KR102178436B1 - Method of manufacturing syngas by direct reaction of coke and co2 in coke oven - Google Patents

Method of manufacturing syngas by direct reaction of coke and co2 in coke oven Download PDF

Info

Publication number
KR102178436B1
KR102178436B1 KR1020180150213A KR20180150213A KR102178436B1 KR 102178436 B1 KR102178436 B1 KR 102178436B1 KR 1020180150213 A KR1020180150213 A KR 1020180150213A KR 20180150213 A KR20180150213 A KR 20180150213A KR 102178436 B1 KR102178436 B1 KR 102178436B1
Authority
KR
South Korea
Prior art keywords
coke
cog
coke oven
red
direct reaction
Prior art date
Application number
KR1020180150213A
Other languages
Korean (ko)
Other versions
KR20200063921A (en
Inventor
박해웅
이창훈
도규헌
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020180150213A priority Critical patent/KR102178436B1/en
Publication of KR20200063921A publication Critical patent/KR20200063921A/en
Application granted granted Critical
Publication of KR102178436B1 publication Critical patent/KR102178436B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법에 관한 것이다.
본 발명의 일 실시형태는 CO2가 적열 코크스와 직접 반응하도록 코크스 오븐에 CO2를 취입하여 상기 CO2를 CO로 90% 이상 전환하는 단계; 및 상기 CO2 및 CO가 COG에 합쳐지도록 하는 단계를 포함하고, 상기 CO2의 취입은 상기 적열 코크스의 온도가 1100℃ 이상일 때 행하여지며, 상기 CO2의 취입시 유량은 5~50Nm3/ton-coal의 범위를 갖는 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법을 제공한다.
The present invention relates to a method for producing a syngas through a direct reaction of red coke and CO 2 in a coke oven.
One embodiment of the present invention comprises the steps of: switching at least 90% of the CO 2 to a CO 2 blowing the coke oven is allowed to react directly with CO 2 glowing coke to CO; And allowing the CO 2 and CO to be combined with COG, and the injection of the CO 2 is performed when the temperature of the red coke is 1100°C or higher, and the flow rate when the CO 2 is injected is 5 to 50 Nm 3 /ton Provides a method for producing syngas through direct reaction between red-heated coke and CO 2 in a coke oven having a range of -coal.

Description

코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법{METHOD OF MANUFACTURING SYNGAS BY DIRECT REACTION OF COKE AND CO2 IN COKE OVEN}Synthetic gas production method through direct reaction of red coke and CO2 in a coke oven {METHOD OF MANUFACTURING SYNGAS BY DIRECT REACTION OF COKE AND CO2 IN COKE OVEN}

본 발명은 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법에 관한 것이다.The present invention relates to a method for producing a syngas through a direct reaction of red coke and CO 2 in a coke oven.

COG(coke oven gas)는 통상적으로 메탄(약 25%), 수소(약 56%), 일산화탄소(약 8%) 등으로 구성되며 제철공정에서 연료로 사용되고 있다. COG 증량 및 CO2 재자원화를 위해 코크스 오븐 탄화실 상부 Gas Way에 CO2를 취입하는 기술이 개발되었다. 상기 기술은 Gas way내에 있는 로체 벽면 부착카본, Flying 카본 등을 CO2와 반응시켜 COG를 증량하는 기술이다.COG (coke oven gas) is usually composed of methane (about 25%), hydrogen (about 56%), and carbon monoxide (about 8%), and is used as a fuel in the steelmaking process. The COG and increased CO 2 recycling coke oven carbonization chamber technology for injection of CO 2 Gas Way to the top has been developed. The above technology is a technology that increases COG by reacting carbon attached to the furnace wall and flying carbon in the gas way with CO 2 .

C + CO2 → 2CO … (1)C + CO 2 → 2CO… (One)

CO2와 C의 반응 효율 최적화를 위해 통상적으로 코크스 건류 말기에 CO2 함유 가스를 취입하는데, 상기 기술은 탄소원으로 사용되는 로체 벽면 부착카본, Flying 카본 등은 Gas way내에서의 밀도가 낮아 CO2 전환 효율이 낮다는 단점이 있다.To the reaction efficiency optimization of the CO 2 and C for typically blown into the CO 2 containing gas to the coke dry distillation end, the technology Roche wall attached carbon is used as a carbon source, Flying carbon or the like is low in density in the Gas way CO 2 There is a drawback of low conversion efficiency.

한편, COG를 활용한 합성 가스 생산 기술로는 COG에 함유된 메탄을 활용하여 스팀 (CH4-H2O) 개질, 혼합 개질 (CH4-H2O-CO2) 방법 등이 있다. 통상적으로 COG 개질은 특허문헌 1과 같이 Ni-based 촉매를 활용하는데, 촉매 활성점인 Ni이 COG에 포함된 H2S, NH3등 불순물에 쉽게 피독되어 활성이 저하되는 문제점이 있다.Meanwhile, as a synthesis gas production technology using COG, there are steam (CH 4 -H 2 O) reforming and mixed reforming (CH 4 -H 2 O-CO 2 ) methods using methane contained in COG. In general, COG modification uses a Ni-based catalyst as in Patent Document 1, but there is a problem in that the active point of Ni is easily poisoned by impurities such as H 2 S and NH 3 contained in COG, thereby reducing the activity.

국제 공개특허공보 제2002-053492호International Patent Publication No. 2002-053492

본 발명의 일측면은 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a method for producing syngas through a direct reaction of red coke and CO 2 in a coke oven.

본 발명의 일 실시형태는 CO2가 적열 코크스와 직접 반응하도록 코크스 오븐에 CO2를 취입하여 상기 CO2를 CO로 90% 이상 전환하는 단계; 및 상기 CO2 및 CO가 COG에 합쳐지도록 하는 단계를 포함하고, 상기 CO2의 취입은 상기 적열 코크스의 온도가 1100℃ 이상일 때 행하여지며, 상기 CO2의 취입시 유량은 5~50Nm3/ton-coal의 범위를 갖는 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법을 제공한다.One embodiment of the present invention comprises the steps of: switching at least 90% of the CO 2 to a CO 2 blowing the coke oven is allowed to react directly with CO 2 glowing coke to CO; And allowing the CO 2 and CO to be combined with COG, and the injection of the CO 2 is performed when the temperature of the red coke is 1100°C or higher, and the flow rate when the CO 2 is injected is 5 to 50 Nm 3 /ton Provides a method for producing syngas through direct reaction between red-heated coke and CO 2 in a coke oven having a range of -coal.

본 발명의 일측면에 따르면, 본 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통해 메탄올 제조에 용이한 합성가스의 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a method for producing syngas that is easy for methanol production through a direct reaction of red coke and CO 2 in the coke oven.

도 1은 본 발명의 일 실시형태에 적용 가능한 코크스 오븐의 모식도이다.
도 2는 적열 코크스의 건류 시간에 따른 COG 발생 유량에 관한 그래프이다.
1 is a schematic diagram of a coke oven applicable to an embodiment of the present invention.
2 is a graph of the COG generation flow rate according to the drying time of red-heated coke.

이하, 본 발명을 설명한다. Hereinafter, the present invention will be described.

본 발명의 일 실시형태는 CO2가 적열 코크스와 직접 반응하도록 코크스 오븐에 CO2를 취입하여 상기 CO2를 CO로 90% 이상 전환하는 단계; 및 상기 CO2 및 CO가 COG에 합쳐지도록 하는 단계를 포함하고, 상기 CO2의 취입은 상기 적열 코크스의 온도가 1100℃ 이상일 때 행하여지며, 상기 CO2의 취입시 유량은 5~50Nm3/ton-coal의 범위를 갖는 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법을 제공한다.One embodiment of the present invention comprises the steps of: switching at least 90% of the CO 2 to a CO 2 blowing the coke oven is allowed to react directly with CO 2 glowing coke to CO; And allowing the CO 2 and CO to be combined with COG, and the injection of the CO 2 is performed when the temperature of the red coke is 1100°C or higher, and the flow rate when the CO 2 is injected is 5 to 50 Nm 3 /ton Provides a method for producing syngas through direct reaction between red-heated coke and CO 2 in a coke oven having a range of -coal.

도 1은 본 발명에 적용 가능한 코크스 오븐의 모식도이다. 도 1에 도시된 바와 같이, 코크스 오븐(100) 내에는 적열 코크스(10)가 위치하게 된다. 본 발명에서는 CO2(20)가 적열 코크스(10)와 직접적인 반응을 할 수 있도록 상기 CO2(20)를 상기 코크스 오븐(100)에 취입한다. 이와 같이 취입된 상기 CO2(20)는 상기 적열 코크스(10)와 직접적인 반응을 통해 CO로 전환하게 된다. 이 때, 상기 CO2(20)의 취입은 상기 적열 코크스(10)의 온도가 1100℃ 이상일 때 행하여지는 것이 바람직하며, 이를 통해, 상기 CO2(20)의 전환 효율을 90% 이상으로 높일 수 있다. 만일, 상기 적열 코크스(10)의 온도가 1100℃ 미만일 경우에는 상기 CO2(20)와 상기 적열 코크스(10)의 반응에 필요한 에너지가 충분하지 않아 우수한 CO2(20) 전환 효율을 얻기 곤란하다. 한편, 본 발명에서는 상기 CO2(20)가 상기 적열 코크스(10)와 직접적인 반응을 할 수 있는 것이라면 상기 CO2(20)의 취입 위치나 방법에 대해서는 특별히 한정하지 않는다. 다만, 바람직하게는 코크스 오븐(100)의 하부 취입구를 통해 상기 CO2(20)를 취입시킬 수 있다.1 is a schematic diagram of a coke oven applicable to the present invention. As shown in FIG. 1, the red coke 10 is located in the coke oven 100. In the present invention, the CO 2 (20) is blown into the coke oven (100) so that the CO 2 (20) can react directly with the red coke (10). The CO 2 (20) blown in this way is converted to CO through a direct reaction with the red coke (10). At this time, the injection of the CO 2 (20) is preferably carried out when the temperature of the red coke 10 is 1100 ℃ or higher, through this, it is possible to increase the conversion efficiency of the CO 2 (20) to 90% or more. have. If the temperature of the red coke 10 is less than 1100°C, the energy required for the reaction between the CO 2 20 and the red coke 10 is insufficient, so it is difficult to obtain excellent CO 2 conversion efficiency. . On the other hand, in the present invention, as long as the CO 2 (20) can react directly with the red coke 10, the position or method of the injection of the CO 2 (20) is not particularly limited. However, preferably, the CO 2 20 may be blown through the lower inlet of the coke oven 100.

상기와 같이 전환된 CO와 미반응으로 인해 잔류하는 CO2는 COG와 합쳐지게 되고, 상기 COG는 상승관(30)을 통해 배출되며, 이후, 가스 정체 장치를 통해 H2S 및 HCN 등이 제거되고, 가스 저장 탱크에 저장되었다가 메탄올 제조 등에 이용될 수 있다.As described above, the converted CO and CO 2 remaining due to unreacted are combined with COG, and the COG is discharged through the riser 30, and then H 2 S and HCN are removed through a gas stagnation device. It can be stored in a gas storage tank and then used for methanol production.

상기 CO2(20)의 취입시 유량은 5~50Nm3/ton-coal의 범위를 갖는 것이 바람직하다. CO2(20)의 유량이 5Nm3/ton-coal 미만일 경우에는 충분한 양의 CO를 생산하지 못하여 메탄올 제조에 용이한 COG 조성을 얻기 곤란하며, 50Nm3/ton-coal를 초과하는 경우에는 반응 체류시간 부족으로 CO2 전환율이 낮아지며, 과량의 CO2 취입으로 인해 COG의 H2/(CO+CO2)가 1 이하가 되어 메탄올 제조에 용이한 COG 조성을 얻기 곤란하다. 따라서, 상기 CO2(20)의 취입시 유량은 5~50Nm3/ton-coal의 범위를 갖는 것이 바람직하다. 상기 CO2(20)의 취입시 유량의 하한은 7Nm3/ton-coal의 범위를 갖는 것이 보다 바람직하고, 9Nm3/ton-coal의 범위를 갖는 것이 보다 바람직하며, 10Nm3/ton-coal의 범위를 갖는 것이 가장 바람직하다. 상기 CO2(20)의 취입시 유량의 상한은 40Nm3/ton-coal의 범위를 갖는 것이 보다 바람직하고, 30Nm3/ton-coal의 범위를 갖는 것이 보다 바람직하며, 20Nm3/ton-coal의 범위를 갖는 것이 가장 바람직하다. 한편, 상기 유량의 단위에서 ton-coal은 최초 코크스 오븐에 투입되는 석탄의 양(ton)을 의미한다.When the CO 2 (20) is injected, the flow rate is preferably in the range of 5 to 50 Nm 3 /ton-coal. When the flow rate of CO 2 (20) is less than 5Nm 3 /ton-coal, it is difficult to obtain a COG composition that is easy for methanol production because it cannot produce a sufficient amount of CO. When it exceeds 50Nm 3 /ton-coal, the reaction residence time the lack of a lowered conversion rate CO 2, is a 1 or less because of the H 2 / (CO + CO 2 ) of the COG with excess CO 2 blown it is difficult to obtain a composition to facilitate the COG manufacturing methanol. Therefore, it is preferable that the flow rate of the CO 2 (20) is in the range of 5 to 50 Nm 3 /ton-coal. The lower limit of the flow rate during injection of the CO 2 (20) is more preferably in the range 7Nm 3 / ton-coal, and more preferably in the range 9Nm 3 / ton-coal, 10Nm of 3 / ton-coal It is most preferred to have a range. The upper limit of the flow rate during injection of the CO 2 (20) is more preferably in the range of 40Nm 3 / ton-coal, and more preferably in the range of 30Nm 3 / ton-coal, 20Nm of 3 / ton-coal It is most preferred to have a range. On the other hand, in the unit of the flow rate, ton-coal refers to the amount of coal (ton) initially injected into the coke oven.

도 2는 적열 코크스의 건류 시간에 따른 COG 발생 유량에 관한 그래프이다. 도 2에 도시된 바와 같이, 적열 코크스의 건류 시간이 17시간 정도 지났을 때 H2의 양이 COG 총량 대비 90% 이상을 차지하고 있음을 알 수 있다. 이와 같이 수소가 90% 이상 포함된 COG에, CO2가 적열 코크스와 반응하여 전환된 CO와 미반응으로 인해 잔류하는 CO2가 합쳐지는 경우, 본 발명이 목적으로 하는 메탄올 제조에 적합한 조성을 갖는 COG를 얻을 수 있다. 아울러, 적열 코크스의 건류 시간이 17시간 정도 지났을 때 상기 적열 코크스의 온도가 1100℃ 이상이 되므로, 상기 CO2의 취입은 상기 적열 코크스의 건류 17시간 후에 행하여지는 것이 바람직하다. 2 is a graph of the COG generation flow rate according to the drying time of red-heated coke. As shown in FIG. 2, it can be seen that the amount of H 2 occupies more than 90% of the total amount of COG when the drying time of the red coke has passed for about 17 hours. In this way, when COG containing more than 90% of hydrogen, CO 2 converted by reacting with red coke and CO 2 remaining due to unreacted are combined, COG having a composition suitable for producing methanol for the purpose of the present invention Can be obtained. In addition, since the temperature of the red coke becomes 1100° C. or higher when the drying time of the red coke has elapsed about 17 hours, the CO 2 is preferably blown after 17 hours of drying the red coke.

앞서 언급한 바와 같이 적열 코크스의 건류 시간이 17시간 정도 지났을 때 COG는 대부분 H2로 구성되며, 상기와 같이 CO2 및 CO가 합쳐진 COG는 대부분 H2와 CO로 구성된다. 본 발명에서는 상기 CO2 및 CO가 합쳐진 COG가 부피%로, H2: 63~69%, CO: 28~35%, CO2: 2~3%, NH4: 1% 이하를 포함하는 것이 바람직하다. 만일, 상기 조성을 만족하지 않을 경우에는 메탄올 제조가 용이하지 않을 수 있다. As mentioned above, when the drying time of red coke has elapsed for about 17 hours, COG is mostly composed of H 2 , and COG in which CO 2 and CO are combined as described above is composed mostly of H 2 and CO. In the present invention, the CO 2 and CO are combined in a volume %, H 2 : 63 to 69%, CO: 28 to 35%, CO 2 : 2 to 3%, NH 4 : It is preferable to include less than 1% Do. If the composition is not satisfied, it may not be easy to prepare methanol.

아울러, 상기 CO2 및 CO와 합쳐진 COG는 H2/(CO+CO2)가 1.8~2.3의 범위를 갖는 것이 바람직하다. 통상적으로 COG의 H2/(CO+CO2)가 2일 경우, 메탄올 제조가 가장 적합한 것으로 알려져 있으며, 본 발명에서는 상기와 같이 COG의 H2/(CO+CO2)를 1.8~2.3의 범위로 제어함으로써 메탄올 제조가 용이하도록 할 수 있다. 만일, 상기 COG의 H2/(CO+CO2)의 범위를 만족하지 않는 경우에는 상기 원소들의 양적인 비율을 고려할 때, 메탄올 제조가 어려울 수 있다.In addition, the CO 2 and COG combined with CO is preferably H 2 /(CO + CO 2 ) has a range of 1.8 to 2.3. Typically, when H 2 /(CO+CO 2 ) of COG is 2, it is known that methanol production is most suitable, and in the present invention, H 2 /(CO+CO 2 ) of COG is in the range of 1.8 to 2.3 as described above. By controlling to, the methanol production can be made easy. If the range of H 2 /(CO+CO 2 ) of the COG is not satisfied, when considering the quantitative ratio of the elements, it may be difficult to prepare methanol.

전술한 바와 같이 제공되는 본 발명의 합성가스 제조 방법에 의하면, 메탄올 제조에 용이한 COG를 얻을 수 있으며, 별도의 COG 개질이 필요하지 않아 기존에 COG 개질에 사용되던 Ni 촉매의 문제점을 해결할 수 있다.According to the synthesis gas production method of the present invention provided as described above, it is possible to obtain COG that is easy for methanol production, and because separate COG reforming is not required, it is possible to solve the problem of the Ni catalyst used for COG reforming. .

이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by matters described in the claims and matters reasonably inferred therefrom.

(실시예 1)(Example 1)

적열 코크스의 건류 17시간 후(적열 코크스의 온도: 1100℃ 이상), COG가 하기 표 1의 조성을 갖도록 코크스 오븐 내의 하부 취입관(Gas Way)을 통해 5~50Nm3/ton-coal의 CO2를 적절히 제어하면서 취입하여 COG를 얻었다. 이 때, CO2 전환 효율은 (투입 CO2량-순수미반응 CO2량)/투입 CO2량×100으로 계산하였다.After retorting 17 hours of glowing coke (glowing temperature of the coke: over 1100 ℃), the CO 2 in the 5 ~ 50Nm 3 / ton-coal have to the COG composition of Table 1, through the lower blowing tube (Gas Way) in the coke oven, It was blown under appropriate control to obtain COG. At this time, the CO 2 conversion efficiency was calculated as (input CO 2 amount-pure unreacted CO 2 amount) / input CO 2 amount × 100.

구분division H2 H 2 COCO CO2 CO 2 CH4 CH 4 H2/(CO+CO2)H 2 /(CO+CO 2 ) 분율(부피%)Fraction (% by volume) 63~6963~69 28~3528~35 2~32~3 ≤1≤1 1.8~2.31.8~2.3

상기 표 1에서 알 수 있듯이, 본 발명의 합성가스 제조방법에 따르면, CO2의 전환 효율이 90% 이상임을 알 수 있으며, 메탄올 제조에 용이한 COG를 얻을 수 있음을 확인할 수 있다.As can be seen from Table 1, according to the synthesis gas production method of the present invention, it can be seen that the conversion efficiency of CO 2 is 90% or more, and it can be seen that COG can be easily obtained for methanol production.

(실시예 2)(Example 2)

적열 코크스의 건류 17시간 후, COG가 하기 표 1의 조성을 갖도록 코크스 오븐 내의 상부 취입관(Gas Way)을 통해 5~50Nm3/ton-coal의 CO2를 적절히 제어하면서 취입하여 COG를 얻었다. 이 때, CO2 전환 효율은 (투입 CO2량-순수미반응 CO2량)/투입 CO2량×100으로 계산하였다.After 17 hours of drying the red coke, COG was obtained by properly controlling CO 2 of 5 to 50 Nm 3 /ton-coal through the gas way in the coke oven so that the COG has the composition shown in Table 1 below. At this time, the CO 2 conversion efficiency was calculated as (input CO 2 amount-pure unreacted CO 2 amount) / input CO 2 amount × 100.

구분division H2 H 2 COCO CO2 CO 2 CH4 CH 4 H2/(CO+CO2)H 2 /(CO+CO 2 ) 분율(부피%)Fraction (% by volume) 69~7569~75 17~2317~23 7~127~12 ≤1≤1 2.3초과 2.5이하Above 2.3 and below 2.5

상기 표 2에서 알 수 있듯이, 상부 취입관을 통해 CO2를 취입하는 경우, 상부 취입관의 부착카본 또는 Flying 카본과 CO2가 반응하게 되고, 이 경우, CO2 전환 효율이 약 50% 정도로 낮으며, COG의 조성 또한 메탄올 제조에 용이하지 않음을 확인할 수 있다. 이는 CO2의 반응에 참여한 상부 취입관의 부착카본 또는 Flying 카본의 온도가 900℃ 이하로 낮아 CO2의 전환에 필요한 에너지가 충분하지 않기 때문이다.As can be seen from Table 2 above, when CO 2 is injected through the upper inlet pipe, the attached carbon or flying carbon of the upper inlet pipe and CO 2 react, and in this case, the CO 2 conversion efficiency is low by about 50%. It can be seen that the composition of COG is also not easy to prepare methanol. This is because the adhesion of carbon or carbon Flying temperature of the upper blowing tube involved in the reaction of the CO 2 reduced to below 900 ℃ an insufficient amount of energy required for the conversion of CO 2.

(실시예 3)(Example 3)

적열 코크스의 건류 17시간 후(적열 코크스의 온도: 1100℃ 이상), COG가 하기 표 3의 조성을 갖도록 코크스 오븐 내의 하부 취입관(Gas Way)을 통해 50초과~300Nm3/ton-coal의 CO2를 취입하여 COG를 얻었다. 이 때, CO2 전환 효율은 (투입 CO2량-순수미반응 CO2량)/투입 CO2량×100으로 계산하였다.After retorting 17 hours of glowing coke (glowing temperature of the coke: over 1100 ℃), below the COG Table 3, the composition below was blown in so as to have the coke oven at 50 than through the (Gas Way) ~ 300Nm 3 / ton-coal CO 2 Was blown to obtain COG. At this time, the CO 2 conversion efficiency was calculated as (input CO 2 amount-pure unreacted CO 2 amount) / input CO 2 amount × 100.

구분division H2 H 2 COCO CO2 CO 2 CH4 CH 4 H2/(CO+CO2)H 2 /(CO+CO 2 ) 분율(부피%)Fraction (% by volume) 42~4642~46 47~5347~53 4~74~7 ≤1≤1 0.7~0.90.7~0.9

상기 표 3에서 알 수 있듯이, 본 발명의 CO2 취입 유량을 만족하지 않는 경우, CO2의 전환 효율이 약 80%로 낮은 수준임을 알 수 있으며, COG의 조성 또한 메탄올 제조에 용이하지 않음을 확인할 수 있다. 이 경우, 상기 COG를 메탄올 제조에 이용하기 위해서는 수소를 추가로 공급하는 과정이 불가피하게 요구된다.As can be seen from Table 3, when the CO 2 injection flow rate of the present invention is not satisfied, it can be seen that the conversion efficiency of CO 2 is at a low level of about 80%, and it is confirmed that the composition of COG is also not easy for methanol production. I can. In this case, in order to use the COG for methanol production, a process of additionally supplying hydrogen is inevitably required.

100: 코크스 오븐
10: 적열 코크스
20: CO2
30: 상승관
100: coke oven
10: red coke
20: CO 2
30: rise pipe

Claims (4)

CO2가 적열 코크스와 직접 반응하도록 코크스 오븐에 CO2를 취입하여 상기 CO2를 CO로 90% 이상 전환하는 단계; 및
상기 CO2 및 CO가 COG에 합쳐지도록 하는 단계를 포함하고,
상기 CO2의 취입은 상기 적열 코크스의 온도가 1100℃ 이상일 때 행하여지며,
상기 CO2의 취입시 유량은 5~50Nm3/ton-coal의 범위를 가지고,
상기 CO2 및 CO와 합쳐진 COG는 부피%로, H2: 63~69%, CO: 28~35%, CO2: 2~3%, NH4: 1% 이하를 포함하며,
상기 CO2 및 CO와 합쳐진 COG는 H2/(CO+CO2)가 1.8~2.3의 범위를 갖는 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법.
CO 2 is the step of switching at least 90% of the CO 2 to a CO 2 blowing the coke oven so as to react directly with the glowing coke to CO; And
Including the step of allowing the CO 2 and CO to merge into COG,
The injection of the CO 2 is performed when the temperature of the red coke is 1100°C or higher,
When the CO 2 is injected, the flow rate is in the range of 5 to 50 Nm 3 /ton-coal,
The CO 2 and COG combined with CO is a volume %, H 2 : 63 to 69%, CO: 28 to 35%, CO 2 : 2 to 3%, NH 4 : 1% or less,
COG combined with said CO 2 and CO is method of manufacturing a synthesis gas with a Direct reaction of coke with CO 2 in a glowing coke oven having a range of 1.8 ~ 2.3 H 2 / (CO + CO 2).
청구항 1에 있어서,
상기 CO2의 취입은 상기 적열 코크스의 건류 17시간 후에 행하여지는 코크스 오븐 내 적열 코크스와 CO2의 직접 반응을 통한 합성가스의 제조방법.
The method according to claim 1,
Injection of the CO 2 A method of manufacturing a synthesis gas which is conducted through a coke oven in a glowing coke and direct reaction of CO 2 after 17 hours of dry distillation the glowing coke.
삭제delete 삭제delete
KR1020180150213A 2018-11-28 2018-11-28 Method of manufacturing syngas by direct reaction of coke and co2 in coke oven KR102178436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180150213A KR102178436B1 (en) 2018-11-28 2018-11-28 Method of manufacturing syngas by direct reaction of coke and co2 in coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180150213A KR102178436B1 (en) 2018-11-28 2018-11-28 Method of manufacturing syngas by direct reaction of coke and co2 in coke oven

Publications (2)

Publication Number Publication Date
KR20200063921A KR20200063921A (en) 2020-06-05
KR102178436B1 true KR102178436B1 (en) 2020-11-13

Family

ID=71089215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180150213A KR102178436B1 (en) 2018-11-28 2018-11-28 Method of manufacturing syngas by direct reaction of coke and co2 in coke oven

Country Status (1)

Country Link
KR (1) KR102178436B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050345A (en) 2014-08-29 2016-04-11 新日鐵住金株式会社 Method and apparatus for producing blast furnace shaft part supply hydrogen gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020053492A (en) 2000-12-27 2002-07-05 박종섭 Frequency detector
KR101957128B1 (en) * 2013-05-27 2019-03-13 재단법인 포항산업과학연구원 The method for the two-step recovering sensible heat of red-hot cokes using carbon dioxide
KR101560946B1 (en) * 2013-12-24 2015-10-16 주식회사 포스코 Apparatus and Method for amplifying cokes oven gas
KR20160066122A (en) * 2014-12-01 2016-06-10 재단법인 포항산업과학연구원 Method of Increasing the Heat Recovery using Coke Dry Quenching

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050345A (en) 2014-08-29 2016-04-11 新日鐵住金株式会社 Method and apparatus for producing blast furnace shaft part supply hydrogen gas

Also Published As

Publication number Publication date
KR20200063921A (en) 2020-06-05

Similar Documents

Publication Publication Date Title
KR101716486B1 (en) Process for comprehensively utilizing low carbon emission fischer-tropsch synthesis tail gas
US20070131909A1 (en) Process for the production of synthesis gas from carbon-containing material and electrical energy
TWI659925B (en) Plant complex for steel production and method for operating the plant complex
KR20120030100A (en) Method of making synthesis gas
CN102762693A (en) Method for increasing amount of coke oven gas by using carbon dioxide
CN114729409B (en) Method for direct reduction of iron ore
JP5282455B2 (en) Gasification gas reforming method and apparatus
JP5763054B2 (en) Method for simultaneously producing iron and crude synthesis gas containing CO and H 2
EP2119668A2 (en) Process for the preparation of synthesis gas from black liquor
CN105883851A (en) Novel gasification and pyrolysis coupling gas poly-generation process
JP7192899B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
KR102178436B1 (en) Method of manufacturing syngas by direct reaction of coke and co2 in coke oven
US9212059B2 (en) Method and apparatus for improving the efficiency of an SMR process for producing syngas while reducing the CO2 in a gaseous stream
CN102839005A (en) Method for adjusting hydrogen-carbon ratio in coal gas in coke oven coking chamber
US4325731A (en) Process of producing reducing gas from solid fuels
CN106748655A (en) It is a kind of efficiently to reduce integrated iron and steel works CO2The method of discharge
CN102190560A (en) Method for increasing yield of methanol by using purge gas
CN110217757A (en) Coal liquefaction, petroleum or the biomass equipment with the integration of higher carbon and the thermal efficiency are generated with reduced carbon dioxide
WO2021215059A1 (en) Blast furnace operation method and auxiliary facility for blast furnace
CN101024497A (en) Method for production of carbon monoxide from synthesis gas
KR101309942B1 (en) Apparatus for manufacturing synthetic natural gas and method for manufaturing synthetic natural gas using the same
KR101585445B1 (en) Apparatus and method for synthesizing methanol
JP7375980B1 (en) Blast furnace operating method, hot metal production method, and blast furnace auxiliary equipment
JP6552030B1 (en) Syngas production system for low carbon FT synthetic oil production
JP7131698B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant