KR102188521B1 - Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning - Google Patents

Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning Download PDF

Info

Publication number
KR102188521B1
KR102188521B1 KR1020180129482A KR20180129482A KR102188521B1 KR 102188521 B1 KR102188521 B1 KR 102188521B1 KR 1020180129482 A KR1020180129482 A KR 1020180129482A KR 20180129482 A KR20180129482 A KR 20180129482A KR 102188521 B1 KR102188521 B1 KR 102188521B1
Authority
KR
South Korea
Prior art keywords
ced
neural network
crop
image
learning
Prior art date
Application number
KR1020180129482A
Other languages
Korean (ko)
Other versions
KR20190047636A (en
Inventor
김형석
박동선
아디카리 샴
양희찬
김용진
양창주
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to PCT/KR2018/012883 priority Critical patent/WO2019083336A1/en
Priority to JP2020512648A priority patent/JP6771800B2/en
Publication of KR20190047636A publication Critical patent/KR20190047636A/en
Application granted granted Critical
Publication of KR102188521B1 publication Critical patent/KR102188521B1/en

Links

Images

Classifications

    • G06K9/6256
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06K9/46
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Abstract

본 발명은 Convolutional Encoder-Decoder (CED) 신경회로망 기술을 이용해서 작물들의 열을 인식함으로써 열 사이의 식물들은 모두 잡초로 인식하는 단계와; 작물 열상에 존재하는 소수의 잡초들에 대해서는 추가적인 CED 신경회로망을 사용하여 작물로부터 잡초를 식별하게 하는 단계로 구성된 작물과 잡초를 식별하기 위한 기술에 관한 것이다. Convolutional Encoder-Decoder (CED) 신경회로망은 입력단에서 출력단까지의 사이가 여러 단으로 구성되며, 중간 단으로 갈수록 크기가 작아지다 커져가는 구조로서, 각 단에 convolutional 연산을 하는 신경회로망이다. 본 발명은 작물 열들을 추출하는 CED 신경회로망과 작물과 잡초를 식별하는 CED 신경회로망 등 2 개의 신경회로망으로 구성된다. CED 신경회로망에는 기본 구조로부터 변형된 여러 가지 구조가 있지만, 기본 구조나 다른 변형된 구조의 CED 신경회로망도 본 발명의 실시에 사용가능하다. 작물 열을 추출하는 CED 신경회로망에는 입력 측에 작물 영상들을 입력하고, 학습목표영상들에는 입력영상들의 작물 열에 해당하는 위치에 그래픽 선들로 표시하여 이들을 학습하게 함으로써, 작물 영상으로부터 작물 열을 추출하는 기술을 스스로 구축하게 한다. 또, 작물-잡초 식별용 CED 신경회로망에는 작물 열 영상을 근접 촬영한 영상을 입력으로 하고, 입력된 영상에서의 작물 혹은 잡초에 해당하는 위치에 작물 혹은 잡초의 종류마다 다른 종류 (컬러/형상)의 심벌을 위치시켜 표시한 영상을 학습목표영상으로 구성하여 이들을 학습하게 함으로써, 작물과 잡초를 식별할 수 있는 기술을 학습을 통하여 스스로 구축하게 한다. 본 발명을 통해서 얻어진 작물 열 위치 정보와 열상의 잡초 위치 정보가 제초기에 보내지면, 제초기는 해당위치로 제초기구를 보내서 제초를 실행할 수 있게 한다. 본 발명은 논 작물이나 밭작물 재배에 모두 적용할 수 있으나, 본 명세서에는 논농사에서의 잡초 중 벼와 구별이 가장 어려운 피의 식별에 본 발명을 사용하는 예를 보였다. The present invention includes the steps of recognizing the heat of crops using a Convolutional Encoder-Decoder (CED) neural network technology to recognize all plants between rows as weeds; For a small number of weeds present in the crop laces, it relates to a technique for identifying crops and weeds, which consists of steps to identify weeds from the crops using an additional CED neural network. Convolutional Encoder-Decoder (CED) neural network consists of several stages between the input terminal and the output terminal, and it is a structure that decreases and grows in size as it goes to the middle stage, and is a neural network that performs convolutional operations on each stage. The present invention is composed of two neural networks, such as a CED neural network for extracting crop rows and a CED neural network for identifying crops and weeds. CED neural networks have various structures modified from the basic structure, but CED neural networks of basic structures or other modified structures can also be used in the practice of the present invention. In the CED neural network that extracts the crop heat, crop images are input to the input side, and the learning target images are displayed as graphic lines at the positions corresponding to the crop rows of the input images, and they are learned, thereby extracting the crop rows from the crop images. Let them build their own skills. In addition, crop-weed identification CED neural network inputs a close-up image of a crop thermal image, and a different kind (color/shape) for each type of crop or weed at the position corresponding to the crop or weed in the input image. By placing the symbol of and displaying the image as a learning target image and letting them learn, the technology to identify crops and weeds is built on their own through learning. When the crop row position information and the row weed position information obtained through the present invention are sent to the mower, the mower sends the weeding device to the corresponding position so that the weeding can be performed. The present invention can be applied to both rice field crops and field crop cultivation, but the present specification shows an example of using the present invention to identify blood that is most difficult to distinguish from rice among weeds in rice field farming.

Figure 112018106362810-pat00001
Figure 112018106362810-pat00001

Description

신경회로망 학습에 의한 작물과 잡초 식별 방법 및 장치{Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning} {Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning}

본 발명은 신경회로망의 영상 인식분야에 속하는 기술로서 우선 CED 신경회로망을 이용해서 작물의 열을 인식하여 열 이외의 식물들은 모두 잡초로 간주하여 일괄 제거하게 하고, 열과 그 주위에 남아있는 소수의 잡초들에 대해서는 또 다른 CED 신경회로망의 학습에 의해 정밀 식별하게 하여 제초할 수 있게 하는 것을 특징으로하는 잡초식별 방법에 관한 것이다. The present invention is a technology belonging to the field of image recognition of a neural network. First, a CED neural network is used to recognize the heat of a crop, so that all plants other than the heat are regarded as weeds and are collectively removed, and the heat and a few weeds remaining around it are removed. It relates to a weed identification method characterized in that the weeds can be precisely identified by learning another CED neural network.

친환경 농작물 재배에 노동력이 가장 많이 필요한 농작업의 하나가 제초작업이다. 제초가 효과적으로 이뤄지지 않으면 농작물들의 생장에 치명적 피해를 주기 때문에 농부들은 농작물 생장기간 내내 잡초제거에 매달려야 하는 어려움이 있다. 따라서, 제초작업의 자동화는 농부들의 꿈으로써 이를 위한 연구가 오래전부터 시도되어왔다. Weeding is one of the agricultural works that require the most labor for growing eco-friendly crops. If weeding is not done effectively, it can cause fatal damage to the growth of crops, so farmers have a difficulty in weeding removal throughout the growing season. Therefore, automation of weeding work is a dream of farmers, and research for this has been attempted for a long time.

Zhang 등(1995)은 밀밭에서 발견되는 잡초를 구분해 낼 수 있는 기준을 색상, 형태, 질감등 3가지 측면에서 분석 및 제시하였다. Woebbecke 등(1995a)은 영상에서 잡초와 배경의 분리를 위한 색상 분석을 수행하였다. 특히, 수정 색상, 2g-r-b, 녹색 크로마 좌표(Chromatic coordinate)가 잡초를 주위환경으로부터 잘 구분함을 보였다. Tian 등(1997)은 노지에서 어린 토마토와 잡초의 위치를 알아낼 수 있는 기계시각 시스템을 개발하여 시험하였다. 국내에서도 이 분야 연구를 수행한 바 있는데, 조서인 등(1999)은 쇠비름, 바랭이, 명아주를 대상 잡초로 하여, 이들의 기하학적 특징을 추출하여 노지에서 잡초를 검출할 수 있는 가능성을 보이는 연구를 수행하였다. 그러나, 이와 같은 식물의 색상, 형태, 질감 spectrum을 통한 구별 등을 사용한 잡초 인식 방법은 규칙에 기반하기 때문에 다양하게 변화된 환경, 모양 등에 적응적이지 못하여 실용화에는 미흡하였다. Zhang et al. (1995) analyzed and suggested the criteria for distinguishing weeds found in wheat fields in three aspects: color, shape, and texture. Woebbecke et al. (1995a) performed color analysis for separation of weeds and background in images. In particular, it was shown that the crystal color, 2g-r-b, and green chromatic coordinates distinguish weeds from the surrounding environment. Tian et al. (1997) developed and tested a mechanical visual system capable of locating young tomatoes and weeds in the field. In Korea, research has been conducted in this field as well.Seo-in Jo et al. (1999) conducted a study showing the possibility of detecting weeds in the open field by extracting their geometrical features using purslane, barangi, and Myeongaju as target weeds. I did. However, since the weed recognition method using the color, shape, and texture spectrum of the plant is based on rules, it is not adaptable to variously changed environments and shapes, so it is insufficient for practical use.

다양한 환경에서도 적용할 수 있는 강건한 잡초인식 기술이 필요하였는데, 최근 Deep Learning 신경회로망 기술이 크게 발전함에 따라, 이를 이용한 잡초인식 시도가 있었다. Cicco 등(Dec 2016, CVPR)은 그래픽 툴을 이용해서 생성한 데이터세트를 Deep Learning 신경회로망의 하나인 SegNet(CoRR 2015)상에서 학습시켜서 잡초와 작물을 구별하게 하였다. 또, Potena 등(Feb. 2017)도 작물과 잡초 구별 (Classification)을 위해서 Deep Learning 신경회로망 기술을 사용함으로써 분류의 정확성을 기존의 알고리즘적인 방법에 비해 크게 높였다. 이 방법들에서는 잡초 전체의 형상을 구별적으로 추출하려는데 목표를 두었으므로, 듬성듬성하게 분포된 잡초들에는 적용이 가능하지만, 많은 풀들과 작물이 섞여 있는 환경에서는 식물들이 서로 겹쳐있어 구별성이 없어지므로 실용화가 어렵다. 좀 다른 접근 방법으로서 근거리 작물들의 위치를 기계식 접촉센서를 이용하여 인식하게 하는 방법(출원번호 10-2013-0115057 )도 제시되어 있으나, 어린모에 대해서는 적용하기 어렵고, 이 문제를 해결하기 위해서 어린모에도 적용할 수 있게 레이저센서와 더듬이를 사용하는 방법{출원번호 1020090113990(2009.11.24)}도 개발되었으나 바람에 흔들리는 어린모의 위치가 정확하지 않고, 매우 근거리만 유효하다는 단점이 있다. There was a need for a robust weed recognition technology that can be applied in a variety of environments. As the deep learning neural network technology has been greatly developed recently, there have been attempts to recognize weeds using it. Cicco et al. (Dec 2016, CVPR) trained the dataset created using a graphic tool on SegNet (CoRR 2015), one of the Deep Learning neural networks, to distinguish weeds and crops. In addition, Potena et al. (Feb. 2017) significantly improved the accuracy of classification compared to existing algorithmic methods by using Deep Learning neural network technology for classification of crops and weeds. In these methods, since the aim was to extract the shape of the whole weed separately, it can be applied to sparsely distributed weeds, but in an environment where many grasses and crops are mixed, the plants overlap each other and there is no distinction. Therefore, practical use is difficult. As a slightly different approach, a method of recognizing the location of nearby crops using a mechanical contact sensor (application number 10-2013-0115057) is also suggested, but it is difficult to apply to young mothers, and to solve this problem, A method of using a laser sensor and antennae to be applicable {application number 1020090113990 (2009.11.24)} has also been developed, but it has the disadvantage that the position of the young mother swaying in the wind is not accurate and is only effective in a very close range.

참고문헌 references

Zhang, N. and C. Chaisattapagon. 1995. Effective criteria for weed identifying in wheat fields using machine vision. Transactions of the ASAE 38(3):965-974. Zhang, N. and C. Chaisattapagon. 1995. Effective criteria for weed identifying in wheat fields using machine vision. Transactions of the ASAE 38(3):965-974.

Woebbecke, D. M., G. E. Meyer, K. Von Bargen and D. A. Mortensen. 1995a. Shape features for identifying young weeds using image analysis. Transactions of the ASAW 38(1): 271-281. Woebbecke, D. M., G. E. Meyer, K. Von Bargen and D. A. Mortensen. 1995a. Shape features for identifying young weeds using image analysis. Transactions of the ASAW 38(1): 271-281.

Tian, L., D. C. Slaughter and R. F. Norris. 1997. Outdoor field vision identification of tomato seedlings for automated weed control. Transactions of the ASAE 40(6):1761-1768. Tian, L., D. C. Slaughter and R. F. Norris. 1997. Outdoor field vision identification of tomato seedlings for automated weed control. Transactions of the ASAE 40(6):1761-1768.

조성인, 이대성, 배영민. 1999. 기계시각을 이용한 잡초식별. 한국농업기계확회지 제24권 제1호, 59-66 Cho Sung-in, Lee Dae-sung, and Bae Young-min. 1999. Weed identification using machine vision. Journal of Korean Agricultural Machinery Expansion Vol. 24, No. 1, 59-66

aurilio Di Cicco, Ciro Potena, Giorgio Grisetti and Alberto Pretto. 2016. Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection. CVPR. arXiv:1612.03019v1 [cs.CV] 9 Dec 2016C aurilio Di Cicco, Ciro Potena, Giorgio Grisetti and Alberto Pretto. 2016. Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection. CVPR. arXiv:1612.03019v1 [cs.CV] 9 Dec 2016C

iro Potena, Daniele Nardi, and Alberto Pretto. 2017. Fast and Accurate Crop and Weed dentification with Summarized Train Sets for Precision Agriculture. Intelligent Autonomous Systems vol 14, 105-121. Feb 2017. iro Potena, Daniele Nardi, and Alberto Pretto. 2017.Fast and Accurate Crop and Weed dentification with Summarized Train Sets for Precision Agriculture. Intelligent Autonomous Systems vol 14, 105-121. Feb 2017.

상기와 같은 문제점을 해결하기 위한 본 발명은, 인공지능기술을 이용하여 작물 영상으로부터 작물 열을 추출하는 기술과 작물과 잡초를 식별하는 기술을 개발하고, 제초 작업해야 할 위치까지 지정해 주는 기술을 학습을 통하여 스스로 구축하게 하는 기술에 관한 것이다. The present invention for solving the above problems is to develop a technology for extracting crop heat from a crop image and a technology for identifying crops and weeds using artificial intelligence technology, and learning a technology for specifying the position to be weeding. It is about the technology that lets you build yourself through.

상기 목적을 달성하기 위해 본 발명은 Convolutional Encoder-Decoder (CED) 신경회로망 기술을 이용한 작물들의 열을 추출하여 제초기로 하여금 열과 열 간의 식물들은 잡초로 간주하여 제거하도록하고; 작물 열 상에 존재하는 소수의 잡초들에 대해서는 추가적인 CED 신경회로망을 사용하여 작물로부터 잡초를 식별하여 제거하게하는 방법을 사용한다. In order to achieve the above object, the present invention extracts heat from crops using the Convolutional Encoder-Decoder (CED) neural network technology to allow a mower to remove the plants between the heat and the heat as weeds; For the small number of weeds present on the crop row, an additional CED neural network is used to identify and remove weeds from the crop.

이를 위한 시스템 구조는 작물들의 열 추출을 위하여 사용하는 CED 신경회로망과 작물과 잡초 식별에 사용하는 CED 신경회로망으로 구성된다. 상기 CED 신경회로망들은 공히 입력단에서 출력단까지의 사이에 여러 단으로 구성되고, 중간 단으로 갈수록 잘록한 구조를 가지며, 각 단에 convolutional 연산을 하는 CED 신경회로망으로 구성된다. CED 신경회로망에는 도 1과 같이 기본 구조로부터 변형된 여러 가지 구조가 있고, 이들 간의 성능과 특징차이는 있지만, 어떤 변형된 구조의 CED 신경회로망도 본 발명의 목적인 작물의 열 추출과 작물과 잡초 구별에 사용가능하다. The system structure for this is composed of a CED neural network used to extract heat from crops and a CED neural network used to identify crops and weeds. The CED neural networks are all composed of several stages between the input terminal and the output terminal, have a narrower structure toward the middle stage, and consist of a CED neural network that performs convolutional operations on each stage. The CED neural network has various structures modified from the basic structure as shown in FIG. 1, and there are differences in performance and characteristics between them, but any modified structure of the CED neural network is the object of the present invention, which is to extract heat from crops and distinguish crops and weeds. Can be used for

상기 작물들의 열을 추출하는 CED신경회로망을 위해서는 작물영상을 CED 신경회로망의 입력영상으로 하고, 입력영상에서의 작물 열들의 위치를 그래픽으로 그려 표시한 선영상을 학습목표영상으로 하는 학습 데이터 세트를 대량으로 구비하고; For the CED neural network that extracts the rows of crops, a training data set that uses a crop image as an input image of the CED neural network and a line image displayed by graphically drawing the positions of crop rows in the input image as a learning target image. Provided in large quantities;

상기 학습 데이터 세트를 CED 신경회로망이 반복 학습하여 작물 영상으로부터 작물 열을 추출하는 기술을 스스로 습득하게 한다. The CED neural network iteratively learns the training data set to self-learn a technique for extracting crop heat from a crop image.

또, 상기 작물-잡초 식별 CED 신경회로망을 위해서는 개별 작물과 잡초의 형상이 식별 가능할 정도로 근접 촬영한 영상을 입력영상으로 하고, 입력된 영상에서의 작물 혹은 잡초의 위치에 서로 다른 형상 혹은 컬러의 심벌을 표시한 영상을 학습목표영상으로 한 학습 데이터 세트를 대량으로 마련하고; In addition, for the crop-weed identification CED neural network, an image photographed close enough to identify the shape of individual crops and weeds is used as an input image, and symbols of different shapes or colors at the positions of crops or weeds in the input image Preparing a large amount of training data sets using the image displayed as the learning target image;

상기 학습 데이터 세트를 반복 학습하여, CED 신경회로망이 논/밭 영상으로부터 작물과 잡초를 식별하고, 그 위치까지 지정해 주는 기술을 신경회로망 학습을 통하여 스스로 습득하게 한다. By repeatedly learning the training data set, the CED neural network identifies crops and weeds from the field/field image, and makes it self-learning through neural network learning.

본 발명은 작물 열 추출과 작물/잡초를 식별하는 목표를 달성하기 위하여 기존의 영상처리 기술에 의한 알고리즘에 의존하지 않고, 출력영상으로 나타나기를 바라는 영상을 직접 그래픽으로 작성하여 이를 학습 시킨다. 따라서 원하는 영상 인식결과를 얻는데 요구되는 기술을 CED 신경회로망이 학습을 통하여 스스로 구축케하는 새로운 기술개발 방법을 개발하는 효과가 있다. 또 이 기술을 이용하여 작물의 열을 인식하고, 작물-잡초를 식별하게 함으로써 제초기가 정밀 자동 제초할 수 있게 하는 효과가 있다. The present invention does not rely on an algorithm based on an existing image processing technology to achieve the goal of extracting crop heat and identifying crops/weeds, but directly creating an image desired to appear as an output image as a graphic and learning it. Therefore, there is an effect of developing a new technology development method that allows the CED neural network to build itself through learning the technology required to obtain the desired image recognition result. In addition, by using this technology to recognize the heat of the crop and to identify the crop-weeds, there is an effect that the mower can accurately and automatically weed.

도 1은 발명에 사용가능한 Convolutional Encoder-decoder 신경회로망 구조이고;
가) 작물 (벼)의 열 인식 실시에 사용한 Convolutional Encoder-decoder 신경회로망 구조
나) 작물 (벼)와 잡초 (피)의 식별 및 위치 인식 실시에 사용한 Convolutional Encoder-decoder 신경회로망 구조
다) Unet (skip) CED 신경회로망, 라) Dense CED 신경회로망 및 DensNet 블록들은 본 발명을 실현시키는데 사용가능한 변형된 CED 신경회로망 구조
도 2는 제초를 위한 작물 열과 작물-잡초 식별 및 위치 검출 시스템 구조이고;
도 3은 작물 열 추출을 위한 CED 신경회로망의 학습 데이터 일부를 예시한 것이고;
도 4는 학습된 작물 열 추출용 CED 신경회로망의 테스트 결과에 대한 예시이고;
도 5는 모와 피 구별을 위한 CED 신경회로망의 학습 데이터 일부를 예시한 것이고;도 6은 학습된 작물-피 식별용 CED 신경회로망의 테스트 결과에 대한 예시이다.
1 is a structure of a Convolutional Encoder-decoder neural network usable in the present invention;
A) Convolutional Encoder-decoder Neural Network Structure Used for Thermal Recognition of Crop (Rice)
B) Convolutional Encoder-decoder neural network structure used for identification and location recognition of crops (rice) and weeds (blood)
C) Unet (skip) CED neural network, d) Dense CED neural network and DensNet blocks are a modified CED neural network structure that can be used to realize the present invention
2 is a structure of a system for detecting crop heat and crop-weed identification and location for weeding;
3 illustrates some of the training data of the CED neural network for crop heat extraction;
4 is an example of a test result of the learned CED neural network for extracting crop heat;
FIG. 5 is an illustration of some of the learning data of the CED neural network for distinguishing hair and blood; FIG. 6 is an example of the test result of the CED neural network for identifying the learned crop-skin.

본 발명에서 사용한 Convolutional Encoder-Decoder (CED) 신경회로망은 도 1과 같이 입력단에서 출력단까지의 사이에는 여러 단으로 구성되며, 그 크기가 점점 작아지다 커지는 구조를 가진 신경회로망이다. 전반부의 점점 작아지는 부분을 인코더 (Encoder)부분이라고 하고, 후반부의 점점 커지는 부분을 디코더 (decoder)부분이라고 부른다. 도 1 (가)와 도 1 (나)는 본 발명에서의 작물 열 인식과 작물 열 상의 잡초 검출방법의 실시에 각 각 사용한 CED 신경회로망 구조이나, 두 구조를 상호 바꾸어 구현해도 무방하다. 또, 도 1(다) 와 같이 인코더 부분의 각 층의 출력들이 디코더 부분의 동일한 층의 입력으로 바로 건너 (skip) 합산되는 CED 신경회로망 즉 유네트 (Unet) 혹은 스킵 (skip) 구조라 불리는 변형된 구조의 CED신경회로망도 사용을 사용할 수가 있으며, 도 1 (라) 와 같이 상기 유네트 (Unet) 구조의 각 층을 건너 연결을 갖는 DensNet라 불리우는 변형된 CED 신경회로망 구조도 사용가능하다. 또, CED 신경회로망을 기반으로 달리 변형된 신경회로망을 사용해도 무방하다. 이 경우, 각 구조마다 다른 수의 층, 다른 개수의 필터를 채용하여 본 발명을 구현할 수 있으며, 본 발명의 목적 달성이 가능하다. The Convolutional Encoder-Decoder (CED) neural network used in the present invention is composed of several stages between the input terminal and the output terminal as shown in FIG. 1, and is a neural network having a structure that gradually decreases and increases in size. An increasingly smaller part of the first half is called an encoder part, and an increasingly larger part of the second half is called a decoder part. 1(A) and 1(B) are the CED neural network structures used in the implementation of the crop heat recognition and the weed detection method on the crop heat in the present invention, but the two structures may be interchangeably implemented. In addition, as shown in Fig. 1(c), a modified CED neural network called Unet or skip structure in which the outputs of each layer of the encoder part are skipped to the input of the same layer of the decoder part. A structured CED neural network can also be used, and a modified CED neural network structure called DensNet having connections across each layer of the Unet structure as shown in Fig. 1(D) can also be used. In addition, it is also possible to use a neural network modified differently based on the CED neural network. In this case, the present invention can be implemented by employing a different number of layers and a different number of filters for each structure, and the object of the present invention can be achieved.

본 발명은 상기 Convolutional Encoder-Decoder (CED) 신경회로망 기술을 이용해서 작물들의 열을 인식하게 하는 작물 열 인식 단계 와; 작물 열 상에 존재하는 소수의 잡초들에 대해서 추가적인 CED 신경회로망을 사용하여 작물로부터 잡초를 식별하게 하는 작물-잡초 식별 단계로 구성된다. 이를 위한 하드웨어는 도 2와 같이 작물들의 열을 인식하는 단계에서 사용하는 CED 신경회로망(230)과 작물로부터 잡초를 식별하게 하는 단계에서 사용하는 CED 신경회로망(260)] 등 두 개의 신경회로망으로 구성된다. The present invention includes a crop heat recognition step of recognizing heat of crops using the Convolutional Encoder-Decoder (CED) neural network technology; It consists of a crop-weed identification step that allows the few weeds present on the crop row to be identified from the crop using an additional CED neural network. The hardware for this is composed of two neural networks, such as the CED neural network 230 used in the step of recognizing the heat of crops and the CED neural network 260 used in the step of identifying weeds from the crops as shown in FIG. do.

각 CED 신경회로망에는 입력영상과 함께 출력으로 얻고자 하는 출력을 학습데이터 베이스화(220 및 250) 하여 인가함으로써 CED 신경회로망에게 수행해야 할 임무를 예를 들어 제시하고, 신경회로망은 학습을 통하여 그 임무를 수행하는 기술을 설치하게 한다. Each CED neural network presents the task to be performed to the CED neural network as an example by applying the output to be obtained as an output along with the input image as a learning database (220 and 250), and the neural network is the task through learning. Lets you install the skills to perform.

이를 위해서 먼저 작물영상을 대량으로 획득하여 각 작물영상에 대한 작물 열 위치의 그래픽 표시 영상(210)과 작물-잡초 위치의 심볼 표시 영상(240)을 대량으로 제작하여 작물영상-작물 열 영상 데이터 베이스(220)와 작물 영상-작물과 잡초의 종류 및 위치 영상 데이터베이스(250)를 구성하여 컴퓨터 하드디스크에 저장한다. 상기 작물영상-작물 열 영상 데이터 베이스(220)와 작물 영상-작물과 잡초의 종류 및 위치 영상 데이터베이스(250)는 각 작물 열 인식용 CED 신경회로망(230)과 작물과 잡초의 식별 및 위치 인식용 CED 신경회로망(260)에 의해 학습한다. 학습된 신경회로망은 미리 설계된 신경회로망의 구조에 대한 각 연결파라미터 값들의 데이터 형태를 갖는다. 다음은 작물 열 인식용 CED 신경회로망(230)과 작물과 잡초의 식별 및 위치 인식용 CED 신경회로망 (260)의 학습과정에 대한 상세 설명이다. To this end, first, a large amount of crop images are obtained, and the graphic display image 210 of the crop column position and the symbol display image 240 of the crop-weed position for each crop image are produced in large quantities, and the crop image-crop column image database (220) and crop image-type and location image database 250 of crops and weeds are configured and stored in a computer hard disk. The crop image-crop thermal image database 220 and the crop image-crop and weed type and position image database 250 are CED neural network 230 for recognizing each crop row and the crop and weed identification and location recognition It is learned by the CED neural network 260. The learned neural network has the data form of each connection parameter value for the structure of the neural network designed in advance. The following is a detailed description of the learning process of the CED neural network 230 for crop heat recognition and the CED neural network 260 for identification and location recognition of crops and weeds.

작물 열 인식을 위한 학습Learning to recognize crop heat

CED 신경회로망에 작물 열 인식하는 기술을 개발시키기 위해서는 그 예가 되는 학습 데이터를 영상의 형태로 다양하게 대규모로 준비한다. 도 3은 작물 중 모 (벼) 의 경우를 예시한 것으로서 좌측 영상들과 같은 입력영상들이 인가된 경우, CED 신경회로망에게 우측의 영상들과 같은 작물의 열 영상을 추출하여 제시하도록 임무를 부여하는 것이다. 보다 구체적으로는 학습목표영상은 도 3의 왼쪽 영상들과 같이 모의 각 열에 해당하는 위치를 따라 도 3의 오른쪽 영상들처럼 그래픽에 의한 선들을 표시하여 제시해 준다. 즉, 왼쪽 영상 위에 오른쪽 영상을 중첩할 경우, 오른쪽 영상의 각 선은 왼쪽 영상에서의 작물 열의 중앙에 위치하게 되는 학습목표영상을 제작한다. 그런데, 제초기가 작물 열을 따라 제초작업 할 때는 정면의 작물 열 들을 따라가며 작업하기 때문에 학습목표영상 제작 시 정면의 선들에 중점을 두어 그려주며, 좌 우 옆면으로 향하는 열들은 생략할 수도 있다. 또, 도 3 (라)에서처럼 중간에 모가 상실된 위치까지도 연장선을 만들어 줌으로써, 신경회로망이 연장선을 긋는 인간의 기술을 배우도록 한다. In order to develop a technology for recognizing crop heat in the CED neural network, training data as an example are prepared in the form of images on a large scale. 3 illustrates a case of seedling (rice) among crops. When input images such as the left images are applied, a task is assigned to the CED neural network to extract and present the thermal images of the crop such as the images on the right. will be. More specifically, the learning target image is presented by displaying graphical lines like the images on the right side of FIG. 3 along a position corresponding to each column of the simulation as the left images of FIG. 3. That is, when the right image is superimposed on the left image, each line of the right image is produced in a learning target image that is located at the center of the crop row in the left image. However, when the mower is weeding along the rows of crops, it follows the rows of crops in the front, so when producing the learning objective video, the lines in the front are drawn with emphasis, and the rows facing left and right can be omitted. In addition, as shown in Fig. 3(D), an extension line is made even to the location where the hair is lost in the middle, so that the neural network learns the human skill of drawing the extension line.

이와 같이 학습데이터가 준비되면, 이에 대한 학습 시 더 다양한 모양의 학습을 위해서 상기 구비된 영상을 대상으로 다양한 각도의 회전, 확대 및 회전, 축소 및 회전, 좌우 상하 이동 등의 기법(augmentation 기법)을 통하여 훨씬 많은 수의 학습 데이터를 추가 생성한 후, 신경회로망을 학습 시킨다. 이 때 사용하는 학습은 신경회로망 학습에 보편적으로 사용하는 backpropagation 학습 방법을 이용하여 에러가 미리 정한 문턱 치 이하로 떨어질 때까지 반복 학습한다. When the learning data is prepared in this way, augmentation techniques such as rotation, enlargement and rotation, reduction and rotation of various angles, and vertical movement of the left and right are used to learn more various shapes when learning about this. After creating a much larger number of training data through the program, the neural network is trained. The learning used at this time uses the backpropagation learning method commonly used for neural network learning, and repeats learning until the error falls below a predetermined threshold.

도 4는 상기의 작물 열 인식을 위해 학습된 CED 신경회로망을 테스트한 결과를 예시한 그림인데, 가장 좌측 위치와 같은 입력 영상들을 CED 신경회로망에 인가할 때, 그 출력으로는 중간 위치와 같은 영상들을 얻을 수 있다. 이 출력 영상들 상의 선들이 입력 영상들의 작물 열 위치를 정확히 지정하고 있는지 여부를 확인하기 위해서, 이 CED 신경회로망 출력들을 입력 영상들에 중첩한 영상들은 도 4의 가장 오른 쪽 영상들과 같다. 그림에서 확인할 수 있는 바와 같이 CED 신경회로망 출력 선들의 위치가 입력 영상의 작물 열들의 위치를 정확히 지정해 주고 있음을 알 수 있다. 4 is a diagram illustrating the test result of the CED neural network learned for crop heat recognition. When an input image, such as the leftmost position, is applied to the CED neural network, the output is an image such as the middle position. You can get them. In order to check whether the lines on the output images accurately designate the crop row position of the input images, the images in which the CED neural network outputs are superimposed on the input images are the same as the rightmost images of FIG. 4. As can be seen in the figure, it can be seen that the positions of the output lines of the CED neural network accurately specify the positions of the crop rows in the input image.

개별 작물과 잡초의 식별 학습Learning to identify individual crops and weeds

본 발명에서는 작물과 잡초 간의 식별도 상기 Convolutional Encoder-Decoder (CED)과 유사한 구조의 신경회로망을 사용하였다. 학습 데이터는 학습목표영상에서의 작물 밑둥 부분에 한 종류의 심벌로 표시하고, 잡초의 밑둥 부분에 다른 종류의 심벌로 표시한 영상을 작성하여 신경회로망이 이를 학습하게 한다. 이 밑둥 부분에 심벌이 표시될 경우, 이곳을 제초기계에 의해 파쇄하게하면 효과적인 제초가 가능하다. In the present invention, a neural network having a structure similar to that of the Convolutional Encoder-Decoder (CED) was used for identification between crops and weeds. The training data is displayed as one type of symbol at the base of the crop in the learning target image, and an image represented by a different type of symbol at the base of the weed is created so that the neural network learns it. If a symbol is displayed at the base, effective weeding is possible by crushing this area by a weeding machine.

도 5의 좌측 영상들은 신경회로망 입력으로 사용한 벼와 피의 영상이고, 오른쪽은 학습목표영상들로서 왼쪽 영상들에서 벼의 밑둥에 해당하는 곳에 회색 원형 심벌로 표시하고, 피의 밑둥에 해당하는 곳은 검은색 원형 심벌로 표시한 영상의 예들이다. 벼의 모와 피를 식별하기 위한 CED 신경회로망의 학습 데이터는 왼쪽 영상과 같은 영상을 대량으로 촬영하여 입력영상으로 준비하고 각 입력영상에 대해 오른쪽 영상과 같은 학습목표영상들을 작성한다. 여기서의 학습목표영상은 빈(blank) 영상에 모나 피의 밑둥 위치에 회색과 검은색 원형 심벌로 표시한 영상을 작성한 예를 보였지만, 입력영상 위에 상기 심벌들을 중첩하여 표시할 수도 있다. 또, 표시하는 심벌의 색이나 형상도 다양하게 선택할 수 있다. 이와 같은 방법으로 학습데이터 세트를 구성하여 backpropagation 학습 방법을 이용하여 에러가 미리 정한 문턱치 이하가 될 때까지 학습시킨다. 도 6은 작물 열 인식용 CED 신경회로망의 테스트 결과의 일부를 예시한 것이다. 도 6의 가장 왼쪽 영상들은 입력 테스트 영상들로서 학습데이터에 포함되지 않은 영상들이다. 도 6의 중간 영상들은 신경회로망 출력영상들이며 오른쪽 영상들은 입력영상과 출력영상들을 중첩시킨 영상들이다. 출력영상 및 중첩된 영상에서 회색 원형 심벌은 벼의 위치를 의미하고, 검은색 원형 심벌은 피의 위치를 의미한다. 결과 영상에서 확인하는 바와 같이 모와 피의 위치를 정확히 인식하여 표시하고 있음을 알 수 있다. 다만, 벼들이 겹쳐있어서 밑둥이 보이지 않은 벼들에 대해서는 식별하지 못하지만, 이것은 밑둥의 형상을 기준으로 식별하도록 학습시켰기 때문이다. 그러나 형상을 확실히 확인할 수 있는 크기와 위치의 피는 대부분 식별되어 검출됨을 알 수 있다. The images on the left of FIG. 5 are images of rice and blood used as a neural network input, and the images on the right are learning target images, indicated by a gray circular symbol at a place corresponding to the base of rice in the left images, and a place corresponding to the base of blood is black. These are examples of images displayed with circular symbols. For the training data of the CED neural network to identify the hair and blood of rice, a large amount of images such as the left image are taken and prepared as input images, and learning target images such as the right image are created for each input image. The learning target image here is an example in which an image in which gray and black circular symbols are displayed at the base of mona blood on a blank image is shown, but the symbols may be superimposed on the input image. In addition, various colors and shapes of symbols to be displayed can be selected. In this way, a learning data set is constructed and learned until an error is less than a predetermined threshold using a backpropagation learning method. 6 illustrates some of the test results of the CED neural network for crop heat recognition. The leftmost images of FIG. 6 are input test images and are images not included in the training data. The middle images of FIG. 6 are neural network output images, and the images on the right are images in which the input image and the output images are superimposed. In the output image and the superimposed image, the gray circular symbol indicates the position of rice, and the black circular symbol indicates the position of blood. As you can see in the resulting image, it can be seen that the location of hair and blood is accurately recognized and displayed. However, it is not possible to identify rice paddies that do not show the base because the rice paddies overlap, but this is because we learned to identify them based on the shape of the base. However, it can be seen that most of the blood of the size and location that can clearly confirm the shape is identified and detected.

이와 같이 인식된 결과 영상들은 제초로봇에 보내서 모와 피에 해당하는 실제의 위치를 찾아 제초할 수 있게 한다. The resulting images recognized in this way are sent to the weeding robot to find the actual location corresponding to the hair and blood so that it can weed.

제초시스템의 두뇌로서의 역할The role of the weeding system as the brain

본 발명을 제초시스템의 두뇌 역할로 활용하기 위해서는 카메라(280)를 통하여 영상을 실시간으로 획득하고, 이 획득된 영상을 상기 작물 열 인식용 CED 신경회로망(230)과 작물과 잡초의 식별 및 위치인식용 CED 신경회로망(260)에 동시에 인가해서 고속으로 처리해야 한다. 이와 같은 정보의 흐름을 제어하고, 신경회로망을 소프트웨어적으로 구성하여 수행시키는데 CPU(100)을 사용한다. 또, 상기 CPU(100)는 신경회로망들의 출력들을 후처리하고, 분석하며 그 결과를 이용하여 외부에 연결된 제초기의 자율주행에 필요한 적절한 제어신호를 생성시키는 역할을 수행한다. 이 과정 중, CED 신경회로망들을 구성하고 그 동작을 수행시키기 위해서는 특별히 고속의 신호처리가 필요한데, 이를 위해서 GPU(110)가 보조 장치로 사용된다.In order to use the present invention as a brain role of the weeding system, an image is acquired in real time through a camera 280, and the acquired image is used for the CED neural network 230 for crop heat recognition and the identification and location of crops and weeds. It must be simultaneously applied to the edible CED neural network 260 and processed at high speed. The CPU 100 is used to control the flow of such information and to configure and execute the neural network in software. In addition, the CPU 100 performs a role of post-processing and analyzing the outputs of neural networks, and using the result to generate an appropriate control signal required for autonomous driving of an externally connected mower. During this process, in order to configure CED neural networks and perform their operation, a special high-speed signal processing is required. For this purpose, the GPU 110 is used as an auxiliary device.

제초기 제어 시스템의 구성Composition of mower control system

학습된 CED 신경회로망의 파라미터에는 이미 작물 영상-작물 열 영상 데이터베이스(220)와 작물 영상-작물 종류 및 위치 영상 데이터베이스(250)로부터 추출된 작물 열 인식 및 작물-잡초 식별에 필요한 정보가 포함되어 있으므로 장치의 소형화를 위해서 상기 데이터베이스들은 제거하고, 카메라(280)와 작물 열 인식용 CED 신경회로망(230)과 잡초의 식별 및 위치 인식용 CED 신경회로망(260)과; CPU(100)와 GPU(110)로만 간단히 제초기 제어시스템(300)을 구성할 수 있다. Since the parameters of the learned CED neural network already include information necessary for crop heat recognition and crop-weed identification extracted from the crop image-crop thermal image database 220 and the crop image-crop type and location image database 250 For miniaturization of the device, the databases are removed, and a camera 280, a CED neural network 230 for crop heat recognition, and a CED neural network 260 for weed identification and location recognition; The mower control system 300 can be simply configured with only the CPU 100 and the GPU 110.

상기 구성한 제초기 제어시스템이 제초기(290)에 적절한 제초작업명령을 보내기 위해서는 먼저 카메라(280)를 통하여 영상을 실시간으로 획득하고, 이 획득된 영상을 상기 작물 열 인식용 CED 신경회로망(230)과 작물과 잡초의 식별 및 위치인식용 CED 신경회로망 (260)에 동시에 인가해서 고속으로 처리해야 한다. 이와 같은 정보의 흐름을 제어하고, 신경회로망을 소프트웨어적으로 구성하여 수행시키는데 CPU(100)을 사용한다. 또, 상기 CPU(100)는 신경회로망의 출력을 후처리하고, 분석하며 그 결과를 이용하여 외부에 연결된 제초기(290)의 자율제초작업에 필요한 적절한 제어신호를 생성시키는 역할을 수행한다. 이 과정 중, CED 신경회로망을 구성하고 그 동작을 수행시키기 위해서는 특별히 고속의 신호처리가 필요한데, 이를 위해서 GPU(110)가 보조 장치로 사용된다. In order for the configured mower control system to send an appropriate weeding operation command to the mower 290, an image is first acquired through the camera 280 in real time, and the acquired image is obtained from the CED neural network 230 for crop heat recognition and the crop. It must be simultaneously applied to the CED neural network 260 for identification and location recognition of weeds and processing at high speed. The CPU 100 is used to control the flow of such information and to configure and execute the neural network in software. In addition, the CPU 100 performs a role of post-processing and analyzing the output of the neural network, and using the result to generate an appropriate control signal required for the autonomous weeding operation of the mower 290 connected to the outside. During this process, in order to configure the CED neural network and perform its operation, a special high-speed signal processing is required. For this purpose, the GPU 110 is used as an auxiliary device.

100: CPU
110: GPU
200 : 작물 잡초 식별 시스템
210 : 작물 열 위치의 그래픽 표시 영상 제작
220 : 작물 영상 - 작물 열 영상 데이터베이스
230 : 작물 열 인식용 CED 신경회로망
240 : 작물-잡초 위치의 심벌 표시 영상제작
250 : 작물 영상-작물 종류 위치 영상 데이터베이스
260 : 작물과 잡초의 식별 및 위치 인식용 CED 신경회로망
280 : 카메라
290 : 제초기
100: CPU
110: GPU
200: crop weed identification system
210: Produce graphic display image of crop row position
220: crop image-crop thermal image database
230: CED neural network for crop heat recognition
240: crop-weed position symbol display video production
250: crop image-crop type location image database
260: CED neural network for identification and location recognition of crops and weeds
280: camera
290: mower

Claims (13)

논이나 밭 작물 재배를 위한 제초를 위해서 농작물의 열들을 CED 신경회로망 학습에 의해 인식함으로써 그 열들에서 벗어난 식물들을 모두 잡초로 간주하여 제거할 수 있도록 하는 단계와; 그 열들과 그 주위에 남아있는 잡초들에 대해서는 또 다른 CED 신경회로망 학습을 통하여 작물과 분리 식별하는 단계로 구성된 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 Recognizing the rows of crops by CED neural network learning for weeding for cultivation of paddy or field crops, so that all plants out of the rows are regarded as weeds and removed; A method of identifying crops and weeds by CED neural network learning, comprising the step of separating and identifying the rows and weeds remaining around them through another CED neural network learning. 청구항 제1항에 있어서, 상기 농작물의 열 인식 단계와 작물과 잡초 식별 단계에서 사용하는 CED 신경회로망은 여러 컨벌루션(convolution) 층으로 구성되며, 점점 작아지는 인코더(encoder) 부분과 다시 점점 커지는 디코더(decoder) 부분이 결합된 구조의 CED 신경회로망을 갖는 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method according to claim 1, wherein the CED neural network used in the step of recognizing the heat of the crop and the step of identifying crops and weeds is composed of several convolutional layers, an encoder that becomes smaller and a decoder that becomes larger again ( A method of identifying crops and weeds by learning a CED neural network, characterized by having a CED neural network in which the decoder) part is combined 청구항 제2항에 있어서, 상기 CED 신경회로망에는 인코더(encoder) 부분의 각 층의 출력들이 디코더(decoder) 부분의 동일한 층의 입력으로 합산되는 CED 신경회로망, 즉 유네트(Unet) 구조라 불리는 변형된 구조의 CED 신경회로망도 사용가능한 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The CED neural network according to claim 2, wherein the CED neural network is a CED neural network in which the outputs of each layer of the encoder part are summed to the input of the same layer of the decoder part, that is, a modified Unet structure. A method of identifying crops and weeds by learning a CED neural network, characterized in that a structured CED neural network can also be used 청구항 제3항에 있어서, 상기 CED 신경회로망에는 유네트(Unet) 구조라 불리는 CED 신경회로망을 기본 구조로 하고 각 층을 건너뛰는 연결을 추가적으로 갖는 덴스네트(DensNet)라 불리는 변형된 구조의 CED 신경회로망도 사용가능한 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The CED neural network of claim 3, wherein the CED neural network has a CED neural network called a Unet structure as a basic structure and a modified structure called DensNet, which has an additional connection that skips each layer. A method of identifying crops and weeds by learning a CED neural network, characterized in that it can also be used 청구항 제1항에 있어서, 농작물의 열 인식 방법은 농작물의 영상이 상기 CED 신경회로망의 입력으로 인가되었을 때, CED 신경회로망은 입력으로 인가된 농작물 영상 중의 작물 열에 해당하는 위치가 CED 신경회로망의 출력단에 그래픽 선으로 그려서 표시되도록 CED 신경회로망을 반복적으로 학습시키고, 또 다른 많은 작물 열 영상들에 대해서도 동일한 방법으로 학습하게 함으로써, 임의의 테스트 농작물 영상이 인가되었을 때, 그 농작물 열에 해당하는 위치가 그래픽 선으로 그려져서 표시되게 하는 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method of claim 1, wherein the method of recognizing the heat of crops is that when a crop image is applied as an input of the CED neural network, the CED neural network is the output terminal of the CED neural network at a location corresponding to the crop row in the crop image applied as an input. The CED neural network is repeatedly trained to be displayed by drawing a graphic line on the CED, and by learning the same method for many other crop row images, when a random test crop image is applied, the location corresponding to the crop row is displayed as a graphic. A method of identifying crops and weeds by learning a CED neural network, characterized in that the line is drawn and displayed 청구항 제1항에 있어서, 작물이 벼이고 잡초가 피인 경우에 이들을 구별하는 방법은 벼의 모의 경우 여러 개의 볍씨를 모아서 발아시키므로 모의 밑둥은 여러 개의 벼들이 포기를 이뤄 밀집해 있는데 비해, 피는 개별적으로 흩어져 발아하므로, 포기 밑둥 부분의 밀집도가 낮다는 점을 이용하여 포기의 밑둥 부분의 밀집도의 시각적 차이를 이용하여 구별하는 벼와 피를 식별하는 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method of claim 1, wherein when the crop is rice and the weeds are blood, the method of distinguishing them is that in the case of the mock of rice, several rice seeds are collected and germinated. Because it is scattered and germinated, it is characterized by discriminating rice and blood by using the visual difference in the density of the root of the plant by using the fact that the density of the root of the plant is low. Identification method 청구항 제6항에 있어서, 밑둥의 밀집도의 시각적 차이를 이용해서 벼와 피를 구별하기 위한 학습목표영상 데이터는 입력영상의 벼와 피의 밑둥 부분에 해당하는 곳에 서로 다른 색이나 형상의 심벌로 표시함으로써 벼와 피를 구별하게 하는 벼와 피 식별을 위한 학습목표영상을 작성하는 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method of claim 6, wherein the learning target image data for distinguishing rice and blood by using the visual difference in the density of the base is displayed in a symbol of a different color or shape at a place corresponding to the base of rice and blood in the input image. A method of identifying crops and weeds by learning a CED neural network, characterized by creating a learning objective image for discriminating rice and blood to distinguish rice and blood 청구항 제5항에 있어서, 작물 열 인식용 CED 신경회로망 학습에 필요한 데이터베이스는, 제초기가 추종하고자 하는 방향에서 촬영한 작물 열 영상을 입력영상으로 하고; 상기 입력영상에서의 각 작물 열에 해당하는 위치에 그래픽 선으로 작성한 영상을 학습목표영상으로 하여; 상기 입력영상-학습목표영상이 한 개 세트로 구성된 학습 데이터세트를 대량으로 준비한 작물 열 학습용 데이터 베이스 구비 방법을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method according to claim 5, wherein the database required for learning a CED neural network for crop heat recognition includes, as an input image, a crop heat image taken from a direction to be followed by a mower; An image created with a graphic line at a position corresponding to each crop row in the input image as a learning target image; A method of identifying crops and weeds by learning a CED neural network, characterized by a method of preparing a database for learning a crop row in which a large amount of a learning dataset consisting of one set of the input image-learning target image is prepared. 청구항 제6항에 있어서, 작물-잡초 식별용 CED 신경회로망에 필요한 학습 데이터베이스는 작물 열 상에서 작물과 잡초가 함께 포함된 영상들을 촬영하되, 작물과 잡초의 형상이 뚜렷하게 구별 가능하도록 근접 촬영한 영상들을 CED 신경회로망의 입력영상으로 하고; 각 입력영상에서의 각 작물과 잡초에 해당하는 위치에 이들을 구별할 수 있도록 다른 형상 혹은 컬러의 심벌들을 사용한 영상을 작성하여 이를 학습목표영상으로 하며; 상기 입력영상-학습목표영상을 한 세트로 하는 학습 데이터세트를 대량으로 구비한 작물-잡초 식별 학습용 데이터베이스 작성 방법을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method of claim 6, wherein the learning database required for the CED neural network for crop-weed identification captures images including crops and weeds on the crop row, and close-up images so that the shape of the crops and weeds can be clearly distinguished. As the input image of the CED neural network; In each input image, an image using symbols of different shapes or colors is created so that the positions corresponding to each crop and weed can be distinguished, and this is used as the learning target image; A method of identifying crops and weeds by learning a CED neural network, characterized by a method of creating a database for learning to identify crops and weeds having a large amount of training data sets including the input image-learning target image as a set. 청구항 제9항에 있어서, 작물-잡초 식별용 CED 신경회로망에 필요한 학습데이터 베이스에서 학습목표영상 작성은 초기에 비어있는(blank) 영상 혹은 입력영상을 복사한 영상 위에 각 객체를 구별할 수 있도록 다양한 색을 사용한 선, 도형, 혹은 심벌들로 그래픽화하여 작성하는 학습목표영상 작성 방법을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method of claim 9, wherein the creation of the learning target image in the learning database required for the CED neural network for crop-weed identification is performed in a variety of ways to distinguish each object on an initially blank image or an image copied from the input image. A method of identifying crops and weeds by learning a CED neural network, characterized by a method of creating a learning objective image that is created by graphically using color lines, figures, or symbols 청구항 제9항에 있어서, 작물-잡초 식별용 CED 신경회로망에 필요한 학습 데이터베이스에서의 학습목표영상 작성 시 각 심벌의 위치와 크기는 입력영상을 기준으로 하여 정하며; 심벌영역 내에 객체 간의 구별성이 큰 특징들이 가급적 많이 포함 될 수 있도록 심벌 중심점의 위치와 크기를 정하여 학습목표영상에 표시하는 학습목표영상에서의 심벌의 위치와 크기 표시 방법을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 방법 The method of claim 9, wherein when creating a learning target image in a learning database required for a CED neural network for crop-weed identification, the position and size of each symbol are determined based on the input image; A CED neural network characterized by a method of displaying the location and size of the symbol in the learning target image, which is displayed on the learning target image by determining the location and size of the symbol center point so that as many features with high discrimination between objects can be included in the symbol area. How to identify crops and weeds by learning 청구항 제5항 또는 제8항의 방법으로 제작된 작물 열 위치의 그래픽 표시 영상으로 작성된 작물 영상-작물 열 영상 데이터베이스(220)와; 상기 영상 데이터베이스(220)로 청구항 제1항 내지 제4항 중 어느 한 항의 방법으로 학습하는 작물 열 인식용 CED 신경회로망(230)과; 청구항 제6항, 제7항 및 제9항 내지 제11항 중 어느 한 항의 방법으로 제작된 작물-잡초 종류 및 위치의 심벌 표시 영상으로 작성된 작물 영상-작물 종류 위치 영상 데이터베이스(250)와; 상기 영상 데이터베이스(250)로 청구항 제1항 내지 제4항 중 어느 한 항의 방법으로 학습하는 작물과 잡초의 종류 및 위치인식용 CED 신경회로망(260)과; 작물-잡초 영상을 실시간으로 촬영하여 상기 CED 신경회로망(230, 260)의 입력으로 인가하는 카메라(280)와; 상기 CED 신경회로망을 소프트웨어적으로 구성하여 수행시키고, CED 신경회로망의 결과를 분석하고, 그 결과를 이용하여 외부에 연결된 제초기의 자율제초작업에 필요한 제어신호를 생성시키고, 이를 상기 제초기에 제공하는 CPU(100)와; 상기 CPU를 보조하며 CED 신경회로망을 고속으로 수행시키는 GPU(110)를 포함하는 것을 특징으로 하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 장치 A crop image-crop thermal image database 220 created as a graphic display image of a crop row position produced by the method of claim 5 or 8; A CED neural network (230) for crop heat recognition learning by the method of any one of claims 1 to 4 as the image database (220); Crops produced by the method of claim 6, 7 and 9 to 11-crop image created with symbol display images of weed types and locations-crop type location image database 250; A CED neural network (260) for recognizing the types and locations of crops and weeds that are learned by the method of claim 1 to the image database 250; A camera 280 that captures a crop-weed image in real time and applies it as an input of the CED neural networks 230 and 260; A CPU that configures and executes the CED neural network in software, analyzes the result of the CED neural network, uses the result to generate a control signal necessary for the autonomous weeding operation of an externally connected mower, and provides it to the mower (100) and; An apparatus for identifying crops and weeds by learning a CED neural network, comprising: a GPU 110 that assists the CPU and performs a CED neural network at high speed. 청구항 제12항에 있어서 학습된 CED 신경회로망들의 파라미터들에는 이미 작물 영상-작물 열 영상 데이터베이스(220)와; 작물 영상-작물 종류 및 위치 영상 데이터베이스(250) 로부터 추출된 작물 열 인식 및 작물-잡초 식별에 필요한 정보가 포함되어 있으므로 장치의 소형화를 위해서 상기 데이터베이스들은 제거하고, 카메라(280)와 작물 열 인식용 CED 신경회로망(230)과; 잡초의 식별 및 위치 인식용 CED 신경회로망(260)과; CPU(100)와; GPU(110)로만 간단히 제초기의 제어시스템을 구성하는 것을 특징으로하는 CED 신경회로망 학습에 의한 작물과 잡초의 식별 장치
The method of claim 12, wherein the parameters of the learned CED neural networks include: a crop image-crop thermal image database (220); Since the crop image-crop type and location image database 250 includes information necessary for crop heat recognition and crop-weed identification, the databases are removed for miniaturization of the device, and the camera 280 and crop heat recognition CED neural network 230 and; CED neural network 260 for identification and location recognition of weeds; A CPU 100; A device for identifying crops and weeds by learning a CED neural network, characterized by simply configuring a mower control system with only the GPU 110
KR1020180129482A 2017-10-27 2018-10-29 Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning KR102188521B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/012883 WO2019083336A1 (en) 2017-10-27 2018-10-29 Method and device for crop and weed classification using neural network learning
JP2020512648A JP6771800B2 (en) 2017-10-27 2018-10-29 Devices and methods for identifying crops and weeds by learning neural networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170140783 2017-10-27
KR20170140783 2017-10-27

Publications (2)

Publication Number Publication Date
KR20190047636A KR20190047636A (en) 2019-05-08
KR102188521B1 true KR102188521B1 (en) 2020-12-08

Family

ID=66580504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180129482A KR102188521B1 (en) 2017-10-27 2018-10-29 Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning

Country Status (2)

Country Link
JP (1) JP6771800B2 (en)
KR (1) KR102188521B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359138B1 (en) * 2019-12-12 2022-02-07 경북대학교 산학협력단 Apparatus and method for customizable control of image brightness and contrast
CN113349188B (en) * 2021-05-31 2022-06-03 南京林业大学 Lawn and forage precise weeding method based on cloud weeding spectrum
CN113435302B (en) * 2021-06-23 2023-10-17 中国农业大学 Hydroponic lettuce seedling state detection method based on GridR-CNN
KR102425062B1 (en) * 2021-11-23 2022-07-27 대한민국 Robot of unmanned unicycle electric wheel type for rice management
CN115119546B (en) * 2022-07-19 2024-03-12 华南农业大学 Paddy field self-adaptive flexible mechanical weeding machine based on visual-tactile fusion perception

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763835B1 (en) * 2015-10-30 2017-08-03 사단법인 한국온실작물연구소 System for distinguishing image divided by crop organ using image in colony

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952340B2 (en) * 1995-10-26 1999-09-27 農林水産省北海道農業試験場長 Crop detection method
JP3577513B2 (en) * 2001-09-28 2004-10-13 独立行政法人農業・生物系特定産業技術研究機構 Image processing method for detecting crop position
JP5626056B2 (en) * 2011-03-18 2014-11-19 富士通株式会社 Crop image processing program, crop image processing method, and crop image processing apparatus
DE112015002189T5 (en) * 2014-05-09 2017-02-09 Raven Industries, Inc. Image filter based on row identification
KR101803471B1 (en) * 2016-02-15 2017-12-01 성균관대학교 산학협력단 Deep learning system and learning method using of convolutional neural network based image patterning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763835B1 (en) * 2015-10-30 2017-08-03 사단법인 한국온실작물연구소 System for distinguishing image divided by crop organ using image in colony

Also Published As

Publication number Publication date
JP6771800B2 (en) 2020-10-21
KR20190047636A (en) 2019-05-08
JP2020529686A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
KR102188521B1 (en) Method and Apparatus for Identification of Crops and Weeds with Neural Network Learning
Tian et al. Machine vision identification of tomato seedlings for automated weed control
Jin et al. Weed identification using deep learning and image processing in vegetable plantation
Ge et al. Fruit localization and environment perception for strawberry harvesting robots
Di Cicco et al. Automatic model based dataset generation for fast and accurate crop and weeds detection
Zermas et al. 3D model processing for high throughput phenotype extraction–the case of corn
WO2019083336A1 (en) Method and device for crop and weed classification using neural network learning
Yu et al. Automatic image-based detection technology for two critical growth stages of maize: Emergence and three-leaf stage
CN109886155B (en) Single-plant rice detection and positioning method, system, equipment and medium based on deep learning
Latha et al. Image processing in agriculture
Nasution et al. Eggplant Disease Detection Using Yolo Algorithm Telegram Notified
Hashemi-Beni et al. Deep learning for remote sensing image classification for agriculture applications
Selvi et al. Weed detection in agricultural fields using deep learning process
WO2021141897A1 (en) Crop scouting information systems and resource management
Zermas et al. Extracting phenotypic characteristics of corn crops through the use of reconstructed 3D models
Fernando et al. Intelligent disease detection system for greenhouse with a robotic monitoring system
Dhayabarani et al. Detection of weed using neural networks
Ahn et al. An overview of perception methods for horticultural robots: From pollination to harvest
CN114757891A (en) Plant growth state identification method based on machine vision technology
KR101686325B1 (en) Apparatus and method for punching of mulching plastic
De Silva et al. Towards infield navigation: leveraging simulated data for crop row detection
Yihang et al. Automatic recognition of rape seeding emergence stage based on computer vision technology
Maulidyah et al. Water Sprouts Detection of Cacao Tree Using Mask Region-based Convolutional Neural Network
Qiongyan et al. Study on spike detection of cereal plants
Rakhmatulin Deep learning, machine vision in agriculture in 2021

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant