAGTCCCCTACAGCAACTTAATCTAATAAGCTAGTGGTCTACATCAGCTAAAAGAGCATAGTGAGGGATGAAATTGGTTCTCCTTTCTAAGCATCACCTGGGACAACTCATCTGGAGCAGTGTGTCCAACCTGCCGCTGCCCTGATCCTGGCTGGGGTGATGGGACAGACCTTGGCTGCCACTGAGACATCTGAGACACTGAGATCTGTCTCAACTCAGATTTACCCAAGAACAGCTCATTGCCAACAGAACAAAATCTCAAACTTATGGCTAGTGATGACAGCAGTCAGTTGTCCCATCTGTGACCCACCAAGGCTGGCATGCTGGAATGAGCAGGCTTTGGTGGCTTGTAGTTACTGGACAGCACCACTGACATGGGCAGGGGAAAAACTGAGCATGGTGTAAATCACTGCCTCAAAGCCACTTCTCTGTGCCTGCACCATGCTTGAAAGCTCTTCTACAGGAGCTGGGTTTGTTCAAGAAAGCTTCTGTTTCTCCCATCTGCTTCTTGTACCTTCACAGGGACAGAGTTAGAAGGGTACAGCCATGGCTGGAAGGGGCTGACTTTCAAATGTGCCTAATTTTCCTTTGGTTGCTGCTGCAGCTGCAGAAGAAGGGGTTCAGAAGCCAAGAGCTTTGAGATAAGGATGCCTAACCTATGTTGAAGACATTTGTGCTGACACCTCAGGCCCCAGGATAGGACAACTGCTGGATTGTGGCTAACCCACTAGCTACAGAACCTAATTTATATTACCAGATTAGGAAGAGCAAAAGAACATGTATTTATAACAGGAGGTCTTCTGTGCTTCTCTACTAAAAGGTGCTGTGAAGGAGCCCACAGTGCAAAGAAGAAAGCTGAAAAACTCTGTCCCTTCCAACAAGACCCAGAGCACTGTAGTATCAGGGGTAAAATGAAAAGTATGTTATCTGCTGCATCCAGACTTCATAAAAGCTGGAGCTTAATCTAGAAAAAAAATCAGAAAGAAATTACACTGTGAGAACAGGTGCAATTCACTTTTCCTTTACACAGAGTAATACTGGTAACTCATGGATGAAGGCTTAAGGGAATGAAATTGGACTCACAGTACTGAGTCATCACACTGAAAAATGCAACCTGATACATCAGCAGAAGGTTTATGGGGGAAAAATGCAGCCTTCCAATTAAGCCAGATATCTGTATGACCAAGCTGCTCCAGAATTAGTCACTCAAAATCTCTCAGATTAAATTATCAACTGTCACCAACCATTCCTATGCTGTCAAGGCAATTGCTTGTTCTCTGTGTTCCTGATACTACAAGGCTCTTCCTGACTTCCTAAAGATGCATTATAAAAATCTTATAATTCACATTTCTCCCTAAACTTTGACTCAATCATGGTATGTTGGCAAATATGGTATATTACTATTCAAATTGTTTTCCTTGTACCCATATGTAATGGGTCTTGTGAATGTGCTCTTTTGTTCCTTTAATCATAATAAAAACATGTTTAAGCAAACACTTTTCACTTGTAGTATTTGAAGTACAGCAAGGTTGTGTAGCAGGGAAAGAATGACATGCAGAGGAATAAGTATGGACACACAGGCTAGCAGCGACTGTAGAACAAGTACTAATGGGTGAGAAGTTGAACAAGAGTCCCCTACAGCAACTTAATCTAATAAGCTAGTGGTCTACATCAGCTAAAAGAGCATAGTGAGGGATGAAATTGGTTCTCCTTTCTAAGCATCACCTGGGACAACTCATCTGGAGCAGTGTGTCCAACCTGCCGCTGCCCTGATCCTGGCTGGGGTGATGGGACAGACCTTGGCTGCCACTGAGACATCTGAGACACTGAGATCTGTCTCAACT CAGATTTACCCAAGAACAGCTCATTGCCAACAGAACAAAATCTCAAACTTATGGCTAGTGATGACAGCAGTCAGTTGTCCCATCTGTGACCCACCAAGGCTGGCATGCTGGAATGAGCAGGCTTTGGTGGCTTGTAGTTACTGGACAGCACCACTGACATGGGCAGGGGAAAAACTGAGCATGGTGTAAATCACTGCCTCAAAGCCACTTCTCTGTGCCTGCACCATGCTTGAAAGCTCTTCTACAGGAGCTGGGTTTGTTCAAGAAAGCTTCTGTTTCTCCCATCTGCTTCTTGTACCTTCACAGGGACAGAGTTAGAAGGGTACAGCCATGGCTGGAAGGGGCTGACTTTCAAATGTGCCTAATTTTCCTTTGGTTGCTGCTGCAGCTGCAGAAGAAGGGGTTCAGAAGCCAAGAGCTTTGAGATAAGGATGCCTAACCTATGTTGAAGACATTTGTGCTGACACCTCAGGCCCCAGGATAGGACAACTGCTGGATTGTGGCTAACCCACTAGCTACAGAACCTAATTTATATTACCAGATTAGGAAGAGCAAAAGAACATGTATTTATAACAGGAGGTCTTCTGTGCTTCTCTACTAAAAGGTGCTGTGAAGGAGCCCACAGTGC 1010 3'TR3'TR CATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTATCTTTCTAGGGCATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTATCTTTCTAGGG 1111

실시예Example 3. 형질감염 및 G418을 통한 3. Transfection and through G418 원시생식세포(PGCs)의Of primitive germ cells (PGCs) 선별 Selection

6일령(stage 28) 화이트 레그혼(White Leghorn; WL) 배아의 원시 생식기(embryonic gonad)로부터 수컷 원시생식세포(gPGC) 라인을 확립하였다. 상기 원시생식세포를 60-70%의 상대습도, 5% 이산화탄소 및 37℃ 조건에서 20%(v/v) 소태아혈청(FBS; Invitrogen, Life Technologies), 2%(v/v) 닭 혈청(Sigma-Aldrich, St. Louis, MO, USA), 13 뉴클레오사이드 믹스(EMD Millipore, Temecula, CA, USA), 2mM L-글루타민, 13 비필수아미노산 믹스, 2-ME, 10mM 피루브산 나트륨(sodium pyruvate) 및 1x 안티바이오틱-안티마이코틱(Invitrogen, LifeTechnologies)이 첨가된 넉아웃(knockout) DMEM((Invitrogen, Life Technologies, Carlsbad, CA, USA) 배지 내에서 유지하였다. 원시생식세포 증식을 활성화시키기 위하여 인간 섬유아세포 성장인자(human basic fibroblast growth factor; 10 ng/ml; Koma Biotech, Seoul, Korea)를 사용하였다. 배양된 원시생식세포를 5-6일 간격으로 미토마이신(mitomycin) 불활성화된 마우스 배아 섬유아세포 위에서 계대 배양하였다. 상기 실시예 2에서 제조한 cCD20 mAb 발현 벡터 및 CAGG-PBase(pCyL43)를 Lipofectamine 2000 시약(Invitrogen, Life Technologies)과 혼합하고 원시생식세포 라인에 도입하여 공-형질감염(co-transfection)시켰다. 형질전환을 수행하고 1일 경과 후, G418(300 ㎍/ml)을 배양 배지에 첨가하여 2xERE-OV 항-CD20 mAB 콜로니를 선별하였다. 선별 과정은 3주까지 소요되었다. A male primitive germ cell (gPGC) line was established from the embryonic gonad of a 6-day-old (stage 28) White Leghorn (WL) embryo. The primitive germ cells were treated with 60-70% relative humidity, 5% carbon dioxide, and 20% (v/v) fetal bovine serum (FBS; Invitrogen, Life Technologies), 2% (v/v) chicken serum ( Sigma-Aldrich, St.Louis, MO, USA), 13 nucleoside mix (EMD Millipore, Temecula, CA, USA), 2 mM L-glutamine, 13 non-essential amino acid mix, 2-ME, 10 mM sodium pyruvate ) And Knockout DMEM ((Invitrogen, Life Technologies, Carlsbad, CA, USA) supplemented with 1x antibiotic-antimycotic (Invitrogen, LifeTechnologies). Maintained in medium. To activate primitive germ cell proliferation For this purpose, human basic fibroblast growth factor (10 ng/ml; Koma Biotech, Seoul, Korea) was used, and the cultured primitive germ cells were mitomycin-inactivated mice every 5-6 days. It was subcultured on embryonic fibroblasts The cCD20 mAb expression vector and CAGG-PBase (pCyL43) prepared in Example 2 were mixed with Lipofectamine 2000 reagent (Invitrogen, Life Technologies) and introduced into a primitive germ cell line to co-transfect One day after the transformation was performed, G418 (300 µg/ml) was added to the culture medium to select 2xERE-OV anti-CD20 mAB colonies, which took up to 3 weeks. .

실시예Example 4. 수용체 배아에 생식세포 주입 및 형질전환 닭의 스크리닝 4. Injection of germ cells into recipient embryos and screening of transgenic chickens

수용체 배아에 상기 실시예 3에서 선별된 형질감염 원시생식세포를 주입하기 위해, 수용체 오계 (Korean Ogye, KO) 알(HH stage 14-17)의 첨단부에 작은 창을 만들고, 적어도 3000개의 원시생식세포가 포함된 세포 현탁액 2μL를 수용체 배아의 등쪽 대동맥에 주입(microinjection)하였다. 각각의 알에 생긴 창은 파라핀 필름으로 밀봉하였으며, 첨단부를 아래쪽으로 하여 이후 스크리닝 및 부화과정에 이르기까지 유지시켰다. 성 성숙(sex maturation) 이후, 공여체 원시생식세포 유래의 자손을 얻기 위하여 색소침착 억제 우성 유전자(I/I)를 가진 형질전환된 닭 및 색소침착 억제 열성 유전자(i/i)를 가진 야생형 닭 간에 검정교배(testcrossing)를 수행하였다. 그 결과, 사용된 104개의 배아로부터 46마리의 병아리가 부화하였다(44.2%).In order to inject the transfected primitive germ cells selected in Example 3 into the receptor embryo, a small window was created at the tip of the receptor Ogye (KO) egg (HH stage 14-17), and at least 3000 primitive reproductions 2 μL of the cell suspension containing cells was injected into the dorsal aorta of the recipient embryo (microinjection). The window formed on each egg was sealed with a paraffin film, and the tip was kept downward until screening and hatching. After sex maturation, between a transformed chicken with a pigmentation inhibitory dominant gene ( I/I ) and a wild-type chicken with a pigmentation inhibitory recessive gene ( i/i ) to obtain progeny from donor primitive germ cells. Testcrossing was performed. As a result, 46 chicks hatched from 104 embryos used (44.2%).

