KR102191098B1 - Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same - Google Patents

Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same Download PDF

Info

Publication number
KR102191098B1
KR102191098B1 KR1020190081448A KR20190081448A KR102191098B1 KR 102191098 B1 KR102191098 B1 KR 102191098B1 KR 1020190081448 A KR1020190081448 A KR 1020190081448A KR 20190081448 A KR20190081448 A KR 20190081448A KR 102191098 B1 KR102191098 B1 KR 102191098B1
Authority
KR
South Korea
Prior art keywords
aluminum
luminescent
aluminum hydroxide
resin film
conversion material
Prior art date
Application number
KR1020190081448A
Other languages
Korean (ko)
Inventor
김영래
이도훈
김기세
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020190081448A priority Critical patent/KR102191098B1/en
Application granted granted Critical
Publication of KR102191098B1 publication Critical patent/KR102191098B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Abstract

The present invention relates to a photovoltaic conversion material capable of down-converting a wavelength in the visible light region and allowing plants to absorb light well and effectively photosynthesize light energy in the ultraviolet region which cannot effectively be used for photosynthesis, and a film including the same. According to the present invention, the photovoltaic conversion material can be used as a photovoltaic conversion material composite film in agriculture and industry since the photovoltaic conversion material with high light conversion efficiency is well dispersed in a polymer resin while maintaining the economic aspect by excluding expensive lanthanum-based components, thereby increasing the photosynthesis rate of plants in a space using the photovoltaic conversion material, and having the advantage of shortening the growth period by increasing the growth rate of plants.

Description

광합성 촉진을 위한 태양광변환소재, 및 이를 포함하는 광합성 촉진용 태양광변환용 수지 필름{Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same}Solar energy converting material for photosynthesis promotion, and resin film for photosynthesis facilitation, Resin film for converting solar energy comprising the same}

본 발명은 광합성 촉진을 위한 태양광변환소재 및 이를 포함하는 태양광변환용 수지필름에 관한 것이다. The present invention relates to a photovoltaic material for promoting photosynthesis and a photovoltaic conversion resin film comprising the same.

광합성의 촉진을 위한 태양광변환 수지필름은 태양광변환소재를 포함하는 복합소재의 수지 조성물로 제조되며, 이러한 빛이 태양광변환소재를 포함하는 수지필름을 통과할 때 식물이 잘 흡수하지 못하는 자외선 영역대의 빛을 흡수하여 광합성에 유리한 청자색광 영역대의 빛으로 전환된다. 일반적으로, 흡수하는 빛의 파장과 다시 발광하는 빛의 파장이 태양광변환소재에 따라 결정되며, 사용하고자 하는 빛의 파장에 따라 다양한 용도의 태양광변환 수지필름을 만들 수 있다.The photovoltaic conversion resin film for promoting photosynthesis is made of a composite resin composition containing a photovoltaic conversion material, and when such light passes through the resin film containing the photovoltaic conversion material, it is difficult to absorb ultraviolet rays. It absorbs light in the area and converts it into light in the blue-violet area, which is advantageous for photosynthesis. In general, the wavelength of light to be absorbed and the wavelength of light to emit light again are determined according to the solar light conversion material, and a solar light conversion resin film for various purposes can be made according to the wavelength of light to be used.

비닐하우스용 수지 조성물은 주로 폴리에틸렌을 사용하며, 농업 및 산업용에서 플라스틱 필름으로 주로 사용되고 있다. 기존 태양광변환 수지필름의 사용으로는 농업용 필름에 태양광변환소재를 사용하여 농작물의 성장에 효율적인 빛의 양을 증가시킴으로써 수확시기를 앞당기는 것이었으며, 기존의 농업용 보광성 필름이 주로 사용되었다. The resin composition for a green house mainly uses polyethylene, and is mainly used as a plastic film in agriculture and industry. The use of the existing photovoltaic conversion resin film was to increase the amount of light efficient for the growth of agricultural crops by using photovoltaic conversion material for agricultural film to increase the amount of light that is efficient for the growth of agricultural crops, thereby increasing the amount of light, and the existing agricultural photosensitive film was mainly used.

이러한 태양광변환소재로 일반적으로 형광제가 많이 사용되며, 사용원료와 크기 형태 등을 조절하여 필요조건에 따라 다양한 물질로 응용하여 사용되고 있다. 대표적으로 란탄계 착화물이 태양광변환소재로 높은 효율을 보이기는 하지만, 필름에 도입할 경우 빛의 투과성이 낮아지고 이에 따라 비닐하우스 내로 들어오는 입사되는 빛의 총량이 감소할 수 있다. 또한 큰 입자의 태양광변환소재는 필름 내에 분산의 어려움을 동반하며, 높은 가격의 란탄계 착화물이 비용적인 측면에서도 사용자에게 부담으로 작용할 수 있다. 또한 유기 형광제는 실제 태양광이 가지는 강한 자외선에 의해 쉽게 분해가 될 수 있는 단점을 가지고 있다. Fluorescent agents are generally used as such a photovoltaic conversion material, and various materials are applied and used according to requirements by controlling the raw materials and size and shape used. Typically, lanthanum complexes exhibit high efficiency as a photovoltaic conversion material, but when introduced into a film, the transmittance of light decreases, and accordingly, the total amount of incident light entering the green house may decrease. In addition, large-particle photovoltaic materials are difficult to disperse in the film, and high-priced lanthanum complexes can act as a burden on users in terms of cost. In addition, organic fluorescent agents have a disadvantage that they can be easily decomposed by strong ultraviolet rays of actual sunlight.

따라서 필름의 투명성을 보장하면서 농작물이 효과적으로 광합성을 할 수 있도록 파장을 변환해 주고, 내구성이 강하면서 가격 경쟁력을 갖는 태양광변환소재의 개발이 필요한 실정이다.Therefore, it is necessary to develop a photovoltaic conversion material that converts wavelengths so that crops can photosynthesize effectively while ensuring transparency of the film, and has strong durability and price competitiveness.

본 발명의 목적은 광합성을 하는데 영향을 주지 못하는 자외선 영역대의 빛을 청자색 영역대의 빛으로 바꾸어 줌으로써 농작물이 효과적으로 광합성을 할 수 있도록 태양광변환 소재를 제공하는 것이다. An object of the present invention is to provide a photovoltaic conversion material so that crops can effectively photosynthesize by converting light in the ultraviolet region, which does not affect photosynthesis, into light in the blue-violet region.

본 발명의 또 다른 목적은 태양광의 자외선 에너지를 식물이 광합성을 할 수 있는 가시광선으로 전환시킬 수 있는 태양광변환용 수지 필름을 제공하는 것이다. Another object of the present invention is to provide a resin film for photovoltaic conversion that can convert ultraviolet energy of sunlight into visible light through which plants can photosynthesize.

본 발명의 또 다른 목적은 태양광의 자외선 에너지를 식물이 광합성을 할 수 있는 가시광선으로 전환시켜 농작물의 성장을 촉진할 수 있는 식물 재배용 하우스를 제공하는 것이다.Another object of the present invention is to provide a house for plant cultivation that can promote the growth of crops by converting ultraviolet energy of sunlight into visible light through which plants can photosynthesize.

본 발명의 목적을 달성하기 위하여, 본 발명은 자외선 흡수 파장 및 가시광선 발광 파장을 갖는 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체를 포함하고, 상기 발광성 수산화알루미늄 복합체는 자외선을 흡수하거나 가시광선을 발광하는 기능기가 결합된 수산화알루미늄인 광합성 촉진용 태양광변환 소재를 제공한다.In order to achieve the object of the present invention, the present invention includes a luminescent aluminum hydroxide or a luminescent aluminum hydroxide complex having an ultraviolet absorption wavelength and a visible ray emission wavelength, and the luminescent aluminum hydroxide complex has a function of absorbing ultraviolet rays or emitting visible rays. It provides a photovoltaic conversion material for promoting photosynthesis, which is aluminum hydroxide in which groups are bonded.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 본 발명에 따른 태양광변환 소재를 포함하는 태양광변환용 수지 필름을 제공한다. In order to achieve another object of the present invention, the present invention provides a photovoltaic conversion resin film comprising the photovoltaic conversion material according to the present invention.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 본 발명에 따른 태양광변환용 수지 필름으로 제조된 식물 재배용 하우스를 제공한다. In order to achieve another object of the present invention, the present invention provides a house for plant cultivation made of the resin film for photovoltaic conversion according to the present invention.

본 발명에 따른 태양광변환소재는 자외선 영역대의 빛을 흡수하고 식물이 광합성을 효과적으로 할 수 있는 청자색 영역대의 빛을 발광함으로써 식물의 광합성을 촉진시킬 수 있으므로, 이러한 태양광변환 소재를 포함하는 수지 필름으로 제조된 비닐하우스 내에서는 농작물의 수확량이 상대적으로 증가한다. The solar conversion material according to the present invention can promote photosynthesis of plants by absorbing light in the ultraviolet region and emitting light in the blue-violet region in which plants can effectively photosynthesis. Therefore, a resin film containing such a solar conversion material The yield of agricultural crops is relatively increased in the green house manufactured with

또한, 종래에 사용되던 고분자로 구성된 수지필름은 높은 에너지를 갖는 자외선에 의해 분해될 수 있어 내구성에 문제가 있었지만, 본 발명에 따른 태양광변환 소재를 포함하는 광전환 필름은 자외선 영역대를 청자색광 영역대로 파장을 변환해주기 때문에 고분자 수지필름이 직접 받는 자외선의 양을 태양광변환소재를 포함하는 함량에 따라 적게 받도록 함으로써 자외선에 대한 수지필름의 내구성을 향상시킬 수가 있어, 수지 필름 및 이로 제조된 온실 등의 내구성을 높일 수 있다.In addition, the conventional resin film composed of a polymer can be decomposed by ultraviolet rays having high energy, so there is a problem in durability, but the optical conversion film including the solar conversion material according to the present invention has a blue-violet light in the ultraviolet region. Since the wavelength is converted according to the range, it is possible to improve the durability of the resin film against ultraviolet rays by reducing the amount of ultraviolet rays directly received by the polymer resin film according to the content containing the solar light conversion material. The durability of the back can be improved.

도 1은 실시예 1에 따라 열분해 합성방법으로 제조된 발광성 수산화알루미늄의 흡수 및 발광 스펙트럼을 나타낸다.
도 2는 3-히드록시-2-나프토에산(3-hydroxy-2-naphthoic acid)를 이용하여 발광파장이 제어된 발광성 수산화알루미늄 복합체 용액의 UV-Vis 흡수 스펙트럼과 광발광 스펙트럼(photoluminescence spectrum)을 나타내며, 파란 점선은 흡수, 보라색 실선은 발광 스펙트럼을 의미한다.
도 3는 실시예 3에 따라 열분해 합성방법으로 제조된 발광성 수산화알루미늄을 서로 다른 농도로 포함하는 EVA 필름의 투과특성을 나타낸다.
도 4는 발광성 수산화알루미늄이 EVA와 함께 존재하는 조건에서의 발광특성을 나타낸 것이다.
도 5는 빛이 입사되는 필름 내부에 태양광변환 소재가 위치하도록 제조된 것을 나타내는 태양광변환 소재를 포함하는 필름의 모식도이다.
도 6는 광합성 청자색 광에서의 흡수 파장 영역을 나타낸 것으로, 엽록소 a가 400 ~ 450 nm, 엽록소 b가 430 ~ 480 nm, 카로티노이드가 440 ~ 510 nm이다.
도 7은 실시예 3과 4에 따라 제조된 필름의 사진으로서, 자외선을 흡수, 가시광선을 발광하는 특성을 갖는 수지필름 사진이다.
1 shows absorption and emission spectra of luminescent aluminum hydroxide prepared by the pyrolysis synthesis method according to Example 1.
Figure 2 is a UV-Vis absorption spectrum and photoluminescence spectrum of a luminescent aluminum hydroxide complex solution with a controlled emission wavelength using 3-hydroxy-2-naphthoic acid ), the blue dotted line means the absorption, and the purple solid line means the emission spectrum.
3 shows the transmittance characteristics of an EVA film containing luminescent aluminum hydroxide prepared by the pyrolysis synthesis method according to Example 3 in different concentrations.
4 shows the luminescence characteristics under the condition that luminescent aluminum hydroxide is present together with EVA.
5 is a schematic diagram of a film including a photovoltaic material, showing that the photovoltaic material is manufactured to be positioned inside a film into which light is incident.
6 shows an absorption wavelength range in photosynthetic blue-violet light, where chlorophyll a is 400 to 450 nm, chlorophyll b is 430 to 480 nm, and carotenoids are 440 to 510 nm.
7 is a photograph of a film prepared according to Examples 3 and 4, which is a photograph of a resin film having properties of absorbing ultraviolet rays and emitting visible rays.

이하, 본 발명을 보다 상세히 설명하나, 이는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위를 한정하려는 것은 아니다.Hereinafter, the present invention will be described in more detail, but this is for describing the present invention in more detail, and is not intended to limit the scope of the present invention.

<광합성 촉진용 발광성 수산화알루미늄 계열 태양광변환 소재><luminescent aluminum hydroxide-based photovoltaic conversion material for promoting photosynthesis>

본 발명은 자외선 흡수 파장 및 가시광선 발광 파장을 갖는 발광성 수산화알루미늄을 포함하는 광합성 촉진용 태양광변환 소재를 제공한다.The present invention provides a photovoltaic conversion material for promoting photosynthesis including luminescent aluminum hydroxide having an ultraviolet absorption wavelength and a visible light emission wavelength.

본 발명의 일 실시예에 의하면, 상기 자외선 최대 흡수 파장은 200 ~ 500nm 사이에서 형성되고, 상기 최대 발광 파장은 400 ~ 1,200nm 사이에서 형성되는 것이 바람직하다. According to an embodiment of the present invention, the maximum absorption wavelength of ultraviolet rays is formed between 200 ~ 500nm, the maximum emission wavelength is preferably formed between 400 ~ 1,200nm.

이로써 본 발명에 따른 태양광변환 소재는 식물이 잘 흡수하지 못하는 200 ~ 350nm 자외선 영역대의 빛을 흡수하여, 광합성에 유리한 400 ~ 600nm 대에서 발광할 수 있어, 비닐하우스 등 식물 재배에 사용되는 수지필름의 기능성을 살리고, 효율적으로 태양광을 변환시킬 수 있다. Thus, the photovoltaic material according to the present invention absorbs light in the 200 ~ 350nm ultraviolet range, which plants do not absorb well, and can emit light in the 400 ~ 600nm range, which is advantageous for photosynthesis, and is a resin film used for plant cultivation such as green houses. It can utilize the functionality of and convert sunlight efficiently.

또한, 태양광변환소재 내에서 흡수 파장 영역과 발광 파장 영역이 중첩되지 않는 것이 바람직하다. 이는 흡수 및 발광 파장 영역이 중첩되는 경우에는 태양광변환소재 내에서 방출되는 빛을 다시 재흡수(reabsorption) 하는 등과 같이 손실로 작용할 수 있기 때문이다.In addition, it is preferable that the absorption wavelength region and the emission wavelength region do not overlap within the photovoltaic material. This is because when the absorption and emission wavelength regions overlap, it may act as a loss, such as reabsorption of light emitted from the photovoltaic conversion material.

실시예에 의하면, 상기 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체의 전구체는 알루미늄 모노아세테이트, 알루미늄 트리아세테이트, 알루미늄 디아세테이트, 알루미늄트리에틸알루미늄, 트리메틸 알루미늄, 알루미늄 알콕시드, 디에틸알루미늄 클로라이드, 알루미늄 설페이트, 알루미늄 시아나이드, 알루미늄 니트라이트, 알루미늄 카보네이트, 알루미늄 설파이트, 알루미늄 히드록시드, 알루미늄 옥사이드, 알루미늄 클로레이트, 알루미늄 설파이드, 알루미늄 크로메이트(aluminum chromate), 알루미늄 트리클로라이드, 알루미늄 퍼클로레이트, 알루미늄 니트레이트, 알루미늄 퍼망가네이트, 탄화수소알루미늄(aluminum hydrogen carbonate), 알루미늄 포스페이트(aluminum phosphate), 알루미늄 옥살레이트(aluminum oxalate), 알루미늄 히드로겐 포스페이트(aluminum hydrogen phosphate), 알루미늄 티오설페이트(aluminum thiosulfate), 알루미늄 클로라이트(aluminum chlorite), 알루미늄 히드로겐 설페이트(aluminum hydrogen sulfate), 알루미늄 디클로메이트(aluminum dichromate), 알루미늄 브로마이드(aluminum bromide), 알루미늄 히포클로라이트(aluminum hypochlorite), 알루미늄 클로라이드 헥사히드레이트(aluminum chloride hexahydrate), 알루미늄 디히드로겐 포스페이트(aluminum dihydrogen phosphate), 알루미늄 포스파이트(aluminum phosphite), 알루미늄 포타슘 설페이트 도데카히드레이트(aluminum potassium sulfate dodecahydrate), 알루미늄 브로메이트(aluminum bromate), 알루미늄 니트라이드(aluminum nitride) 및 이들의 유도체 중 어느 하나가 사용될 수 있다. According to an embodiment, the precursor of the luminescent aluminum hydroxide or the luminescent aluminum hydroxide complex is aluminum monoacetate, aluminum triacetate, aluminum diacetate, aluminum triethylaluminum, trimethyl aluminum, aluminum alkoxide, diethylaluminum chloride, aluminum sulfate, aluminum Cyanide, aluminum nitrite, aluminum carbonate, aluminum sulfite, aluminum hydroxide, aluminum oxide, aluminum chlorate, aluminum sulfide, aluminum chromate, aluminum trichloride, aluminum perchlorate, aluminum nitrate, aluminum permanga Nate, hydrocarbon aluminum (aluminum hydrogen carbonate), aluminum phosphate, aluminum oxalate, aluminum hydrogen phosphate, aluminum thiosulfate (aluminum thiosulfate), aluminum chlorite (aluminum chlorite) , Aluminum hydrogen sulfate, aluminum dichromate, aluminum bromide, aluminum hypochlorite, aluminum chloride hexahydrate, aluminum dihydro Among the aluminum dihydrogen phosphate, aluminum phosphite, aluminum potassium sulfate dodecahydrate, aluminum bromate, aluminum nitride and derivatives thereof Either can be used.

상기 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체는 당해 기술 분야에 알려진 기술을 이용해서 제조될 수 있으며, 예를 들어 수열(hydrothermal), 졸-젤(sol-gel), 열분해(thermal decomposition) 합성 방법 등이 있다. 본 발명에서는 열분해 방법을 예로 들어 설명하며, 이에 국한되지는 않는다.The luminescent aluminum hydroxide or the luminescent aluminum hydroxide complex may be prepared using techniques known in the art, for example, hydrothermal, sol-gel, thermal decomposition synthesis method, etc. have. In the present invention, the pyrolysis method is described as an example, but the present invention is not limited thereto.

열분해 합성방법으로 상기 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체를 합성하는 경우에는 상기 전구체의 열분해 온도보다 높은 끓는점을 갖는 물질을 용매로 활용하는 것이 바람직하다. 예를 들어 헥사데실아민 (hexadecylamine), 1-에이코센(1-eicosene), 1-옥타데센(1-octadecene), 도코산 (docosane), 페닐에테르(phenylether), 벤질에테르(benzylether), 옥틸에테르(octylether), 올레산(oleic acid), 올레이라민(oleylamine), 폴리아이소부틸렌(polyisobutylene) 등 200oC 이상의 높은 끓는 점을 갖는 물질을 용매로 활용한다. When synthesizing the luminescent aluminum hydroxide or the luminescent aluminum hydroxide complex by the pyrolysis synthesis method, it is preferable to use a material having a boiling point higher than the pyrolysis temperature of the precursor as a solvent. For example, hexadecylamine, 1-eicosene, 1-octadecene, docosane, phenylether, benzylether, octyl ether (octylether), oleic acid, oleylamine, polyisobutylene, etc. with a high boiling point of 200 o C or higher are used as a solvent.

상기 용매는 용매로 작용할 수도 있고, 탄소 (carbon), 카르보닐 라디칼(carbonyl radical), 옥살릭 포스포릭 (oxalic phosphoric), 황산 (sulfuric acid) 등의 불순물을 제공하여 발광특성을 조절하거나 발광성능을 개선하는 역할을 할 수도 있다. The solvent may act as a solvent, and provide impurities such as carbon, carbonyl radical, oxalic phosphoric, sulfuric acid, etc. to control luminescence characteristics or improve luminescence performance. It can also serve to improve.

또한, 추가적으로 열분해 합성 단계에서 알킬(C1 ~ C20) 아세테이트 등의 불순물을 첨가하여 흡수 및 발광 특성과 같은 광 특성을 조절할 수도 있다. 발광성 수산화알루미늄을 제조하기 위해 상기 용매에 알루미늄 전구체를 분산시킨 후, 알루미늄 전구체의 열분해 온도에서 반응한다. 반응이 종결되면 생성물을 분리 및 정제하여 최종 발광성 수산화알루미늄을 얻을 수 있다.In addition, by adding impurities such as alkyl (C 1 ~ C 20 ) acetate in the pyrolysis synthesis step, optical properties such as absorption and light emission characteristics may be adjusted. After dispersing an aluminum precursor in the solvent to prepare luminescent aluminum hydroxide, the aluminum precursor is reacted at a thermal decomposition temperature. Upon completion of the reaction, the product can be separated and purified to obtain final luminescent aluminum hydroxide.

최종 생성된 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체는 Al(OH)3, AlOOH, 5Al2O3·2H2O, Al2O3 등의 구조를 포함할 수 있고, 본 발명에서는 이하 aluminum hydroxide, AlOH 또는 수산화알루미늄이라 표기한다. 열분해 합성에 의해 생성된 수산화알루미늄이 발광특성을 나타내는 원인은 금속 산화물 내의 결함(defects)로부터 나타나는 trap emission이다. Trap emission은 소재의 결함이 존재할 때 전도대(conduction band) 보다 낮은 에너지 준위에 또 다른 에너지 준위가 형성되고, 외부 에너지에 의해 가전도대(valence band)에서 전도대로 전이된 전도대 내의 전자는 결함으로 인해 생성된 더 낮은 에너지 준위로 안정화되어 이동하게 되며, 가전도대로 전이되면서 빛을 방출하게 된다. 열분해 합성단계에서 다양한 불순물을 첨가함으로써 전도대 아래의 에너지 준위를 조절할 수 있고, 그에 따라 발광 파장을 제어할 수도 있다. The finally produced luminescent aluminum hydroxide or luminescent aluminum hydroxide complex may include structures such as Al(OH) 3 , AlOOH, 5Al 2 O 3 ·2H 2 O, Al 2 O 3 , and in the present invention, the following aluminum hydroxide, AlOH Or it is expressed as aluminum hydroxide. The reason why aluminum hydroxide produced by pyrolysis synthesis exhibits luminescence characteristics is trap emission from defects in metal oxides. In trap emission, when defects in the material exist, another energy level is formed at an energy level lower than the conduction band, and electrons in the conduction band that are transferred from the valence band to the conduction band by external energy are caused by the defect. It is stabilized and moved to the lower energy level generated, and it emits light as it transitions to the home appliance. By adding various impurities in the pyrolysis synthesis step, the energy level under the conduction band can be adjusted, and the emission wavelength can be controlled accordingly.

본 발명의 일 실시예에 의하면, 자외선 영역 빛의 흡수가 가능한 기능기를 갖는 자외선 흡수 화합물을 더 포함할 수 있다. 예를 들어 상기 기능기는 방향족링(aromatic ring), -COOH, -OH 또는 N로부터 선택될 수 있다.According to an embodiment of the present invention, an ultraviolet absorbing compound having a functional group capable of absorbing ultraviolet ray light may be further included. For example, the functional group may be selected from an aromatic ring, -COOH, -OH or N.

일 실시예에 의하면, 상기 방향족 링기를 포함하는 화합물은, 푸란, 벤조푸란, 이소벤조푸란, 피롤, 인돌, 이소인돌, 티오펜, 벤조티오펜, 이미다졸, 벤즈이미다졸, 퓨린, 피라졸, 이미다졸, 옥사졸, 벤족사졸, 이속사졸, 벤즈이속사졸, 티오졸, 벤조티오졸, 벤젠, 나프탈렌, 안트라센, 피리딘, 퀴녹살린, 아크리딘, 피리미딘, 퀴나졸린, 피리다진, 신놀린, 프탈라진, 1,2,3-트리아진, 1,2,4-트리아진, 1,3,5-트리아진 및 그의 유도체 중의 하나 이상으로부터 선택될 수 있다.According to an embodiment, the compound containing the aromatic ring group is furan, benzofuran, isobenzofuran, pyrrole, indole, isoindole, thiophene, benzothiophene, imidazole, benzimidazole, purine, pyrazole, Imidazole, oxazole, benzoxazole, isoxazole, benzisoxazole, thiazole, benzothiazole, benzene, naphthalene, anthracene, pyridine, quinoxaline, acridine, pyrimidine, quinazoline, pyridazine, cinnoline, Phthalazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine and derivatives thereof.

상기 기능기를 갖는 화합물을 적절히 첨가하는 경우 발광성 수산화알루미늄의 자외선 빛 흡수에 도움을 줄 수 있다. When the compound having the functional group is appropriately added, it can help absorb ultraviolet light of the luminescent aluminum hydroxide.

상기 자외선 흡수 화합물은 상기 발광성 수산화알루미늄으로부터 10nm 이내에 위치하거나, 결합하여 복합체를 형성하는 것이 바람직하다. 이는 인접하게 위치함으로써, 자외선 흡수 기능의 효과를 상승시킬 수 있기 때문이다.The ultraviolet absorbing compound is preferably located within 10 nm of the luminescent aluminum hydroxide or combined to form a complex. This is because by being located adjacent to each other, the effect of the ultraviolet absorption function can be increased.

상기 결합은 수산화알루미늄과 상기 자외선 흡수 화합물이 인접하여 복합체를 이룰 수 있도록 하는 것이면 어느 것이나 다 가능하며, 예를 들어, 이온 결합, 공유 결합, 반데르바알스 결합 등 화학적 결합 어느 것이나 가능하다.The bonding may be any combination as long as aluminum hydroxide and the ultraviolet absorbing compound are adjacent to each other to form a complex, and for example, any chemical bonding such as an ionic bond, a covalent bond, or a van der Baals bond is possible.

또한 란탄계 이온을 추가적으로 도핑하는 경우, 에너지 전이에 의한 발광 파장 제어도 가능할 수 있다. 다만, 본 발명에 따른 태양광변환 소재에 사용되는 란탄계 이온은 발광 파장의 제어를 위한 것으로 극미량 사용으로도 충분하므로, 기존 소재보다 가격 경쟁력이 있다.In addition, when lanthanum-based ions are additionally doped, it may be possible to control the emission wavelength by energy transfer. However, the lanthanum ion used in the photovoltaic conversion material according to the present invention is for controlling the emission wavelength and is sufficient to use a very small amount, so it is more cost-competitive than conventional materials.

본 발명의 일 실시예에 의하면, 상기 발광성 수산화알루미늄 복합체는 입자 크기가 1nm~100㎛, 바람직하게는 1nm~1㎛이다.According to an embodiment of the present invention, the luminescent aluminum hydroxide composite has a particle size of 1 nm to 100 μm, preferably 1 nm to 1 μm.

이는 비닐하우스 등으로 활용될 수 있는 발광성 수산화알루미늄은 태양광이 식물 및 농작물에 이르기 전에 수지필름 내에 위치하기 때문에 입자 크기가 태양광의 파장과 유사하거나 크다면, 입사하는 태양광이 산란 또는 반사되어 농작물이 흡수하는 태양광의 양이 감소할 수 있기 때문이다. This is because luminescent aluminum hydroxide, which can be used as a green house, is located in the resin film before sunlight reaches plants and crops, so if the particle size is similar to or larger than the wavelength of sunlight, incident sunlight is scattered or reflected to produce crops. This is because the amount of absorbed sunlight can be reduced.

실시예에 의하면, 상기 발광성 수산화알루미늄 또는 수산화알루미늄 복합체는 다공성 구조를 갖는 것이 바람직하다. According to an embodiment, it is preferable that the luminescent aluminum hydroxide or aluminum hydroxide composite has a porous structure.

상기 발광성 수산화알루미늄 또는 수산화알루미늄 복합체의 다공성 구조는 전구체, 용매, 불순물 또는 열분해 반응 온도, 시간 등의 변수에 따라 다공성을 갖도록 합성할 수 있다. 상기 발광성 수산화알루미늄 또는 수산화알루미늄 복합체가 다공성을 갖는 경우, 빛의 흡수/발광 영역대의 파장이 변화함에 따라 고분자 수지가 받게 되는 높은 에너지의 자외선 흡수를 막아주는 효과가 있으며, 이로 인해 필름의 내열특성을 향상시킬 수 있다.The porous structure of the luminescent aluminum hydroxide or aluminum hydroxide composite may be synthesized to have porosity according to variables such as precursors, solvents, impurities, or pyrolysis reaction temperature and time. When the luminescent aluminum hydroxide or aluminum hydroxide composite has porosity, it has the effect of preventing the absorption of high energy ultraviolet rays received by the polymer resin as the wavelength of the light absorption/luminescence range changes, and thereby the heat resistance of the film Can be improved.

도 1은 열분해 합성방법으로 제조된 본 발명의 실시예에 따른 발광성 수산화알루미늄의 흡수 및 발광 스펙트럼을 나타낸다. 보다 구체적으로는 파란 점선은 수산화알루미늄의 흡수 스펙트럼으로 400nm 이하에서 흡수를 시작하여 자외선 영역에서 강한 흡수를 보이며, 주황색 실선은 발광 스펙트럼으로 420nm에서 최대 발광 피크를 보인다.1 shows absorption and emission spectra of luminescent aluminum hydroxide according to an embodiment of the present invention prepared by a pyrolysis synthesis method. More specifically, the blue dotted line is the absorption spectrum of aluminum hydroxide, which starts absorption below 400 nm and shows strong absorption in the ultraviolet region, and the orange solid line shows the maximum emission peak at 420 nm as the emission spectrum.

<태양광변환용 수지 필름><Resin film for photovoltaic conversion>

상기 발광성 수산화알루미늄 또는 수산화알루미늄 복합체를 고분자 필름 내에 분산시켜 시트 형상으로 제조하여 농작물 경작을 위한 비닐하우스 등에 이용할 수 있다. 예를 들어, 도 5의 모식도와 같이 빛이 입사되는 필름 내부에 본 발명에 따른 태양광변환 소재가 위치하도록 제조할 수 있다. 예를 들어 Kneader 및 압출기를 이용하여 태양광변환소재를 고분자 수지에 분산시켜 Mater Batch(M/B)를 제작하고, 이를 사용하여 수지 필름을 제조한다. 수지필름을 가공할 때 발광성 수산화알루미늄 복합체의 함량은 수지필름 100 중량부에 대하여 0.0001 ~ 10 중량부 범위로 조절하여 압출가공 할 수 있다. 발광성 수산화알루미늄이 10 중량부 보다 많이 첨가되는 경우, 발광성 수산화알루미늄 입자에 의한 shading effect로 비닐하우스 내로 입사되는 태양광을 방해할 수 있어 오히려 식물의 광합성 효율이 감소할 수도 있다.The luminescent aluminum hydroxide or aluminum hydroxide composite can be dispersed in a polymer film to be prepared in a sheet shape, and used in a greenhouse for cultivation of agricultural products. For example, as shown in the schematic diagram of FIG. 5, the photovoltaic material according to the present invention can be manufactured to be positioned inside a film into which light is incident. For example, a Kneader and an extruder are used to disperse the photovoltaic material in a polymer resin to prepare a Mater Batch (M/B), and a resin film is manufactured using this. When processing the resin film, the content of the luminescent aluminum hydroxide composite may be adjusted in the range of 0.0001 to 10 parts by weight based on 100 parts by weight of the resin film to be extruded. If more than 10 parts by weight of luminescent aluminum hydroxide is added, the shading effect by the luminescent aluminum hydroxide particles may interfere with sunlight incident on the green house, and thus the photosynthetic efficiency of plants may decrease.

수지필름의 기본수지의 경우, PE(polyethylene)으로 국한되지는 않으며, 에틸렌초산비닐(EVA, ethylene vinyl acetate), 폴리올레핀 엘라스토머(POE, polyolefin elastomer), 가교 폴리올레핀(cross-linked polyolefin), 열가소성 폴리우레탄 (TPU, thermal polyurethane), 폴리비닐부티랄 (PVB, polyvinyl butyral), 실리콘(silicone), 실리콘/폴리우레탄 하이브리드 (silicone/polyurethane hybrid), 이오노머(ionomer) 등의 소재가 모두 이용 가능하다.In the case of the base resin of the resin film, it is not limited to PE (polyethylene), but ethylene vinyl acetate (EVA), polyolefin elastomer (POE), cross-linked polyolefin, and thermoplastic polyurethane. (TPU, thermal polyurethane), polyvinyl butyral (PVB, polyvinyl butyral), silicone, silicone/polyurethane hybrid, ionomer All materials such as can be used.

본 발명에서는 에틸렌비닐초산 (EVA)를 이용하여 예로 설명하지만, 상기 언급된 수지제품이 모두 동일하게 적용 가능하다.In the present invention, ethylene vinyl acetic acid (EVA) is used as an example, but the resin products mentioned above are equally applicable.

이하, 본 발명의 실시예를 제시한다. 하기의 실시예는 본 발명의 이해를 돕기 위하여 제시되는 것 일 뿐, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention is presented. The following examples are only presented to aid understanding of the present invention, and the present invention is not limited to the following examples.

실시예Example

실시예 1. 발광성 수산화알루미늄의 제조 Example 1. Preparation of luminescent aluminum hydroxide

알루미늄 아세테이트를 1-옥타데켄(octadecene) 용매에 2 wt%로 혼합한 뒤 교반 상태에서 시간당 200oC의 승온속도로 온도를 올린 후, 300 oC 에서 30분간 열분해 반응을 진행하였다. 반응 종료 후 원심 분리를 통해 수산화알루미늄을 분리하고, 아세톤과 톨루엔 등에 재분산하였다. 도 1는 이렇게 제조된 발광성 수산화알루미늄 용액의 UV-Vis 흡수 스펙트럼과 광 발광 스펙트럼을 나타내며, 파란 점선은 흡수, 주황 실선은 발광 스펙트럼을 의미한다.After the aluminum acetate was mixed with a solvent of 1-octadecene at 2 wt%, the temperature was raised at a heating rate of 200 o C per hour under stirring, and then pyrolysis reaction was performed at 300 o C for 30 minutes. After the reaction was completed, aluminum hydroxide was separated through centrifugation, and re-dispersed in acetone and toluene. 1 shows the UV-Vis absorption spectrum and light emission spectrum of the luminescent aluminum hydroxide solution thus prepared, the blue dotted line indicates the absorption, and the orange solid line indicates the emission spectrum.

도 1에 의하면, 실시예 1에 따라 제조된 발광성 수산화알루미늄의 최대 흡수 파장은 약 350nm이고 최대 발광 파장은 약 450nm로서 그 파장이 서로 겹치지 않는다.Referring to FIG. 1, the maximum absorption wavelength of the luminescent aluminum hydroxide prepared according to Example 1 is about 350 nm and the maximum emission wavelength is about 450 nm, and the wavelengths do not overlap each other.

이때, 흡수와 발광의 스펙트럼이 겹치지 않아, 재흡수(recombination)를 하지 않게 되어, 높은 Quantum yield를 가질 수 있다.In this case, since the absorption and emission spectra do not overlap, recombination is not performed, and thus, a high quantum yield can be obtained.

발광특성 중의 하나인 Absolute Quantum Yield를 측정할 수 있는 Edinburgh사 FLS-1000 장비를 이용하여 발광성 수산화알루미늄의 Absolute Quantum Yield 수치가 48로 계산되는 것을 확인할 수 있다.It can be seen that the Absolute Quantum Yield value of luminescent aluminum hydroxide is calculated as 48 using the Edinburgh's FLS-1000 equipment that can measure the Absolute Quantum Yield, one of the luminescent characteristics.

실시예 2. 발광파장이 제어 가능한 발광성 수산화알루미늄 복합체의 제조 Example 2. Preparation of luminescent aluminum hydroxide composite capable of controlling emission wavelength

3-Hydroxy-2-naphthoic acid를 상기 실시예 1 에서 제조된 발광성 수산화알루미늄 대비 0.1 wt%로 추가하여 교반한 상태에서 실시예 1과 동일한 방법으로 열분해 반응을 진행하고, 분리 및 정제를 진행하였다. 3-Hydroxy-2-naphthoic acid was added in an amount of 0.1 wt% relative to the luminescent aluminum hydroxide prepared in Example 1, and the pyrolysis reaction was performed in the same manner as in Example 1 under stirring, and separation and purification were performed.

도 2는 3-hydroxy-2-naphthoic acid를 이용하여 발광파장이 제어된 발광성 수산화알루미늄 복합체 용액의 UV-Vis 흡수 스펙트럼과 광 발광 스펙트럼을 나타내며, 파란 점선은 흡수, 보라색 실선은 발광 스펙트럼을 의미한다. FIG. 2 shows the UV-Vis absorption spectrum and photoluminescence spectrum of the luminescent aluminum hydroxide complex solution whose emission wavelength was controlled using 3-hydroxy-2-naphthoic acid, and the blue dotted line indicates the absorption, and the purple solid line indicates the emission spectrum. .

도 2에 의하면, 3-hydroxy-2-naphthoic acid이 첨가되고 수산화알루미늄과 복합체를 형성함에 따라, 기존 수산화알루미늄 대비 흡수는 동일하지만, 기존 수산화알루미늄의 최고 발광 파장이 421nm에서 480nm로 장파장으로 변환되는 것을 알 수 있다. 발광성 수산화알루미늄에 3-hydroxy-2-naphthoic acid의 추가에 따라 발광 파장이 제어 가능한 발광성 수산화알루미늄 복합체가 제조된 것을 알 수 있다.2, as 3-hydroxy-2-naphthoic acid is added to form a complex with aluminum hydroxide, the absorption is the same as compared to the existing aluminum hydroxide, but the highest emission wavelength of the existing aluminum hydroxide is converted to a long wavelength from 421nm to 480nm. Can be seen. It can be seen that a luminescent aluminum hydroxide complex having a controllable emission wavelength was prepared by adding 3-hydroxy-2-naphthoic acid to luminescent aluminum hydroxide.

또한, 추가되는 유도체의 방향족링, -COOH, -OH 또는 N의 개수와 결합위치에 따라 발광 파장이 다르게 제어할 수 있다.In addition, the emission wavelength can be controlled differently depending on the number of aromatic rings, -COOH, -OH, or N and the bonding position of the derivative to be added.

실시예 3. 발광성 수산화알루미늄을 포함하는 수지필름 제조 Example 3. Preparation of a resin film containing luminescent aluminum hydroxide

실시예 1에 따라 제조된 발광성 수산화알루미늄을 수지필름 제조단계에서 고분자 수지에 첨가, 압출을 통해 발광성 수산화알루미늄이 고분자 내부에 분산된 수지필름을 제조하였다. 수지필름으로는 용융지수 15g/10 min, 비닐아세테이트 함량 28중량%인 에틸렌 비닐아세테이트 공중합체(한화토탈 ㈜ 제)를 사용하였다. EVA 100 중량부에 알케마사 Luperox TBEC(tert-부틸-2-에틸헥실모노퍼옥시카보네이트) 1 중량부, 가교조제로 에보닉사의 TAICROS(트리알릴이소시아누레이트)를 0.5 중량부, 자외선 안정제로 시바사의 Tinuvin 770(비스-2,2,6,6,-테트라메틸-4-피페리디닐 세바케이트)을 0.1 중량부, 실란커플링제로 다우코닝사의 OFS-6030 (메타크릴옥시프로필트리메톡시실록산) 0.3 중량부를 혼합하였다. 이후 압출기를 통하여 EVA 시트를 제조하였으며, 압출기 온도는 100 oC, T-다이 온도는 100 oC를 유지하였으며, 제조된 시트의 두께는 0.5 mm이었다. 이후부터 이렇게 제조된 시트를 "EVA"로 표기한다.The luminescent aluminum hydroxide prepared according to Example 1 was added to the polymer resin in the resin film manufacturing step, and a resin film in which the luminescent aluminum hydroxide was dispersed in the polymer was prepared through extrusion. As the resin film, an ethylene vinyl acetate copolymer (manufactured by Hanwha Total Petrochemical Co., Ltd.) having a melt index of 15 g/10 min and a vinyl acetate content of 28% by weight was used. Alkema's Luperox TBEC (tert-butyl-2-ethylhexyl monoperoxycarbonate) 1 part by weight of EVA 100 parts by weight, Evonik's TAICROS (triallyl isocyanurate) 0.5 part by weight as a crosslinking aid, as a UV stabilizer Ciba's Tinuvin 770 (bis-2,2,6,6,-tetramethyl-4-piperidinyl sebacate) 0.1 parts by weight, Dow Corning's OFS-6030 (methacryloxypropyltrimethoxy) as a silane coupling agent Siloxane) 0.3 parts by weight were mixed. Subsequently, an EVA sheet was manufactured through an extruder, and the extruder temperature was maintained at 100 o C and the T-die temperature was 100 o C, and the thickness of the manufactured sheet was 0.5 mm. From then on, the sheet thus manufactured is referred to as "EVA.

내구성 평가를 위해 상기 시트 EVA 제조방법에서 실시예 1과 같은 방법으로 합성된 발광성 수산화알루미늄을 0.1, 0.2 또는 0.4 중량부를 추가로 첨가한 것을 제외하고 동일한 방법으로 시트를 제조하였고, 이들 각각을 "EVA-AlOH 0.1", "EVA-AlOH 0.2" 그리고 "EVA-AlOH 0.4"로 표기하였다. 발광성 수산화알루미늄을 포함하는 수지필름의 투과특성을 colorimeter 장비를 이용하여 측정하였고 그 결과는 도 3에 나타내었다. For durability evaluation, a sheet was prepared in the same manner, except that 0.1, 0.2 or 0.4 parts by weight of luminescent aluminum hydroxide synthesized in the same manner as in Example 1 in the sheet EVA manufacturing method was additionally added, and each of these was "EVA -AlOH 0.1", "EVA-AlOH 0.2" and "EVA-AlOH 0.4". The transmission characteristics of the resin film containing luminescent aluminum hydroxide were measured using a colorimeter device, and the results are shown in FIG. 3.

도 4는, 발광성 수산화알루미늄이 EVA와 함께 존재하는 "EVA-AlOH 0.2" 조건에서의 발광특성을 나타낸 것으로 EVA에 포함되지 않았을 때와 발광 파장의 형태가 유사한 것을 알 수 있다. 또한, 발광특성 중의 하나인 Absolute Quantum Yield를 측정할 수 있는 Edinburgh사 FLS-1000 장비를 이용하여 EVA-AlOH 0.2의 Absolute Quantum Yield 수치가 52로 계산되는 것을 확인할 수 있었으며, 이는 순수한 발광성 수산화알루미늄이 용액 상에 분산되어 발광하던 효과가 EVA sheet 내에서도 동일하게 나타냄을 확인할 수 있다.4 shows the luminescence characteristics under the condition of "EVA-AlOH 0.2" in which luminescent aluminum hydroxide is present with EVA, and it can be seen that the shape of the luminescence wavelength is similar to that when not included in EVA. In addition, it was confirmed that the Absolute Quantum Yield value of EVA-AlOH 0.2 was calculated as 52 using Edinburgh's FLS-1000 equipment that can measure the Absolute Quantum Yield, which is one of the luminescent properties, which is a pure luminescent aluminum hydroxide solution. It can be seen that the effect of dispersing and emitting light in the phase is the same even in the EVA sheet.

실시예 4. 발광성 수산화알루미늄 복합체를 포함하는 수지필름 제조 Example 4. Preparation of resin film containing luminescent aluminum hydroxide composite

실시예 2에 따라 제조한 발광성 수산화알루미늄 복합체를 실시예 3에서 진행한 바와 같이, 수지필름 제조단계에서 고분자 수지에 첨가하고 압출을 통해 발광성 수산화알루미늄 복합체가 내부에 분산된 수지 필름을 제조하였다.As in Example 3, the luminescent aluminum hydroxide composite prepared according to Example 2 was added to the polymer resin in the resin film production step, and a resin film in which the luminescent aluminum hydroxide composite was dispersed therein was prepared through extrusion.

도 6은, 엽록소가 식물이 광합성을 하기 위하여 흡수하는 태양광 스펙트럼을 나타낸 것으로, 실시예 3 및 4와 같이 제조한 수지필름의 발광 파장대와 일치하는 구간이 많으므로 광합성 촉진을 위하여 사용될 수 있다.6 shows the spectrum of sunlight absorbed by plants for photosynthesis by chlorophyll, and since there are many sections coincident with the emission wavelength band of the resin film prepared as in Examples 3 and 4, it can be used to promote photosynthesis.

실시예 3과 4와 같은 방법으로 제조된 수지필름에 UV 램프를 이용하여 356nm 파장을 조사하면, 육안으로 확인할 수 있는 가시광선 파장이 발광하는 것을 확인할 수 있다.When 356 nm wavelength is irradiated to the resin film prepared in the same manner as in Examples 3 and 4 using a UV lamp, it can be seen that visible light wavelengths that can be seen with the naked eye emit light.

도 7은, 발광성 수산화알루미늄 및 수산화알루미늄 복합체가 함께 존재하는 EVA-AlOH 0.2와 EVA-AlOH-Naph 0.2에 356nm UV를 조사하였을 때 발광 특성을 나타내는 것으로, 수산화알루미늄을 포함하는 수지필름은 수산화알루미늄 소재와 유사한 400nm의 보라색 발광 특성을 나타내고, 수산화알루미늄 복합체를 포함하는 수지필름은 수산화알루미늄 복합체와 유사한 500nm 대의 에메랄드 청색을 발광 특성을 나타내는 것을 확인할 수 있다. FIG. 7 shows the luminescence properties when UV-irradiated at 356 nm to EVA-AlOH 0.2 and EVA-AlOH-Naph 0.2 in which the luminescent aluminum hydroxide and the aluminum hydroxide complex exist together, and the resin film including aluminum hydroxide is an aluminum hydroxide material. It can be seen that the resin film including the aluminum hydroxide composite exhibits a purple light emission characteristic of 400 nm similar to that of the aluminum hydroxide composite and exhibits an emerald blue color of the 500 nm band similar to that of the aluminum hydroxide composite.

실험예 1: 자외선에 대한 내구성Experimental Example 1: Durability against ultraviolet rays

실시예 3(EVA-AlOH 0.1)에 따라 제조된 필름에 대하여 UV 노출에 대한 내구성 평가 가속실험을 진행하였다. ATLAS사 UV-con 장비에 실시예 3 내지 8에 따라 제작된 필름을 거치하고 60 oC 온도에서 270 ~ 380nm의 파장의 UV를 0.9 W/m2의 세기로 조사하였으며, 거치시간에 따라 빛 투과성을 colorimeter로 측정하였다. UV-con 장비에서 UV에 노출된 시간이 길어질수록, 자외선에 의해 고분자들 사이의 결합이 끊어지는 등의 이유로 수지필름의 빛 투과도는 감소하게 되는데, 이러한 현상으로 식물의 광합성 효율이 떨어지고 작물의 재배속도는 낮아지게 된다. 표 1의 내용을 보면, UV에 1,000시간 노출된 EVA-AlOH 0.1 수지필름은 0시간 대비 350nm 파장의 투과특성이 거의 감소하지 않는 반면에 순수한 EVA 수지필름은 0시간 대비 약 10% 이상 투과하지 못하는 것을 알 수 있다. 이는 수지필름에 발광성 수산화알루미늄을 포함하는지에 따른 차이이며, 수산화알루미늄이 350nm 영역대 자외선을 흡수하여 가시광선으로 변환하는데 사용했지만, 순수한 EVA 수지필름은 자외선을 그대로 흡수하게 되어 필름의 내구성이 감소한 결과라 할 수 있다.For the film prepared according to Example 3 (EVA-AlOH 0.1), an accelerated experiment to evaluate durability against UV exposure was conducted. The films produced according to Examples 3 to 8 were mounted on ATLAS' UV-con equipment, and UV at a wavelength of 270 to 380 nm was irradiated with an intensity of 0.9 W/m 2 at a temperature of 60 o C. Was measured with a colorimeter. The longer the time the UV-con is exposed to UV, the more the light transmittance of the resin film decreases due to the fact that the bonding between polymers is broken by the UV rays. This phenomenon reduces the photosynthesis efficiency of plants and grows crops. The speed is lowered. Looking at the contents of Table 1, EVA-AlOH 0.1 resin film exposed to UV for 1,000 hours hardly decreases the transmission characteristics of 350 nm wavelength compared to 0 hours, whereas pure EVA resin film does not transmit more than about 10% compared to 0 hours. Can be seen. This is a difference depending on whether the resin film contains luminescent aluminum hydroxide.Although aluminum hydroxide was used to absorb ultraviolet rays in the 350nm region and convert it into visible light, the pure EVA resin film absorbs ultraviolet rays as it is, resulting in decreased film durability. Can be said.

UV 저항성UV resistance 투과율(Transmittance, %) at 350nmTransmittance,% at 350nm Base EVA filmBase EVA film EVA-AlOH 0.1 composite filmEVA-AlOH 0.1 composite film Before (0 hr)Before (0 hr) 85%85% 83%83% After (1,000 hr)After (1,000 hr) 71%71% 82%82%

실험예 2: 고온/다습 조건에 대한 내구성Experimental Example 2: Durability against high temperature/high humidity conditions

실시예 3(EVA-AlOH 0.1)에 따라 제조된 필름에 대하여 고온다습(damp-heat, 85oC/85rH%) 조건에서의 내구성 평가 가속실험을 진행하였다. 장비는 ESPEC CORP.사의 PL-3KPH를 이용하여 85oC, 85rH% 조건으로 1,000시간 보관한 후, colorimeter를 이용하여 투과특성을 분석하였다. 표 2의 내용을 보면, 열과 습기에 노출된 AlOH/EVA composite film은 350nm 영역대의 투과특성에서 0시간 대비 약 6% 감소하였으나, 순수한 EVA 수지필름은 약 22%의 큰 폭으로 감소하는 것을 알 수 있다. 이를 통하여, 수산화알루미늄은 EVA 수지 내부에서 침투해 들어오는 열과 수분을 흡수함으로써 순수한 EVA 수지필름보다 높은 내구성을 갖는다고 할 수 있다.For the film prepared according to Example 3 (EVA-AlOH 0.1), an accelerated experiment for durability evaluation under high temperature and high humidity (damp-heat, 85 ° C/85rH%) conditions was conducted. The equipment was stored for 1,000 hours at 85 o C and 85 rH% using PL-3KPH of ESPEC CORP., and then the transmission characteristics were analyzed using a colorimeter. Looking at the contents of Table 2, it can be seen that the AlOH/EVA composite film exposed to heat and moisture decreased by about 6% compared to 0 hours in the transmission characteristics of the 350nm region, but the pure EVA resin film decreased by about 22%. have. Through this, aluminum hydroxide can be said to have higher durability than pure EVA resin film by absorbing heat and moisture that penetrates inside the EVA resin.

Temperature/Humidity ResistanceTemperature/Humidity Resistance Transmittance(%) at 350nmTransmittance(%) at 350nm Base EVA filmBase EVA film EVA-AlOH 0.1 composite filmEVA-AlOH 0.1 composite film Before (0 hr)Before (0 hr) 85%85% 83%83% After (1,000 hr)After (1,000 hr) 63%63% 77%77%

Claims (16)

자외선 흡수 파장 및 가시광선 발광 파장을 갖는 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체; 및
방향족링, -COOH, -OH 및 N으로 이루어진 군으로부터 선택된 1종 이상인 기능기를 갖는 자외선 흡수 화합물;을 포함하고,
상기 발광성 수산화알루미늄은 상기 자외선 흡수 화합물과 10nm 이내에 위치하거나, 결합을 형성하여 복합체를 이룬 것을 특징으로 하는 광합성 촉진용 태양광변환 소재.
Luminescent aluminum hydroxide or luminescent aluminum hydroxide complex having an ultraviolet absorption wavelength and a visible ray emission wavelength; And
Including; an aromatic ring, -COOH, -OH and ultraviolet absorbing compound having at least one functional group selected from the group consisting of N,
The photovoltaic conversion material for promoting photosynthesis, wherein the luminescent aluminum hydroxide is located within 10 nm with the ultraviolet absorbing compound or formed a bond to form a complex.
제1항에 있어서,
상기 자외선의 최대 흡수 파장은 200~500nm 사이에서 형성되고, 최대 발광 파장은 400~1,200nm 사이에서 형성되는 것을 특징으로 하는 광합성 촉진용 태양광변환 소재.
The method of claim 1,
The maximum absorption wavelength of the ultraviolet rays is formed between 200 ~ 500nm, the maximum emission wavelength is a photovoltaic conversion material for promoting photosynthesis, characterized in that formed between 400 ~ 1,200nm.
제1항에 있어서,
상기 발광성 수산화알루미늄 또는 상기 발광성 수산화알루미늄 복합체는 다공성 구조를 갖는 것을 특징으로 하는 광합성 촉진용 태양광변환 소재.
The method of claim 1,
The photovoltaic conversion material for promoting photosynthesis, characterized in that the luminescent aluminum hydroxide or the luminescent aluminum hydroxide composite has a porous structure.
제1항에 있어서,
상기 발광성 수산화알루미늄 또는 상기 발광성 수산화알루미늄 복합체의 전구체는 알루미늄 모노아세테이트, 알루미늄 트리아세테이트, 알루미늄 디아세테이트, 알루미늄트리에틸알루미늄, 트리메틸 알루미늄, 알루미늄 알콕시드, 디에틸알루미늄 클로라이드, 알루미늄 설페이트, 알루미늄 시아나이드, 알루미늄 니트라이트, 알루미늄 카보네이트, 알루미늄 설파이트, 알루미늄 히드록시드, 알루미늄 옥사이드, 알루미늄 클로레이트, 알루미늄 설파이드, 알루미늄 크로메이트(aluminum chromate), 알루미늄 트리클로라이드, 알루미늄 퍼클로레이트, 알루미늄 니트레이트, 알루미늄 퍼망가네이트, 탄화수소알루미늄(aluminum hydrogen carbonate), 알루미늄 포스페이트(aluminum phosphate), 알루미늄 옥살레이트(aluminum oxalate), 알루미늄 히드로겐 포스페이트(aluminum hydrogen phosphate), 알루미늄 티오설페이트(aluminum thiosulfate), 알루미늄 클로라이트(aluminum chlorite), 알루미늄 히드로겐 설페이트(aluminum hydrogen sulfate), 알루미늄 디클로메이트(aluminum dichromate), 알루미늄 브로마이드(aluminum bromide), 알루미늄 히포클로라이트(aluminum hypochlorite), 알루미늄 클로라이드 헥사히드레이트(aluminum chloride hexahydrate), 알루미늄 디히드로겐 포스페이트(aluminum dihydrogen phosphate), 알루미늄 포스파이트(aluminum phosphite), 알루미늄 포타슘 설페이트 도데카히드레이트(aluminum potassium sulfate dodecahydrate), 알루미늄 브로메이트(aluminum bromate), 알루미늄 니트라이드(aluminum nitride) 및 이들의 유도체 중에서 선택된 1 종 이상인 것을 특징으로 하는 광합성 촉진용 태양광변환소재.
The method of claim 1,
The precursor of the luminescent aluminum hydroxide or the luminescent aluminum hydroxide complex is aluminum monoacetate, aluminum triacetate, aluminum diacetate, aluminum triethyl aluminum, trimethyl aluminum, aluminum alkoxide, diethyl aluminum chloride, aluminum sulfate, aluminum cyanide, aluminum Nitrite, aluminum carbonate, aluminum sulfite, aluminum hydroxide, aluminum oxide, aluminum chlorate, aluminum sulfide, aluminum chromate, aluminum trichloride, aluminum perchlorate, aluminum nitrate, aluminum permanganate, hydrocarbon aluminum (aluminum hydrogen carbonate), aluminum phosphate, aluminum oxalate, aluminum hydrogen phosphate, aluminum thiosulfate, aluminum chlorite, aluminum hydrogen Sulfate (aluminum hydrogen sulfate), aluminum dichromate, aluminum bromide, aluminum hypochlorite, aluminum chloride hexahydrate, aluminum dihydrogen phosphate (aluminum) dihydrogen phosphate), aluminum phosphite, aluminum potassium sulfate dodecahydrate, aluminum bromate, aluminum nitride, and at least one selected from derivatives thereof. Photovoltaic conversion material for promoting photosynthesis, characterized in that.
제1항에 있어서,
상기 발광성 수산화알루미늄 또는 상기 발광성 수산화알루미늄 복합체는 전구체의 열분해 온도보다 높은 끓는점을 갖는 용매를 사용하여 합성되는 것을 특징으로 하는 광합성 촉진용 태양광변환소재.
The method of claim 1,
The photovoltaic conversion material for promoting photosynthesis, characterized in that the luminescent aluminum hydroxide or the luminescent aluminum hydroxide composite is synthesized using a solvent having a boiling point higher than the thermal decomposition temperature of the precursor.
제5항에 있어서,
상기 용매는 헥사데실아민(hexadecylamine), 1-에이코센(1-eicosene), 1-옥타데켄(1-octadecene), 도코산(docosane), 페닐에테르(phenyl ether), 벤질에테르(benzyl ether), 옥틸에테르(octyl ether), 올레산(oleic acid), 올레이라민(oleylamine) 및 폴리아이소부틸렌(polyisobutylene)으로부터 선택된 적어도 1종 이상인 것을 특징으로 하는 광합성 촉진용 태양광변환 소재.
The method of claim 5,
The solvent is hexadecylamine, 1-eicosene, 1-octadecene, docosane, phenyl ether, benzyl ether, Photovoltaic conversion material for promoting photosynthesis, characterized in that at least one selected from octyl ether, oleic acid, oleylamine, and polyisobutylene.
제1항에 있어서,
상기 발광성 수산화알루미늄은 Al(OH)3, AlOOH, 5Al2O3·2H2O 또는 Al2O3 의 구조를 포함하는 것을 특징으로 하는 광합성 촉진용 태양광변환 소재.
The method of claim 1,
The luminescent aluminum hydroxide is a photovoltaic conversion material for promoting photosynthesis, characterized in that it comprises a structure of Al (OH) 3 , AlOOH, 5Al 2 O 3 ·2H 2 O or Al 2 O 3 .
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 발광성 수산화알루미늄은 입자 크기가 1nm ~ 1μm 인 것을 특징으로 하는 광합성 촉진용 태양광변환 소재.
The method of claim 1,
The luminescent aluminum hydroxide is a photovoltaic conversion material for promoting photosynthesis, characterized in that the particle size is 1nm ~ 1μm.
제1항 내지 제7항 중 어느 한 항의 광합성 촉진용 태양광변환 소재를 포함하는 광전환 수지 필름.A light conversion resin film comprising a photovoltaic conversion material for promoting photosynthesis of any one of claims 1 to 7. 제12항에 있어서,
상기 광전환 수지 필름은 EVA(ethylene vinyl acetate), POE(polyolefin elastomer), cross-linked PO(polyolefin), TPU(thermal polyurethane), PVB(polyvinyl butyral), 실리콘, 실리콘/폴리우레탄 하이브리드 및 이오노머 중에서 선택된 1종 이상의 수지를 포함하는 것을 특징으로 하는 광전환 수지 필름.
The method of claim 12,
The optical conversion resin film is selected from EVA (ethylene vinyl acetate), POE (polyolefin elastomer), cross-linked PO (polyolefin), TPU (thermal polyurethane), PVB (polyvinyl butyral), silicone, silicone/polyurethane hybrid and ionomer. Light conversion resin film comprising at least one resin.
제12항에 있어서,
상기 광전환 수지 필름 100 중량부에 대하여, 상기 발광성 수산화알루미늄 또는 발광성 수산화알루미늄 복합체 0.0001~10중량부를 포함하는 것을 특징으로 하는 광전환 수지 필름.
The method of claim 12,
A light conversion resin film comprising 0.0001 to 10 parts by weight of the light-emitting aluminum hydroxide or the light-emitting aluminum hydroxide composite based on 100 parts by weight of the light conversion resin film.
제12항에 있어서,
상기 광전환 수지 필름의 태양광변환 두께가 1 μm ~ 1cm인 것을 특징으로 하는 광전환 수지 필름.
The method of claim 12,
Light conversion resin film, characterized in that the photovoltaic conversion thickness of the light conversion resin film is 1 μm ~ 1cm.
제15항에 따른 광전환 수지 필름으로 제조된 식물 재배용 하우스.Plant cultivation house made of the light conversion resin film according to claim 15.
KR1020190081448A 2019-07-05 2019-07-05 Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same KR102191098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190081448A KR102191098B1 (en) 2019-07-05 2019-07-05 Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190081448A KR102191098B1 (en) 2019-07-05 2019-07-05 Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same

Publications (1)

Publication Number Publication Date
KR102191098B1 true KR102191098B1 (en) 2020-12-16

Family

ID=74042346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190081448A KR102191098B1 (en) 2019-07-05 2019-07-05 Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same

Country Status (1)

Country Link
KR (1) KR102191098B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085457A (en) * 2020-12-15 2022-06-22 한화토탈에너지스 주식회사 Solar cell for preventing counterfeit and theft and a method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077790A (en) * 2011-09-15 2013-04-25 Wei Hung Back sheet for solar battery and manufacturing method therefor
KR20130102010A (en) * 2012-03-06 2013-09-16 닛토덴코 가부시키가이샤 Phosphor encapsulating sheet, light emitting diode device, and producing method thereof
KR101462377B1 (en) * 2013-01-30 2014-11-17 주식회사 효성 manufacturing method of optical sheet for wavelength changing and optical sheet thereby
JP5716319B2 (en) * 2010-08-20 2015-05-13 日立化成株式会社 Spherical phosphor for wavelength conversion type solar cell, wavelength conversion type solar cell encapsulant, solar cell module, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716319B2 (en) * 2010-08-20 2015-05-13 日立化成株式会社 Spherical phosphor for wavelength conversion type solar cell, wavelength conversion type solar cell encapsulant, solar cell module, and production method thereof
JP2013077790A (en) * 2011-09-15 2013-04-25 Wei Hung Back sheet for solar battery and manufacturing method therefor
KR20130102010A (en) * 2012-03-06 2013-09-16 닛토덴코 가부시키가이샤 Phosphor encapsulating sheet, light emitting diode device, and producing method thereof
KR101462377B1 (en) * 2013-01-30 2014-11-17 주식회사 효성 manufacturing method of optical sheet for wavelength changing and optical sheet thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085457A (en) * 2020-12-15 2022-06-22 한화토탈에너지스 주식회사 Solar cell for preventing counterfeit and theft and a method of producing the same
KR102586065B1 (en) * 2020-12-15 2023-10-06 한화토탈에너지스 주식회사 Solar cell for preventing counterfeit and theft and a method of producing the same

Similar Documents

Publication Publication Date Title
EP2135737B1 (en) Wavelength conversion film, film for agricultural use, structure, and composition for forming coating film
EP2578075A1 (en) Wavelength conversion film
KR20140113736A (en) Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module
EP3050126B1 (en) Tm2+luminescent materials for solar radiation conversion devices
KR102068416B1 (en) Photovoltaic cells including aluminum-based solar converters
KR102191098B1 (en) Solar energy converting material for photosynthesis facilitation, Resin film for converting solar energy comprising the same
WO2011126117A9 (en) Wavelength-converting resin composition for solar cell, and solar cell module
Lv et al. Carbon quantum dots anchored on the anti-reflection silica layer as solid luminescence down-shifting materials in solar panel encapsulation
JP2012069865A (en) Solar cell sealant and solar cell module using the same
JP7261348B2 (en) Solar conversion material, encapsulant for solar cell containing the same, and solar cell containing the same
CN106590471A (en) Infrared shielded EVA photovoltaic film
KR102315458B1 (en) Colloidal aluminum based solar wavelength conversion materials, method for producing the same and solar cells including the same
CN106566435A (en) Up-conversion luminescent EVA photovoltaic adhesive film
CN115433405A (en) Anti-aging light conversion material, anti-aging light conversion film and preparation method thereof
CN106566436B (en) A kind of preparation method of up-conversion luminescence type EVA photovoltaic glued membranes
KR102259452B1 (en) Solar energy converting material, High-Durability Encapsulants for Sola cells and Sola Cells comprising the same
KR102240467B1 (en) Solar energy converting materials and Solar cell comprising the same
KR102442755B1 (en) Solar energy converting materials and Solar cell comprising the same
KR102273988B1 (en) Solar energy converting materials and Solar cell comprising the same
KR102173058B1 (en) Agricultural multilayer film
CN116333642A (en) Composite EVA material, adhesive film, preparation method and application of adhesive film, and battery assembly
KR20190102348A (en) Manufacturing method of photo-conversion additive with excellent photoelectric conversion rate

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant