KR102186303B1 - 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법 - Google Patents

영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법 Download PDF

Info

Publication number
KR102186303B1
KR102186303B1 KR1020180120808A KR20180120808A KR102186303B1 KR 102186303 B1 KR102186303 B1 KR 102186303B1 KR 1020180120808 A KR1020180120808 A KR 1020180120808A KR 20180120808 A KR20180120808 A KR 20180120808A KR 102186303 B1 KR102186303 B1 KR 102186303B1
Authority
KR
South Korea
Prior art keywords
center
axis
image
gravity
laser irradiation
Prior art date
Application number
KR1020180120808A
Other languages
English (en)
Other versions
KR20200045028A (ko
Inventor
김대중
김종희
이호영
Original Assignee
주식회사 인스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인스텍 filed Critical 주식회사 인스텍
Priority to KR1020180120808A priority Critical patent/KR102186303B1/ko
Publication of KR20200045028A publication Critical patent/KR20200045028A/ko
Application granted granted Critical
Publication of KR102186303B1 publication Critical patent/KR102186303B1/ko

Links

Images

Classifications

    • B22F3/1055
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/48Radiation means with translatory movement in height, e.g. perpendicular to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F2003/1056
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

본 발명은 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법에 관한 것으로, 더욱 상세하게는, 레이저에 의해 가공물 표면에 형성되는 용융풀의 영상을 실시간으로 촬영해, 촬영된 영상을 통해 레이저를 조사하는 장치의 높이가 자동으로 제어될 수 있도록 함에 따라, 가공물의 보수부분이 자유곡면을 가지더라도 보수된 부분의 표면에 층이 생기지 않도록 하면서 매끄러운 본래의 형상이 복원될 수 있도록 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법에 관한 것이다.

Description

영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법 {Real-Time Automatic Height Tracer Control System Using Image Processing and Method Thereof}
본 발명은 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법에 관한 것으로, 더욱 상세하게는, 레이저에 의해 가공물 표면에 형성되는 용융풀의 영상을 실시간으로 촬영해, 촬영된 영상을 통해 레이저를 조사하는 장치의 높이가 자동으로 제어될 수 있도록 함에 따라, 가공물의 보수부분이 자유곡면을 가지더라도 보수된 부분의 표면에 층이 생기지 않도록 하면서 매끄러운 본래의 형상이 복원될 수 있도록 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법에 관한 것이다.
자동차, 항공기 등의 산업군에서는 기계장비를 구성하는 부품에 오랜 사용으로 인한 마모, 외력에 의한 균열 또는 파손 등이 발생할 경우, 해당 부품을 수리하는 것이 아니라, 대부분 교체를 통해 구 부품을 폐기하고 있는 것이 사실이다. 이는 해당 부품을 수리하는 것이 기술적으로 어려우며, 수리를 하더라도 본래의 부품 성능을 제대로 구현해 낼 수 없었기 때문이다.
기계장비를 정비할 때 문제가 있는 부품의 수리는 시도되지 못한 채, 새 부품으로의 교체만이 이루어지는바, 기계 정비시 많은 비용이 발생할 수밖에 없고, 폐기처리되는 부품이 발생하게 되면서 폐부품의 처리문제가 대두되며, 이러한 폐부품으로 인한 환경오염문제가 발생하고 있다.
따라서, 관련 업계에서는 결함이 발생한 부품을 원래의 성능을 가지도록 정확히 재조형 또는 보수할 수 있는 기술의 개발에 관심을 표하고 있다. 결함이 발생한 금속 부품을 재조형 또는 보수할 수 있게 되면 수리 비용의 절감은 물론이거니와, 배출되는 부품폐기량이 획기적으로 줄어 자원적으로나 환경적으로도 대단히 이로울 수 있다.
금속 3D 프린터는 절삭가공(Subtractive Machining)과 대조되는 적층제조(Additive Manufacturing)기술을 사용하는 것으로, CNC, 밀링과 같은 일반 가공기와는 달리, 금속에 레이저를 조사하며 점차 형상을 이루어가는 장치를 말한다. 이러한 금속 3D 프린터는 해마다 새로운 3D 프린팅 기술이 개발되며 미래의 핵심 산업으로 주목받고 있다.
금속 적층 방식으로는 크게 두 가지로 분류할 수 있다. 하나는 Powder Bed Fusion(PBF) 방식으로, 이 방식은 분말공급 장치에서 일정한 면적을 가지는 분말 베드에 수십 ㎛의 분말층을 깔고 레이저 또는 전자빔을 설계도면에 따라 선택적으로 조사한 후 한층 한 층씩 용융시켜 쌓아 올라가는 방식을 말한다. PBF 방식은 SLS(Selected Laser Sintering) 또는 SLM(Selected Laser Melting), Laser Cursing, DMLS(Direct Metal Laser Sintering) 등의 용어도 혼용하고 있으나 그 원리는 동일하다. 다른 하나는 DED(Directed Energy Deposition) 방식으로, 이 방식은 보호가스 분위기에서 분말을 실시간으로 공급하여 고출력의 레이저를 사용하여 공급 즉시 용융되어 적층해 나가는 방식이다. 상대적으로 정밀하고 형상자유도 구현에 유리한 방식은 PBF 방식이다.
금속 3D 프린터는 일반적으로 CAD를 이용해 조형대상을 모델링(Modeling)하고 CAM으로부터 생성한 NC 코드를 프린터의 모션제어부에 전송해 금속 3D 프린터의 움직임을 제어함으로써 원하는 다양한 형상을 정교하게 레이저 클래딩(Laser Cladding)할 수 있다. 레이저 클래딩은 시편 표면에 레이저빔을 조사하여 국부적으로 용융풀(Melt Pool)을 만들고, 동시에 외부에서 분말 형태의 클래딩 소재, 예를 들어, 금속, 합금 또는 세라믹 등을 공급하여 시편 표면에 새로운 클래딩층을 형성시키는 기술을 말한다. 이러한 클래딩층을 순차적으로 형성시킴으로써 3차원 형상의 제품을 조형할 수 있게 된다.
레이저 클래딩 공정을 통해 정밀한 3차원 형상을 물리적으로 구현하기 위해서는 각각의 2차원 단면정보에 해당하는 정확한 형태와 높이 및/또는 두께를 갖는 클래딩 층을 형성시킬 수 있어야 한다. 이것이 3차원 조형물의 치수 정밀도에 지대한 영향을 주며, 특히 레이저 클래딩 층의 높이를 원하는 대로 조절할 수 있는 클래딩 층의 높이 제어기술이 레이저 직접 금속 조형기술의 구현에 있어 가장 중요한 핵심 기술이다.
도 1은 종래의 레이저 직접 금속 조형 시스템에 관한 도면으로, 이는 한국공개특허공보 제10-2003-0039929호(2003.05.22)에 개시되어 있다.
도 1을 참고하여 설명하면, 도 1의 종래기술(90)은 레이저빔 조사로 시편 표면에 용융 풀을 만들어 내는 레이저 발생장치(91)와, 상기 레이저 발생장치(91)로부터 발생된 레이저빔을 빔 집광장치(93)로 전달하기 위한 빔 전송장치(92)와, 상기 빔 전송장치(92)로부터 전달된 레이저빔을 집광하기 위한 빔 집광장치(93)와, 상기 빔 집광장치(93)에서 집광된 레이저빔의 조사로 인해 시편 표면에 형성된 용융풀에 클래딩 소재를 공급하기 위한 클래딩 소재 공급장치(94)와, Z축 방향에 상기 빔 집광장치(93)를 설치하여 클래딩 과정에서 레이저빔의 초점거리를 항상 유지하고 시편을 X-Y축 테이블에 고정한 다음에 레이저빔을 중심으로 공구경로에 따라 시편을 자유로이 이송시켜 레이저 클래딩이 수행되도록 하기 위한 이송 시스템(95)과, 3차원 CAD 데이터로부터 공구경로와 같은 조형정보를 만들어 제어시스템에 전달하기 위한 CAD/CAM 장비(96)와, 실시간으로 용융풀의 영상을 획득하여 이미지 프로세싱장치로 전송하기 위한 이미지 촬영장치(97)와, 용융풀의 영상을 받아 용융풀의 물리적인 위치 및 높이를 연산하고 그 값을 실시간으로 제어시스템으로 전송하기 위한 이미지 프로세싱장치(98)와, 상기 장치들을 제어하고 상태를 모니터링하며, CAD/CAM 장비로부터 조형정보를 받아 레이저 클래딩을 수행하고, 용융 풀에 대한 정보를 받아 클래딩 층의 위치 및 높이가 목표 값에 도달하도록 공정변수를 실시간으로 제어하기 위한 제어시스템(99)으로 구성된다.
상기 종래기술(90)은 전술한 구성을 통해, 레이저 클래딩 과정에서 생성되는 용융풀의 이미지를 촬영하고 이를 이미지 프로세싱함으로써 용융풀의 물리적 위치 및 높이를 실시간으로 모니터링하여 측정하고 레이저출력, 레이저빔의 크기 및 모드 등과 같은 공정변수를 제어하는 것을 특징으로 한다.
하지만, 상기 종래기술(90)은 용융풀의 물리적인 값을 측정하여, 레이저출력 등을 제어하도록만 구성된다는 한계를 가진다. 자유곡면을 가지는 금속형상을 보수하는 경우, 일반적인 금속 3D 프린팅 방식에 의해서는 표면에 층이 생기는 문제가 발생할 수 있다. 이러한 문제가 발생하는 이유는 금속형상을 보수하기 위한 모델링 후 NC 파일을 생성하였을 때, 한 레이어가 여러 면으로 분할된 데이터로 산출되기 때문이다. 이러한 좌표 데이터를 이용해 적층을 진행할 시, 면과 면이 만나는 부분이 두텁게 적층되는 문제가 발생하게 되어 매끄러운 면을 얻을 수 없게 되는 것이다.
머신비전(Machine Vision) 기술은 사람이 사물을 보고 판단하는 것을 대신해, 카메라가 사물의 이미지를 읽어들이고 분석 및 판단하는 기술로, 카메라, 이미지프로세서, 소프트웨어를 포함한다. 이러한 머신비전 기술은 카메라, 렌즈, 조명을 이용하여 적절한 이미지를 획득한 후, 획득한 이미지를 이미지프로세서, 소프트웨어가 수행작업의 목적에 적합하게 영상처리 및 분석 과정을 거쳐 특정작업을 수행할 수 있는 판단을 제공하는바, 사람의 판단에 비해 보다 정확하고 객관적이다.
따라서 관련업계에서는 이러한 머신비전 기술을 이용하여, 결함이 있는 부품 등을 보수하고자 할 때, 머신비전으로 읽어들인 영상을 실시간으로 처리하여 금속 3D 프린터가 정확한 판단에 기해 Z축 위치를 제어할 수 있도록 함으로써, 자유 곡면을 가지는 금속의 표면에 층이 생기는 현상을 방지하고, 표준화된 공정 프로세스를 제공하여 가공시 사용자가 누구인지에 관계없이 일정한 품질이 구현될 수 있도록 하는 기술의 개발을 요구하고 있는 실정에 있다.
한국공개특허공보 제10-2003-0039929호(2003.05.22)
본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로,
본 발명의 목적은, 가공물의 표면이 평탄하지 않고 자유곡면을 형성하더라도, 레이저조사부의 위치가 Z축 방향을 따라 자동으로 제어될 수 있도록 함으로써, 층을 형성하는 것 없이, 매끈하게 3D 프린팅을 수행할 수 있도록 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 다른 목적은, 실시간으로 용융풀의 이미지를 획득해 처리함으로써 3D 프린터가 정확한 판단에 기해 가공물의 표면을 추적해 가면서 레이저조사부의 Z축 위치를 가변시킬 수 있도록 하고, 표준화된 공정 프로세스를 통해 사용자의 경험, 숙련도 등에 상관없이, 균질하고 우수한 품질의 3D 프린팅을 가능하게 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 3D 프린팅에 의해 결함이 발생한 부품을 원래의 성능을 가지도록 정확히 재조형 및 보수할 수 있도록 하여, 수리 비용의 절감은 물론이거니와, 배출되는 부품폐기량을 획기적으로 줄일 수 있도록 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 레이저조사부의 위치 제어는 용융풀의 이미지데이터에서 추출된 무게중심값과 기준값과의 차이 연산을 통해 이루어지도록 함으로써, 객관적인 데이터에 의해 레이저조사부의 정확한 제어를 가능하게 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 레이저조사부의 위치 제어는 Z축 방향을 따라 수직운동으로 제한함으로써, 레이저조사부의 움직임을 단순화하되, 레이저조사부와 가공물의 표면 사이의 거리가 항상 일정하게 유지될 수 있도록 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 레이저조사부와의 간섭을 피하기 위해 레이저조사부에서 일정 거리만큼 이격된 위치에서 용융풀을 응시하기 위해 소정의 각도로 기울어진 영상수집부를 구성할때 용융풀의 실제 이미지가 왜곡될 수 있는 문제를, 레이저조사부를 중심으로 복수 개의 영상수집부를 구성해 복수의 이미지데이터를 획득할 수 있도록 함으로써, 용융풀의 무게중심 연산 오차를 최소화하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 복수의 용융풀 이미지데이터의 무게중심을 평균내어 이를 Z축위치보정값 연산에 사용함으로써, 레이저조사부 위치 제어의 오차를 최소화하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 연산된 Z축위치보정값에 따라 레이저조사부의 위치가 자동 제어되도록 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법을 제공하는 것이다.
본 발명은 앞서 본 목적을 달성하기 위해서 다음과 같은 구성을 가진 실시예에 의해서 구현된다.
본 발명의 일 실시예에 따르면, 본 발명은, 가공물의 표면에 레이저를 조사하여 용융풀을 생성하는 레이저조사부와, 생성된 용융풀을 촬영해 이미지데이터를 획득하는 영상수집부와, 상기 영상수집부에 의해 획득된 이미지데이터로부터 상기 레이저조사부의 위치보정값을 계산하는 연산처리부와, 일측은 상기 연산처리부와 연결되고 타측은 상기 레이저조사부와 연결되어 상기 위치보정값에 따라 상기 레이저조사부의 위치를 수정하는 위치제어부를 포함하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따르면, 본 발명은, 상기 연산처리부는, 상기 레이저조사부의 Z축위치보정값을 계산하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리부는, 상기 영상수집부와 연결되어 용융풀의 이미지데이터를 수신하는 이미지수신모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리부는, 상기 이미지수신모듈과 연결되어 수신된 용융풀의 이미지데이터에서 무게중심값을 연산하는 무게중심연산모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 영상수집부는, 복수 개로 형성되며, 상기 무게중심연산모듈은, 복수 개의 영상수집부로부터 획득된 각각의 이미지데이터에서 각각의 무게중심값을 연산하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 영상수집부는, 상기 레이저조사부를 중심으로 양측에 대칭 형성되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리부는, 상기 무게중심연산모듈이 연산한 각각의 무게중심값을 수집해 보정하는 무게중심보정모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 무게중심보정모듈은, 각각의 무게중심값의 평균값을 연산하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리부는, 상기 무게중심보정모듈에 의해 연산된 평균무게중심값의 Z축좌표를 기준Z축좌표와 비교해 동일여부를 판단하는 위치추적모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리부는, 상기 평균무게중심값의 Z축좌표와 상기 기준Z축좌표가 상이할 경우, 상기 평균무게중심값의 Z축좌표를 상기 기준Z축좌표에 일치시키기 위한 상기 레이더조사부의 Z축위치보정값을 생성하는 Z축보정값생성모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 위치제어부는, 상기 Z축위치보정값이 양수일 경우 상기 레이더조사부를 Z축 방향으로 상승시키는 Z축상승모듈과, 상기 Z축위치보정값이 음수일 경우 상기 레이더조사부를 Z축 방향으로 하강시키는 Z축하강모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 레이저조사부가 가공물의 표면에 레이저를 조사하여 용융풀을 생성하는 레이저조사단계와, 상기 레이저조사단계 이후에, 영상수집부가 생성된 용융풀을 촬영해 이미지데이터를 획득하는 영상수집단계와, 상기 영상수집단계 이후에, 연산처리부가 상기 영상수집부에 의해 획득된 이미지데이터로부터 상기 레이저조사부의 위치보정값을 계산하는 연산처리단계와, 상기 연산처리단계 이후에, 위치제어부가 일측은 상기 연산처리부와 연결되고 타측은 상기 레이저조사부와 연결되어 상기 위치보정값에 따라 상기 레이저조사부의 위치를 수정하는 위치제어단계를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리단계는, 상기 레이저조사부의 Z축위치보정값을 계산하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리단계는, 이미지수신모듈이 상기 영상수집부와 연결되어 용융풀의 이미지데이터를 수신하는 이미지수신단계를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리단계는, 상기 이미지수신단계 이후에, 무게중심연산모듈이 상기 이미지수신모듈과 연결되어 수신된 용융풀의 이미지데이터에서 무게중심값을 연산하는 무게중심연산단계를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 영상수집부는, 복수 개로 형성되며, 상기 무게중심연산모듈은, 복수 개의 영상수집부로부터 획득된 각각의 이미지데이터에서 각각의 무게중심값을 연산하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 영상수집부는, 상기 레이저조사부를 중심으로 양측에 대칭 형성되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리단계는, 상기 무게중심연산단계 이후에, 무게중심보정모듈이 상기 무게중심연산모듈이 연산한 각각의 무게중심값을 수집해 보정하는 무게중심보정단계를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 무게중심보정모듈은, 각각의 무게중심값의 평균값을 연산하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리단계는, 상기 무게중심보정단계 이후에, 위치추적모듈이 상기 무게중심보정모듈에 의해 연산된 평균무게중심값의 Z축좌표를 기준Z축좌표와 비교해 동일여부를 판단하는 위치추적단계를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 연산처리단계는, 상기 위치추적단계 이후에, Z축보정값생성모듈이 상기 평균무게중심값의 Z축좌표와 상기 기준Z축좌표가 상이할 경우, 상기 평균무게중심값의 Z축좌표를 상기 기준Z축좌표에 일치시키기 위한 상기 레이더조사부의 Z축위치보정값을 생성하는 Z축보정값생성단계를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 위치제어단계는, 상기 Z축위치보정값이 양수일 경우 Z축상승모듈이 상기 레이더조사부를 Z축 방향으로 상승시키는 Z축상승단계와, 상기 Z축위치보정값이 음수일 경우 Z축하강모듈이 상기 레이더조사부를 Z축 방향으로 하강시키는 Z축하강단계를 포함하는 것을 특징으로 한다.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.
본 발명은, 가공물의 표면이 평탄하지 않고 자유곡면을 형성하더라도, 레이저조사부의 위치가 Z축 방향을 따라 자동으로 제어될 수 있도록 함으로써, 층을 형성하는 것 없이, 매끈하게 3D 프린팅을 수행할 수 있도록 하는 효과를 가진다.
본 발명은, 실시간으로 용융풀의 이미지를 획득해 처리함으로써 3D 프린터가 정확한 판단에 기해 가공물의 표면을 추적해 가면서 레이저조사부의 Z축 위치를 가변시킬 수 있도록 하고, 표준화된 공정 프로세스를 통해 사용자의 경험, 숙련도 등에 상관없이, 균질하고 우수한 품질의 3D 프린팅을 가능하게 하는 효과를 도출한다.
본 발명은, 3D 프린팅에 의해 결함이 발생한 부품을 원래의 성능을 가지도록 정확히 재조형 및 보수할 수 있도록 하여, 수리 비용의 절감은 물론이거니와, 배출되는 부품폐기량을 획기적으로 줄일 수 있도록 하는 효과가 있다.
본 발명은, 레이저조사부의 위치 제어는 용융풀의 이미지데이터에서 추출된 무게중심값과 기준값과의 차이 연산을 통해 이루어지도록 함으로써, 객관적인 데이터에 의해 레이저조사부의 정확한 제어를 가능하게 하는 효과를 가진다.
본 발명은, 레이저조사부의 위치 제어는 Z축 방향을 따라 수직운동으로 제한함으로써, 레이저조사부의 움직임을 단순화하되, 레이저조사부와 가공물의 표면 사이의 거리가 항상 일정하게 유지될 수 있도록 하는 효과를 도출한다.
본 발명은, 레이저조사부와의 간섭을 피하기 위해 레이저조사부에서 일정 거리만큼 이격된 위치에서 용융풀을 응시하기 위해 소정의 각도로 기울어진 영상수집부를 구성할때 용융풀의 실제 이미지가 왜곡될 수 있는 문제를, 레이저조사부를 중심으로 복수 개의 영상수집부를 구성해 복수의 이미지데이터를 획득할 수 있도록 함으로써, 용융풀의 무게중심 연산 오차를 최소화하는 효과가 있다.
본 발명은, 복수의 용융풀 이미지데이터의 무게중심을 평균내어 이를 Z축위치보정값 연산에 사용함으로써, 레이저조사부 위치 제어의 오차를 최소화하는 효과를 가진다.
본 발명은, 연산된 Z축위치보정값에 따라 레이저조사부의 위치가 자동 제어되도록 하는 효과를 도출한다.
도 1은 종래의 레이저 직접 금속 조형 시스템에 관한 도면.
도 2는 본 발명의 일 실시예에 따른 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템에 관한 도면.
도 3은 도 2의 영상수집부에 관한 도면.
도 4는 도 2의 연산처리부에 관한 도면.
도 5는 도 2의 위치제어부에 관한 도면.
도 6은 영상수집부의 뷰필드면을 도시한 도면.
도 7은 도 6의 뷰필드면의 중심과 용융풀의 무게중심이 일치한 것을 도시한 도면.
도 8은 도 6의 뷰필드면의 중심과 용융풀의 무게중심이 불일치한 것을 도시한 도면.
도 9는 본 발명의 일 실시예에 따른 영상처리를 이용한 실시간 자동 높이 추적 제어 방법에 관한 도면.
도 10은 도 9의 연산처리단계에 관한 도면.
도 11은 레이저조사부의 Z축상승과정과 Z축하강과정을 도시한 도면.
도 12는 본 발명의 사용상태도.
도 13은 본 발명의 사용상태도.
도 14는 본 발명의 사용상태도.
이하에서는 본 발명에 따른 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법의 바람직한 실시 예들을 첨부된 도면을 참고하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 공지의 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하도록 한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에서 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에서 사용된 정의에 따른다.
본 발명인 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템(1)은, 레이저에 의해 가공물 표면에 형성되는 용융풀의 영상을 실시간으로 촬영해, 촬영된 영상에서 무게중심을 찾고, 이를 통해 레이저를 조사하는 장치의 높이가 자동으로 제어될 수 있도록 함에 따라, 가공물의 보수부분이 자유곡면을 가지더라도 보수된 부분의 표면에 층이 생기지 않도록 하면서 매끄러운 본래의 형상이 복원될 수 있도록 한다.
도 2는 본 발명의 일 실시예에 따른 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템에 관한 도면으로, 도 2를 참고하여 설명하면, 이러한 상기 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템(1)은, 레이저조사부(10), 영상수집부(30), 연산처리부(50), 위치제어부(70)를 포함한다.
상기 레이저조사부(10)는, 가공물의 표면에 레이저를 조사하여 용융풀을 생성하는 구성을 말한다. 가공물이란, 3D 적층이 이루어지는 대상물로, 레이저에 의해 용융될 수 있으며, 바람직하게는 금속으로 구성될 수 있다. 용융풀이란, 레이저에 의해 가공물이 부분적으로 용융된 지점을 말한다. 상기 레이저조사부(10)에 의해 가공물의 표면에 용융풀이 생기게 되면, 공급 노즐을 통해 분말이 공급되어 3D 적층 작업이 이루어질 수 있게 된다.
상기 영상수집부(30)는, 생성된 용융풀을 촬영해 이미지데이터를 획득하는 것으로, 상기 레이저조사부(10)에 의해 가공물 표면에 형성된 용융풀의 이미지를 데이터로 수집하는 구성을 말한다. 상기 영상수집부(30)를 어느 특정 개념으로만 한정하는 것은 아니지만, 바람직하게는 CCD(Charge-Coupled Device Camera) 카메라가 될 수 있다. 상기 레이저조사부(10)는 가공물의 표면으로부터 수직한 지점에 위치하여 하측방향으로 직진성을 가지는 레이저를 조사하게 되는바, 상기 영상수집부(30)는 상기 레이저조사부(10)와의 간섭을 피하기 위해, 도 2에 도시된 바와 같이, 상기 레이저조사부(10)로부터 소정의 거리만큼 측면으로 이격 구성되며, 용융풀(M)의 이미지를 촬영하기 위해, 도 2에 도시된 바와 같이 가공물(S) 상에 형성된 용융풀(M)을 응시하는 방향으로 일정한 각도만큼 기울어질 수 있다.
하지만, 일정한 각도만큼 기울어진 상태로 용융풀의 이미지를 촬영할 경우, 용융풀(M)의 실제 이미지가 왜곡되어 촬영될 수 있다. 이러한 문제를 해결하기 위해, 상기 영상수집부(30)는 도 3에 도시된 바와 같이, 상기 레이저조사부(10)를 중심으로 상기 레이저조사부(10)의 주변에 복수 개로 구성됨이 보다 바람직하다. 도 3에는, 상기 영상수집부(30)가 상기 레이저조사부(10)를 중심으로 양측에 대칭 형성되도록 구성된 일 실시예를 나타내고 있다. 본 발명은 도 3에 도시된 내용에 한정되는 것은 아니며, 보다 많은 수의 영상수집부(30)가 상기 레이저조사부(10) 주변에 구성되는 것을 제외하지 않는다. 다만, 상기 영상수집부(30)에 의해 촬영된 이미지들을 보정하는 작업을 용이하게 하기 위해서는, 상기 영상수집부(30)를 상기 레이저조사부(10) 주변에 대칭 또는 균등하게 구성함이 바람직할 수 있다.
상기 연산처리부(50)는, 상기 영상수집부(30)에 의해 획득된 이미지데이터로부터 무게중심을 추출하여 상기 레이저조사부(10)의 위치보정값을 계산하는 구성을 말한다. 즉, 상기 연산처리부(50)는 상기 영상수집부(30)로부터 이미지데이터를 수신하고, 수신된 이미지데이터의 무게중심을 계산하며, 계산된 무게중심을 보정해, 상기 레이저조사부(10)의 위치를 제어하기 위한 위치보정값을 생성하게 된다.
가공물의 표면이 평평하지 못하고 울퉁불퉁한 자유곡면을 가질 경우, 가공물이 사전에 계획된 진행방향을 따라 움직이게 될 때, 특정 지점에서는 레이저가 조사되는 가공물의 표면이 상기 레이저조사부(10)와 매우 멀어지게 되고, 다른 특정 지점에서는 레이저가 조사되는 가공물의 표면이 상기 레이저조사부(10)와 매우 가까워지게 되는 등의 문제가 유발될 수 있다. 이러한 문제는 상기 레이저조사부(10)로부터 가공물에 조사되는 레이저의 포커싱(Focusing)을 제대로 맞출 수 없는 문제로 귀결되는바, 적층된 부분에 층이 형성되거나, 보수에 필요한 형상을 제대로 구현할 수 없게 된다.
결국 이러한 문제를 해결하기 위해서는, 자유곡면을 가지는 가공물이 진행하더라도 상기 레이저조사부(10)가 가공물의 표면으로부터 항상 일정한 높이 상에 위치해 있어야 하는바, 3차원 좌표 상에서 높이 좌표인 Z축 좌표를 제어하여 상기 레이저조사부(10)를 자동으로 승하강시키기 위해, 상기 연산처리부(50)는 상기 레이저조사부(10)의 Z축위치보정값을 계산하도록 구성됨이 바람직하다.
도 4는 도 2의 연산처리부(50)에 관한 도면으로, 상기 연산처리부(50)는, 이미지수신모듈(51), 무게중심연산모듈(53), 무게중심보정모듈(55), 위치추적모듈(57), Z축보정값생성모듈(59)을 포함한다.
상기 이미지수신모듈(51)은, 상기 영상수집부(30)와 연결되어 용융풀의 이미지데이터를 수신하는 구성을 말한다. 이를 위해 상기 이미지수신모듈(51)은 상기 영상수집부(30)와 유선 또는 무선으로 연결될 수 있다. 전술한 내용에 의하면, 상기 영상수집부(30)는 상기 레이저조사부(10) 주변에 복수 개로 구성될 수 있으므로, 상기 영상수집부(30)가 복수 개로 구성될 경우, 상기 이미지수신모듈(51)은 복수개의 상기 영상수집부(30)와 연결되어 복수 개의 용융풀 이미지데이터를 수신할 수 있다.
상기 무게중심연산모듈(53)은, 상기 이미지수신모듈(51)과 연결되어 수신된 용융풀의 이미지데이터에서 무게중심값을 연산하는 구성을 가리킨다. 상기 무게중심값은 용융풀의 이미지데이터에서 무게중심이 위치하는 특정 좌표를 의미할 수 있다. 앞서 언급한 바와 같이, 용융풀의 이미지는 각기 다른 위치에 구성된 복수 개의 영상수집부(30)에 의해 촬영될 수 있고, 각각의 영상수집부(30)로부터 촬영된 이미지는 다소 상이할 수 있으므로, 상기 무게중심연산모듈(53)은 상이한 복수의 이미지데이터 각각의 무게중심을 연산하게 된다. 즉, 상기 무게중심연산모듈(53)은 상기 영상수집부(30)가 복수 개로 구성되었을 때, 복수 개의 영상수집부(30)로부터 획득된 각각의 이미지데이터에서 각각의 무게중심값을 연산할 수 있다.
상기 무게중심보정모듈(55)은, 상기 무게중심연산모듈(53)이 연산한 각각의 무게중심값을 수집해 보정하는 구성을 말한다. 복수 개의 영상수집부(30)로부터 획득된 이미지데이터의 무게중심값은 각기 상이할 수 있는바, 상기 무게중심보정모듈(55)은 이들을 취합해 대표적인 하나의 무게중심값을 형성하는 보정을 하게 된다. 바람직하게는 상기 무게중심보정모듈(55)은 연산된 각각의 무게중심값에서 평균값을 연산하도록 구성될 수 있다.
상기 위치추적모듈(57)은, 상기 무게중심보정모듈(55)에 의해 연산된 평균무게중심값의 Z축좌표를 기준Z축좌표와 비교해 동일여부를 판단하는 구성을 말한다. 기준Z축좌표란, 기준이 되는 Z축 상의 좌표를 말하는 것으로, 기준Z축좌표를 어느 특정 개념으로만 한정하는 것은 아니며, 영상수집부(30)에 의해 촬영되는 뷰필드면의 중심좌표 중 Z축좌표값, 이전영상의 무게중심값 등이 될 수 있다.
상기 Z축보정값생성모듈(59)은, 상기 평균무게중심값의 Z축좌표와 상기 기준Z축좌표가 상이할 경우, 상기 평균무게중심값의 Z축좌표를 상기 기준Z축좌표에 일치시키기 위한 상기 레이더조사부의 Z축위치보정값을 생성하는 구성을 말한다. 예를 들어, 평균무게중심값의 Z축좌표가 (0,0,9)이고, 기준Z축좌표가 (0,0,7)일 경우, 상기 Z축보정값생성모듈(59)은 기준Z축좌표에서 평균무게중심값의 Z축좌표를 뺀 좌표인 (0,0,-2)에서 Z축위치보정값으로 '-2'를 추출하게 된다. 생성된 Z축위치보정값이 양수일 경우 상기 레이저조사부(10)는 Z축 방향으로 상승할 필요가 있게 되며, 생성된 Z축위치보정값이 음수일 경우 상기 레이저조사부(10)는 Z축 방향을 따라 하강할 필요가 있게 된다.
상기 위치제어부(70)는, 일측은 상기 연산처리부(50)와 연결되고 타측은 상기 레이저조사부(10)와 연결되어 상기 위치보정값에 따라 상기 레이저조사부(10)의 위치를 수정하는 구성을 말한다. 여기서 위치보정값이란, 상기 Z축보정값생성모듈(59)이 생성한 Z축위치보정값을 의미한다. 전술한 예를 인용하여 상기 Z축보정값생성모듈(59)에 의해 추출된 Z축위치보정값이 '-2'일 경우, 상기 위치제어부(70)는 상기 레이저조사부(10)를 현재 위치에서 Z축 방향으로 2만큼 하강시키게 된다. 만일 상기 Z축보정값생성모듈(59)에 의해 추출된 Z축위치보정값이 '2'일 경우, 상기 위치제어부(70)는 상기 레이저조사부(10)를 현재 위치에서 Z축 방향으로 2만큼 상승시키는 제어를 하게 된다. 이를 위해 상기 위치제어부(70)는 도 5에 도시된 바와 같이, Z축상승모듈(71)과, Z축하강모듈(73)을 포함한다.
상기 Z축상승모듈(71)은, 상기 Z축위치보정값이 양수일 경우 상기 레이더조사부(10)를 Z축 방향으로 상승시키는 구성을 말한다.
상기 Z축하강모듈(73)은, 상기 Z축위치보정값이 음수일 경우 상기 레이더조사부를 Z축 방향으로 하강시키는 구성을 가리킨다.
도 6은 영상수집부의 뷰필드면을 도시한 도면이고, 도 7은 도 6의 뷰필드면의 중심과 용융풀의 무게중심이 일치한 것을 도시한 도면이며, 도 8은 도 6의 뷰필드면의 중심과 용융풀의 무게중심이 불일치한 것을 도시한 도면으로, 이하에서는 도 6 내지 도 8을 참고하여 설명하도록 하겠다.
도 6은 상기 영상수집부(30)에 의해 획득된 이미지데이터의 뷰필드면(V)를 나타낸 것으로, 아직 가공물의 표면에 용융풀이 생성되지 않아, 상기 뷰필드면(V) 상에는 아무것도 나타나 있지 않다. 이러한 뷰필드면(V)은 일정한 간격의 격자로 구분되어, 도시된 것과 같이 중앙부에 표시된 무게중심(CV)이 기준좌표로 설정되어 있는 상태이다.
이러한 상태에서 상기 레이저조사부(10)가 가공물의 표면에 레이저를 조사해 용융풀을 형성하게 되면, 도 7 및 도 8에 도시된 바와 같이 뷰필드면(V) 상에는 용융풀의 이미지(IM)가 나타나게 된다. 상기 무게중심연산모듈(53)은 용융풀의 이미지(IM)로부터 무게중심(CM)을 찾게 되는데, 도 7의 경우는 이러한 용융풀 이미지(IM)의 무게중심(CM)이 뷰필드면(V)의 무게중심(CV)과 일치한 것이고(CM=CV), 도 8의 경우는 용융풀 이미지(IM)의 무게중심(CM)이 뷰필드면(V)의 무게중심(CV)과 불일치한 것이다(CM≠CV). 결국, 도 7의 경우는 상기 레이저조사부(10)의 위치 수정이 불필요하지만, 도 8의 경우는 상기 레이저조사부(10)의 Z축 위치를 수정해야할 필요가 있으며, 이때 상기 위치제어부(70)는 상기 레이저조사부(10)의 위치를 현재 위치에서 Z축 방향으로 1만큼 하강시키게 된다.
도 9는 본 발명의 일 실시예에 따른 영상처리를 이용한 실시간 자동 높이 추적 제어 방법에 관한 도면으로, 도 9를 참고하여 설명하면, 상기 영상처리를 이용한 실시간 자동 높이 추적 제어 방법(S1)은, 레이저조사단계(S10), 영상수집단계(S30), 연산처리단계(S50), 위치제어단계(S70)를 포함한다. 중복된 서술을 피하고자 앞에서 구체적으로 언급한 내용에 관해서는 그에 관한 설명을 간단히 하거나 생략하도록 하겠다.
상기 레이저조사단계(S10)는, 레이저조사부(10)가 가공물의 표면에 레이저를 조사하여 용융풀을 생성하는 단계를 말한다.
상기 영상수집단계(S30)는, 상기 레이저조사단계(S10) 이후에, 영상수집부(30)가 생성된 용융풀을 촬영해 이미지데이터를 획득하는 단계를 말한다. 상기 영상수집부(30)가 복수 개인 경우, 상기 영상수집단계(S30)에서 수집되는 이미지데이터는 복수 개일 수 있다.
상기 연산처리단계(S50)는, 상기 영상수집단계(S30) 이후에, 연산처리부(50)가 상기 영상수집부(30)에 의해 획득된 이미지데이터로부터 무게중심을 추출하여 상기 레이저조사부(10)의 위치보정값을 계산하는 단계를 말한다. 바람직하게는 상기 연산처리단계(S50)는 상기 레이저조사부(10)의 Z축위치보정값을 계산할 수 있다. 도 10은 도 9의 연산처리단계에 관한 도면으로, 도 10을 참고하면, 상기 연산처리단계(S50)는, 이미지수신단계(S51), 무게중심연산단계(S53), 무게중심보정단계(S55), 위치추적단계(S57), Z축보정값생성단계(S59)를 포함한다.
상기 이미지수신단계(S51)는, 이미지수신모듈(51)이 상기 영상수집부(30)와 연결되어 용융풀의 이미지데이터를 수신하는 단계를 말한다. 상기 영상수집부(30)가 복수 개일 경우 상기 이미지수신단계(S51)에서는 복수 개의 이미지데이터가 상기 이미지수신모듈(51)에 수신된다.
상기 무게중심연산단계(S53)는, 상기 이미지수신단계(S51) 이후에, 무게중심연산모듈(53)이 상기 이미지수신모듈(51)과 연결되어 수신된 용융풀의 이미지데이터에서 무게중심값을 연산하는 단계를 말한다. 전술한 바와 같이 이미지데이터가 복수 개인 경우, 복수 개의 무게중심값이 연산될 수 있다.
상기 무게중심보정단계(S55)는, 상기 무게중심연산단계(S53) 이후에, 무게중심보정모듈(55)이 상기 무게중심연산모듈(53)이 연산한 각각의 무게중심값을 수집해 보정하는 단계를 말한다. 바람직하게는, 상기 보정이란, 각각의 무게중심값의 평균을 내는 것을 말한다.
상기 위치추적단계(S57)는, 상기 무게중심보정단계(S55) 이후에, 위치추적모듈(57)이 상기 무게중심보정모듈(55)에 의해 연산된 평균무게중심값의 Z축좌표를 기준Z축좌표와 비교해 동일여부를 판단하는 단계를 말한다.
상기 Z축보정값생성단계(S59)는, 상기 위치추적단계(S57) 이후에, Z축보정값생성모듈(59)이 상기 평균무게중심값의 Z축좌표와 상기 기준Z축좌표가 상이할 경우, 상기 평균무게중심값의 Z축좌표를 상기 기준Z축좌표에 일치시키기 위한 상기 레이더조사부의 Z축위치보정값을 생성하는 단계를 말한다.
상기 위치제어단계(S70)는, 상기 연산처리단계(S50) 이후에, 위치제어부(70)가 일측은 상기 연산처리부(50)와 연결되고 타측은 상기 레이저조사부(10)와 연결되어 상기 위치보정값에 따라 상기 레이저조사부(10)의 위치를 수정하는 단계를 말한다. 이러한 상기 위치제어단계(S70)는, Z축상승단계(S71)와, Z축하강단계(S73)를 포함한다.
상기 Z축상승단계(S71)는, 상기 Z축위치보정값이 양수일 경우 Z축상승모듈(71)이 상기 레이더조사부(10)를 Z축 방향으로 상승시키는 단계를 말하고, 상기 Z축하강단계(S73)는, 상기 Z축위치보정값이 음수일 경우 Z축하강모듈(73)이 상기 레이더조사부(10)를 Z축 방향으로 하강시키는 단계를 말한다.
도 11은 레이저조사부의 Z축상승과정과 Z축하강과정을 도시한 도면으로, 이하에서는 도 11을 참고하여 설명하도록 한다. 복수 개의 영상수집부(30)에 의해 용융풀의 이미지가 촬영되어 수신되면, 상기 무게중심연산모듈(53)은 용융풀 이미지데이터에서 용융풀의 무게중심값을 연산하고(S53), 상기 무게중심보정모듈(55)이 연산된 무게중심값의 평균값을 계산하는 보정을 하며(S55), 상기 위치추적모듈(57)이 보정된 무게중심값의 Z축좌표가 기준Z축좌표와 동일한지 판단한 뒤(S57), 동일한 경우에는 상기 레이저조사부(10)의 위치를 제어하지 않고, 동일하지 않은 경우에는 상기 Z축보정값생성모듈(59)이 기준Z축좌표에서 보정된 무게중심값의 Z축좌표를 빼는 과정(S59)을 통해 Z축위치보정값을 연산해 내고, 연산된 Z축위치보정값이 양수인 경우에는 상기 Z축상승모듈(71)이 상기 레이저조사부(10)를 Z축 방향으로 상승시키고(S71), 연산된 Z축위치보정값이 음수인 경우에는 상기 Z축하강모듈(73)이 상기 레이저조사부(10)를 Z축 방향으로 하강시키게 된다(S73).
도 12 내지 도 14는 본 발명의 사용상태도로, 이하에서는 도 12 내지 도 14를 참고하여 설명하도록 하겠다. 도 12에 도시된 바와 같이, 가공물(S)의 표면은 평탄하지 않고 자유곡면을 형성하고 있으며, 이러한 가공물(S)의 상측에는 레이저조사부(10)가 위치해 있다. 상기 레이저조사부(10)는 가공물(S)의 표면으로부터 일정한 거리만큼 이격된 상태로 레이저를 조사해 가공물(S)의 표면에 용융풀을 만들게 되며, 상기 가공물(S)은 화살표로 표시된 진행방향을 따라 움직이게 된다. 가공물(S)이 움직이게 됨에 따라 가공물(S)의 표면과 레이저조사부(10)간의 거리는 도 12에서 도 13으로 갈수록 멀어지게 되지만, 상기 레이저조사부(10)의 위치가 Z축 방향을 따라 자동으로 하강하게 되면서, 일정한 거리를 유지할 수 있게 된다. 또한 도 13에서 도 14로 갈수록 자유곡면을 가지는 가공물(S)에 의해 레이저조사부(10)와 가공물(S) 표면 간의 거리가 가까워지게 되나, 상기 레이저조사부(10)의 위치가 Z축 방향을 따라 자동으로 상승하게 되면서, 일정한 거리게 계속적으로 유지될 수 있다.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한, 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.
1: 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템
10: 레이저조사부
30: 영상수집부
50: 연산처리부
51: 이미지수신모듈
53: 무게중심연산모듈
55: 무게중심보정모듈
57: 위치추적모듈
59: Z축보정값생성모듈
70: 위치제어부
71: Z축상승모듈
73: Z축하강모듈
S1: 영상처리를 이용한 실시간 자동 높이 추적 제어 방법
S10: 레이저조사단계
S30: 영상수집단계
S50: 연산처리단계
S51: 이미지수신단계
S53: 무게중심연산단계
S55: 무게중심보정단계
S57: 위치추적단계
S59: Z축보정값생성단계
S70: 위치제어단계
S71: Z축상승단계
S73: Z축하강단계
S: 가공물
M: 용융풀
V: 뷰필드면

Claims (22)

  1. 가공물의 표면에 레이저를 조사하여 용융풀을 생성하는 레이저조사부와, 복수 개로 형성되어 생성된 용융풀을 촬영해 이미지데이터를 획득하는 영상수집부와, 상기 영상수집부에 의해 획득된 이미지데이터로부터 상기 레이저조사부의 위치보정값을 계산하는 연산처리부와, 일측은 상기 연산처리부와 연결되고 타측은 상기 레이저조사부와 연결되어 상기 위치보정값에 따라 상기 레이저조사부의 위치를 수정하는 위치제어부를 포함하며,
    상기 연산처리부는, 상기 레이저조사부의 Z축위치보정값을 계산하는 것으로, 상기 영상수집부와 연결되어 용융풀의 이미지데이터를 수신하는 이미지수신모듈과, 상기 이미지수신모듈과 연결되어 복수 개의 영상수집부로부터 획득된 용융풀에 대한 각각의 이미지데이터에서 각각의 무게중심값을 연산하는 무게중심연산모듈과, 상기 무게중심연산모듈이 연산한 각각의 무게중심값을 수집해 보정하는 무게중심보정모듈을 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제1항에 있어서,
    상기 영상수집부는, 상기 레이저조사부를 중심으로 양측에 대칭 형성되는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
  7. 삭제
  8. 제1항에 있어서,
    상기 무게중심보정모듈은, 각각의 무게중심값의 평균값을 연산하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
  9. 제8항에 있어서,
    상기 연산처리부는, 상기 무게중심보정모듈에 의해 연산된 평균무게중심값의 Z축좌표를 기준Z축좌표와 비교해 동일여부를 판단하는 위치추적모듈을 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
  10. 제9항에 있어서,
    상기 연산처리부는, 상기 평균무게중심값의 Z축좌표와 상기 기준Z축좌표가 상이할 경우, 상기 평균무게중심값의 Z축좌표를 상기 기준Z축좌표에 일치시키기 위한 상기 레이저조사부의 Z축위치보정값을 생성하는 Z축보정값생성모듈을 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
  11. 제10항에 있어서,
    상기 위치제어부는, 상기 Z축위치보정값이 양수일 경우 상기 레이더조사부를 Z축 방향으로 상승시키는 Z축상승모듈과, 상기 Z축위치보정값이 음수일 경우 상기 레이저조사부를 Z축 방향으로 하강시키는 Z축하강모듈을 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
  12. 레이저조사부가 가공물의 표면에 레이저를 조사하여 용융풀을 생성하는 레이저조사단계와, 상기 레이저조사단계 이후에, 복수 개로 형성된 영상수집부가 생성된 용융풀을 촬영해 이미지데이터를 획득하는 영상수집단계와, 상기 영상수집단계 이후에, 연산처리부가 상기 영상수집부에 의해 획득된 이미지데이터로부터 상기 레이저조사부의 위치보정값을 계산하는 연산처리단계와, 상기 연산처리단계 이후에, 위치제어부가 일측은 상기 연산처리부와 연결되고 타측은 상기 레이저조사부와 연결되어 상기 위치보정값에 따라 상기 레이저조사부의 위치를 수정하는 위치제어단계를 포함하며,
    상기 연산처리단계는, 상기 레이저조사부의 Z축위치보정값을 계산하는 것으로, 이미지수신모듈이 상기 영상수집부와 연결되어 용융풀의 이미지데이터를 수신하는 이미지수신단계와, 상기 이미지수신단계 이후에, 무게중심연산모듈이 상기 이미지수신모듈과 연결되어 복수 개의 영상수집부로부터 획득된 용융풀에 대한 각각의 이미지데이터에서 각각의 무게중심값을 연산하는 무게중심연산단계와, 상기 무게중심연산단계 이후에, 무게중심보정모듈이 상기 무게중심연산모듈이 연산한 각각의 무게중심값을 수집해 보정하는 무게중심보정단계를 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 방법.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 제12항에 있어서,
    상기 영상수집부는, 상기 레이저조사부를 중심으로 양측에 대칭 형성되는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 방법.
  18. 삭제
  19. 제12항에 있어서,
    상기 무게중심보정모듈은, 각각의 무게중심값의 평균값을 연산하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 방법.
  20. 제19항에 있어서,
    상기 연산처리단계는, 상기 무게중심보정단계 이후에, 위치추적모듈이 상기 무게중심보정모듈에 의해 연산된 평균무게중심값의 Z축좌표를 기준Z축좌표와 비교해 동일여부를 판단하는 위치추적단계를 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 방법.
  21. 제20항에 있어서,
    상기 연산처리단계는, 상기 위치추적단계 이후에, Z축보정값생성모듈이 상기 평균무게중심값의 Z축좌표와 상기 기준Z축좌표가 상이할 경우, 상기 평균무게중심값의 Z축좌표를 상기 기준Z축좌표에 일치시키기 위한 상기 레이저조사부의 Z축위치보정값을 생성하는 Z축보정값생성단계를 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 방법.
  22. 제21항에 있어서,
    상기 위치제어단계는, 상기 Z축위치보정값이 양수일 경우 Z축상승모듈이 상기 레이더조사부를 Z축 방향으로 상승시키는 Z축상승단계와, 상기 Z축위치보정값이 음수일 경우 Z축하강모듈이 상기 레이저조사부를 Z축 방향으로 하강시키는 Z축하강단계를 포함하는 것을 특징으로 하는, 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템.
KR1020180120808A 2018-10-11 2018-10-11 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법 KR102186303B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180120808A KR102186303B1 (ko) 2018-10-11 2018-10-11 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180120808A KR102186303B1 (ko) 2018-10-11 2018-10-11 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법

Publications (2)

Publication Number Publication Date
KR20200045028A KR20200045028A (ko) 2020-05-04
KR102186303B1 true KR102186303B1 (ko) 2020-12-04

Family

ID=70732801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180120808A KR102186303B1 (ko) 2018-10-11 2018-10-11 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법

Country Status (1)

Country Link
KR (1) KR102186303B1 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419369B1 (ko) 2001-11-16 2004-02-19 주식회사 인스텍 레이저 클래딩과 직접 금속 조형기술에서 이미지 촬영과이미지 프로세싱을 이용한 클래딩 층 높이의 실시간모니터링 및 제어 방법 및 그 시스템
JP2014133248A (ja) * 2013-01-10 2014-07-24 Mitsubishi Heavy Ind Ltd 三次元レーザ加工機
KR102002297B1 (ko) * 2016-10-21 2019-07-23 김화중 레이저 클래딩 시스템을 이용한 작업 대상물의 작업경로 생성 방법

Also Published As

Publication number Publication date
KR20200045028A (ko) 2020-05-04

Similar Documents

Publication Publication Date Title
JP7307509B2 (ja) 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体
EP3689508B1 (en) Additive manufacturing system including an imaging device
CN106181162B (zh) 一种基于机器视觉的实时焊缝跟踪检测方法
CN111192307B (zh) 基于激光切割三维零部件的自适应纠偏方法
CN108080634B (zh) 层叠造型装置
CN111406234B (zh) 用于构建表面映射的设备和方法
KR102236148B1 (ko) 3d 프린팅 공정 중 형성되는 용융풀 크기를 제어할 수 있는 3d 프린팅 시스템 및 방법
CN108489986A (zh) 一种增材制造在线检测及修复方法
WO2018082097A1 (zh) 粉末积层制造的检测修补装置及其方法
EP3659727A1 (en) Method for automatic identification of material deposition deficiencies during an additive manufacturing process and manufacturing device
EP3667565A1 (en) Method for melt pool monitoring using machine learning
KR101673062B1 (ko) 레이저 클래딩 과정에서 생성되는 용융 풀의 높이 측정 방법
EP3587006A1 (en) 3d-printing method and manufacturing device
CN114012210A (zh) 电弧增材过程的沉积质量判断系统及方法
EP3839422A1 (en) Build plane measurement system and related additive manufacturing method
KR102186303B1 (ko) 영상처리를 이용한 실시간 자동 높이 추적 제어 시스템 및 그 방법
KR102002297B1 (ko) 레이저 클래딩 시스템을 이용한 작업 대상물의 작업경로 생성 방법
KR20150053884A (ko) 레이저 클래딩 시스템을 이용한 작업 대상물의 작업경로 생성 방법
US20240173920A1 (en) Methods and systems for calibrating an additive manufacturing machine
Kaji et al. Intermittent adaptive trajectory planning for geometric defect correction in large-scale robotic laser directed energy deposition based additive manufacturing
US20220291661A1 (en) Additive manufacturing simulations
EP3991947A1 (en) In-process optical based monitoring and control of additive manufacturing processes
US11987008B2 (en) Irradiation sequences for consolidating powder material in an additive manufacturing machine
JPWO2019150480A1 (ja) 加工システム、及び、加工方法
US20240017482A1 (en) Additive manufacturing methods and systems

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right