추가적으로, 형질전환 닭의 조직 특이적 발현을 확인하기 위하여 PCR을 수행하였다. 야생형 및 형질전환된 타겟 부위를 포함하는 유전자 부위는 cCD20 mAb 서열에 특이적 프라이머를 사용하여 증폭시켰다. PCR은 총 20ml의 100ng 유전체 DNA에 대하여 10x PCR 버퍼(CoreBioSystem, Seoul, Korea), 1.6ml dNTPs(각각 10mM), 각 프라이머 5pmol 및 0.5 U Taq 폴리머레이즈(CoreBioSystem)를 사용하여 다음과 같은 조건으로 수행하였다: 5분 동안 94℃에서 1차 변성을 1회 반복하였고, 후에 30초 동안 94℃에서 변성, 30초 동안 60℃에서 어닐링(annealing) 및 30초 동안 72℃에서 연장하는 단계를 30회 반복하였으며, 마지막으로 10분 동안 72℃에서 후-연장을 1회 반복하였다. 상기 PCR 수행 결과를 도 2에 나타내었다. 사용한 모든 프라이머는 하기 표 2에 나타내었으며, 야생형(WT) DNA를 음성 대조군으로 사용하였다.Additionally, PCR was performed to confirm tissue-specific expression of transgenic chickens. Gene sites including wild-type and transformed target sites were amplified using primers specific to the cCD20 mAb sequence. PCR was performed using 10x PCR buffer (CoreBioSystem, Seoul, Korea), 1.6ml dNTPs (10mM each), 5pmol of each primer and 0.5 U Taq polymerase (CoreBioSystem) for a total of 20ml of 100ng genomic DNA under the following conditions. The first denaturation was repeated once at 94° C. for 5 minutes, and then the steps of denaturing at 94° C. for 30 seconds, annealing at 60° C. for 30 seconds, and extending at 72° C. for 30 seconds were repeated 30 times. And finally, the post-extension was repeated once at 72° C. for 10 minutes. 2 shows the results of the PCR. All primers used are shown in Table 2 below, and wild-type (WT) DNA was used as a negative control.

프라이머primer 서열 (5'→3')Sequence (5'→3') 크기(bp)Size (bp) 위치location 서열번호Sequence number Ch33 FCh33 F GTC GGG GCT CAT CTC TCC CTGTC GGG GCT CAT CTC TCC CT 431431 Ch33 wild-type locusCh33 wild-type locus 1212 Ch33 wild-type locus RCh33 wild-type locus R GCG CCA AGT GAC GAT CTG GTGCG CCA AGT GAC GAT CTG GT 1313 Ch33 FCh33 F GTC GGG GCT CAT CTC TCC CTGTC GGG GCT CAT CTC TCC CT 610610 Ch33 transgene locusCh33 transgene locus 1414 Ch33 transgene locus RCh33 transgene locus R CCG CTA GCC AAC AAG CTC GT(vector seq)CCG CTA GCC AAC AAG CTC GT (vector seq) 1515 Ch4 FCh4 F AGA AGC ACA ATA GAG CAA AGG ATG GAAAGA AGC ACA ATA GAG CAA AGG ATG GAA 315315 Ch4 wild-type locusCh4 wild-type locus 1616 Ch4 wild-type locus RCh4 wild-type locus R TCC TGT GAT GCT CCA GGC CTTCC TGT GAT GCT CCA GGC CT 1717 Ch4 FCh4 F AGA AGC ACA ATA GAG CAA AGG ATG GAAAGA AGC ACA ATA GAG CAA AGG ATG GAA 480480 Ch4 transgene locusCh4 transgene locus 1818 Ch4 transgene locus RCh4 transgene locus R AGC TCG TCA TCG CTT TGC AGA(vector seq)AGC TCG TCA TCG CTT TGC AGA (vector seq) 1919 piggyBac TSP1 * piggyBac TSP1 * GGATCTCATGCTGGAGTTCTGGATCTCATGCTGGAGTTCT -- Integration siteIntegration site 2020 piggyBac TSP2 piggyBac TSP2 GGCGTAATCATGGTCATAGCTGGCGTAATCATGGTCATAGCT -- Integration siteIntegration site 2121 piggyBac TSP3 piggyBac TSP3 GAGCCGGAAGCATAAAGTGTGAGCCGGAAGCATAAAGTGT -- Integration siteIntegration site 2222 cCD20 transgene FcCD20 transgene F ACCCCTGAGGTCACATGCGTACCCCTGAGGTCACATGCGT 423423 cCD20 transgenecCD20 transgene 2323 cCD20 transgene RcCD20 transgene R GGGAGGCGTGGTCTTGTAGTGGGAGGCGTGGTCTTGTAGT 2424

도 2에 나타낸 바와 같이, 형질전환 되지 않은 닭으로부터 수득한 cDNA는 cCD20 특이적 프라이머에 대해 음성이었고, 형질전환된 닭으로부터 수득한 난관 팽대부(magnum)의 cDNA는 cCD20 특이적 프라이머에 대해 양성으로 나타남을 확인하였다.As shown in FIG. 2, cDNA obtained from untransformed chickens was negative for cCD20 specific primer, and cDNA of oviduct magnum obtained from transformed chickens was positive for cCD20 specific primers. Was confirmed.

실시예Example 5. DNA walking에 따른 5. According to DNA walking 트랜스진Transgene (( transgenetransgene ) 삽입 부위 확인) Check the insertion site

DNA Walking SpeedUp Premix Kit-Ⅱ (Seegene, Seoul, Korea)을 제조사의 프로토콜에 따라 사용하여 트랜스진(외래유전자) 삽입 부위를 확인하였다. DNA walking을 3회 실시한 PCR 산물을 아가로즈 젤로부터 추출하고, Power Gel Extraction Kit (Promega, Madison, WI, USA)를 사용하여 정제하여 pGEM-T Easy Vector(Promega)에 클로닝하였다. 클로닝된 PCR 산물들을 ABI Prism 3730 XL DNA Analyzer (Applied Biosystems, Foster City, CA, USA)를 사용하여 시퀀싱하였다. 형질전환된 닭에서 트랜스진 삽입 부위를 확인하기 위하여 BLAST Assembled Genome 데이터베이스(http://blast.ncbi.nlm.nih.gov/BLAST.cgi) 및 UCSC Genome Bioinformatics' 브라우저 (http://www.genome.ucsc.edu)를 사용하여 5' 주변부 서열(flanking region)을 분석하였다. 그 결과를 도 3에 나타내었다.DNA Walking SpeedUp Premix Kit-II (Seegene, Seoul, Korea) was used according to the manufacturer's protocol to identify the transgene (foreign gene) insertion site. The PCR product subjected to DNA walking 3 times was extracted from the agarose gel, purified using Power Gel Extraction Kit (Promega, Madison, WI, USA), and cloned into pGEM-T Easy Vector (Promega). The cloned PCR products were sequenced using an ABI Prism 3730 XL DNA Analyzer (Applied Biosystems, Foster City, CA, USA). BLAST Assembled Genome database ( http://blast.ncbi.nlm.nih.gov/BLAST.cgi ) and UCSC Genome Bioinformatics' browser (http://www.genome) to identify the transgene insertion site in transformed chickens .ucsc.edu) was used to analyze the 5'flanking region. The results are shown in FIG. 3.

도 3에 나타낸 바와 같이, 수컷 4마리(#9107, #9187, #9615 및 #9643)와 암컷 2마리(#9191 및 #9184)가 cCD20 mAb 트랜스진을 보유하고 있음을 확인하였다. 이 중 4번 염색체에 트랜스진이 삽입된 #9187 수컷 및 33번 염색체에 트랜스진이 삽입된 #9191 암컷을 이후 실험에 사용하였다.As shown in Figure 3, it was confirmed that 4 males (#9107, #9187, #9615, and #9643) and 2 females (#9191 and #9184) possessed the cCD20 mAb transgene. Among them, male #9187 with a transgene inserted into chromosome 4 and female #9191 with a transgene inserted into chromosome 33 were used for later experiments.

실시예Example 6. 6. 트랜스진Transgene 유전체 분석( Genomic Analysis ( genotypinggenotyping ))

동일한 위치에 cCD20 mAb 도입 유전자(트랜스진) 2개를 갖는 동형접합성(homozygous) 닭을 생산하기 위해, 4번 염색체에 cCD20 mAb 도입 유전자를 가진 Tg4(G1) 형질전환 수컷과 33번 염색체에 cCD20 mAb 도입 유전자를 가진 Tg33(G1) 형질전환 암컷을 서로 다른 성별의 야생형 닭과 검정교배하였다. 계속하여, G1 닭으로부터 생산된 형질전환 후손(G2)을 다른 부위(locus)에 트랜스진을 가진 형질전환 닭과 교배하였다. 4번 염색체 및 33번 염색체 모두에 동형접합성 트랜스진을 보유한 4 카피의 동형접합성 닭을 생산하기 위하여, Tg33번 타입 형질전환 수컷(G2)과 Tg4번 타입 형질전환 암컷을 교배하였다. 상기 과정을 통하여 생산한 G0부터 G3까지의 수탉 Tg33 및 암탉 Tg4의 계통도(pedigree)를 도 1의 b에 나타내었다.To produce a homozygous chicken with two cCD20 mAb transgenes (transgenes) at the same location, a Tg4 (G1) transgenic male with a cCD20 mAb transgene on chromosome 4 and a cCD20 mAb on chromosome 33 Tg33 (G1) transgenic females carrying the transgene were assay-crossed with wild-type chickens of different sexes. Subsequently, the transgenic progeny (G2) produced from the G1 chicken was crossed with a transgenic chicken having a transgene in another locus. In order to produce 4 copies of a homozygous chicken carrying a homozygous transgene on both chromosome 4 and chromosome 33, a Tg33 type transgenic male (G2) and a Tg4 type transgenic female were crossed. A pedigree of rooster Tg33 and hen Tg4 from G0 to G3 produced through the above process is shown in b of FIG. 1.

야생형 및 형질전환된 타겟 부위를 포함하는 유전자 부위를 특이 프라이머 세트를 사용하여 증폭시켰다. 상기 야생형 및 형질전환 타겟 부위(transgenic loci)를 검출하기 위한 트랜스진 특이적 프라이머 세트의 모식도를 도 1의 c에 나타내었다. 형질전환된 타겟 부위가 존재할 경우, 정방향 프라이머는 닭 유전체에 결합하고, 역방향 프라이머는 닭 유전체 또는 트랜스진에 결합하였다. PCR은 다음과 같은 조건으로 수행하였다: 5분 동안 94℃에서 1차 변성을 1회 반복하였고, 후에 30초 동안 94℃에서 변성, 30초 동안 60℃에서 어닐링(annealing) 및 30초 동안 72℃에서 연장하는 단계를 35회 반복하였으며, 마지막으로 7분 동안 72℃에서 후-연장을 1회 반복하였다. 그 결과를 도 1의 d에 나타내었다.Gene sites including wild type and transformed target sites were amplified using specific primer sets. A schematic diagram of a transgene-specific primer set for detecting the wild-type and transgenic loci is shown in FIG. 1C. When the transformed target site is present, the forward primer binds to the chicken genome, and the reverse primer binds to the chicken genome or transgene. PCR was carried out under the following conditions: the primary denaturation was repeated once at 94° C. for 5 minutes, and then denaturation at 94° C. for 30 seconds, annealing at 60° C. for 30 seconds, and 72° C. for 30 seconds. The step of extending from was repeated 35 times, and finally, post-extending was repeated once at 72° C. for 7 minutes. The results are shown in FIG. 1D.

이하에서는 Tg33 G1 형질전환 닭과 동일한 위치에 1개 카피를 가진 G2 후손을 Tg33(he)로, Tg4 G1 형질전환 닭과 동일한 위치에 1개 카피를 가진 G2 후손을 Tg4(he)로, 두 위치 모두에 2개 카피를 가진 G2 후손을 Tg33(he)4(he)로 표현하였다. 예를 들어, Tg33(he)4(he)에서는 431bp, 610bp, 315bp 및 480bp 앰플리콘이 모두 얻어짐을 통해 트랜스진이 33번 염색체 좌위 및 4번 염색체 좌위 모두에서 발현됨을 확인하였다. 나아가, 2개 카피의 트랜스진을 가진 형질전환 닭(91he/87he)을 동일한 유전체를 가진 형질전환 닭과 교배시킨 경우, 4번 염색체와 33번 염색체 모두에 동형접합성 트랜스진을 가진 4 카피의 동형접합성 닭을[Tg33(ho)4(ho)] 생산함을 확인하였다.Hereinafter, the G2 descendant having one copy at the same position as the Tg33 G1 transgenic chicken is Tg33(he), the G2 descendant having one copy at the same position as the Tg4 G1 transgenic chicken is Tg4(he), and two positions. G2 descendants with 2 copies in all were expressed as Tg33(he)4(he). For example, in Tg33(he)4(he), 431bp, 610bp, 315bp, and 480bp amplicons were all obtained, confirming that the transgene was expressed in both chromosome 33 and 4 locus. Furthermore, when a transgenic chicken (91he/87he) with two copies of the transgene is crossed with a transgenic chicken with the same genome, 4 copies of the homozygous transgene on both chromosomes 4 and 33 are homozygous. It was confirmed that conjugated chickens [Tg33(ho)4(ho)] were produced.

실시예Example 7. 형질전환 암탉의 난백에서 인간 항체의 추출 및 정제 7. Extraction and purification of human antibodies from egg whites of transgenic hens

상기 실시예 4에서 제조한 형질전환 닭으로부터 수득한 계란 난백을 25℃에서 30분간 전단하고 균질화시켰다. 난백 현탁액에 3 부피의 역삼투수를 첨가하고 30분 동안 교반하였다. 난백 현탁액을 0.5M 인산(phosphoric acid)을 사용하여 pH6.0으로 조절하고, 12,100 x g 에서 20분 동안 원심분리하여 오보뮤신(ovomucin)을 포함한 대부분의 난백 단백질을 제거하였다. 다음으로, 상층액을 0.5M 이염기성 인산 나트륨(dibasic sodium phosphate)을 사용하여 pH7.4로 조절하고, 샘플을 0.2μM 시린지 필터를 사용하여 여과한 후, Protein A 컬럼(5 ml; GE Healthcare)을 사용하여 인간 IgG를 정제하였다. 평형을 위해 Protein A 컬럼을 컬럼 볼륨 5배의 로딩 버퍼(20mM 인산 나트륨, pH7.4)로 세척하고, 샘플 200ml를 컬럼에 로딩시킨 후 컬럼 볼륨 16배의 로딩 버퍼로 세척하였다. 여기에 컬럼 볼륨 3배의 용출 버퍼(100mM 시트르산 나트륨, pH3.0)를 사용하여 인간 IgG 단백질을 수득하였다. The egg white obtained from the transgenic chicken prepared in Example 4 was sheared at 25° C. for 30 minutes and homogenized. 3 volumes of reverse osmosis water were added to the egg white suspension and stirred for 30 minutes. The egg white suspension was adjusted to pH 6.0 with 0.5M phosphoric acid, and centrifuged at 12,100 x g for 20 minutes to remove most of the egg white proteins including ovomucin. Next, the supernatant was adjusted to pH 7.4 using 0.5M dibasic sodium phosphate, and the sample was filtered using a 0.2 μM syringe filter, and then a Protein A column (5 ml; GE Healthcare) Was used to purify human IgG. For equilibration, the Protein A column was washed with a 5 column volume loading buffer (20 mM sodium phosphate, pH 7.4), and 200 ml of a sample was loaded onto the column, followed by washing with a 16 column volume loading buffer. Here, a human IgG protein was obtained using an elution buffer (100 mM sodium citrate, pH 3.0) of 3 times the column volume.

정제된 cCD20 mAb를 10% SDS-PAGE 젤에 로딩시켜 웨스턴 블랏을 수행하였다. 용해된 단백질을 Hybond 0.45 PVDF 막(GE Healthcare Life Sciences, Little Chalfont, UK)에 옮기고 5% skimmed milk로 상온에서 1시간 동안 블락킹하였다. 화학 발광은 ECL 키트(GE Healthcare Life Sciences)를 사용하여 검출되었으며, 사용된 항체는 다음과 같다: 블락킹 버퍼로 희석된(1:1000) goat anti-Human IgG(H+L) 1차 항체 (Alpha diagnostic), 1:10000으로 희석된 horseradish peroxidase-conjugated 2차 항체(Thermo Fisher Scientific). 그 결과를 도 4의 a 내지 d에 나타내었다.Western blot was performed by loading the purified cCD20 mAb on a 10% SDS-PAGE gel. The dissolved protein was transferred to Hybond 0.45 PVDF membrane (GE Healthcare Life Sciences, Little Chalfont, UK) and blocked with 5% skimmed milk at room temperature for 1 hour. Chemiluminescence was detected using the ECL kit (GE Healthcare Life Sciences), and the antibodies used were as follows: goat anti-Human IgG (H+L) primary antibody (1:1000) diluted with blocking buffer ( Alpha diagnostic), horseradish peroxidase-conjugated secondary antibody diluted 1:10000 (Thermo Fisher Scientific). The results are shown in a to d of FIG. 4.

도 4의 a에 나타낸 바와 같이, mAb의 농도는 Tg4(he)의 경우 평균 2.04㎍/ml, Tg33(he)의 경우 평균 2.21㎍/ml로 나타났으며, 통계적으로 유의적인 차이는 보이지 않음을 확인하였다. 또한, 도 4의 b에 나타낸 바와 같이, 웨스턴 블랏 결과 두 형질전환 암탉 모두의 정제된 난백에서 항-인간 IgG 항체에 대응하는 경쇄 및 중쇄가 모두 검출되었고, 이를 통해 cCD20 mAb가 성공적으로 닭 개체에서 발현되고 난백을 통해 생산되었음을 확인하였다. As shown in Fig. 4a, the concentration of mAb was an average of 2.04 μg/ml in the case of Tg4(he) and 2.21 μg/ml in the case of Tg33(he), and there was no statistically significant difference. Confirmed. In addition, as shown in FIG. 4B, as a result of Western blot, both light and heavy chains corresponding to anti-human IgG antibodies were detected in the purified egg whites of both transgenic hens, and through this, cCD20 mAb was successfully performed in chicken individuals. It was confirmed that it was expressed and produced through egg white.

도 4의 c에 나타낸 바와 같이, SDS-PAGE를 통해 정제된 비환원 형태의 mAb는 150kDa의 크기를 보였으며, 환원된 mAb의 경우 두개의 중쇄(H, 약 50kDa) 및 경쇄(L, 약 25kDa)로 구성되어 있음을 확인하였다. As shown in c of FIG. 4, the mAb in the non-reduced form purified through SDS-PAGE showed a size of 150 kDa, and in the case of the reduced mAb, two heavy chains (H, about 50 kDa) and light chains (L, about 25 kDa) ).

추가적으로, 도 4의 d에 나타낸 바와 같이, ELISA 분석 결과 Tg4(he)에 비해 2개의 트랜스진을 지닌 Tg33(he)4(he)가 월등히 높은량의 항체가 발현되고 있었으며, 4개의 트랜스진을 지닌 Tg33(ho)4(ho)에서는 그보다 높은량의 항체가 발현됨을 확인하였다.In addition, as shown in d of FIG. 4, as a result of ELISA analysis, Tg33(he)4(he) having two transgenes compared to Tg4(he) showed a significantly higher amount of antibody expression, and four transgenes were It was confirmed that a higher amount of antibody was expressed in the possessed Tg33(ho)4(ho).

실시예Example 8. 형질전환 닭에서 생산된 항-CD20 8. Anti-CD20 produced in transgenic chickens mAb의mAb 당쇄Sugar chain 함량 분석 Content analysis

상기 실시예 7에서 수득한 cCD20 mAb의 당쇄 함량을 분석하기 위하여 항체 N-글리칸(N-glycan) 분석을 수행하였다. 구체적으로 N-글리칸 분석을 위하여 LC/MS/MS 시험법에 따라 항체에서 PNGase F를 처리하여 하전된 N-글리칸만을 분리하고 형광 라벨링 하여 분석을 수행하였다. 그 결과를 도 5에 나타내었다.In order to analyze the sugar chain content of the cCD20 mAb obtained in Example 7 above, antibody N-glycan analysis was performed. Specifically, for N-glycan analysis, PNGase F was treated in the antibody according to the LC/MS/MS test method to isolate only charged N-glycans and fluorescently label them to perform analysis. The results are shown in FIG. 5.

도 5의 a에 나타낸 바와 같이, 분석 결과 정제된 cCD20 mAb 200㎍에서 14개 종류의 N-글리칸이 확인되었다. 도 5의 b에 나타낸 바와 같이, 형질전환 닭 난백에서 생산된 cCD20 mAb는 14개의 주요 글리칸 중 8개(74.1%)가 갈락토오스 잔기를 함유하고 있는 반면, 모든 글리칸에서 비푸코실화된 것을 확인하였다. As shown in FIG. 5A, 14 kinds of N-glycans were identified in 200 μg of purified cCD20 mAb as a result of the analysis. As shown in FIG. 5B, cCD20 mAb produced from transgenic chicken egg whites contained galactose residues, whereas eight of the 14 major glycans (74.1%) were non-fucosylated in all glycans. I did.

실시예Example 9. CD20의 9. CD20 FabFab 결합력 분석 Cohesion analysis

형질전환 닭으로부터 생산된 cCD20 mAb의 CD20 항원에 대한 결합력을 평가하기 위하여, 형질전환 닭으로부터 생산된 2가지 종류의 cCD20 mAb Tg33(he)4(he) 및 Tg33(ho)4(ho)를 사용하여 유세포 분석을 수행하였다. 구체적으로, 상기 cCD20 mAb 및 리툭시맙(rituximab; MabThera, Roche)을 CD20을 발현하는 B 림프구 세포주인 Raji 세포에 처리하였다. 세포들을 상온에서 0.01, 0.05, 0.1, 0.5, 1, 5 및 10㎍/ml 농도의 단일클론항체와 함께 30분 동안 배양하고, FITC-conjugated goat anti-human IgG(Invitrogen)를 사용하여 결합된 단일클론항체를 검출하였다. 이후, 상기 세포들은 FACSCalibur를 사용하여 분석하였다. 그 결과를 도 6에 나타내었다.To evaluate the binding ability of cCD20 mAb produced from transgenic chickens to CD20 antigen, two types of cCD20 mAb Tg33(he)4(he) and Tg33(ho)4(ho) produced from transgenic chickens were used. Then, flow cytometry was performed. Specifically, the cCD20 mAb and rituximab (rituximab; MabThera, Roche) were treated with Raji cells, which are B lymphocyte cell lines expressing CD20. Cells were incubated with monoclonal antibodies at 0.01, 0.05, 0.1, 0.5, 1, 5 and 10 μg/ml concentrations for 30 minutes at room temperature, and conjugated using FITC-conjugated goat anti-human IgG (Invitrogen). Clonal antibodies were detected. Then, the cells were analyzed using FACSCalibur. The results are shown in FIG. 6.

도 6의 a에 나타낸 바와 같이, Raji 세포에 대한 cCD20 mAb의 결합능력은 모든 농도구간에서 대조군으로 사용된 리툭시맙과 유사하였다. 한편, 도 6의 b 에 나타낸 바와 같이, 0.01, 0.1, 1, 5 및 10㎍/ml 농도에서 모든 대조군 및 실험군의 결합효율은 매우 유사함을 확인하였다. 이를 통해, 형질전환 닭에서 생산된 cCD20 mAb는 상용 CD20 mAb인 리툭시맙과 유사한 Fab 결합력을 가짐을 확인하였다.As shown in FIG. 6A, the binding capacity of cCD20 mAb to Raji cells was similar to that of rituximab used as a control in all concentration ranges. On the other hand, as shown in b of FIG. 6, it was confirmed that the binding efficiencies of all the control and experimental groups were very similar at the concentrations of 0.01, 0.1, 1, 5 and 10 μg/ml. Through this, it was confirmed that the cCD20 mAb produced in the transgenic chicken has a Fab binding ability similar to that of the commercial CD20 mAb rituximab.

실시예Example 10. 세포사멸능력 분석 10. Analysis of cell death ability

세포사멸능력은 Raji 세포를 Annexin Ⅴ/PI(Thermo Fisher Scientific)로 함께 염색함으로써 유세포 분석기(FACSCalibur, BD Biosciences, San Jose, CA, USA)를 통해 측정하였다. Annexin Ⅴ에 음성인 세포는 생존으로 간주하였고, Annexin Ⅴ 양성인 세포들은 세포사멸로 간주하였다. 그 결과를 도 6의 c와 d에 나타내었다.Apoptosis ability was measured by flow cytometry (FACSCalibur, BD Biosciences, San Jose, CA, USA) by staining Raji cells with Annexin V/PI (Thermo Fisher Scientific) together. Cells negative for Annexin V were considered survival, and cells positive for Annexin V were considered apoptosis. The results are shown in c and d of FIG. 6.

도 6에 나타낸 바와 같이, 2가지 종류의 cCD20 mAb Tg33(he)4(he)및 Tg33(ho)4(ho)로 처리된 실험군은 대조군에 비하여 높은 수준의 세포사멸을 나타냄을 확인하였다. 구체적으로, 도 6의 c에 나타낸 바와 같이, mAb 처리 후 사멸 세포의 양은 (60.7% 및 55.3%) 상용 CD20 mAb인 리툭시맙 처리군(42.8%)에 비해 유의적으로 증가함을 확인하였다. 또한, 도 6의 d에 나타낸 바와 같이, 처리 항체의 농도별 세포사멸의 경우 리툭시맙 처리군과 비교하여 cCD20 mAb 처리군에서 현저히 높은 효율을 나타냄을 확인하였다. 이를 통해, 형질전환 닭에서 생산된 cCD20 mAb는 상용 CD20 mAb인 리툭시맙에 비해 현저히 높은 세포사멸능력을 가짐을 확인하였다.As shown in FIG. 6, it was confirmed that the experimental group treated with two types of cCD20 mAb Tg33(he)4(he) and Tg33(ho)4(ho) exhibited a higher level of apoptosis than the control group. Specifically, as shown in c of FIG. 6, it was confirmed that the amount of dead cells after mAb treatment (60.7% and 55.3%) was significantly increased compared to the commercial CD20 mAb rituximab treatment group (42.8%). In addition, as shown in FIG. 6D, in the case of apoptosis by concentration of the treated antibody, it was confirmed that the cCD20 mAb treatment group showed significantly higher efficiency compared to the rituximab treatment group. Through this, it was confirmed that the cCD20 mAb produced in the transgenic chicken has a significantly higher apoptosis ability than the commercial CD20 mAb rituximab.

실시예Example 11. 11. CDCCDC 분석 analysis

보체매개성 면역반응(Complement-dependent cytotoxicity, CDC) 분석은 이전 연구(Natsume, et al. 2009)를 변형하여 수행하였다. 구체적으로, Raji 세포를 불투명 96-웰 플레이트에 시딩하여 타겟 세포로 사용하고, 타겟 세포에 항-CD20 항체(리툭시맙 또는 2가지 종류의 cCD20 mAb Tg33(he)4(he)및 Tg33(ho)4(ho) 중 하나)를 0.0001㎍/ml 내지 100㎍/ml의 농도 별로 처리하고, 이어서 보체의 원천으로 인간 혈청(Sigma, St. Louis, MO, USA) 16%를 포함하는 배지를 처리하였다. 5% 이산화탄소, 37℃ 조건에서 2시간 동안 반응시킨 후, WST-1(Roche Diagnostic, Basel, Switzerland)을 처리하여 4시간 동안 더 배양하였다. 항체 농도별 % 세포 독성은 하기의 식을 사용하여 계산하였고, 그 결과를 도 7에 나타내었다.Complement-dependent cytotoxicity (CDC) analysis was performed by modifying the previous study (Natsume, et al. 2009). Specifically, Raji cells were seeded in an opaque 96-well plate to be used as target cells, and anti-CD20 antibodies (rituximab or two types of cCD20 mAb Tg33(he)4(he) and Tg33(ho ) One of 4(ho)) was treated at different concentrations of 0.0001 μg/ml to 100 μg/ml, followed by treatment with a medium containing 16% of human serum (Sigma, St. Louis, MO, USA) as a source of complement I did. After reacting for 2 hours under the condition of 5% carbon dioxide and 37°C, WST-1 (Roche Diagnostic, Basel, Switzerland) was treated and incubated for 4 hours. % Cytotoxicity by antibody concentration was calculated using the following equation, and the results are shown in FIG. 7.

Figure 112019005662294-pat00001
Figure 112019005662294-pat00001

이 때, E는 실험군 웰의 흡광도, S는 mAb가 없는 웰의 흡광도(배양 배지 및 보체로만 배양된 세포), M은 배양 배지 및 보체의 흡광도(타겟 세포 및 항체가 없음)이다.In this case, E is the absorbance of the well of the experimental group, S is the absorbance of the well without mAb (culture medium and cells cultured only with complement), and M is the absorbance of the culture medium and complement (no target cells and antibodies).

도 7에 나타낸 바와 같이, 각 cCD20 mAb는 리툭시맙과 비교하여 농도의존적으로 높은 CDC 활성을 나타냄을 확인하였다.As shown in FIG. 7, it was confirmed that each cCD20 mAb showed a concentration-dependently high CDC activity compared to rituximab.

실시예Example 12. 12. ADCCADCC 분석 analysis

항체매개성 면역반응(Antibody-dependent cell-cytotoxicity assay, ADCC) 분석은 ADCC Reporter Bioassay complete kit(Promega, Madison, WI)를 사용하여 수행하였다. 구체적으로, cCD20 mAb의 ADCC 활성을 측정하기 위하여, B 림포상세포(lymphoblast)인 WIL2-S에 대한 면역 매개된 주효 세포(effector cell)기능을 리툭시맙과 비교하였다. CD20 양성 WIL2-S 세포를 원심분리하고 RPMI 1640 + 낮은 IgG 혈청에 재현탁시킨 후 주효 세포(effector cell; Jurkat 세포)가 있는 불투명 96-웰 플레이트에 시딩하였다. 대조군인 항-CD20 항체, 리툭시맙 및 닭 cCD20 mAb를 차례대로 희석하여 WIL2-S 세포와 함께 5% 이산화탄소, 37℃ 조건에서 6시간 동안 반응시킨 후, Bio-Glo™ Luciferase 분석 및 마이크로 플레이트 리더를 이용하여 세포 독성을 측정하였다. 그 결과를 도 8에 나타내었다.Antibody-dependent cell-cytotoxicity assay (ADCC) analysis was performed using the ADCC Reporter Bioassay complete kit (Promega, Madison, WI). Specifically, in order to measure the ADCC activity of cCD20 mAb, immune-mediated effector cell function against WIL2-S, which is a B lymphocyte, was compared with Rituximab. CD20 positive WIL2-S cells were centrifuged and resuspended in RPMI 1640 + low IgG serum and seeded in opaque 96-well plates with effector cells (Jurkat cells). Control anti-CD20 antibody, rituximab, and chicken cCD20 mAb were sequentially diluted and reacted with WIL2-S cells at 5% carbon dioxide and 37°C for 6 hours, followed by Bio-Glo™ Luciferase analysis and microplate reader Cytotoxicity was measured using. The results are shown in FIG. 8.

도 8에 나타낸 바와 같이, 발광(luminescence) 강도는 대조군 항체, 리툭시맙과 비교하여 cCD20 mAb가 더 높음을 확인하였다. 대조군 CD20 mAb 및 리툭시맙은 5.82 x 10-9 EC50의 및 1.05 x 10-9 EC50의 ADCC 활성을 나타낸 반면, 형질전환 닭에서 생산된 두 종류의 cCD20 mAb는 Tg33(he)4(he)에서 1.26 x 10-10 EC50 및 Tg33(ho)4(ho)에서 6.77 x 10-11 EC50 의 ADCC 활성을 나타내어 리툭시맙에 비해 B 림포상세포에 대하여 각각 8.3배 및 15.5배 높은 ADCC 활성을 나타냄을 확인하였다. 또한, 형질전환 닭에서 생산된 cCD20 mAb의 최대 ADCC 활성은 리툭시맙보다 50% 높아, cCD20 mAb가 CHO 세포에서 생성된 리툭시맙보다 효율적으로 ADCC 활성을 증가시킬 수 있음을 확인하였다. As shown in FIG. 8, it was confirmed that the cCD20 mAb was higher in luminescence intensity compared to the control antibody and rituximab. Control CD20 mAb and Rituximab showed ADCC activity of 5.82 x 10 -9 EC 50 and 1.05 x 10 -9 EC 50 , whereas the two types of cCD20 mAb produced in transgenic chickens were Tg33(he)4 (he ) At 1.26 x 10 -10 EC 50 and 6.77 x 10 -11 EC 50 at Tg33(ho)4(ho), respectively, 8.3 times and 15.5 times higher for B lymphocytes than Rituximab. It was confirmed that it showed activity. In addition, the maximum ADCC activity of cCD20 mAb produced in transgenic chickens was 50% higher than that of rituximab, and it was confirmed that cCD20 mAb could increase ADCC activity more efficiently than rituximab produced in CHO cells.

상기의 특징을 가지는 단일클론항체를 분비하는 형질전환 세포주를 2018년 5월 11일 한국세포주은행(Korean Cell Line Bank, KCLB)에 수탁번호 KCLRF-BP-00431로 기탁하였다. 상기 형질전환 세포주는 원시생식세포로, 수용체 조류의 배아에 이식하여 고효율로 cCD20 mAb를 생산할 수 있고, 상기 단일클론항체는 우수한 CDC 및 ADCC 활성을 가져 리툭시맙보다 우수한 효능을 갖는 바이오베터(biobetter)로 활용될 수 있다.A transformed cell line secreting a monoclonal antibody having the above characteristics was deposited with the Korean Cell Line Bank (KCLB) under the accession number KCLRF-BP-00431 on May 11, 2018. The transformed cell line is a primitive germ cell, and can be transplanted into an embryo of a recipient algae to produce cCD20 mAb with high efficiency. ) Can be used.

이상, 본 발명의 바람직한 실시예에 대하여 상세히 설명하였으나, 본 발명의 기술적 범위는 전술한 실시예에 한정되지 않고 특허청구범위에 의하여 해석되어야 할 것이다. 이때, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 고려해야 할 것이다.In the above, preferred embodiments of the present invention have been described in detail, but the technical scope of the present invention is not limited to the above-described embodiments and should be interpreted by the claims. At this time, those skilled in the art will have to consider that many modifications and variations are possible without departing from the scope of the present invention.

한국세포주연구재단Korea Cell Line Research Foundation KCLRFBP00431KCLRFBP00431 2018042520180425

<110> Seoul National University R&DB Foundation <120> TRANSGENIC AVIAN PRODUCING IMPROVED MONOCLONAL ANTIBODIES SPECIFIC TO HUMAN CD20 AND A METHOD FOR PRODUCING THE SAME <130> SNU1-141P-1 <150> KR 10-2018-0011888 <151> 2018-01-31 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 708 <212> DNA <213> Artificial Sequence <220> <223> CD20 mAb VL + hIg Kappa <400> 1 atggattttc aggtgcagat tatcagcttc ctgctaatca gtgcttcagt cataatgtcc 60 agaggacaaa ttgttctctc ccagtctcca gcaatcctgt ctgcatctcc aggggagaag 120 gtcacaatga cttgcagggc cagctcaagt gtaagttaca tccactggtt ccagcagaag 180 ccaggatcct cccccaaacc ctggatttat gccacatcca acctggcttc tggagtccct 240 gttcgcttca gtggcagtgg gtctgggact tcttactctc tcaccatcag cagagtggag 300 gctgaagatg ctgccactta ttactgccag cagtggacta gtaacccacc cacgttcgga 360 ggggggacca agctggaaat caaacgaact gtggctgcac catctgtctt catcttcccg 420 ccatctgatg agcagttgaa atctggaact gcctctgttg tgtgcctgct gaataacttc 480 tatcccagag aggccaaagt acagtggaag gtggataacg ccctccaatc gggtaactcc 540 caggagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcaccctg 600 acgctgagca aagcagacta cgagaaacac aaagtctacg cctgcgaagt cacccatcag 660 ggcctgagct cgcccgtcac aaagagcttc aacaggggag agtgttag 708 <210> 2 <211> 1415 <212> DNA <213> Artificial Sequence <220> <223> CD20 mAb VH + hIgG constant <400> 2 atgggttgga gcctcatctt gctcttcctt gtcgctgttg ctacgcgtgt cctgtcccag 60 gtacaactgc agcagcctgg ggctgagctg gtgaagcctg gggcctcagt gaagatgtcc 120 tgcaaggctt ctggctacac atttaccagt tacaatatgc actgggtaaa acagacacct 180 ggtcggggcc tggaatggat tggagctatt tatcccggaa atggtgatac ttcctacaat 240 cagaagttca aaggcaaggc cacattgact gcagacaaat cctccagcac agcctacatg 300 cagctcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag atcgacttac 360 tacggcggtg actggtactt caatgtctgg ggcgcaggga ccacggtcac cgtctctgca 420 gcctccacca agggcccatc ggtcttcccc ctggcaccct cctccaagag cacctctggg 480 ggcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaaccggt gacggtgtcg 540 tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 600 ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 660 tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagag agttgagccc 720 aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 780 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 840 gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 900 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac 960 agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 1020 gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 1080 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1140 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 1200 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 1260 ctggactccg acggctcctt cttcctctat agcaagctca ccgtggacaa gagcaggtgg 1320 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1380 cagaagagcc tctccctgtc cccgggtaaa tgagg 1415 <210> 3 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 5' TR <400> 3 atgcgtcaat tttacgcaga ctatctttct aggg 34 <210> 4 <211> 373 <212> DNA <213> Artificial Sequence <220> <223> poly A <400> 4 gagatttcga ttccaccgcc gccttctatg aaaggttggg cttcggaatc gttttccggg 60 acgccggctg gatgatcctc cagcgcgggg atctcatgct ggagttcttc gcccacccca 120 acttgtttat tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa 180 ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt 240 atcatgtctg tataccgtcg acctctagct agagcttggc gtaatcatgg tcatagctgt 300 ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa 360 agtgtaaagc ctg 373 <210> 5 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> Neomycin-resistance gene <400> 5 atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggtggt gaggctattc 60 ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 120 gcgcaggggc gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg 180 caggacgagg cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 240 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 300 gatctcctgt catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 360 cggcggctgc atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc 420 atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 480 gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac 540 ggcgaggatc tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat 600 ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 660 atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc 720 ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt 780 gacgagttct tctga 795 <210> 6 <211> 433 <212> DNA <213> Artificial Sequence <220> <223> SV40 <400> 6 gggatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaattaa 60 ttctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc aggctcccca ggcaggcaga 120 agtatgcaaa gcatgcatct caattagtca gcaaccaggt gtggaaagtc cccaggctcc 180 ccagcaggca gaagtatgca aagcatgcat ctcaattagt cagcaaccat agtcccgccc 240 ctaactccgc ccatcccgcc cctaactccg cccagttccg cccattctcc gccccatggc 300 tgactaattt tttttattta tgcagaggcc gaggccgcct ctgcctctga gctattccag 360 aagtagtgag gaggcttttt tggaggccta ggcttttgca aaaagctccc gggagcttgt 420 atatccattt tcg 433 <210> 7 <211> 3055 <212> DNA <213> Artificial Sequence <220> <223> 3.5kb OV promoter <400> 7 tgacaccaga tgacagagaa gtgcatctga gaaaacctat tcccaatctc ctttctcttt 60 ctgcagactg acatgcattt cataggtaga gataacattt actgggaagc acatctatca 120 tcacaaaaag caggcaagat tttcagactt tcttagtggc tgaaatagaa gcaaaagacg 180 tgattaaaaa caaaatgaaa caaaaaaaat cagttgatac ctgtggtgta gacatccagc 240 aaaaaaatat tatttgcact accatcttgt cttaagtcct cagacttggc aaggagaatg 300 tagatttcca cagtatatat gttttcacaa aaggaaggag agaaacaaaa gaaaatggca 360 ctgactaaac ttcagctagt ggtataggaa agtaattctg cttaacagag attgcagtga 420 tctctatgta tgtcctgaag aattatgttg tacttttttc ccccattttt aaatcaaaca 480 gtgctttaca gaggtcagaa tggtttcttt actgtttgtc aattctatta tttcaataca 540 gaacaatagc ttctataact gaaatatatt tgctattgta tattatgact gtccctcgaa 600 ccatgaacac tcctccagct gaatttcaca attcctctgt catctgccag gccattaagt 660 tattcatgga agatctttga ggaacactgc aagttcatat cataaacaca tttgaaattg 720 agtattgttt tgcattgtat ggagctatgt tttgctgtat cctcagaata aaagtttgtt 780 ataaagcatt cacacccata aaaagataga tttaaatatt ccaactatag gaaagaaagt 840 gtgtctgctc ttcactctag tctcagttgg ctccttcaca tgcacgcttc tttatttctc 900 ctattttgtc aagaaaataa taggtcaagt cttgttctca tttatgtcct gtctagcgtg 960 gctcagatgc acattgtaca tacaagaagg atcaaatgaa acagacttct ggtctgttac 1020 tacaaccata gtaataagca cactaactaa taattgctaa ttatgttttc catctccaag 1080 gttcccacat ttttctgttt tcttaaagat cccattatct ggttgtaatt gaagctcaat 1140 ggaacatgag caatatttcc cagtcttctc tcccatccaa cagtcccgat ggattagcag 1200 aacaggcaga aaacacattg ttacccagaa ttaaaaacta atatttgctc tccattcaat 1260 ccaaaatgga cctattgaaa ctaaaatcta acccaatccc attaaatgat ttctatggtg 1320 tcaaaggtca aacttctgaa gggaacctgt gggtgggtca caattcagac tatatattcc 1380 ccagggctca gccagtgtct gtacatacag ctagaaagct gtattgcctt tagcagtcaa 1440 gctcgaaagg taagcaactc tctggaatta ccttctctct atattagctc ttacttgcac 1500 ctaaacttta aaaaattaac aattattgtg ctatgtgttg tatctttaag ggtgaagtac 1560 ctgcgtgata ccccctataa aaacttctca cctgtgtatg cattctgcac tattttatta 1620 tgtgtaaaag ctttgtgttt gttttcagga ggcttattct ttgtgcttaa aatatgtttt 1680 taatttcaga acatcttatc ctgtcgttca ctatctgata tgctttgcag tttgcttgat 1740 taacttctag ccctacggag tgcacagaga gcaaaatcat ggtgttcagt gaattctggg 1800 gagttatttt aatgtgaaaa ttctctagaa gtttaattcc tgcaaagtgc agctgctgat 1860 cactacacaa gataaaaatg tggggggtgc ataaacgtat attcttacaa taatagatac 1920 atgtgaactt atatacagaa aagaaaatga gaaaaatgtg tgtgtgtata ctcacacacg 1980 tggtcagtaa aaacttttga ggggtttaat acagaaaatc caatcctgag gccccagcac 2040 tcagtacgca tataaagggc tgggctctga aggacttctg actttcacag attatataaa 2100 tctcaggaaa gcaactagat tcatgctggc tccaaaagct gtgctttata taagcacact 2160 ggctatacaa tagttgtaca gttcagctct ttataataga aacagacaga acaagtataa 2220 atcttctatt ggtctatgtc atgaacaaga attcattcag tggctctgtt ttatagtaaa 2280 cattgctatt ttatcatgtc tgcatttctc ttctgtctga atgtcaccac taaaatttaa 2340 ctccacagaa agtttatact acagtacaca tgcatatctt tgagcaaagc aaaccatacc 2400 tgaaggtgca atagagcaga atatgaatta catgcgtgtc tttctcctag actacatgac 2460 cccatataaa ttacattcct tatctattct gccatcacca aaacaaaggt aaaaatactt 2520 ttgaagatct actcatagca agtagtgtgc aacaaacaga tatttctcta catttatttt 2580 tagggaataa aaataagaaa taaaatagtc agcaagcctc tgctttctca tatatctgtc 2640 caaacctaaa gtttactgaa atttgctctt tgaatttcca gttttgcaag cctatcagat 2700 tgtgttttaa tcagaggtac tgaaaagtat caatgaattc tagctttcac tgaacaaaaa 2760 tatgtagagg caactggctt ctgggacagt ttgctaccca aaagacaact gaatgcaaat 2820 acataaatag atttatgaat atggttttga acatgcacat gagaggtgga tatagcaaca 2880 gacacattac cacagaatta ctttaaaact acttgttaac atttaattgc ctaaaaactg 2940 ctcgtaattt actgttgtag cctaccatag agtaccctgc atggtactat gtacagcatt 3000 ccatccttac attttcactg ttctgctgtt tgctctagac aactcagagt tcacc 3055 <210> 8 <211> 295 <212> DNA <213> Artificial Sequence <220> <223> pIRES intron <400> 8 gttggggtga gtactccctc tcaaaagcgg gcatgacttc tgcgctaaga ttgtcagttt 60 ccaaaaacga ggaggatttg atattcacct ggcccgcggt gatgcctttg agggtggccg 120 cgtccatctg gtcagaaaag acaatctttt tgttgtcaag cttgaggtgt ggcaggcttg 180 agatctggcc atacacttga gtgacaatga catccacttt gcctttctct ccacaggtgt 240 ccactcccag gtccaactgc aggtcgatcg agcatgcatc tagggcggcc aattc 295 <210> 9 <211> 546 <212> DNA <213> Artificial Sequence <220> <223> IRES <400> 9 gcccctctcc ctcccccccc cctaacgtta ctggccgaag ccgcttggaa taaggccggt 60 gtgcgtttgt ctatatgtta ttttccacca tattgccgtc ttttggcaat gtgagggccc 120 ggaaacctgg ccctgtcttc ttgacgagca ttcctagggg tctttcccct ctcgccaaag 180 gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc tctggaagct tcttgaagac 240 aaacaacgtc tgtagcgacc ctttgcaggc agcggaaccc cccacctggc gacaggtgcc 300 tctgcggcca aaagccacgt gtataagata cacctgcaaa ggcggcacaa ccccagtgcc 360 acgttgtgag ttggatagtt gtggaaagag tcaaatggct ctcctcaagc gtattcaaca 420 aggggctgaa ggatgcccag aaggtacccc attgtatggg atctgatctg gggcctcggt 480 gcacatgctt tacatgtgtt tagtcgaggt taaaaaaacg tctaggcccc ccgaaccacg 540 gggacg 546 <210> 10 <211> 1628 <212> DNA <213> Artificial Sequence <220> <223> 3' UTR <400> 10 aaagaagaaa gctgaaaaac tctgtccctt ccaacaagac ccagagcact gtagtatcag 60 gggtaaaatg aaaagtatgt tatctgctgc atccagactt cataaaagct ggagcttaat 120 ctagaaaaaa aatcagaaag aaattacact gtgagaacag gtgcaattca cttttccttt 180 acacagagta atactggtaa ctcatggatg aaggcttaag ggaatgaaat tggactcaca 240 gtactgagtc atcacactga aaaatgcaac ctgatacatc agcagaaggt ttatggggga 300 aaaatgcagc cttccaatta agccagatat ctgtatgacc aagctgctcc agaattagtc 360 actcaaaatc tctcagatta aattatcaac tgtcaccaac cattcctatg ctgtcaaggc 420 aattgcttgt tctctgtgtt cctgatacta caaggctctt cctgacttcc taaagatgca 480 ttataaaaat cttataattc acatttctcc ctaaactttg actcaatcat ggtatgttgg 540 caaatatggt atattactat tcaaattgtt ttccttgtac ccatatgtaa tgggtcttgt 600 gaatgtgctc ttttgttcct ttaatcataa taaaaacatg tttaagcaaa cacttttcac 660 ttgtagtatt tgaagtacag caaggttgtg tagcagggaa agaatgacat gcagaggaat 720 aagtatggac acacaggcta gcagcgactg tagaacaagt actaatgggt gagaagttga 780 acaagagtcc cctacagcaa cttaatctaa taagctagtg gtctacatca gctaaaagag 840 catagtgagg gatgaaattg gttctccttt ctaagcatca cctgggacaa ctcatctgga 900 gcagtgtgtc caacctgccg ctgccctgat cctggctggg gtgatgggac agaccttggc 960 tgccactgag acatctgaga cactgagatc tgtctcaact cagatttacc caagaacagc 1020 tcattgccaa cagaacaaaa tctcaaactt atggctagtg atgacagcag tcagttgtcc 1080 catctgtgac ccaccaaggc tggcatgctg gaatgagcag gctttggtgg cttgtagtta 1140 ctggacagca ccactgacat gggcagggga aaaactgagc atggtgtaaa tcactgcctc 1200 aaagccactt ctctgtgcct gcaccatgct tgaaagctct tctacaggag ctgggtttgt 1260 tcaagaaagc ttctgtttct cccatctgct tcttgtacct tcacagggac agagttagaa 1320 gggtacagcc atggctggaa ggggctgact ttcaaatgtg cctaattttc ctttggttgc 1380 tgctgcagct gcagaagaag gggttcagaa gccaagagct ttgagataag gatgcctaac 1440 ctatgttgaa gacatttgtg ctgacacctc aggccccagg ataggacaac tgctggattg 1500 tggctaaccc actagctaca gaacctaatt tatattacca gattaggaag agcaaaagaa 1560 catgtattta taacaggagg tcttctgtgc ttctctacta aaaggtgctg tgaaggagcc 1620 cacagtgc 1628 <210> 11 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> 3' TR <400> 11 catgcgtcaa ttttacgcat gattatcttt aacgtacgtc acaatatgat tatctttcta 60 ggg 63 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 F <400> 12 gtcggggctc atctctccct 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 wild-type locus R <400> 13 gcgccaagtg acgatctggt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 F <400> 14 gtcggggctc atctctccct 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 transgene locus R <400> 15 ccgctagcca acaagctcgt 20 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Ch4 F <400> 16 agaagcacaa tagagcaaag gatggaa 27 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch4 wild-type locus R <400> 17 tcctgtgatg ctccaggcct 20 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Ch4 F <400> 18 agaagcacaa tagagcaaag gatggaa 27 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Ch4 transgene locus R <400> 19 agctcgtcat cgctttgcag a 21 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> piggyBac TSP1* <400> 20 ggatctcatg ctggagttct 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> piggyBac TSP2 <400> 21 ggcgtaatca tggtcatagc t 21 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> piggyBac TSP3 <400> 22 gagccggaag cataaagtgt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cCD20 transgene F <400> 23 acccctgagg tcacatgcgt 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cCD20 transgene R <400> 24 gggaggcgtg gtcttgtagt 20 <110> Seoul National University R&DB Foundation <120> TRANSGENIC AVIAN PRODUCING IMPROVED MONOCLONAL ANTIBODIES SPECIFIC TO HUMAN CD20 AND A METHOD FOR PRODUCING THE SAME <130> SNU1-141P-1 <150> KR 10-2018-0011888 <151> 2018-01-31 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 708 <212> DNA <213> Artificial Sequence <220> <223> CD20 mAb VL + hIg Kappa <400> 1 atggattttc aggtgcagat tatcagcttc ctgctaatca gtgcttcagt cataatgtcc 60 agaggacaaa ttgttctctc ccagtctcca gcaatcctgt ctgcatctcc aggggagaag 120 gtcacaatga cttgcagggc cagctcaagt gtaagttaca tccactggtt ccagcagaag 180 ccaggatcct cccccaaacc ctggatttat gccacatcca acctggcttc tggagtccct 240 gttcgcttca gtggcagtgg gtctgggact tcttactctc tcaccatcag cagagtggag 300 gctgaagatg ctgccactta ttactgccag cagtggacta gtaacccacc cacgttcgga 360 ggggggacca agctggaaat caaacgaact gtggctgcac catctgtctt catcttcccg 420 ccatctgatg agcagttgaa atctggaact gcctctgttg tgtgcctgct gaataacttc 480 tatcccagag aggccaaagt acagtggaag gtggataacg ccctccaatc gggtaactcc 540 caggagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcaccctg 600 acgctgagca aagcagacta cgagaaacac aaagtctacg cctgcgaagt cacccatcag 660 ggcctgagct cgcccgtcac aaagagcttc aacaggggag agtgttag 708 <210> 2 <211> 1415 <212> DNA <213> Artificial Sequence <220> <223> CD20 mAb VH + hIgG constant <400> 2 atgggttgga gcctcatctt gctcttcctt gtcgctgttg ctacgcgtgt cctgtcccag 60 gtacaactgc agcagcctgg ggctgagctg gtgaagcctg gggcctcagt gaagatgtcc 120 tgcaaggctt ctggctacac atttaccagt tacaatatgc actgggtaaa acagacacct 180 ggtcggggcc tggaatggat tggagctatt tatcccggaa atggtgatac ttcctacaat 240 cagaagttca aaggcaaggc cacattgact gcagacaaat cctccagcac agcctacatg 300 cagctcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag atcgacttac 360 tacggcggtg actggtactt caatgtctgg ggcgcaggga ccacggtcac cgtctctgca 420 gcctccacca agggcccatc ggtcttcccc ctggcaccct cctccaagag cacctctggg 480 ggcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaaccggt gacggtgtcg 540 tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 600 ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 660 tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagag agttgagccc 720 aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 780 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 840 gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 900 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac 960 agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 1020 gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 1080 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1140 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 1200 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 1260 ctggactccg acggctcctt cttcctctat agcaagctca ccgtggacaa gagcaggtgg 1320 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1380 cagaagagcc tctccctgtc cccgggtaaa tgagg 1415 <210> 3 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 5'TR <400> 3 atgcgtcaat tttacgcaga ctatctttct aggg 34 <210> 4 <211> 373 <212> DNA <213> Artificial Sequence <220> <223> poly A <400> 4 gagatttcga ttccaccgcc gccttctatg aaaggttggg cttcggaatc gttttccggg 60 acgccggctg gatgatcctc cagcgcgggg atctcatgct ggagttcttc gcccacccca 120 acttgtttat tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa 180 ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt 240 atcatgtctg tataccgtcg acctctagct agagcttggc gtaatcatgg tcatagctgt 300 ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa 360 agtgtaaagc ctg 373 <210> 5 <211> 795 <212> DNA <213> Artificial Sequence <220> <223> Neomycin-resistance gene <400> 5 atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggtggt gaggctattc 60 ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 120 gcgcaggggc gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg 180 caggacgagg cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 240 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 300 gatctcctgt catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 360 cggcggctgc atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc 420 atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 480 gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac 540 ggcgaggatc tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat 600 ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 660 atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc 720 ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt 780 gacgagttct tctga 795 <210> 6 <211> 433 <212> DNA <213> Artificial Sequence <220> <223> SV40 <400> 6 gggatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaattaa 60 ttctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc aggctcccca ggcaggcaga 120 agtatgcaaa gcatgcatct caattagtca gcaaccaggt gtggaaagtc cccaggctcc 180 ccagcaggca gaagtatgca aagcatgcat ctcaattagt cagcaaccat agtcccgccc 240 ctaactccgc ccatcccgcc cctaactccg cccagttccg cccattctcc gccccatggc 300 tgactaattt tttttattta tgcagaggcc gaggccgcct ctgcctctga gctattccag 360 aagtagtgag gaggcttttt tggaggccta ggcttttgca aaaagctccc gggagcttgt 420 atatccattt tcg 433 <210> 7 <211> 3055 <212> DNA <213> Artificial Sequence <220> <223> 3.5kb OV promoter <400> 7 tgacaccaga tgacagagaa gtgcatctga gaaaacctat tcccaatctc ctttctcttt 60 ctgcagactg acatgcattt cataggtaga gataacattt actgggaagc acatctatca 120 tcacaaaaag caggcaagat tttcagactt tcttagtggc tgaaatagaa gcaaaagacg 180 tgattaaaaa caaaatgaaa caaaaaaaat cagttgatac ctgtggtgta gacatccagc 240 aaaaaaatat tatttgcact accatcttgt cttaagtcct cagacttggc aaggagaatg 300 tagatttcca cagtatatat gttttcacaa aaggaaggag agaaacaaaa gaaaatggca 360 ctgactaaac ttcagctagt ggtataggaa agtaattctg cttaacagag attgcagtga 420 tctctatgta tgtcctgaag aattatgttg tacttttttc ccccattttt aaatcaaaca 480 gtgctttaca gaggtcagaa tggtttcttt actgtttgtc aattctatta tttcaataca 540 gaacaatagc ttctataact gaaatatatt tgctattgta tattatgact gtccctcgaa 600 ccatgaacac tcctccagct gaatttcaca attcctctgt catctgccag gccattaagt 660 tattcatgga agatctttga ggaacactgc aagttcatat cataaacaca tttgaaattg 720 agtattgttt tgcattgtat ggagctatgt tttgctgtat cctcagaata aaagtttgtt 780 ataaagcatt cacacccata aaaagataga tttaaatatt ccaactatag gaaagaaagt 840 gtgtctgctc ttcactctag tctcagttgg ctccttcaca tgcacgcttc tttatttctc 900 ctattttgtc aagaaaataa taggtcaagt cttgttctca tttatgtcct gtctagcgtg 960 gctcagatgc acattgtaca tacaagaagg atcaaatgaa acagacttct ggtctgttac 1020 tacaaccata gtaataagca cactaactaa taattgctaa ttatgttttc catctccaag 1080 gttcccacat ttttctgttt tcttaaagat cccattatct ggttgtaatt gaagctcaat 1140 ggaacatgag caatatttcc cagtcttctc tcccatccaa cagtcccgat ggattagcag 1200 aacaggcaga aaacacattg ttacccagaa ttaaaaacta atatttgctc tccattcaat 1260 ccaaaatgga cctattgaaa ctaaaatcta acccaatccc attaaatgat ttctatggtg 1320 tcaaaggtca aacttctgaa gggaacctgt gggtgggtca caattcagac tatatattcc 1380 ccagggctca gccagtgtct gtacatacag ctagaaagct gtattgcctt tagcagtcaa 1440 gctcgaaagg taagcaactc tctggaatta ccttctctct atattagctc ttacttgcac 1500 ctaaacttta aaaaattaac aattattgtg ctatgtgttg tatctttaag ggtgaagtac 1560 ctgcgtgata ccccctataa aaacttctca cctgtgtatg cattctgcac tattttatta 1620 tgtgtaaaag ctttgtgttt gttttcagga ggcttattct ttgtgcttaa aatatgtttt 1680 taatttcaga acatcttatc ctgtcgttca ctatctgata tgctttgcag tttgcttgat 1740 taacttctag ccctacggag tgcacagaga gcaaaatcat ggtgttcagt gaattctggg 1800 gagttatttt aatgtgaaaa ttctctagaa gtttaattcc tgcaaagtgc agctgctgat 1860 cactacacaa gataaaaatg tggggggtgc ataaacgtat attcttacaa taatagatac 1920 atgtgaactt atatacagaa aagaaaatga gaaaaatgtg tgtgtgtata ctcacacacg 1980 tggtcagtaa aaacttttga ggggtttaat acagaaaatc caatcctgag gccccagcac 2040 tcagtacgca tataaagggc tgggctctga aggacttctg actttcacag attatataaa 2100 tctcaggaaa gcaactagat tcatgctggc tccaaaagct gtgctttata taagcacact 2160 ggctatacaa tagttgtaca gttcagctct ttataataga aacagacaga acaagtataa 2220 atcttctatt ggtctatgtc atgaacaaga attcattcag tggctctgtt ttatagtaaa 2280 cattgctatt ttatcatgtc tgcatttctc ttctgtctga atgtcaccac taaaatttaa 2340 ctccacagaa agtttatact acagtacaca tgcatatctt tgagcaaagc aaaccatacc 2400 tgaaggtgca atagagcaga atatgaatta catgcgtgtc tttctcctag actacatgac 2460 cccatataaa ttacattcct tatctattct gccatcacca aaacaaaggt aaaaatactt 2520 ttgaagatct actcatagca agtagtgtgc aacaaacaga tatttctcta catttatttt 2580 tagggaataa aaataagaaa taaaatagtc agcaagcctc tgctttctca tatatctgtc 2640 caaacctaaa gtttactgaa atttgctctt tgaatttcca gttttgcaag cctatcagat 2700 tgtgttttaa tcagaggtac tgaaaagtat caatgaattc tagctttcac tgaacaaaaa 2760 tatgtagagg caactggctt ctgggacagt ttgctaccca aaagacaact gaatgcaaat 2820 acataaatag atttatgaat atggttttga acatgcacat gagaggtgga tatagcaaca 2880 gacacattac cacagaatta ctttaaaact acttgttaac atttaattgc ctaaaaactg 2940 ctcgtaattt actgttgtag cctaccatag agtaccctgc atggtactat gtacagcatt 3000 ccatccttac attttcactg ttctgctgtt tgctctagac aactcagagt tcacc 3055 <210> 8 <211> 295 <212> DNA <213> Artificial Sequence <220> <223> pIRES intron <400> 8 gttggggtga gtactccctc tcaaaagcgg gcatgacttc tgcgctaaga ttgtcagttt 60 ccaaaaacga ggaggatttg atattcacct ggcccgcggt gatgcctttg agggtggccg 120 cgtccatctg gtcagaaaag acaatctttt tgttgtcaag cttgaggtgt ggcaggcttg 180 agatctggcc atacacttga gtgacaatga catccacttt gcctttctct ccacaggtgt 240 ccactcccag gtccaactgc aggtcgatcg agcatgcatc tagggcggcc aattc 295 <210> 9 <211> 546 <212> DNA <213> Artificial Sequence <220> <223> IRES <400> 9 gcccctctcc ctcccccccc cctaacgtta ctggccgaag ccgcttggaa taaggccggt 60 gtgcgtttgt ctatatgtta ttttccacca tattgccgtc ttttggcaat gtgagggccc 120 ggaaacctgg ccctgtcttc ttgacgagca ttcctagggg tctttcccct ctcgccaaag 180 gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc tctggaagct tcttgaagac 240 aaacaacgtc tgtagcgacc ctttgcaggc agcggaaccc cccacctggc gacaggtgcc 300 tctgcggcca aaagccacgt gtataagata cacctgcaaa ggcggcacaa ccccagtgcc 360 acgttgtgag ttggatagtt gtggaaagag tcaaatggct ctcctcaagc gtattcaaca 420 aggggctgaa ggatgcccag aaggtacccc attgtatggg atctgatctg gggcctcggt 480 gcacatgctt tacatgtgtt tagtcgaggt taaaaaaacg tctaggcccc ccgaaccacg 540 gggacg 546 <210> 10 <211> 1628 <212> DNA <213> Artificial Sequence <220> <223> 3'UTR <400> 10 aaagaagaaa gctgaaaaac tctgtccctt ccaacaagac ccagagcact gtagtatcag 60 gggtaaaatg aaaagtatgt tatctgctgc atccagactt cataaaagct ggagcttaat 120 ctagaaaaaa aatcagaaag aaattacact gtgagaacag gtgcaattca cttttccttt 180 acacagagta atactggtaa ctcatggatg aaggcttaag ggaatgaaat tggactcaca 240 gtactgagtc atcacactga aaaatgcaac ctgatacatc agcagaaggt ttatggggga 300 aaaatgcagc cttccaatta agccagatat ctgtatgacc aagctgctcc agaattagtc 360 actcaaaatc tctcagatta aattatcaac tgtcaccaac cattcctatg ctgtcaaggc 420 aattgcttgt tctctgtgtt cctgatacta caaggctctt cctgacttcc taaagatgca 480 ttataaaaat cttataattc acatttctcc ctaaactttg actcaatcat ggtatgttgg 540 caaatatggt atattactat tcaaattgtt ttccttgtac ccatatgtaa tgggtcttgt 600 gaatgtgctc ttttgttcct ttaatcataa taaaaacatg tttaagcaaa cacttttcac 660 ttgtagtatt tgaagtacag caaggttgtg tagcagggaa agaatgacat gcagaggaat 720 aagtatggac acacaggcta gcagcgactg tagaacaagt actaatgggt gagaagttga 780 acaagagtcc cctacagcaa cttaatctaa taagctagtg gtctacatca gctaaaagag 840 catagtgagg gatgaaattg gttctccttt ctaagcatca cctgggacaa ctcatctgga 900 gcagtgtgtc caacctgccg ctgccctgat cctggctggg gtgatgggac agaccttggc 960 tgccactgag acatctgaga cactgagatc tgtctcaact cagatttacc caagaacagc 1020 tcattgccaa cagaacaaaa tctcaaactt atggctagtg atgacagcag tcagttgtcc 1080 catctgtgac ccaccaaggc tggcatgctg gaatgagcag gctttggtgg cttgtagtta 1140 ctggacagca ccactgacat gggcagggga aaaactgagc atggtgtaaa tcactgcctc 1200 aaagccactt ctctgtgcct gcaccatgct tgaaagctct tctacaggag ctgggtttgt 1260 tcaagaaagc ttctgtttct cccatctgct tcttgtacct tcacagggac agagttagaa 1320 gggtacagcc atggctggaa ggggctgact ttcaaatgtg cctaattttc ctttggttgc 1380 tgctgcagct gcagaagaag gggttcagaa gccaagagct ttgagataag gatgcctaac 1440 ctatgttgaa gacatttgtg ctgacacctc aggccccagg ataggacaac tgctggattg 1500 tggctaaccc actagctaca gaacctaatt tatattacca gattaggaag agcaaaagaa 1560 catgtattta taacaggagg tcttctgtgc ttctctacta aaaggtgctg tgaaggagcc 1620 cacagtgc 1628 <210> 11 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> 3'TR <400> 11 catgcgtcaa ttttacgcat gattatcttt aacgtacgtc acaatatgat tatctttcta 60 ggg 63 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 F <400> 12 gtcggggctc atctctccct 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 wild-type locus R <400> 13 gcgccaagtg acgatctggt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 F <400> 14 gtcggggctc atctctccct 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch33 transgene locus R <400> 15 ccgctagcca acaagctcgt 20 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Ch4 F <400> 16 agaagcacaa tagagcaaag gatggaa 27 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ch4 wild-type locus R <400> 17 tcctgtgatg ctccaggcct 20 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Ch4 F <400> 18 agaagcacaa tagagcaaag gatggaa 27 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Ch4 transgene locus R <400> 19 agctcgtcat cgctttgcag a 21 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> piggyBac TSP1* <400> 20 ggatctcatg ctggagttct 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> piggyBac TSP2 <400> 21 ggcgtaatca tggtcatagc t 21 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> piggyBac TSP3 <400> 22 gagccggaag cataaagtgt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cCD20 transgene F <400> 23 acccctgagg tcacatgcgt 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cCD20 transgene R <400> 24 gggaggcgtg gtcttgtagt 20

Claims (17)

(a) 5' 및 3' 피기백 트랜스포존(piggyBac transposon) 특이적 역위 말단 반복부(Terminal Repeat, TR); 및
(b) 상기 5' TR과 3' TR 사이에 위치하는 오브알부민(Ovalbumin, OV) 프로모터 및 상기 오브알부민 프로모터에 작동가능하도록 연결된 인간 CD20 특이적 단일클론항체를 코딩하는 유전자를 포함하는 재조합 벡터.
(a) 5'and 3'piggyBac transposon specific inverted terminal repeats (Terminal Repeat, TR); And
(b) Ovalbumin (OV) promoter positioned between the 5'TR and 3'TR, and a recombinant vector comprising a gene encoding a human CD20 specific monoclonal antibody operably linked to the ovalbumin promoter.
삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 서열번호 1로 표시되는 인간 CD20 특이적 단일클론항체의 경쇄영역을 코딩하는 유전자 및 서열번호 2로 표시되는 인간 CD20 특이적 단일클론항체의 중쇄영역을 코딩하는 유전자를 포함하는 것을 특징으로 하는, 재조합 벡터.
The method of claim 1, wherein the gene encoding the human CD20-specific monoclonal antibody is a gene encoding the light chain region of the human CD20-specific monoclonal antibody represented by SEQ ID NO: 1 and a human CD20 specific gene represented by SEQ ID NO: 2 A recombinant vector comprising a gene encoding a heavy chain region of a monoclonal antibody.
제1항에 있어서, 상기 인간 CD20 특이적 단일클론항체를 코딩하는 유전자는 닭의 코돈으로 최적화된 것을 특징으로 하는, 재조합 벡터.
The recombinant vector of claim 1, wherein the gene encoding the human CD20 specific monoclonal antibody is optimized with a chicken codon.
제1항의 재조합 벡터로 형질전환된 인간생식세포주를 제외한 공여생식세포주.
A donor germline cell line excluding a human germ cell line transformed with the recombinant vector of claim 1.
제7항에 있어서, 상기 공여생식세포주는 공여체 조류의 원시생식세포(primordial germ cells, PGCs)인 것을 특징으로 하는, 공여생식세포주.
The donor germ cell line according to claim 7, characterized in that the donor germ cells are primordial germ cells (PGCs) of a donor bird.
제8항에 있어서, 상기 원시생식세포는 상기 공여체 조류의 1-10일령 배아의 원시 생식기로부터 유래된 것을 특징으로 하는, 공여생식세포주.
The donor germline cell line according to claim 8, wherein the primitive germ cell is derived from the primitive genitalia of a 1-10 day old embryo of the donor bird.
제9항에 있어서, 상기 공여체 조류는 닭인 것을 특징으로 하는, 공여생식세포주.
The donor germ cell line according to claim 9, wherein the donor bird is a chicken.
제7항에 있어서, 상기 공여생식세포주는 수탁번호가 KCLRF-BP-00431임을 특징으로 하는, 공여생식세포주.
The donor germline cell line according to claim 7, characterized in that the accession number is KCLRF-BP-00431.
제7항 내지 제11항 중 어느 한 항의 공여생식세포주를 수용체 조류의 배아에 이식하는 단계를 포함하는 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델의 제조방법.
A method for producing a transgenic avian model for producing a human CD20-specific monoclonal antibody comprising the step of transplanting the donor germ cell line according to any one of claims 7 to 11 into an embryo of a recipient bird.
제12항의 방법으로 제조된 인간 CD20 특이적 단일클론항체를 생산하는 형질전환 조류모델.
A transgenic bird model producing a human CD20-specific monoclonal antibody prepared by the method of claim 12.
제12항의 형질전환 조류모델로부터 인간 CD20 특이적 단일클론항체를 수득하는 단계를 포함하는 인간 CD20 특이적 단일클론항체의 제조방법.
A method for producing a human CD20-specific monoclonal antibody comprising the step of obtaining a human CD20-specific monoclonal antibody from the transgenic avian model of claim 12.
제14항의 방법으로 생산한 인간 CD20 특이적 단일클론항체.
A human CD20 specific monoclonal antibody produced by the method of claim 14.
제15항에 있어서, 상기 인간 CD20 특이적 단일클론항체는 비푸코실화(afucosylation)된 것을 특징으로 하는, 인간 CD20 특이적 단일클론항체.
The method of claim 15, wherein the human CD20-specific monoclonal antibody is characterized in that afucosylated (afucosylation), human CD20-specific monoclonal antibody.
제16항에 있어서, 상기 인간 CD20 특이적 단일클론항체는 비푸코실화된 결과로서 Fc 도메인에 의한 세포면역 기능이 향상된 것을 특징으로 하는, 인간 CD20 특이적 단일클론항체.The human CD20 specific monoclonal antibody according to claim 16, wherein the human CD20 specific monoclonal antibody is characterized in that the cellular immunity function by the Fc domain is improved as a result of non-fucosylation.
KR1020190005990A 2018-01-31 2019-01-17 Transgenic avian producing improved monoclonal antibodies specific to human cd20 and a method for producing the same KR102192846B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/000901 WO2019151698A1 (en) 2018-01-31 2019-01-22 Transgenic bird producing efficacy-improved human cd20-specific monoclonal antibody and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180011888 2018-01-31
KR20180011888 2018-01-31

Publications (2)

Publication Number Publication Date
KR20190093123A KR20190093123A (en) 2019-08-08
KR102192846B1 true KR102192846B1 (en) 2020-12-18

Family

ID=67613236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190005990A KR102192846B1 (en) 2018-01-31 2019-01-17 Transgenic avian producing improved monoclonal antibodies specific to human cd20 and a method for producing the same

Country Status (1)

Country Link
KR (1) KR102192846B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102627008B1 (en) * 2021-05-18 2024-01-18 서울대학교산학협력단 Preparation method for producing avian species producing Adiponectin and target proteins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003157A2 (en) * 2002-06-26 2004-01-08 Transgenrx, Inc. Gene regulation in transgenic animals using a transposon-based vector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003157A2 (en) * 2002-06-26 2004-01-08 Transgenrx, Inc. Gene regulation in transgenic animals using a transposon-based vector

Also Published As

Publication number Publication date
KR20190093123A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
AU2019204209B2 (en) Use of anti-CGRP antibodies and antibody fragments to prevent or inhibit photophobia or light aversion in subjects in need thereof, especially migraine sufferers
ES2428767T3 (en) Compositions and procedures to increase bone mineralization
JP5116671B2 (en) Anti-αVβ6 antibody and use thereof
KR102581734B1 (en) Method for detecting transthyretin
JP6189832B2 (en) Use of anti-CGRP or anti-CGRP-R antibodies or antibody fragments to treat or prevent chronic and acute diarrhea
RU2694728C2 (en) Antibodies with histidine built in light chains and genetically modified animals different from humans for their production
BR112021010402A2 (en) Bispecific anti-pd-l1/anti-4-1bb antibodies and their use
KR102619359B1 (en) Anti-transthyretin antibody
WO2012176779A1 (en) Anti-erbb3 antibody
BRPI0713086A2 (en) diagnosis and treatment of cancer using anti-desmogleìna-3 antibody
CN111315213B (en) anti-transthyretin antibodies
JP2008505610A (en) Humanized anti-TGF-β antibody
US20220041705A1 (en) Novel angiopoietin 2, vegf dual antagonists
JP2021517461A (en) Anti-NGF antibody and its method
CA2677782A1 (en) Anti fgf23 antibody and a pharmaceutical composition comprising the same
CN110381988A (en) Use the method for the inhibitor for treating disease of Bone Morphogenetic Protein 6 (BMP6)
EP3775267A2 (en) Novel angiopoietin 2, vegf dual antagonists
CN106795223A (en) For the novel antibodies of Fc γ receptor II B and Fc epsilon receptors
KR102192846B1 (en) Transgenic avian producing improved monoclonal antibodies specific to human cd20 and a method for producing the same
KR20230018439A (en) Genetically Modified Non-Human Animals with Common Light Chain Immunoglobulin Loci
KR102170788B1 (en) Transgenic Mouse for Producing Aglycosylated Antibody and Uses of Aglycosylated Antibody prepared Thereof
EP2445539A1 (en) Therapeutic antibody target validation and screening in vivo
KR20230150779A (en) Heavy chain-only antibodies
WO2019151698A1 (en) Transgenic bird producing efficacy-improved human cd20-specific monoclonal antibody and preparation method therefor
JP5679217B2 (en) Method for producing IgG type antibody against T cell independent antigen, genetically modified silkworm producing IgG type antibody against T cell independent antigen and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant