KR102192455B1 - A cancer diagnosis marker based on ATAC-Seq and Method using the same - Google Patents

A cancer diagnosis marker based on ATAC-Seq and Method using the same Download PDF

Info

Publication number
KR102192455B1
KR102192455B1 KR1020190147570A KR20190147570A KR102192455B1 KR 102192455 B1 KR102192455 B1 KR 102192455B1 KR 1020190147570 A KR1020190147570 A KR 1020190147570A KR 20190147570 A KR20190147570 A KR 20190147570A KR 102192455 B1 KR102192455 B1 KR 102192455B1
Authority
KR
South Korea
Prior art keywords
bc3m
dna
primer
seq
nucleotide sequence
Prior art date
Application number
KR1020190147570A
Other languages
Korean (ko)
Other versions
KR20200117827A (en
Inventor
이대엽
김태묵
한성욱
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to PCT/KR2019/015856 priority Critical patent/WO2020204297A1/en
Priority to US17/601,332 priority patent/US20220170110A1/en
Publication of KR20200117827A publication Critical patent/KR20200117827A/en
Application granted granted Critical
Publication of KR102192455B1 publication Critical patent/KR102192455B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Data Mining & Analysis (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 전이효소-접근가능한 염색질 이용 시퀀싱(transposase-accessible chromatin using sequencing, ATAC sequencing)을 이용한 암 진단 마커 및 이의 용도에 관한 것으로, 본 발명에 따른 열린 염색질 구조변이 마커는 염색질의 구조상 변이를 높은 정확도로 확인할 수 있어 암 진단 마커로서 유용하며, 상기 마커를 검출하기 위한 조성물을 이용하여 염색질 구조변이를 검출할 경우, 새로운 암 진단 마커로서 활용이 가능하다.The present invention relates to a cancer diagnostic marker and use thereof using transferase-accessible chromatin using sequencing (ATAC sequencing), and the open chromatin structural variation marker according to the present invention has high structural variation of chromatin. Since it can be checked with accuracy, it is useful as a cancer diagnostic marker, and when a chromatin structural variation is detected using a composition for detecting the marker, it can be utilized as a new cancer diagnostic marker.

Description

개인의 전이효소-접근가능한 염색질 시퀀싱 정보를 이용한 암 진단 마커 및 이의 용도{A cancer diagnosis marker based on ATAC-Seq and Method using the same}A cancer diagnosis marker based on ATAC-Seq and Method using the same, using individual transferase-accessible chromatin sequencing information

본 발명은 전이효소-접근가능한 염색질 이용 시퀀싱(transposase-accessible chromatin using sequencing, ATAC sequencing)을 이용하여 선정한 암 진단 마커 및 이의 용도에 관한 것으로, 더욱 상세하게는 생체 시료에 전이효소를 처리한 다음, DNA를 추출하여 서열정보를 획득하고, 염색체 영역을 일정구간으로 구분하여 구간별 리드 수의 분포를 참조 집단과 비교하여 수득한 열린 염색질 구조변이 마커 및 이를 이용한 암 진단 방법에 관한 것이다. The present invention relates to a cancer diagnostic marker selected using transferase-accessible chromatin using sequencing (ATAC sequencing) and uses thereof, and more particularly, to a biological sample after treatment with a transfer enzyme, The present invention relates to an open chromatin structure mutation marker obtained by extracting DNA to obtain sequence information, dividing a chromosome region into a predetermined section, and comparing the distribution of the number of reads by section with a reference group, and a cancer diagnosis method using the same.

암으로 인해 우리나라뿐만 아니라 전 세계적으로 사망자가 증가하고 있으며, 우리나라에서는 위암, 유방암, 갑상선암, 폐암, 대장암등 다양한 암 유병자가 있다. 암의 발생 원인으로는 선천적, 유전적 돌연변이, 후천적 원인으로 나뉘며, 특정 유전자 일부의 변이에 의해 발생하기보다 다양한 원인이 종합적으로 작용하여 발생하게 된다. 암을 치료하는 방법으로는 수술을 통한 이식 및 제거방법과 화학 및 방사선요법이 이용되고 있다. 최근 이러한 방법을 통해 암의 재발률이 점차 감소가 되고 있지만, 근본적인 원인을 찾고 이를 사전에 예후예측을 할 수 있는 연구는 꾸준히 진행 중이다. Due to cancer, deaths are increasing not only in Korea but also worldwide, and there are various cancer patients in Korea such as stomach cancer, breast cancer, thyroid cancer, lung cancer, and colon cancer. The causes of cancer are divided into congenital, genetic mutations, and acquired causes. Rather than being caused by mutations in a part of a specific gene, it is caused by a combination of various causes. As methods of treating cancer, transplantation and removal through surgery and chemotherapy and radiation therapy are used. Recently, the recurrence rate of cancer is gradually decreasing through such a method, but researches to find the root cause and predict the prognosis in advance are ongoing.

차세대염기서열분석법(NGS)은 염색체를 작은 조각으로 나누고 각 조각의 유전정보를 병렬적으로 분석하는 염기서열분석법이다. NGS는 유전자분석 기술이 발전하면서 상대적으로 검사의 소요시간과 비용이 적고 단일염기 다형성(SNP), 삽입-결실(INDELs)까지 검출 가능한 높은 해상도 때문에 유전자 변이 검출 용도로 활용되고 있다. 그러나 염색체를 작게 나누어 분석하는 NGS의 원리적 특성상 큰 규모의 염색체의 구조적 변이나 CNVs을 검출하는데 기술적 한계가 있다(Yohe S, Thyagarajan B. 2017, Arch Pathol Lab Med. Vol. 141(11), pp. 1544-1557). Next-generation nucleotide sequencing (NGS) is a sequencing method that divides chromosomes into small pieces and analyzes the genetic information of each piece in parallel. With the development of genetic analysis technology, NGS is being used for gene mutation detection because of its relatively low test time and cost, and its high resolution capable of detecting single nucleotide polymorphism (SNP) and indels (INDELs). However, due to the principle characteristics of NGS, which analyzes chromosomes by dividing them into small pieces, there are technical limitations in detecting large-scale chromosomal structural changes or CNVs (Yohe S, Thyagarajan B. 2017, Arch Pathol Lab Med. Vol. 141(11), pp. .1544-1557).

현재까지 각종 암과 관련된 특정 유전자에 관한 연구를 위하여 유전체(Genome) 분석 및 특정 위험 인자와 관련한 전장 유전체(Whole-Genome) 분석이 수행되었다. 각종 암과 관련하여 특정 유전자에 대한 유전적인 위험 인자들이 존재하지만, 대부분은 전사지역(Coding region)이 아닌 비전사지역(Non-coding region)에 존재하며, 이를 분석하기 위한 시간이 많이 소요되고 있어서 새로운 접근법이 필요하였다.To date, genome analysis and whole-genome analysis related to specific risk factors have been performed for research on specific genes related to various cancers. There are genetic risk factors for specific genes related to various cancers, but most of them exist in non-coding regions rather than coding regions, and it takes a lot of time to analyze them. A new approach was needed.

이 문제를 해결하기 위하여 비전사 지역에 대한 유전인자의 기능을 해석하기 위한 후성 유전체(Epigenome) 연구기법을 적용되었다. 대표적인 후성 유전체 분석 기법 중 하나인 ChIP-Seq (Chromatin ImmunoPrecipitation Sequencing)을 이용한 히스톤 변형(Histone modification) 연구는 염색질(Chromatin)의 비 전사지역의 활성도를 표시하기에 암 관련 세포주나 조직에서의 후성 유전체 지도 작성을 통해 암 유발 유전적 변이의 분자 기전을 규명하는 방법으로 사용되고 있다(Nevedomskaya et al., Genomics data vol. 2 195-8. 8 Jul. 2014). To solve this problem, an epigenome research technique was applied to analyze the function of the genetic factor in the non-death area. The histone modification study using ChIP-Seq (Chromatin ImmunoPrecipitation Sequencing), one of the representative epigenetic analysis techniques, indicates the activity of the non-transcribed region of chromatin, so the epigenetic genome map in cancer-related cell lines or tissues It is used as a method to investigate the molecular mechanism of cancer-causing genetic mutations through writing (Nevedomskaya et al., Genomics data vol. 2 195-8. 8 Jul. 2014).

하지만 이 방법은 특정 단백질을 침강시키기 위하여 사용되는 항체(Antibody)에 너무 의존적이며, 후성 유전체 연구에 사용되는 마커의 수가 약 150여가지로 좀 더 정밀한 예측을 하는데 문제점을 가지고 있다. 또한 비 전사지역에 유전자 조절 인자들은 종종 가까운 유전자보다 멀리 떨어져 있는 다른 유전자를 조절한다는 연구가 보고 있으며, 이는 염색질의 3차 구조로 인해 DNA 상으로 멀리 떨어져 있어도 DNA 접힘(Folding)을 통해 공간상에서는 유전자 조절 인자와 원거리 유전자가 가까워 질 수 있기 때문에 후성 유전체 지도 작성만으로는 암의 근본적인 원인과 예후예측을 위한 위험 인자들의 역할을 명확하게 규명하기가 어렵다(Mishra et al., Genome medicine vol. 9,1 87. 30 Sep. 2017).However, this method is too dependent on the antibody (Antibody) used to sediment a specific protein, and has a problem in making more precise predictions with about 150 markers used in epigenetic studies. In addition, studies have reported that gene regulatory factors in non-transcribed regions often regulate other genes farther than nearby genes, and this is due to the tertiary structure of chromatin, even if they are far away on the DNA, DNA folding allows genes in space. Because regulators and distant genes can be close together, it is difficult to clarify the role of risk factors for predicting the underlying cause and prognosis of cancer only by mapping epigenetic genomes (Mishra et al., Genome medicine vol. 9,1 87 . 30 Sep. 2017).

따라서 이 문제를 해결하기 위해서는 암 특이적 유전자 조절 기전 이해에 있어 염색질의 3차 구조기반의 연구가 필요하며, 이를 위한 새로운 연구 기법이 필요한 실정이다. Therefore, in order to solve this problem, a study based on the tertiary structure of chromatin is required to understand the mechanism of cancer-specific gene regulation, and a new research technique is needed for this.

염색질의 구조를 연구하는 기법으로는 NGS를 이용한 ATAC-Seq(Assay for Transposase-Accessible Chromatin using sequencing)과 Hi-C이 있다. Hi-C는 3C (Chromosome Conformation Capture) 기반을 기반으로 고해상도로 염색질의 구조를 연구하는 대표적인 기술로써, 유전체 상에서 염색질의 물리적인 결합을 캡처하는 기술이다(Belton et al., Methods (San Diego, Calif.) vol. 58,3 (2012)). ATAC-Seq은 트렌스포존(Transposon)을 이용하여 염색질의 개방된 지역을 검출하는 기법으로 적은 양으로도 충분히 실험이 가능하며, 희귀한 세포주나 환자들을 대상으로 사용을 할 수 있는 장점이 있으며, Hi-C와 비교하여 비용적으로 효율적이다(Buenrostro et al., Nature methods vol. 10,12, 2013). Techniques for studying the structure of chromatin include ATAC-Seq (Assay for Transposase-Accessible Chromatin using sequencing) and Hi-C using NGS. Hi-C is a representative technology that studies the structure of chromatin at high resolution based on 3C (Chromosome Conformation Capture), and is a technology that captures the physical binding of chromatin on the genome (Belton et al., Methods (San Diego, Calif). .) vol. 58,3 (2012)). ATAC-Seq is a technique that detects open areas of chromatin using Transposon. It can be fully tested with a small amount, and has the advantage of being able to use it for rare cell lines or patients. It is cost-effective compared to -C (Buenrostro et al., Nature methods vol. 10,12, 2013).

이에, 본 발명자들은 ATAC-Seq 기반의 열린 염색질 구조변이 마커를 개발하기 위하여 예의 노력한 결과, ATAC-Seq 결과를 이용하여 Enichment가 높은 구간별로 나누어 리드 수를 참조집단과 비교하여 마커 후보군을 선별한 다음, 참조 집단과 비교하여 통계적으로 유의미한 마커를 설정하여, 상기 마커에서 염색질의 구조를 확인할 경우, 높은 정확도로 암을 진단할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to develop an ATAC-Seq-based open chromatin structure mutation marker, and as a result of dividing by section with high enrichment using the ATAC-Seq result, the number of reads is compared with a reference group to select a marker candidate group. , By setting a statistically significant marker compared to the reference group, and confirming the structure of the chromatin in the marker, it was confirmed that cancer can be diagnosed with high accuracy, and the present invention was completed.

본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The information described in the background section is only for improving an understanding of the background of the present invention, and thus does not include information forming the prior art known to those of ordinary skill in the art to which the present invention belongs. May not.

본 발명의 목적은 염색질 구조변이 마커를 검출할 수 있는 유방암 진단용 조성물을 제공하는데 있다.An object of the present invention is to provide a composition for diagnosing breast cancer capable of detecting a chromatin structural variation marker.

본 발명의 다른 목적은 상기 유방암 진단용 조성물을 이용하여 유방암을 진단하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for diagnosing breast cancer using the composition for diagnosing breast cancer.

상기 목적을 달성하기 위하여, 본 발명은 전이효소(transposase); 및 서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나의 핵산에 특이적인 프라이머 쌍을 포함하는 유방암 진단용 조성물을 제공한다.In order to achieve the above object, the present invention is a transfer enzyme (transposase); And it provides a composition for diagnosing breast cancer comprising a primer pair specific to any one nucleic acid selected from the group consisting of SEQ ID NO: 1 to 100.

본 발명은 또한, 생체시료에서 분리된 핵산을 전이효소(transposase)로 처리하여 핵산 단편을 수득하는 단계; 및 서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나 이상의 핵산에 특이적인 프라이머 쌍을 이용하여 상기 처리된 핵산 단편을 증폭하여, 상기 핵산의 염색질 구조를 검출하는 단계를 포함하는 유방암 진단을 위한 정보의 제공방법을 제공한다.The present invention also includes the steps of obtaining a nucleic acid fragment by treating a nucleic acid isolated from a biological sample with a transposase; And amplifying the processed nucleic acid fragment using a primer pair specific to any one or more nucleic acids selected from the group consisting of SEQ ID NOs: 1 to 100, and detecting the chromatin structure of the nucleic acid. Provides a method of providing.

본 발명에 따른 열린 염색질 구조변이 마커는 염색질의 구조상 변이를 높은 정확도로 확인할 수 있어 암 진단 마커로서 유용하며, 상기 마커를 검출하기 위한 조성물을 이용하여 염색질 구조변이를 검출할 경우, 새로운 암 진단 마커로서 활용이 가능하다.The open chromatin structural variation marker according to the present invention is useful as a cancer diagnostic marker because it can confirm the structural variation of chromatin with high accuracy, and when detecting chromatin structural variation using a composition for detecting the marker, a new cancer diagnostic marker It can be used as

도 1은 본 발명의 열린 염색질 구조변이 마커의 스크리닝 방법의 전체 흐름도이다.
도 2는 본 발명의 일 실시예에 따라 검출한 정상과 삼중음성유방암에 대한 염색질 구조 변이 후보 마커의 분포도를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따라 검출한 삼중음성유방암 특이적 유전자 구조 변이 마커 중 정상과 삼중음성유방암 사이에서의 구조적 차이가 큰 지역을 검출하는 흐름도를 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 따라 정상과 삼중음성유방암 사이에서의 구조 변이 마커를 히트맵(heatmap)을 이용하여 차이가 남을 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따라 검출한 삼중음성유방암 특이적 유전자 구조 변이 마커의 예시를 Genome-wide하게 나타낸 그래프이다.
1 is an overall flow chart of a method for screening an open chromatin structure variant marker of the present invention.
FIG. 2 is a graph showing the distribution of chromatin structure mutation candidate markers for normal and triple negative breast cancer detected according to an embodiment of the present invention.
3 is a graph showing a flow chart for detecting a region having a large structural difference between normal and triple negative breast cancer among the triple negative breast cancer-specific gene structure mutation markers detected according to an embodiment of the present invention.
FIG. 4 is a graph showing differences in structural mutation markers between normal and triple-negative breast cancer using a heatmap according to an embodiment of the present invention.
5 is a graph showing a genome-wide example of a triple negative breast cancer-specific gene structure mutation marker detected according to an embodiment of the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다. Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by an expert skilled in the art to which the present invention belongs. In general, the nomenclature used in this specification is well known and commonly used in the art.

본 발명에서는 ATAC-seq을 이용하여 스크리닝한 열린 염색질 구조변이 마커로 암 진단을 할 수 있는지 확인하고자 하였다. In the present invention, it was attempted to confirm whether cancer can be diagnosed with an open chromatin structure mutation marker screened using ATAC-seq.

본 발명에서는 ATAC-seq으로 열린 염색질 구조 변이 마커를 정상인 참조집단과 비교하여 선별하고, 상기 마커를 이용하여 샘플의 암 발생 가능성을 검출할 경우, 높은 정확도의 열린 염색질 구조변이 마커를 이용하여 암을 진단 할 수 있다는 것을 확인하였다.In the present invention, when the chromatin structure mutation marker opened with ATAC-seq is selected by comparing it with a normal reference group, and the possibility of cancer occurrence in the sample is detected using the marker, cancer is detected using the open chromatin structure mutation marker with high accuracy. It was confirmed that it can be diagnosed.

즉, 본 발명의 일 실시예에서는 전이효소(transposase)를 처리한 세포에서 DNA를 추출하여 NGS를 수행한 다음, 참조염색체 Hg19서열을 기준으로 정렬하여, 퀄리티를 확인하고, 염색체를 리드 enrichment가 높은 일정 구간(bin)으로 구분하여 각 구간별 매칭되는 리드 양을 그래프화하여 기준값 이상이 되는 구간을 선별한 다음, 선별된 구간의 리드 피크 값이 참조 집단과 비교하여 상이한 구간을 열린 염색질 구조변이 마커로 선별하였다. 선별한 마커를 다른 샘플에 전이효소를 처리한 다음, 상기 마커를 증폭할 수 있는 프라이머를 이용하여 실시간 PCR로 검출한 결과, 높은 정확도로 3차원 염색질 구조에 기반하여 암 진단을 수행할 수 있다는 것을 확인하였다(도 1, 도 3).That is, in an embodiment of the present invention, DNA is extracted from cells treated with a transposase to perform NGS, and then aligned based on the reference chromosome Hg19 sequence, to confirm the quality, and read the chromosome with high enrichment. A chromatin structural variation marker that opens a different section by dividing it into a certain section (bin), selecting the section that is above the reference value by graphing the matching lead amount for each section, and then comparing the lead peak value of the selected section with the reference group Was selected as. After the selected marker was treated with a transfer enzyme to another sample, the result of detection by real-time PCR using a primer capable of amplifying the marker showed that cancer diagnosis can be performed based on a three-dimensional chromatin structure with high accuracy. It was confirmed (Fig. 1, Fig. 3).

따라서, 본 발명은 일 관점에서, Therefore, in one aspect, the present invention,

전이효소(transposase); 및Transposase; And

서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나의 핵산에 특이적인 프라이머 쌍을 포함하는 유방암 진단용 조성물에 관한 것이다.It relates to a composition for diagnosis of breast cancer comprising a primer pair specific to any one nucleic acid selected from the group consisting of SEQ ID NOs: 1 to 100.

본 발명에 있어서, 상기 핵산 각각에 특이적으로 결합하는 프라이머 쌍은 서열번호 1 내지 100으로 구성된 군에서 선택되는 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100개의 핵산 각각에 특이적으로 결합하는 프라이머 쌍인 것을 특징으로 할 수 있으며, 바람직하게는 서열번호 1 내지 20의 서열로 표시되는 핵산 각각에 특이적인 프라이머 쌍을 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pairs specifically binding to each of the nucleic acids are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, selected from the group consisting of SEQ ID NOs: 1 to 100 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 may be characterized as a primer pair that specifically binds to each of the nucleic acids, preferably SEQ ID NO It may be characterized by including a primer pair specific to each of the nucleic acids represented by the sequence of 1 to 20.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 21 내지 40의 서열로 표시되는 핵산핵산 각각에 특이적인 프라이머 쌍을 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it includes a primer pair specific to each of the nucleic acids represented by the sequence of SEQ ID NOs: 21 to 40.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 41 내지 60의 서열로 표시되는 핵산 각각에 특이적인 프라이머 쌍을 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it includes a primer pair specific to each of the nucleic acids represented by the sequence of SEQ ID NOs: 41 to 60.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 61 내지 80의 서열로 표시되는 핵산 각각에 특이적인 프라이머 쌍을 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it includes a primer pair specific to each nucleic acid represented by the sequence of SEQ ID NOs: 61 to 80.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 81 내지 100의 서열로 표시되는 핵산 각각에 특이적인 프라이머 쌍을 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it includes a primer pair specific to each nucleic acid represented by the sequence of SEQ ID NOs: 81 to 100.

본 발명에서 용어 "유방암(breast cancer)"는 유방에 생긴 암을 말하고, 상호교환적으로 "유선암"으로도 불릴 수 있다. 상기 유방암은 유선(mammary gland) 유방암, 소엽(lobule) 유방암, 또는 이들의 조합을 포함할 수 있다. 유방암은 발생 부위에 따라 유관과 유엽의 상피에서 생기는 암과 기질에서 생기는 암으로 크게 두 가지로 나눌 수 있다. 상기 유방암은 복합성 암종(Complex carcinoma: CC) 또는 관상 암종(Ductal carcinoma: DC)의 종류를 포함할 수 있다. 관상 암종은 개체의 유관에 원발적으로 존재하는 유방암의 종류이다.In the present invention, the term "breast cancer" refers to cancer in the breast, and may also be referred to interchangeably as "mammary cancer". The breast cancer may include mammary gland breast cancer, lobule breast cancer, or a combination thereof. Depending on the site of occurrence, breast cancer can be largely divided into two types: cancer that occurs in the epithelium of the ducts and leaves, and cancer that occurs in the matrix. The breast cancer may include a complex carcinoma (CC) or a type of tubular carcinoma (DC). Coronary carcinoma is a type of breast cancer that exists primarily in the duct of an individual.

본 발명에서 용어 "진단(diagnosis)"은 병명을 판정하는 일을 말하고, 유방암의 병명, 병의 상태, 병기, 병인, 합병증의 유무, 예후, 및 재발 등을 포함할 수 있다.In the present invention, the term "diagnosis" refers to determining the name of the disease, and may include the name of the breast cancer, the state of the disease, the stage, the etiology, the presence or absence of complications, prognosis, and recurrence.

본 발명에서 용어 "전이효소(transposase)"는 전이인자(transposon)의 말단에 결합하고, 절단 및 삽입(cut and paste), 또는 복제적 전이(replicative transposition)에 의해 게놈의 다른 부분으로 이동하는 것을 촉매하는 효소를 말한다. 상기 전이효소는 EC 번호 EC 2.7로 분류되는 효소일 수 있다.In the present invention, the term "transposase" refers to binding to the end of a transposon and moving to another part of the genome by cut and paste, or replicative transposition. It refers to an enzyme that catalyzes. The transfer enzyme may be an enzyme classified under the EC number EC 2.7.

본 발명에 있어서, 상기 전이효소는 Tn5 전이효소일 수 있다. Tn5 전이효소는 레트로바이러스의 인테그라제(integrase)를 포함하는 RNase 수퍼패밀리 중 하나이다. Tn5 전이효소는 절단 및 삽입에 의해 전위할 수 있다. Tn5 전이효소는 DNA의 단편화를 이용한 게놈 시퀀싱 방법, 소위 ATAC-seq 기법에 사용될 수 있다.In the present invention, the transferase may be a Tn5 transferase. Tn5 transferase is one of the RNase superfamily that contains retroviral integrase. Tn5 transferase can be translocated by cleavage and insertion. Tn5 transferase can be used in a genome sequencing method using fragmentation of DNA, a so-called ATAC-seq technique.

본 발명에서 용어 ‘증폭’은 핵산 분자를 증폭하는 반응을 의미한다. 다양한 증폭 반응들이 당업계에 보고 되어 있으며, 이는 중합효소 연쇄반응(이하 PCR이라 한다)(미국 특허 제4,683,195, 4,683,202, 및 4,800,159호), 역전사-중합효소 연쇄반응(이하 RT-PCR로 표기한다)(Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), WO 89/06700 및 EP 329,822의 방법, 리가아제 연쇄 반응(ligase chain reaction; LCR, WO 90/01069), 복구 연쇄 반응(repair chain reaction; EP 439,182), 전사-중재 증폭(transcription-mediated amplification; MA, WO 88/10315), 자가 유지 염기서열 복제(self-sustained sequence replication, WO 90/06995), 타깃 폴리뉴클레오티드 염기서열의 선택적 증폭(selective amplification of target polynucleotide sequences, 미국 특허 제6,410,276호), 컨센서스 서열 프라이밍 중합효소 연쇄 반응(consensus sequence primed polymerase chain reaction; CP-PCR, 미국 특허 제4,437,975호), 임의적 프라이밍 중합효소 연쇄 반응(arbitrarily primed polymerase chain reaction; AP-PCR, 미국 특허 제5,413,909호 및 제5,861,245호), 핵산 염기서열 기반 증폭(nucleic acid sequence based amplification; NASBA, 미국 특허 제5,130,238호, 제5,409,818호, 제5,554,517호, 및 제6,063,603호), 가닥 치환 증폭(strand displacement amplification) 및 고리-중재 항온성 증폭(loop-mediated isothermal amplification; LAMP)을 포함하나, 이에 한정되지는 않는다.In the present invention, the term "amplification" refers to a reaction to amplify a nucleic acid molecule. Various amplification reactions have been reported in the art, which are polymerase chain reaction (hereinafter referred to as PCR) (U.S. Patent Nos. 4,683,195, 4,683,202, and 4,800,159), reverse transcription-polymerase chain reaction (hereinafter referred to as RT-PCR). (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), method of WO 89/06700 and EP 329,822, ligase chain reaction; LCR, WO 90/01069 ), repair chain reaction (EP 439,182), transcription-mediated amplification (MA, WO 88/10315), self-sustained sequence replication (WO 90/06995), Selective amplification of target polynucleotide sequences (US Pat. No. 6,410,276), consensus sequence primed polymerase chain reaction (CP-PCR, US Pat. No. 4,437,975), arbitrary Arbitrarily primed polymerase chain reaction (AP-PCR, U.S. Patent Nos. 5,413,909 and 5,861,245), nucleic acid sequence based amplification (NASBA, U.S. Patent Nos. 5,130,238, 5,409,818) , 5,554,517, and 6,063,603), strand displacement amplification and loop-mediated thermostatic amplification isothermal amplification; LAMP), but is not limited thereto.

사용 가능한 다른 증폭 방법들은 미국특허 제5,242,794, 5,494,810, 4,988,617호 및 미국 특허 제09/854,317호에 기술되어 있다.Other amplification methods that can be used are described in US Pat. Nos. 5,242,794, 5,494,810, 4,988,617 and US 09/854,317.

PCR은 가장 잘 알려진 핵산 증폭 방법으로, 그의 많은 변형과 응용들이 개발되어 있다. 예를 들어, PCR의 특이성 또는 민감성을 증진시키기 위해 전통적인 PCR 절차를 변형시켜 터치다운(touchdown) PCR, 핫 스타트(hot start) PCR, 네스티드(nested) PCR 및 부스터(booster) PCR이 개발되었다. 또한, 실시간(real-time) PCR, 분별 디스플레이 PCR(differential display PCR, D-PCR), cDNA 말단의 신속 증폭(rapid amplification of cDNA ends, RACE), DL-PCR(PC), 인버스 중합효소 연쇄반응(inverse polymerase chain reaction: IPCR), 벡토레트(vectorette) PCR, 및 TAIL-PCR(thermal asymmetric interlaced PCR)이 특정한 응용을 위해 개발되었다. PCR에 대한 자세한 내용은 McPherson, M.J., 및 Moller, S.G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000)에 기재되어 있으며, 그의 교시사항은 본 명세서에 참조로 삽입된다.PCR is the most well-known nucleic acid amplification method, and its many modifications and applications have been developed. For example, touchdown PCR, hot start PCR, nested PCR and booster PCR have been developed by modifying traditional PCR procedures to enhance the specificity or sensitivity of PCR. In addition, real-time PCR, differential display PCR (D-PCR), rapid amplification of cDNA ends (RACE), DL-PCR (PC), inverse polymerase chain reaction (inverse polymerase chain reaction: IPCR), vectorette PCR, and thermal asymmetric interlaced PCR (TAIL-PCR) have been developed for specific applications. For more information on PCR, see McPherson, M.J., and Moller, S.G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000), the teachings of which are incorporated herein by reference.

본 발명에서 멀티플렉스 증폭은 멀티플렉스 PCR(Polymerase Chain Reaction) 증폭이다. 본 발명의 일 구현예에 따르면, 상기 멀티플렉스 PCR 증폭은 57-61℃의 어닐링(annealing) 온도 조건을 갖고, 본 발명의 다른 구현예에 따르면, 상기 멀티플렉스 PCR 증폭은 58-60℃의 어닐링 온도 조건을 가지며, 본 발명의 특정 구현예에 따르면, 상기 멀티플렉스 PCR 증폭은 58.5-59.5℃의 어닐링 온도 조건을 갖는다.In the present invention, the multiplex amplification is a multiplex PCR (Polymerase Chain Reaction) amplification. According to an embodiment of the present invention, the multiplex PCR amplification has an annealing temperature condition of 57-61°C, and according to another embodiment of the present invention, the multiplex PCR amplification is an annealing of 58-60°C. It has a temperature condition, and according to a specific embodiment of the present invention, the multiplex PCR amplification has an annealing temperature condition of 58.5-59.5°C.

상기 멀티플렉스 PCR 증폭은 PCR을 실시하는 데 적정한 싸이클 수가 요구된다. 본 발명의 일 구현예에 따르면, 상기 멀티플렉스 PCR 증폭은 27-30 싸이클로 실시한다. 본 발명의 멀티플렉스 PCR 증폭을 26 싸이클 이하로 실시하는 경우에 500 RFU 이하의 피크들이 형성되었고, 31 싸이클에서는 2,000 RFU 이상의 피크가 형성되었지만 노이즈가 증가하고 불완전한 A 삽입이 발생하여 적합하지 않다.The multiplex PCR amplification requires an appropriate number of cycles to perform PCR. According to an embodiment of the present invention, the multiplex PCR amplification is performed in 27-30 cycles. When the multiplex PCR amplification of the present invention was performed in 26 cycles or less, peaks of 500 RFU or less were formed, and peaks of 2,000 RFU or more were formed in 31 cycles, but noise increased and incomplete A insertion occurred, which is not suitable.

본 발명에서, 상기 조성물은 1개 이상의 어댑터(adaptor)를 포함할 수 있다. 상기 어댑터는 유전공학에 이용되는 짧고 합성된 올리고뉴클레오티드를 말한다. 상기 전이효소는 1개 또는 2개의 어댑터가 접합된 전이효소 복합체일 수 있다. 상기 어댑터는 전이효소의 절단 및 삽입에 의해 핵산 단편의 어느 하나 또는 양 말단에 삽입될 수 있다. 상기 어댑터는 핵산 증폭을 위한 프라이머와 동일하거나 상보적인 서열을 포함할 수 있다.In the present invention, the composition may include one or more adapters (adaptor). The adapter refers to a short and synthesized oligonucleotide used in genetic engineering. The transferase may be a transferase complex to which one or two adapters are conjugated. The adapter may be inserted into either or both ends of the nucleic acid fragment by cleavage and insertion of a transfer enzyme. The adapter may include a sequence identical to or complementary to a primer for amplifying a nucleic acid.

본 발명에서, 상기 핵산은 게놈(genome) DNA, 염색질(chromatin), 및 이들의 단편을 포함한다. 상기 핵산은 열린 해독틀(open reading frame: ORF) 및 조절 영역을 포함할 수 있다. 상기 조절 영역은 프로모터(promoter), 인핸서(enhancer), 사일런서(silencer), 및 비번역 영역(untranslated region: UTR)을 포함할 수 있다.In the present invention, the nucleic acid includes genomic DNA, chromatin, and fragments thereof. The nucleic acid may comprise an open reading frame (ORF) and a regulatory region. The regulatory region may include a promoter, an enhancer, a silencer, and an untranslated region (UTR).

본 발명에서 용어 ‘프라이머(primer)’는 적합한 온도에서 적합한 완충액 내에서 적합한 조건(즉, 4종의 다른 뉴클레오시드트리포스페이트 및 중합 반응 효소 하에서 주형-지시 DNA 합성의 개시점으로 작용할 수 있는 단일 가닥의 올리고뉴클레오티드를 의미한다. 프라이머의 적합한 길이는 다양한 인자, 예를 들어, 온도와 프라이머의 용도에 따라 차이가 있지만, 전형적으로 15 내지 30개의 뉴클레오티드이다. 짧은 프라이머는 주형과 충분히 안정된 혼성화 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구할 수 있다. 용어 "전방향 프라이머(forward primer)" 및 "역방향 프라이머(reverse primer)"는 중합 효소 연쇄 반응에 의해 증폭되는 주형의 일정한 부위의 3' 말단 및 5' 말단에 각각 결합하는 프라이머를 의미한다. 프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화 되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서, 일 구체예에 따른 프라이머 세트는 주형인 뉴클레오티드 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, 이 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 충분한 상보성을 가지면 충분한 것으로 해석된다. 이러한 프라이머의 디자인은 주형이 되는 폴리뉴클레오티드의 염기 서열을 참조하여 당업자에 의해 용이하게 실시할 수 있으며, 예를 들어, 프라이머 디자인용 프로그램(예를 들어, PRIMER 3, VectorNTI 프로그램)을 이용하여 할 수 있다.In the present invention, the term'primer' refers to a single template that can serve as an initiation point for template-directed DNA synthesis under suitable conditions (i.e., 4 different nucleoside triphosphates and polymerases) in a suitable buffer at a suitable temperature. It refers to the oligonucleotide of the strand The suitable length of a primer varies depending on various factors, eg temperature and application of the primer, but is typically 15 to 30 nucleotides Short primers form a sufficiently stable hybridization complex with the template. It may generally require a lower temperature to form. The terms "forward primer" and "reverse primer" refer to the 3'end of a certain site of the template that is amplified by polymerase chain reaction and It means a primer that binds to each of the 5'ends. The sequence of the primer does not have to have a sequence that is completely complementary to some of the sequences of the template, and it is hybridized with the template to have sufficient complementarity within the range that can perform its own function. Therefore, the primer set according to one embodiment does not need to have a sequence that is completely complementary to the nucleotide sequence as a template, and it is sufficient if it has sufficient complementarity within the range capable of hybridizing to this sequence to function as a primer. The design of such a primer can be easily performed by a person skilled in the art by referring to the base sequence of the polynucleotide used as a template, for example, a primer design program (eg, PRIMER 3, VectorNTI program). You can use it.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 1 내지 100 중 어느 하나의 마커를 증폭할 수 있는 프라이머 쌍이면 제한없이 이용가능하나, 바람직하게는 서열번호 101 내지 300으로 구성된 군에서 선택되는 어느 하나의 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair can be used without limitation as long as it is a primer pair capable of amplifying any one of SEQ ID NOs: 1 to 100, but preferably any one selected from the group consisting of SEQ ID NOs: 101 to 300 It may be characterized as being a primer pair.

예를 들어, 본 발명의 서열번호 1로 표시되는 BC3M_102 마커서열을 증폭하기 위한 정방향 프라이머는 서열번호 101로 표시되며, 역방향 프라이머는 서열번호 102로 표시된다. 본 발명의 서열번호 2로 표시되는 BC3M_11 마커서열을 증폭하기 위한 정방향 프라이머는 서열번호 103으로 표시되며, 역방향 프라이머는 서열번호 104로 표시되는 것을 특징을 할 수 있다.For example, the forward primer for amplifying the BC3M_102 marker sequence represented by SEQ ID NO: 1 of the present invention is represented by SEQ ID NO: 101, and the reverse primer is represented by SEQ ID NO: 102. The forward primer for amplifying the BC3M_11 marker sequence represented by SEQ ID NO: 2 of the present invention may be represented by SEQ ID NO: 103, and the reverse primer may be represented by SEQ ID NO: 104.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 101 내지 300으로 표시되는 프라이머 쌍에서, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149 또는 150쌍의 프라이머인 것을 특징으로 할 수 있으나, 바람직하게는 101 내지 140으로 표시되는 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair is in the primer pair represented by SEQ ID NOs: 101 to 300, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 , 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 , 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 , 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 , 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140 , 141, 142, 143, 144, 145, 146, 147, 148, 149, or 150 pairs of primers may be characterized, preferably, it may be characterized in that the primer pairs represented by 101 to 140.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 141 내지 180으로 표시되는 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that the primer pair represented by SEQ ID NOs: 141 to 180.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 181 내지 220으로 표시되는 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that the primer pair represented by SEQ ID NOs: 181 to 220.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 221 내지 260으로 표시되는 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that the primer pair represented by SEQ ID NOs: 221 to 260.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 261 내지 300으로 표시되는 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that the primer pair represented by SEQ ID NOs: 261 to 300.

본 발명에서 사용하는 전체 마커 서열은 표 2에 기재되어 있으며, 전체 프라이머 서열은 표 3에 기재하였다.All marker sequences used in the present invention are shown in Table 2, and all primer sequences are shown in Table 3.

본 발명에서 상기 마커서열은 하기의 방법으로 스크리닝하는 것을 특징으로 할 수 있다:In the present invention, the marker sequence may be characterized by screening by the following method:

(a) 생체시료에서 분리된 핵산을 전이효소(transposase)로 처리하여 DNA의 서열정보(reads)를 획득하는 단계; (a) obtaining DNA sequence information (reads) by processing the nucleic acid isolated from the biological sample with a transfer enzyme;

(b) 상기 서열정보(reads)를 참조집단의 표준 염색체 서열 데이터베이스(reference genome database)에 정렬(alignment)하는 단계; (b) aligning the sequence information (reads) with a reference genome database of a reference group;

(c) 상기 정렬된 서열정보(reads)에 대하여 시퀀싱 퀄리티 점수(sequencing quality score)를 확인하여 서열정보를 선별하는 단계; (c) selecting sequence information by checking a sequencing quality score for the aligned sequence information (reads);

(d) 상기 표준 염색체의 열린 구간을 리드 enrichment가 높은 일정구간(bin)으로 나누고, 상기 선별된 서열정보(reads)에 대하여, 각 구간의 리드 수를 확인하여 수식 1로 계산한 값(RPKM)이 5 미만인 구간은 제외하는 단계; (d) The open section of the standard chromosome is divided into a predetermined section (bin) with high read enrichment, and the number of reads of each section is checked for the selected sequence information (reads), and the value calculated by Equation 1 (RPKM) Excluding sections less than 5;

수식 1=Equation 1=

Figure 112019117979266-pat00001
Figure 112019117979266-pat00001

(e) 참조 집단의 정량화한 값을 비교하여 통계적으로 유의미한 차이가 발생하는 구간을 열린 염색질 구조변이 마커 후보군으로 선별하는 단계; (e) comparing the quantified values of the reference group and selecting a section in which a statistically significant difference occurs as an open chromatin structural variation marker candidate group;

(f) 상기 선별된 마커에 대하여 Real-time PCR을 통하여 이를 확인함으로써 참조 집단과 상이한 열린 염색질 구조를 나타내는 후보를 열린 염색질 구조변이 마커로 결정하는 단계;(f) determining a candidate representing an open chromatin structure different from the reference population as an open chromatin structure mutation marker by confirming the selected marker through real-time PCR;

본 발명에서 용어 "리드(reads)"는, 당업계에 알려진 다양한 방법을 이용하여 서열정보를 분석한 하나의 핵산 단편을 의미한다. 따라서, 본 명세서에서 용어 “서열정보” 및 “리드”는 시퀀싱 과정을 통해 서열정보를 수득한 결과물이라는 점에서 동일한 의미를 가진다.In the present invention, the term "reads" refers to one nucleic acid fragment obtained by analyzing sequence information using various methods known in the art. Therefore, in the present specification, the terms "sequence information" and "lead" have the same meaning in that they are a result of obtaining sequence information through a sequencing process.

본 발명에서 용어 “bin”은, 일정구간 또는 구간과 같은 의미로 사용되며, 염색체 전체 서열의 일부를 의미한다.In the present invention, the term “bin” is used with the same meaning as a certain section or section, and means a part of the entire chromosome sequence.

본 발명에서 용어 ”참조집단”은 표준 염기서열 데이터베이스와 같이 비교할 수 있는 기준(reference) 집단으로, 현재 특정 질환 또는 병증이 없는 사람의 집단을 의미한다. 본 발명에 있어서, 상기 참조집단의 표준 염색체 서열 데이터베이스에서 표준 염기서열은 서울대학교병원으로부터 제공받은 유방암 환자의 정상 조직을 이용하여 생성한 참조 염색체 일 수 있다.In the present invention, the term “reference group” is a reference group that can be compared like a standard sequence database, and refers to a group of people who do not currently have a specific disease or condition. In the present invention, the standard nucleotide sequence in the standard chromosome sequence database of the reference group may be a reference chromosome generated using the normal tissue of a breast cancer patient provided by Seoul National University Hospital.

본 발명에서 용어 “RPKM”은 reads per kilobase of transcript per million mapped reads의 약자로서, 정규화된 피크값을 의미한다.In the present invention, the term "RPKM" stands for reads per kilobase of transcript per million mapped reads, and means a normalized peak value.

염색질 내의 열린 지역(Open Chromatin)에 대한 정규화된 피크값을 의미한다. 이는 열린 지역에 맵핑된 read를 대상으로 전체 게놈의 맵핑된 총 read수를 기반으로 해당 지역을 정량화 한 것이다.It means the normalized peak value for the open region (Open Chromatin) in chromatin. This is a quantification of the region based on the total number of mapped reads of the entire genome for reads mapped to the open region.

본 발명에서 상기 염색질은 진정염색질(euchromatin) 및 이질염색질(heterochromatin)을 포함한다. 상기 염색질은 8개의 히스톤 단백질 코어(core)에 DNA가 약 2바퀴 감긴 뉴클레오좀들을 포함할 수 있다. 뉴클레오좀 사이의 DNA 영역은 "열린 염색질(open chromatin)" 구조를 가질 수 있다. 열린 염색질에는 전사인자, 중합효소 등이 부착되어 전사가 개시될 수 있다. 히스톤 단백질 코어에 감긴 DNA 영역은 "닫힌 염색질(closed chromatin)" 구조를 가질 수 있다. 닫힌 염색질은 DNA와 히스톤 단백질이 결합되어 전사인자, 중합효소 등이 부착할 수 없다. 상기 염색질은 세포내 신호전달 등에 따라 염색질의 구조가 변경될 수 있다.In the present invention, the chromatin includes euchromatin and heterochromatin. The chromatin may include nucleosomes in which DNA is wound about two turns around eight histone protein cores. The DNA regions between nucleosomes may have a "open chromatin" structure. Transcription factors, polymerases, etc. may be attached to open chromatin to initiate transcription. The DNA region wrapped around the histone protein core may have a "closed chromatin" structure. In closed chromatin, DNA and histone proteins are bound, so transcription factors and polymerases cannot attach. The structure of the chromatin may be changed according to intracellular signal transmission or the like.

본 발명에 있어서, 상기 (a) 단계는 In the present invention, the step (a)

(a-i) 생물학적 시료로부터 세포의 핵(nucleus)을 수득하는 단계;(a-i) obtaining a cell nucleus from a biological sample;

(a-ii) 수득한 세포의 핵에 전이효소 및 어댑터를 포함하는 전이효소 복합체를 가하여, 어느 하나 또는 양 말단이 상기 어댑터로 표지된 핵산 단편을 생성하는 단계; (a-ii) adding a transferase complex containing a transferase and an adapter to the nucleus of the obtained cell, thereby generating a nucleic acid fragment labeled with the adapter at either or both ends;

(a-iii) 생성된 핵산 단편에서 염석 방법(salting-out method), 컬럼크로마토그래피 방법(column chromatography method), 또는 비드 방법(beads method)을 사용하여 단백질, 지방, 및 기타 잔여물을 제거하고 정제된 핵산을 수득하는 단계; (a-iii) Protein, fat, and other residues are removed from the resulting nucleic acid fragment using a salting-out method, a column chromatography method, or a beads method, Obtaining a purified nucleic acid;

(a-iv) 상기 정제된 핵산에 대하여, 싱글-엔드 시퀀싱(single-end sequencing) 또는 페어-엔드 시퀀싱(pair-end sequencing) 라이브러리(library)를 제작하는 단계;(a-iv) preparing a single-end sequencing or pair-end sequencing library for the purified nucleic acid;

(a-v) 상기 제작된 라이브러리를 차세대 유전자서열검사기(next-generation sequencer)에 반응시키는 단계; 및(a-v) reacting the produced library to a next-generation sequencer; And

(a-vi) 상기 차세대 유전자서열검사기에서 핵산의 서열정보(reads)를 획득하는 단계를 포함하는 방법으로 수행되는 것을 특징으로 할 수 있다.(a-vi) It may be characterized in that it is carried out by a method comprising the step of obtaining sequence information (reads) of the nucleic acid in the next generation gene sequence tester.

본 발명에 있어서, 상기 (a-iii) 및 상기 (a-iv) 단계 사이에, 상기 (a-ii) 단계에서 정제된 핵산을, 효소적 절단, 분쇄 또는 하이드로쉐어방법(hydroshear method)으로 무작위 단편화(random fragmentation)하여 싱글-엔드 시퀀싱 또는 페어-엔드 시퀀싱 라이브러리를 제작하는 단계를 추가로 포함하는 방법으로 수행되는 것을 특징으로 할 수 있다. In the present invention, between the (a-iii) and (a-iv) steps, the nucleic acid purified in the (a-ii) step is randomized by enzymatic cleavage, pulverization or a hydroshear method. It may be characterized in that it is performed by a method further including the step of producing a single-end sequencing or pair-end sequencing library by random fragmentation.

본 발명에 있어서, 상기 차세대 유전자서열 판독기(next-generation sequencer)는 이에 제한되지는 않으나, 일루미나 컴파니의 하이식(Hiseq) 시스템, 일루미나 컴파니의 마이식(Miseq) 시스템, 일루미나 컴파니의 게놈 분석기(GA) 시스템, 로슈 컴파니(Roche Company)의 454 FLX, 어플라이드 바이오시스템즈 컴파니의 SOLiD 시스템, 라이프 테크놀러지 컴파니의 이온토렌트 시스템일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the next-generation sequencer is not limited thereto, but the Illumina Company's Hiseq system, the Illumina Company's Miseq system, and the Illumina Company's genome An analyzer (GA) system, a Roche Company's 454 FLX, an Applied Biosystems Company's SOLiD system, and a Life Technology Company's Ion Torrent system, but are not limited thereto.

본 발명에 있어서, 상기 정렬단계는 이에 제한되지는 않으나, BWA 알고리즘 및 Hg19 서열을 이용하여 수행되는 것일 수 있다.In the present invention, the alignment step is not limited thereto, but may be performed using the BWA algorithm and the Hg19 sequence.

본 발명에 있어서, 상기 BWA 알고리즘은 BWA-mem, BWA-ALN, BWA-SW 또는 Bowtie2 등이 포함될 수 있으나 이에 한정되는 것은 아니다.In the present invention, the BWA algorithm may include BWA-mem, BWA-ALN, BWA-SW or Bowtie2, but is not limited thereto.

본 발명에서, 상기 (c) 단계에서 용어 “서열정보의 선별”은 퀄리티 점수, 예를 들어 시퀀싱 퀄리티 점수가 일정 요건을 만족하는지를 확인함으로써 해당 데이터를 토대로 추가적인 분석을 수행할지 혹은 분석을 종료할지 여부를 결정하는 절차를 의미한다. In the present invention, the term "selecting sequence information" in the step (c) refers to whether to perform additional analysis based on the data or to terminate the analysis by checking whether a quality score, for example, a sequencing quality score satisfies a certain requirement. Means the procedure to determine.

본 발명에 있어서, 상기 (c) 단계는 In the present invention, the step (c)

(c-i) 각 정렬된 핵산서열의 영역을 특정하는 단계; 및(c-i) specifying a region of each aligned nucleic acid sequence; And

(c-ii) 상기 영역 내에서 시퀀싱 퀄리티 점수가 30 이상이 되는 영역이, 전체 핵산서열의 영역 중 80 % 초과한 영역을 선별하는 단계;를 포함하여 수행되는 것을 특징으로 할 수 있다.(c-ii) selecting a region in which a sequencing quality score of 30 or higher is greater than 80% of the entire nucleic acid sequence region in the region is performed.

본 발명에 있어서, 상기 (c) 단계는 상기 선별된 영역에서 정렬 퀄리티 점수(mapping quality score)의 기준값을 만족하는 서열을 선별하는 단계를 추가적으로 포함하여 수행되는 것을 특징으로 할 수 있다. In the present invention, step (c) may be characterized in that it additionally includes selecting a sequence that satisfies a reference value of a mapping quality score in the selected region.

본 발명에 있어서, 상기 (c-i) 단계의 핵산서열의 영역을 특정하는 단계에서, 핵산서열의 영역은 이에 제한되는 않으나, 1kb~1MB일 수 있다.In the present invention, in the step of specifying the region of the nucleic acid sequence in step (c-i), the region of the nucleic acid sequence is not limited thereto, but may be 1 kb to 1 MB.

본 발명에 있어서, 상기 (c-ii) 단계에서, 상기 영역 내에서 시퀀싱 퀄리티 점수는 원하는 기준에 따라 달라질 수 있으나, 구체적으로 30 이상이고, 시퀀싱 퀄리티 점수가 30 이상이 되는 영역이, 전체 핵산서열의 영역 중 70 % 초과한 영역, 보다 구체적으로 75% 초과한 영역, 가장 구체적으로 80% 초과한 영역을 선별하는 것이다. In the present invention, in the step (c-ii), the sequencing quality score within the region may vary according to a desired criterion, but specifically, the region where the sequencing quality score is 30 or higher is the entire nucleic acid sequence Among the areas of the, the area exceeding 70%, more specifically exceeding 75%, and most specifically exceeding 80% is selected.

본 발명에 있어서, 상기 (c-ⅲ) 단계에서, 상기 기준값은 상기 정렬 퀄리티 점수(mapping quality score)가는 원하는 기준에 따라 달라질 수 있으나, 구체적으로는 15 내지 70, 보다 구체적으로는 30 내지 65, 가장 구체적으로는 60일 수 있다. In the present invention, in the step (c-iii), the reference value may vary according to a desired criterion for the mapping quality score, but specifically 15 to 70, more specifically 30 to 65, Most specifically, it may be 60.

본 발명에 있어서, 상기 (d)단계의 리드 enrichment가 높은 일정구간(bin)은 15kb 내지 50kb인 것을 특징으로 할 수 있다. 즉, 본 발명에서 일정구간(bin)은 이에 제한되는 않으나, 1kb 내지 1MB, 구체적으로 1kb 내지 500 kb, 보다 구체적으로는 15kb 내지 100kb, 보다 더 구체적으로 15kb 내지 50kb, 가장 구체적으로 15kb 일 수 있다.In the present invention, a predetermined interval (bin) in which the read enrichment in step (d) is high may be 15 kb to 50 kb. That is, in the present invention, the predetermined period (bin) is not limited thereto, but may be 1 kb to 1 MB, specifically 1 kb to 500 kb, more specifically 15 kb to 100 kb, more specifically 15 kb to 50 kb, and most specifically 15 kb. .

본 발명에 있어서, 상기 (e) 단계의 통계적으로 유의미한 차이는 하기 수식 2로 계산한 p-value가 0.05 미만이고, 수식 3으로 계산한 fold change가 1.5배 이상인 것을 특징으로 할 수 있다:In the present invention, the statistically significant difference in step (e) may be characterized in that the p-value calculated by Equation 2 below is less than 0.05, and the fold change calculated by Equation 3 is 1.5 times or more:

수식 2=

Figure 112019117979266-pat00002
Equation 2=
Figure 112019117979266-pat00002

여기서 X1, X2는 각 그룹(1:대조군, 2:비교군)에 대한 RPKM 평균값이고, n1, n2는 각 그룹에 해당하는 샘플 수를 의미한다.Here, X1 and X2 are the average RPKM values for each group (1: control group, 2: comparison group), and n1 and n2 indicate the number of samples corresponding to each group.

예를 들어 Normal과 Cancer라는 두 그룹을 비교할 때 Normal 샘플이 10개, 암 샘플이 10개라고 하면, X1은 Normal 샘플 10개에 대한 평균값, X2는 Cancer 샘플 10개에 대한 평균값을 의미한다.For example, when comparing two groups, Normal and Cancer, if 10 normal samples and 10 cancer samples are said, X1 is the average value of 10 normal samples, and X2 is the average value of 10 cancer samples.

수식 3=Equation 3=

Figure 112019117979266-pat00003
Figure 112019117979266-pat00003

여기서, control은 대조군을 의미하며, treatment는 비교군을 의미한다.Here, control means a control group, and treatment means a control group.

본 발명에서 대조군은 바람직하게는 정상 세포군 또는 타겟 질환 외의 질병을 가지는 세포군이 될 수 있고, 비교군은 타겟 질환 세포군, 바람직하게는 특정 암 세포군이 될 수 있다.In the present invention, the control group may preferably be a normal cell group or a cell group having a disease other than the target disease, and the control group may be a target disease cell group, preferably a specific cancer cell group.

본 발명에 있어서, 상기 (f) 단계는In the present invention, the step (f) is

(f-i) 생체시료에서 분리된 핵산을 전이효소(transposase)로 처리하여 핵산 단편을 수득하는 단계; 및(f-i) treating the nucleic acid isolated from the biological sample with a transfer enzyme to obtain a nucleic acid fragment; And

(f-ii) 상기 핵산 단편을 증폭할 수 있는 프라이머를 이용하여 상기 핵산 단편을 증폭하여, 상기 핵산의 염색질 구조를 검출하는 단계를 포함하여 수행되는 것을 특징으로 할 수 있다.(f-ii) amplifying the nucleic acid fragment by using a primer capable of amplifying the nucleic acid fragment, and detecting the chromatin structure of the nucleic acid.

본 발명의 용어 “표준 염색체”는 유전적으로 정상(normal)이라고 판단된 복수 기증자의 유전정보의 조합체이며, 예를 들어 NCBI에서 제공하는 GRCh37(Hg19) 데이터일 수 있다.The term "standard chromosome" of the present invention is a combination of genetic information from multiple donors that are genetically determined to be normal, and may be, for example, GRCh37 (Hg19) data provided by NCBI.

본 발명은 다른 관점에서, The present invention from another point of view,

생체시료에서 분리된 핵산을 전이효소(transposase)로 처리하여 핵산 단편을 수득하는 단계; 및Treating the nucleic acid isolated from the biological sample with a transfer enzyme to obtain a nucleic acid fragment; And

서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나 이상의 핵산에 특이적인 프라이머 쌍을 이용하여 상기 처리된 핵산 단편을 증폭하여, 상기 핵산의 염색질 구조를 검출하는 단계를 포함하는 유방암 진단을 위한 정보의 제공방법에 관한 것이다.Amplification of the processed nucleic acid fragment using a primer pair specific to any one or more nucleic acids selected from the group consisting of SEQ ID NOs: 1 to 100, and detecting the chromatin structure of the nucleic acid. It is about how to provide.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 101 내지 300으로 표시되는 프라이머 쌍에서, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149 또는 150쌍의 프라이머인 것을 특징으로 할 수 있으나, 바람직하게는 101 내지 140으로 표시되는 프라이머 쌍인 것을 특징으로 할 수 있다.In the present invention, the primer pair is in the primer pair represented by SEQ ID NOs: 101 to 300, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 , 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 , 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 , 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 , 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140 , 141, 142, 143, 144, 145, 146, 147, 148, 149, or 150 pairs of primers may be characterized, preferably, it may be characterized in that the primer pairs represented by 101 to 140.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 141 내지 180으로 표시되는 프라이머 쌍을 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it further comprises a primer pair represented by SEQ ID NOs: 141 to 180.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 181 내지 220으로 표시되는 프라이머 쌍을 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it further comprises a primer pair represented by SEQ ID NOs: 181 to 220.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 221 내지 260으로 표시되는 프라이머 쌍을 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it further comprises a primer pair represented by SEQ ID NOs: 221 to 260.

본 발명에 있어서, 상기 프라이머 쌍은 서열번호 261 내지 300으로 표시되는 프라이머 쌍을 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, the primer pair may be characterized in that it further comprises a primer pair represented by SEQ ID NOs: 261 to 300.

본 발명에 있어서, 상기 생물학적 시료는 혈액, 골수액, 림프액, 타액, 누액, 점막액, 양수, 또는 이들로부터 분리된 세포일 수 있다. 상기 생물학적 시료는 혈액으로부터 분리된 세포일 수 있다. 예를 들어, 상기 세포는 말초 혈액 단핵 세포(peripheral blood mononuclear cel: PBMC)이다.In the present invention, the biological sample may be blood, bone marrow fluid, lymph fluid, saliva, tear fluid, mucous membrane fluid, amniotic fluid, or cells isolated therefrom. The biological sample may be cells isolated from blood. For example, the cells are peripheral blood mononuclear cells (PBMCs).

존 발명에서, 상기 생물학적 시료로부터 세포의 핵(nucleus)을 수득하는 방법은 당해 업계에서 통상적으로 사용되는 방법을 사용하여 수행될 수 있다. 예를 들어, 세포막 분해 용액을 사용하여 핵을 분리할 수 있다.In the present invention, a method of obtaining a nucleus of a cell from the biological sample may be performed using a method commonly used in the art. For example, a cell membrane digestion solution can be used to separate the nuclei.

본 발명에서, 상기 방법은 수득된 세포의 핵에 전이효소를 가하여, 핵산 단편을 생성하는 단계를 포함한다.In the present invention, the method includes the step of generating a nucleic acid fragment by adding a transfer enzyme to the nucleus of the obtained cell.

상기 전이효소는 열린 염색질에 결합할 수 있다. 상기 전이효소는 열린 염색질에 비특이적으로 결합하여, 상기 세포의 핵에서 뉴클레오좀 사이의 열린 염색질을 절단할 수 있다. The transferase can bind to open chromatin. The transferase may non-specifically bind to open chromatin, thereby cleaving open chromatin between nucleosomes in the nucleus of the cell.

상기 방법은 서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나의 핵산에 특이적인 프라이머의 존재 하에서 상기 핵산 단편을 증폭하여, 상기 핵산의 염색질 구조를 검출하는 단계를 포함한다.The method includes amplifying the nucleic acid fragment in the presence of a primer specific for any one nucleic acid selected from the group consisting of SEQ ID NOs: 1 to 100, and detecting the chromatin structure of the nucleic acid.

상기 서열번호 1 내지 100로 구성된 군에서 선택되는 어느 하나의 핵산이 열린 염색질의 구조를 가질 경우, 염색질에 전이효소가 결합하여 상기 핵산의 단편이 생성될 수 있다. 생성된 핵산 단편을 서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나의 핵산에 특이적으로 증폭할 경우, 상기 핵산으로부터 증폭 산물이 생성될 수 있다. 상기 1 내지 100으로 구성된 군에서 선택되는 어느 하나가 닫힌 염색질의 구조를 가질 경우, 상기 핵산에 전이효소가 결합할 수 없고 상기 핵산의 단편이 생성될 수 없다. 반응물에 대해 서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나의 핵산에 특이적으로 증폭할 경우, 상기 핵산의 단편이 없어 증폭 산물이 생성되지 않거나 적게 생성될 수 있다When any one nucleic acid selected from the group consisting of SEQ ID NOs: 1 to 100 has an open chromatin structure, a transfer enzyme may bind to chromatin to generate a fragment of the nucleic acid. When the generated nucleic acid fragment is specifically amplified on any one nucleic acid selected from the group consisting of SEQ ID NOs: 1 to 100, an amplification product may be generated from the nucleic acid. When any one selected from the group consisting of 1 to 100 has a closed chromatin structure, a transferase cannot bind to the nucleic acid and a fragment of the nucleic acid cannot be generated. When a reaction product is specifically amplified on any one nucleic acid selected from the group consisting of SEQ ID NOs: 1 to 100, there is no fragment of the nucleic acid, so that the amplification product may not be produced or less.

즉, 서열번호 1 내지 100으로 구성된 군에서 선택되는 어느 하나의 핵산의 증폭 양이 참조 집단에 비하여 통계적으로 유의미할 정도로 많을 경우, 생물학적 시료가 검출된 객체는 유방암이 발생할 가능성이 높다는 것을 의미한다.That is, if the amplification amount of any one nucleic acid selected from the group consisting of SEQ ID NOs: 1 to 100 is statistically significant compared to the reference group, it means that the object in which the biological sample is detected has a high probability of developing breast cancer.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 각 암종에 대한 ATAC Library 제작 및 Sequencing.Example 1. Preparation and Sequencing of ATAC Library for each carcinoma.

약 20mg의 얼린 조직을 파쇄하여 NIB(Nuclei isolation buffer)를 이용하여 nuclei를 분리한 뒤, 필터링을 통해 큰 조직 덩어리를 제거하였다. TD buffer와 Tn5 전이효소(addgene, pTXB1-Tn5 vector)를 이용하여 태그맨테이션을 수행하였다. 그 후 HiFi Hotstart ReadyMix (KAPA: KK2601) 키트를 이용하여 nextera PCR Primer를 부착후 PCR amplification을 수행하였다. PCR amplified DNA를 이용하여 ATAC library를 제작한 뒤 Qiagen PCR purification 키트를 이용하여 정제하였다. Illumina Hiseq4000 system인 차세대 염기서열 기기를 이용하여 서열을 판독하였다. About 20 mg of frozen tissue was crushed to separate nuclei using NIB (Nuclei isolation buffer), and then a large tissue mass was removed through filtering. Tagmentation was performed using TD buffer and Tn5 transferase (addgene, pTXB1-Tn5 vector). Then, using a HiFi Hotstart ReadyMix (KAPA: KK2601) kit, the nextera PCR primer was attached and then PCR amplification was performed. After making an ATAC library using PCR amplified DNA, it was purified using a Qiagen PCR purification kit. The sequence was read using a next-generation nucleotide sequence instrument, which is an Illumina Hiseq4000 system.

NGS용 프라이머 서열Primer sequence for NGS 서열번호Sequence number Tagmentation index primerTagmentation index primer SequenceSequence 서열번호Sequence number Tagmentation index primerTagmentation index primer SequenceSequence Ad1_noMXAd1_noMX 313313 Ad2.13Ad2.13 GTCGTGATGTCGTGAT 301301 Ad2.1Ad2.1 TAAGGCGATAAGGCGA 314314 Ad2.14Ad2.14 ACCACTGTACCACTGT 302302 Ad2.2Ad2.2 CGTACTAGCGTACTAG 315315 Ad2.15Ad2.15 TGGATCTGTGGATCTG 303303 Ad2.3Ad2.3 AGGCAGAAAGGCAGAA 316316 Ad2.16Ad2.16 CCGTTTGTCCGTTTGT 304304 Ad2.4Ad2.4 TCCTGAGCTCCTGAGC 317317 Ad2.17Ad2.17 TGCTGGGTTGCTGGGT 305305 Ad2.5Ad2.5 GGACTCCTGGACTCCT 318318 Ad2.18Ad2.18 GAGGGGTTGAGGGGTT 306306 Ad2.6Ad2.6 TAGGCATGTAGGCATG 319319 Ad2.19Ad2.19 AGGTTGGGAGGTTGGG 307307 Ad2.7Ad2.7 CTCTCTACCTCTCTAC 320320 Ad2.20Ad2.20 GTGTGGTGGTGTGGTG 308308 Ad2.8Ad2.8 CAGAGAGGCAGAGAGG 321321 Ad2.21Ad2.21 TGGGTTTCTGGGTTTC 309309 Ad2.9Ad2.9 GCTACGCTGCTACGCT 322322 Ad2.22Ad2.22 TGGTCACATGGTCACA 310310 Ad2.10Ad2.10 CGAGGCTGCGAGGCTG 323323 Ad2.23Ad2.23 TTGACCCTTTGACCCT 311311 Ad2.11Ad2.11 AAGAGGCAAAGAGGCA 324324 Ad2.24Ad2.24 CCACTCCTCCACTCCT 312312 Ad2.12Ad2.12 GTAGAGGAGTAGAGGA

실시예 2. Pre-Processing analysisExample 2. Pre-Processing analysis

서열정보(Read)를 이용하여 염색질의 개방된 지역을 찾기 전, 먼저 Illumina Hiseq4000을 이용하여 DNA 서열이 정확하게 판독이 되었는지 확인하기 위하여 대표적인 서열 검사 프로그램인 FastQC를 이용하여 서열 품질 검사(Quality Check)를 수행하였다. 일부 서열에서 Adapt 및 Primer까지 판독되거나, 서열의 품질이 낮을 경우, 잘못 판독된 서열 및 낮은 품질의 서열(Q20 이하)을 Trim_galore, Trimmomatic과 같은 제거 프로그램을 이용하여 제거하였다. Before searching for an open area of chromatin using sequence information (Read), first perform a sequence quality check using FastQC, a representative sequence test program, to check whether the DNA sequence was read correctly using Illumina Hiseq4000. Performed. When some sequences were read from Adapt and Primer, or when the quality of the sequence was low, the misread sequence and the sequence of low quality (Q20 or less) were removed using a removal program such as Trim_galore and Trimmomatic.

품질 검사가 완료된 짧은 서열들이 이미 알려진 인간의 참조유전체서열(Reference genome sequence)에서 어디에서 유래되었는지 확인하기 위하여 대표적인 맵핑 프로그램인 Bowtie2를 이용하여 맵핑(Mapping, Alignment)과정을 수행하였다.In order to confirm where the short sequences that had been tested for quality were derived from the known human reference genome sequence, the mapping (Mapping, Alignment) process was performed using Bowtie2, a representative mapping program.

이후 다운스트림(Downstream) 분석을 위하여 Samtools 프로그램을 이용하여 정렬화(Sorting) 및 인덱싱(Indexing)을 수행하였다. 맵핑된 서열 중에서는 실험과정(PCR)중 발생한 편향(bias)된 데이터가 존재하기 때문에 이를 제거하기 위하여 Picard(MarkDuplicates)를 이용하여 PCR 중 발생한 복제된 서열을 제거하였다. Afterwards, sorting and indexing were performed using the Samtools program for downstream analysis. Among the mapped sequences, since there is biased data generated during the experiment (PCR), the duplicated sequence generated during PCR was removed using Picard (MarkDuplicates) to remove this.

실시예 3. Peak Calling & ClassificationExample 3. Peak Calling & Classification

각 암종에 대한 염색질의 개방된 지역을 검출하기 위하여 Genrich툴을 이용하여 염색질의 개방된 지역을 검출하였다. 이렇게 추출한 염색질의 개방된 지역을 주석화(Annotation)을 통하여 각 지역에 대한 좀 더 정확한 정보를 기재하였다.In order to detect the open area of chromatin for each carcinoma, the open area of chromatin was detected using Genrich tool. More accurate information for each region was described through annotation of the open regions of the chromatin extracted in this way.

Enhancer 지역의 염색질 구조 변화를 확인하기 위하여 intergenic region에 존재하는 피크를 추출하였고, 그 중에서 TSS(Transcription start site)로부터 2kb 이상, 50kb 이하로 떨어진 대상을 이용하였다. 정상 및 유방암 조직에 대한 특이적 및 공통적인 염색질 구조 변화를 분류하기 위하여 Homer(MergePeak)를 이용하여 이를 분류하였다. 일부 bias를 peak로 인식하는 문제를 해결하고자 기준치(임계값 : RPKM < 5, 수식 1)을 넘지 못하는 peak에 대해서는 제거 작업을 한 뒤, 두 그룹 간의 통계적으로 유의미한 차이(p-value < 0.05 수식 2, Fold Change 1.5배 이상, 수식 3)가 발생하는 부분을 재분류하는 과정을 수행하였다. In order to confirm the change in the chromatin structure of the enhancer region, peaks present in the intergenic region were extracted, and among them, objects that were 2 kb or more and 50 kb or less from the TSS (transscription start site) were used. In order to classify specific and common chromatin structural changes for normal and breast cancer tissues, this was classified using Homer (MergePeak). To solve the problem of recognizing some biases as peaks, the peak that does not exceed the threshold value (threshold value: RPKM <5, Equation 1) is removed, and then statistically significant difference between the two groups (p-value <0.05 Equation 2). , Fold change 1.5 times or more, Equation 3) was reclassified.

수식 1=Equation 1=

Figure 112019117979266-pat00004
Figure 112019117979266-pat00004

수식 2=

Figure 112019117979266-pat00005
Equation 2=
Figure 112019117979266-pat00005

여기서 X1, X2는 각 그룹(1:대조군,2:비교군)에 대한 RPKM 평균값이고, n1, n2는 각 그룹에 해당하는 샘플 수를 의미한다.Here, X1 and X2 are the average values of RPKM for each group (1: control group, 2: comparison group), and n1 and n2 indicate the number of samples corresponding to each group.

수식 3=Equation 3=

Figure 112019117979266-pat00006
Figure 112019117979266-pat00006

여기서, control은 대조군을 의미하며, treatment는 비교군을 의미한다.Here, control means a control group, and treatment means a control group.

그 결과, 유방암 특이적인 열린 염색질 구조변이 마커를 확인하였다(도 3, 도 4, 도 5).As a result, breast cancer-specific open chromatin structure mutation markers were confirmed (FIGS. 3, 4, and 5).

유방암 특이적 열린 염색질 구조변이 마커Breast cancer specific open chromatin structure mutation marker 서열번호Sequence number 이름name 서열order 1One BC3M_102BC3M_102 GGGATCCCTCAGCAGCTCCGGACCTCATCTGCCCCACTTCGGCATCCCGCGCGGGAATATGACCATGTAGGAGTAACCCGGGGCTCTCAAGGACTCTACGGTTTGTCACGGTTTGAACGCAAGCGCAGGGCCTGGGGCGGGTGCAGGTGGAGGGTCGGCCTCTTTCTGCCCTTGGGAACGCCCCTTTCTGGATGTGGACCGGCGAGGCGGTCTCTCCTTTCTGCCCTCGCCTGGTGAAATGTGGGCACTGCTGCCAGGAGAAAAAAAACTGAAGCTGTGAATTCAGTTCATCACCCTTCCGGGATCCCTCAGCAGCTCCGGACCTCATCTGCCCCACTTCGGCATCCCGCGCGGGAATATGACCATGTAGGAGTAACCCGGGGCTCTCAAGGACTCTACGGTTTGTCACGGTTTGAACGCAAGCGCAGGGCCTGGGGCGGGTGCAGGTGGAGGGTCGGCCTCTTTCTGCCCTTGGGAACGCCCCTTTCTGGATGTGGACCGGCGAGGCGGTCTCTCCTTTCTGCCCTCGCCTGGTGAAATGTGGGCACTGCTGCCAGGAGAAAAAAAACTGAAGCTGTGAATTCAGTTCATCACCCTTCC 22 BC3M_11BC3M_11 AGCGGGGCTAGACGGAGTCAGGGGCGGACCGCCACAGCCTGCACCAATCAGGACCCGGTTGATAGGCAGAGCCTGGCGACTTCGAAGACTCGCCCCCAGTCAAAGAGCCCCGGGGATTCGTTTCCGTACGCAGCCTGGAAACCAGCCTGGGCCTATCCTGCGCGCCGCTGCGGGCTACTATTGGCTGCCAAGAAACCCCGCCCATCTTCCTGCTCATTGGCCGGTGCGGTTTACGTAAGAGGAGCCTGTTGCTGAGCGAAAAGTCTGTTCTGCAATTTTCGCTAAGGAGTTGTTAACGCTAGCGGGGCTAGACGGAGTCAGGGGCGGACCGCCACAGCCTGCACCAATCAGGACCCGGTTGATAGGCAGAGCCTGGCGACTTCGAAGACTCGCCCCCAGTCAAAGAGCCCCGGGGATTCGTTTCCGTACGCAGCCTGGAAACCAGCCTGGGCCTATCCTGCGCGCCGCTGCGGGCTACTATTGGCTGCCAAGAAACCCCGCCCATCTTCCTGCTCATTGGCCGGTGCGGTTTACGTAAGAGGAGCCTGTTGCTGAGCGAAAAGTCTGTTCTGCAATTTTCGCTAAGGAGTTGTTAACGCT 33 BC3M_117BC3M_117 GTACACTGACTTTGGAACAAATGCCACAGGCCCTAATTGCAGGCTCCAAGGAGTTGAGATTCCATACTGGGGTTGCTGGAGGCAGAAGCCTTCCCACTTTCAGGACCCGGACCTGCCCTTCCCCCACGCGGTCCCGCCCAGCCAGCTACACCCTGGCCACAGAGCGCTCACAAAGGCTCAGTGTGTGTATGCCGGGCTGACTCACAGTGGTTCTGGGCCCAGGCGAGGACCTTCTCAGAGGGGCGGAAGGGGCCCTCTCCCTCCTGGCCATTTTCCATGGGGAGCAGTCAGTAACCAGGAGTACACTGACTTTGGAACAAATGCCACAGGCCCTAATTGCAGGCTCCAAGGGGCGGGCGCGCCCTGGCGCGGCTGCGCGCGCGGCTAGCCTTCCACTTTCAGGACCCGGACCTGCCCTTCCCCCACGCGGTCCCGCCCAGCCAGTCTCTCTCCCTGGCCACAGAGCGCGCTCACAAAGGCTCAGGCCCTGCAGGGCGGGCGCTGCCTGTAGG 44 BC3M_119BC3M_119 CTAGGAGACAAGTACCCTGCTGAGCAGACAAATAGCCTGGACTTTGTAACAGCCAAAGTGGCCCACATGGCACTCGCGGGGCTGTGCAGCATCCAGGCAGGGGACACTGCCTGGCATTCTAAAGGCCTGTGCTGAGTCATCTTTCACAGGAACCAGCTTCTCAAGTCTCTGGGATCCTGTTTTACAGGCTGTTACTAACCTTCCCTTGGCTTCCAGGCCAAGGAAGAAGAAAGAATAAATATTAACCAAAGGTACGGCTGTGGCAGGGTGCCCAGGGCCCCTCCCTTTCCTTCTCTCCCCCTAGGAGACAAGTACCCTGCTGAGCAGACAAATAGCCTGGACTTTGTAACAGCCAAAGTGGCCCACATGGCACTCGCGGGGCTGTGCAGCATCCAGGCAGGGGACACTGCCTGGCATTCTAAAGGCCTGTGCTGAGTCATCTTTCACCCAGGAACCAGCTTCTCAAGTCCCCCAGGCTTGCCCTCCCTCAGGCAGTCAGTCTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGCCAGGCAGTCAGCCAGGCAGTCAGTCAGCCAGGCAGCCTCAGCCAGGCAGTCAGCCAGGCAGTCAGCCTCAGCTAGCCGCAGCCAGCCAGGCAGGCAGCCAGCCAGCT 55 BC3M_125BC3M_125 CCACCTCTAGACCAAGTGCCTGCCTGGAATGTCCTGTCCAACTTATCCACCAGCTCATCCTTCCGGGCCTAATTAAGGCCCCACTCCATCTCTGAAGCCACCCCATGCTCATGACTCTCCCTGACGCAGGTTCCCGACACACCGGGTGACTCAGCTGCAGTGTTTTTCACAGTCCGTGATGCGTCACAGCTATTTATAGGTGTGCTTAACTCCCTGTGAGGAAGCACTTCAACCCCCAAACGCAAGTTCCAGAAATATGCTCATAAAGATAAAGATAGAGAAAAGCTCTGGAAAAATACACCACCTCTAGACCAAGTGCCTGCCTGGAATGTCCTGTCCAACTTATCCACCAGCTAGCTACTGACTGACCTAGCTAGCCACTCCATCTCTGAAGCCACCCCATGCTCATGACTCTCCCTGACGCAGGTTCCCGACACACCGGGTGACTCAGCTGCAGTGTCCCCTGAACAGCAGCTAGATCCTGTCACGAGCTAGACTGAA 66 BC3M_132BC3M_132 TCTGGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAAACAGGCCGGAGAGAGACTGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGGCAGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACACCGCGTCACTGTGCACTAGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAGACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAAAGCTGCTGAGTCTGGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAGAAACAGGCCTGACTGACTGACTGACTGACTACTGACTGACTGACTGACTGACTGACTGACTGACTGACTAGACTGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGGCAGCAGCACAGCCGGTTTCTCTCAAGGGCTCACACCCCACACACACCGCGTCAC 77 BC3M_137BC3M_137 TAATTTCTCCGAGGCCAGCCAGAGCAGGTTTGTTGGCAGCAGTACCCCTCCAGCAGTCACGCGACCAGCCAATCTCCCGGCGGCGCTCGGGGAGGCGGCGCGCTCGGGAACGAGGGGAGGTGGCGGAACCGCGCCGGGGCCACCTTAAGGCCGCGCTCGCCAGCCTCGGCGGGGCGGCTCCCGCCGCCGCAACCAATGGATCTCCTCCTCTGTTTAAATAGACTCGCCGTGTCAATCATTTTCTTCTTCGTCAGCCTCCCTTCCACCGCCATATTGGGCCACTAAAAAAAGGGGGCTCGTTAATTTCTCCGAGGCCAGCCAGAGCAGGTTTGTTGGCAGCAGTACCCCTCCAGCAGTCACGCGACCAGCCAATCTCCCGGCGGCGCTCGGGGAGGCGGCGCGCTCGGGAACGAGGGGAGGTGGCGGAACCGCGCCGGGGCCACCTTAAGGCCGCGCTCGCCAGCCTCGGCGGGGCGGCTCCCGCCGCCGCAACCAATGGATCTCCTCCTCTGTTTAAATAGACTCGCCGTGTCAATCATTTTCTTCTTCGTCAGCCTCCCTTCCACCGCCATATTGGGCCACTAAAAAAAGGGGGCTCGT 88 BC3M_139BC3M_139 CCTGACTGTGAAAGCCAGGCCCCAGCCCAAGAAGGCTTCACAGACCCCTAGGTGTGCCCTCTGTGTGAGCCAAGTGTTGACCCTGGCGATGATGCCAACAGCCCGACTCTGCCCAGCTTTCAGCCGCATGAGTGTGAACCAGCTGAGCGGCACCAGCTCAGGGCAAGGCAGAAGGCCAGGTGCACTGTCTCTAGGCAGGCAGGATGAACAGCAGCACCTGATGTCACAGCGGCCGGGGAACCACCCTGGTTGGGGCATGCTAACCCACCCTGCTAATATGCTTTGGGTCCTAATTTCCTTCCTGACTGTGAAAGCCAGGCCCCAGCCCAAGAAGGCTTCACAGACCCCTAGGTGTGCCCTCTGTGTGAGCCAAGTGTTGACCCTGGCGATGATGCCAACAGCCCGACTCTGCCCAGCTTTCAGCCGCATGAGTGTGAACCAGCTGAGCGGCACCAGCTCAGGGCAAGGCAGAAGGCCAGGTGCACTGTCTCTAGGCAGGCAGGATGAACAGCAGCACCTGATGTCACAGCGGCCGGGGAACCACCCTGGTTGGGGCATGCTAACCCACCCTGCTAATATGCTTTGGGTCCTAATTTCCTT 99 BC3M_142BC3M_142 ggctcacaccctccaggggctaccctggtcactcagggtaaaagccacagcccttccagtggccttcaaggccctggtgatctgctcgcccctcccctttccactcacaccttgcccccccactcctggcaacccgtctctgctccagccacacacttgcttcattgctgttcctggaaaatactgggcatgttctggcctcggggcctttgcctcttttgtgcctgctgccaggacatctgttcctccggaaagcagcctggatcattcccttctctccttcagggctttattcaaaaaggctcacaccctccaggggctaccctggtcactcagggtaaaagccacagcccttccagtggccttcaaggccctggtgatctgctcgcccctcccctttccactcacaccttgcccccccactcctggcaacccgtctctgctccagccacacacttgcttcattgctgttcctggaaaatactgggcatgttctggcctcggggcctttgcctcttttgtgcctgctgccaggacatctgttcctccggaaagcagcctggatcattcccttctctccttcagggctttattcaaaaa 1010 BC3M_146BC3M_146 GGATGAGTCACTGGATCCGTTTTCAGTTCGTTCCACCCACAGATCCGTCCTTTGCAGGCGCCCCAGAAAAGATTGCTTCAGAGCTGGCACCAATGGAGAAGGGACAGAGGCCCAGCAACAGGGCGGGATTGGCAGGCGGAAGGGAGCGTGTGATGAGCTGAGCTCACAAAGGGCCGGGGTGCTGGGCTGCAGCTGGGGAGGGCGGGGTTGGATCAGCGCCTGCTCCTCCGCCTTCGTTTTTCCCCTCCCCCTAAGGATTCAGTTCCCCCTTCTGAAATTCACCACCTTGTATGTGACTTAGGATGAGTCACTGGATCCGTTTTCAGTTCGTTCCACCCACAGATCCGTCCTTTGCAGGCGCCCCAGAAAAGATTGCTTCAGAGCTGGCACCAATGGAGAAGGGACAGAGGCCCAGCAACAGGGCGGGATTGGCAGGCGGAAGGGAGCGTGTGATGAGCTGAGCTCACAAAGGGCCGGGGTGCTGGGCTGCAGCTGGGGAGGGCGGGGTTGGATCAGCGCCTGCTCCTCCGCCTTCGTTTTTCCCCTCCCCCTAAGGATTCAGTTCCCCCTTCTGAAATTCACCACCTTGTATGTGACTTA 1111 BC3M_154BC3M_154 cacctttcccaagatgacgacatacctaattttgcatagcacctgagattgtAACTAAGGTGGTGGGAACCCTTGGTGACTTGCTGTGTTGTGTTGGCCAGTGTTAACACTCACTTCCCCTTAACAGCCCTCCAAACCCAAAAGGCTATGTCAAATCCAGTCCCAGTTCCCAGTTCCTTGTGACTGAGCCCCTCACCCCGCTGGACATTCCTCTCCAAGCAGGCAGTGCTTCCTTATACCCTCCCCACACGGGTAGGTGTTGAGAGGCCAGTACTGAGGTAAATTTCTTTCTTATGGGCAcacctttcccaagatgacgacatacctaattttgcatagcacctgagattgtAGGCACCCTGCATGCCTGACTTGCACTGACTGACTGTCAGGTACTGACTGTGGTGGGGGAACCCTTGGTGACTTGCTGTGTTGTGTTGGCCAGTGTTAACACTCACTTCCCCTTAACAGCCCTCCAAACCCAAAAGGTCCCATGTCAAATCCAGTCCCTCAGTTCCCAGTACTCCCTGACTGACTGAGCCCGCTC 1212 BC3M_168BC3M_168 GAACTCATGAGTCAGGGTCAGTCAGCCCAGAGCTGCAATGTGTACGTGCTTCCCGGCCCTGCTCTTCTGGCCCGCCCCCAAGCCTTCACGCATGCACCCCTGCAGGCACTTACCAGCCTCCTCATCCGTATATCCTGGAAAGGGTGCAAGCATGCCTGGCTTAGTCATCCATCCACAGGAAGTTTGCACAGCCCTACCTGAGTGCTAAGATCAGGCTGTAAACTGCCAGAATGAAACAAAAGAGGGAAAATAAATATCAGCACTCTCCCATAAATTTTGCAATAGTCAGCTGTAGTCTAGGAACTCATGAGTCAGGGTCAGTCAGCCCAGAGCTGCAATGTGTACGTGCTAGCTAGCTAGCTAGCTACCTAGCTAGCTAGCTAAGCCTACGCATGCACCCCTGCAGGCACTTACCAGCCTCCTCATCCGTATATCCTGGAAAGGGTGCAAGCATGCCTGGCTTAGTCATCCATCCACAGGAAGGAAGTTGTTGCACAGCTAGCTACGTAGCACAGAGCTAGCTACCTAGCTAGCTAGCTACCT 1313 BC3M_171BC3M_171 CAGACAGAGGCCGCTGAATTAACCCGTGGAGGCGTCTCTCTGAGCAGAGCCCGCAATGCGCCTGCTTGGGGCTCCCTGCAGCCTCTGGGGGAGGCAGGGCGGCCCAGAGCAGGCCTGTGCTGGAAAGGAACGCGAAGCCCTGTAACCAAGCCTGTACCTCTGCAGTGCTAGTCCCAAGGGGCCTCCGAGCTGTTTGTCACCATGTGATTGGCTCAGGAGAGGGGTGGAGAAATGAAAACACTCTGCCCAGGATATATTTAGTTGAAGTGCAGCTGGGGAAGTGCTTAAACAAGGGAGCTTCAGACAGAGGCCGCTGAATTAACCCGTGGAGGCGTCTCTCTGAGCAGAGCCCGCAATGCGCCTGCTTGGGGCTCCCTGCAGCCTCTGGGGGAGGCAGGGCGGCCCAGAGCAGGCCTGTGCTGGAAAGGAACGCGAAGCCCTGTAACCAAGCCTGTACCTCTGCAGTGCTAGTCCCAAGGGGCCTCCGAGCTGTTTGTCACCATGTGATTGGCTCAGGAGAGGGGTGGAGAAATGAAAACACTCTGCCCAGGATATATTTAGTTGAAGTGCAGCTGGGGAAGTGCTTAAACAAGGGAGCTT 1414 BC3M_172BC3M_172 TCTTGGATTTCTGAATATGCAGTTCTGTTCCTAACCAGTGTGTCCCAACCAGAAAGTCACTGTAATTTTTGGTTTTGTTCCCAATCTCCCTCCAAATGTCATTAGTCATATCCTCCTTCCCATttctgccttgaataggcagtcattatgatgaagccaggcttgtttcagaattccatgagaaccacagTGTCAGGCTGTGACaactctggggctggaaatggaaaaggctgtgatctggggttggctggcaccgtccccgtgagtcattatggaaacactgtccccggattctgctgaTCTTGGATTTCTGAATATGCAGTTCTGTTCCTAACCAGTGTGTCCCAACCAGAAAGTCACTGTAATTTTTGGTTTTGTTCCCAATCTCCCTCCAAATGTCATTAGTCATATCCTCCTTCCCATttctgccttgaataggcagtcattatgatgaagggggggggggcttgcccctccgaggggggctgcccctccagggggggt 1515 BC3M_173BC3M_173 aTTGGTGAGGCGCCGCGCCTCGGTGTCGCAGCGAATCCGCAGATCCTCAAGCCAGGTGGGGGCGCCCACTGCGCGTGTGCAGCGCCTGATAGCCAGGCTAGCTGAGGGCGGGGAGCAGCTGCGGCACCTGGGACACAGCGATTGGCTGGGACCAGGAGAGGGCGGGAAGAAGAACTTGGCGGAGCGCGCTCATATCTCTGATTGGCTGCCAAGGGTAGCCCTTGACAGCTGCCGGGTGGGACCCGTAGACCGCGAGCGCACTGGCCCGTGATTGGTTGGGGTGCGGCGGCGAGCATCTGCaTTGGTGAGGCGCCGCGCCTCGGTGTCGCAGCGAATCCGCAGATCCTCAAGCCAGGTGGGGGCGCCCACTGCGCGTGTGCAGCGCCTGATAGCCAGGCTAGCTGAGGGCGGGGAGCAGCTGCGGCACCTGGGACACAGCGATTGGCTGGGACCAGGAGAGGGCGGGAAGAAGAACTTGGCGGAGCGCGCTCATATCTCTGATTGGCTGCCAAGGGTAGCCCTTGACAGCTGCCGGGTGGGACCCGTAGACCGCGAGCGCACTGGCCCGTGATTGGTTGGGGTGCGGCGGCGAGCATCTGC 1616 BC3M_178BC3M_178 agcacttcccgggcgccccgcctcagtttccccatctataaagtggagatgataataGCATTCAGAGTCACTGATCTAAGGGCTCAGGGACACCATTCAGTGTAAGCCCCATACACTCCCTGCAAGAGGAAGCTGGTTCTGACTCAGCCTTGAGGCTGGCGTCTGAGGCAACCACAAGCCCAACGTGCATGGTGGAAAGATGACTGTAAGTGGGGGCAACCTCAGCTGGCCTTGGGTTTGACCATGGAATGCGAGGCACAAAGGGGCCCATTTTGCATACTTTCTCAGAGGCTGTAGGGCagcacttcccgggcgccccgcctcagtttccccatctataaagtggggagatgataataGCATTCAGTGGCACTGATCTAAGGGCTCAGGGACACCATTCAGTGTAAGCCCCATACACTCCCTGCAAGAGAGGAAGCTGGTTCTGACTCAGCCTTGAGGCTGGCGCGATGCATGCAGGTGGCTGACTGCATGACGT 1717 BC3M_179BC3M_179 CCCCCGACACCACCACCTCCTTCTTCGCCTTGCATCGGTACGATAAGGCACTTGCTTGACGGGAAAGAGAAACTCAGCTGCCAGCTGGGGTTCATTTGCACTTTCCCCCGCCTGGTCTGCGGTCTGGCTGTGCAGCTAGCCGCTCTGACGGGGAGGAGGGGCCCAAAGCCACTGCCTGCCGCCTGGGCAGGGGAGAGGGGCACGTGAGGCTCATGGCAGAGGCACAGCCAGCTTCTTGCATGTGCCCTCCCCGGGGAATGTCTGCAGAGCCCAAGACTGCCACGCCGTGGGCACAGCCCTCCCCCGACACCACCACCTCCTTCTTCGCCTTGCATCGGTACGATAAGGCACTTGCTTGACGGGAAAGAGAAACTCAGCTGCCAGCTGGGGTTCATTTGCACTTTCCCCCGCCTGGTCTGCGGTCTGGCTGTGCAGCTAGCCGCTCTGACGGGGAGGAGGGGCCCAAAGCCACTGCCTGCCGCCTGGGCAGGGGAGAGGGGCACGTGAGGCTCATGGCAGAGGCACAGCCAGCTTCTTGCATGTGCCCTCCCCGGGGAATGTCTGCAGAGCCCAAGACTGCCACGCCGTGGGCACAGCCCT 1818 BC3M_182BC3M_182 GGGAAACCTTGCAGACTGTGGGGTCCTGCACACCTAGACTTGCTCCTTTTAGAAGCCATGGAGGAGGTTGATAATGGGAATaacatttattgtagcttatctctatgccttgagcaatgtgctcacactggctggttccctcctcacatcagcctgatgagtcagatcctgttattacttctcactttacagatgaggaaGTAGCAGTAAATCCATTACCCTTTTCAAGCGGAGGTTGCAAGAGGTTGCAAGCGGAGGCAGAATAAACACTTGAAACAGtgagtcagatcctgttatcacGGGAAACCTTGCAGACTGTGGGGTCCTGCACACCTAGACTTGCTCCTTTTAGAAGCCATGGAGGAGGTTGATAATGGGAATaacatttattgtagcttatctctatgccttgagcaatgtgctcacactggctggttccctcctcacatcagcctgatgagtcagatcctgttattacttctcactttacagatgaggaaGTAGCAGTAAATCCATTACCCTTTTCAAGCGGAGGTTGCAAGAGGTTGCAAGCGGAGGCAGAATAAACACTTGAAACAGtgagtcagatcctgttatcac 1919 BC3M_199BC3M_199 GGAACCCTAGGATCTGATTTAGGACATTTGGAATCTTTAAGGCACATTCGATCTAGAAAGTGGAACTGAATTGCTTTGGGAAGGCAAGAGGATGATTTTACAGTATAGGGTTTGTGTGGAAATCCCCTTCAGCAGTAATCAACCCAGGTGTCCAACCTGTTTGTTAACCATTTCCAAATGACTCAGAGGACCTAGAGGGAGGGCTTGAACACACTCCAGCACTGTTTCTACAATTTAGCCTTTATTTGCATTGGAAACCACATTCCTGAATTCTTGAGGGGGCAGGCTCTGGCTTATTCTGGAACCCTAGGATCTGATTTAGGACATTTGGAATCTTTAAGGCACATTCGATCTGCATGACTGACTGCTACTGACTGACTGACTGACTGACTGACTGACTGACTGACTGACTGACTGACTGACTGACAGTGACTGACAGTGACTGACTGACAGAGAGGATGATTTTACAGTATAGGGTTTGTGTGGAAATCCCCTTCAGCAGTAATCAACCCAGGTGTCCAACCTGTTTGTTAACCATTTC 2020 BC3M_20BC3M_20 tcgTGTGGGCCTGGGCCGCTTGCTATTACTAATAAAACAGCAGCAACCACAGGACAGCTTCACTTCCGGAAACTCCCTCTGTCACGTGCTTTGCATGAATCCTCACACCGTCTCACTAGGGGCGCTCTCCCCGTTTCACCAGTGACTTGGTGACAACCAGCCTTGCTCACGAAGCGTCAGCCGTATCCTTTCTGTGTGCAGTGGGGTGTGGGTTGTGTGGAGCCGCGGTGTCTGTGGAATTCACAGGCTGGGGCCGGAATCCATGGCCCCCGTCGCCGCTGCCACCCCCCAGGTGCTGGGtcgTGTGGGCCTGGGCCGCTTGCTATTACTAATAAAACAGCAGCAACCACAGGACAGCTTCACTTCCGGAAACTCCCTCTGTCACGTGCTTTGCATGAATCCTCACACCGTCTCACTAGGGGCGCTCTCCCCGTTTCACCAGTGACTTGGTGACAACCAGCCTTGCTCACGAAGCGTCAGCCGTATCCTTTCTGTGTGCAGTGGGGTGTGGGTTGTGTGGAGCCGCGGTGTCTGTGGAATTCACAGGCTGGGGCCGGAATCCATGGCCCCCGTCGCCGCTGCCACCCCCCAGGTGCTGGG 2121 BC3M_203BC3M_203 AGGTGGTGCGCCGGCGGTTCGCAGCTGCTGTGCCCGCTGGCCTGGGCGCAGCCGGGGACAGCGACGCGTTTCCTGCCCGGGAAGGGCCCGAGCGCAGGGCCGGCTATAGCGGTCCCGCAGCTGCCTGCTTCGATTTTAGCACTGCTGCTCCCTAGAGGGAGCAACGCGGCCCTCTGTCCCTCGTAGGGCTTGAAATGTAAATTATTCATATCAGGGGAATGTGTGCTTCAAAAAGCAAGCTGGACAAGAACCGACGGGTAATCCTCGCCAAATTCTTCTATTTAACCCTCACCATTAAAAAGGTGGTGCGCCGGCGGTTCGCAGCTGCTGTGCCCGCTGGCCTGGGCGCAGCCGGGGACAGCGACGCGTTTCCTGCCCGGGAAGGGCCCGAGCGCAGGGCCGGCTATAGCGGTCCCGCAGCTGCCTGCTTCGATTTTAGCACTGCTGCTCCCTAGAGGGAGCAACGCGGCCCTCTGTCCCTCGTAGGGCTTGAAATGTAAATTATTCATATCAGGGGAATGTGTGCTTCAAAAAGCAAGCTGGACAAGAACCGACGGGTAATCCTCGCCAAATTCTTCTATTTAACCCTCACCATTAAAA 2222 BC3M_206BC3M_206 TGAATGTCATGAGTCAGGAAAAAAGAATTTGAGCGCAGTCTGGAAATGAAATTTCCTGCCTGTGGTTTGACTCACGTCTGTCTGTCTCGAAATCTACCCCAAGGACATTTATTCCACTGTGACAGGGCTCATCTCTGAGGAGCACCAGACTCCTGCGGTGGGGAGGGAAGATTATCCGCGCTGCAGAGACTAGCTGGCCTCCGGAAGCCGCCTCCTGACCCCGCGTCAAGCACCGCGGTGGATGGCGCAACCCAGCTTTGGGAATTAATTACCCAAGGCGCGTTTCCGTGCAGTCTGGCCTGAATGTCATGAGTCAGGAAAAAAGAATTTGAGCGCAGTCTGGAAATGAAATTTCCTGCCTGTGGTTTGACTCACGTCTGTCTGTCTCGAAATCTACCCCAAGGACATTTATTCCACTGTGACAGGGCTCATCTCTGAGGAGCACCAGACTCCTGCGGTGGGGAGGGAAGATTATCCGCGCTGCAGAGACTAGCTGGCCTCCGGAAGCCGCCTCCTGACCCCGCGTCAAGCACCGCGGTGGATGGCGCAACCCAGCTTTGGGAATTAATTACCCAAGGCGCGTTTCCGTGCAGTCTGGCC 2323 BC3M_212BC3M_212 AATGCCCTGCCCGATCCAGTTCCGGCCTCCCATCTCCCCTTCCCGCGTCTCCACGCTCTTTCCTTCCCCGGTTCTGCCGTGAATGCTCCCAAGTCCTAGAGCACCGGAACTCCCCGCGCGCCTTGGCTCCTGGGCCCCAGCTCCGTGCAGTCCTGGACTGGGGCTCCAGGTCCACCAGGGGGCGCCCGCTGCCCAAGCTGGGTATCGCTGCGGAGAAAAGGGGCCCAGAGTGATTGTTCCTCAGGGGAGGGAGGGGGAGGTCCCCAGAGGGAAGGGCCTGAGTTTCCTCTTGGGGGATGGAATGCCCTGCCCGATCCAGTTCCGGCCTCCCATCTCCCCTTCCCGCGTCTCCACGCTCTTTCCTTCCCCGGTTCTGCCGTGAATGCTCCCAAGTCCTAGAGCACCGGAACTCCCCGCGCGCCTTGGCTCCTGGGCCCCAGCTCCGTGCAGTCCTGGACTGGGGCTCCAGGTCCACCAGGGGGCGCCCGCTGCCCAAGCTGGGTATCGCTGCGGAGAAAAGGGGCCCAGAGTGATTGTTCCTCAGGGGAGGGAGGGGGAGGTCCCCAGAGGGAAGGGCCTGAGTTTCCTCTTGGGGGATGG 2424 BC3M_22BC3M_22 aaactaacagggaatggtgttgccacctgtagccccagctacttgagagactgaagcaggaaaatcccttgaagccggcaggcaaagattgcTCACTACAGTCTAGTCTAAAACCCCACTTCCAAAAAAATAAAAAACGCACACTCACACCATTACAACAGCCCAAAATAAATGTTCAAACAAAATGTTGTCTCACACCTCGCAACAAACACACAACTTTCTATCTGATTTTTAAACACCGTTGATGaaccccaccaacatagggcttcaaaaaatttgcttgaaactcaaaacggtttcaaactaacagggaatggtgttgccacctgtagccccagctacttgagagccccccagctacttgagagactgaagcaggaaaatcccttgaagccggcaggcaaagattgcTCACTACAGTCTAGTCTAAAACCCCACTTCCAAAAAAAAAAAAACGCTCACACTCACACCATTACAACAGCCCAAAAAACGCACACTCACACACCATTACAACAGCCCAAAAAACGCTCACACTCACACACCATTACAACACAGCCCAAAAAACGCTCACACTCACACACACACGCACACTCACACACACGCTCACACTCACACACACGCTCACACTCACACACACGCTCACACTCACACACACACGCACACTCACACACACACGCACACTCACACACAATGATACACACACAACACTTACCCACACACACAACACTTACCCACACACAACAAATTACACtccACACACACAACA 2525 BC3M_221BC3M_221 cccaaagtactgtgatgagctactacgcctggtcATTGTCCCTCTTTCTCATGACTCTCTGGACATCCCTGGGGTGGAGGGTGGGGCAGGCACACACATCCCTCAACTTCCCAGTGGTTCCACGATGACTAAGCCAGCCCTGTCCCTGAGGCTGGGAGTCTGGAGCTAGGATCCACCCCCATGGCCTCATATCCCAACCTTGAGCCTGGGTTTCTGGTCAGACTGGACGGGCTAGCTCGGTCTCCTTAACTCTCAGAGTTGCCTTGTCCAGGCCCAGCGGGTCCCACACAGCCAGGCACAcccaaagtactgtgatgagctactacgcctggtcATTGTCCCTGCGGCTGCGCCCGCGCACGGCTGCACGCACGCACGGCTGCACTGCGCACGCACGCACGCACGCACGCACGCGCGCACGCGCGCACGCGCACGCGCACGCCACACATCCCTCAACTTCCCAGTGGTTCCACGATGACTAAGCCAGCCAGCCCTGTCCCTGAGGCTGG 2626 BC3M_224BC3M_224 ttacccaagatcaTTCGGTGCGGCCTCAGCGCTGGCGCTGAGTCCTCTTCTGCCCCACCCCTCAGGCTCCCAGTCCTGGTCTAGATCCCTAGCCACGTAGCGTAGAAGGGGGCGTCGACGGGGGTTGGGCTAGAGTTGGAGCGGGGAGGAGATGAGCTAAAGCGGGGCTGGCTGTGCGAGAGGCAGTAGCAGCGGCGTGTGTCCTGGGGCGCCCCCCGGTGGCCTGTGCTGGGGTCGTCGGCCGGGATCCCCTGTTCGACGTACTCCGGGGCTGAATGGGAAACAGACAGTCCCAGACCCttacccaagatcaTTCGGTGCGGCCTCAGCGCTGGCGCTGAGTCCTCTTCTGCCCCACCCCTCAGGCTCCCAGTCCTGGTCTAGATCCCTAGCCACGTAGCGTAGAAGGGGGCGTCGACGGGGGTTGGGCTAGAGTTGGAGCGGGGAGGAGATGAGCTAAAGCGGGGCTGGCTGTGCGAGAGGCAGTAGCAGCGGCGTGTGTCCTGGGGCGCCCCCCGGTGGCCTGTGCTGGGGTCGTCGGCCGGGATCCCCTGTTCGACGTACTCCGGGGCTGAATGGGAAACAGACAGTCCCAGACCC 2727 BC3M_226BC3M_226 aaaaaagaCTAAGTGGAGATGAGGGTTCAGTGCACCCCCATCTCCTGGCCCTGCTGCCCATGAGCCAGACCCTGAGCTGACAGATTGGTGCCCATTTCCTCTTATGGATTGATACGGGGCTCTTACCTCTGGGTTTGCTCAGCCCAGCAGCAGGCAGTCAGAGCCAGAAGTTGTTTGCAAACCGAAACCGGTCTGCGGCTTGGGCCACCTACTTGTGAAACCAGCTGTCGCTGTTTTTCCTCCCTGTGAGAAAGTCCCCCAGTAAAGCTGCGCGGGGGAGGAGAAGGAGGGTGGAGGAGGaaaaaagaCTAAGTGGAGATGAGGGTTCAGTGCACCCCCCCATCTCTCCTGGCCCTGCTGCCTGCCGGGCGCGCGCGCGCGCGCGCGCGCGCGCTGGCCATGAGCCAGACCCTGAGCTGACAGATTGGTGCCCATTTCCTCTTATGGATTGATACGGGGCTCTTACCTCTGGGTTTGCTCAGCCCAGCAGCAGGCAGTCAGAGCCGCAGGCGGACGGTCTGGCGATGACAACCGG 2828 BC3M_230BC3M_230 AGGGGCAGGGCCAGGGCGGTTGGTGGACTGGGCCTGGCTGTACGTAGGTGCTCTGAGAAGCCCCCGGCGAGAGGGGCGGGGCCAGAGCAACAGTGGGCGGGGACAGGCTGTGCGTCGGAGCTCCGCGGGGCCTGCGGCGGGGTGGGTGGGGCCAGGGCGGCGGTGGGCGGGCCGTGCTGTGCGTAGGGGCGCTGAGAGGCCCGCAATGTGAGAGGGGCGGGGCCGGAACAGCGGTGGACGGGGTCTGTAGTTCAACTGTGCCGTGGCGTCTTCTTCGCGGCGAGATCTGAGTGCCTCGCAAGGGGCAGGGCCAGGGCGGTTGGTGGACTGGGCCTGGCTGTACGTAGGTGCTCTGAGAAGCCCCCGGCGAGAGGGGCGGGGCCAGAGCAACAGTGGGCGGGGACAGGCTGTGCGTCGGAGCTCCGCGGGGCCTGCGGCGGGGTGGGTGGGGCCAGGGCGGCGGTGGGCGGGCCGTGCTGTGCGTAGGGGCGCTGAGAGGCCCGCAATGTGAGAGGGGCGGGGCCGGAACAGCGGTGGACGGGGTCTGTAGTTCAACTGTGCCGTGGCGTCTTCTTCGCGGCGAGATCTGAGTGCCTCGCA 2929 BC3M_231BC3M_231 GGAGCGGTGCAAAGGTTCTTATCCTATTTATCGGAGCCAGTGTCCAGAAAAGGAAGCTTGTGGTTTGAGACATTCTGTAAATCCGGTTCCAAGAGCACGAGGTAGGACTCTGAATCCGATGTGGTTTCTGTTCTCGGTGATGGTGCAGAGCTGTGAGCCAGTGGTAGGGTGTCCTTTAAATTCCAGCTCAGTACACTAGTTAATGAACTTGGCTGACTGATAAAAATGTTTTCAGGTTTAGCTCATGAACATATCAACATAGACCTAAATATAATTCCAGTTTGTCATGAATGTTGATTTGGAGCGGTGCAAAGGTTCTTATCCTATTTATCGGAGCCAGTGTCCAGAAAAGTGATTGACTGATACTGATAAATCCGGTTCCAAGAGCACGAGGTAGGACTCTGAATCCGATGTGGTTTCTGTTCTCGGTGATGGTGTGCAGAGCTGTGAGCCAGTGTCCCTAGTTGATTGACATTCCTAGTAGTGATACATT 3030 BC3M_232BC3M_232 GGCCTCTTGGGGGCGCGGTGAGTAGGTGGCCTCTCCAAGCACCACTCCCGATGTGCGCATGAGCGCAGCCGCCCCTACGCAGCGCGTGCGCACGTGCACTCACCACGTCCATCCCAGACGTGCGGACCCGGGTGTCTGCAAGGTTCAGTCTCCACACCCCAGCGCCCGACCCTGCGCGGGGACATGCGCACAAGCGCGCGTCCTGACCACCCGGACGTGCTGGCCCACACGCACACGCGTGCGCATTACCCCCGCCCCATCCGCGCCTGCGCTCAACCCCGCCTACACCTGCTCCGTGGCGGCCTCTTGGGGGCGCGGTGAGTAGGTGGCCTCTCCAAGCACCACTCCCGATGTGCGCATGAGCGCAGCCGCCCCTACGCAGCGCGTGCGCACGTGCACTCACCACGTCCATCCCAGACGTGCGGACCCGGGTGTCTGCAAGGTTCAGTCTCCACACCCCAGCGCCCGACCCTGCGCGGGGACATGCGCACAAGCGCGCGTCCTGACCACCCGGACGTGCTGGCCCACACGCACACGCGTGCGCATTACCCCCGCCCCATCCGCGCCTGCGCTCAACCCCGCCTACACCTGCTCCGTGGC 3131 BC3M_235BC3M_235 GGTCCTGGACCGGGACTTAGGTCCACACCCACGTGCTGACGTCGGGCAGGCTCAGCGGCCTCCCGCGCCTGCGCAGCACCGCCCTTTTCGGGCGCGGCGCCCAGTCCCTACACCCCACAATCCCCCGCGCCGTTCCGGAGGCGCGCTAGGAGTGGGTGTGGCCTCTGCCTCCACATTGGAACAAGGTGAGGCAGAGGGTGTCGCGTGGTCTTCTGGGAAATGTAGTTCGTCTGCCAGGCCGGAACCACCGCTCAACCGGCTCGCGAGACTATGCACCCCACAATGCGCCGCGCGCGCAGCGGTCCTGGACCGGGACTTAGGTCCACACCCACGTGCTGACGTCGGGCAGGCTCAGCGGCCTCCCGCGCCTGCGCAGCACCGCCCTTTTCGGGCGCGGCGCCCAGTCCCTACACCCCACAATCCCCCGCGCCGTTCCGGAGGCGCGCTAGGAGTGGGTGTGGCCTCTGCCTCCACATTGGAACAAGGTGAGGCAGAGGGTGTCGCGTGGTCTTCTGGGAAATGTAGTTCGTCTGCCAGGCCGGAACCACCGCTCAACCGGCTCGCGAGACTATGCACCCCACAATGCGCCGCGCGCGCAGC 3232 BC3M_239BC3M_239 TCTAAGTCTGTGCATGCATTTGTGGTCAGAGTCTGGGGAGCTGGGGGCGTGAATGGGCTGCTTCAGACACTGCTTTGAGGGTGTGACCAGGACCTGAGGGTGTGGTTAAGGTGTAGGGGTGGGGCTAGGCCCTTGGGGGTGGGACCACAGTCCCAGAGGCGTGGCCAGGGCCTCGAAGGTATGGCCATAGTTTGAGGCGTGGCCGAGAAACTCCGTTCCCAAGGGAGGTGGTAACTCTGTGCTCAGAGCGCCCTCTTGTGGCTATCCTCAGGTCTCCACTTTTTATTCAATAGCTTTATTTCTAAGTCTGTGCATGCATTTGTGGTCAGAGTCTGGGGAGCTGGGGGCGTGAATGGGCTGCTTCAGACACTGCTTTGAGGGTGTGACCAGGACCTGAGGGTGTGGTTAAGGTGTAGGGGTGGGGCTAGGCCCTTGGGGGTGGGACCACAGTCCCAGAGGCGACCACAGTCCCAGAGAGGCGTCCCCGGCCAGAGTCGAAGGTCCCCGGCCAGGTAGGTAGTCCCGGCCAG 3333 BC3M_241BC3M_241 GTGGCCCGCTGTAGCCCCGCCCCGTGGCCCGCCCGCAGTAGGCCCGATTCAAATCTGGCCAATGATAGTGTGTAAACAAACCCAGGCCCCGCCTCCCGACGAATAATCCCCCGACCGGCGAGAGGCCCATTTAACCCGATGGGGTTTGGGGTTGGGACGGTGATGGAGTCGTGGCTCCGCCCCCAGACCTGGGCCAATAGGCGGCTGGGCTCCGCCCCCGGCACTTGCCGCGCTGAGGACCCGAGGCAGGGCTGGGCGCGCAGTTGCCTGATTTCGTGGCGGCTCGCAGTCTGGGCGCTCGTGGCCCGCTGTAGCCCCGCCCCGTGGCCCGCCCGCAGTAGGCCCGATTCAAATCTGGCCAATGATAGTGTGTAAACAAACCCAGGCCCCGCCTCCCGACGAATAATCCCCCGACCGGCGAGAGGCCCATTTAACCCGATGGGGTTTGGGGTTGGGACGGTGATGGAGTCGTGGCTCCGCCCCCAGACCTGGGCCAATAGGCGGCTGGGCTCCGCCCCCGGCACTTGCCGCGCTGAGGACCCGAGGCAGGGCTGGGCGCGCAGTTGCCTGATTTCGTGGCGGCTCGCAGTCTGGGCGCTC 3434 BC3M_245BC3M_245 cctccaaaagtgctgggattactggcgtgagccaccgcgcccggccTCAGGGCGCGCTTTTAAGGAGAGTTCCTGACATGACGGTGGGCTTTTCCTGCAGATGCACCTCTGGGTAGCGCCCTCTTTACAGCCTTGAAACCTGGTCAACTACATTACTCAGAAAGCTCTGCGTTGAATGAATGCCGTCAGAGCCAATGAGGGCTCGGAAAGAAGCATTTCCGTGTGTGCGCCTAATGTAGGGCCGAGACTTCCGGGGTCCTCTTGTAGCGGCCACGTTGATCTGCGATACGCGTGTTTGCCcctccaaaagtgctgggattactggcgtgagccaccgcgcccggccTCAGGGCGCGCTTTTAAGGAGAGTTCCTGACATGACGGTGGGCTTTTCCTGCAGATGCACCTCTGGGTAGCGCCCTCTTTACAGCCTTGAAACCTGGTCAACTACATTACTCAGAAAGCTCTGCGTTGAATGAATGCCGTCAGAGCCAATGAGGGCTCGGAAAGAAGCATTTCCGTGTGTGCGCCTAATGTAGGGCCGAGACTTCCGGGGTCCTCTTGTAGCGGCCACGTTGATCTGCGATACGCGTGTTTGCC 3535 BC3M_247BC3M_247 ACAGCCTTTTGGAAGTCGCGCTAACCTTGGCCTGAGACCTGCAAACTTGCCCAGGCTGGGGCGTGTGAACCGGCGAGCGCGCAGCGGAAACGGGGCGGGGCACCTGAGGCTGGGAATGCAGAGGAGCCTTCCGGGGGGCGGGGCGGGGCCTCCCGTGCAGACCAATGGTGGAGTAGATGCAGATGTCAAAACGCGCGCTCAAgtggcttccgccaggaatcccgacgcttagggaggcggagggaggatcgcttgagaccagcctgggcaaacaagcgagaccctcgtctgtttacttaaACAGCCTTTTGGAAGTCGCGCTAACCTTGGCCTGAGACCTGCAAACTTGCCCAGGCTGGGGCGTGTGAACCGGCGAGCGCGCAGCGGAAACGGGGCGGGGCACCTGAGGCTGGGAATGCAGAGGAGCCTTCCGGGGGGCGGGGCGGGGCCTCCCGTGCAGACCAATGGTGGAGTAGATGCAGATGTCAAAACGCGCGCTCAAgtggcttccgccaggaatcccgacgcttagggaggcggagggaggatcgcttgagaccagcctgggcaaacaagcgagaccctcgtctgtttacttaa 3636 BC3M_250BC3M_250 AGGCTCCAAGGAGTTCAGCATAGCACGAGCTTTTAATTTGCGTGCAGACAAGCACAAAAGGCACAACCGGATATACCTGTTATTTCCCAATGACCTGAGAGCCCGAAGTTTATGTTAAGCCTTGGGTTATGGCACAGCTTGCACGCAAGGCCCTGCAGCTCCTGCAGGCAATTGAGAGGTGGTGGTGTACAGGACAGAGGAACAACTCTGAAGTGACAGCACATAATTTAATTCCCCCTAAGCTTTCCAAGCATGCAGACTGTTCCTTTTTTGTCAGCGTATAACCTAAGTGATTTGTTCAGGCTCCAAGGAGTTCAGCATAGCACGAGCTTTTAATTTGCGTGCAGACTAGTGACTGCCTGACTGACTGACTGACTGACTGACTGACTGAGTCTGAGTCTGTTATTTCCCAATGACCTGAGAGCCCGAAGTTTATGTTAAGCCTTGGGTTATGGCAGCTTGCACGCAAGGCCCTGCAGCTAGTGCCTGCAGGCAATTAGAGTGCCTGACGGAC 3737 BC3M_252BC3M_252 aacacacacaacacacacacacacacTCTTTCAAGGTCTAGCAAAACCCATCAGGAGAGGTTGGGCCCTGGAGGTGCTGTGGCTTCCTGCTGCCCCGCTCCCTCCCGCCTCCTCCCTGCAGGGCTCCTCCTGGGGAGGCCTGTCCAGCTGCCAGGCCCCGCCCCGCCACAGCCCCCGCTGTCCTCCTCCCTCCCTCAGCCGTGCCAGCAGCGGCACAGAACTGGAATTGCCCTGGACGGCCACAGCTCTGCATATCCCCCAGGAGTGTGGACAAGAAAAAATAAACACAATTAGAGTTCAaacacacacaacacacacacacacacTCTTTCAAGGTCTAGCAAAACCCATCAGGAGAGGTTGGGCCCTGGAGGTGCTGTGGCTTCCTGCTGCCCCGCTCCCTCCCGCCTCCTCCCTGCAGGGCTCCTCCTGGGGAGGCCTGTCCAGCTGCCAGGCCCCGCCCCGCCACAGCCCCCGCTGTCCTCCTCCCTCCCTCAGCCGTGCCAGCAGCGGCACAGAACTGGAATTGCCCTGGACGGCCACAGCTCTGCATATCCCCCAGGAGTGTGGACAAGAAAAAATAAACACAATTAGAGTTCA 3838 BC3M_253BC3M_253 AAGAGAAGCCTGTCAGTCCAGCTCGGGCTACACACTGGGTGAGCCATGCACCACCCAGGAATTTCCAGGGCACGTGCCACGTAAGGGGCACACCCGACAGAGTCCAATGGGGTTCCCCACTGGGCCTCCCACTGAGTTGCTCAGCCTGGGCCGGAAAAGGGTGAGTCACCCTGGGGGTGGGGCTCTCCAGGGTAGAGGCCAAAGGAGTGACTACCATGACAATTCTCCGGAGGGCCTGAGGCGGCGGTGGACAGCCCCGGCAACAGTGGGCCCTCCCCGCAGAACTGTGGTTCCAATCCCAAGAGAAGCCTGTCAGTCCAGCTCGGGCTACACACTGGGTGAGCCATGCACCACCCAGGAATTTCCAGGGCACGTGCCACGTAAGGGGCACACCCGACAGAGTCCAATGGGGTTCCCCACTGGGCCTCCCACTGAGTTGCTCAGCCTGGGCCGGAAAAGGGTGAGTCACCCTGGGGGTGGGGCTCTCCAGGGTAGAGGCCAAAGGAGTGACTACCATGACAATTCTCCGGAGGGCCTGAGGCGGCGGTGGACAGCCCCGGCAACAGTGGGCCCTCCCCGCAGAACTGTGGTTCCAATCCC 3939 BC3M_255BC3M_255 gcgtgcttgtgtgtgggtgtgtggtggggtatgtgtgtgtCCGGGGCTGCCGATTCAACTGAAAAACAAAAGCGGCTCTGAGTCTGAAGCTAAGGTTTAACAAGTGACCAAGATGACTCATGCTGCTTGGCTGCAAAGGCCACAGGGCTGCCACCCCCAGCGGGGCGGGGCCTGGGTGGGAAGAGTCACAGGTACAGAGGCTCCTGTGACATTCACACTCTGCCCCTGCATCGGCTGCCTTTGGGGCCAAATACTTTTGTGAAAATTAAGACAGAAggccgggtgcggtggttcacgcgtgcgtgcttgtgtgtgggtgtgtggtggggtatgtgtgtgtCCGGGGCTGCCGATTCAACTGAAAAACAAAAGCGGCTCTGAGTCTGAAGCTAAGGTTTAACAAGTGACCAAGATGACTCATGCTGCTTGGCTGCAAAGGCCACAGGGCTGCCACCCCCAGCGGGGCGGGGCCTGGGTGGGAAGAGTCACAGGTACAGAGGCTCCTGTGACATTCACACTCTGCCCCTGCATCGGCTGCCTTTGGGGCCAAATACTTTTGTGAAAATTAAGACAGAAggccgggtgcggtggttcacgcgt 4040 BC3M_257BC3M_257 AAACCTGCGGGCCCCGGTCCAGGCGTGGTCCCGCTCGCACGAGGGAGCGGTCGCCCAGGGTGCCGGGAAGTCGGGGACCGGCCAGCCGCCGACCGGCCGCACCCCTCCCCGCCGAGCTCGCGCGCCCGCCTCGTCAGCACCTTTCCCGCAGCGCAGCCCCACAGTGGTCACGAGGCGGGCGCGGCCCGGTCAGCCCTGGCTAGACTAGGCATCGGCACCACCCACCTCGCCCCTCCCCGTCCCGCTGGTTTcccctccccctccttcccctccccctctctgttctccttcccctcccGATCCCCGGGCGGGCCGCAGCGCGCCACGTACCTGGCCCCGCCCCTGCGAGCCACGCAGGGAACCCCGGTGACGTCACCACCCTCCGGCGCTCTCATTCCCGAAACCTGCGGGCCCCGGTCCAGGCGTGGTCCCGCTCGCACGAGGGAGCGGTCGCCCAGGGTGCCGGGAAGTCGGGGACCGGCCAGCCGCCGACCGGCCGCACCCCTCCCCGCCGAGCTCGCGCGCCCGCCTCGTCAGCACCTTTCCCGCAGCGCAGCCCCACAGTGGTCACGAGGCGGGCGCGGCCCGGTCAGCCCTGGCTAGACTAGGCATCGGCACCACCCACCTCGCCCCTCCCCGTCCCGCTGGTTTcccctccccctccttcccctccccctctctgttctccttcccctcccGATCCCCGGGCGGGCCGCAGCGCGCCACGTACCTGGCCCCGCCCCTGCGAGCCACGCAGGGAACCCCGGTGACGTCACCACCCTCCGGCGCTCTCATTCCCG 4141 BC3M_260BC3M_260 cctgattagccagaactataggtgcacaccaccacgcctggctaatttttgtatttttttgtagagacagggtttcaacatactgcccaagctggtcttgaactcctgggctcaaatgatccgctctccttggcctgccaaagtgcagggattagaggcgtgagtcaccacgcccagcccattttccttttcctgtccataaattcctctctgaccacatggcagcatcagagtccctctggttcagggagttaccggattcatgaatcattctttgctcaattaaactctgttaactttcctgattagccagaactataggtgcacaccaccacccgcctggctaatttatttttgtatttttttgtagagacagggtttcaacatactgcccaagctggtcttgaactcctgggctcaaatgatccgctctccttggcctgccaaagtgcagggccccccccccccccccgcccattcccattcccattcccattcccattatttttgtatttttttgtagagacag 4242 BC3M_265BC3M_265 TGTTTCTAGCTAGTTATAATTGGCAGGCAACCAGAAGCCTCATCTGCCAAGGGCGGAAGTCATGTCTGGAACAGGTTTCCCTCTTAAGACTGTGGGCTAACCCAGCATCTTGCCACTTTGTGTGGGACTTCCTCATTCTTAGTACATAACTGTGTTTGACCCTCAGGGATGACTAGTGTTTCCTGGCCTCGGTACAGTTGACTTCTCCAGAAACTATCTGGCTCACTCTCAATTTCCTGGAGCCGTATATCCTAATTACAAAAATGGGAAAATCATACCTAGAGTCCCATAGAAAGAGAATGTTTCTAGCTAGTTATAATTGGCAGGCAACCAGAAGCCTCATCTGCCAAGGGCGGAAGTCATGTCTGGAACAGGTTTCCCTCTTAAGACTGTGGGCTAACCCAGCATCTTGCCACTTTGTGTGGGACTTCCTCATTCTTAGTACATATCTCACTTCGTTTGACCCTACTGTCCCTCGGTAACTAGTCGATCCCTCGGTAACTAGTCACACTCTCGGTA 4343 BC3M_266BC3M_266 AAGGAGAGATGATGGAGGCAACACTTACAGGTCCTGAAAACTGCTCAAATAGGCACAAAGGAAACGAAGGATGCCTGAAAATAATGATGATGCAAAAACTAAGCTAGGTAGGGCAGCAGGAAGAACCGGTTTGGTGGGAAGATGATGAATTTGGCTTGAGGTGCTTGGCAAGACATGCAAGTCTGCTGCACAGGCAATGCAGGTCAGCAATTTGAGAGAAAGGTAAACTTTCACAATCCTAATTTGAGAAGCAACAGCACGGAGATGATTATGGAGCCATGAGGGCTGAGACACTCAGCGAAGGAGAGATGATGGAGGCAACACTTACAGGTCCTGAAAACTGCTCAAGGAGGCACTGCATGCATGACTGACTGAAACGAAGGATGCCTGAAAATAATGATGATGCAAAAACTAAGCTAGGTAGGGCAGCAGGAAGAACCGGTTTGGTGGGAAGATGATGAATTTGGCTTGAGGTGAGTCCCTGACGGAGACTGACTGACTGACTGACGCAG 4444 BC3M_267BC3M_267 CCCATGCAACTGTGTGATGAAACAGCCCCACACATCCGGGAGCACAGCCAAGGCGTCCTGTGCCACCTCCCTGGTAGAATCTGGCTTTTCAACTTGCTCACCCATGAGAGGAAAGCGGTTTTAGACATCAGGCTTACCCCTCTCCTAAGCCACACCCTTTTCTCATTCCCAGCTGAGGAACTGAGCCTGAGACACTGAGGTTCCCAGCTGCCTCCATGATTCGCCAGCACCCAGCTTCAGTTTCACATCCTCCCAATCGTCATAGCCAGGACAGCATGCCTCACTGACCACGAGGGAATGCCCATGCAACTGTGTGATGAAACAGCCCCACACATCCGGGAGCACAGCCAAGGCGTCCTGTGCCACCTCCCTGGTAGAATCTGGCTTTTCAACTTGCTCACCCATGAGAGGAAAGCGGTTTTAGACATCAGGCTTACCCCTCTCCTAAGCCACACCCTTTTCTCATTCCCAGCTGAGGAACTGAGCCTGAGACACTGAGGTTCCCAGCTGCCTCCATGATTCGCCAGCACCCAGCTTCAGTTTCACATCCTCCCAATCGTCATAGCCAGGACAGCATGCCTCACTGACCACGAGGGAATG 4545 BC3M_268BC3M_268 AGGCGCCGCCGCTGAGGGCAGGCAGCCCGGCAGCCACTACACACGGACCCGTGACGTCGGGCGTAGCGCGGCGCACGTCACGGCCGCTCGCTCGTGCGCGCGCACCCCTCCGCCCGGCGGTAGCGGAAcccgccgcgggcgcgcgcccggcccAGGGGAGTGGGTCGGCGCCTGCGCAGAGGCCCGCCACGCCCACACACAGGCCACCGCCCCCACCGGCCGGACGGCGCGGGGATTCCCAGTCCTGGCTCCGccccggcctcggccccgcccccgcccctgccccGGGGCAGCCTGTGCTGTTCCGTGTGCGCGGCGCATACGCACCTGGGTTGTCTCGAGCCTGCGGTAGTGGCCAGATCCCAGACATCCGAGTAGATCCCGTGAAAAGGTCTCCCACAGGCGCCGCCGCTGAGGGCAGGCAGCCCGGCAGCCACTACACACGGACCCGTGACGTCGGGCGTAGCGCGGCGCACGTCACGGCCGCTCGCTCGTGCGCGCGCACCCCTCCGCCCGGCGGTAGCGGAAcccgccgcgggcgcgcgcccggcccAGGGGAGTGGGTCGGCGCCTGCGCAGAGGCCCGCCACGCCCACACACAGGCCACCGCCCCCACCGGCCGGACGGCGCGGGGATTCCCAGTCCTGGCTCCGccccggcctcggccccgcccccgcccctgccccGGGGCAGCCTGTGCTGTTCCGTGTGCGCGGCGCATACGCACCTGGGTTGTCTCGAGCCTGCGGTAGTGGCCAGATCCCAGACATCCGAGTAGATCCCGTGAAAAGGTCTCCCAC 4646 BC3M_269BC3M_269 ccagccactgtgagtactggctgctcctgactcacagctgcaccctttgagggagtgaggggcgttacccttggctgacaggatatgattagaaagcctggaaggcggctggtggtggcccatggccaatgagtcactgtgcgagtgtatactagcccagccctcttgcctccaggcaggaaaacctctgtgtgaagtgctctacttgctccatgctctggcgctctctgtacctacgcaggctgaagctgagcctagacatctcctgaaaccacacctttgactcgcttcttccccttcccagccactgtgagtactggctgctcctgactcacagctgcaccctttgagggagtgaggggcgttacccttggctgacaggatatgattagaaagcctggaaggcggctggtggtggcccatggccaatgagtcactgtgcgagtgtatactagcccagccctcttgcctccaggcaggaaaacctctgtgtgaagtgctctacttgctccatgctctggcgctctctgtacctacgcaggctgaagctgagcctagacatctcctgaaaccacacctttgactcgcttcttccccttc 4747 BC3M_27BC3M_27 AACTTGAAACAAATAAAGCAGGTTGAAGATCACAGTGTGTGCTGCTGGGCCTGTGGGGGCGCTGGGCAGCAGAAAGGCACACTCTGCCTGCAGCCTCGGGATCTGGTCGCCTGTGTGGGAGTAGGGAGGAGTCCTGACGTACCCTCTCTAAGACTGGCTGCTCTGCACCTCCCTCCAAGCCAGGCTGGCCAGTAAAGAAATCTAGCTGTGGACAGGAAACGAGTGGTTTTTGTGATCTGAGCAGAAAGGGCGTTTTAGGCCTGGAGCAGAGTGGAGGCCCTGAGCCACGGCCCAGGAAGTAACTTGAAACAAATAAAGCAGGTTGAAGATCACAGTGTGTGCTGCTGGGCCTGTGGGGGCGCTGGGCAGCAGAAAGGCACACTCTGCCTGCAGCCTCGGGATCTGGTCGCCTGTGTGGGAGTAGGGAGGAGTCCTGACGTACCCTCTCTAAGACTGGCTGCTCTGCACCTCCCTCCAAGCCAGGCTGGCCAGTAAAGAAATCTAGCTGTGGACAGGAAACGAGTGGTTTTTGTGATCTGAGCAGAAAGGGCGTTTTAGGCCTGGAGCAGAGTGGAGGCCCTGAGCCACGGCCCAGGAAGT 4848 BC3M_275BC3M_275 tttgtgtgcatgtgcgtgtgtgtCTGGGGGAAGGAGGTAGAGGAAGTGAGATGATGGTGACAGTGACAGCAGCTTGGAGAAGACAGGGGGGTGGGTCTACTTCTGAGGAAGTCCTTGGCTGAGGTAGGGCCGCAGAGAGGCAGGGTGAGGGTGGAGCCTGTGGTTTCAGAGAGGAGTTTTAATGGCTGCCAAGAATGTGCACATGAAGCCGAAAGGGAGTGCGGCCTGGAGCTGCAGTCAGCCCAGAGGGCGGGTGGAGCCTGTCCCAGGGCACTAGGATCGCAGAGAACGACAGGAGGGtttgtgtgcatgtgcgtgtgtgtCTGGGGGAAGGAGGTAGAGGAAGTGAGATGATGGTGACAGTGACAGCAGCTTGGAGAAGACAGGGGGGTGGGTCTACTTCTGAGGAAGTCCTTGGCTGAGGTAGGGCCGCAGAGAGGCAGGGTGAGGGTGGAGCCTGTGGTTTCAGAGAGGAGTTTTAATGGCTGCCAAGAATGTGCACATGAAGCCGAAAGGGAGTGCGGCCTGGAGCTGCAGTCAGCCCAGAGGGCGGGTGGAGCCTGTCCCAGGGCACTAGGATCGCAGAGAACGACAGGAGGG 4949 BC3M_277BC3M_277 AAGGTATTCGAATCGAATGAAATGGAATCGAATTGAAGGGGTATgaatggaatggaatggaatggaatcgaatcgaatttaatggaattgaataggaaagaatcaaatggaatggaatcaacccgagtggaatggaatggaatggaaaggaatggaatggaatggaatggaatggaatggaatggaatggaatggactccagtggaaaagactggaatggaacggtttcgaatgaaattgaatcgaatgaaatggaatggaatgcaatggaatcaaatggaatggacttgaatggaatggAAGGTATTCGAATCGAATGAAATGGAATCGAATTGAAGGGGTATgaatggaatggaatggaatggaatcgaatcgaatttaatggaattgaataggaaagaatcaaatggaatggaatcaacccgagtggaatggaatggaatggaaaggaatggaatggaatggaatggaatggaatggaatggaatggaatggactccagtggaaaagactggaatggaacggtttcgaatgaaattgaatcgaatgaaatggaatggaatgcaatggaatcaaatggaatggacttgaatggaatgg 5050 BC3M_283BC3M_283 CCCATCGTGTTGCGAAAGCATTCAGGTTGAACAGTGTTCAGGAAGAATACTCAAGCAAAAACTGGTTTGCAGCCAAATAcagagactgcaaaccccagtggcttcaggggccaggcagggaaagtaaacatgtgaaacaatagggagtagtcctgcctgtggggaacaggggagttctcatgccccagcctaaTAAATGAAAAAATTATTTATACACCACAGTGGAACCGGAGATGCACCTAAAGCCATTGGGATGTGGTTtctctttttcatctcactgctctgtctctgatgtggcttCCCATCGTGTTGCGAAAGCATTCAGGTTGAACAGTGTTCAGGAAGAATACTCAAGCAAAAACTGGTTTGCAGCCAAATAcagagactgcaaaccccagtggcttcaggggccaggcagggaaagtaaacatgtgaaacaatagggagtagtcctgcctgtggggaacaggggagttctcatgccccagcctaaTAAATGAAAAAATTATTTATACACCACAGTGGAACCGGAGATGCACCTAAAGCCATTGGGATGTGGTTtctctttttcatctcactgctctgtctctgatgtggctt 5151 BC3M_284BC3M_284 AGCTTGGATGCTGCACCCAGGACTGAAAGGGGGACCTGTGGGCGGCCTCTGCCTCTCCCCGCGCAGCGTCAGGACACAGGCCCACATTCCCTCCTGGCTTCTCCCTGAAGGGAGAGAGAATAATAGTTGGTTCAAATGTCAGGCCTGCTCCGTGCTGGTGGGGAGACTGGTTGAGCAGGTCCGCAGGAGGGACGGAGGGAGGAAATTATTAATAATTGCAAAGCAACCAGCCACACTACAGGCCTTGAGTTGTGTCTGCGTTTGTCTTTGGAGGTGTGGAGTTGGGGGTGCTGATCCTGGAGCTTGGATGCTGCACCCAGGACTGAAAGGGGGACCTGTGGGCGGCCTCTGCCTCTCCCCGCGCAGCGTCAGGACACAGGCCCACATTCCCTCCTGGCTTCTCCCTGAAGGGAGAGAGAATAATAGTTGGTTCAAATGTCAGGCCTGCTCCGTGCTGGTGGGGAGACTGGTTGAGCAGGTCCGCAGGAGGGACGGAGGGAGGAAATTATTAATAATTGCAAAGCAACCAGCCACACTACAGGCCTTGAGTTGTGTCTGCGTTTGTCTTTGGAGGTGTGGAGTTGGGGGTGCTGATCCTGG 5252 BC3M_290BC3M_290 CTGGGGGACTGTTGGGTCAGAAAGTGTTCAGGGAGCAGCTGTTgcgccctccctcggccccgccgctcggagacgccccgccccctgccttcaccggccgccccgccccctgccttcaccggccgcccggccacgccccacaccgccccggccccgccccagcgcccacgtgactagcataggcgcgcccctgctccgccccccgccgccgactccgcctccgGGACGGGAGCGAGCGGCGAGCGCGCGCACTCCCAGTTCTCGCTCGGCGACTCCCGCGCACGCGCGCGCCGTGCCACCCTGGGGGACTGTTGGGTCAGAAAGTGTTCAGGGAGCAGCTGTTgcgccctccctcggccccgccgctcggagacgccccgccccctgccttcaccggccgccccgccccctgccttcaccggccgcccggccacgccccacaccgccccggccccgccccagcgcccacgtgactagcataggcgcgcccctgctccgccccccgccgccgactccgcctccgGGACGGGAGCGAGCGGCGAGCGCGCGCACTCCCAGTTCTCGCTCGGCGACTCCCGCGCACGCGCGCGCCGTGCCACC 5353 BC3M_291BC3M_291 CTTTTTCCTTTAAAGAATACACTTCTTATGTAATTTGTTTTGCATTTCTGGAATGAGGAACTTTTCTGCTCATATTGTTGTTAAAATCTAGACAACACGCCCGTGTGATAGATCACCCTGAGCCTTGGAAGGAAATGATTCACCACAATACTGTAACTGAAAGTCGTCTAACACCAGGGCTGGAAGGCAGGCTATGAACCGCTGCATTACCTGCGTGCAGCAGCAATGGGAGGCAGCCAGAGGTTCCCTCGGCCTGCCTAGCTCACTTCAGCTTTGTTCCTGTTCTGTTTCCTCCGTCCGCTTTTTCCTTTAAAGAATACACTTCTTATGTAATTTGTTTTGCATTTCTGGAATGAGGAACTTTTCTGCTCATATTGTTGTTAAAATCTAGACAACACGCCCGTGTGATAGATCACCCTGAGCCTTGGAAGGAAATGATTCACCACAATACTGTAACTGAAAGTCGTCTAACACCAGGGCTGGAAGGCAGGCTATGAACCGCTGCATTACCTGCGTGCAGCAGCAATGGGAGGCAGCCAGAGGTTCCCTCGGCCTGCCTAGCTCACTTCAGCTTTGTTCCTGTTCTGTTTCCTCCGTCCG 5454 BC3M_292BC3M_292 CATCAAGGGACCCAGAGATCACAGAATAGCCAGCCCTTCATTTTCAGGTGAGGGCCTCTGTGGGAAGGTGCGTTCCAAGCCACACAGTTGGAAGTTGAGCGAACTGAACCAAGGCTGGGCTTTTGTGTTTGCTGTTTAAACAGTGTGTGGTTTTACTCACCTACCATAGTGCTCCTCCTACTGGTGGGCACCTTAGAGTAGGCTGAAAACAACGTGTCTCACTGTCCTTTTTTGTTTGTCTCTGAGTATTTTTCCTTATGATCTTGAAGTAACATTTACTTAATTTGCAATGAATGAAAACATCAAGGGACCCAGAGATCACAGAATAGCCAGCCCTTCATTTTCAGGTGAGGGCCTCTGTGGGAAGGTGCGTTCCAAGCCACACAGTTGGAAGTTGAGCGAACTGAACCAAGGCTGGGCTTTTGTGTTTGCTGTTTAAACAGTGTGTGTGGTTTTACTCACCTACCATAGTGCTCCTCCTGTATTTCGGTGCATTCCTTACTT 5555 BC3M_295BC3M_295 TAGCAACATGAGGCAACCTTGTCTGCGAAAGAGGAGGTGACCGCAGCTCCTGGGGATGTGCCAACTCTGGGATGTGACGGGAAGACAAAGGGCTTCTGTCCCCTTCTGCCTGGCGGTAAGAGAGCCGGCCGCCCGGCAGGCATGCCCCAGCCTGTGGTTCTGGAATGCGGGCAAGCCACCGTCCCCAGAGACCTGTGTTGGTGGCCAGGCCAGCCCACACACCCGATTGGCACATACTCTTGTGCTTGCCCAGGAGCGGAGTCAGACCATTCACGCTGCCTTCATGGGAGTTGAACAGTTTAGCAACATGAGGCAACCTTGTCTGCGAAAGAGGAGGTGACCGCAGCTCCTGGGGATGTGCCAACTCTGGGATGTGACGGGAAGACAAAGGGCTTCTGTCCCCTTCTGCCTGGCGGTAAGAGAGCCGGCCGCCCGGCAGGCATGCCCCAGCCTGTGGTTCTGGAATGCGGGCAAGCCACCGTCCCCAGAGACCTGTGTTGGTGGCCAGGCCAGCCCACACACCCGATTGGCACATACTCTTGTGCTTGCCCAGGAGCGGAGTCAGACCATTCACGCTGCCTTCATGGGAGTTGAACAGTT 5656 BC3M_307BC3M_307 TGCCCCCACATCGCCATCCTGCCTGTCCTTCTGGGCCTGCACGTTTGTTGTGTTTGGAAGGAGCCACCAAGGAGGAGGATGTCAATGTGCAAGTTCTCAGGGAAGCAGGCCCCGCAGCCTCCGTCAGTGTCTTCCGTCCGCAGGAAGAACCCAGGCCTGGGTGATTCATCGGGGCCTCAGGGCCGGGAGGCACTAAATCTTCTGCAGATGTGGTAAGATCCTATCACAGCAGAAAGGGAAGGGCTAGAGTCTCAGGGAAGGTTTTGCTAGGGAGACGGGCTTGGAGGGGGCTGAGGCTCATGCCCCCACATCGCCATCCTGCCTGTCCTTCTGGGCCTGCACGTTTGTTGTGTTTGGAAGGAGCCACCAAGGAGGAGGATGTCAATGTGCAAGTTCTCAGGGAAGCAGGCCCCGCAGCCTCCGTCAGTGTCTTCCGTCCGCAGGAAGAACCCAGGCCTGGGTGATTCATCGGGGCCTCAGGGCCGGGAGGCACTAAATCTTCTGCAGATGTGGTAAGATCCTATCACAGCAGAAAGGGAAGGGCTAGAGTCTCAGGGAAGGTTTTGCTAGGGAGACGGGCTTGGAGGGGGCTGAGGCTCA 5757 BC3M_321BC3M_321 caaaaaatactgagcacaaataaatattcaCTGTAAGGCAGGAGGCagccgggaccagactccagatcagatcgaagactggcggaaactgaggagaggcgcttaaagcccctctccataagacacgcccaccacctccatgacagtttaccattgccgtggcaacacccggaagttactgccccttgccgcggcaacaccggaagttcccgcccactttctagctaattctgaatgacccgcctcttaattagcatgtcttttaaagtggacctaaatacgcctacgaaactgcccctacaaaaaatactgagcacaaataaatattcaCTGTAAGGCAGGAGGCagccgggaccagactccagatcagatcgaagactggcggaaactgaggagaggcgcttaaagcccctctccataagacacgcccaccaccacctccatgacagccccccccattgccccgtgcccccccccctccccgcccctcccctcc 5858 BC3M_323BC3M_323 tggtctctatctcctgatcttgtgatacgccggccgcggcctcccaaagtgccgggattacaggcatgagccaccaggcacggcTGAACAGGGTTTTTTTAAAGTTCCTGAACTGGGTGGCTGCCCACAAGAGGGCACTCATGCCTCTGCGTGTGAGTGTGGAACCTGGTCGACTGCTGTGACACTCTTTGGGAAGACAGTCGGCATTTTCCACTTCCAGCAGCAGGTGGCAGTATGGGCAAGAGTATCATCACCCATCTTTCATCTACCACCCATGTGCTTACATCTGGGCTGCTGAGAtggtctctatctcctgatcttgtgatacgccggccgcggcctcccaaagtgccgggattacaggcatgagccaccaggcacggcTGAACAGGGTTTTTTTAAAGTTCCTGAACTGGGTGGCTGCCCACAAGAGGGCACTCATGCCTCTGCGTGTGAGTGTGGAACCTGGTCGACTGCTGTGACACTCTTTGGGAAGACAGTCGGCATTTTCCACTTCCAGCAGCAGGTGGCAGTATGGGCAAGAGTATCATCACCCATCTTTCATCTACCACCCATGTGCTTACATCTGGGCTGCTGAGA 5959 BC3M_326BC3M_326 CTCACCCGTAACACACACACACACATGCGCGCCCTCTCCTCTTGCATGACTCCTCTCTCAGGGCTGAGCTGTTTTTCTGAGGGTGCCACAATGAATCAGCTGCTTAGTCATCTCTGGAGTGCGGGAGCTAGCAGAACAGCAAAGAGGCATTACAAACCCAATAGCGGGTTTCACTTCCTTGAGCAGTATTTATTCTGCTCTCTACCTCATGCTGCCCAAACTGTTGGAGAGGCCCTATCCACTCTCCCTGCCTTTTCAGCCCTTATTCTCCCAAATGCAGCCACAGAGGAGGTAAGAGAGCTCACCCGTAACACACACACACACATGCGCGCCCTCTCCTCTTGCATGACTCCTCTCTCAGGGCTGAGCTGTTTTTCTGAGGGTGCCACAATGAATCAGCTGCTTAGTCATCTCTGGAGTGCGGGAGCTAGCAGAACAGCAAAGAGGCATTACAAACCCAATAGCGGGTTTCACTTCCTTGAGCAGTATTTATTCTGCTCTCTACCTCATGCTGCCCAAACTGTTGGAGAGGCCCTATCCACTCTCCCTGCCTTTTCAGCCCTTATTCTCCCAAATGCAGCCACAGAGGAGGTAAGAGAG 6060 BC3M_334BC3M_334 TTTTTGTGGTTGAGTTCTGAATTAAAAAGTGTCGTACTATATATTTGTTTGGTCATTTCTATGACTTCAGCACTCTCAAAGACTTGGACAGAAGCATAAATAAGAGGCAGTGTGAGCATTCTCCAAGTAATCATTCCAAGTTGGTGAGTTCATACTCCACCTAGACCTCATGGCCTCGCCACTCTCAGTCAAACTGGTTTTTGTGGTTGTCAAAGTCCAACATGGCAAATTTCCCACTGATACTAAGTGAGTTGAAAACTCAAGTTACAGTTGATTTTGCCCTAGGGAATTTTACCAAGATTTTTGTGGTTGAGTTCTGAATTAAAAAGTGTCGTACTATATATTTGTTTGGTCATTACTGCATTACTTACACTAGACTAGAGACTTGAGACTGACTGACTTACTTACTTACTCTATGACTTCAGCACTCTCAAAGACTTGGACAGAAGCATAAATAAGAGGCAGTGTGAGCATTCTCCAAGTAATCATTCCAAGTTGGTGAGTTCATACTCCACCTAGACCTCATTGGGCCTCGCCACTCTCTCAGTGTCAAACTAG 6161 BC3M_353BC3M_353 AGGGCATTTGCTGAGTTTTGCTTTAtgtgactggatgggactggccttggagacactaataagcacgtgagggtttttggacaatgcgaagagttggtgccaagccacaagtgggagatgttgaacttcctgcgaatctggtgtgttgtagcctgagtcggtttcaatatgaaaaataagagtgacagtgccttccttgtatgctaatctggcgaagtggctcatgctggCCATGTAACAACCTGGCAGCCTCCTACAGAAGCAAGTGGGGTGTGGCATTCCTGCTGTCTGCATCTTCTGAGGGCATTTGCTGAGTTTTGCTTTAtgtgactggatgggactggccttggagacactaataagcacgtgagggtttttggacaatgcgaagagttggtgccaagccacaagtgggagatgttgaacttcctgcgaatctggtgtgttgtagcctgagtcggtttcaatatgaaaaataagagtgacagtgccttccttgtatgctaatctggcgaagtggctcatgctggCCATGTAACAACCTGGCAGCCTCCTACAGAAGCAAGTGGGGTGTGGCATTCCTGCTGTCTGCATCTTCTG 6262 BC3M_360BC3M_360 TGAGTGAGCTGGCAAGGGAAGGAAGGTTGGTGAGAGTAAGTCGTAAGTATCTTTTTAGAAAAAGAAAAAAAAAAAAAtagcagaggatggtttcgatccatcgacctctgggttatgggcccagcacgcttccgctgcgccactctgctCTATACGGTAGTGATATTTGCAGTGAATTCTTTATGATGTTTTCCTCAAAACTTGGTGGGGATTCTGGTTTTTTGGTATGGTTAAACAAATCTGATTTCCACACCCCACCAAGGGCCACTAGTTCTATTTATGCTGCAAACATGAGGATGATGAGTGAGCTGGCAAGGGAAGGAAGGTTGGTGAGAGTAAGTCGTAAGTATCTTTTTAGAAAAAGAAAAAAAAAAAAAtagcagaggatggtttcgatccatcgacctctgggttatgggcccagcacgcttccgctgcgccactctgctCTATACGGTAGTGATATTTGCAGTGAATTCTTTATGATGTTTTCCTCAAAACTTGGTGGGGATTCTGGTTTTTTGGTATGGTTAAACAAATCTGATTTCCACACCCCACCAAGGGCCACTAGTTCTATTTATGCTGCAAACATGAGGATGA 6363 BC3M_362BC3M_362 agacactcgtgccctcaagaacttacaatttagGTTTGTTTGAAAGTTAACTGAGAATTCCAAGTCTAAGGGTGCTGGTGAGAGTGGCCTGGCAAAGCCAGCCCAGGAAGAGCTGCTGAGCAGGTTGTAAGGAACGAGGATGCCCCACCCCCCCTCCTTGGCAAAGCAGAGGATGGTATTCCAGACAGGTCACAAACAGCTCAAGCAAAGACGTGGTGACAGGGATGAGGAAGGCACGCTTGCGGATCGCTAGAATGGAGGTTGCCTGGGCACAGACACCTTGGAGGATCCGATTAGCAAagacactcgtgccctcaagaacttacaatttagGTTTGTTTGAAAGTTAACTGAGAATTCCAAGTCTAAGGGTGCTGGTGAGAGTGGCCTGGCAAAGCCAGCCCAGGAAGAGCTGCTGAGCAGGTTGTAAGGAACGAGGATGCCCCACCCCCCCTCCTTGGCAAAGCAGAGGATGGTATTCCAGACAGGTCACAAACAGCTCAAGCAAAGACGTGGTGACAGGGATGAGGAAGGCACGCTTGCGGATCGCTAGAATGGAGGTTGCCTGGGCACAGACACCTTGGAGGATCCGATTAGCAA 6464 BC3M_367BC3M_367 GCAGCACCCAGTTCAGAACTTTGCAGATTGCTGGAATTGCTGGGGAGCTGCCAGAGGGCTTTCAGAACTCAGCATGAGTGCAGTGAGTGCGGCAGCCAGCTCCCAAAGGGGATGGCCTCAGCATAGTTTCCAGCTCTCGGCTCTCTTAACAGGAaggcgttgcggtgtcgcagacacaatctgaagtgggggttcaaacagacacaacttcacatactggttttgcaacttgctggcaaatgagtgaattttactcaatcccaatttttctcatctgtaaaacagccataaaatcgacccGCAGCACCCAGTTCAGAACTTTGCAGATTGCTGGAATTGCTGGGGAGCTGCCAGAGGGCTTTCAGAACTCAGCATGAGTGCAGTGAGTGCGGCAGCCAGCTCCCAAAGGGGATGGCCTCAGCATAGTTTCCAGCTCTCGGCTCTCTTAACAGGAaggcgttgcggtgtcgcagacacaatctgaagtgggggttcaaacagacacaacttcacatactggttttgcaacttgctggcaaatgagtgaattttactcaatcccaatttttctcatctgtaaaacagccataaaatcgaccc 6565 BC3M_37BC3M_37 CCTTCCCTCGACCTCCCTTCTACCCCTTCGCCTTAGATGGAGATTTTCTCTTTCTGAACCCGGAACCGCTCCCTCCTCCCCGCCCGGCTATAGCTGGCAGGACAGGGATTGGATGCCACGGCCGGTGCGAGCCTTCGCTCTCCGCCGAGGGTAGTGACACAGGCGAGGACGGGCCCCGCAGGTCACATGAGGGCGGGGCCTGGCGGGCTCGTGACCTTCCCGTAGGCGGGGTCCCTCCCCTCCCAGCTCGGGCCGACAGCGTCGTCACCAGCTTTTATGGGGCACGTGGCGGCTGATGCACCTTCCCTCGACCTCCCTTCTACCCCTTCGCCTTAGATGGAGATTTTCTCTTTCTGAACCCGGAACCGCTCCCTCCTCCCCGCCCGGCTATAGCTGGCAGGACAGGGATTGGATGCCACGGCCGGTGCGAGCCTTCGCTCTCCGCCGAGGGTAGTGACACAGGCGAGGACGGGCCCCGCAGGTCACATGAGGGCGGGGCCTGGCGGGCTCGTGACCTTCCCGTAGGCGGGGTCCCTCCCCTCCCAGCTCGGGCCGACAGCGTCGTCACCAGCTTTTATGGGGCACGTGGCGGCTGATGCA 6666 BC3M_380BC3M_380 TTCACTGTCTGCTGGGGCAGGAGGCAGGGCAGGGGCAGGAGGGAGGCAACCCCAGCCTGTGCCCGGCTTCCCCGAGGCGTGTGCCTTGTGCGGCTGCTGAAGGAGTGACTCCTGAGGAAACCAGCTTTTCCAGGGAGGCAAGGGATGGGAGAAGAGGGTGGAGAAGGAAGTGGTCACACCACTTGCCTTCTGCCAATACTGTCCCTTTCTTACGCGTTAACCTTCCACTCTGAGCTATGACACTTTCAGTACTAGTGTGGTAAGTTCTACAGGAAACAGGAAACATGGTTTAACAGACATTTCACTGTCTGCTGGGGCAGGAGGCAGGGCAGGGGCAGGAGGGAGGCAACCCCAGCCTGTGCCCGGCTTCCCCGAGGCGTGTGCCTTGTGCGGCTGCTGAAGGAGTGACTCCTGAGGAAACCAGCTTTTCCAGGGAGGCAAGGGATGGGAGAAGAGGGTGGAGAAGGAAGTGGTCACACCACTTGCCTTCTGCCAATACTGTCCCTTTCTTACGCGTTAACCTTCCACTCTGAGCTATGACACTTTCAGTACTAGTGTGGTAAGTTCTACAGGAAACAGGAAACATGGTTTAACAGACAT 6767 BC3M_39BC3M_39 GCGGGGCTCACGAGTGACGAAGGGCAGAAGGGCGGGGCGGGACgagaggaggggaggggcgagcggaggggagggacgagaggaggggcgggacgagaggggggcgggacgagaggaggggcggggCTCACGAGTGACGCAGGGCAGAAGGGCGGGGCGCAAGAGAGACTGAGAGCACTACgcgggtgagaggaggggcggggcgtgggagtgacggggcgtgggagtgactgggcgcggagaggccggagccggaggcgaggcgaggcgTGAGAGTGAATGAGGGAGGAGGGCTGTGAGGCGGGGCTCACGAGTGACGAAGGGCAGAAGGGCGGGGCGGGACgagaggaggggaggggcgagcggaggggagggacgagaggaggggcgggacgagaggggggcgggacgagaggaggggcggggCTCACGAGTGACGCAGGGCAGAAGGGCGGGGCGCAAGAGAGACTGAGAGCACTACgcgggtgagaggaggggcggggcgtgggagtgacggggcgtgggagtgactgggcgcggagaggccggagccggaggcgaggcgaggcgTGAGAGTGAATGAGGGAGGAGGGCTGTGAG 6868 BC3M_393BC3M_393 agcaggcacttctgagcctgcagaggaaaggggacttcccggggcccccgagagcacagggatgcccggtttgggagccttggctaggcagctgcagctgcgcaggagggtggggcttccgccccgccgactcagaagcgggcggggcttcggcctcttcccggctcccgccagctccgtggagcctggagccccagccgcgcctccctggctgcagctgctgtattcacagcagccgcttcaggcgggccgccacggcgatcagtttttcatggcctccaggttctgatgaagcgtgggagcaggcacttctgagcctgcagaggaaaggggacttcccggggcccccgagagcacagggatgcccggtttgggagccttggctaggcagctgcagctgcgcaggagggtggggcttccgccccgccgactcagaagcgggcggggcttcggcctcttcccggctcccgccagctccgtggagcctggagccccagccgcgcctccctggctgcagctgctgtattcacagcagccgcttcaggcgggccgccacggcgatcagtttttcatggcctccaggttctgatgaagcgtggg 6969 BC3M_402BC3M_402 TAGCATCAGGGTACCTGCTCTGGGCTTGGCTCCTCTTGGCCTTGGCTCCTCTGGGGCATCATGGGAACAAGGAGGAGCAGACACCTCGCCAGCCGGGGTGTGTCTGAGCCCCAGGAATCCTGCCTCGCAGGGAGGATTCTCTGAGTAGAGGTGATGTGTTATCACAGTATCAGCATTTCTCAGCCTGACTCATGGAGGGGAGTGACTTTACTGTTAGGGCCTGAGGGGAAATAATGAGGAACTTCTAGACCAGTTTCATTTTTATTTTTAAACCCACAGTTCACCCTTGGGCCTTTTGCCTAGCATCAGGGTACCTGCTCTGGGCTTGGCTCCTCTTGGCCTTGGCTCCTCTGGTGCCGCACGGTCTTACTCAGGAGGAGCAGACACCTCGCCAGCCGGGGTGTGTCTGAGCCCCAGGAATCCTGCCTCGCAGGGAGGATTCTCTCTGAGTAGAGGTGATGTGTTCCTCAGCCGTGACTACGCATTTCGATCAGCCGTGACT 7070 BC3M_406BC3M_406 acaagctctgacacagcgtatactcagtaaacatggagtgaatcagttcattcaatgaatgaaCGAATGAATGAAACGCCAGAGCCCGCCACAGGGGTCCGCTGCCGCTCCACGCCCGGGCCTCTCACCGGCCAATCAACACTGTGACTCGTACGCCCTGCCCCCTGATGCCACGCCCATCACTCGCCCCTCTGGATTCCCTCCGGCTGCGTGGAAATCCCGGAGCACTGGATTTCCCAGAGGCGCCTCCGGTAGCAGTGCGCATGCTCCAGCGCCGGTAGCTGAGGCATCAATTTCCCGacaagctctgacacagcgtatactcagtaaacatggagtgaatcagttcattcaatgaatgaaCGAATGAATGAAACGCCAGAGCCCGCCACAGGGGTCCGCTGCCGCTCCACGCCCGGGCCTCTCACCGGCCAATCAACACTGTGACTCGTACGCCCTGCCCCCTGATGCCACGCCCATCACTCGCCCCTCTGGATTCCCTCCGGCTGCGTGGAAATCCCGGAGCACTGGATTTCCCAGAGGCGCCTCCGGTAGCAGTGCGCATGCTCCAGCGCCGGTAGCTGAGGCATCAATTTCCCG 7171 BC3M_410BC3M_410 GCGCCTGCGCCGTGGCGGCCGAACTGGCGCTCAACAGACGGGCGGGGCCGAGCGTGAGGCGGAGTCTGCGCACTGCTGCTTTGCAAATGAAGGTGGGCGGGGTGGAGCGAGCGTGAGAGACGTGCCCCCGACCAATAAGTGCAGAGATCGCTCGGGGGCGGGGACCTGCTGCCGCGCTCCAGGCTGCGGGTGGCCAGAAGGCAGCGGGGGCGGGCTCGGCGCGCGCGGCTCCGCCCACTCCGGGCCCCTGCTGGGCGGGAAGGCGGCGCCCCGGCCGAGGTGGCGGCGGCTCCTCAGGTAGCGCCTGCGCCGTGGCGGCCGAACTGGCGCTCAACAGACGGGCGGGGCCGAGCGTGAGGCGGAGTCTGCGCACTGCTGCTTTGCAAATGAAGGTGGGCGGGGTGGAGCGAGCGTGAGAGACGTGCCCCCGACCAATAAGTGCAGAGATCGCTCGGGGGCGGGGACCTGCTGCCGCGCTCCAGGCTGCGGGTGGCCAGAAGGCAGCGGGGGCGGGCTCGGCGCGCGCGGCTCCGCCCACTCCGGGCCCCTGCTGGGCGGGAAGGCGGCGCCCCGGCCGAGGTGGCGGCGGCTCCTCAGGTA 7272 BC3M_414BC3M_414 acagaagcaatctgacaaagtttttgtgatgtgtgcattcatctcgcagagtggaaccttaatttcgattgagcagttttgaaacactccttttgtagaatctgtaagtggacatttggagcgctttgaggcctaaggtgaaaaaggaaatatcttcccataaaaactagacagaagcattctcagaaacttgtttacgatgtgtgtactcaactaacagagttgaaactttcttttgatagagcaAAACAGTAAATTGAAGTTTAAAATAATTGTAACAATTGCATCTTATATATCAGGacagaagcaatctgacaaagtttttgtgatgtgtgtgcattcatctcgcagagtAGATTAGTAtagAATTAGacttagAAaccttaatttcgattgagcagtttttgaaacactccttttgtagaatctgtaagtggacatttggagcgctttgaggcctaaggtgaaaaaggaaatatcttcccataaaaaggaaaacttgATTACATTAGATacttgtttacgagATTAGATact 7373 BC3M_417BC3M_417 ACCTGAGGACGCTCAGCGCTGGAGCTCCGAGCAGGAGTTAAAGTACCCGCAGTGGAGCTGGCCCGCTGCCTTTCCAGACTGCAAGGCCCGCAGTGCACCGCGCGGGTGACGTGTAACAGGGGCGGGCGGGACCGCTGGAGAGCCTATGAGCACAGCGCAAGCACCCCGAGGGGCCGCCTTCCGGCCCTATTGGTGAATCCGATTAGGGGTGGGACCGAGCCGTGGTGATTGGCGGCCGGAGGGATGGCAAAGCTGCCACGCGCACGGGGGTGCAGGCTGCGGGACTGCGATCGCTGCCGGACCTGAGGACGCTCAGCGCTGGAGCTCCGAGCAGGAGTTAAAGTACCCGCAGTGGAGCTGGCCCGCTGCCTTTCCAGACTGCAAGGCCCGCAGTGCACCGCGCGGGTGACGTGTAACAGGGGCGGGCGGGACCGCTGGAGAGCCTATGAGCACAGCGCAAGCACCCCGAGGGGCCGCCTTCCGGCCCTATTGGTGAATCCGATTAGGGGTGGGACCGAGCCGTGGTGATTGGCGGCCGGAGGGATGGCAAAGCTGCCACGCGCACGGGGGTGCAGGCTGCGGGACTGCGATCGCTGCCGG 7474 BC3M_47BC3M_47 CTGCTGAGGCTGCTCCTGCAGCAGGGGCCATCTTGTTGCTCGGcctcctcttcctcctcctcgtcctccGCCGCCCAGTCGCTCGTTGTCCTCGTCCCCTTCCTCTTCCTCAGGCTCCGGCCCGCCCCGGAGACTGGGGCGGAGACGAGGGCGAGGATCCTCCCTCAGGAGGCGGGGCGGGCGGAGGGGAGGGGCGGGCGCGGGAGCAAAGCTCTGAGTCACCGGCCACCAACGCCCGGAGGGAGACCGGCGACGCTCTCCGCCGCGACCGAAAGTCTCACACGCCCTGAGCAGATGAACCTGCTGAGGCTGCTCCTGCAGCAGGGGCCATCTTGTTGCTCGGcctcctcttcctcctcctcgtcctccGCCGCCCAGTCGCTCGTTGTCCTCGTCCCCTTCCTCTTCCTCAGGCTCCGGCCCGCCCCGGAGACTGGGGCGGAGACGAGGGCGAGGATCCTCCCTCAGGAGGCGGGGCGGGCGGAGGGGAGGGGCGGGCGCGGGAGCAAAGCTCTGAGTCACCGGCCACCAACGCCCGGAGGGAGACCGGCGACGCTCTCCGCCGCGACCGAAAGTCTCACACGCCCTGAGCAGATGAAC 7575 BC3M_48BC3M_48 CTTCCTGGGAATGAGTGTCTCACAGCAGCCAGAGGTTGAGGCTTTGTCTTAAGGTGGAGGTAATAAAAACCTGTTTGTTTTCCCAGAGCAAGACTTGCCTCAGGGCCCCTGCTTGTTTGAGACAGGGCATTCAGTTTGCCTGAGTCAGGCTGGGGAGGTTCTTCTAGTCTTTGGAATCCTGTTGGGCAGGGTGGCTGCAGGGGATCTGGAAGAGGTAAGGCCTGTCCCAGGGGTGGGGGCTGAGGAGGTGGACATGAAGAACTCCCTGGATTAGGACAGTGGCCCAGGAGGGGAAAAGAGCTTCCTGGGAATGAGTGTCTCACAGCAGCCAGAGAGGTTGAGGCTTTGTCGGTGGCGGGCGGTGAGGGTGAGGGTGAGGGTCAGGGAGGCAGACTTGCCTCAGGGCCCCTGCTTGTTTGAGACAGGGCATTCAGTTTGCCTGAGTCAGGCAGGCTGGGGCGGAGGGAGGAGGTGAGGGTGAGGGAGTG 7676 BC3M_49BC3M_49 AAGTTGGGCAGGGCAGGGGCTAGTCTGCCTTCTTCTGGGCCCAACCCTCCCGGCCGGCACCACAGGCATTACAGGTACTCTGTGCACTCAGGCTGCGCAGACCCGCAGCTTCCTATCCTGTAGCTCACTTTCCTCTGAGGCGGGCTGGAGGCGGAGCTTGTCCGCTGGGGGTGGGGCTCAAAGCTGGGGCGGGGATACGGAGCAAAACTTAAGAGGAAGATGAGAAGCCTGGTTGGCCAGGAGGCTTATCTGTCAGGACAGGGGGCGGGGCCTGGGGGGCCGTACCTTTGCTTACCGCGAAAGTTGGGCAGGGCAGGGGCTAGTCTGCCTTCTTCTGGGCCCAACCCTCCCGGCCGGCACCACAGGCATTACAGGTACTCTGTGCACTCAGGCTGCGCAGACCCGCAGCTTCCTATCCTGTAGCTCACTTTCCTCTGAGGCGGGCTGGAGGCGGAGCTTGTCCGCTGGGGGTGGGGCTCAAAGCTGGGGCGGGGATACGGAGCAAAACTTAAGAGGAAGATGAGAAGCCTGGTTGGCCAGGAGGCTTATCTGTCAGGACAGGGGGCGGGGCCTGGGGGGCCGTACCTTTGCTTACCGCGA 7777 BC3M_52BC3M_52 TCATTtttattattagaatctactatttgccaggtactctgaggcaccaggaatatacaaataacaagtgcagaaactgaccagtctagttggacaggcagacgcataaatcagcaatcacaaggcagtgtgactaatagaggaggtatggcagcacagagagaagtgagcagttactcagcctgccttgtaggcagggcactcagagaagcttctcagaggtggtgacatgagagagagctgagccAGTGATACAGAAGCATGTAGCAAGAGTGGGGGTACACTGGCCTGGCAGTGTGATCATTtttattattagaatctactatttgccaggtactctgaggcaccaggaatatacaaataacaagtgcagaaactgaccagtctagttggacaggcagacgcataaatcagcaatcacaaggcagtgtgactaatagaggaggtatggcagcacagagagaagtgagcagttactcagcctgccttgtaggcagggcactcagagaagcttctcagaggtggtgacatgagagagagctgagccAGTGATACAGAAGCATGTAGCAAGAGTGGGGGTACACTGGCCTGGCAGTGTGA 7878 BC3M_55BC3M_55 ACCCACGTCCCTCAATCCCCACGAGCAGCTGACTGGGACCTGAAAGTGCCACCAGACGCCCTCACAAGTCTGCTTTCTTTGCTGGGAAACAGCAGCCGCGCCGCAGCCTCCGCCCGCTCTGGGGAAGCCCCACCTTGGCAACAAGCCGCTGATTGGCTGGCTCGGGGGCGGCGCGGGCCAATCCAAGCCCGCCCTGACGCCGCGGCGTTTGGCCGAGAACTATTaagaaaaaaaaaaaaagaaaaaaagaaaGGTGGGGCCGGGCGCTAGGTGGCTTCCCAACGGAGTTGCTCCCCCGGCACCCACGTCCCTCAATCCCCACGAGCAGCTGACTGGGACCTGAAAGTGCCACCAGACGCCCTCACAAGTCTGCTTTCTTTGCTGGGCGCTTTCTTTGCTGGGAAACAGCAGCCGCGCCGCAGCCTCCGCCCGCTCTGGGGAAGCCCCACCTTGGCAACAAGCCGCTGATTGGGCCCCCAGCCGCTGATTGGCGCGCGGCCGCGCGGGCGGCCGCGCGGCCGCGCGGGCGGGCGCGGGCCCAGGCGGACGCAGACGCCCTCACAAGG 7979 BC3M_58BC3M_58 CAAGAGTGGAAAACCTGCCCTCACAGGCCCAGCTGGCCAGAGGGCTTGTCTCTTTCAGTCGCCCTCCCCCAGAGGGAGCAGGAGCAGACAATGGCCACCATGACTCACCAGTGAGCCATCTTCCCCTCCCCACCCCTCCAGCCTGGCCCATGACAGCTTAGCTTGTCCTCCAAGGGAGCTGCAGCCCAGCCTCCCAGGGCCGCCAGCTTCCTCTCTCTTCACCCAACCTGGCTCCCCCCCTGCTTGTGCAACACCACATCAGAGGGTTGTGAAGTGGAGAGGGAGGAGTTTGACAGCTGCCAAGAGTGGAAAACCTGCCCTCACAGGCCCAGCTGGCCAGAGGGCTTGTCTCTTTCAGTCGCCCTCCCCCAGAGGGAGCAGGAGCAGACAATGGCCACCATGACTCACCAGTGAGCCATCTTCCCCTCCCCACCCCTCCAGCCTGGCCCATGACAGCTTAGCTTGTCCTCCAAGGGAGCTGCAGCCCAGCCTCCCAGGGCCGCCAGCTTCCTCTCTCTTCACCCAACCTGGCTCCCCCCCTGCTTGTGCAACACCACATCAGAGGGTTGTGAAGTGGAGAGGGAGGAGTTTGACAGCTGC 8080 BC3M_61BC3M_61 GGGGCTAGCAGGAGAGCCAGAATAAGCAGATTTGGCTTCTAATCTGACTCACCCAACTGGTTCAGAATGCAGCCAAACCGGGGAAATTTGGGTGAGCTCCTCCTCTTCCCCTCCCTCACTTGCTCTCGCAGTTGTCCTCTAGCACCTCTCTCTATCCCTCCCTCCCCGTCCCCCCGCCCCACTCCCCCAGCTCTGGGAGCGCATGCGGGGGCGGGGTCCTAGGAGGATGTGAGCCCATGGACACGCGGGCGGGATGTTTTTCTCCTCGTCATTGTTCTCCCATGCCCATTGTGTGCGCTGGGGGCTAGCAGGAGAGCCAGAATAAGCAGATTTGGCTTCTAATCTGACTCACCCAACTGGTTCAGAATGCAGCCAAACCGGGGAAATTTGGGTGAGCTCCTCCTCTTCCCCTCCCTCACTTGCTCTCGCAGTTGTCCTCTAGCACCTCTCTCTATCCCTCCCTCCCCGTCCCCCCGCCCCACTCCCCCAGCTCTGGGAGCGCATGCGGGGGCGGGGTCCTAGGAGGATGTGAGCCCATGGACACGCGGGCGGGATGTTTTTCTCCTCGTCATTGTTCTCCCATGCCCATTGTGTGCGCTG 8181 BC3M_66BC3M_66 AGCCACTCACTGCAGAAGGGGCTGGTGAGAGACATGCTCGTCATCTCCGAGGGCCTGGCTCTGCGCCAGCCACACACTTATCTGCCTGCTCCATCTCCGGAGTTTCTGTCTCTGAGCTTTGGCAATGGAAGTTGTGCTTCCACTATTAGCCAACACCGAGCTGGACTCTGGTAACTGACACAGCCGTGCATCTAGTGTAGCTCGGGTTGAGATGACTTGGCttttttttttttttttttttttttgagacggagtctcgctccgtcacccaggctggagtgcagtggcgggatctcggctAGCCACTCACTGCAGAAGGGGCTGGTGAGAGACATGCTCGTCATCTCCGAGGGCCTGGCTCTGCGCCAGCCACACACTTATCTGCCTGCTCCATCTCCGGAGTTTCTGTCTCTCTGAGCTTTGGCAATGTGGAAGTTGTGCTTCCACTATTAGTCAACACCGAGGGGCTGCCgggtcggggttttccggtccgccgttt 8282 BC3M_67BC3M_67 CTATTGTTTGGGCTTTGCTTTTGACTTCACATCCTGAAATAAATGGTCGTTGCAGACCAGGCACGTGAGCAGGAAGTGGGCAGGGCTTAAAACACAGAGAAGTCATAACCTCTGCGGTTTGGTTCATGTTGTAATATGAAAACCAGGAAGCTTATCTTGCAGGAGGCTGATGTGTAAAAGTTCAGAATGGAGTGGAGCCCTCCCTCTTGGCACCCTATGCGCGGAGTCACCCTTTGTCTGCCACAGGAAGCACCCAGGTCCTGGCAGCTAGAAAACTGTAACAACTTGGAAACATTTCCCCTATTGTTTGGGCTTTGCTTTTGACTTCACATCCTGAAATAAATGGTCGTTGCATGCATGCCGCACTGACGCACTGACTGACTGACGCACTGGCACGTGAGCAGGAAGTGGGCAGGGCTTAAAACACAGAGAAGTCATAACCTCTGCGGTTTGGTTCATGTTGTAATATGAAAACCAGGATCAGCTTATCTTGCAGGACCTCCCTCGGAGGCAGGATCCCTCATGGAG 8383 BC3M_69BC3M_69 ACCAGATAAGCACCCACTGCACTCAAGGCCTCTCTGATCAAGTCCCACGACCAGGCTCTCCAAGTCCTGACACCGCGGAGACCCCCAAAAGAGGAGGATGGAGCAGAGGGCAAGGCTCTCAGCTCCGCGGACTCACACCCAGCTGCAGAGGCAGGGGGAGCCGCCCTTTCTGTGGCCGGGGAAATTGAGGTCACTTCCTGTCTCGCTTCCCTCTCTCTGTGCTGGCTGCATCCTTCAGAAGGGGGGTGGGTGGCTGCAGGGCAGCGCCAGGCAAGGCTGCGGAGAAGCCGGTGCTCCCTGACCAGATAAGCACCCACTGCACTCAAGGCCTCTCTGATCAAGTCCCACGACCAGGCTCTCCAAGTCCTGACACCGCGGAGACCCCCAAAAGAGGAGGATGGAGCAGAGGGCAAGGCTCTCAGCTCCGCGGACTCACACCCAGCTGCAGAGGCAGGGGGAGCCGCCCTTTCTGTGGCCGGGGAAATTGAGGTCACTTCCTGTCTCGCTTCCCTCTCTCTGTGCTGGCTGCATCCTTCAGAAGGGGGGTGGGTGGCTGCAGGGCAGCGCCAGGCAAGGCTGCGGAGAAGCCGGTGCTCCCTG 8484 BC3M_7BC3M_7 tctgcctgcAAGCTCCAGGTCTTGCAAAGCCTGAGAACTGGTATGGCAAGGGCAGAGTGAGAGCAGGGAAGAAATGGAGTCAAGCTGAACAGAGACTTCCGCATCATGAGGGTGGTGGGAGGTGGGGAGGAAGTTCTGAAACCACACACATTTATCATTGTTATTGAGTCAGACAGACAGTGCCTGCTGACATGTAACTGTCAGGCGTTGCCAAGGCACAGTAGGGTTGCAAAGGCTGAGTGTCCACTTCCTCCCAATGAGTCAGGAAGAACCCTTGGATAATTCTCCAAAATAGTTTCAtctgcctgcAAGCTCCAGGTCTTGCAAAGCCTGAGAACTGGTATGGCAAGGGCAGAGTGAGAGCAGGGAAGAAATGGAGTCAAGCTGAACAGAGACTTCCGCATCATGAGGGTGGTGGGAGGTGGGGAGGAAGTTCTGAAACCACACACATTTATCATTGTTATTGAGTCAGACAGACAGTGCCTGCTGACATGTAACTGTCAGGCGTTGCCAAGGCACAGTAGGGTTGCAAAGGCTGAGTGTCCACTTCCTCCCAATGAGTCAGGAAGAACCCTTGGATAATTCTCCAAAATAGTTTCA 8585 BC3M_70BC3M_70 CAGGCACAGTTCTAAGTAATTGaagtctactgaggtaggtatcaatattattcccattctctagatgacgaaactggtgcatgtagcagttaggaaatatgcccaaaggtacactgctcgtaagcggcagagcaggaatatgaatccagccagtctggttccggagtctgcattcttgatcactgcactataccaactttcactttgttgtgagcacctgcctatctcagacatcagtcagtaagtcccttgaaggcaagaactgtcctttgatccttattcctgagccctaggcattacCAGGCACAGTTCTAAGTAATTGaagtctactgaggtaggtatcaatattattcccattctctagatgacgaaactggtgcatgtagcagttaggaaatatgcccaaaggtacactgctcgtaagcggcagagcaggaatatgaatccagccagtctggttccggagtctgcattcttgatcactgcactataccaactttcactttgttgtgagcacctgcctatctcagacatcagtcagtaagtcccttgaaggcaagaactgtcctttgatccttattcctgagccctaggcattac 8686 BC3M_71BC3M_71 GGTGTATGTACTGATGTACTGAATGGGCGACCATTTCCTTCCAGAAAGGCTGGAGTCAGCCCTCCGGGATGGCTGTCTCTGTGTGACTGTCTGCACACCACTGCCCTCCACTGGACACTGAATCAAAGCTGCCCCAGACCCACGTTGGTGTCAGGACTCCCTCAGGTTTCCTTCCCTCCCTATCTGGGACACAACCTCCTGGGCAAACCGGTTTCTTGGTTGGCTTCTCTTACCAGGTTTGTTTTACCCTGTCTGCCTTGCATTGAATCCATGAAACTTGGGAAGTACAAGAGGAACAATGGTGTATGTACTGATGTACTGAATGGGCGACCATTTCCTTCCAGAAAGGCTGGACTGACTGCCTGACTGACTGTCTGTCTGTGTGACTGTCTGCACACCACTGCCCTCCACTGGACACTGAATCAAAGCTGCCCCAGACCCACGTTCCCGTGTCAGGACTCCCTCAGGTTTCCTTCCCTCCCTCCCTCGATGCCGGACTT 8787 BC3M_74BC3M_74 AGGGCATTTCTTGAGCCTGGCAGGAGGCCAGGGGTTTTACAGGGCAGGAAGGAACCTGGAGGAACCGAGGAGCCACGTTGTTGGTTGGAAAGAAGGGTGGCCAGGTGGGGAGGAGTCTGGCAAAGGGTCCCAGACAGCAGGAAGGGCACCTGTGAAGCCGCCCTGCCGAGTGTGTGGTAGAGGCGGGGTGAAATGAGCACTGCTCATAAAAGTGACTGTTGTGAttttttatgagatggagtctcgctctgtcgcccaggctggagtgcaggggagcaacctcggctcactgcaacctccAGGGCATTTCTTGAGCCTGGCAGGAGGCCAGGGGTTTTACAGGGCAGGAAGGAACCTGGAGGAACCGAGGAGCCACGTTGTTGGTTGGAAAGAAGGGTGGCCAGGTGGGGAGGAGTCTGGCAAAGGGTCCCAGACAGCAGGAAGGGCACCTGTGAAGCCGCCCTGCCGAGTGTGTGGTAGAGGCGGGGTGAAATGAGCACTGCTCATAAAAGTGACTGTTGTGAttttttatgagatggagtctcgctctgtcgcccaggctggagtgcaggggagcaacctcggctcactgcaacctcc 8888 BC3M_76BC3M_76 gatcgcggtgaatatcctgcaggtcatgctacgcccacttgctttgaggttgggaaagcagcctcttgaccttcagccacttgagcccagcaggtggagctatttgccctcactggagcctgctttctcgctaaggggaaatctgctaaccattacacagatagcaggtaagtatttggagttgctcatgattttggaatgttgtggaaacaGGTTTCCTCACTTTCAATAATGAACCTTATGATTTATTATATGCAATACAAATACCTGCTGCTGTGGCCATGATAAAGGTTCCAGGCCgatcgcggtgaatatcctgcaggtcatgctacgcccacttgctttgaggttgggaaagcagcctcttgaccttcagccacttgagcccagcaggtggagctatttgccctcactggagcctgctttctcgctaaggggaaatctgctaaccattacacagatagcaggtaagtatttggagttgctcatgattttggaatgttgtggaaacaGGTTTCCTCACTTTCAATAATGAACCTTATGATTTATTATATGCAATACAAATACCTGCTGCTGTGGCCATGATAAAGGTTCCAGGCC 8989 BC3M_80BC3M_80 CTGAAGGAGTTAAAACAGTCCCCACCCCCACTCCCGATTTCTAGAACCCCACGATAAATTGGGTAAATATGTATTCCATTCATTGGTGCATCTGACCTTGGTCTGTGACAGAGGAAAGGCGTGTCTTCTCATACTGTTCCCTATGAACAAAAGGCAAGCAAATGAGGGTGACTCAGGACTTCTCATGGCCTACACACAACTGAACATTTTTCTGAATGATTCCACGTATACACTTAGGAATCAGGAAGAGAAACATTTTACTCTTCACTAACCAAATAAAACCATCTATAAATCATATGCCTGAAGGAGTTAAAACAGTCCCCACCCCCACTCCCGATTTCTAGAACACCCCACGATAAATTGGGTAAATATGTATTCCATTCATTGGTGCATCTGACCTTGGTCTGTGACAGAGAGGAAAGGCGTGTCTTCTCATACTGTTCCCTATGAACAAAAGGCAAGTCCCCACCCCCACTCCCGATTTCTAGAACCCCACGATACCACTAAACACTACATACATTAA 9090 BC3M_82BC3M_82 AAACAAACACTGGGTTTAGGCATTCTGCTCTCCCAGCACCGCATGGCTGAGGGTGGAAAAAAATAACATCTGAAACAGGCCGGGCTTTTGATGATACCTCCTTATGACAGACACATCGAAAACCACCGACGGTGAGTCACCCACATTCTGTGCATACCCTCTCCGAGGAGCAGGAAGTGTGGCTATTTTAAACCCTGAGGCAATGAGAAGTTTTCAGATGCGTCCTAAGGCGCTCCGGCCAGCGCCCTGCATGCACACGAGGGCCTTCCTCAGTGTGGCCCCAGCACATCTGTAGACCTGAAACAAACACTGGGTTTAGGCATTCTGCTCTCCCAGCACCGCATGGCTGAGGGTGGAAAAAAATAACATCTGAAACAGGCCGGGCTTTTGATGATACCTCCTTATGACAGACACATCGAAAACCACCGACGGTGAGTCACCCACATTCTGTGCATACCCTCTCCGAGGAGCAGGAAGTGTGGCTATTTTAAACCCTGAGGCAATGAGAAGTTTTCAGATGCGTCCTAAGGCGCTCCGGCCAGCGCCCTGCATGCACACGAGGGCCTTCCTCAGTGTGGCCCCAGCACATCTGTAGACCTG 9191 BC3M_84BC3M_84 ATTTTGACTCACAATGTTGAAACCAGATTATAAATGAGTCATCAGTGAATCGACCACAAAGAGCCTTTGCGGAGGTGATTTACAGGAGAGCTCTGATGTCTGCTGTCCCCTGCACACGCTTCACAGAGATGCTGTCAGACGCAGAGCTGGTCTGGGGCATCTGTTGCCGCGTCAGCTCAAAAGGATGCTGTGTTGTCACCAATGGGATTCCCCAGCCCAGGCGGTGTTGCGGTCCCACCCACACAAGGAAGGCGGCCATCACTGAATAATGCTTGTGGTTACATCATCATTGCTGGTTTCATTTTGACTCACAATGTTGAAACCAGATTATAAATGAGTCATCAGTGAATCGACCACAAAGAGCCTTTGCGGAGGTGATTTACAGGAGAGCTCTGATGTCTGCTGTCCCCTGCACACGCTTCACAGAGATGCTGTCAGACGCAGAGCTGGTCTGGGGCATCTGTTGCCGCGTCAGCTCAAAAGGATGCTGTGTTGTCACCAATGGGATTCCCCAGCCCAGGCGGTGTTGCGGTCCCACCCACACAAGGAAGGCGGCCATCACTGAATAATGCTTGTGGTTACATCATCATTGCTGGTTTC 9292 BC3M_86BC3M_86 gggatttcctctgctttttcaactaaaatcagctctttcccaaaagcctgtgctgcctgttgtgttttctctgtgtgtgttttgaaatggccttgcgcaccctccagactctctgcctccggggcaagtctgccttttccctgtttccactttgcatactgcataacttccttctctgccccacatggacacacgccctcttattcatgcatccgcggctcttgctgcattcgctcggcagcaaagccacaggctcccttgtggatgtcccttgtggagatttgtacttttttaccccacgggatttcctctgctttttcaactaaaatcagctctttcccaaaagcctgtgctgcctgttgtgttttctctgtgtgtgttttgaaatggccttgcgcaccctccagactctctgcctccggggcaagtctgccttttccctgtttccactttgcatactgcataacttccttctctgccccacatggacacacgccctcttattcatgcatccgcggctcttgctgcattcgctcggcagcaaagccacaggctcccttgtggatgtcccttgtggagatttgtacttttttaccccac 9393 BC3M_87BC3M_87 GAGCACAGAAGACGACCCAGCTGAGGCTGGCAGGAGAGACGAAGGCCCCGCCAGATCCCGGAAGCCGCGCCCTTCTGTCCGGCTGCACGCCCGATTGGACGGTTCCTACGTCAGCGCCCCTGATTGGATAGGGCTCCAGGCCCCGCCCCCTCAGTCCCTGAGTGACGGAGGATGTGATCGGACGCTGGGCTGAGGGCGACAAAGTGACAGGTTCTTGGCTGCAGCCTTTTCATGCAGGGCTTCCTGCTTGCGCTGGGCCTGGCCCAGCCCAGGGGGCATTTTCATTTAACCTTTTGTATAGAGCACAGAAGACGACCCAGCTGAGGCTGGCAGGAGAGACGAAGGCCCCGCCAGATCCCGGAAGCCGCGCCCTTCTGTCCGGCTGCACGCCCGATTGGACGGTTCCTACGTCAGCGCCCCTGATTGGATAGGGCTCCAGGCCCCGCCCCCTCAGTCCCTGAGTGACGGAGGATGTGATCGGACGCTGGGCTGAGGGCGACAAAGTGACAGGTTCTTGGCTGCAGCCTTTTCATGCAGGGCTTCCTGCTTGCGCTGGGCCTGGCCCAGCCCAGGGGGCATTTTCATTTAACCTTTTGTATA 9494 BC3M_9BC3M_9 AGTTTGGATGTTCTCTGTGGAGAGGGAATAAAACCATTGCCTGTTCCCTGGAGGGAATTGGATGCTGAAGCTTCTACCTTTAACAGGGGCATGGGTGCAGTTCCAGCCTCTGCCAGCAGGCTGGGCCCTGTGCCCACTTTTGAAAGACCTTCAGGGCTGTGGGGCATGAGATGAGAGAGGGAGGGAAGATAATCTGGCTCACtgccgggcactttatgtgacttacctccttaattcccccgggcacagccctgagaggaggttggcagtgtctgcattttacagatggggaacttgaggAGTTTGGATGTTCTCTGTGGAGAGGGAATAAAACCATTGCCTGTTCCCTGGAGGGAATTGGATGCTGAAGCTTCTACCTTTAACAGGGGCATGGGTGCAGTTCCAGCCTCTGCCAGCAGGCTGGGCCCTGTGCCCACTTTTGAAAGACCTTCAGGGCTGTGGGGCATGAGATGAGAGAGGGAGGGAAGATAATCTGGCTCACtgccgggcactttatgtgacttacctccttaattcccccgggcacagccctgagaggaggttggcagtgtctgcattttacagatggggaacttgagg 9595 BC3M_92BC3M_92 aaacttcgtctcaaaaacaaaacaaaacaaagcgaaaaaacaaaAAAAGTTTCATTGTTTCACCTCCACACAGCTCTGTCTGCATTTTGAGCAATGGCCACCAGAGGGCAGGAAGAACCAATCTATAAAGCACACAAGGGTTTCACCAACTTTGAAGTCCTCCGTTAGAAGGCAAGTTGTCCACTAATATGTAGGAACGATTAATGGCCACCAGAGGGCAGGAAGAACCAATCTATAAAGCGCACAAGGGTTTCACCAACTTTGAAGTCCTCCGTTAGAAGGCAAGTTGTCCACTAATATaaacttcgtctcaaaaacaaaacaaaacaaagcgaaaaaacaaaAAAAGTTTCATTGTTTCACCTCCACACACAGCTCTGTCTGCATTTTGAGCAATGGCCACCAGAGGGCAGGAAGAACCAATCTATAAAGCACACAAGGGTTTCACCAACTTTGAAGTCCTCCGTACACATTCCAATGTAGCAGACTGACTGAATGTAGCAGAGACTGAATGTAGACAG 9696 BC3M_96BC3M_96 GAAGCagccagaagacctggttctcccaagcctgctacttgctggccatgtaaccttgagcaagttatttcctcctctgcaaaaggaagacaataccctcctgcctacttcactcagacgttctgaagatcgatgtagcaatgtggtgtagacatgcttttgtaaCGTGGACACACCCAGACAGGAATAAGTCTTGTCCAGGGAATATTTTTTGACAAACACTGCTTAACTGGTTTGTCCTCTGAGTGTCACAACTTTTGGCAGAACTTGGTAGTTGGAGGTCAGTGGTTGGCTGGTTCAGAAGCagccagaagacctggttctcccaagcctgctacttgctggccatgtaaccttgagcaagttatttcctcctctgcaaaaggaagacaataccctcctgcctacttcactcagacgttctgaagatcgatgtagcaatgtggtgtagacatgcttttgtaaCGTGGACACACCCAGACAGGAATAAGTCTTGTCCAGGGAATATTTTTTGACAAACACTGCTTAACTGGTTTGTCCTCTGAGTGTCACAACTTTTGGCAGAACTTGGTAGTTGGAGGTCAGTGGTTGGCTGGTTCA 9797 BC3M_23BC3M_23 CAGCCCTTCCTCACCTCATCACTCCCCATCCCCCCAAGATATAGAAAGGCCGTGACAGCTGCCAGCCCTGCACATGCTCTTGTTTCAACAGCGGCGATTGCACATCACGTAGTCCCCACGTGACCTGTCGGGCCTAGGGCAAGCGCAAAGCTTTCGGAAACCCGAATTATTGCAACCTTGACTTCCTGCCTGTCTCTGAGGCTCCCGGGctgtgctttaagctggacaggcacctgctttacagggaaaaggaccaaggtccggagaggaaaggggcttgtcccaggatacgcagcaagtCAGCCCTTCCTCACCTCATCACTCCCCATCCCCCCAAGATATAGAAAGGCCGTGACAGCTGCCAGCCCTGCACATGCTCTTGTTTCAACAGCGGCGATTGCACATCACGTAGTCCCCACGTGACCTGTCGGGCCTAGGGCAAGCGCAAAGCTTTCGGAAACCCGAATTATTGCAACCTTGACTTCCTGCCTGTCTCTGAGGCTCCCGGGctgtgctttaagctggacaggcacctgctttacagggaaaaggaccaaggtccggagaggaaaggggcttgtcccaggatacgcagcaagt 9898 BC3M_103BC3M_103 CTAGGAGCTCTGTGCGGAACCGCGTCCAGCCGCCGACTCACTGACACATCACAATGAGTCACGTGCTCTGTGCACCGGGCGGATTTGTCAGATCCGCTGCTGCATCACGGCTCGGCAGGGCTCTCTGGGTTCTCAGTGCCCTCCTAGGTCTGCAATGCAGTGCGGGAGAGGAGGAATATGGGCTTGTGGGGGCAGGGGCAGCGCCCGGACTCCTCCCGGGGCAGGACTCCCAGAAACGCAGGAAGCGATGACGCTGCTCAGATAAACCCTGGCGCTCTGCGCTGGCGTCCTGGTCAGGAGCTAGGAGCTCTGTGCGGAACCGCGTCCAGCCGCCGACTCACTGACACATCACAATGAGTCACGTGCTCTGTGCACCGGGCGGATTTGTCAGATCCGCTGCTGCATCACGGCTCGGCAGGGCTCTCTGGGTTCTCAGTGCCCTCCTAGGTCTGCAATGCAGTGCGGGAGAGGAGGAATATGGGCTTGTGGGGGCAGGGGCAGCGCCCGGACTCCTCCCGGGGCAGGACTCCCAGAAACGCAGGAAGCGATGACGCTGCTCAGATAAACCCTGGCGCTCTGCGCTGGCGTCCTGGTCAGGAG 9999 BC3M_44BC3M_44 CATGTGAGCTCAATTAATACAACATATGGTTACTGTACGCCCAAAGGCAACGCATTCAAATTGCTTTGTACCATGTAAAACACACACTCTTGAAAAACAGACGCCTAGTGCGGAATCCTGTGCACGCCTTTAACTCCTCCAAACGAGCAGGGGGCGTCATGGATTAGCATGTCCCGGGGTTCGGGAATCAGCATTTCCGAGGAAAGGGGCGCTCAGGAGATATCCCCACCCCCGATGAGGGGCACTGTCGTGGATGAGTTTAAACCACGCCATAGGCAGCCAAGAACTGAGCTCCCGATGCATGTGAGCTCAATTAATACAACATATGGTTACTGTACGCCCAAAGGCAACGCATTCAAATTGCTTTGTACCATGTAAAACACACACTCTTGAAAAACAGACGCCTAGTGCGGAATCCTGTGCACGCCTTTAACTCCTCCAAACGAGCAGGGGGCGTCATGGATTAGCATGTCCCGGGGTTCGGGAATCAGCATTTCCGAGGAAAGGGGCGCTCAGGAGATATCCCCACCCCCGATGAGGGGCACTGTCGTGGATGAGTTTAAACCACGCCATAGGCAGCCAAGAACTGAGCTCCCGATG 100100 BC3M_219BC3M_219 GGGACCAATCCAGAAGCAGCACCCAGACCGGTTTACCCGGTTCCAGGACCTTGGGCGAAGTCCACCCGCCCGAGGGCAGGGACGACGCAGGCCACGCCGCGGCCCAGTTGCTAGCCAGGCAGGGTGGGGATTTGATCTTGCCAAGGAAATGTGAGCGGGAGGCCGAGCGTTGGAGGTGGGTAAGTCGTCACTATGCAGGGCGGAGCCATCCTGTGTCTATCACGCCCAAGGGCGGTGCATGCAAATTGACTCCCGCATTTGGCTTTTCCCCGGGCTCCGTCTCCGCGCGCTGCAACCCGCGGGACCAATCCAGAAGCAGCACCCAGACCGGTTTACCCGGTTCCAGGACCTTGGGCGAAGTCCACCCGCCCGAGGGCAGGGACGACGCAGGCCACGCCGCGGCCCAGTTGCTAGCCAGGCAGGGTGGGGATTTGATCTTGCCAAGGAAATGTGAGCGGGAGGCCGAGCGTTGGAGGTGGGTAAGTCGTCACTATGCAGGGCGGAGCCATCCTGTGTCTATCACGCCCAAGGGCGGTGCATGCAAATTGACTCCCGCATTTGGCTTTTCCCCGGGCTCCGTCTCCGCGCGCTGCAACCCGC

실시예 4. 암종 특이적 염색질의 개방된 지역 검증.Example 4. Open area validation of carcinoma specific chromatin.

유방암 특이적인 지역에 대한 검증을 위하여, 하기 표 3에 기재된 프라이머를 이용하여 실시예 1에 기재된 방법으로 수득한 핵산 단편을 증폭하였다. In order to verify breast cancer-specific regions, a nucleic acid fragment obtained by the method described in Example 1 was amplified using the primers shown in Table 3 below.

핵산 증폭용 프라이머 서열Primer sequence for nucleic acid amplification 서열번호Sequence number 이름name 서열order 101101 BC3M_102FBC3M_102F GGGGCTCTCAAGGACTCTACGGGGCTCTCAAGGACTCTAC 102102 BC3M_102RBC3M_102R CGAGGGCAGAAAGGAGAGACCGAGGGCAGAAAGGAGAGAC 103103 BC3M_11FBC3M_11F GTTTCCGTACGCAGCCTGGTTTCCGTACGCAGCCTG 104104 BC3M_11RBC3M_11R CAATGAGCAGGAAGATGGGCCAATGAGCAGGAAGATGGGC 105105 BC3M_117FBC3M_117F AAGGCTCAGTGTGTGTATGCAAGGCTCAGTGTGTGTATGC 106106 BC3M_117RBC3M_117R GGTTACTGACTGCTCCCCATGGTTACTGACTGCTCCCCAT 107107 BC3M_119FBC3M_119F TAACCTTCCCTTGGCTTCCATAACCTTCCCTTGGCTTCCA 108108 BC3M_119RBC3M_119R GAGAGAAGGAAAGGGAGGGGGAGAGAAGGAAAGGGAGGGG 109109 BC3M_125FBC3M_125F ACCTCTAGACCAAGTGCCTGACCTCTAGACCAAGTGCCTG 110110 BC3M_125RBC3M_125R GGTGGCTTCAGAGATGGAGTGGTGGCTTCAGAGATGGAGT 111111 BC3M_132FBC3M_132F CTGACGGCAAATTCCTCCAGCTGACGGCAAATTCCTCCAG 112112 BC3M_132RBC3M_132R GCTTGTCTGTCATCTGAGGCGCTTGTCTGTCATCTGAGGC 113113 BC3M_137FBC3M_137F GACCAGCCAATCTCCCGGGACCAGCCAATCTCCCGG 114114 BC3M_137RBC3M_137R GAGATCCATTGGTTGCGGCGAGATCCATTGGTTGCGGC 115115 BC3M_139FBC3M_139F GTGTGAGCCAAGTGTTGACCGTGTGAGCCAAGTGTTGACC 116116 BC3M_139RBC3M_139R TTCATCCTGCCTGCCTAGAGTTCATCCTGCCTGCCTAGAG 117117 BC3M_142FBC3M_142F ctttccactcacaccttgccctttccactcacaccttgcc 118118 BC3M_142RBC3M_142R aggcacaaaagaggcaaaggaggcacaaaagaggcaaagg 119119 BC3M_146FBC3M_146F GGATGAGTCACTGGATCCGTGGATGAGTCACTGGATCCGT 120120 BC3M_146RBC3M_146R GCCTCTGTCCCTTCTCCATTGCCTCTGTCCCTTCTCCATT 121121 BC3M_154FBC3M_154F AATCCAGTCCCAGTTCCCAGAATCCAGTCCCAGTTCCCAG 122122 BC3M_154RBC3M_154R ACTGGCCTCTCAACACCTACACTGGCCTCTCAACACCTAC 123123 BC3M_168FBC3M_168F CCCAGAGCTGCAATGTGTACCCCAGAGCTGCAATGTGTAC 124124 BC3M_168RBC3M_168R TACGGATGAGGAGGCTGGTATACGGATGAGGAGGCTGGTA 125125 BC3M_171FBC3M_171F CCTGTACCTCTGCAGTGCTACCTGTACCTCTGCAGTGCTA 126126 BC3M_171RBC3M_171R TCCTGGGCAGAGTGTTTTCATCCTGGGCAGAGTGTTTTCA 127127 BC3M_172FBC3M_172F CCTCCTTCCCATttctgcctCCTCCTTCCCATttctgcct 128128 BC3M_172RBC3M_172R ccttttccatttccagccccccttttccatttccagcccc 129129 BC3M_173FBC3M_173F GAATCCGCAGATCCTCAAGCGAATCCGCAGATCCTCAAGC 130130 BC3M_173RBC3M_173R AAGTTCTTCTTCCCGCCCTCAAGTTCTTCTTCCCGCCCTC 131131 BC3M_178FBC3M_178F ACCATTCAGTGTAAGCCCCAACCATTCAGTGTAAGCCCCA 132132 BC3M_178RBC3M_178R TCTTTCCACCATGCACGTTGTCTTTCCACCATGCACGTTG 133133 BC3M_179FBC3M_179F ACACCACCACCTCCTTCTTCACACCACCACCTCCTTCTTC 134134 BC3M_179RBC3M_179R GGAAAGTGCAAATGAACCCCAGGAAAGTGCAAATGAACCCCA 135135 BC3M_182FBC3M_182F tggttccctcctcacatcagtggttccctcctcacatcag 136136 BC3M_182RBC3M_182R TTGCAACCTCCGCTTGAAAATTGCAACCTCCGCTTGAAAA 137137 BC3M_199FBC3M_199F TTGGGAAGGCAAGAGGATGATTGGGAAGGCAAGAGGATGA 138138 BC3M_199RBC3M_199R GTGTTCAAGCCCTCCCTCTAGTGTTCAAGCCCTCCCTCTA 139139 BC3M_20FBC3M_20F CTCACACCGTCTCACTAGGGCTCACACCGTCTCACTAGGG 140140 BC3M_20RBC3M_20R GAATTCCACAGACACCGCGGAATTCCACAGACACCGCG 141141 BC3M_203FBC3M_203F CCTCGTAGGGCTTGAAATGTCCTCGTAGGGCTTGAAATGT 142142 BC3M_203RBC3M_203R AGAAGAATTTGGCGAGGATTACCAGAAGAATTTGGCGAGGATTACC 143143 BC3M_206FBC3M_206F TTGAGCGCAGTCTGGAAATGTTGAGCGCAGTCTGGAAATG 144144 BC3M_206RBC3M_206R GAGATGAGCCCTGTCACAGTGAGATGAGCCCTGTCACAGT 145145 BC3M_212FBC3M_212F AAGTCCTAGAGCACCGGAACAAGTCCTAGAGCACCGGAAC 146146 BC3M_212RBC3M_212R CTTTTCTCCGCAGCGATACCCTTTTCTCCGCAGCGATACC 147147 BC3M_22FBC3M_22F ggaaaatcccttgaagccggggaaaatcccttgaagccgg 148148 BC3M_22RBC3M_22R TGGGCTGTTGTAATGGTGTGTGGGCTGTTGTAATGGTGTG 149149 BC3M_221FBC3M_221F tgatgagctactacgcctggtgatgagctactacgcctgg 150150 BC3M_221RBC3M_221R TGGGAAGTTGAGGGATGTGTTGGGAAGTTGAGGGATGTGT 151151 BC3M_224FBC3M_224F CGGGGAGGAGATGAGCTAAACGGGGAGGAGATGAGCTAAA 152152 BC3M_224RBC3M_224R AGTACGTCGAACAGGGGATCAGTACGTCGAACAGGGGATC 153153 BC3M_226FBC3M_226F TGGATTGATACGGGGCTCTTTGGATTGATACGGGGCTCTT 154154 BC3M_226RBC3M_226R CGACAGCTGGTTTCACAAGTCGACAGCTGGTTTCACAAGT 155155 BC3M_230FBC3M_230F CTGAGAGGCCCGCAATGTCTGAGAGGCCCGCAATGT 156156 BC3M_230RBC3M_230R CACTCAGATCTCGCCGCGCACTCAGATCTCGCCGCG 157157 BC3M_231FBC3M_231F GAGCGGTGCAAAGGTTCTTAGAGCGGTGCAAAGGTTCTTA 158158 BC3M_231RBC3M_231R CCTACCTCGTGCTCTTGGAACCTACCTCGTGCTCTTGGAA 159159 BC3M_232FBC3M_232F CTCTCCAAGCACCACTCCCCTCTCCAAGCACCACTCCC 160160 BC3M_232RBC3M_232R TGTGGAGACTGAACCTTGCATGTGGAGACTGAACCTTGCA 161161 BC3M_235FBC3M_235F CAGTCCCTACACCCCACAATCAGTCCCTACACCCCACAAT 162162 BC3M_235RBC3M_235R CATTTCCCAGAAGACCACGCCATTTCCCAGAAGACCACGC 163163 BC3M_239FBC3M_239F TGGTTAAGGTGTAGGGGTGGTGGTTAAGGTGTAGGGGTGG 164164 BC3M_239RBC3M_239R AGCACAGAGTTACCACCTCCAGCACAGAGTTACCACCTCC 165165 BC3M_241FBC3M_241F GTGTAAACAAACCCAGGCCCGTGTAAACAAACCCAGGCCC 166166 BC3M_241RBC3M_241R GACTCCATCACCGTCCCAAGACTCCATCACCGTCCCAA 167167 BC3M_245FBC3M_245F GCGCGCTTTTAAGGAGAGTTGCGCGCTTTTAAGGAGAGTT 168168 BC3M_245RBC3M_245R GGCTCTGACGGCATTCATTCGGCTCTGACGGCATTCATTC 169169 BC3M_247FBC3M_247F GATGCAGATGTCAAAACGCGGATGCAGATGTCAAAACGCG 170170 BC3M_247RBC3M_247R gagggtctcgcttgtttgcgagggtctcgcttgtttgc 171171 BC3M_250FBC3M_250F AGGAGTTCAGCATAGCACGAAGGAGTTCAGCATAGCACGA 172172 BC3M_250RBC3M_250R CAAGCTGTGCCATAACCCAACAAGCTGTGCCATAACCCAA 173173 BC3M_252FBC3M_252F CTGTCCTCCTCCCTCCCTCCTGTCCTCCTCCCTCCCTC 174174 BC3M_252RBC3M_252R TTTCTTGTCCACACTCCTGGTTTCTTGTCCACACTCCTGG 175175 BC3M_253FBC3M_253F ACACCCGACAGAGTCCAATGACACCCGACAGAGTCCAATG 176176 BC3M_253RBC3M_253R GGTAGTCACTCCTTTGGCCTGGTAGTCACTCCTTTGGCCT 177177 BC3M_255FBC3M_255F CGGCTCTGAGTCTGAAGCTACGGCTCTGAGTCTGAAGCTA 178178 BC3M_255RBC3M_255R GGAGCCTCTGTACCTGTGACGGAGCCTCTGTACCTGTGAC 179179 BC3M_257FBC3M_257F CCCCACAGTGGTCACGAGCCCCACAGTGGTCACGAG 180180 BC3M_257RBC3M_257R ggggaaggagaacagagaggggggaaggagaacagagagg 181181 BC3M_260FBC3M_260F gctcaaatgatccgctctccgctcaaatgatccgctctcc 182182 BC3M_260RBC3M_260R gactctgatgctgccatgtggactctgatgctgccatgtg 183183 BC3M_265FBC3M_265F GCGGAAGTCATGTCTGGAACGCGGAAGTCATGTCTGGAAC 184184 BC3M_265RBC3M_265R CGAGGCCAGGAAACACTAGTCGAGGCCAGGAAACACTAGT 185185 BC3M_266FBC3M_266F GGCACAAAGGAAACGAAGGAGGCACAAAGGAAACGAAGGA 186186 BC3M_266RBC3M_266R CCAAGCACCTCAAGCCAAATCCAAGCACCTCAAGCCAAAT 187187 BC3M_267FBC3M_267F CCTCCCTGGTAGAATCTGGCCCTCCCTGGTAGAATCTGGC 188188 BC3M_267RBC3M_267R GTGTCTCAGGCTCAGTTCCTGTGTCTCAGGCTCAGTTCCT 189189 BC3M_268FBC3M_268F CTGTGCTGTTCCGTGTGCCTGTGCTGTTCCGTGTGC 190190 BC3M_268RBC3M_268R GAGACCTTTTCACGGGATCTGAGACCTTTTCACGGGATCT 191191 BC3M_269FBC3M_269F acctctgtgtgaagtgctctacctctgtgtgaagtgctct 192192 BC3M_269RBC3M_269R gcgagtcaaaggtgtggtttgcgagtcaaaggtgtggttt 193193 BC3M_27FBC3M_27F TCTAAGACTGGCTGCTCTGCTCTAAGACTGGCTGCTCTGC 194194 BC3M_27RBC3M_27R AAAACGCCCTTTCTGCTCAGAAAACGCCCTTTCTGCTCAG 195195 BC3M_275FBC3M_275F GGGTGGGTCTACTTCTGAGGGGGTGGGTCTACTTCTGAGG 196196 BC3M_275RBC3M_275R CTCCCTTTCGGCTTCATGTGCTCCCTTTCGGCTTCATGTG 197197 BC3M_277FBC3M_277F tggaatggaatcaacccgagtggaatggaatcaacccgag 198198 BC3M_277RBC3M_277R cgaaaccgttccattccagtcgaaaccgttccattccagt 199199 BC3M_283FBC3M_283F aacaggggagttctcatgccaacaggggagttctcatgcc 200200 BC3M_283RBC3M_283R agccacatcagagacagagcagccacatcagagacagagc 201201 BC3M_284FBC3M_284F GTTCAAATGTCAGGCCTGCTGTTCAAATGTCAGGCCTGCT 202202 BC3M_284RBC3M_284R CACCTCCAAAGACAAACGCACACCTCCAAAGACAAACGCA 203203 BC3M_290FBC3M_290F gcccacgtgactagcatagggcccacgtgactagcatagg 204204 BC3M_290RBC3M_290R GAGCGAGAACTGGGAGTGCGAGCGAGAACTGGGAGTGC 205205 BC3M_291FBC3M_291F ATCACCCTGAGCCTTGGAAGATCACCCTGAGCCTTGGAAG 206206 BC3M_291RBC3M_291R CAGGTAATGCAGCGGTTCATCAGGTAATGCAGCGGTTCAT 207207 BC3M_292FBC3M_292F CAAGGGACCCAGAGATCACACAAGGGACCCAGAGATCACA 208208 BC3M_292RBC3M_292R ACAGCAAACACAAAAGCCCAACAGCAAACACAAAAGCCCA 209209 BC3M_295FBC3M_295F TCTGCGAAAGAGGAGGTGACTCTGCGAAAGAGGAGGTGAC 210210 BC3M_295RBC3M_295R CATTCCAGAACCACAGGCTGCATTCCAGAACCACAGGCTG 211211 BC3M_307FBC3M_307F AGCCTCCGTCAGTGTCTTCAGCCTCCGTCAGTGTCTTC 212212 BC3M_307RBC3M_307R TGAGACTCTAGCCCTTCCCTTGAGACTCTAGCCCTTCCCT 213213 BC3M_321FBC3M_321F ctctccataagacacgcccactctccataagacacgccca 214214 BC3M_321RBC3M_321R aagaggcgggtcattcagaaaagaggcgggtcattcagaa 215215 BC3M_323FBC3M_323F caaagtgccgggattacaggcaaagtgccgggattacagg 216216 BC3M_323RBC3M_323R TCCCAAAGAGTGTCACAGCATCCCAAAGAGTGTCACAGCA 217217 BC3M_326FBC3M_326F CCCTCTCCTCTTGCATGACTCCCTCTCCTCTTGCATGACT 218218 BC3M_326RBC3M_326R ATGCCTCTTTGCTGTTCTGCATGCCTCTTTGCTGTTCTGC 219219 BC3M_334FBC3M_334F TCGCCACTCTCAGTCAAACTTCGCCACTCTCAGTCAAACT 220220 BC3M_334RBC3M_334R CCCTAGGGCAAAATCAACTGTCCCTAGGGCAAAATCAACTGT 221221 BC3M_353FBC3M_353F tgttgtagcctgagtcggtttgttgtagcctgagtcggtt 222222 BC3M_353RBC3M_353R CCCCACTTGCTTCTGTAGGACCCCACTTGCTTCTGTAGGA 223223 BC3M_360FBC3M_360F GGGAAGGAAGGTTGGTGAGAGGGAAGGAAGGTTGGTGAGA 224224 BC3M_360RBC3M_360R ACCGTATAGagcagagtggcACCGTATAGagcagagtggc 225225 BC3M_362FBC3M_362F TCCAAGTCTAAGGGTGCTGGTCCAAGTCTAAGGGTGCTGG 226226 BC3M_362RBC3M_362R TACCATCCTCTGCTTTGCCATACCATCCTCTGCTTTGCCA 227227 BC3M_367FBC3M_367F GAGGGCTTTCAGAACTCAGCGAGGGCTTTCAGAACTCAGC 228228 BC3M_367RBC3M_367R gcaacgcctTCCTGTTAAGAgcaacgcctTCCTGTTAAGA 229229 BC3M_37FBC3M_37F TTCCCTCGACCTCCCTTCTATTCCCTCGACCTCCCTTCTA 230230 BC3M_37RBC3M_37R CCCTGTCCTGCCAGCTATAGCCCTGTCCTGCCAGCTATAG 231231 BC3M_380FBC3M_380F GACTCCTGAGGAAACCAGCTGACTCCTGAGGAAACCAGCT 232232 BC3M_380RBC3M_380R CAGAGTGGAAGGTTAACGCGCAGAGTGGAAGGTTAACGCG 233233 BC3M_39FBC3M_39F GCAAGAGAGACTGAGAGCACGCAAGAGAGACTGAGAGCAC 234234 BC3M_39RBC3M_39R CCCTCCTCCCTCATTCACTCCCCTCCTCCCTCATTCACTC 235235 BC3M_393FBC3M_393F gctgcagctgctgtattcacgctgcagctgctgtattcac 236236 BC3M_393RBC3M_393R aggggtacagggcagaaaataggggtacagggcagaaaat 237237 BC3M_402FBC3M_402F GGAACAAGGAGGAGCAGACAGGAACAAGGAGGAGCAGACA 238238 BC3M_402RBC3M_402R CTCCATGAGTCAGGCTGAGACTCCATGAGTCAGGCTGAGA 239239 BC3M_406FBC3M_406F GGCCAATCAACACTGTGACTGGCCAATCAACACTGTGACT 240240 BC3M_406RBC3M_406R TCCAGTGCTCCGGGATTTCTCCAGTGCTCCGGGATTTC 241241 BC3M_410FBC3M_410F CCGAACTGGCGCTCAACACCGAACTGGCGCTCAACA 242242 BC3M_410RBC3M_410R CTCTGCACTTATTGGTCGGGCTCTGCACTTATTGGTCGGG 243243 BC3M_414FBC3M_414F tgtgtgcattcatctcgcatgtgtgcattcatctcgca 244244 BC3M_414RBC3M_414R cctcaaagcgctccaaatgtcctcaaagcgctccaaatgt 245245 BC3M_417FBC3M_417F GCAGGAGTTAAAGTACCCGCGCAGGAGTTAAAGTACCCGC 246246 BC3M_417RBC3M_417R GCTGTGCTCATAGGCTCTCCGCTGTGCTCATAGGCTCTCC 247247 BC3M_47FBC3M_47F CTTCCTCTTCCTCAGGCTCCCTTCCTCTTCCTCAGGCTCC 248248 BC3M_47RBC3M_47R CGGTGACTCAGAGCTTTGCCGGTGACTCAGAGCTTTGC 249249 BC3M_48FBC3M_48F GGCTGGGGAGGTTCTTCTAGGGCTGGGGAGGTTCTTCTAG 250250 BC3M_48RBC3M_48R TTCATGTCCACCTCCTCAGCTTCATGTCCACCTCCTCAGC 251251 BC3M_49FBC3M_49F CCGCAGCTTCCTATCCTGTACCGCAGCTTCCTATCCTGTA 252252 BC3M_49RBC3M_49R ACCAGGCTTCTCATCTTCCTACCAGGCTTCTCATCTTCCT 253253 BC3M_52FBC3M_52F atggcagcacagagagaagtatggcagcacagagagaagt 254254 BC3M_52RBC3M_52R TggctcagctctctctcatgTggctcagctctctctcatg 255255 BC3M_55FBC3M_55F AGCTGACTGGGACCTGAAAGAGCTGACTGGGACCTGAAAG 256256 BC3M_55RBC3M_55R CCCGAGCCAGCCAATCAGCCCGAGCCAGCCAATCAG 257257 BC3M_58FBC3M_58F CAAGAGTGGAAAACCTGCCCCAAGAGTGGAAAACCTGCCC 258258 BC3M_58RBC3M_58R GAGGGGAAGATGGCTCACTGGAGGGGAAGATGGCTCACTG 259259 BC3M_61FBC3M_61F CTCTTCCCCTCCCTCACTTGCTCTTCCCCTCCCTCACTTG 260260 BC3M_61RBC3M_61R CATGGGCTCACATCCTCCTACATGGGCTCACATCCTCCTA 261261 BC3M_66FBC3M_66F AGCCACACACTTATCTGCCTAGCCACACACTTATCTGCCT 262262 BC3M_66RBC3M_66R CCCGAGCTACACTAGATGCACCCGAGCTACACTAGATGCA 263263 BC3M_67FBC3M_67F AAGTGGGCAGGGCTTAAAACAAGTGGGCAGGGCTTAAAAC 264264 BC3M_67RBC3M_67R GGGCTCCACTCCATTCTGAAGGGCTCCACTCCATTCTGAA 265265 BC3M_69FBC3M_69F AAGAGGAGGATGGAGCAGAGAAGAGGAGGATGGAGCAGAG 266266 BC3M_69RBC3M_69R GAGAGAGGGAAGCGAGACAGGAGAGAGGGAAGCGAGACAG 267267 BC3M_7FBC3M_7F GGTGGGGAGGAAGTTCTGAAGGTGGGGAGGAAGTTCTGAA 268268 BC3M_7RBC3M_7R CTTTGCAACCCTACTGTGCCCTTTGCAACCCTACTGTGCC 269269 BC3M_70FBC3M_70F atgacgaaactggtgcatgtatgacgaaactggtgcatgt 270270 BC3M_70RBC3M_70R tcaagaatgcagactccggatcaagaatgcagactccgga 271271 BC3M_71FBC3M_71F CCCTCCACTGGACACTGAATCCCTCCACTGGACACTGAAT 272272 BC3M_71RBC3M_71R AGAAGCCAACCAAGAAACCGAGAAGCCAACCAAGAAACCG 273273 BC3M_74FBC3M_74F TTGGAAAGAAGGGTGGCCATTGGAAAGAAGGGTGGCCA 274274 BC3M_74RBC3M_74R CTCATTTCACCCCGCCTCTACTCATTTCACCCCGCCTCTA 275275 BC3M_76FBC3M_76F tttgaggttgggaaagcagctttgaggttgggaaagcagc 276276 BC3M_76RBC3M_76R agcagatttccccttagcgaagcagatttccccttagcga 277277 BC3M_80FBC3M_80F TGCATCTGACCTTGGTCTGTTGCATCTGACCTTGGTCTGT 278278 BC3M_80RBC3M_80R GGCCATGAGAAGTCCTGAGTGGCCATGAGAAGTCCTGAGT 279279 BC3M_82FBC3M_82F AGACACATCGAAAACCACCGAGACACATCGAAAACCACCG 280280 BC3M_82RBC3M_82R GCCTTAGGACGCATCTGAAAGCCTTAGGACGCATCTGAAA 281281 BC3M_84FBC3M_84F AGGAGAGCTCTGATGTCTGCAGGAGAGCTCTGATGTCTGC 282282 BC3M_84RBC3M_84R GCATCCTTTTGAGCTGACGCGCATCCTTTTGAGCTGACGC 283283 BC3M_86FBC3M_86F tgtgctgcctgttgtgtttttgtgctgcctgttgtgtttt 284284 BC3M_86RBC3M_86R atgtggggcagagaaggaagatgtggggcagagaaggaag 285285 BC3M_87FBC3M_87F CAGGAGAGACGAAGGCCCCAGGAGAGACGAAGGCCC 286286 BC3M_87RBC3M_87R TCACATCCTCCGTCACTCAGTCACATCCTCCGTCACTCAG 287287 BC3M_9FBC3M_9F CTTTAACAGGGGCATGGGTGCTTTAACAGGGGCATGGGTG 288288 BC3M_9RBC3M_9R TCTCTCATCTCATGCCCCACTCTCTCATCTCATGCCCCAC 289289 BC3M_92FBC3M_92F CAGCTCTGTCTGCATTTTGAGCAGCTCTGTCTGCATTTTGAG 290290 BC3M_92RBC3M_92R TGGTGGCCATTAATCGTTCCTGGTGGCCATTAATCGTTCC 291291 BC3M_96FBC3M_96F ctggccatgtaaccttgagcctggccatgtaaccttgagc 292292 BC3M_96RBC3M_96R TGTGTCCACGttacaaaagcaTGTGTCCACGttacaaaagca 293293 BC3M_23FBC3M_23F ATAGAAAGGCCGTGACAGCTATAGAAAGGCCGTGACAGCT 294294 BC3M_23RBC3M_23R GCAGGAAGTCAAGGTTGCAAGCAGGAAGTCAAGGTTGCAA 295295 BC3M_103FBC3M_103F GGGAGAGGAGGAATATGGGCGGGAGAGGAGGAATATGGGC 296296 BC3M_103RBC3M_103R AGGGTTTATCTGAGCAGCGTAGGGTTTATCTGAGCAGCGT 297297 BC3M_44FBC3M_44F GGGCGTCATGGATTAGCATGGGGCGTCATGGATTAGCATG 298298 BC3M_44RBC3M_44R CAGTTCTTGGCTGCCTATGGCAGTTCTTGGCTGCCTATGG 299299 BC3M_219FBC3M_219F GACCAATCCAGAAGCAGCACGACCAATCCAGAAGCAGCAC 300300 BC3M_219RBC3M_219R GCAAGATCAAATCCCCACCCGCAAGATCAAATCCCCACCC

그 결과, 도 4 및 도 5의 결과와 마찬가지로 암 발생 환자에서 열린 염색질 구조로 변형된 마커서열에서는 증폭산물이 검출되고, 닫힌 염색질 구조로 변형된 마커서열에서는 증폭산물이 검출되지 않는 것을 확인하다. As a result, similar to the results of FIGS. 4 and 5, it was confirmed that the amplification product was detected in the marker sequence modified to the open chromatin structure in the cancer-causing patient, and the amplified product was not detected in the marker sequence modified to the closed chromatin structure.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

SEQUENCE LISTING <110> Korea Advanced Institute of Science and Technology <120> A cancer diagnosis marker based on ATAC-Seq and Method using the same <130> P19-B293 <150> KR 10-2019-0040056 <151> 2019-04-05 <160> 324 <170> PatentIn version 3.5 <210> 1 <211> 300 <212> DNA <213> BC3M_102 <400> 1 gggatccctc agcagctccg gacctcatct gccccacttc ggcatcccgc gcgggaatat 60 gaccatgtag gagtaacccg gggctctcaa ggactctacg gtttgtcacg gtttgaacgc 120 aagcgcaggg cctggggcgg gtgcaggtgg agggtcggcc tctttctgcc cttgggaacg 180 cccctttctg gatgtggacc ggcgaggcgg tctctccttt ctgccctcgc ctggtgaaat 240 gtgggcactg ctgccaggag aaaaaaaact gaagctgtga attcagttca tcacccttcc 300 <210> 2 <211> 300 <212> DNA <213> BC3M_11 <400> 2 agcggggcta gacggagtca ggggcggacc gccacagcct gcaccaatca ggacccggtt 60 gataggcaga gcctggcgac ttcgaagact cgcccccagt caaagagccc cggggattcg 120 tttccgtacg cagcctggaa accagcctgg gcctatcctg cgcgccgctg cgggctacta 180 ttggctgcca agaaaccccg cccatcttcc tgctcattgg ccggtgcggt ttacgtaaga 240 ggagcctgtt gctgagcgaa aagtctgttc tgcaattttc gctaaggagt tgttaacgct 300 <210> 3 <211> 300 <212> DNA <213> BC3M_117 <400> 3 gtacactgac tttggaacaa atgccacagg ccctaattgc aggctccaag gagttgagat 60 tccatactgg ggttgctgga ggcagaagcc ttcccacttt caggacccgg acctgccctt 120 cccccacgcg gtcccgccca gccagctaca ccctggccac agagcgctca caaaggctca 180 gtgtgtgtat gccgggctga ctcacagtgg ttctgggccc aggcgaggac cttctcagag 240 gggcggaagg ggccctctcc ctcctggcca ttttccatgg ggagcagtca gtaaccagga 300 <210> 4 <211> 300 <212> DNA <213> BC3M_119 <400> 4 ctaggagaca agtaccctgc tgagcagaca aatagcctgg actttgtaac agccaaagtg 60 gcccacatgg cactcgcggg gctgtgcagc atccaggcag gggacactgc ctggcattct 120 aaaggcctgt gctgagtcat ctttcacagg aaccagcttc tcaagtctct gggatcctgt 180 tttacaggct gttactaacc ttcccttggc ttccaggcca aggaagaaga aagaataaat 240 attaaccaaa ggtacggctg tggcagggtg cccagggccc ctccctttcc ttctctcccc 300 <210> 5 <211> 300 <212> DNA <213> BC3M_125 <400> 5 ccacctctag accaagtgcc tgcctggaat gtcctgtcca acttatccac cagctcatcc 60 ttccgggcct aattaaggcc ccactccatc tctgaagcca ccccatgctc atgactctcc 120 ctgacgcagg ttcccgacac accgggtgac tcagctgcag tgtttttcac agtccgtgat 180 gcgtcacagc tatttatagg tgtgcttaac tccctgtgag gaagcacttc aacccccaaa 240 cgcaagttcc agaaatatgc tcataaagat aaagatagag aaaagctctg gaaaaataca 300 <210> 6 <211> 300 <212> DNA <213> BC3M_132 <400> 6 tctggaagca agttacccac aggtttagtt tgcctggaga gaaacaggcc ggagagagac 60 tgcggcctcc ctagggtctt ctgacggcaa attcctccag ctcagtggct gctgggcagc 120 agcacagccg gtttctctca agggcacacc ccacacaccg cgtcactgtg cactagcctc 180 agatgacaga caagcctttc acaagacttt tgtggcactg ttcatttctg agaccttctc 240 tatgatgagc tcaaactgct tacctcagag aagaaactgc gtgcacagaa agctgctgag 300 <210> 7 <211> 300 <212> DNA <213> BC3M_137 <400> 7 taatttctcc gaggccagcc agagcaggtt tgttggcagc agtacccctc cagcagtcac 60 gcgaccagcc aatctcccgg cggcgctcgg ggaggcggcg cgctcgggaa cgaggggagg 120 tggcggaacc gcgccggggc caccttaagg ccgcgctcgc cagcctcggc ggggcggctc 180 ccgccgccgc aaccaatgga tctcctcctc tgtttaaata gactcgccgt gtcaatcatt 240 ttcttcttcg tcagcctccc ttccaccgcc atattgggcc actaaaaaaa gggggctcgt 300 <210> 8 <211> 300 <212> DNA <213> BC3M_139 <400> 8 cctgactgtg aaagccaggc cccagcccaa gaaggcttca cagaccccta ggtgtgccct 60 ctgtgtgagc caagtgttga ccctggcgat gatgccaaca gcccgactct gcccagcttt 120 cagccgcatg agtgtgaacc agctgagcgg caccagctca gggcaaggca gaaggccagg 180 tgcactgtct ctaggcaggc aggatgaaca gcagcacctg atgtcacagc ggccggggaa 240 ccaccctggt tggggcatgc taacccaccc tgctaatatg ctttgggtcc taatttcctt 300 <210> 9 <211> 300 <212> DNA <213> BC3M_142 <400> 9 ggctcacacc ctccaggggc taccctggtc actcagggta aaagccacag cccttccagt 60 ggccttcaag gccctggtga tctgctcgcc cctccccttt ccactcacac cttgcccccc 120 cactcctggc aacccgtctc tgctccagcc acacacttgc ttcattgctg ttcctggaaa 180 atactgggca tgttctggcc tcggggcctt tgcctctttt gtgcctgctg ccaggacatc 240 tgttcctccg gaaagcagcc tggatcattc ccttctctcc ttcagggctt tattcaaaaa 300 <210> 10 <211> 300 <212> DNA <213> BC3M_146 <400> 10 ggatgagtca ctggatccgt tttcagttcg ttccacccac agatccgtcc tttgcaggcg 60 ccccagaaaa gattgcttca gagctggcac caatggagaa gggacagagg cccagcaaca 120 gggcgggatt ggcaggcgga agggagcgtg tgatgagctg agctcacaaa gggccggggt 180 gctgggctgc agctggggag ggcggggttg gatcagcgcc tgctcctccg ccttcgtttt 240 tcccctcccc ctaaggattc agttccccct tctgaaattc accaccttgt atgtgactta 300 <210> 11 <211> 300 <212> DNA <213> BC3M_154 <400> 11 cacctttccc aagatgacga catacctaat tttgcatagc acctgagatt gtaactaagg 60 tggtgggaac ccttggtgac ttgctgtgtt gtgttggcca gtgttaacac tcacttcccc 120 ttaacagccc tccaaaccca aaaggctatg tcaaatccag tcccagttcc cagttccttg 180 tgactgagcc cctcaccccg ctggacattc ctctccaagc aggcagtgct tccttatacc 240 ctccccacac gggtaggtgt tgagaggcca gtactgaggt aaatttcttt cttatgggca 300 <210> 12 <211> 300 <212> DNA <213> BC3M_168 <400> 12 gaactcatga gtcagggtca gtcagcccag agctgcaatg tgtacgtgct tcccggccct 60 gctcttctgg cccgccccca agccttcacg catgcacccc tgcaggcact taccagcctc 120 ctcatccgta tatcctggaa agggtgcaag catgcctggc ttagtcatcc atccacagga 180 agtttgcaca gccctacctg agtgctaaga tcaggctgta aactgccaga atgaaacaaa 240 agagggaaaa taaatatcag cactctccca taaattttgc aatagtcagc tgtagtctag 300 <210> 13 <211> 300 <212> DNA <213> BC3M_171 <400> 13 cagacagagg ccgctgaatt aacccgtgga ggcgtctctc tgagcagagc ccgcaatgcg 60 cctgcttggg gctccctgca gcctctgggg gaggcagggc ggcccagagc aggcctgtgc 120 tggaaaggaa cgcgaagccc tgtaaccaag cctgtacctc tgcagtgcta gtcccaaggg 180 gcctccgagc tgtttgtcac catgtgattg gctcaggaga ggggtggaga aatgaaaaca 240 ctctgcccag gatatattta gttgaagtgc agctggggaa gtgcttaaac aagggagctt 300 <210> 14 <211> 300 <212> DNA <213> BC3M_172 <400> 14 tcttggattt ctgaatatgc agttctgttc ctaaccagtg tgtcccaacc agaaagtcac 60 tgtaattttt ggttttgttc ccaatctccc tccaaatgtc attagtcata tcctccttcc 120 catttctgcc ttgaataggc agtcattatg atgaagccag gcttgtttca gaattccatg 180 agaaccacag tgtcaggctg tgacaactct ggggctggaa atggaaaagg ctgtgatctg 240 gggttggctg gcaccgtccc cgtgagtcat tatggaaaca ctgtccccgg attctgctga 300 <210> 15 <211> 300 <212> DNA <213> BC3M_173 <400> 15 attggtgagg cgccgcgcct cggtgtcgca gcgaatccgc agatcctcaa gccaggtggg 60 ggcgcccact gcgcgtgtgc agcgcctgat agccaggcta gctgagggcg gggagcagct 120 gcggcacctg ggacacagcg attggctggg accaggagag ggcgggaaga agaacttggc 180 ggagcgcgct catatctctg attggctgcc aagggtagcc cttgacagct gccgggtggg 240 acccgtagac cgcgagcgca ctggcccgtg attggttggg gtgcggcggc gagcatctgc 300 <210> 16 <211> 300 <212> DNA <213> BC3M_178 <400> 16 agcacttccc gggcgccccg cctcagtttc cccatctata aagtggagat gataatagca 60 ttcagagtca ctgatctaag ggctcaggga caccattcag tgtaagcccc atacactccc 120 tgcaagagga agctggttct gactcagcct tgaggctggc gtctgaggca accacaagcc 180 caacgtgcat ggtggaaaga tgactgtaag tgggggcaac ctcagctggc cttgggtttg 240 accatggaat gcgaggcaca aaggggccca ttttgcatac tttctcagag gctgtagggc 300 <210> 17 <211> 300 <212> DNA <213> BC3M_179 <400> 17 cccccgacac caccacctcc ttcttcgcct tgcatcggta cgataaggca cttgcttgac 60 gggaaagaga aactcagctg ccagctgggg ttcatttgca ctttcccccg cctggtctgc 120 ggtctggctg tgcagctagc cgctctgacg gggaggaggg gcccaaagcc actgcctgcc 180 gcctgggcag gggagagggg cacgtgaggc tcatggcaga ggcacagcca gcttcttgca 240 tgtgccctcc ccggggaatg tctgcagagc ccaagactgc cacgccgtgg gcacagccct 300 <210> 18 <211> 300 <212> DNA <213> BC3M_182 <400> 18 gggaaacctt gcagactgtg gggtcctgca cacctagact tgctcctttt agaagccatg 60 gaggaggttg ataatgggaa taacatttat tgtagcttat ctctatgcct tgagcaatgt 120 gctcacactg gctggttccc tcctcacatc agcctgatga gtcagatcct gttattactt 180 ctcactttac agatgaggaa gtagcagtaa atccattacc cttttcaagc ggaggttgca 240 agaggttgca agcggaggca gaataaacac ttgaaacagt gagtcagatc ctgttatcac 300 <210> 19 <211> 300 <212> DNA <213> BC3M_199 <400> 19 ggaaccctag gatctgattt aggacatttg gaatctttaa ggcacattcg atctagaaag 60 tggaactgaa ttgctttggg aaggcaagag gatgatttta cagtataggg tttgtgtgga 120 aatccccttc agcagtaatc aacccaggtg tccaacctgt ttgttaacca tttccaaatg 180 actcagagga cctagaggga gggcttgaac acactccagc actgtttcta caatttagcc 240 tttatttgca ttggaaacca cattcctgaa ttcttgaggg ggcaggctct ggcttattct 300 <210> 20 <211> 300 <212> DNA <213> BC3M_20 <400> 20 tcgtgtgggc ctgggccgct tgctattact aataaaacag cagcaaccac aggacagctt 60 cacttccgga aactccctct gtcacgtgct ttgcatgaat cctcacaccg tctcactagg 120 ggcgctctcc ccgtttcacc agtgacttgg tgacaaccag ccttgctcac gaagcgtcag 180 ccgtatcctt tctgtgtgca gtggggtgtg ggttgtgtgg agccgcggtg tctgtggaat 240 tcacaggctg gggccggaat ccatggcccc cgtcgccgct gccacccccc aggtgctggg 300 <210> 21 <211> 300 <212> DNA <213> BC3M_203 <400> 21 aggtggtgcg ccggcggttc gcagctgctg tgcccgctgg cctgggcgca gccggggaca 60 gcgacgcgtt tcctgcccgg gaagggcccg agcgcagggc cggctatagc ggtcccgcag 120 ctgcctgctt cgattttagc actgctgctc cctagaggga gcaacgcggc cctctgtccc 180 tcgtagggct tgaaatgtaa attattcata tcaggggaat gtgtgcttca aaaagcaagc 240 tggacaagaa ccgacgggta atcctcgcca aattcttcta tttaaccctc accattaaaa 300 <210> 22 <211> 300 <212> DNA <213> BC3M_206 <400> 22 tgaatgtcat gagtcaggaa aaaagaattt gagcgcagtc tggaaatgaa atttcctgcc 60 tgtggtttga ctcacgtctg tctgtctcga aatctacccc aaggacattt attccactgt 120 gacagggctc atctctgagg agcaccagac tcctgcggtg gggagggaag attatccgcg 180 ctgcagagac tagctggcct ccggaagccg cctcctgacc ccgcgtcaag caccgcggtg 240 gatggcgcaa cccagctttg ggaattaatt acccaaggcg cgtttccgtg cagtctggcc 300 <210> 23 <211> 300 <212> DNA <213> BC3M_212 <400> 23 aatgccctgc ccgatccagt tccggcctcc catctcccct tcccgcgtct ccacgctctt 60 tccttccccg gttctgccgt gaatgctccc aagtcctaga gcaccggaac tccccgcgcg 120 ccttggctcc tgggccccag ctccgtgcag tcctggactg gggctccagg tccaccaggg 180 ggcgcccgct gcccaagctg ggtatcgctg cggagaaaag gggcccagag tgattgttcc 240 tcaggggagg gagggggagg tccccagagg gaagggcctg agtttcctct tgggggatgg 300 <210> 24 <211> 300 <212> DNA <213> BC3M_22 <400> 24 aaactaacag ggaatggtgt tgccacctgt agccccagct acttgagaga ctgaagcagg 60 aaaatccctt gaagccggca ggcaaagatt gctcactaca gtctagtcta aaaccccact 120 tccaaaaaaa taaaaaacgc acactcacac cattacaaca gcccaaaata aatgttcaaa 180 caaaatgttg tctcacacct cgcaacaaac acacaacttt ctatctgatt tttaaacacc 240 gttgatgaac cccaccaaca tagggcttca aaaaatttgc ttgaaactca aaacggtttc 300 <210> 25 <211> 300 <212> DNA <213> BC3M_221 <400> 25 cccaaagtac tgtgatgagc tactacgcct ggtcattgtc cctctttctc atgactctct 60 ggacatccct ggggtggagg gtggggcagg cacacacatc cctcaacttc ccagtggttc 120 cacgatgact aagccagccc tgtccctgag gctgggagtc tggagctagg atccaccccc 180 atggcctcat atcccaacct tgagcctggg tttctggtca gactggacgg gctagctcgg 240 tctccttaac tctcagagtt gccttgtcca ggcccagcgg gtcccacaca gccaggcaca 300 <210> 26 <211> 300 <212> DNA <213> BC3M_224 <400> 26 ttacccaaga tcattcggtg cggcctcagc gctggcgctg agtcctcttc tgccccaccc 60 ctcaggctcc cagtcctggt ctagatccct agccacgtag cgtagaaggg ggcgtcgacg 120 ggggttgggc tagagttgga gcggggagga gatgagctaa agcggggctg gctgtgcgag 180 aggcagtagc agcggcgtgt gtcctggggc gccccccggt ggcctgtgct ggggtcgtcg 240 gccgggatcc cctgttcgac gtactccggg gctgaatggg aaacagacag tcccagaccc 300 <210> 27 <211> 300 <212> DNA <213> BC3M_226 <400> 27 aaaaaagact aagtggagat gagggttcag tgcaccccca tctcctggcc ctgctgccca 60 tgagccagac cctgagctga cagattggtg cccatttcct cttatggatt gatacggggc 120 tcttacctct gggtttgctc agcccagcag caggcagtca gagccagaag ttgtttgcaa 180 accgaaaccg gtctgcggct tgggccacct acttgtgaaa ccagctgtcg ctgtttttcc 240 tccctgtgag aaagtccccc agtaaagctg cgcgggggag gagaaggagg gtggaggagg 300 <210> 28 <211> 300 <212> DNA <213> BC3M_230 <400> 28 aggggcaggg ccagggcggt tggtggactg ggcctggctg tacgtaggtg ctctgagaag 60 cccccggcga gaggggcggg gccagagcaa cagtgggcgg ggacaggctg tgcgtcggag 120 ctccgcgggg cctgcggcgg ggtgggtggg gccagggcgg cggtgggcgg gccgtgctgt 180 gcgtaggggc gctgagaggc ccgcaatgtg agaggggcgg ggccggaaca gcggtggacg 240 gggtctgtag ttcaactgtg ccgtggcgtc ttcttcgcgg cgagatctga gtgcctcgca 300 <210> 29 <211> 300 <212> DNA <213> BC3M_231 <400> 29 ggagcggtgc aaaggttctt atcctattta tcggagccag tgtccagaaa aggaagcttg 60 tggtttgaga cattctgtaa atccggttcc aagagcacga ggtaggactc tgaatccgat 120 gtggtttctg ttctcggtga tggtgcagag ctgtgagcca gtggtagggt gtcctttaaa 180 ttccagctca gtacactagt taatgaactt ggctgactga taaaaatgtt ttcaggttta 240 gctcatgaac atatcaacat agacctaaat ataattccag tttgtcatga atgttgattt 300 <210> 30 <211> 300 <212> DNA <213> BC3M_232 <400> 30 ggcctcttgg gggcgcggtg agtaggtggc ctctccaagc accactcccg atgtgcgcat 60 gagcgcagcc gcccctacgc agcgcgtgcg cacgtgcact caccacgtcc atcccagacg 120 tgcggacccg ggtgtctgca aggttcagtc tccacacccc agcgcccgac cctgcgcggg 180 gacatgcgca caagcgcgcg tcctgaccac ccggacgtgc tggcccacac gcacacgcgt 240 gcgcattacc cccgccccat ccgcgcctgc gctcaacccc gcctacacct gctccgtggc 300 <210> 31 <211> 300 <212> DNA <213> BC3M_235 <400> 31 ggtcctggac cgggacttag gtccacaccc acgtgctgac gtcgggcagg ctcagcggcc 60 tcccgcgcct gcgcagcacc gcccttttcg ggcgcggcgc ccagtcccta caccccacaa 120 tcccccgcgc cgttccggag gcgcgctagg agtgggtgtg gcctctgcct ccacattgga 180 acaaggtgag gcagagggtg tcgcgtggtc ttctgggaaa tgtagttcgt ctgccaggcc 240 ggaaccaccg ctcaaccggc tcgcgagact atgcacccca caatgcgccg cgcgcgcagc 300 <210> 32 <211> 300 <212> DNA <213> BC3M_239 <400> 32 tctaagtctg tgcatgcatt tgtggtcaga gtctggggag ctgggggcgt gaatgggctg 60 cttcagacac tgctttgagg gtgtgaccag gacctgaggg tgtggttaag gtgtaggggt 120 ggggctaggc ccttgggggt gggaccacag tcccagaggc gtggccaggg cctcgaaggt 180 atggccatag tttgaggcgt ggccgagaaa ctccgttccc aagggaggtg gtaactctgt 240 gctcagagcg ccctcttgtg gctatcctca ggtctccact ttttattcaa tagctttatt 300 <210> 33 <211> 300 <212> DNA <213> BC3M_241 <400> 33 gtggcccgct gtagccccgc cccgtggccc gcccgcagta ggcccgattc aaatctggcc 60 aatgatagtg tgtaaacaaa cccaggcccc gcctcccgac gaataatccc ccgaccggcg 120 agaggcccat ttaacccgat ggggtttggg gttgggacgg tgatggagtc gtggctccgc 180 ccccagacct gggccaatag gcggctgggc tccgcccccg gcacttgccg cgctgaggac 240 ccgaggcagg gctgggcgcg cagttgcctg atttcgtggc ggctcgcagt ctgggcgctc 300 <210> 34 <211> 300 <212> DNA <213> BC3M_245 <400> 34 cctccaaaag tgctgggatt actggcgtga gccaccgcgc ccggcctcag ggcgcgcttt 60 taaggagagt tcctgacatg acggtgggct tttcctgcag atgcacctct gggtagcgcc 120 ctctttacag ccttgaaacc tggtcaacta cattactcag aaagctctgc gttgaatgaa 180 tgccgtcaga gccaatgagg gctcggaaag aagcatttcc gtgtgtgcgc ctaatgtagg 240 gccgagactt ccggggtcct cttgtagcgg ccacgttgat ctgcgatacg cgtgtttgcc 300 <210> 35 <211> 300 <212> DNA <213> BC3M_247 <400> 35 acagcctttt ggaagtcgcg ctaaccttgg cctgagacct gcaaacttgc ccaggctggg 60 gcgtgtgaac cggcgagcgc gcagcggaaa cggggcgggg cacctgaggc tgggaatgca 120 gaggagcctt ccggggggcg gggcggggcc tcccgtgcag accaatggtg gagtagatgc 180 agatgtcaaa acgcgcgctc aagtggcttc cgccaggaat cccgacgctt agggaggcgg 240 agggaggatc gcttgagacc agcctgggca aacaagcgag accctcgtct gtttacttaa 300 <210> 36 <211> 300 <212> DNA <213> BC3M_250 <400> 36 aggctccaag gagttcagca tagcacgagc ttttaatttg cgtgcagaca agcacaaaag 60 gcacaaccgg atatacctgt tatttcccaa tgacctgaga gcccgaagtt tatgttaagc 120 cttgggttat ggcacagctt gcacgcaagg ccctgcagct cctgcaggca attgagaggt 180 ggtggtgtac aggacagagg aacaactctg aagtgacagc acataattta attcccccta 240 agctttccaa gcatgcagac tgttcctttt ttgtcagcgt ataacctaag tgatttgttc 300 <210> 37 <211> 300 <212> DNA <213> BC3M_252 <400> 37 aacacacaca acacacacac acacactctt tcaaggtcta gcaaaaccca tcaggagagg 60 ttgggccctg gaggtgctgt ggcttcctgc tgccccgctc cctcccgcct cctccctgca 120 gggctcctcc tggggaggcc tgtccagctg ccaggccccg ccccgccaca gcccccgctg 180 tcctcctccc tccctcagcc gtgccagcag cggcacagaa ctggaattgc cctggacggc 240 cacagctctg catatccccc aggagtgtgg acaagaaaaa ataaacacaa ttagagttca 300 <210> 38 <211> 300 <212> DNA <213> BC3M_253 <400> 38 aagagaagcc tgtcagtcca gctcgggcta cacactgggt gagccatgca ccacccagga 60 atttccaggg cacgtgccac gtaaggggca cacccgacag agtccaatgg ggttccccac 120 tgggcctccc actgagttgc tcagcctggg ccggaaaagg gtgagtcacc ctgggggtgg 180 ggctctccag ggtagaggcc aaaggagtga ctaccatgac aattctccgg agggcctgag 240 gcggcggtgg acagccccgg caacagtggg ccctccccgc agaactgtgg ttccaatccc 300 <210> 39 <211> 300 <212> DNA <213> BC3M_255 <400> 39 gcgtgcttgt gtgtgggtgt gtggtggggt atgtgtgtgt ccggggctgc cgattcaact 60 gaaaaacaaa agcggctctg agtctgaagc taaggtttaa caagtgacca agatgactca 120 tgctgcttgg ctgcaaaggc cacagggctg ccacccccag cggggcgggg cctgggtggg 180 aagagtcaca ggtacagagg ctcctgtgac attcacactc tgcccctgca tcggctgcct 240 ttggggccaa atacttttgt gaaaattaag acagaaggcc gggtgcggtg gttcacgcgt 300 <210> 40 <211> 400 <212> DNA <213> BC3M_257 <400> 40 aaacctgcgg gccccggtcc aggcgtggtc ccgctcgcac gagggagcgg tcgcccaggg 60 tgccgggaag tcggggaccg gccagccgcc gaccggccgc acccctcccc gccgagctcg 120 cgcgcccgcc tcgtcagcac ctttcccgca gcgcagcccc acagtggtca cgaggcgggc 180 gcggcccggt cagccctggc tagactaggc atcggcacca cccacctcgc ccctccccgt 240 cccgctggtt tcccctcccc ctccttcccc tccccctctc tgttctcctt cccctcccga 300 tccccgggcg ggccgcagcg cgccacgtac ctggccccgc ccctgcgagc cacgcaggga 360 accccggtga cgtcaccacc ctccggcgct ctcattcccg 400 <210> 41 <211> 300 <212> DNA <213> BC3M_260 <400> 41 cctgattagc cagaactata ggtgcacacc accacgcctg gctaattttt gtattttttt 60 gtagagacag ggtttcaaca tactgcccaa gctggtcttg aactcctggg ctcaaatgat 120 ccgctctcct tggcctgcca aagtgcaggg attagaggcg tgagtcacca cgcccagccc 180 attttccttt tcctgtccat aaattcctct ctgaccacat ggcagcatca gagtccctct 240 ggttcaggga gttaccggat tcatgaatca ttctttgctc aattaaactc tgttaacttt 300 <210> 42 <211> 300 <212> DNA <213> BC3M_265 <400> 42 tgtttctagc tagttataat tggcaggcaa ccagaagcct catctgccaa gggcggaagt 60 catgtctgga acaggtttcc ctcttaagac tgtgggctaa cccagcatct tgccactttg 120 tgtgggactt cctcattctt agtacataac tgtgtttgac cctcagggat gactagtgtt 180 tcctggcctc ggtacagttg acttctccag aaactatctg gctcactctc aatttcctgg 240 agccgtatat cctaattaca aaaatgggaa aatcatacct agagtcccat agaaagagaa 300 <210> 43 <211> 300 <212> DNA <213> BC3M_266 <400> 43 aaggagagat gatggaggca acacttacag gtcctgaaaa ctgctcaaat aggcacaaag 60 gaaacgaagg atgcctgaaa ataatgatga tgcaaaaact aagctaggta gggcagcagg 120 aagaaccggt ttggtgggaa gatgatgaat ttggcttgag gtgcttggca agacatgcaa 180 gtctgctgca caggcaatgc aggtcagcaa tttgagagaa aggtaaactt tcacaatcct 240 aatttgagaa gcaacagcac ggagatgatt atggagccat gagggctgag acactcagcg 300 <210> 44 <211> 300 <212> DNA <213> BC3M_267 <400> 44 cccatgcaac tgtgtgatga aacagcccca cacatccggg agcacagcca aggcgtcctg 60 tgccacctcc ctggtagaat ctggcttttc aacttgctca cccatgagag gaaagcggtt 120 ttagacatca ggcttacccc tctcctaagc cacacccttt tctcattccc agctgaggaa 180 ctgagcctga gacactgagg ttcccagctg cctccatgat tcgccagcac ccagcttcag 240 tttcacatcc tcccaatcgt catagccagg acagcatgcc tcactgacca cgagggaatg 300 <210> 45 <211> 400 <212> DNA <213> BC3M_268 <400> 45 aggcgccgcc gctgagggca ggcagcccgg cagccactac acacggaccc gtgacgtcgg 60 gcgtagcgcg gcgcacgtca cggccgctcg ctcgtgcgcg cgcacccctc cgcccggcgg 120 tagcggaacc cgccgcgggc gcgcgcccgg cccaggggag tgggtcggcg cctgcgcaga 180 ggcccgccac gcccacacac aggccaccgc ccccaccggc cggacggcgc ggggattccc 240 agtcctggct ccgccccggc ctcggccccg cccccgcccc tgccccgggg cagcctgtgc 300 tgttccgtgt gcgcggcgca tacgcacctg ggttgtctcg agcctgcggt agtggccaga 360 tcccagacat ccgagtagat cccgtgaaaa ggtctcccac 400 <210> 46 <211> 300 <212> DNA <213> BC3M_269 <400> 46 ccagccactg tgagtactgg ctgctcctga ctcacagctg caccctttga gggagtgagg 60 ggcgttaccc ttggctgaca ggatatgatt agaaagcctg gaaggcggct ggtggtggcc 120 catggccaat gagtcactgt gcgagtgtat actagcccag ccctcttgcc tccaggcagg 180 aaaacctctg tgtgaagtgc tctacttgct ccatgctctg gcgctctctg tacctacgca 240 ggctgaagct gagcctagac atctcctgaa accacacctt tgactcgctt cttccccttc 300 <210> 47 <211> 300 <212> DNA <213> BC3M_27 <400> 47 aacttgaaac aaataaagca ggttgaagat cacagtgtgt gctgctgggc ctgtgggggc 60 gctgggcagc agaaaggcac actctgcctg cagcctcggg atctggtcgc ctgtgtggga 120 gtagggagga gtcctgacgt accctctcta agactggctg ctctgcacct ccctccaagc 180 caggctggcc agtaaagaaa tctagctgtg gacaggaaac gagtggtttt tgtgatctga 240 gcagaaaggg cgttttaggc ctggagcaga gtggaggccc tgagccacgg cccaggaagt 300 <210> 48 <211> 300 <212> DNA <213> BC3M_275 <400> 48 tttgtgtgca tgtgcgtgtg tgtctggggg aaggaggtag aggaagtgag atgatggtga 60 cagtgacagc agcttggaga agacaggggg gtgggtctac ttctgaggaa gtccttggct 120 gaggtagggc cgcagagagg cagggtgagg gtggagcctg tggtttcaga gaggagtttt 180 aatggctgcc aagaatgtgc acatgaagcc gaaagggagt gcggcctgga gctgcagtca 240 gcccagaggg cgggtggagc ctgtcccagg gcactaggat cgcagagaac gacaggaggg 300 <210> 49 <211> 300 <212> DNA <213> BC3M_277 <400> 49 aaggtattcg aatcgaatga aatggaatcg aattgaaggg gtatgaatgg aatggaatgg 60 aatggaatcg aatcgaattt aatggaattg aataggaaag aatcaaatgg aatggaatca 120 acccgagtgg aatggaatgg aatggaaagg aatggaatgg aatggaatgg aatggaatgg 180 aatggaatgg aatggactcc agtggaaaag actggaatgg aacggtttcg aatgaaattg 240 aatcgaatga aatggaatgg aatgcaatgg aatcaaatgg aatggacttg aatggaatgg 300 <210> 50 <211> 300 <212> DNA <213> BC3M_283 <400> 50 cccatcgtgt tgcgaaagca ttcaggttga acagtgttca ggaagaatac tcaagcaaaa 60 actggtttgc agccaaatac agagactgca aaccccagtg gcttcagggg ccaggcaggg 120 aaagtaaaca tgtgaaacaa tagggagtag tcctgcctgt ggggaacagg ggagttctca 180 tgccccagcc taataaatga aaaaattatt tatacaccac agtggaaccg gagatgcacc 240 taaagccatt gggatgtggt ttctcttttt catctcactg ctctgtctct gatgtggctt 300 <210> 51 <211> 300 <212> DNA <213> BC3M_284 <400> 51 agcttggatg ctgcacccag gactgaaagg gggacctgtg ggcggcctct gcctctcccc 60 gcgcagcgtc aggacacagg cccacattcc ctcctggctt ctccctgaag ggagagagaa 120 taatagttgg ttcaaatgtc aggcctgctc cgtgctggtg gggagactgg ttgagcaggt 180 ccgcaggagg gacggaggga ggaaattatt aataattgca aagcaaccag ccacactaca 240 ggccttgagt tgtgtctgcg tttgtctttg gaggtgtgga gttgggggtg ctgatcctgg 300 <210> 52 <211> 300 <212> DNA <213> BC3M_290 <400> 52 ctgggggact gttgggtcag aaagtgttca gggagcagct gttgcgccct ccctcggccc 60 cgccgctcgg agacgccccg ccccctgcct tcaccggccg ccccgccccc tgccttcacc 120 ggccgcccgg ccacgcccca caccgccccg gccccgcccc agcgcccacg tgactagcat 180 aggcgcgccc ctgctccgcc ccccgccgcc gactccgcct ccgggacggg agcgagcggc 240 gagcgcgcgc actcccagtt ctcgctcggc gactcccgcg cacgcgcgcg ccgtgccacc 300 <210> 53 <211> 300 <212> DNA <213> BC3M_291 <400> 53 ctttttcctt taaagaatac acttcttatg taatttgttt tgcatttctg gaatgaggaa 60 cttttctgct catattgttg ttaaaatcta gacaacacgc ccgtgtgata gatcaccctg 120 agccttggaa ggaaatgatt caccacaata ctgtaactga aagtcgtcta acaccagggc 180 tggaaggcag gctatgaacc gctgcattac ctgcgtgcag cagcaatggg aggcagccag 240 aggttccctc ggcctgccta gctcacttca gctttgttcc tgttctgttt cctccgtccg 300 <210> 54 <211> 300 <212> DNA <213> BC3M_292 <400> 54 catcaaggga cccagagatc acagaatagc cagcccttca ttttcaggtg agggcctctg 60 tgggaaggtg cgttccaagc cacacagttg gaagttgagc gaactgaacc aaggctgggc 120 ttttgtgttt gctgtttaaa cagtgtgtgg ttttactcac ctaccatagt gctcctccta 180 ctggtgggca ccttagagta ggctgaaaac aacgtgtctc actgtccttt tttgtttgtc 240 tctgagtatt tttccttatg atcttgaagt aacatttact taatttgcaa tgaatgaaaa 300 <210> 55 <211> 300 <212> DNA <213> BC3M_295 <400> 55 tagcaacatg aggcaacctt gtctgcgaaa gaggaggtga ccgcagctcc tggggatgtg 60 ccaactctgg gatgtgacgg gaagacaaag ggcttctgtc cccttctgcc tggcggtaag 120 agagccggcc gcccggcagg catgccccag cctgtggttc tggaatgcgg gcaagccacc 180 gtccccagag acctgtgttg gtggccaggc cagcccacac acccgattgg cacatactct 240 tgtgcttgcc caggagcgga gtcagaccat tcacgctgcc ttcatgggag ttgaacagtt 300 <210> 56 <211> 300 <212> DNA <213> BC3M_307 <400> 56 tgcccccaca tcgccatcct gcctgtcctt ctgggcctgc acgtttgttg tgtttggaag 60 gagccaccaa ggaggaggat gtcaatgtgc aagttctcag ggaagcaggc cccgcagcct 120 ccgtcagtgt cttccgtccg caggaagaac ccaggcctgg gtgattcatc ggggcctcag 180 ggccgggagg cactaaatct tctgcagatg tggtaagatc ctatcacagc agaaagggaa 240 gggctagagt ctcagggaag gttttgctag ggagacgggc ttggaggggg ctgaggctca 300 <210> 57 <211> 300 <212> DNA <213> BC3M_321 <400> 57 caaaaaatac tgagcacaaa taaatattca ctgtaaggca ggaggcagcc gggaccagac 60 tccagatcag atcgaagact ggcggaaact gaggagaggc gcttaaagcc cctctccata 120 agacacgccc accacctcca tgacagttta ccattgccgt ggcaacaccc ggaagttact 180 gccccttgcc gcggcaacac cggaagttcc cgcccacttt ctagctaatt ctgaatgacc 240 cgcctcttaa ttagcatgtc ttttaaagtg gacctaaata cgcctacgaa actgccccta 300 <210> 58 <211> 300 <212> DNA <213> BC3M_323 <400> 58 tggtctctat ctcctgatct tgtgatacgc cggccgcggc ctcccaaagt gccgggatta 60 caggcatgag ccaccaggca cggctgaaca gggttttttt aaagttcctg aactgggtgg 120 ctgcccacaa gagggcactc atgcctctgc gtgtgagtgt ggaacctggt cgactgctgt 180 gacactcttt gggaagacag tcggcatttt ccacttccag cagcaggtgg cagtatgggc 240 aagagtatca tcacccatct ttcatctacc acccatgtgc ttacatctgg gctgctgaga 300 <210> 59 <211> 300 <212> DNA <213> BC3M_326 <400> 59 ctcacccgta acacacacac acacatgcgc gccctctcct cttgcatgac tcctctctca 60 gggctgagct gtttttctga gggtgccaca atgaatcagc tgcttagtca tctctggagt 120 gcgggagcta gcagaacagc aaagaggcat tacaaaccca atagcgggtt tcacttcctt 180 gagcagtatt tattctgctc tctacctcat gctgcccaaa ctgttggaga ggccctatcc 240 actctccctg ccttttcagc ccttattctc ccaaatgcag ccacagagga ggtaagagag 300 <210> 60 <211> 300 <212> DNA <213> BC3M_334 <400> 60 tttttgtggt tgagttctga attaaaaagt gtcgtactat atatttgttt ggtcatttct 60 atgacttcag cactctcaaa gacttggaca gaagcataaa taagaggcag tgtgagcatt 120 ctccaagtaa tcattccaag ttggtgagtt catactccac ctagacctca tggcctcgcc 180 actctcagtc aaactggttt ttgtggttgt caaagtccaa catggcaaat ttcccactga 240 tactaagtga gttgaaaact caagttacag ttgattttgc cctagggaat tttaccaaga 300 <210> 61 <211> 300 <212> DNA <213> BC3M_353 <400> 61 agggcatttg ctgagttttg ctttatgtga ctggatggga ctggccttgg agacactaat 60 aagcacgtga gggtttttgg acaatgcgaa gagttggtgc caagccacaa gtgggagatg 120 ttgaacttcc tgcgaatctg gtgtgttgta gcctgagtcg gtttcaatat gaaaaataag 180 agtgacagtg ccttccttgt atgctaatct ggcgaagtgg ctcatgctgg ccatgtaaca 240 acctggcagc ctcctacaga agcaagtggg gtgtggcatt cctgctgtct gcatcttctg 300 <210> 62 <211> 300 <212> DNA <213> BC3M_360 <400> 62 tgagtgagct ggcaagggaa ggaaggttgg tgagagtaag tcgtaagtat ctttttagaa 60 aaagaaaaaa aaaaaaatag cagaggatgg tttcgatcca tcgacctctg ggttatgggc 120 ccagcacgct tccgctgcgc cactctgctc tatacggtag tgatatttgc agtgaattct 180 ttatgatgtt ttcctcaaaa cttggtgggg attctggttt tttggtatgg ttaaacaaat 240 ctgatttcca caccccacca agggccacta gttctattta tgctgcaaac atgaggatga 300 <210> 63 <211> 300 <212> DNA <213> BC3M_362 <400> 63 agacactcgt gccctcaaga acttacaatt taggtttgtt tgaaagttaa ctgagaattc 60 caagtctaag ggtgctggtg agagtggcct ggcaaagcca gcccaggaag agctgctgag 120 caggttgtaa ggaacgagga tgccccaccc cccctccttg gcaaagcaga ggatggtatt 180 ccagacaggt cacaaacagc tcaagcaaag acgtggtgac agggatgagg aaggcacgct 240 tgcggatcgc tagaatggag gttgcctggg cacagacacc ttggaggatc cgattagcaa 300 <210> 64 <211> 300 <212> DNA <213> BC3M_367 <400> 64 gcagcaccca gttcagaact ttgcagattg ctggaattgc tggggagctg ccagagggct 60 ttcagaactc agcatgagtg cagtgagtgc ggcagccagc tcccaaaggg gatggcctca 120 gcatagtttc cagctctcgg ctctcttaac aggaaggcgt tgcggtgtcg cagacacaat 180 ctgaagtggg ggttcaaaca gacacaactt cacatactgg ttttgcaact tgctggcaaa 240 tgagtgaatt ttactcaatc ccaatttttc tcatctgtaa aacagccata aaatcgaccc 300 <210> 65 <211> 300 <212> DNA <213> BC3M_37 <400> 65 ccttccctcg acctcccttc taccccttcg ccttagatgg agattttctc tttctgaacc 60 cggaaccgct ccctcctccc cgcccggcta tagctggcag gacagggatt ggatgccacg 120 gccggtgcga gccttcgctc tccgccgagg gtagtgacac aggcgaggac gggccccgca 180 ggtcacatga gggcggggcc tggcgggctc gtgaccttcc cgtaggcggg gtccctcccc 240 tcccagctcg ggccgacagc gtcgtcacca gcttttatgg ggcacgtggc ggctgatgca 300 <210> 66 <211> 300 <212> DNA <213> BC3M_380 <400> 66 ttcactgtct gctggggcag gaggcagggc aggggcagga gggaggcaac cccagcctgt 60 gcccggcttc cccgaggcgt gtgccttgtg cggctgctga aggagtgact cctgaggaaa 120 ccagcttttc cagggaggca agggatggga gaagagggtg gagaaggaag tggtcacacc 180 acttgccttc tgccaatact gtccctttct tacgcgttaa ccttccactc tgagctatga 240 cactttcagt actagtgtgg taagttctac aggaaacagg aaacatggtt taacagacat 300 <210> 67 <211> 300 <212> DNA <213> BC3M_39 <400> 67 gcggggctca cgagtgacga agggcagaag ggcggggcgg gacgagagga ggggaggggc 60 gagcggaggg gagggacgag aggaggggcg ggacgagagg ggggcgggac gagaggaggg 120 gcggggctca cgagtgacgc agggcagaag ggcggggcgc aagagagact gagagcacta 180 cgcgggtgag aggaggggcg gggcgtggga gtgacggggc gtgggagtga ctgggcgcgg 240 agaggccgga gccggaggcg aggcgaggcg tgagagtgaa tgagggagga gggctgtgag 300 <210> 68 <211> 300 <212> DNA <213> BC3M_393 <400> 68 agcaggcact tctgagcctg cagaggaaag gggacttccc ggggcccccg agagcacagg 60 gatgcccggt ttgggagcct tggctaggca gctgcagctg cgcaggaggg tggggcttcc 120 gccccgccga ctcagaagcg ggcggggctt cggcctcttc ccggctcccg ccagctccgt 180 ggagcctgga gccccagccg cgcctccctg gctgcagctg ctgtattcac agcagccgct 240 tcaggcgggc cgccacggcg atcagttttt catggcctcc aggttctgat gaagcgtggg 300 <210> 69 <211> 300 <212> DNA <213> BC3M_402 <400> 69 tagcatcagg gtacctgctc tgggcttggc tcctcttggc cttggctcct ctggggcatc 60 atgggaacaa ggaggagcag acacctcgcc agccggggtg tgtctgagcc ccaggaatcc 120 tgcctcgcag ggaggattct ctgagtagag gtgatgtgtt atcacagtat cagcatttct 180 cagcctgact catggagggg agtgacttta ctgttagggc ctgaggggaa ataatgagga 240 acttctagac cagtttcatt tttattttta aacccacagt tcacccttgg gccttttgcc 300 <210> 70 <211> 300 <212> DNA <213> BC3M_406 <400> 70 acaagctctg acacagcgta tactcagtaa acatggagtg aatcagttca ttcaatgaat 60 gaacgaatga atgaaacgcc agagcccgcc acaggggtcc gctgccgctc cacgcccggg 120 cctctcaccg gccaatcaac actgtgactc gtacgccctg ccccctgatg ccacgcccat 180 cactcgcccc tctggattcc ctccggctgc gtggaaatcc cggagcactg gatttcccag 240 aggcgcctcc ggtagcagtg cgcatgctcc agcgccggta gctgaggcat caatttcccg 300 <210> 71 <211> 300 <212> DNA <213> BC3M_410 <400> 71 gcgcctgcgc cgtggcggcc gaactggcgc tcaacagacg ggcggggccg agcgtgaggc 60 ggagtctgcg cactgctgct ttgcaaatga aggtgggcgg ggtggagcga gcgtgagaga 120 cgtgcccccg accaataagt gcagagatcg ctcgggggcg gggacctgct gccgcgctcc 180 aggctgcggg tggccagaag gcagcggggg cgggctcggc gcgcgcggct ccgcccactc 240 cgggcccctg ctgggcggga aggcggcgcc ccggccgagg tggcggcggc tcctcaggta 300 <210> 72 <211> 300 <212> DNA <213> BC3M_414 <400> 72 acagaagcaa tctgacaaag tttttgtgat gtgtgcattc atctcgcaga gtggaacctt 60 aatttcgatt gagcagtttt gaaacactcc ttttgtagaa tctgtaagtg gacatttgga 120 gcgctttgag gcctaaggtg aaaaaggaaa tatcttccca taaaaactag acagaagcat 180 tctcagaaac ttgtttacga tgtgtgtact caactaacag agttgaaact ttcttttgat 240 agagcaaaac agtaaattga agtttaaaat aattgtaaca attgcatctt atatatcagg 300 <210> 73 <211> 300 <212> DNA <213> BC3M_417 <400> 73 acctgaggac gctcagcgct ggagctccga gcaggagtta aagtacccgc agtggagctg 60 gcccgctgcc tttccagact gcaaggcccg cagtgcaccg cgcgggtgac gtgtaacagg 120 ggcgggcggg accgctggag agcctatgag cacagcgcaa gcaccccgag gggccgcctt 180 ccggccctat tggtgaatcc gattaggggt gggaccgagc cgtggtgatt ggcggccgga 240 gggatggcaa agctgccacg cgcacggggg tgcaggctgc gggactgcga tcgctgccgg 300 <210> 74 <211> 300 <212> DNA <213> BC3M_47 <400> 74 ctgctgaggc tgctcctgca gcaggggcca tcttgttgct cggcctcctc ttcctcctcc 60 tcgtcctccg ccgcccagtc gctcgttgtc ctcgtcccct tcctcttcct caggctccgg 120 cccgccccgg agactggggc ggagacgagg gcgaggatcc tccctcagga ggcggggcgg 180 gcggagggga ggggcgggcg cgggagcaaa gctctgagtc accggccacc aacgcccgga 240 gggagaccgg cgacgctctc cgccgcgacc gaaagtctca cacgccctga gcagatgaac 300 <210> 75 <211> 300 <212> DNA <213> BC3M_48 <400> 75 cttcctggga atgagtgtct cacagcagcc agaggttgag gctttgtctt aaggtggagg 60 taataaaaac ctgtttgttt tcccagagca agacttgcct cagggcccct gcttgtttga 120 gacagggcat tcagtttgcc tgagtcaggc tggggaggtt cttctagtct ttggaatcct 180 gttgggcagg gtggctgcag gggatctgga agaggtaagg cctgtcccag gggtgggggc 240 tgaggaggtg gacatgaaga actccctgga ttaggacagt ggcccaggag gggaaaagag 300 <210> 76 <211> 300 <212> DNA <213> BC3M_49 <400> 76 aagttgggca gggcaggggc tagtctgcct tcttctgggc ccaaccctcc cggccggcac 60 cacaggcatt acaggtactc tgtgcactca ggctgcgcag acccgcagct tcctatcctg 120 tagctcactt tcctctgagg cgggctggag gcggagcttg tccgctgggg gtggggctca 180 aagctggggc ggggatacgg agcaaaactt aagaggaaga tgagaagcct ggttggccag 240 gaggcttatc tgtcaggaca gggggcgggg cctggggggc cgtacctttg cttaccgcga 300 <210> 77 <211> 300 <212> DNA <213> BC3M_52 <400> 77 tcatttttat tattagaatc tactatttgc caggtactct gaggcaccag gaatatacaa 60 ataacaagtg cagaaactga ccagtctagt tggacaggca gacgcataaa tcagcaatca 120 caaggcagtg tgactaatag aggaggtatg gcagcacaga gagaagtgag cagttactca 180 gcctgccttg taggcagggc actcagagaa gcttctcaga ggtggtgaca tgagagagag 240 ctgagccagt gatacagaag catgtagcaa gagtgggggt acactggcct ggcagtgtga 300 <210> 78 <211> 300 <212> DNA <213> BC3M_55 <400> 78 acccacgtcc ctcaatcccc acgagcagct gactgggacc tgaaagtgcc accagacgcc 60 ctcacaagtc tgctttcttt gctgggaaac agcagccgcg ccgcagcctc cgcccgctct 120 ggggaagccc caccttggca acaagccgct gattggctgg ctcgggggcg gcgcgggcca 180 atccaagccc gccctgacgc cgcggcgttt ggccgagaac tattaagaaa aaaaaaaaaa 240 gaaaaaaaga aaggtggggc cgggcgctag gtggcttccc aacggagttg ctcccccggc 300 <210> 79 <211> 300 <212> DNA <213> BC3M_58 <400> 79 caagagtgga aaacctgccc tcacaggccc agctggccag agggcttgtc tctttcagtc 60 gccctccccc agagggagca ggagcagaca atggccacca tgactcacca gtgagccatc 120 ttcccctccc cacccctcca gcctggccca tgacagctta gcttgtcctc caagggagct 180 gcagcccagc ctcccagggc cgccagcttc ctctctcttc acccaacctg gctccccccc 240 tgcttgtgca acaccacatc agagggttgt gaagtggaga gggaggagtt tgacagctgc 300 <210> 80 <211> 300 <212> DNA <213> BC3M_61 <400> 80 ggggctagca ggagagccag aataagcaga tttggcttct aatctgactc acccaactgg 60 ttcagaatgc agccaaaccg gggaaatttg ggtgagctcc tcctcttccc ctccctcact 120 tgctctcgca gttgtcctct agcacctctc tctatccctc cctccccgtc cccccgcccc 180 actcccccag ctctgggagc gcatgcgggg gcggggtcct aggaggatgt gagcccatgg 240 acacgcgggc gggatgtttt tctcctcgtc attgttctcc catgcccatt gtgtgcgctg 300 <210> 81 <211> 300 <212> DNA <213> BC3M_66 <400> 81 agccactcac tgcagaaggg gctggtgaga gacatgctcg tcatctccga gggcctggct 60 ctgcgccagc cacacactta tctgcctgct ccatctccgg agtttctgtc tctgagcttt 120 ggcaatggaa gttgtgcttc cactattagc caacaccgag ctggactctg gtaactgaca 180 cagccgtgca tctagtgtag ctcgggttga gatgacttgg cttttttttt tttttttttt 240 tttttgagac ggagtctcgc tccgtcaccc aggctggagt gcagtggcgg gatctcggct 300 <210> 82 <211> 300 <212> DNA <213> BC3M_67 <400> 82 ctattgtttg ggctttgctt ttgacttcac atcctgaaat aaatggtcgt tgcagaccag 60 gcacgtgagc aggaagtggg cagggcttaa aacacagaga agtcataacc tctgcggttt 120 ggttcatgtt gtaatatgaa aaccaggaag cttatcttgc aggaggctga tgtgtaaaag 180 ttcagaatgg agtggagccc tccctcttgg caccctatgc gcggagtcac cctttgtctg 240 ccacaggaag cacccaggtc ctggcagcta gaaaactgta acaacttgga aacatttccc 300 <210> 83 <211> 300 <212> DNA <213> BC3M_69 <400> 83 accagataag cacccactgc actcaaggcc tctctgatca agtcccacga ccaggctctc 60 caagtcctga caccgcggag acccccaaaa gaggaggatg gagcagaggg caaggctctc 120 agctccgcgg actcacaccc agctgcagag gcagggggag ccgccctttc tgtggccggg 180 gaaattgagg tcacttcctg tctcgcttcc ctctctctgt gctggctgca tccttcagaa 240 ggggggtggg tggctgcagg gcagcgccag gcaaggctgc ggagaagccg gtgctccctg 300 <210> 84 <211> 300 <212> DNA <213> BC3M_7 <400> 84 tctgcctgca agctccaggt cttgcaaagc ctgagaactg gtatggcaag ggcagagtga 60 gagcagggaa gaaatggagt caagctgaac agagacttcc gcatcatgag ggtggtggga 120 ggtggggagg aagttctgaa accacacaca tttatcattg ttattgagtc agacagacag 180 tgcctgctga catgtaactg tcaggcgttg ccaaggcaca gtagggttgc aaaggctgag 240 tgtccacttc ctcccaatga gtcaggaaga acccttggat aattctccaa aatagtttca 300 <210> 85 <211> 300 <212> DNA <213> BC3M_70 <400> 85 caggcacagt tctaagtaat tgaagtctac tgaggtaggt atcaatatta ttcccattct 60 ctagatgacg aaactggtgc atgtagcagt taggaaatat gcccaaaggt acactgctcg 120 taagcggcag agcaggaata tgaatccagc cagtctggtt ccggagtctg cattcttgat 180 cactgcacta taccaacttt cactttgttg tgagcacctg cctatctcag acatcagtca 240 gtaagtccct tgaaggcaag aactgtcctt tgatccttat tcctgagccc taggcattac 300 <210> 86 <211> 300 <212> DNA <213> BC3M_71 <400> 86 ggtgtatgta ctgatgtact gaatgggcga ccatttcctt ccagaaaggc tggagtcagc 60 cctccgggat ggctgtctct gtgtgactgt ctgcacacca ctgccctcca ctggacactg 120 aatcaaagct gccccagacc cacgttggtg tcaggactcc ctcaggtttc cttccctccc 180 tatctgggac acaacctcct gggcaaaccg gtttcttggt tggcttctct taccaggttt 240 gttttaccct gtctgccttg cattgaatcc atgaaacttg ggaagtacaa gaggaacaat 300 <210> 87 <211> 300 <212> DNA <213> BC3M_74 <400> 87 agggcatttc ttgagcctgg caggaggcca ggggttttac agggcaggaa ggaacctgga 60 ggaaccgagg agccacgttg ttggttggaa agaagggtgg ccaggtgggg aggagtctgg 120 caaagggtcc cagacagcag gaagggcacc tgtgaagccg ccctgccgag tgtgtggtag 180 aggcggggtg aaatgagcac tgctcataaa agtgactgtt gtgatttttt atgagatgga 240 gtctcgctct gtcgcccagg ctggagtgca ggggagcaac ctcggctcac tgcaacctcc 300 <210> 88 <211> 300 <212> DNA <213> BC3M_76 <400> 88 gatcgcggtg aatatcctgc aggtcatgct acgcccactt gctttgaggt tgggaaagca 60 gcctcttgac cttcagccac ttgagcccag caggtggagc tatttgccct cactggagcc 120 tgctttctcg ctaaggggaa atctgctaac cattacacag atagcaggta agtatttgga 180 gttgctcatg attttggaat gttgtggaaa caggtttcct cactttcaat aatgaacctt 240 atgatttatt atatgcaata caaatacctg ctgctgtggc catgataaag gttccaggcc 300 <210> 89 <211> 300 <212> DNA <213> BC3M_80 <400> 89 ctgaaggagt taaaacagtc cccaccccca ctcccgattt ctagaacccc acgataaatt 60 gggtaaatat gtattccatt cattggtgca tctgaccttg gtctgtgaca gaggaaaggc 120 gtgtcttctc atactgttcc ctatgaacaa aaggcaagca aatgagggtg actcaggact 180 tctcatggcc tacacacaac tgaacatttt tctgaatgat tccacgtata cacttaggaa 240 tcaggaagag aaacatttta ctcttcacta accaaataaa accatctata aatcatatgc 300 <210> 90 <211> 300 <212> DNA <213> BC3M_82 <400> 90 aaacaaacac tgggtttagg cattctgctc tcccagcacc gcatggctga gggtggaaaa 60 aaataacatc tgaaacaggc cgggcttttg atgatacctc cttatgacag acacatcgaa 120 aaccaccgac ggtgagtcac ccacattctg tgcataccct ctccgaggag caggaagtgt 180 ggctatttta aaccctgagg caatgagaag ttttcagatg cgtcctaagg cgctccggcc 240 agcgccctgc atgcacacga gggccttcct cagtgtggcc ccagcacatc tgtagacctg 300 <210> 91 <211> 300 <212> DNA <213> BC3M_84 <400> 91 attttgactc acaatgttga aaccagatta taaatgagtc atcagtgaat cgaccacaaa 60 gagcctttgc ggaggtgatt tacaggagag ctctgatgtc tgctgtcccc tgcacacgct 120 tcacagagat gctgtcagac gcagagctgg tctggggcat ctgttgccgc gtcagctcaa 180 aaggatgctg tgttgtcacc aatgggattc cccagcccag gcggtgttgc ggtcccaccc 240 acacaaggaa ggcggccatc actgaataat gcttgtggtt acatcatcat tgctggtttc 300 <210> 92 <211> 300 <212> DNA <213> BC3M_86 <400> 92 gggatttcct ctgctttttc aactaaaatc agctctttcc caaaagcctg tgctgcctgt 60 tgtgttttct ctgtgtgtgt tttgaaatgg ccttgcgcac cctccagact ctctgcctcc 120 ggggcaagtc tgccttttcc ctgtttccac tttgcatact gcataacttc cttctctgcc 180 ccacatggac acacgccctc ttattcatgc atccgcggct cttgctgcat tcgctcggca 240 gcaaagccac aggctccctt gtggatgtcc cttgtggaga tttgtacttt tttaccccac 300 <210> 93 <211> 300 <212> DNA <213> BC3M_87 <400> 93 gagcacagaa gacgacccag ctgaggctgg caggagagac gaaggccccg ccagatcccg 60 gaagccgcgc ccttctgtcc ggctgcacgc ccgattggac ggttcctacg tcagcgcccc 120 tgattggata gggctccagg ccccgccccc tcagtccctg agtgacggag gatgtgatcg 180 gacgctgggc tgagggcgac aaagtgacag gttcttggct gcagcctttt catgcagggc 240 ttcctgcttg cgctgggcct ggcccagccc agggggcatt ttcatttaac cttttgtata 300 <210> 94 <211> 300 <212> DNA <213> BC3M_9 <400> 94 agtttggatg ttctctgtgg agagggaata aaaccattgc ctgttccctg gagggaattg 60 gatgctgaag cttctacctt taacaggggc atgggtgcag ttccagcctc tgccagcagg 120 ctgggccctg tgcccacttt tgaaagacct tcagggctgt ggggcatgag atgagagagg 180 gagggaagat aatctggctc actgccgggc actttatgtg acttacctcc ttaattcccc 240 cgggcacagc cctgagagga ggttggcagt gtctgcattt tacagatggg gaacttgagg 300 <210> 95 <211> 300 <212> DNA <213> BC3M_92 <400> 95 aaacttcgtc tcaaaaacaa aacaaaacaa agcgaaaaaa caaaaaaagt ttcattgttt 60 cacctccaca cagctctgtc tgcattttga gcaatggcca ccagagggca ggaagaacca 120 atctataaag cacacaaggg tttcaccaac tttgaagtcc tccgttagaa ggcaagttgt 180 ccactaatat gtaggaacga ttaatggcca ccagagggca ggaagaacca atctataaag 240 cgcacaaggg tttcaccaac tttgaagtcc tccgttagaa ggcaagttgt ccactaatat 300 <210> 96 <211> 300 <212> DNA <213> BC3M_96 <400> 96 gaagcagcca gaagacctgg ttctcccaag cctgctactt gctggccatg taaccttgag 60 caagttattt cctcctctgc aaaaggaaga caataccctc ctgcctactt cactcagacg 120 ttctgaagat cgatgtagca atgtggtgta gacatgcttt tgtaacgtgg acacacccag 180 acaggaataa gtcttgtcca gggaatattt tttgacaaac actgcttaac tggtttgtcc 240 tctgagtgtc acaacttttg gcagaacttg gtagttggag gtcagtggtt ggctggttca 300 <210> 97 <211> 300 <212> DNA <213> BC3M_23 <400> 97 cagcccttcc tcacctcatc actccccatc cccccaagat atagaaaggc cgtgacagct 60 gccagccctg cacatgctct tgtttcaaca gcggcgattg cacatcacgt agtccccacg 120 tgacctgtcg ggcctagggc aagcgcaaag ctttcggaaa cccgaattat tgcaaccttg 180 acttcctgcc tgtctctgag gctcccgggc tgtgctttaa gctggacagg cacctgcttt 240 acagggaaaa ggaccaaggt ccggagagga aaggggcttg tcccaggata cgcagcaagt 300 <210> 98 <211> 300 <212> DNA <213> BC3M_103 <400> 98 ctaggagctc tgtgcggaac cgcgtccagc cgccgactca ctgacacatc acaatgagtc 60 acgtgctctg tgcaccgggc ggatttgtca gatccgctgc tgcatcacgg ctcggcaggg 120 ctctctgggt tctcagtgcc ctcctaggtc tgcaatgcag tgcgggagag gaggaatatg 180 ggcttgtggg ggcaggggca gcgcccggac tcctcccggg gcaggactcc cagaaacgca 240 ggaagcgatg acgctgctca gataaaccct ggcgctctgc gctggcgtcc tggtcaggag 300 <210> 99 <211> 300 <212> DNA <213> BC3M_44 <400> 99 catgtgagct caattaatac aacatatggt tactgtacgc ccaaaggcaa cgcattcaaa 60 ttgctttgta ccatgtaaaa cacacactct tgaaaaacag acgcctagtg cggaatcctg 120 tgcacgcctt taactcctcc aaacgagcag ggggcgtcat ggattagcat gtcccggggt 180 tcgggaatca gcatttccga ggaaaggggc gctcaggaga tatccccacc cccgatgagg 240 ggcactgtcg tggatgagtt taaaccacgc cataggcagc caagaactga gctcccgatg 300 <210> 100 <211> 300 <212> DNA <213> BC3M_219 <400> 100 gggaccaatc cagaagcagc acccagaccg gtttacccgg ttccaggacc ttgggcgaag 60 tccacccgcc cgagggcagg gacgacgcag gccacgccgc ggcccagttg ctagccaggc 120 agggtgggga tttgatcttg ccaaggaaat gtgagcggga ggccgagcgt tggaggtggg 180 taagtcgtca ctatgcaggg cggagccatc ctgtgtctat cacgcccaag ggcggtgcat 240 gcaaattgac tcccgcattt ggcttttccc cgggctccgt ctccgcgcgc tgcaacccgc 300 <210> 101 <211> 20 <212> DNA <213> BC3M_102F <400> 101 ggggctctca aggactctac 20 <210> 102 <211> 20 <212> DNA <213> BC3M_102R <400> 102 cgagggcaga aaggagagac 20 <210> 103 <211> 18 <212> DNA <213> BC3M_11F <400> 103 gtttccgtac gcagcctg 18 <210> 104 <211> 20 <212> DNA <213> BC3M_11R <400> 104 caatgagcag gaagatgggc 20 <210> 105 <211> 20 <212> DNA <213> BC3M_117F <400> 105 aaggctcagt gtgtgtatgc 20 <210> 106 <211> 20 <212> DNA <213> BC3M_117R <400> 106 ggttactgac tgctccccat 20 <210> 107 <211> 20 <212> DNA <213> BC3M_119F <400> 107 taaccttccc ttggcttcca 20 <210> 108 <211> 20 <212> DNA <213> BC3M_119R <400> 108 gagagaagga aagggagggg 20 <210> 109 <211> 20 <212> DNA <213> BC3M_125F <400> 109 acctctagac caagtgcctg 20 <210> 110 <211> 20 <212> DNA <213> BC3M_125R <400> 110 ggtggcttca gagatggagt 20 <210> 111 <211> 20 <212> DNA <213> BC3M_132F <400> 111 ctgacggcaa attcctccag 20 <210> 112 <211> 20 <212> DNA <213> BC3M_132R <400> 112 gcttgtctgt catctgaggc 20 <210> 113 <211> 18 <212> DNA <213> BC3M_137F <400> 113 gaccagccaa tctcccgg 18 <210> 114 <211> 19 <212> DNA <213> BC3M_137R <400> 114 gagatccatt ggttgcggc 19 <210> 115 <211> 20 <212> DNA <213> BC3M_139F <400> 115 gtgtgagcca agtgttgacc 20 <210> 116 <211> 20 <212> DNA <213> BC3M_139R <400> 116 ttcatcctgc ctgcctagag 20 <210> 117 <211> 20 <212> DNA <213> BC3M_142F <400> 117 ctttccactc acaccttgcc 20 <210> 118 <211> 20 <212> DNA <213> BC3M_142R <400> 118 aggcacaaaa gaggcaaagg 20 <210> 119 <211> 20 <212> DNA <213> BC3M_146F <400> 119 ggatgagtca ctggatccgt 20 <210> 120 <211> 20 <212> DNA <213> BC3M_146R <400> 120 gcctctgtcc cttctccatt 20 <210> 121 <211> 20 <212> DNA <213> BC3M_154F <400> 121 aatccagtcc cagttcccag 20 <210> 122 <211> 20 <212> DNA <213> BC3M_154R <400> 122 actggcctct caacacctac 20 <210> 123 <211> 20 <212> DNA <213> BC3M_168F <400> 123 cccagagctg caatgtgtac 20 <210> 124 <211> 20 <212> DNA <213> BC3M_168R <400> 124 tacggatgag gaggctggta 20 <210> 125 <211> 20 <212> DNA <213> BC3M_171F <400> 125 cctgtacctc tgcagtgcta 20 <210> 126 <211> 20 <212> DNA <213> BC3M_171R <400> 126 tcctgggcag agtgttttca 20 <210> 127 <211> 20 <212> DNA <213> BC3M_172F <400> 127 cctccttccc atttctgcct 20 <210> 128 <211> 20 <212> DNA <213> BC3M_172R <400> 128 ccttttccat ttccagcccc 20 <210> 129 <211> 20 <212> DNA <213> BC3M_173F <400> 129 gaatccgcag atcctcaagc 20 <210> 130 <211> 20 <212> DNA <213> BC3M_173R <400> 130 aagttcttct tcccgccctc 20 <210> 131 <211> 20 <212> DNA <213> BC3M_178F <400> 131 accattcagt gtaagcccca 20 <210> 132 <211> 20 <212> DNA <213> BC3M_178R <400> 132 tctttccacc atgcacgttg 20 <210> 133 <211> 20 <212> DNA <213> BC3M_179F <400> 133 acaccaccac ctccttcttc 20 <210> 134 <211> 21 <212> DNA <213> BC3M_179R <400> 134 ggaaagtgca aatgaacccc a 21 <210> 135 <211> 20 <212> DNA <213> BC3M_182F <400> 135 tggttccctc ctcacatcag 20 <210> 136 <211> 20 <212> DNA <213> BC3M_182R <400> 136 ttgcaacctc cgcttgaaaa 20 <210> 137 <211> 20 <212> DNA <213> BC3M_199F <400> 137 ttgggaaggc aagaggatga 20 <210> 138 <211> 20 <212> DNA <213> BC3M_199R <400> 138 gtgttcaagc cctccctcta 20 <210> 139 <211> 20 <212> DNA <213> BC3M_20F <400> 139 ctcacaccgt ctcactaggg 20 <210> 140 <211> 19 <212> DNA <213> BC3M_20R <400> 140 gaattccaca gacaccgcg 19 <210> 141 <211> 20 <212> DNA <213> BC3M_203F <400> 141 cctcgtaggg cttgaaatgt 20 <210> 142 <211> 23 <212> DNA <213> BC3M_203R <400> 142 agaagaattt ggcgaggatt acc 23 <210> 143 <211> 20 <212> DNA <213> BC3M_206F <400> 143 ttgagcgcag tctggaaatg 20 <210> 144 <211> 20 <212> DNA <213> BC3M_206R <400> 144 gagatgagcc ctgtcacagt 20 <210> 145 <211> 20 <212> DNA <213> BC3M_212F <400> 145 aagtcctaga gcaccggaac 20 <210> 146 <211> 20 <212> DNA <213> BC3M_212R <400> 146 cttttctccg cagcgatacc 20 <210> 147 <211> 20 <212> DNA <213> BC3M_22F <400> 147 ggaaaatccc ttgaagccgg 20 <210> 148 <211> 20 <212> DNA <213> BC3M_22R <400> 148 tgggctgttg taatggtgtg 20 <210> 149 <211> 20 <212> DNA <213> BC3M_221F <400> 149 tgatgagcta ctacgcctgg 20 <210> 150 <211> 20 <212> DNA <213> BC3M_221R <400> 150 tgggaagttg agggatgtgt 20 <210> 151 <211> 20 <212> DNA <213> BC3M_224F <400> 151 cggggaggag atgagctaaa 20 <210> 152 <211> 20 <212> DNA <213> BC3M_224R <400> 152 agtacgtcga acaggggatc 20 <210> 153 <211> 20 <212> DNA <213> BC3M_226F <400> 153 tggattgata cggggctctt 20 <210> 154 <211> 20 <212> DNA <213> BC3M_226R <400> 154 cgacagctgg tttcacaagt 20 <210> 155 <211> 18 <212> DNA <213> BC3M_230F <400> 155 ctgagaggcc cgcaatgt 18 <210> 156 <211> 18 <212> DNA <213> BC3M_230R <400> 156 cactcagatc tcgccgcg 18 <210> 157 <211> 20 <212> DNA <213> BC3M_231F <400> 157 gagcggtgca aaggttctta 20 <210> 158 <211> 20 <212> DNA <213> BC3M_231R <400> 158 cctacctcgt gctcttggaa 20 <210> 159 <211> 19 <212> DNA <213> BC3M_232F <400> 159 ctctccaagc accactccc 19 <210> 160 <211> 20 <212> DNA <213> BC3M_232R <400> 160 tgtggagact gaaccttgca 20 <210> 161 <211> 20 <212> DNA <213> BC3M_235F <400> 161 cagtccctac accccacaat 20 <210> 162 <211> 20 <212> DNA <213> BC3M_235R <400> 162 catttcccag aagaccacgc 20 <210> 163 <211> 20 <212> DNA <213> BC3M_239F <400> 163 tggttaaggt gtaggggtgg 20 <210> 164 <211> 20 <212> DNA <213> BC3M_239R <400> 164 agcacagagt taccacctcc 20 <210> 165 <211> 20 <212> DNA <213> BC3M_241F <400> 165 gtgtaaacaa acccaggccc 20 <210> 166 <211> 19 <212> DNA <213> BC3M_241R <400> 166 gactccatca ccgtcccaa 19 <210> 167 <211> 20 <212> DNA <213> BC3M_245F <400> 167 gcgcgctttt aaggagagtt 20 <210> 168 <211> 20 <212> DNA <213> BC3M_245R <400> 168 ggctctgacg gcattcattc 20 <210> 169 <211> 20 <212> DNA <213> BC3M_247F <400> 169 gatgcagatg tcaaaacgcg 20 <210> 170 <211> 19 <212> DNA <213> BC3M_247R <400> 170 gagggtctcg cttgtttgc 19 <210> 171 <211> 20 <212> DNA <213> BC3M_250F <400> 171 aggagttcag catagcacga 20 <210> 172 <211> 20 <212> DNA <213> BC3M_250R <400> 172 caagctgtgc cataacccaa 20 <210> 173 <211> 19 <212> DNA <213> BC3M_252F <400> 173 ctgtcctcct ccctccctc 19 <210> 174 <211> 20 <212> DNA <213> BC3M_252R <400> 174 tttcttgtcc acactcctgg 20 <210> 175 <211> 20 <212> DNA <213> BC3M_253F <400> 175 acacccgaca gagtccaatg 20 <210> 176 <211> 20 <212> DNA <213> BC3M_253R <400> 176 ggtagtcact cctttggcct 20 <210> 177 <211> 20 <212> DNA <213> BC3M_255F <400> 177 cggctctgag tctgaagcta 20 <210> 178 <211> 20 <212> DNA <213> BC3M_255R <400> 178 ggagcctctg tacctgtgac 20 <210> 179 <211> 18 <212> DNA <213> BC3M_257F <400> 179 ccccacagtg gtcacgag 18 <210> 180 <211> 20 <212> DNA <213> BC3M_257R <400> 180 ggggaaggag aacagagagg 20 <210> 181 <211> 20 <212> DNA <213> BC3M_260F <400> 181 gctcaaatga tccgctctcc 20 <210> 182 <211> 20 <212> DNA <213> BC3M_260R <400> 182 gactctgatg ctgccatgtg 20 <210> 183 <211> 20 <212> DNA <213> BC3M_265F <400> 183 gcggaagtca tgtctggaac 20 <210> 184 <211> 20 <212> DNA <213> BC3M_265R <400> 184 cgaggccagg aaacactagt 20 <210> 185 <211> 20 <212> DNA <213> BC3M_266F <400> 185 ggcacaaagg aaacgaagga 20 <210> 186 <211> 20 <212> DNA <213> BC3M_266R <400> 186 ccaagcacct caagccaaat 20 <210> 187 <211> 20 <212> DNA <213> BC3M_267F <400> 187 cctccctggt agaatctggc 20 <210> 188 <211> 20 <212> DNA <213> BC3M_267R <400> 188 gtgtctcagg ctcagttcct 20 <210> 189 <211> 18 <212> DNA <213> BC3M_268F <400> 189 ctgtgctgtt ccgtgtgc 18 <210> 190 <211> 20 <212> DNA <213> BC3M_268R <400> 190 gagacctttt cacgggatct 20 <210> 191 <211> 20 <212> DNA <213> BC3M_269F <400> 191 acctctgtgt gaagtgctct 20 <210> 192 <211> 20 <212> DNA <213> BC3M_269R <400> 192 gcgagtcaaa ggtgtggttt 20 <210> 193 <211> 20 <212> DNA <213> BC3M_27F <400> 193 tctaagactg gctgctctgc 20 <210> 194 <211> 20 <212> DNA <213> BC3M_27R <400> 194 aaaacgccct ttctgctcag 20 <210> 195 <211> 20 <212> DNA <213> BC3M_275F <400> 195 gggtgggtct acttctgagg 20 <210> 196 <211> 20 <212> DNA <213> BC3M_275R <400> 196 ctccctttcg gcttcatgtg 20 <210> 197 <211> 20 <212> DNA <213> BC3M_277F <400> 197 tggaatggaa tcaacccgag 20 <210> 198 <211> 20 <212> DNA <213> BC3M_277R <400> 198 cgaaaccgtt ccattccagt 20 <210> 199 <211> 20 <212> DNA <213> BC3M_283F <400> 199 aacaggggag ttctcatgcc 20 <210> 200 <211> 20 <212> DNA <213> BC3M_283R <400> 200 agccacatca gagacagagc 20 <210> 201 <211> 20 <212> DNA <213> BC3M_284F <400> 201 gttcaaatgt caggcctgct 20 <210> 202 <211> 20 <212> DNA <213> BC3M_284R <400> 202 cacctccaaa gacaaacgca 20 <210> 203 <211> 20 <212> DNA <213> BC3M_290F <400> 203 gcccacgtga ctagcatagg 20 <210> 204 <211> 19 <212> DNA <213> BC3M_290R <400> 204 gagcgagaac tgggagtgc 19 <210> 205 <211> 20 <212> DNA <213> BC3M_291F <400> 205 atcaccctga gccttggaag 20 <210> 206 <211> 20 <212> DNA <213> BC3M_291R <400> 206 caggtaatgc agcggttcat 20 <210> 207 <211> 20 <212> DNA <213> BC3M_292F <400> 207 caagggaccc agagatcaca 20 <210> 208 <211> 20 <212> DNA <213> BC3M_292R <400> 208 acagcaaaca caaaagccca 20 <210> 209 <211> 20 <212> DNA <213> BC3M_295F <400> 209 tctgcgaaag aggaggtgac 20 <210> 210 <211> 20 <212> DNA <213> BC3M_295R <400> 210 cattccagaa ccacaggctg 20 <210> 211 <211> 19 <212> DNA <213> BC3M_307F <400> 211 agcctccgtc agtgtcttc 19 <210> 212 <211> 20 <212> DNA <213> BC3M_307R <400> 212 tgagactcta gcccttccct 20 <210> 213 <211> 20 <212> DNA <213> BC3M_321F <400> 213 ctctccataa gacacgccca 20 <210> 214 <211> 20 <212> DNA <213> BC3M_321R <400> 214 aagaggcggg tcattcagaa 20 <210> 215 <211> 20 <212> DNA <213> BC3M_323F <400> 215 caaagtgccg ggattacagg 20 <210> 216 <211> 20 <212> DNA <213> BC3M_323R <400> 216 tcccaaagag tgtcacagca 20 <210> 217 <211> 20 <212> DNA <213> BC3M_326F <400> 217 ccctctcctc ttgcatgact 20 <210> 218 <211> 20 <212> DNA <213> BC3M_326R <400> 218 atgcctcttt gctgttctgc 20 <210> 219 <211> 20 <212> DNA <213> BC3M_334F <400> 219 tcgccactct cagtcaaact 20 <210> 220 <211> 21 <212> DNA <213> BC3M_334R <400> 220 ccctagggca aaatcaactg t 21 <210> 221 <211> 20 <212> DNA <213> BC3M_353F <400> 221 tgttgtagcc tgagtcggtt 20 <210> 222 <211> 20 <212> DNA <213> BC3M_353R <400> 222 ccccacttgc ttctgtagga 20 <210> 223 <211> 20 <212> DNA <213> BC3M_360F <400> 223 gggaaggaag gttggtgaga 20 <210> 224 <211> 20 <212> DNA <213> BC3M_360R <400> 224 accgtataga gcagagtggc 20 <210> 225 <211> 20 <212> DNA <213> BC3M_362F <400> 225 tccaagtcta agggtgctgg 20 <210> 226 <211> 20 <212> DNA <213> BC3M_362R <400> 226 taccatcctc tgctttgcca 20 <210> 227 <211> 20 <212> DNA <213> BC3M_367F <400> 227 gagggctttc agaactcagc 20 <210> 228 <211> 20 <212> DNA <213> BC3M_367R <400> 228 gcaacgcctt cctgttaaga 20 <210> 229 <211> 20 <212> DNA <213> BC3M_37F <400> 229 ttccctcgac ctcccttcta 20 <210> 230 <211> 20 <212> DNA <213> BC3M_37R <400> 230 ccctgtcctg ccagctatag 20 <210> 231 <211> 20 <212> DNA <213> BC3M_380F <400> 231 gactcctgag gaaaccagct 20 <210> 232 <211> 20 <212> DNA <213> BC3M_380R <400> 232 cagagtggaa ggttaacgcg 20 <210> 233 <211> 20 <212> DNA <213> BC3M_39F <400> 233 gcaagagaga ctgagagcac 20 <210> 234 <211> 20 <212> DNA <213> BC3M_39R <400> 234 ccctcctccc tcattcactc 20 <210> 235 <211> 20 <212> DNA <213> BC3M_393F <400> 235 gctgcagctg ctgtattcac 20 <210> 236 <211> 20 <212> DNA <213> BC3M_393R <400> 236 aggggtacag ggcagaaaat 20 <210> 237 <211> 20 <212> DNA <213> BC3M_402F <400> 237 ggaacaagga ggagcagaca 20 <210> 238 <211> 20 <212> DNA <213> BC3M_402R <400> 238 ctccatgagt caggctgaga 20 <210> 239 <211> 20 <212> DNA <213> BC3M_406F <400> 239 ggccaatcaa cactgtgact 20 <210> 240 <211> 19 <212> DNA <213> BC3M_406R <400> 240 tccagtgctc cgggatttc 19 <210> 241 <211> 18 <212> DNA <213> BC3M_410F <400> 241 ccgaactggc gctcaaca 18 <210> 242 <211> 20 <212> DNA <213> BC3M_410R <400> 242 ctctgcactt attggtcggg 20 <210> 243 <211> 19 <212> DNA <213> BC3M_414F <400> 243 tgtgtgcatt catctcgca 19 <210> 244 <211> 20 <212> DNA <213> BC3M_414R <400> 244 cctcaaagcg ctccaaatgt 20 <210> 245 <211> 20 <212> DNA <213> BC3M_417F <400> 245 gcaggagtta aagtacccgc 20 <210> 246 <211> 20 <212> DNA <213> BC3M_417R <400> 246 gctgtgctca taggctctcc 20 <210> 247 <211> 20 <212> DNA <213> BC3M_47F <400> 247 cttcctcttc ctcaggctcc 20 <210> 248 <211> 19 <212> DNA <213> BC3M_47R <400> 248 cggtgactca gagctttgc 19 <210> 249 <211> 20 <212> DNA <213> BC3M_48F <400> 249 ggctggggag gttcttctag 20 <210> 250 <211> 20 <212> DNA <213> BC3M_48R <400> 250 ttcatgtcca cctcctcagc 20 <210> 251 <211> 20 <212> DNA <213> BC3M_49F <400> 251 ccgcagcttc ctatcctgta 20 <210> 252 <211> 20 <212> DNA <213> BC3M_49R <400> 252 accaggcttc tcatcttcct 20 <210> 253 <211> 20 <212> DNA <213> BC3M_52F <400> 253 atggcagcac agagagaagt 20 <210> 254 <211> 20 <212> DNA <213> BC3M_52R <400> 254 tggctcagct ctctctcatg 20 <210> 255 <211> 20 <212> DNA <213> BC3M_55F <400> 255 agctgactgg gacctgaaag 20 <210> 256 <211> 18 <212> DNA <213> BC3M_55R <400> 256 cccgagccag ccaatcag 18 <210> 257 <211> 20 <212> DNA <213> BC3M_58F <400> 257 caagagtgga aaacctgccc 20 <210> 258 <211> 20 <212> DNA <213> BC3M_58R <400> 258 gaggggaaga tggctcactg 20 <210> 259 <211> 20 <212> DNA <213> BC3M_61F <400> 259 ctcttcccct ccctcacttg 20 <210> 260 <211> 20 <212> DNA <213> BC3M_61R <400> 260 catgggctca catcctccta 20 <210> 261 <211> 20 <212> DNA <213> BC3M_66F <400> 261 agccacacac ttatctgcct 20 <210> 262 <211> 20 <212> DNA <213> BC3M_66R <400> 262 cccgagctac actagatgca 20 <210> 263 <211> 20 <212> DNA <213> BC3M_67F <400> 263 aagtgggcag ggcttaaaac 20 <210> 264 <211> 20 <212> DNA <213> BC3M_67R <400> 264 gggctccact ccattctgaa 20 <210> 265 <211> 20 <212> DNA <213> BC3M_69F <400> 265 aagaggagga tggagcagag 20 <210> 266 <211> 20 <212> DNA <213> BC3M_69R <400> 266 gagagaggga agcgagacag 20 <210> 267 <211> 20 <212> DNA <213> BC3M_7F <400> 267 ggtggggagg aagttctgaa 20 <210> 268 <211> 20 <212> DNA <213> BC3M_7R <400> 268 ctttgcaacc ctactgtgcc 20 <210> 269 <211> 20 <212> DNA <213> BC3M_70F <400> 269 atgacgaaac tggtgcatgt 20 <210> 270 <211> 20 <212> DNA <213> BC3M_70R <400> 270 tcaagaatgc agactccgga 20 <210> 271 <211> 20 <212> DNA <213> BC3M_71F <400> 271 ccctccactg gacactgaat 20 <210> 272 <211> 20 <212> DNA <213> BC3M_71R <400> 272 agaagccaac caagaaaccg 20 <210> 273 <211> 19 <212> DNA <213> BC3M_74F <400> 273 ttggaaagaa gggtggcca 19 <210> 274 <211> 20 <212> DNA <213> BC3M_74R <400> 274 ctcatttcac cccgcctcta 20 <210> 275 <211> 20 <212> DNA <213> BC3M_76F <400> 275 tttgaggttg ggaaagcagc 20 <210> 276 <211> 20 <212> DNA <213> BC3M_76R <400> 276 agcagatttc cccttagcga 20 <210> 277 <211> 20 <212> DNA <213> BC3M_80F <400> 277 tgcatctgac cttggtctgt 20 <210> 278 <211> 20 <212> DNA <213> BC3M_80R <400> 278 ggccatgaga agtcctgagt 20 <210> 279 <211> 20 <212> DNA <213> BC3M_82F <400> 279 agacacatcg aaaaccaccg 20 <210> 280 <211> 20 <212> DNA <213> BC3M_82R <400> 280 gccttaggac gcatctgaaa 20 <210> 281 <211> 20 <212> DNA <213> BC3M_84F <400> 281 aggagagctc tgatgtctgc 20 <210> 282 <211> 20 <212> DNA <213> BC3M_84R <400> 282 gcatcctttt gagctgacgc 20 <210> 283 <211> 20 <212> DNA <213> BC3M_86F <400> 283 tgtgctgcct gttgtgtttt 20 <210> 284 <211> 20 <212> DNA <213> BC3M_86R <400> 284 atgtggggca gagaaggaag 20 <210> 285 <211> 18 <212> DNA <213> BC3M_87F <400> 285 caggagagac gaaggccc 18 <210> 286 <211> 20 <212> DNA <213> BC3M_87R <400> 286 tcacatcctc cgtcactcag 20 <210> 287 <211> 20 <212> DNA <213> BC3M_9F <400> 287 ctttaacagg ggcatgggtg 20 <210> 288 <211> 20 <212> DNA <213> BC3M_9R <400> 288 tctctcatct catgccccac 20 <210> 289 <211> 21 <212> DNA <213> BC3M_92F <400> 289 cagctctgtc tgcattttga g 21 <210> 290 <211> 20 <212> DNA <213> BC3M_92R <400> 290 tggtggccat taatcgttcc 20 <210> 291 <211> 20 <212> DNA <213> BC3M_96F <400> 291 ctggccatgt aaccttgagc 20 <210> 292 <211> 21 <212> DNA <213> BC3M_96R <400> 292 tgtgtccacg ttacaaaagc a 21 <210> 293 <211> 20 <212> DNA <213> BC3M_23F <400> 293 atagaaaggc cgtgacagct 20 <210> 294 <211> 20 <212> DNA <213> BC3M_23R <400> 294 gcaggaagtc aaggttgcaa 20 <210> 295 <211> 20 <212> DNA <213> BC3M_103F <400> 295 gggagaggag gaatatgggc 20 <210> 296 <211> 20 <212> DNA <213> BC3M_103R <400> 296 agggtttatc tgagcagcgt 20 <210> 297 <211> 20 <212> DNA <213> BC3M_44F <400> 297 gggcgtcatg gattagcatg 20 <210> 298 <211> 20 <212> DNA <213> BC3M_44R <400> 298 cagttcttgg ctgcctatgg 20 <210> 299 <211> 20 <212> DNA <213> BC3M_219F <400> 299 gaccaatcca gaagcagcac 20 <210> 300 <211> 20 <212> DNA <213> BC3M_219R <400> 300 gcaagatcaa atccccaccc 20 <210> 301 <211> 8 <212> DNA <213> Ad2.1 <400> 301 taaggcga 8 <210> 302 <211> 8 <212> DNA <213> Ad2.2 <400> 302 cgtactag 8 <210> 303 <211> 8 <212> DNA <213> Ad2.3 <400> 303 aggcagaa 8 <210> 304 <211> 8 <212> DNA <213> Ad2.4 <400> 304 tcctgagc 8 <210> 305 <211> 8 <212> DNA <213> Ad2.5 <400> 305 ggactcct 8 <210> 306 <211> 8 <212> DNA <213> Ad2.6 <400> 306 taggcatg 8 <210> 307 <211> 8 <212> DNA <213> Ad2.7 <400> 307 ctctctac 8 <210> 308 <211> 8 <212> DNA <213> Ad2.8 <400> 308 cagagagg 8 <210> 309 <211> 8 <212> DNA <213> Ad2.9 <400> 309 gctacgct 8 <210> 310 <211> 8 <212> DNA <213> Ad2.10 <400> 310 cgaggctg 8 <210> 311 <211> 8 <212> DNA <213> Ad2.11 <400> 311 aagaggca 8 <210> 312 <211> 8 <212> DNA <213> Ad2.12 <400> 312 gtagagga 8 <210> 313 <211> 8 <212> DNA <213> Ad2.13 <400> 313 gtcgtgat 8 <210> 314 <211> 8 <212> DNA <213> Ad2.14 <400> 314 accactgt 8 <210> 315 <211> 8 <212> DNA <213> Ad2.15 <400> 315 tggatctg 8 <210> 316 <211> 8 <212> DNA <213> Ad2.16 <400> 316 ccgtttgt 8 <210> 317 <211> 8 <212> DNA <213> Ad2.17 <400> 317 tgctgggt 8 <210> 318 <211> 8 <212> DNA <213> Ad2.18 <400> 318 gaggggtt 8 <210> 319 <211> 8 <212> DNA <213> Ad2.19 <400> 319 aggttggg 8 <210> 320 <211> 8 <212> DNA <213> Ad2.20 <400> 320 gtgtggtg 8 <210> 321 <211> 8 <212> DNA <213> Ad2.21 <400> 321 tgggtttc 8 <210> 322 <211> 8 <212> DNA <213> Ad2.22 <400> 322 tggtcaca 8 <210> 323 <211> 8 <212> DNA <213> Ad2.23 <400> 323 ttgaccct 8 <210> 324 <211> 8 <212> DNA <213> Ad2.24 <400> 324 ccactcct 8 SEQUENCE LISTING <110> Korea Advanced Institute of Science and Technology <120> A cancer diagnosis marker based on ATAC-Seq and Method using the same <130> P19-B293 <150> KR 10-2019-0040056 <151> 2019-04-05 <160> 324 <170> PatentIn version 3.5 <210> 1 <211> 300 <212> DNA <213> BC3M_102 <400> 1 gggatccctc agcagctccg gacctcatct gccccacttc ggcatcccgc gcgggaatat 60 gaccatgtag gagtaacccg gggctctcaa ggactctacg gtttgtcacg gtttgaacgc 120 aagcgcaggg cctggggcgg gtgcaggtgg agggtcggcc tctttctgcc cttgggaacg 180 cccctttctg gatgtggacc ggcgaggcgg tctctccttt ctgccctcgc ctggtgaaat 240 gtgggcactg ctgccaggag aaaaaaaact gaagctgtga attcagttca tcacccttcc 300 <210> 2 <211> 300 <212> DNA <213> BC3M_11 <400> 2 agcggggcta gacggagtca ggggcggacc gccacagcct gcaccaatca ggacccggtt 60 gataggcaga gcctggcgac ttcgaagact cgcccccagt caaagagccc cggggattcg 120 tttccgtacg cagcctggaa accagcctgg gcctatcctg cgcgccgctg cgggctacta 180 ttggctgcca agaaaccccg cccatcttcc tgctcattgg ccggtgcggt ttacgtaaga 240 ggagcctgtt gctgagcgaa aagtctgttc tgcaattttc gctaaggagt tgttaacgct 300 <210> 3 <211> 300 <212> DNA <213> BC3M_117 <400> 3 gtacactgac tttggaacaa atgccacagg ccctaattgc aggctccaag gagttgagat 60 tccatactgg ggttgctgga ggcagaagcc ttcccacttt caggacccgg acctgccctt 120 cccccacgcg gtcccgccca gccagctaca ccctggccac agagcgctca caaaggctca 180 gtgtgtgtat gccgggctga ctcacagtgg ttctgggccc aggcgaggac cttctcagag 240 gggcggaagg ggccctctcc ctcctggcca ttttccatgg ggagcagtca gtaaccagga 300 <210> 4 <211> 300 <212> DNA <213> BC3M_119 <400> 4 ctaggagaca agtaccctgc tgagcagaca aatagcctgg actttgtaac agccaaagtg 60 gcccacatgg cactcgcggg gctgtgcagc atccaggcag gggacactgc ctggcattct 120 aaaggcctgt gctgagtcat ctttcacagg aaccagcttc tcaagtctct gggatcctgt 180 tttacaggct gttactaacc ttcccttggc ttccaggcca aggaagaaga aagaataaat 240 attaaccaaa ggtacggctg tggcagggtg cccagggccc ctccctttcc ttctctcccc 300 <210> 5 <211> 300 <212> DNA <213> BC3M_125 <400> 5 ccacctctag accaagtgcc tgcctggaat gtcctgtcca acttatccac cagctcatcc 60 ttccgggcct aattaaggcc ccactccatc tctgaagcca ccccatgctc atgactctcc 120 ctgacgcagg ttcccgacac accgggtgac tcagctgcag tgtttttcac agtccgtgat 180 gcgtcacagc tatttatagg tgtgcttaac tccctgtgag gaagcacttc aacccccaaa 240 cgcaagttcc agaaatatgc tcataaagat aaagatagag aaaagctctg gaaaaataca 300 <210> 6 <211> 300 <212> DNA <213> BC3M_132 <400> 6 tctggaagca agttacccac aggtttagtt tgcctggaga gaaacaggcc ggagagagac 60 tgcggcctcc ctagggtctt ctgacggcaa attcctccag ctcagtggct gctgggcagc 120 agcacagccg gtttctctca agggcacacc ccacacaccg cgtcactgtg cactagcctc 180 agatgacaga caagcctttc acaagacttt tgtggcactg ttcatttctg agaccttctc 240 tatgatgagc tcaaactgct tacctcagag aagaaactgc gtgcacagaa agctgctgag 300 <210> 7 <211> 300 <212> DNA <213> BC3M_137 <400> 7 taatttctcc gaggccagcc agagcaggtt tgttggcagc agtacccctc cagcagtcac 60 gcgaccagcc aatctcccgg cggcgctcgg ggaggcggcg cgctcgggaa cgaggggagg 120 tggcggaacc gcgccggggc caccttaagg ccgcgctcgc cagcctcggc ggggcggctc 180 ccgccgccgc aaccaatgga tctcctcctc tgtttaaata gactcgccgt gtcaatcatt 240 ttcttcttcg tcagcctccc ttccaccgcc atattgggcc actaaaaaaa gggggctcgt 300 <210> 8 <211> 300 <212> DNA <213> BC3M_139 <400> 8 cctgactgtg aaagccaggc cccagcccaa gaaggcttca cagaccccta ggtgtgccct 60 ctgtgtgagc caagtgttga ccctggcgat gatgccaaca gcccgactct gcccagcttt 120 cagccgcatg agtgtgaacc agctgagcgg caccagctca gggcaaggca gaaggccagg 180 tgcactgtct ctaggcaggc aggatgaaca gcagcacctg atgtcacagc ggccggggaa 240 ccaccctggt tggggcatgc taacccaccc tgctaatatg ctttgggtcc taatttcctt 300 <210> 9 <211> 300 <212> DNA <213> BC3M_142 <400> 9 ggctcacacc ctccaggggc taccctggtc actcagggta aaagccacag cccttccagt 60 ggccttcaag gccctggtga tctgctcgcc cctccccttt ccactcacac cttgcccccc 120 cactcctggc aacccgtctc tgctccagcc acacacttgc ttcattgctg ttcctggaaa 180 atactgggca tgttctggcc tcggggcctt tgcctctttt gtgcctgctg ccaggacatc 240 tgttcctccg gaaagcagcc tggatcattc ccttctctcc ttcagggctt tattcaaaaa 300 <210> 10 <211> 300 <212> DNA <213> BC3M_146 <400> 10 ggatgagtca ctggatccgt tttcagttcg ttccacccac agatccgtcc tttgcaggcg 60 ccccagaaaa gattgcttca gagctggcac caatggagaa gggacagagg cccagcaaca 120 gggcgggatt ggcaggcgga agggagcgtg tgatgagctg agctcacaaa gggccggggt 180 gctgggctgc agctggggag ggcggggttg gatcagcgcc tgctcctccg ccttcgtttt 240 tcccctcccc ctaaggattc agttccccct tctgaaattc accaccttgt atgtgactta 300 <210> 11 <211> 300 <212> DNA <213> BC3M_154 <400> 11 cacctttccc aagatgacga catacctaat tttgcatagc acctgagatt gtaactaagg 60 tggtgggaac ccttggtgac ttgctgtgtt gtgttggcca gtgttaacac tcacttcccc 120 ttaacagccc tccaaaccca aaaggctatg tcaaatccag tcccagttcc cagttccttg 180 tgactgagcc cctcaccccg ctggacattc ctctccaagc aggcagtgct tccttatacc 240 ctccccacac gggtaggtgt tgagaggcca gtactgaggt aaatttcttt cttatgggca 300 <210> 12 <211> 300 <212> DNA <213> BC3M_168 <400> 12 gaactcatga gtcagggtca gtcagcccag agctgcaatg tgtacgtgct tcccggccct 60 gctcttctgg cccgccccca agccttcacg catgcacccc tgcaggcact taccagcctc 120 ctcatccgta tatcctggaa agggtgcaag catgcctggc ttagtcatcc atccacagga 180 agtttgcaca gccctacctg agtgctaaga tcaggctgta aactgccaga atgaaacaaa 240 agagggaaaa taaatatcag cactctccca taaattttgc aatagtcagc tgtagtctag 300 <210> 13 <211> 300 <212> DNA <213> BC3M_171 <400> 13 cagacagagg ccgctgaatt aacccgtgga ggcgtctctc tgagcagagc ccgcaatgcg 60 cctgcttggg gctccctgca gcctctgggg gaggcagggc ggcccagagc aggcctgtgc 120 tggaaaggaa cgcgaagccc tgtaaccaag cctgtacctc tgcagtgcta gtcccaaggg 180 gcctccgagc tgtttgtcac catgtgattg gctcaggaga ggggtggaga aatgaaaaca 240 ctctgcccag gatatattta gttgaagtgc agctggggaa gtgcttaaac aagggagctt 300 <210> 14 <211> 300 <212> DNA <213> BC3M_172 <400> 14 tcttggattt ctgaatatgc agttctgttc ctaaccagtg tgtcccaacc agaaagtcac 60 tgtaattttt ggttttgttc ccaatctccc tccaaatgtc attagtcata tcctccttcc 120 catttctgcc ttgaataggc agtcattatg atgaagccag gcttgtttca gaattccatg 180 agaaccacag tgtcaggctg tgacaactct ggggctggaa atggaaaagg ctgtgatctg 240 gggttggctg gcaccgtccc cgtgagtcat tatggaaaca ctgtccccgg attctgctga 300 <210> 15 <211> 300 <212> DNA <213> BC3M_173 <400> 15 attggtgagg cgccgcgcct cggtgtcgca gcgaatccgc agatcctcaa gccaggtggg 60 ggcgcccact gcgcgtgtgc agcgcctgat agccaggcta gctgagggcg gggagcagct 120 gcggcacctg ggacacagcg attggctggg accaggagag ggcgggaaga agaacttggc 180 ggagcgcgct catatctctg attggctgcc aagggtagcc cttgacagct gccgggtggg 240 acccgtagac cgcgagcgca ctggcccgtg attggttggg gtgcggcggc gagcatctgc 300 <210> 16 <211> 300 <212> DNA <213> BC3M_178 <400> 16 agcacttccc gggcgccccg cctcagtttc cccatctata aagtggagat gataatagca 60 ttcagagtca ctgatctaag ggctcaggga caccattcag tgtaagcccc atacactccc 120 tgcaagagga agctggttct gactcagcct tgaggctggc gtctgaggca accacaagcc 180 caacgtgcat ggtggaaaga tgactgtaag tgggggcaac ctcagctggc cttgggtttg 240 accatggaat gcgaggcaca aaggggccca ttttgcatac tttctcagag gctgtagggc 300 <210> 17 <211> 300 <212> DNA <213> BC3M_179 <400> 17 cccccgacac caccacctcc ttcttcgcct tgcatcggta cgataaggca cttgcttgac 60 gggaaagaga aactcagctg ccagctgggg ttcatttgca ctttcccccg cctggtctgc 120 ggtctggctg tgcagctagc cgctctgacg gggaggaggg gcccaaagcc actgcctgcc 180 gcctgggcag gggagagggg cacgtgaggc tcatggcaga ggcacagcca gcttcttgca 240 tgtgccctcc ccggggaatg tctgcagagc ccaagactgc cacgccgtgg gcacagccct 300 <210> 18 <211> 300 <212> DNA <213> BC3M_182 <400> 18 gggaaacctt gcagactgtg gggtcctgca cacctagact tgctcctttt agaagccatg 60 gaggaggttg ataatgggaa taacatttat tgtagcttat ctctatgcct tgagcaatgt 120 gctcacactg gctggttccc tcctcacatc agcctgatga gtcagatcct gttattactt 180 ctcactttac agatgaggaa gtagcagtaa atccattacc cttttcaagc ggaggttgca 240 agaggttgca agcggaggca gaataaacac ttgaaacagt gagtcagatc ctgttatcac 300 <210> 19 <211> 300 <212> DNA <213> BC3M_199 <400> 19 ggaaccctag gatctgattt aggacatttg gaatctttaa ggcacattcg atctagaaag 60 tggaactgaa ttgctttggg aaggcaagag gatgatttta cagtataggg tttgtgtgga 120 aatccccttc agcagtaatc aacccaggtg tccaacctgt ttgttaacca tttccaaatg 180 actcagagga cctagaggga gggcttgaac acactccagc actgtttcta caatttagcc 240 tttatttgca ttggaaacca cattcctgaa ttcttgaggg ggcaggctct ggcttattct 300 <210> 20 <211> 300 <212> DNA <213> BC3M_20 <400> 20 tcgtgtgggc ctgggccgct tgctattact aataaaacag cagcaaccac aggacagctt 60 cacttccgga aactccctct gtcacgtgct ttgcatgaat cctcacaccg tctcactagg 120 ggcgctctcc ccgtttcacc agtgacttgg tgacaaccag ccttgctcac gaagcgtcag 180 ccgtatcctt tctgtgtgca gtggggtgtg ggttgtgtgg agccgcggtg tctgtggaat 240 tcacaggctg gggccggaat ccatggcccc cgtcgccgct gccacccccc aggtgctggg 300 <210> 21 <211> 300 <212> DNA <213> BC3M_203 <400> 21 aggtggtgcg ccggcggttc gcagctgctg tgcccgctgg cctgggcgca gccggggaca 60 gcgacgcgtt tcctgcccgg gaagggcccg agcgcagggc cggctatagc ggtcccgcag 120 ctgcctgctt cgattttagc actgctgctc cctagaggga gcaacgcggc cctctgtccc 180 tcgtagggct tgaaatgtaa attattcata tcaggggaat gtgtgcttca aaaagcaagc 240 tggacaagaa ccgacgggta atcctcgcca aattcttcta tttaaccctc accattaaaa 300 <210> 22 <211> 300 <212> DNA <213> BC3M_206 <400> 22 tgaatgtcat gagtcaggaa aaaagaattt gagcgcagtc tggaaatgaa atttcctgcc 60 tgtggtttga ctcacgtctg tctgtctcga aatctacccc aaggacattt attccactgt 120 gacagggctc atctctgagg agcaccagac tcctgcggtg gggagggaag attatccgcg 180 ctgcagagac tagctggcct ccggaagccg cctcctgacc ccgcgtcaag caccgcggtg 240 gatggcgcaa cccagctttg ggaattaatt acccaaggcg cgtttccgtg cagtctggcc 300 <210> 23 <211> 300 <212> DNA <213> BC3M_212 <400> 23 aatgccctgc ccgatccagt tccggcctcc catctcccct tcccgcgtct ccacgctctt 60 tccttccccg gttctgccgt gaatgctccc aagtcctaga gcaccggaac tccccgcgcg 120 ccttggctcc tgggccccag ctccgtgcag tcctggactg gggctccagg tccaccaggg 180 ggcgcccgct gcccaagctg ggtatcgctg cggagaaaag gggcccagag tgattgttcc 240 tcaggggagg gagggggagg tccccagagg gaagggcctg agtttcctct tgggggatgg 300 <210> 24 <211> 300 <212> DNA <213> BC3M_22 <400> 24 aaactaacag ggaatggtgt tgccacctgt agccccagct acttgagaga ctgaagcagg 60 aaaatccctt gaagccggca ggcaaagatt gctcactaca gtctagtcta aaaccccact 120 tccaaaaaaa taaaaaacgc acactcacac cattacaaca gcccaaaata aatgttcaaa 180 caaaatgttg tctcacacct cgcaacaaac acacaacttt ctatctgatt tttaaacacc 240 gttgatgaac cccaccaaca tagggcttca aaaaatttgc ttgaaactca aaacggtttc 300 <210> 25 <211> 300 <212> DNA <213> BC3M_221 <400> 25 cccaaagtac tgtgatgagc tactacgcct ggtcattgtc cctctttctc atgactctct 60 ggacatccct ggggtggagg gtggggcagg cacacacatc cctcaacttc ccagtggttc 120 cacgatgact aagccagccc tgtccctgag gctgggagtc tggagctagg atccaccccc 180 atggcctcat atcccaacct tgagcctggg tttctggtca gactggacgg gctagctcgg 240 tctccttaac tctcagagtt gccttgtcca ggcccagcgg gtcccacaca gccaggcaca 300 <210> 26 <211> 300 <212> DNA <213> BC3M_224 <400> 26 ttacccaaga tcattcggtg cggcctcagc gctggcgctg agtcctcttc tgccccaccc 60 ctcaggctcc cagtcctggt ctagatccct agccacgtag cgtagaaggg ggcgtcgacg 120 ggggttgggc tagagttgga gcggggagga gatgagctaa agcggggctg gctgtgcgag 180 aggcagtagc agcggcgtgt gtcctggggc gccccccggt ggcctgtgct ggggtcgtcg 240 gccgggatcc cctgttcgac gtactccggg gctgaatggg aaacagacag tcccagaccc 300 <210> 27 <211> 300 <212> DNA <213> BC3M_226 <400> 27 aaaaaagact aagtggagat gagggttcag tgcaccccca tctcctggcc ctgctgccca 60 tgagccagac cctgagctga cagattggtg cccatttcct cttatggatt gatacggggc 120 tcttacctct gggtttgctc agcccagcag caggcagtca gagccagaag ttgtttgcaa 180 accgaaaccg gtctgcggct tgggccacct acttgtgaaa ccagctgtcg ctgtttttcc 240 tccctgtgag aaagtccccc agtaaagctg cgcgggggag gagaaggagg gtggaggagg 300 <210> 28 <211> 300 <212> DNA <213> BC3M_230 <400> 28 aggggcaggg ccagggcggt tggtggactg ggcctggctg tacgtaggtg ctctgagaag 60 cccccggcga gaggggcggg gccagagcaa cagtgggcgg ggacaggctg tgcgtcggag 120 ctccgcgggg cctgcggcgg ggtgggtggg gccagggcgg cggtgggcgg gccgtgctgt 180 gcgtaggggc gctgagaggc ccgcaatgtg agaggggcgg ggccggaaca gcggtggacg 240 gggtctgtag ttcaactgtg ccgtggcgtc ttcttcgcgg cgagatctga gtgcctcgca 300 <210> 29 <211> 300 <212> DNA <213> BC3M_231 <400> 29 ggagcggtgc aaaggttctt atcctattta tcggagccag tgtccagaaa aggaagcttg 60 tggtttgaga cattctgtaa atccggttcc aagagcacga ggtaggactc tgaatccgat 120 gtggtttctg ttctcggtga tggtgcagag ctgtgagcca gtggtagggt gtcctttaaa 180 ttccagctca gtacactagt taatgaactt ggctgactga taaaaatgtt ttcaggttta 240 gctcatgaac atatcaacat agacctaaat ataattccag tttgtcatga atgttgattt 300 <210> 30 <211> 300 <212> DNA <213> BC3M_232 <400> 30 ggcctcttgg gggcgcggtg agtaggtggc ctctccaagc accactcccg atgtgcgcat 60 gagcgcagcc gcccctacgc agcgcgtgcg cacgtgcact caccacgtcc atcccagacg 120 tgcggacccg ggtgtctgca aggttcagtc tccacacccc agcgcccgac cctgcgcggg 180 gacatgcgca caagcgcgcg tcctgaccac ccggacgtgc tggcccacac gcacacgcgt 240 gcgcattacc cccgccccat ccgcgcctgc gctcaacccc gcctacacct gctccgtggc 300 <210> 31 <211> 300 <212> DNA <213> BC3M_235 <400> 31 ggtcctggac cgggacttag gtccacaccc acgtgctgac gtcgggcagg ctcagcggcc 60 tcccgcgcct gcgcagcacc gcccttttcg ggcgcggcgc ccagtcccta caccccacaa 120 tcccccgcgc cgttccggag gcgcgctagg agtgggtgtg gcctctgcct ccacattgga 180 acaaggtgag gcagagggtg tcgcgtggtc ttctgggaaa tgtagttcgt ctgccaggcc 240 ggaaccaccg ctcaaccggc tcgcgagact atgcacccca caatgcgccg cgcgcgcagc 300 <210> 32 <211> 300 <212> DNA <213> BC3M_239 <400> 32 tctaagtctg tgcatgcatt tgtggtcaga gtctggggag ctgggggcgt gaatgggctg 60 cttcagacac tgctttgagg gtgtgaccag gacctgaggg tgtggttaag gtgtaggggt 120 ggggctaggc ccttgggggt gggaccacag tcccagaggc gtggccaggg cctcgaaggt 180 atggccatag tttgaggcgt ggccgagaaa ctccgttccc aagggaggtg gtaactctgt 240 gctcagagcg ccctcttgtg gctatcctca ggtctccact ttttattcaa tagctttatt 300 <210> 33 <211> 300 <212> DNA <213> BC3M_241 <400> 33 gtggcccgct gtagccccgc cccgtggccc gcccgcagta ggcccgattc aaatctggcc 60 aatgatagtg tgtaaacaaa cccaggcccc gcctcccgac gaataatccc ccgaccggcg 120 agaggcccat ttaacccgat ggggtttggg gttgggacgg tgatggagtc gtggctccgc 180 ccccagacct gggccaatag gcggctgggc tccgcccccg gcacttgccg cgctgaggac 240 ccgaggcagg gctgggcgcg cagttgcctg atttcgtggc ggctcgcagt ctgggcgctc 300 <210> 34 <211> 300 <212> DNA <213> BC3M_245 <400> 34 cctccaaaag tgctgggatt actggcgtga gccaccgcgc ccggcctcag ggcgcgcttt 60 taaggagagt tcctgacatg acggtgggct tttcctgcag atgcacctct gggtagcgcc 120 ctctttacag ccttgaaacc tggtcaacta cattactcag aaagctctgc gttgaatgaa 180 tgccgtcaga gccaatgagg gctcggaaag aagcatttcc gtgtgtgcgc ctaatgtagg 240 gccgagactt ccggggtcct cttgtagcgg ccacgttgat ctgcgatacg cgtgtttgcc 300 <210> 35 <211> 300 <212> DNA <213> BC3M_247 <400> 35 acagcctttt ggaagtcgcg ctaaccttgg cctgagacct gcaaacttgc ccaggctggg 60 gcgtgtgaac cggcgagcgc gcagcggaaa cggggcgggg cacctgaggc tgggaatgca 120 gaggagcctt ccggggggcg gggcggggcc tcccgtgcag accaatggtg gagtagatgc 180 agatgtcaaa acgcgcgctc aagtggcttc cgccaggaat cccgacgctt agggaggcgg 240 agggaggatc gcttgagacc agcctgggca aacaagcgag accctcgtct gtttacttaa 300 <210> 36 <211> 300 <212> DNA <213> BC3M_250 <400> 36 aggctccaag gagttcagca tagcacgagc ttttaatttg cgtgcagaca agcacaaaag 60 gcacaaccgg atatacctgt tatttcccaa tgacctgaga gcccgaagtt tatgttaagc 120 cttgggttat ggcacagctt gcacgcaagg ccctgcagct cctgcaggca attgagaggt 180 ggtggtgtac aggacagagg aacaactctg aagtgacagc acataattta attcccccta 240 agctttccaa gcatgcagac tgttcctttt ttgtcagcgt ataacctaag tgatttgttc 300 <210> 37 <211> 300 <212> DNA <213> BC3M_252 <400> 37 aacacacaca acacacacac acacactctt tcaaggtcta gcaaaaccca tcaggagagg 60 ttgggccctg gaggtgctgt ggcttcctgc tgccccgctc cctcccgcct cctccctgca 120 gggctcctcc tggggaggcc tgtccagctg ccaggccccg ccccgccaca gcccccgctg 180 tcctcctccc tccctcagcc gtgccagcag cggcacagaa ctggaattgc cctggacggc 240 cacagctctg catatccccc aggagtgtgg acaagaaaaa ataaacacaa ttagagttca 300 <210> 38 <211> 300 <212> DNA <213> BC3M_253 <400> 38 aagagaagcc tgtcagtcca gctcgggcta cacactgggt gagccatgca ccacccagga 60 atttccaggg cacgtgccac gtaaggggca cacccgacag agtccaatgg ggttccccac 120 tgggcctccc actgagttgc tcagcctggg ccggaaaagg gtgagtcacc ctgggggtgg 180 ggctctccag ggtagaggcc aaaggagtga ctaccatgac aattctccgg agggcctgag 240 gcggcggtgg acagccccgg caacagtggg ccctccccgc agaactgtgg ttccaatccc 300 <210> 39 <211> 300 <212> DNA <213> BC3M_255 <400> 39 gcgtgcttgt gtgtgggtgt gtggtggggt atgtgtgtgt ccggggctgc cgattcaact 60 gaaaaacaaa agcggctctg agtctgaagc taaggtttaa caagtgacca agatgactca 120 tgctgcttgg ctgcaaaggc cacagggctg ccacccccag cggggcgggg cctgggtggg 180 aagagtcaca ggtacagagg ctcctgtgac attcacactc tgcccctgca tcggctgcct 240 ttggggccaa atacttttgt gaaaattaag acagaaggcc gggtgcggtg gttcacgcgt 300 <210> 40 <211> 400 <212> DNA <213> BC3M_257 <400> 40 aaacctgcgg gccccggtcc aggcgtggtc ccgctcgcac gagggagcgg tcgcccaggg 60 tgccgggaag tcggggaccg gccagccgcc gaccggccgc acccctcccc gccgagctcg 120 cgcgcccgcc tcgtcagcac ctttcccgca gcgcagcccc acagtggtca cgaggcgggc 180 gcggcccggt cagccctggc tagactaggc atcggcacca cccacctcgc ccctccccgt 240 cccgctggtt tcccctcccc ctccttcccc tccccctctc tgttctcctt cccctcccga 300 tccccgggcg ggccgcagcg cgccacgtac ctggccccgc ccctgcgagc cacgcaggga 360 accccggtga cgtcaccacc ctccggcgct ctcattcccg 400 <210> 41 <211> 300 <212> DNA <213> BC3M_260 <400> 41 cctgattagc cagaactata ggtgcacacc accacgcctg gctaattttt gtattttttt 60 gtagagacag ggtttcaaca tactgcccaa gctggtcttg aactcctggg ctcaaatgat 120 ccgctctcct tggcctgcca aagtgcaggg attagaggcg tgagtcacca cgcccagccc 180 attttccttt tcctgtccat aaattcctct ctgaccacat ggcagcatca gagtccctct 240 ggttcaggga gttaccggat tcatgaatca ttctttgctc aattaaactc tgttaacttt 300 <210> 42 <211> 300 <212> DNA <213> BC3M_265 <400> 42 tgtttctagc tagttataat tggcaggcaa ccagaagcct catctgccaa gggcggaagt 60 catgtctgga acaggtttcc ctcttaagac tgtgggctaa cccagcatct tgccactttg 120 tgtgggactt cctcattctt agtacataac tgtgtttgac cctcagggat gactagtgtt 180 tcctggcctc ggtacagttg acttctccag aaactatctg gctcactctc aatttcctgg 240 agccgtatat cctaattaca aaaatgggaa aatcatacct agagtcccat agaaagagaa 300 <210> 43 <211> 300 <212> DNA <213> BC3M_266 <400> 43 aaggagagat gatggaggca acacttacag gtcctgaaaa ctgctcaaat aggcacaaag 60 gaaacgaagg atgcctgaaa ataatgatga tgcaaaaact aagctaggta gggcagcagg 120 aagaaccggt ttggtgggaa gatgatgaat ttggcttgag gtgcttggca agacatgcaa 180 gtctgctgca caggcaatgc aggtcagcaa tttgagagaa aggtaaactt tcacaatcct 240 aatttgagaa gcaacagcac ggagatgatt atggagccat gagggctgag acactcagcg 300 <210> 44 <211> 300 <212> DNA <213> BC3M_267 <400> 44 cccatgcaac tgtgtgatga aacagcccca cacatccggg agcacagcca aggcgtcctg 60 tgccacctcc ctggtagaat ctggcttttc aacttgctca cccatgagag gaaagcggtt 120 ttagacatca ggcttacccc tctcctaagc cacacccttt tctcattccc agctgaggaa 180 ctgagcctga gacactgagg ttcccagctg cctccatgat tcgccagcac ccagcttcag 240 tttcacatcc tcccaatcgt catagccagg acagcatgcc tcactgacca cgagggaatg 300 <210> 45 <211> 400 <212> DNA <213> BC3M_268 <400> 45 aggcgccgcc gctgagggca ggcagcccgg cagccactac acacggaccc gtgacgtcgg 60 gcgtagcgcg gcgcacgtca cggccgctcg ctcgtgcgcg cgcacccctc cgcccggcgg 120 tagcggaacc cgccgcgggc gcgcgcccgg cccaggggag tgggtcggcg cctgcgcaga 180 ggcccgccac gcccacacac aggccaccgc ccccaccggc cggacggcgc ggggattccc 240 agtcctggct ccgccccggc ctcggccccg cccccgcccc tgccccgggg cagcctgtgc 300 tgttccgtgt gcgcggcgca tacgcacctg ggttgtctcg agcctgcggt agtggccaga 360 tcccagacat ccgagtagat cccgtgaaaa ggtctcccac 400 <210> 46 <211> 300 <212> DNA <213> BC3M_269 <400> 46 ccagccactg tgagtactgg ctgctcctga ctcacagctg caccctttga gggagtgagg 60 ggcgttaccc ttggctgaca ggatatgatt agaaagcctg gaaggcggct ggtggtggcc 120 catggccaat gagtcactgt gcgagtgtat actagcccag ccctcttgcc tccaggcagg 180 aaaacctctg tgtgaagtgc tctacttgct ccatgctctg gcgctctctg tacctacgca 240 ggctgaagct gagcctagac atctcctgaa accacacctt tgactcgctt cttccccttc 300 <210> 47 <211> 300 <212> DNA <213> BC3M_27 <400> 47 aacttgaaac aaataaagca ggttgaagat cacagtgtgt gctgctgggc ctgtgggggc 60 gctgggcagc agaaaggcac actctgcctg cagcctcggg atctggtcgc ctgtgtggga 120 gtagggagga gtcctgacgt accctctcta agactggctg ctctgcacct ccctccaagc 180 caggctggcc agtaaagaaa tctagctgtg gacaggaaac gagtggtttt tgtgatctga 240 gcagaaaggg cgttttaggc ctggagcaga gtggaggccc tgagccacgg cccaggaagt 300 <210> 48 <211> 300 <212> DNA <213> BC3M_275 <400> 48 tttgtgtgca tgtgcgtgtg tgtctggggg aaggaggtag aggaagtgag atgatggtga 60 cagtgacagc agcttggaga agacaggggg gtgggtctac ttctgaggaa gtccttggct 120 gaggtagggc cgcagagagg cagggtgagg gtggagcctg tggtttcaga gaggagtttt 180 aatggctgcc aagaatgtgc acatgaagcc gaaagggagt gcggcctgga gctgcagtca 240 gcccagaggg cgggtggagc ctgtcccagg gcactaggat cgcagagaac gacaggaggg 300 <210> 49 <211> 300 <212> DNA <213> BC3M_277 <400> 49 aaggtattcg aatcgaatga aatggaatcg aattgaaggg gtatgaatgg aatggaatgg 60 aatggaatcg aatcgaattt aatggaattg aataggaaag aatcaaatgg aatggaatca 120 acccgagtgg aatggaatgg aatggaaagg aatggaatgg aatggaatgg aatggaatgg 180 aatggaatgg aatggactcc agtggaaaag actggaatgg aacggtttcg aatgaaattg 240 aatcgaatga aatggaatgg aatgcaatgg aatcaaatgg aatggacttg aatggaatgg 300 <210> 50 <211> 300 <212> DNA <213> BC3M_283 <400> 50 cccatcgtgt tgcgaaagca ttcaggttga acagtgttca ggaagaatac tcaagcaaaa 60 actggtttgc agccaaatac agagactgca aaccccagtg gcttcagggg ccaggcaggg 120 aaagtaaaca tgtgaaacaa tagggagtag tcctgcctgt ggggaacagg ggagttctca 180 tgccccagcc taataaatga aaaaattatt tatacaccac agtggaaccg gagatgcacc 240 taaagccatt gggatgtggt ttctcttttt catctcactg ctctgtctct gatgtggctt 300 <210> 51 <211> 300 <212> DNA <213> BC3M_284 <400> 51 agcttggatg ctgcacccag gactgaaagg gggacctgtg ggcggcctct gcctctcccc 60 gcgcagcgtc aggacacagg cccacattcc ctcctggctt ctccctgaag ggagagagaa 120 taatagttgg ttcaaatgtc aggcctgctc cgtgctggtg gggagactgg ttgagcaggt 180 ccgcaggagg gacggaggga ggaaattatt aataattgca aagcaaccag ccacactaca 240 ggccttgagt tgtgtctgcg tttgtctttg gaggtgtgga gttgggggtg ctgatcctgg 300 <210> 52 <211> 300 <212> DNA <213> BC3M_290 <400> 52 ctgggggact gttgggtcag aaagtgttca gggagcagct gttgcgccct ccctcggccc 60 cgccgctcgg agacgccccg ccccctgcct tcaccggccg ccccgccccc tgccttcacc 120 ggccgcccgg ccacgcccca caccgccccg gccccgcccc agcgcccacg tgactagcat 180 aggcgcgccc ctgctccgcc ccccgccgcc gactccgcct ccgggacggg agcgagcggc 240 gagcgcgcgc actcccagtt ctcgctcggc gactcccgcg cacgcgcgcg ccgtgccacc 300 <210> 53 <211> 300 <212> DNA <213> BC3M_291 <400> 53 ctttttcctt taaagaatac acttcttatg taatttgttt tgcatttctg gaatgaggaa 60 cttttctgct catattgttg ttaaaatcta gacaacacgc ccgtgtgata gatcaccctg 120 agccttggaa ggaaatgatt caccacaata ctgtaactga aagtcgtcta acaccagggc 180 tggaaggcag gctatgaacc gctgcattac ctgcgtgcag cagcaatggg aggcagccag 240 aggttccctc ggcctgccta gctcacttca gctttgttcc tgttctgttt cctccgtccg 300 <210> 54 <211> 300 <212> DNA <213> BC3M_292 <400> 54 catcaaggga cccagagatc acagaatagc cagcccttca ttttcaggtg agggcctctg 60 tgggaaggtg cgttccaagc cacacagttg gaagttgagc gaactgaacc aaggctgggc 120 ttttgtgttt gctgtttaaa cagtgtgtgg ttttactcac ctaccatagt gctcctccta 180 ctggtgggca ccttagagta ggctgaaaac aacgtgtctc actgtccttt tttgtttgtc 240 tctgagtatt tttccttatg atcttgaagt aacatttact taatttgcaa tgaatgaaaa 300 <210> 55 <211> 300 <212> DNA <213> BC3M_295 <400> 55 tagcaacatg aggcaacctt gtctgcgaaa gaggaggtga ccgcagctcc tggggatgtg 60 ccaactctgg gatgtgacgg gaagacaaag ggcttctgtc cccttctgcc tggcggtaag 120 agagccggcc gcccggcagg catgccccag cctgtggttc tggaatgcgg gcaagccacc 180 gtccccagag acctgtgttg gtggccaggc cagcccacac acccgattgg cacatactct 240 tgtgcttgcc caggagcgga gtcagaccat tcacgctgcc ttcatgggag ttgaacagtt 300 <210> 56 <211> 300 <212> DNA <213> BC3M_307 <400> 56 tgcccccaca tcgccatcct gcctgtcctt ctgggcctgc acgtttgttg tgtttggaag 60 gagccaccaa ggaggaggat gtcaatgtgc aagttctcag ggaagcaggc cccgcagcct 120 ccgtcagtgt cttccgtccg caggaagaac ccaggcctgg gtgattcatc ggggcctcag 180 ggccgggagg cactaaatct tctgcagatg tggtaagatc ctatcacagc agaaagggaa 240 gggctagagt ctcagggaag gttttgctag ggagacgggc ttggaggggg ctgaggctca 300 <210> 57 <211> 300 <212> DNA <213> BC3M_321 <400> 57 caaaaaatac tgagcacaaa taaatattca ctgtaaggca ggaggcagcc gggaccagac 60 tccagatcag atcgaagact ggcggaaact gaggagaggc gcttaaagcc cctctccata 120 agacacgccc accacctcca tgacagttta ccattgccgt ggcaacaccc ggaagttact 180 gccccttgcc gcggcaacac cggaagttcc cgcccacttt ctagctaatt ctgaatgacc 240 cgcctcttaa ttagcatgtc ttttaaagtg gacctaaata cgcctacgaa actgccccta 300 <210> 58 <211> 300 <212> DNA <213> BC3M_323 <400> 58 tggtctctat ctcctgatct tgtgatacgc cggccgcggc ctcccaaagt gccgggatta 60 caggcatgag ccaccaggca cggctgaaca gggttttttt aaagttcctg aactgggtgg 120 ctgcccacaa gagggcactc atgcctctgc gtgtgagtgt ggaacctggt cgactgctgt 180 gacactcttt gggaagacag tcggcatttt ccacttccag cagcaggtgg cagtatgggc 240 aagagtatca tcacccatct ttcatctacc acccatgtgc ttacatctgg gctgctgaga 300 <210> 59 <211> 300 <212> DNA <213> BC3M_326 <400> 59 ctcacccgta acacacacac acacatgcgc gccctctcct cttgcatgac tcctctctca 60 gggctgagct gtttttctga gggtgccaca atgaatcagc tgcttagtca tctctggagt 120 gcgggagcta gcagaacagc aaagaggcat tacaaaccca atagcgggtt tcacttcctt 180 gagcagtatt tattctgctc tctacctcat gctgcccaaa ctgttggaga ggccctatcc 240 actctccctg ccttttcagc ccttattctc ccaaatgcag ccacagagga ggtaagagag 300 <210> 60 <211> 300 <212> DNA <213> BC3M_334 <400> 60 tttttgtggt tgagttctga attaaaaagt gtcgtactat atatttgttt ggtcatttct 60 atgacttcag cactctcaaa gacttggaca gaagcataaa taagaggcag tgtgagcatt 120 ctccaagtaa tcattccaag ttggtgagtt catactccac ctagacctca tggcctcgcc 180 actctcagtc aaactggttt ttgtggttgt caaagtccaa catggcaaat ttcccactga 240 tactaagtga gttgaaaact caagttacag ttgattttgc cctagggaat tttaccaaga 300 <210> 61 <211> 300 <212> DNA <213> BC3M_353 <400> 61 agggcatttg ctgagttttg ctttatgtga ctggatggga ctggccttgg agacactaat 60 aagcacgtga gggtttttgg acaatgcgaa gagttggtgc caagccacaa gtgggagatg 120 ttgaacttcc tgcgaatctg gtgtgttgta gcctgagtcg gtttcaatat gaaaaataag 180 agtgacagtg ccttccttgt atgctaatct ggcgaagtgg ctcatgctgg ccatgtaaca 240 acctggcagc ctcctacaga agcaagtggg gtgtggcatt cctgctgtct gcatcttctg 300 <210> 62 <211> 300 <212> DNA <213> BC3M_360 <400> 62 tgagtgagct ggcaagggaa ggaaggttgg tgagagtaag tcgtaagtat ctttttagaa 60 aaagaaaaaa aaaaaaatag cagaggatgg tttcgatcca tcgacctctg ggttatgggc 120 ccagcacgct tccgctgcgc cactctgctc tatacggtag tgatatttgc agtgaattct 180 ttatgatgtt ttcctcaaaa cttggtgggg attctggttt tttggtatgg ttaaacaaat 240 ctgatttcca caccccacca agggccacta gttctattta tgctgcaaac atgaggatga 300 <210> 63 <211> 300 <212> DNA <213> BC3M_362 <400> 63 agacactcgt gccctcaaga acttacaatt taggtttgtt tgaaagttaa ctgagaattc 60 caagtctaag ggtgctggtg agagtggcct ggcaaagcca gcccaggaag agctgctgag 120 caggttgtaa ggaacgagga tgccccaccc cccctccttg gcaaagcaga ggatggtatt 180 ccagacaggt cacaaacagc tcaagcaaag acgtggtgac agggatgagg aaggcacgct 240 tgcggatcgc tagaatggag gttgcctggg cacagacacc ttggaggatc cgattagcaa 300 <210> 64 <211> 300 <212> DNA <213> BC3M_367 <400> 64 gcagcaccca gttcagaact ttgcagattg ctggaattgc tggggagctg ccagagggct 60 ttcagaactc agcatgagtg cagtgagtgc ggcagccagc tcccaaaggg gatggcctca 120 gcatagtttc cagctctcgg ctctcttaac aggaaggcgt tgcggtgtcg cagacacaat 180 ctgaagtggg ggttcaaaca gacacaactt cacatactgg ttttgcaact tgctggcaaa 240 tgagtgaatt ttactcaatc ccaatttttc tcatctgtaa aacagccata aaatcgaccc 300 <210> 65 <211> 300 <212> DNA <213> BC3M_37 <400> 65 ccttccctcg acctcccttc taccccttcg ccttagatgg agattttctc tttctgaacc 60 cggaaccgct ccctcctccc cgcccggcta tagctggcag gacagggatt ggatgccacg 120 gccggtgcga gccttcgctc tccgccgagg gtagtgacac aggcgaggac gggccccgca 180 ggtcacatga gggcggggcc tggcgggctc gtgaccttcc cgtaggcggg gtccctcccc 240 tcccagctcg ggccgacagc gtcgtcacca gcttttatgg ggcacgtggc ggctgatgca 300 <210> 66 <211> 300 <212> DNA <213> BC3M_380 <400> 66 ttcactgtct gctggggcag gaggcagggc aggggcagga gggaggcaac cccagcctgt 60 gcccggcttc cccgaggcgt gtgccttgtg cggctgctga aggagtgact cctgaggaaa 120 ccagcttttc cagggaggca agggatggga gaagagggtg gagaaggaag tggtcacacc 180 acttgccttc tgccaatact gtccctttct tacgcgttaa ccttccactc tgagctatga 240 cactttcagt actagtgtgg taagttctac aggaaacagg aaacatggtt taacagacat 300 <210> 67 <211> 300 <212> DNA <213> BC3M_39 <400> 67 gcggggctca cgagtgacga agggcagaag ggcggggcgg gacgagagga ggggaggggc 60 gagcggaggg gagggacgag aggaggggcg ggacgagagg ggggcgggac gagaggaggg 120 gcggggctca cgagtgacgc agggcagaag ggcggggcgc aagagagact gagagcacta 180 cgcgggtgag aggaggggcg gggcgtggga gtgacggggc gtgggagtga ctgggcgcgg 240 agaggccgga gccggaggcg aggcgaggcg tgagagtgaa tgagggagga gggctgtgag 300 <210> 68 <211> 300 <212> DNA <213> BC3M_393 <400> 68 agcaggcact tctgagcctg cagaggaaag gggacttccc ggggcccccg agagcacagg 60 gatgcccggt ttgggagcct tggctaggca gctgcagctg cgcaggaggg tggggcttcc 120 gccccgccga ctcagaagcg ggcggggctt cggcctcttc ccggctcccg ccagctccgt 180 ggagcctgga gccccagccg cgcctccctg gctgcagctg ctgtattcac agcagccgct 240 tcaggcgggc cgccacggcg atcagttttt catggcctcc aggttctgat gaagcgtggg 300 <210> 69 <211> 300 <212> DNA <213> BC3M_402 <400> 69 tagcatcagg gtacctgctc tgggcttggc tcctcttggc cttggctcct ctggggcatc 60 atgggaacaa ggaggagcag acacctcgcc agccggggtg tgtctgagcc ccaggaatcc 120 tgcctcgcag ggaggattct ctgagtagag gtgatgtgtt atcacagtat cagcatttct 180 cagcctgact catggagggg agtgacttta ctgttagggc ctgaggggaa ataatgagga 240 acttctagac cagtttcatt tttattttta aacccacagt tcacccttgg gccttttgcc 300 <210> 70 <211> 300 <212> DNA <213> BC3M_406 <400> 70 acaagctctg acacagcgta tactcagtaa acatggagtg aatcagttca ttcaatgaat 60 gaacgaatga atgaaacgcc agagcccgcc acaggggtcc gctgccgctc cacgcccggg 120 cctctcaccg gccaatcaac actgtgactc gtacgccctg ccccctgatg ccacgcccat 180 cactcgcccc tctggattcc ctccggctgc gtggaaatcc cggagcactg gatttcccag 240 aggcgcctcc ggtagcagtg cgcatgctcc agcgccggta gctgaggcat caatttcccg 300 <210> 71 <211> 300 <212> DNA <213> BC3M_410 <400> 71 gcgcctgcgc cgtggcggcc gaactggcgc tcaacagacg ggcggggccg agcgtgaggc 60 ggagtctgcg cactgctgct ttgcaaatga aggtgggcgg ggtggagcga gcgtgagaga 120 cgtgcccccg accaataagt gcagagatcg ctcgggggcg gggacctgct gccgcgctcc 180 aggctgcggg tggccagaag gcagcggggg cgggctcggc gcgcgcggct ccgcccactc 240 cgggcccctg ctgggcggga aggcggcgcc ccggccgagg tggcggcggc tcctcaggta 300 <210> 72 <211> 300 <212> DNA <213> BC3M_414 <400> 72 acagaagcaa tctgacaaag tttttgtgat gtgtgcattc atctcgcaga gtggaacctt 60 aatttcgatt gagcagtttt gaaacactcc ttttgtagaa tctgtaagtg gacatttgga 120 gcgctttgag gcctaaggtg aaaaaggaaa tatcttccca taaaaactag acagaagcat 180 tctcagaaac ttgtttacga tgtgtgtact caactaacag agttgaaact ttcttttgat 240 agagcaaaac agtaaattga agtttaaaat aattgtaaca attgcatctt atatatcagg 300 <210> 73 <211> 300 <212> DNA <213> BC3M_417 <400> 73 acctgaggac gctcagcgct ggagctccga gcaggagtta aagtacccgc agtggagctg 60 gcccgctgcc tttccagact gcaaggcccg cagtgcaccg cgcgggtgac gtgtaacagg 120 ggcgggcggg accgctggag agcctatgag cacagcgcaa gcaccccgag gggccgcctt 180 ccggccctat tggtgaatcc gattaggggt gggaccgagc cgtggtgatt ggcggccgga 240 gggatggcaa agctgccacg cgcacggggg tgcaggctgc gggactgcga tcgctgccgg 300 <210> 74 <211> 300 <212> DNA <213> BC3M_47 <400> 74 ctgctgaggc tgctcctgca gcaggggcca tcttgttgct cggcctcctc ttcctcctcc 60 tcgtcctccg ccgcccagtc gctcgttgtc ctcgtcccct tcctcttcct caggctccgg 120 cccgccccgg agactggggc ggagacgagg gcgaggatcc tccctcagga ggcggggcgg 180 gcggagggga ggggcgggcg cgggagcaaa gctctgagtc accggccacc aacgcccgga 240 gggagaccgg cgacgctctc cgccgcgacc gaaagtctca cacgccctga gcagatgaac 300 <210> 75 <211> 300 <212> DNA <213> BC3M_48 <400> 75 cttcctggga atgagtgtct cacagcagcc agaggttgag gctttgtctt aaggtggagg 60 taataaaaac ctgtttgttt tcccagagca agacttgcct cagggcccct gcttgtttga 120 gacagggcat tcagtttgcc tgagtcaggc tggggaggtt cttctagtct ttggaatcct 180 gttgggcagg gtggctgcag gggatctgga agaggtaagg cctgtcccag gggtgggggc 240 tgaggaggtg gacatgaaga actccctgga ttaggacagt ggcccaggag gggaaaagag 300 <210> 76 <211> 300 <212> DNA <213> BC3M_49 <400> 76 aagttgggca gggcaggggc tagtctgcct tcttctgggc ccaaccctcc cggccggcac 60 cacaggcatt acaggtactc tgtgcactca ggctgcgcag acccgcagct tcctatcctg 120 tagctcactt tcctctgagg cgggctggag gcggagcttg tccgctgggg gtggggctca 180 aagctggggc ggggatacgg agcaaaactt aagaggaaga tgagaagcct ggttggccag 240 gaggcttatc tgtcaggaca gggggcgggg cctggggggc cgtacctttg cttaccgcga 300 <210> 77 <211> 300 <212> DNA <213> BC3M_52 <400> 77 tcatttttat tattagaatc tactatttgc caggtactct gaggcaccag gaatatacaa 60 ataacaagtg cagaaactga ccagtctagt tggacaggca gacgcataaa tcagcaatca 120 caaggcagtg tgactaatag aggaggtatg gcagcacaga gagaagtgag cagttactca 180 gcctgccttg taggcagggc actcagagaa gcttctcaga ggtggtgaca tgagagagag 240 ctgagccagt gatacagaag catgtagcaa gagtgggggt acactggcct ggcagtgtga 300 <210> 78 <211> 300 <212> DNA <213> BC3M_55 <400> 78 acccacgtcc ctcaatcccc acgagcagct gactgggacc tgaaagtgcc accagacgcc 60 ctcacaagtc tgctttcttt gctgggaaac agcagccgcg ccgcagcctc cgcccgctct 120 ggggaagccc caccttggca acaagccgct gattggctgg ctcgggggcg gcgcgggcca 180 atccaagccc gccctgacgc cgcggcgttt ggccgagaac tattaagaaa aaaaaaaaaa 240 gaaaaaaaga aaggtggggc cgggcgctag gtggcttccc aacggagttg ctcccccggc 300 <210> 79 <211> 300 <212> DNA <213> BC3M_58 <400> 79 caagagtgga aaacctgccc tcacaggccc agctggccag agggcttgtc tctttcagtc 60 gccctccccc agagggagca ggagcagaca atggccacca tgactcacca gtgagccatc 120 ttcccctccc cacccctcca gcctggccca tgacagctta gcttgtcctc caagggagct 180 gcagcccagc ctcccagggc cgccagcttc ctctctcttc acccaacctg gctccccccc 240 tgcttgtgca acaccacatc agagggttgt gaagtggaga gggaggagtt tgacagctgc 300 <210> 80 <211> 300 <212> DNA <213> BC3M_61 <400> 80 ggggctagca ggagagccag aataagcaga tttggcttct aatctgactc acccaactgg 60 ttcagaatgc agccaaaccg gggaaatttg ggtgagctcc tcctcttccc ctccctcact 120 tgctctcgca gttgtcctct agcacctctc tctatccctc cctccccgtc cccccgcccc 180 actcccccag ctctgggagc gcatgcgggg gcggggtcct aggaggatgt gagcccatgg 240 acacgcgggc gggatgtttt tctcctcgtc attgttctcc catgcccatt gtgtgcgctg 300 <210> 81 <211> 300 <212> DNA <213> BC3M_66 <400> 81 agccactcac tgcagaaggg gctggtgaga gacatgctcg tcatctccga gggcctggct 60 ctgcgccagc cacacactta tctgcctgct ccatctccgg agtttctgtc tctgagcttt 120 ggcaatggaa gttgtgcttc cactattagc caacaccgag ctggactctg gtaactgaca 180 cagccgtgca tctagtgtag ctcgggttga gatgacttgg cttttttttt tttttttttt 240 tttttgagac ggagtctcgc tccgtcaccc aggctggagt gcagtggcgg gatctcggct 300 <210> 82 <211> 300 <212> DNA <213> BC3M_67 <400> 82 ctattgtttg ggctttgctt ttgacttcac atcctgaaat aaatggtcgt tgcagaccag 60 gcacgtgagc aggaagtggg cagggcttaa aacacagaga agtcataacc tctgcggttt 120 ggttcatgtt gtaatatgaa aaccaggaag cttatcttgc aggaggctga tgtgtaaaag 180 ttcagaatgg agtggagccc tccctcttgg caccctatgc gcggagtcac cctttgtctg 240 ccacaggaag cacccaggtc ctggcagcta gaaaactgta acaacttgga aacatttccc 300 <210> 83 <211> 300 <212> DNA <213> BC3M_69 <400> 83 accagataag cacccactgc actcaaggcc tctctgatca agtcccacga ccaggctctc 60 caagtcctga caccgcggag acccccaaaa gaggaggatg gagcagaggg caaggctctc 120 agctccgcgg actcacaccc agctgcagag gcagggggag ccgccctttc tgtggccggg 180 gaaattgagg tcacttcctg tctcgcttcc ctctctctgt gctggctgca tccttcagaa 240 ggggggtggg tggctgcagg gcagcgccag gcaaggctgc ggagaagccg gtgctccctg 300 <210> 84 <211> 300 <212> DNA <213> BC3M_7 <400> 84 tctgcctgca agctccaggt cttgcaaagc ctgagaactg gtatggcaag ggcagagtga 60 gagcagggaa gaaatggagt caagctgaac agagacttcc gcatcatgag ggtggtggga 120 ggtggggagg aagttctgaa accacacaca tttatcattg ttattgagtc agacagacag 180 tgcctgctga catgtaactg tcaggcgttg ccaaggcaca gtagggttgc aaaggctgag 240 tgtccacttc ctcccaatga gtcaggaaga acccttggat aattctccaa aatagtttca 300 <210> 85 <211> 300 <212> DNA <213> BC3M_70 <400> 85 caggcacagt tctaagtaat tgaagtctac tgaggtaggt atcaatatta ttcccattct 60 ctagatgacg aaactggtgc atgtagcagt taggaaatat gcccaaaggt acactgctcg 120 taagcggcag agcaggaata tgaatccagc cagtctggtt ccggagtctg cattcttgat 180 cactgcacta taccaacttt cactttgttg tgagcacctg cctatctcag acatcagtca 240 gtaagtccct tgaaggcaag aactgtcctt tgatccttat tcctgagccc taggcattac 300 <210> 86 <211> 300 <212> DNA <213> BC3M_71 <400> 86 ggtgtatgta ctgatgtact gaatgggcga ccatttcctt ccagaaaggc tggagtcagc 60 cctccgggat ggctgtctct gtgtgactgt ctgcacacca ctgccctcca ctggacactg 120 aatcaaagct gccccagacc cacgttggtg tcaggactcc ctcaggtttc cttccctccc 180 tatctgggac acaacctcct gggcaaaccg gtttcttggt tggcttctct taccaggttt 240 gttttaccct gtctgccttg cattgaatcc atgaaacttg ggaagtacaa gaggaacaat 300 <210> 87 <211> 300 <212> DNA <213> BC3M_74 <400> 87 agggcatttc ttgagcctgg caggaggcca ggggttttac agggcaggaa ggaacctgga 60 ggaaccgagg agccacgttg ttggttggaa agaagggtgg ccaggtgggg aggagtctgg 120 caaagggtcc cagacagcag gaagggcacc tgtgaagccg ccctgccgag tgtgtggtag 180 aggcggggtg aaatgagcac tgctcataaa agtgactgtt gtgatttttt atgagatgga 240 gtctcgctct gtcgcccagg ctggagtgca ggggagcaac ctcggctcac tgcaacctcc 300 <210> 88 <211> 300 <212> DNA <213> BC3M_76 <400> 88 gatcgcggtg aatatcctgc aggtcatgct acgcccactt gctttgaggt tgggaaagca 60 gcctcttgac cttcagccac ttgagcccag caggtggagc tatttgccct cactggagcc 120 tgctttctcg ctaaggggaa atctgctaac cattacacag atagcaggta agtatttgga 180 gttgctcatg attttggaat gttgtggaaa caggtttcct cactttcaat aatgaacctt 240 atgatttatt atatgcaata caaatacctg ctgctgtggc catgataaag gttccaggcc 300 <210> 89 <211> 300 <212> DNA <213> BC3M_80 <400> 89 ctgaaggagt taaaacagtc cccaccccca ctcccgattt ctagaacccc acgataaatt 60 gggtaaatat gtattccatt cattggtgca tctgaccttg gtctgtgaca gaggaaaggc 120 gtgtcttctc atactgttcc ctatgaacaa aaggcaagca aatgagggtg actcaggact 180 tctcatggcc tacacacaac tgaacatttt tctgaatgat tccacgtata cacttaggaa 240 tcaggaagag aaacatttta ctcttcacta accaaataaa accatctata aatcatatgc 300 <210> 90 <211> 300 <212> DNA <213> BC3M_82 <400> 90 aaacaaacac tgggtttagg cattctgctc tcccagcacc gcatggctga gggtggaaaa 60 aaataacatc tgaaacaggc cgggcttttg atgatacctc cttatgacag acacatcgaa 120 aaccaccgac ggtgagtcac ccacattctg tgcataccct ctccgaggag caggaagtgt 180 ggctatttta aaccctgagg caatgagaag ttttcagatg cgtcctaagg cgctccggcc 240 agcgccctgc atgcacacga gggccttcct cagtgtggcc ccagcacatc tgtagacctg 300 <210> 91 <211> 300 <212> DNA <213> BC3M_84 <400> 91 attttgactc acaatgttga aaccagatta taaatgagtc atcagtgaat cgaccacaaa 60 gagcctttgc ggaggtgatt tacaggagag ctctgatgtc tgctgtcccc tgcacacgct 120 tcacagagat gctgtcagac gcagagctgg tctggggcat ctgttgccgc gtcagctcaa 180 aaggatgctg tgttgtcacc aatgggattc cccagcccag gcggtgttgc ggtcccaccc 240 acacaaggaa ggcggccatc actgaataat gcttgtggtt acatcatcat tgctggtttc 300 <210> 92 <211> 300 <212> DNA <213> BC3M_86 <400> 92 gggatttcct ctgctttttc aactaaaatc agctctttcc caaaagcctg tgctgcctgt 60 tgtgttttct ctgtgtgtgt tttgaaatgg ccttgcgcac cctccagact ctctgcctcc 120 ggggcaagtc tgccttttcc ctgtttccac tttgcatact gcataacttc cttctctgcc 180 ccacatggac acacgccctc ttattcatgc atccgcggct cttgctgcat tcgctcggca 240 gcaaagccac aggctccctt gtggatgtcc cttgtggaga tttgtacttt tttaccccac 300 <210> 93 <211> 300 <212> DNA <213> BC3M_87 <400> 93 gagcacagaa gacgacccag ctgaggctgg caggagagac gaaggccccg ccagatcccg 60 gaagccgcgc ccttctgtcc ggctgcacgc ccgattggac ggttcctacg tcagcgcccc 120 tgattggata gggctccagg ccccgccccc tcagtccctg agtgacggag gatgtgatcg 180 gacgctgggc tgagggcgac aaagtgacag gttcttggct gcagcctttt catgcagggc 240 ttcctgcttg cgctgggcct ggcccagccc agggggcatt ttcatttaac cttttgtata 300 <210> 94 <211> 300 <212> DNA <213> BC3M_9 <400> 94 agtttggatg ttctctgtgg agagggaata aaaccattgc ctgttccctg gagggaattg 60 gatgctgaag cttctacctt taacaggggc atgggtgcag ttccagcctc tgccagcagg 120 ctgggccctg tgcccacttt tgaaagacct tcagggctgt ggggcatgag atgagagagg 180 gagggaagat aatctggctc actgccgggc actttatgtg acttacctcc ttaattcccc 240 cgggcacagc cctgagagga ggttggcagt gtctgcattt tacagatggg gaacttgagg 300 <210> 95 <211> 300 <212> DNA <213> BC3M_92 <400> 95 aaacttcgtc tcaaaaacaa aacaaaacaa agcgaaaaaa caaaaaaagt ttcattgttt 60 cacctccaca cagctctgtc tgcattttga gcaatggcca ccagagggca ggaagaacca 120 atctataaag cacacaaggg tttcaccaac tttgaagtcc tccgttagaa ggcaagttgt 180 ccactaatat gtaggaacga ttaatggcca ccagagggca ggaagaacca atctataaag 240 cgcacaaggg tttcaccaac tttgaagtcc tccgttagaa ggcaagttgt ccactaatat 300 <210> 96 <211> 300 <212> DNA <213> BC3M_96 <400> 96 gaagcagcca gaagacctgg ttctcccaag cctgctactt gctggccatg taaccttgag 60 caagttattt cctcctctgc aaaaggaaga caataccctc ctgcctactt cactcagacg 120 ttctgaagat cgatgtagca atgtggtgta gacatgcttt tgtaacgtgg acacacccag 180 acaggaataa gtcttgtcca gggaatattt tttgacaaac actgcttaac tggtttgtcc 240 tctgagtgtc acaacttttg gcagaacttg gtagttggag gtcagtggtt ggctggttca 300 <210> 97 <211> 300 <212> DNA <213> BC3M_23 <400> 97 cagcccttcc tcacctcatc actccccatc cccccaagat atagaaaggc cgtgacagct 60 gccagccctg cacatgctct tgtttcaaca gcggcgattg cacatcacgt agtccccacg 120 tgacctgtcg ggcctagggc aagcgcaaag ctttcggaaa cccgaattat tgcaaccttg 180 acttcctgcc tgtctctgag gctcccgggc tgtgctttaa gctggacagg cacctgcttt 240 acagggaaaa ggaccaaggt ccggagagga aaggggcttg tcccaggata cgcagcaagt 300 <210> 98 <211> 300 <212> DNA <213> BC3M_103 <400> 98 ctaggagctc tgtgcggaac cgcgtccagc cgccgactca ctgacacatc acaatgagtc 60 acgtgctctg tgcaccgggc ggatttgtca gatccgctgc tgcatcacgg ctcggcaggg 120 ctctctgggt tctcagtgcc ctcctaggtc tgcaatgcag tgcgggagag gaggaatatg 180 ggcttgtggg ggcaggggca gcgcccggac tcctcccggg gcaggactcc cagaaacgca 240 ggaagcgatg acgctgctca gataaaccct ggcgctctgc gctggcgtcc tggtcaggag 300 <210> 99 <211> 300 <212> DNA <213> BC3M_44 <400> 99 catgtgagct caattaatac aacatatggt tactgtacgc ccaaaggcaa cgcattcaaa 60 ttgctttgta ccatgtaaaa cacacactct tgaaaaacag acgcctagtg cggaatcctg 120 tgcacgcctt taactcctcc aaacgagcag ggggcgtcat ggattagcat gtcccggggt 180 tcgggaatca gcatttccga ggaaaggggc gctcaggaga tatccccacc cccgatgagg 240 ggcactgtcg tggatgagtt taaaccacgc cataggcagc caagaactga gctcccgatg 300 <210> 100 <211> 300 <212> DNA <213> BC3M_219 <400> 100 gggaccaatc cagaagcagc acccagaccg gtttacccgg ttccaggacc ttgggcgaag 60 tccacccgcc cgagggcagg gacgacgcag gccacgccgc ggcccagttg ctagccaggc 120 agggtgggga tttgatcttg ccaaggaaat gtgagcggga ggccgagcgt tggaggtggg 180 taagtcgtca ctatgcaggg cggagccatc ctgtgtctat cacgcccaag ggcggtgcat 240 gcaaattgac tcccgcattt ggcttttccc cgggctccgt ctccgcgcgc tgcaacccgc 300 <210> 101 <211> 20 <212> DNA <213> BC3M_102F <400> 101 ggggctctca aggactctac 20 <210> 102 <211> 20 <212> DNA <213> BC3M_102R <400> 102 cgagggcaga aaggagagac 20 <210> 103 <211> 18 <212> DNA <213> BC3M_11F <400> 103 gtttccgtac gcagcctg 18 <210> 104 <211> 20 <212> DNA <213> BC3M_11R <400> 104 caatgagcag gaagatgggc 20 <210> 105 <211> 20 <212> DNA <213> BC3M_117F <400> 105 aaggctcagt gtgtgtatgc 20 <210> 106 <211> 20 <212> DNA <213> BC3M_117R <400> 106 ggttactgac tgctccccat 20 <210> 107 <211> 20 <212> DNA <213> BC3M_119F <400> 107 taaccttccc ttggcttcca 20 <210> 108 <211> 20 <212> DNA <213> BC3M_119R <400> 108 gagagaagga aagggagggg 20 <210> 109 <211> 20 <212> DNA <213> BC3M_125F <400> 109 acctctagac caagtgcctg 20 <210> 110 <211> 20 <212> DNA <213> BC3M_125R <400> 110 ggtggcttca gagatggagt 20 <210> 111 <211> 20 <212> DNA <213> BC3M_132F <400> 111 ctgacggcaa attcctccag 20 <210> 112 <211> 20 <212> DNA <213> BC3M_132R <400> 112 gcttgtctgt catctgaggc 20 <210> 113 <211> 18 <212> DNA <213> BC3M_137F <400> 113 gaccagccaa tctcccgg 18 <210> 114 <211> 19 <212> DNA <213> BC3M_137R <400> 114 gagatccatt ggttgcggc 19 <210> 115 <211> 20 <212> DNA <213> BC3M_139F <400> 115 gtgtgagcca agtgttgacc 20 <210> 116 <211> 20 <212> DNA <213> BC3M_139R <400> 116 ttcatcctgc ctgcctagag 20 <210> 117 <211> 20 <212> DNA <213> BC3M_142F <400> 117 ctttccactc acaccttgcc 20 <210> 118 <211> 20 <212> DNA <213> BC3M_142R <400> 118 aggcacaaaa gaggcaaagg 20 <210> 119 <211> 20 <212> DNA <213> BC3M_146F <400> 119 ggatgagtca ctggatccgt 20 <210> 120 <211> 20 <212> DNA <213> BC3M_146R <400> 120 gcctctgtcc cttctccatt 20 <210> 121 <211> 20 <212> DNA <213> BC3M_154F <400> 121 aatccagtcc cagttcccag 20 <210> 122 <211> 20 <212> DNA <213> BC3M_154R <400> 122 actggcctct caacacctac 20 <210> 123 <211> 20 <212> DNA <213> BC3M_168F <400> 123 cccagagctg caatgtgtac 20 <210> 124 <211> 20 <212> DNA <213> BC3M_168R <400> 124 tacggatgag gaggctggta 20 <210> 125 <211> 20 <212> DNA <213> BC3M_171F <400> 125 cctgtacctc tgcagtgcta 20 <210> 126 <211> 20 <212> DNA <213> BC3M_171R <400> 126 tcctgggcag agtgttttca 20 <210> 127 <211> 20 <212> DNA <213> BC3M_172F <400> 127 cctccttccc atttctgcct 20 <210> 128 <211> 20 <212> DNA <213> BC3M_172R <400> 128 ccttttccat ttccagcccc 20 <210> 129 <211> 20 <212> DNA <213> BC3M_173F <400> 129 gaatccgcag atcctcaagc 20 <210> 130 <211> 20 <212> DNA <213> BC3M_173R <400> 130 aagttcttct tcccgccctc 20 <210> 131 <211> 20 <212> DNA <213> BC3M_178F <400> 131 accattcagt gtaagcccca 20 <210> 132 <211> 20 <212> DNA <213> BC3M_178R <400> 132 tctttccacc atgcacgttg 20 <210> 133 <211> 20 <212> DNA <213> BC3M_179F <400> 133 acaccaccac ctccttcttc 20 <210> 134 <211> 21 <212> DNA <213> BC3M_179R <400> 134 ggaaagtgca aatgaacccc a 21 <210> 135 <211> 20 <212> DNA <213> BC3M_182F <400> 135 tggttccctc ctcacatcag 20 <210> 136 <211> 20 <212> DNA <213> BC3M_182R <400> 136 ttgcaacctc cgcttgaaaa 20 <210> 137 <211> 20 <212> DNA <213> BC3M_199F <400> 137 ttgggaaggc aagaggatga 20 <210> 138 <211> 20 <212> DNA <213> BC3M_199R <400> 138 gtgttcaagc cctccctcta 20 <210> 139 <211> 20 <212> DNA <213> BC3M_20F <400> 139 ctcacaccgt ctcactaggg 20 <210> 140 <211> 19 <212> DNA <213> BC3M_20R <400> 140 gaattccaca gacaccgcg 19 <210> 141 <211> 20 <212> DNA <213> BC3M_203F <400> 141 cctcgtaggg cttgaaatgt 20 <210> 142 <211> 23 <212> DNA <213> BC3M_203R <400> 142 agaagaattt ggcgaggatt acc 23 <210> 143 <211> 20 <212> DNA <213> BC3M_206F <400> 143 ttgagcgcag tctggaaatg 20 <210> 144 <211> 20 <212> DNA <213> BC3M_206R <400> 144 gagatgagcc ctgtcacagt 20 <210> 145 <211> 20 <212> DNA <213> BC3M_212F <400> 145 aagtcctaga gcaccggaac 20 <210> 146 <211> 20 <212> DNA <213> BC3M_212R <400> 146 cttttctccg cagcgatacc 20 <210> 147 <211> 20 <212> DNA <213> BC3M_22F <400> 147 ggaaaatccc ttgaagccgg 20 <210> 148 <211> 20 <212> DNA <213> BC3M_22R <400> 148 tgggctgttg taatggtgtg 20 <210> 149 <211> 20 <212> DNA <213> BC3M_221F <400> 149 tgatgagcta ctacgcctgg 20 <210> 150 <211> 20 <212> DNA <213> BC3M_221R <400> 150 tgggaagttg agggatgtgt 20 <210> 151 <211> 20 <212> DNA <213> BC3M_224F <400> 151 cggggaggag atgagctaaa 20 <210> 152 <211> 20 <212> DNA <213> BC3M_224R <400> 152 agtacgtcga acaggggatc 20 <210> 153 <211> 20 <212> DNA <213> BC3M_226F <400> 153 tggattgata cggggctctt 20 <210> 154 <211> 20 <212> DNA <213> BC3M_226R <400> 154 cgacagctgg tttcacaagt 20 <210> 155 <211> 18 <212> DNA <213> BC3M_230F <400> 155 ctgagaggcc cgcaatgt 18 <210> 156 <211> 18 <212> DNA <213> BC3M_230R <400> 156 cactcagatc tcgccgcg 18 <210> 157 <211> 20 <212> DNA <213> BC3M_231F <400> 157 gagcggtgca aaggttctta 20 <210> 158 <211> 20 <212> DNA <213> BC3M_231R <400> 158 cctacctcgt gctcttggaa 20 <210> 159 <211> 19 <212> DNA <213> BC3M_232F <400> 159 ctctccaagc accactccc 19 <210> 160 <211> 20 <212> DNA <213> BC3M_232R <400> 160 tgtggagact gaaccttgca 20 <210> 161 <211> 20 <212> DNA <213> BC3M_235F <400> 161 cagtccctac accccacaat 20 <210> 162 <211> 20 <212> DNA <213> BC3M_235R <400> 162 catttcccag aagaccacgc 20 <210> 163 <211> 20 <212> DNA <213> BC3M_239F <400> 163 tggttaaggt gtaggggtgg 20 <210> 164 <211> 20 <212> DNA <213> BC3M_239R <400> 164 agcacagagt taccacctcc 20 <210> 165 <211> 20 <212> DNA <213> BC3M_241F <400> 165 gtgtaaacaa acccaggccc 20 <210> 166 <211> 19 <212> DNA <213> BC3M_241R <400> 166 gactccatca ccgtcccaa 19 <210> 167 <211> 20 <212> DNA <213> BC3M_245F <400> 167 gcgcgctttt aaggagagtt 20 <210> 168 <211> 20 <212> DNA <213> BC3M_245R <400> 168 ggctctgacg gcattcattc 20 <210> 169 <211> 20 <212> DNA <213> BC3M_247F <400> 169 gatgcagatg tcaaaacgcg 20 <210> 170 <211> 19 <212> DNA <213> BC3M_247R <400> 170 gagggtctcg cttgtttgc 19 <210> 171 <211> 20 <212> DNA <213> BC3M_250F <400> 171 aggagttcag catagcacga 20 <210> 172 <211> 20 <212> DNA <213> BC3M_250R <400> 172 caagctgtgc cataacccaa 20 <210> 173 <211> 19 <212> DNA <213> BC3M_252F <400> 173 ctgtcctcct ccctccctc 19 <210> 174 <211> 20 <212> DNA <213> BC3M_252R <400> 174 tttcttgtcc acactcctgg 20 <210> 175 <211> 20 <212> DNA <213> BC3M_253F <400> 175 acacccgaca gagtccaatg 20 <210> 176 <211> 20 <212> DNA <213> BC3M_253R <400> 176 ggtagtcact cctttggcct 20 <210> 177 <211> 20 <212> DNA <213> BC3M_255F <400> 177 cggctctgag tctgaagcta 20 <210> 178 <211> 20 <212> DNA <213> BC3M_255R <400> 178 ggagcctctg tacctgtgac 20 <210> 179 <211> 18 <212> DNA <213> BC3M_257F <400> 179 ccccacagtg gtcacgag 18 <210> 180 <211> 20 <212> DNA <213> BC3M_257R <400> 180 ggggaaggag aacagagagg 20 <210> 181 <211> 20 <212> DNA <213> BC3M_260F <400> 181 gctcaaatga tccgctctcc 20 <210> 182 <211> 20 <212> DNA <213> BC3M_260R <400> 182 gactctgatg ctgccatgtg 20 <210> 183 <211> 20 <212> DNA <213> BC3M_265F <400> 183 gcggaagtca tgtctggaac 20 <210> 184 <211> 20 <212> DNA <213> BC3M_265R <400> 184 cgaggccagg aaacactagt 20 <210> 185 <211> 20 <212> DNA <213> BC3M_266F <400> 185 ggcacaaagg aaacgaagga 20 <210> 186 <211> 20 <212> DNA <213> BC3M_266R <400> 186 ccaagcacct caagccaaat 20 <210> 187 <211> 20 <212> DNA <213> BC3M_267F <400> 187 cctccctggt agaatctggc 20 <210> 188 <211> 20 <212> DNA <213> BC3M_267R <400> 188 gtgtctcagg ctcagttcct 20 <210> 189 <211> 18 <212> DNA <213> BC3M_268F <400> 189 ctgtgctgtt ccgtgtgc 18 <210> 190 <211> 20 <212> DNA <213> BC3M_268R <400> 190 gagacctttt cacgggatct 20 <210> 191 <211> 20 <212> DNA <213> BC3M_269F <400> 191 acctctgtgt gaagtgctct 20 <210> 192 <211> 20 <212> DNA <213> BC3M_269R <400> 192 gcgagtcaaa ggtgtggttt 20 <210> 193 <211> 20 <212> DNA <213> BC3M_27F <400> 193 tctaagactg gctgctctgc 20 <210> 194 <211> 20 <212> DNA <213> BC3M_27R <400> 194 aaaacgccct ttctgctcag 20 <210> 195 <211> 20 <212> DNA <213> BC3M_275F <400> 195 gggtgggtct acttctgagg 20 <210> 196 <211> 20 <212> DNA <213> BC3M_275R <400> 196 ctccctttcg gcttcatgtg 20 <210> 197 <211> 20 <212> DNA <213> BC3M_277F <400> 197 tggaatggaa tcaacccgag 20 <210> 198 <211> 20 <212> DNA <213> BC3M_277R <400> 198 cgaaaccgtt ccattccagt 20 <210> 199 <211> 20 <212> DNA <213> BC3M_283F <400> 199 aacaggggag ttctcatgcc 20 <210> 200 <211> 20 <212> DNA <213> BC3M_283R <400> 200 agccacatca gagacagagc 20 <210> 201 <211> 20 <212> DNA <213> BC3M_284F <400> 201 gttcaaatgt caggcctgct 20 <210> 202 <211> 20 <212> DNA <213> BC3M_284R <400> 202 cacctccaaa gacaaacgca 20 <210> 203 <211> 20 <212> DNA <213> BC3M_290F <400> 203 gcccacgtga ctagcatagg 20 <210> 204 <211> 19 <212> DNA <213> BC3M_290R <400> 204 gagcgagaac tgggagtgc 19 <210> 205 <211> 20 <212> DNA <213> BC3M_291F <400> 205 atcaccctga gccttggaag 20 <210> 206 <211> 20 <212> DNA <213> BC3M_291R <400> 206 caggtaatgc agcggttcat 20 <210> 207 <211> 20 <212> DNA <213> BC3M_292F <400> 207 caagggaccc agagatcaca 20 <210> 208 <211> 20 <212> DNA <213> BC3M_292R <400> 208 acagcaaaca caaaagccca 20 <210> 209 <211> 20 <212> DNA <213> BC3M_295F <400> 209 tctgcgaaag aggaggtgac 20 <210> 210 <211> 20 <212> DNA <213> BC3M_295R <400> 210 cattccagaa ccacaggctg 20 <210> 211 <211> 19 <212> DNA <213> BC3M_307F <400> 211 agcctccgtc agtgtcttc 19 <210> 212 <211> 20 <212> DNA <213> BC3M_307R <400> 212 tgagactcta gcccttccct 20 <210> 213 <211> 20 <212> DNA <213> BC3M_321F <400> 213 ctctccataa gacacgccca 20 <210> 214 <211> 20 <212> DNA <213> BC3M_321R <400> 214 aagaggcggg tcattcagaa 20 <210> 215 <211> 20 <212> DNA <213> BC3M_323F <400> 215 caaagtgccg ggattacagg 20 <210> 216 <211> 20 <212> DNA <213> BC3M_323R <400> 216 tcccaaagag tgtcacagca 20 <210> 217 <211> 20 <212> DNA <213> BC3M_326F <400> 217 ccctctcctc ttgcatgact 20 <210> 218 <211> 20 <212> DNA <213> BC3M_326R <400> 218 atgcctcttt gctgttctgc 20 <210> 219 <211> 20 <212> DNA <213> BC3M_334F <400> 219 tcgccactct cagtcaaact 20 <210> 220 <211> 21 <212> DNA <213> BC3M_334R <400> 220 ccctagggca aaatcaactg t 21 <210> 221 <211> 20 <212> DNA <213> BC3M_353F <400> 221 tgttgtagcc tgagtcggtt 20 <210> 222 <211> 20 <212> DNA <213> BC3M_353R <400> 222 ccccacttgc ttctgtagga 20 <210> 223 <211> 20 <212> DNA <213> BC3M_360F <400> 223 gggaaggaag gttggtgaga 20 <210> 224 <211> 20 <212> DNA <213> BC3M_360R <400> 224 accgtataga gcagagtggc 20 <210> 225 <211> 20 <212> DNA <213> BC3M_362F <400> 225 tccaagtcta agggtgctgg 20 <210> 226 <211> 20 <212> DNA <213> BC3M_362R <400> 226 taccatcctc tgctttgcca 20 <210> 227 <211> 20 <212> DNA <213> BC3M_367F <400> 227 gagggctttc agaactcagc 20 <210> 228 <211> 20 <212> DNA <213> BC3M_367R <400> 228 gcaacgcctt cctgttaaga 20 <210> 229 <211> 20 <212> DNA <213> BC3M_37F <400> 229 ttccctcgac ctcccttcta 20 <210> 230 <211> 20 <212> DNA <213> BC3M_37R <400> 230 ccctgtcctg ccagctatag 20 <210> 231 <211> 20 <212> DNA <213> BC3M_380F <400> 231 gactcctgag gaaaccagct 20 <210> 232 <211> 20 <212> DNA <213> BC3M_380R <400> 232 cagagtggaa ggttaacgcg 20 <210> 233 <211> 20 <212> DNA <213> BC3M_39F <400> 233 gcaagagaga ctgagagcac 20 <210> 234 <211> 20 <212> DNA <213> BC3M_39R <400> 234 ccctcctccc tcattcactc 20 <210> 235 <211> 20 <212> DNA <213> BC3M_393F <400> 235 gctgcagctg ctgtattcac 20 <210> 236 <211> 20 <212> DNA <213> BC3M_393R <400> 236 aggggtacag ggcagaaaat 20 <210> 237 <211> 20 <212> DNA <213> BC3M_402F <400> 237 ggaacaagga ggagcagaca 20 <210> 238 <211> 20 <212> DNA <213> BC3M_402R <400> 238 ctccatgagt caggctgaga 20 <210> 239 <211> 20 <212> DNA <213> BC3M_406F <400> 239 ggccaatcaa cactgtgact 20 <210> 240 <211> 19 <212> DNA <213> BC3M_406R <400> 240 tccagtgctc cgggatttc 19 <210> 241 <211> 18 <212> DNA <213> BC3M_410F <400> 241 ccgaactggc gctcaaca 18 <210> 242 <211> 20 <212> DNA <213> BC3M_410R <400> 242 ctctgcactt attggtcggg 20 <210> 243 <211> 19 <212> DNA <213> BC3M_414F <400> 243 tgtgtgcatt catctcgca 19 <210> 244 <211> 20 <212> DNA <213> BC3M_414R <400> 244 cctcaaagcg ctccaaatgt 20 <210> 245 <211> 20 <212> DNA <213> BC3M_417F <400> 245 gcaggagtta aagtacccgc 20 <210> 246 <211> 20 <212> DNA <213> BC3M_417R <400> 246 gctgtgctca taggctctcc 20 <210> 247 <211> 20 <212> DNA <213> BC3M_47F <400> 247 cttcctcttc ctcaggctcc 20 <210> 248 <211> 19 <212> DNA <213> BC3M_47R <400> 248 cggtgactca gagctttgc 19 <210> 249 <211> 20 <212> DNA <213> BC3M_48F <400> 249 ggctggggag gttcttctag 20 <210> 250 <211> 20 <212> DNA <213> BC3M_48R <400> 250 ttcatgtcca cctcctcagc 20 <210> 251 <211> 20 <212> DNA <213> BC3M_49F <400> 251 ccgcagcttc ctatcctgta 20 <210> 252 <211> 20 <212> DNA <213> BC3M_49R <400> 252 accaggcttc tcatcttcct 20 <210> 253 <211> 20 <212> DNA <213> BC3M_52F <400> 253 atggcagcac agagagaagt 20 <210> 254 <211> 20 <212> DNA <213> BC3M_52R <400> 254 tggctcagct ctctctcatg 20 <210> 255 <211> 20 <212> DNA <213> BC3M_55F <400> 255 agctgactgg gacctgaaag 20 <210> 256 <211> 18 <212> DNA <213> BC3M_55R <400> 256 cccgagccag ccaatcag 18 <210> 257 <211> 20 <212> DNA <213> BC3M_58F <400> 257 caagagtgga aaacctgccc 20 <210> 258 <211> 20 <212> DNA <213> BC3M_58R <400> 258 gaggggaaga tggctcactg 20 <210> 259 <211> 20 <212> DNA <213> BC3M_61F <400> 259 ctcttcccct ccctcacttg 20 <210> 260 <211> 20 <212> DNA <213> BC3M_61R <400> 260 catgggctca catcctccta 20 <210> 261 <211> 20 <212> DNA <213> BC3M_66F <400> 261 agccacacac ttatctgcct 20 <210> 262 <211> 20 <212> DNA <213> BC3M_66R <400> 262 cccgagctac actagatgca 20 <210> 263 <211> 20 <212> DNA <213> BC3M_67F <400> 263 aagtgggcag ggcttaaaac 20 <210> 264 <211> 20 <212> DNA <213> BC3M_67R <400> 264 gggctccact ccattctgaa 20 <210> 265 <211> 20 <212> DNA <213> BC3M_69F <400> 265 aagaggagga tggagcagag 20 <210> 266 <211> 20 <212> DNA <213> BC3M_69R <400> 266 gagagaggga agcgagacag 20 <210> 267 <211> 20 <212> DNA <213> BC3M_7F <400> 267 ggtggggagg aagttctgaa 20 <210> 268 <211> 20 <212> DNA <213> BC3M_7R <400> 268 ctttgcaacc ctactgtgcc 20 <210> 269 <211> 20 <212> DNA <213> BC3M_70F <400> 269 atgacgaaac tggtgcatgt 20 <210> 270 <211> 20 <212> DNA <213> BC3M_70R <400> 270 tcaagaatgc agactccgga 20 <210> 271 <211> 20 <212> DNA <213> BC3M_71F <400> 271 ccctccactg gacactgaat 20 <210> 272 <211> 20 <212> DNA <213> BC3M_71R <400> 272 agaagccaac caagaaaccg 20 <210> 273 <211> 19 <212> DNA <213> BC3M_74F <400> 273 ttggaaagaa gggtggcca 19 <210> 274 <211> 20 <212> DNA <213> BC3M_74R <400> 274 ctcatttcac cccgcctcta 20 <210> 275 <211> 20 <212> DNA <213> BC3M_76F <400> 275 tttgaggttg ggaaagcagc 20 <210> 276 <211> 20 <212> DNA <213> BC3M_76R <400> 276 agcagatttc cccttagcga 20 <210> 277 <211> 20 <212> DNA <213> BC3M_80F <400> 277 tgcatctgac cttggtctgt 20 <210> 278 <211> 20 <212> DNA <213> BC3M_80R <400> 278 ggccatgaga agtcctgagt 20 <210> 279 <211> 20 <212> DNA <213> BC3M_82F <400> 279 agacacatcg aaaaccaccg 20 <210> 280 <211> 20 <212> DNA <213> BC3M_82R <400> 280 gccttaggac gcatctgaaa 20 <210> 281 <211> 20 <212> DNA <213> BC3M_84F <400> 281 aggagagctc tgatgtctgc 20 <210> 282 <211> 20 <212> DNA <213> BC3M_84R <400> 282 gcatcctttt gagctgacgc 20 <210> 283 <211> 20 <212> DNA <213> BC3M_86F <400> 283 tgtgctgcct gttgtgtttt 20 <210> 284 <211> 20 <212> DNA <213> BC3M_86R <400> 284 atgtggggca gagaaggaag 20 <210> 285 <211> 18 <212> DNA <213> BC3M_87F <400> 285 caggagagac gaaggccc 18 <210> 286 <211> 20 <212> DNA <213> BC3M_87R <400> 286 tcacatcctc cgtcactcag 20 <210> 287 <211> 20 <212> DNA <213> BC3M_9F <400> 287 ctttaacagg ggcatgggtg 20 <210> 288 <211> 20 <212> DNA <213> BC3M_9R <400> 288 tctctcatct catgccccac 20 <210> 289 <211> 21 <212> DNA <213> BC3M_92F <400> 289 cagctctgtc tgcattttga g 21 <210> 290 <211> 20 <212> DNA <213> BC3M_92R <400> 290 tggtggccat taatcgttcc 20 <210> 291 <211> 20 <212> DNA <213> BC3M_96F <400> 291 ctggccatgt aaccttgagc 20 <210> 292 <211> 21 <212> DNA <213> BC3M_96R <400> 292 tgtgtccacg ttacaaaagc a 21 <210> 293 <211> 20 <212> DNA <213> BC3M_23F <400> 293 atagaaaggc cgtgacagct 20 <210> 294 <211> 20 <212> DNA <213> BC3M_23R <400> 294 gcaggaagtc aaggttgcaa 20 <210> 295 <211> 20 <212> DNA <213> BC3M_103F <400> 295 gggagaggag gaatatgggc 20 <210> 296 <211> 20 <212> DNA <213> BC3M_103R <400> 296 agggtttatc tgagcagcgt 20 <210> 297 <211> 20 <212> DNA <213> BC3M_44F <400> 297 gggcgtcatg gattagcatg 20 <210> 298 <211> 20 <212> DNA <213> BC3M_44R <400> 298 cagttcttgg ctgcctatgg 20 <210> 299 <211> 20 <212> DNA <213> BC3M_219F <400> 299 gaccaatcca gaagcagcac 20 <210> 300 <211> 20 <212> DNA <213> BC3M_219R <400> 300 gcaagatcaa atccccaccc 20 <210> 301 <211> 8 <212> DNA <213> Ad2.1 <400> 301 taaggcga 8 <210> 302 <211> 8 <212> DNA <213> Ad2.2 <400> 302 cgtactag 8 <210> 303 <211> 8 <212> DNA <213> Ad2.3 <400> 303 aggcagaa 8 <210> 304 <211> 8 <212> DNA <213> Ad2.4 <400> 304 tcctgagc 8 <210> 305 <211> 8 <212> DNA <213> Ad2.5 <400> 305 ggactcct 8 <210> 306 <211> 8 <212> DNA <213> Ad2.6 <400> 306 taggcatg 8 <210> 307 <211> 8 <212> DNA <213> Ad2.7 <400> 307 ctctctac 8 <210> 308 <211> 8 <212> DNA <213> Ad2.8 <400> 308 cagagagg 8 <210> 309 <211> 8 <212> DNA <213> Ad2.9 <400> 309 gctacgct 8 <210> 310 <211> 8 <212> DNA <213> Ad2.10 <400> 310 cgaggctg 8 <210> 311 <211> 8 <212> DNA <213> Ad2.11 <400> 311 aagaggca 8 <210> 312 <211> 8 <212> DNA <213> Ad2.12 <400> 312 gtagagga 8 <210> 313 <211> 8 <212> DNA <213> Ad2.13 <400> 313 gtcgtgat 8 <210> 314 <211> 8 <212> DNA <213> Ad2.14 <400> 314 accactgt 8 <210> 315 <211> 8 <212> DNA <213> Ad2.15 <400> 315 tggatctg 8 <210> 316 <211> 8 <212> DNA <213> Ad2.16 <400> 316 ccgtttgt 8 <210> 317 <211> 8 <212> DNA <213> Ad2.17 <400> 317 tgctgggt 8 <210> 318 <211> 8 <212> DNA <213> Ad2.18 <400> 318 gaggggtt 8 <210> 319 <211> 8 <212> DNA <213> Ad2.19 <400> 319 aggttggg 8 <210> 320 <211> 8 <212> DNA <213> Ad2.20 <400> 320 gtgtggtg 8 <210> 321 <211> 8 <212> DNA <213> Ad2.21 <400> 321 tgggtttc 8 <210> 322 <211> 8 <212> DNA <213> Ad2.22 <400> 322 tggtcaca 8 <210> 323 <211> 8 <212> DNA <213> Ad2.23 <400> 323 ttgaccct 8 <210> 324 <211> 8 <212> DNA <213> Ad2.24 <400> 324 ccactcct 8

Claims (20)

다음을 포함하는 유방암 진단용 조성물:
i) 전이효소(transposase); 및
ii) BC3M_125 마커와 특이적으로 결합하는 서열번호 109으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 110으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍.
A composition for diagnosing breast cancer comprising:
i) transposase; And
ii) A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 109 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 110 that specifically binds to the BC3M_125 marker.
제1항에 있어서, 상기 전이효소는 Tn5 전이효소인 것을 특징으로 하는 조성물.
The composition of claim 1, wherein the transferase is a Tn5 transferase.
제1항에 있어서, 다음에서 선택되는 마커와 특이적으로 결합하는 프라이머 쌍을 추가적으로 포함하는 것을 특징으로 하는 유방암 진단용 조성물:
BC3M_11 마커와 특이적으로 결합하는 서열번호 103으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 104으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_102 마커와 특이적으로 결합하는 서열번호 101으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 102으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_117 마커와 특이적으로 결합하는 서열번호 105으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 106으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_119 마커와 특이적으로 결합하는 서열번호 107으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 108으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_132 마커와 특이적으로 결합하는 서열번호 111으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 112으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍; 및
BC3M_146 마커와 특이적으로 결합하는 서열번호 119으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 120으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍.
The composition for diagnosing breast cancer according to claim 1, further comprising a primer pair that specifically binds to a marker selected from the following:
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 103 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 104 that specifically binds to the BC3M_11 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 101 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 102 that specifically binds to the BC3M_102 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 105 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 106 that specifically binds to the BC3M_117 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 107 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 108 that specifically binds to the BC3M_119 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 111 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 112 that specifically binds to the BC3M_132 marker; And
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 119 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 120 that specifically binds to the BC3M_146 marker.
제3항에 있어서, 서열번호 113 내지 118 및 서열번호 121 내지 300으로 표시되는 염기서열을 포함하는 프라이머로 구성된 군에서 선택되는 프라이머 쌍을 추가적으로 포함하는 것을 특징으로 하는 유방암 진단용 조성물.
The composition for diagnosing breast cancer according to claim 3, further comprising a primer pair selected from the group consisting of primers comprising nucleotide sequences represented by SEQ ID NOs: 113 to 118 and SEQ ID NOs: 121 to 300.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (a) 생체시료에서 분리된 핵산을 전이효소(transposase)로 처리하여 핵산 단편을 수득하는 단계; 및
(b) BC3M_125 마커와 특이적으로 결합하는 서열번호 109으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 110으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍을 이용하여 상기 처리된 핵산 단편을 증폭하여, 상기 핵산의 염색질 구조를 검출하는 단계를 포함하는 유방암 진단을 위한 정보의 제공방법.
(a) treating the nucleic acid isolated from the biological sample with a transfer enzyme to obtain a nucleic acid fragment; And
(b) Amplification of the treated nucleic acid fragment using a primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 109 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 110 that specifically binds to the BC3M_125 marker Thus, a method of providing information for breast cancer diagnosis comprising the step of detecting a chromatin structure of the nucleic acid.
제14항에 있어서, 상기 핵산의 염색질 구조를 검출하는 방법은 증폭산물의 존재유무를 검출하는 것을 특징으로 하는 유방암 진단을 위한 정보의 제공방법.
The method of claim 14, wherein the method of detecting the chromatin structure of the nucleic acid comprises detecting the presence or absence of an amplification product.
제14항에 있어서, 상기 (b) 단계에서, 다음에서 선택되는 마커와 특이적으로 결합하는 프라이머 쌍을 이용하여 상기 처리된 핵산 단편을 추가적으로 증폭하는 것을 특징으로 하는 유방암 진단을 위한 정보의 제공방법.:
BC3M_11 마커와 특이적으로 결합하는 서열번호 103으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 104으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_102 마커와 특이적으로 결합하는 서열번호 101으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 102으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_117 마커와 특이적으로 결합하는 서열번호 105으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 106으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_119 마커와 특이적으로 결합하는 서열번호 107으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 108으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍;
BC3M_132 마커와 특이적으로 결합하는 서열번호 111으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 112으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍; 및
BC3M_146 마커와 특이적으로 결합하는 서열번호 119으로 표시되는 염기서열을 포함하는 프라이머 및 서열번호 120으로 표시되는 염기서열을 포함하는 프라이머로 구성된 프라이머 쌍.
The method of claim 14, wherein in the step (b), the processed nucleic acid fragment is additionally amplified using a primer pair that specifically binds to a marker selected from the following. .:
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 103 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 104 that specifically binds to the BC3M_11 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 101 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 102 that specifically binds to the BC3M_102 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 105 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 106 that specifically binds to the BC3M_117 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 107 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 108 that specifically binds to the BC3M_119 marker;
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 111 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 112 that specifically binds to the BC3M_132 marker; And
A primer pair consisting of a primer comprising a nucleotide sequence represented by SEQ ID NO: 119 and a primer comprising a nucleotide sequence represented by SEQ ID NO: 120 that specifically binds to the BC3M_146 marker.
제14항에 있어서, 상기 (b) 단계에서, 서열번호 113 내지 118 및 서열번호 121 내지 300으로 표시되는 염기서열을 포함하는 프라이머로 구성된 군에서 선택되는 프라이머 쌍을 이용하여 상기 처리된 핵산 단편을 추가적으로 증폭하는 것을 특징으로 하는 유방암 진단을 위한 정보의 제공방법.The method of claim 14, wherein in step (b), the treated nucleic acid fragment is prepared by using a primer pair selected from the group consisting of primers including nucleotide sequences represented by SEQ ID NOs: 113 to 118 and SEQ ID NOs: 121 to 300. A method of providing information for breast cancer diagnosis, characterized in that amplifying additionally. 삭제delete 삭제delete 삭제delete
KR1020190147570A 2019-04-05 2019-11-18 A cancer diagnosis marker based on ATAC-Seq and Method using the same KR102192455B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/015856 WO2020204297A1 (en) 2019-04-05 2019-11-19 Cancer diagnostic marker using transposase-accessible chromatin sequencing information about individual, and use thereof
US17/601,332 US20220170110A1 (en) 2019-04-05 2019-11-19 Cancer diagnostic marker using transposase-accessible chromatin sequencing information about individual, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190040056 2019-04-05
KR20190040056 2019-04-05

Publications (2)

Publication Number Publication Date
KR20200117827A KR20200117827A (en) 2020-10-14
KR102192455B1 true KR102192455B1 (en) 2020-12-17

Family

ID=72847074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190147570A KR102192455B1 (en) 2019-04-05 2019-11-18 A cancer diagnosis marker based on ATAC-Seq and Method using the same

Country Status (1)

Country Link
KR (1) KR102192455B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007078599A2 (en) 2005-12-16 2007-07-12 The Board Of Trustees Of The Leland Stanford Junior University Functional arrays for high throughput characterization of gene expression regulatory elements
US20160060691A1 (en) 2013-05-23 2016-03-03 The Board Of Trustees Of The Leland Stanford Junior University Transposition of Native Chromatin for Personal Epigenomics
JP2018532373A (en) 2015-08-12 2018-11-08 ツェーエーエムエム・フォルシュングスツェントルム・フュア・モレクラーレ・メディツィン・ゲーエムベーハー Nucleic acid research methods
WO2018209324A2 (en) 2017-05-11 2018-11-15 The Broad Institute, Inc. Methods and compositions of use of cd8+ tumor infiltrating lymphocyte subtypes and gene signatures thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101989465B1 (en) * 2017-08-31 2019-06-14 서울대학교산학협력단 Composition or kit for diagnosing breast cancer using epigenetic biomarker and method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007078599A2 (en) 2005-12-16 2007-07-12 The Board Of Trustees Of The Leland Stanford Junior University Functional arrays for high throughput characterization of gene expression regulatory elements
US20160060691A1 (en) 2013-05-23 2016-03-03 The Board Of Trustees Of The Leland Stanford Junior University Transposition of Native Chromatin for Personal Epigenomics
JP2018532373A (en) 2015-08-12 2018-11-08 ツェーエーエムエム・フォルシュングスツェントルム・フュア・モレクラーレ・メディツィン・ゲーエムベーハー Nucleic acid research methods
WO2018209324A2 (en) 2017-05-11 2018-11-15 The Broad Institute, Inc. Methods and compositions of use of cd8+ tumor infiltrating lymphocyte subtypes and gene signatures thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chen H et al, bioRxiv (2018.10.10.), pp 1-30.
Corces M R et al, Science (2018.10.26.), vol 362, eaav1898, pp 1-13.

Also Published As

Publication number Publication date
KR20200117827A (en) 2020-10-14

Similar Documents

Publication Publication Date Title
CN110520542B (en) Method for targeted nucleic acid sequence enrichment and use in error-correcting nucleic acid sequencing
US20210317526A1 (en) Compositions and methods for accurately identifying mutations
KR102622305B1 (en) Detection method using chromosomal interaction sites
US20210147935A1 (en) Methods and probes for identifying gene alleles
CN103403181B (en) NcRNA and application thereof
US20150126376A1 (en) Compositions and methods for sensitive mutation detection in nucleic acid molecules
CN110719957B (en) Methods and kits for targeted enrichment of nucleic acids
KR20210013317A (en) Systems and methods to detect rare mutations and copy number variation
CN107849606A (en) The method for improving sequencing sensitivity of future generation
AU2018290809B2 (en) Biomarkers for the diagnosis and treatment of fibrotic lung disease
KR20100124326A (en) Biomarkers for inflammatory bowel disease and irritable bowel syndrome
JP2023054163A (en) Probe and method for detecting transcript resulting from fusion gene and/or exon skipping
CN102776286A (en) Primer, probe and assay kit for detecting v-ros avian UR2 sarcoma viral oncogene homolog 1 (ROS1) gene fusion mutation
KR101992785B1 (en) Method for providing information of prediction and diagnosis of hypertension using methylation level of GNAS gene and composition therefor
CA2666057C (en) Genetic variations associated with tumors
CN115135779A (en) Identification of host RNA infection biomarkers
KR101992796B1 (en) Method for providing information of prediction and diagnosis of hypertension using methylation level of SGK1 gene and composition therefor
KR102192455B1 (en) A cancer diagnosis marker based on ATAC-Seq and Method using the same
CN110093409B (en) Infectious line detection method and kit based on high-throughput sequencing
KR101992787B1 (en) Method for providing information of prediction and diagnosis of hypertension using methylation level of BZRAP1-AS1 gene and composition therefor
CN109182544A (en) A kind of 8 kinds of SNP sites and its application for identifying sheep known for its fine thick wool and non-sheep known for its fine thick wool
MX2010008585A (en) Prediction and diagnosis of canine degenerative myelopathy.
CN101864423A (en) MUC13 gene determining susceptibility/resistance of piglet F4ac diarrhea and application thereof
KR101964489B1 (en) Composition for diagnosing myeloproliferative disorder
JP2006304611A (en) Pcr method, primer and pna

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right